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ABSTRACT

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the feature space to learn transferable and disentangled rep-

resentations. Transferable feature representations help in training machine learning

models that are robust across different distributions of data. For example, with the

application of transferable features in domain adaptation, models trained on a source

distribution can be applied to a data from a target distribution even though the dis-

tributions may be different. In style transfer and image-to-image translation, disen-

tangled representations allow for the separation of style and content when translating

images.

This thesis examines learning transferable data representations in novel deep gen-

erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-

ial methods and cross-domain weight sharing in a neural network to extract trans-

ferable representations. These transferable interpretations can then be decoded into

the original image or a similar image in another domain. The Explicit Disentangling

Network (EDN) utilizes generative methods to disentangle images into their core at-

tributes and then segments sets of related attributes. The EDN can separate these

attributes by controlling the flow of information using a novel combination of losses

and network architecture. This separation of attributes allows precise modifications

to specific components of the data representation, boosting the performance of ma-

chine learning tasks. The effectiveness of these models is evaluated across domain

adaptation, style transfer, and image-to-image translation tasks.
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Chapter 1

INTRODUCTION

The rise of big data and the development of discrete graphics cards has allowed

researchers and scientists to create and test a wide variety of new machine learning

models that are increasingly capable. In some cases, these models are more capable

than people. The machine learning model AlphaGo Zero learns to play the game

of Go by competing against itself in order to learn new, optimal ways of performing

tasks. With several weeks of training, an AlphaGo Zero model is capable of competing

with and beating the world’s greatest players of Go who have decades of experience

and knowledge1. Similarly, other models and approaches are capable of performing

tasks like opening doors, shooting a basketball, and driving a car. In a small subset

of tasks, artificial intelligence has been created that is comparable or better than

humans. However, AI still struggles to compete with human intelligence in general.

One aspect of human intelligence that is still challenging for machine learning

models is the ability to adapt and transfer knowledge across different contexts. When

a human learns to perform some task, they understand not only which actions to take,

but also the the context of the task and the reasons for performing specific actions.

This abstract understanding allows people to generalize knowledge they learn for a

specific task and utilize it in other settings. For example, a tennis player, with their

knowledge of racket placement and ball spin, is able to easily transfer this knowledge

to another racket sport like ping pong and gain a competitive edge over a beginner.

Harnessing this ability to transfer knowledge into a machine learning model would

allow the creation of tools that can process and understand new, unlabeled data and

1https://deepmind.com/blog/alphago-zero-learning-scratch/
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utilize this knowledge for applications in assistive technology, robotics, and healthcare.

In machine learning, the traditional feed forward neural network is able to learn

higher-level concepts of data when learning to classify it. The problem is that this

knowledge is highly specific to the data used during training. The singular objective

for the network is to learn to classify the training data. In order to create highly

transferable data representations, researchers must develop new methods and network

architectures to represent the data and its abstract attributes.

This thesis focuses on models that learn transferable data representations by lever-

aging different generative models. Richard Feynman said, “What I cannot create, I

do not understand.”2 This quotation alludes to the idea that a deep understanding

of an object is necessary before one can create it. The act of creation, or generation,

necessitates an understanding of the component parts as well as their interactions

with each other. By using models that learn to generate data, researchers can further

understand how data can be broken down and recomposed. With this deeper under-

standing, researchers can also learn to modify these components in such a way that

they can be reused and adapted for more applications, tasks, and contexts.

1.1 Goals and Motivations

The goal of this thesis is to propose machine learning models with transferable data

representations that can be used for machine learning tasks such as domain adaptation

and style transfer. It seeks to highlight knowledge transfer in deep generative machine

learning models and summarizes the related literature. This thesis seeks to directly

contribute to two larger challenges: labeling big data and reverse-engineering the

brain.

1. Labeling Big Data: Creating infrastructures to store and handle the data as well

2http://archives-dc.library.caltech.edu/islandora/object/ct1:483

2



as analyzing and understanding the large amount of data are both large prob-

lems in an age of technology that generates massive amounts of data. Although

there are some aspects of data that are easy to understand like the origin of

data or the date of creation, there are many useful attributes of data that are

harder to extract. Learning powerful ways to label these attributes in new data

would make the data more usable and valuable for important problems.

2. Reverse-Engineering the Brain: The National Academy of Engineering (NAE)

has laid down 14 challenges for the 21st century 3 that have far-reaching impacts.

One of these challenges is to reverse-engineer the brain. The goal of this chal-

lenge is to create machines capable of emulating human intelligence. Because of

the capability of the human brain, many believe that as the research progresses,

the performance of machine learning tasks will drastically increase. New tech-

nology and machine learning models will allow great advances in healthcare,

manufacturing, and communications. The particular part of this challenge that

this thesis focuses on is the ability to transfer previously gained knowledge and

adapt to a wide range of data inputs, an important ability of human intelligence.

1.2 Thesis Outline

The thesis is structured in the following manner:

Chapter 2 provides an overview of different concepts covered in this thesis including

disentanglement, transfer learning, domain adaptation, and image-to-image transla-

tion. The first section introduces the concept of domains of data and disentangling

generative factors of a domain. The second section introduces the problem of transfer

learning, domain adaptation, and the relevant notation. The discussion of domain

adaptation includes the explanation of two problem scenarios, semi-supervised and

3http://www.engineeringchallenges.org/challenges.aspx
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unsupervised, as well as an overview of several domain adaptation methods. The

third section introduces generative models. Specifically, this section discusses the

Variational Autoencoder (VAE) (Kingma and Welling (2013)), the Generative Ad-

versarial Network(GAN) (Goodfellow et al. (2014)), and the application of generative

models for image-to-image translation.

Chapter 3 is a survey on the research in deep generative models relevant to transfer-

able data representations. The first section introduces current deep generative models

and key models that drastically progressed the capabilities of the original GAN and

VAE models. This section also highlights important generative models used for dis-

entangling generative factors. The second section introduces extensions of generative

models for the use of machine learning tasks such as image-to-image translation, style

transfer, and domain adaptation.

Chapter 4 proposes the Semi-Supervised Adversarial Translator (SAT). The chapter

describes the model, which utilizes a set of coupled VAE-GANS to map data from

multiple domains into a shared latent space. The network achieves this shared latent

space through a combination of adversarial training, cross-domain weight sharing, and

classification losses. Using a shared latent space, the network is able to perform cross-

domain image-to-image translation as well as domain adaptation. Throughout the

chapter, the model, the network architecture, the applications, and the contributions

are detailed and evaluated.

Chapter 5 discusses the Explicit Disentangling Network (EDN), which seeks to

simplify the task of transferable data representations through explicitly disentangling

subsets of the generative factors. As a direct result to lessons learned from the SAT,

the EDN learns to organize generative factors of data into two sets, content-related

factors and style-related factors. This separation allows the network to handle each

set of factors differently, resulting in more efficient performance in domain adaptation

4



and image-to-image translation. Throughout the chapter, the model, the network

architecture, the applications, and the contributions are detailed and evaluated.

Chapter 6 concludes the thesis by summarizing the results and contributions.

1.3 Contributions

The contributions of this thesis as well as other graduate work are as follows.

1. A novel semi-supervised deep generative model, the Semi-Supervised Adversar-

ial Translator, is proposed that accomplishes semi-supervised image-to-image

translation and domain adaptation using unexplored combinations of domains.

The model extends previous models by incorporating a modified discriminator

and losses relating to the sparse target labels.

2. A novel model, the Explicit Disentangling Network, is proposed that exemplifies

explicit disentanglement and demonstrates the performance and possibilities

of the new approach. By separating content-related and style-related factors

through a specific network architecture and novel combination of losses, the

model learns a powerful, transferable representation of data. This work will

be submitted as an article to the IEEE Transactions on Neural Networks and

Learning Systems journal.

3. Creation of the Office-Home dataset, a deep learning dataset aimed to evaluate

domain adaptation algorithms. It consists of nearly 15,500 images from 65

different categories and 4 domains: art, clipart, product, and real-world. This

work, along with other research was published in ”Deep Hashing Network for

Unsupervised Domain Adaptation” Venkateswara et al. (2017).

5



Chapter 2

BACKGROUND

This chapter provides an overview of different concepts, models, and tasks covered in

this thesis including disentanglement, generative models, transfer learning, domain

adaptation, and image-to-image translation. Section (2.1) introduces the the task

of disentangling generative factors of a domain. Section (2.2) discusses the major

generative models, the VAE and GAN, and their methods, network architectures, and

capabilities. Section (2.3) introduces concepts concerning transferable representations

including transfer learning, domain adaptation, and image-to-image translation. The

discussion of domain adaptation includes the explanation of two problem scenarios,

semi-supervised and unsupervised, as well as an overview of several relevant domain

adaptation methods.

2.1 Disentangling Generative Factors

One way to analyze data is to model it as a collection of independent generative

factors (Bengio (2012)). Each generative factor relates to one of the many independent

attributes found in a domain, such as the color or shape of an object. A domain,

or collection of data, could likewise be modeled as a collection of possible variations

of a set of generative factors. These factors interact in intricate ways, complicating

machine learning tasks. For example, when the lighting of an object changes from one

angle to another, the many different shadows change shape and size and result in a

drastically different image, often causing problems for tasks like object classification.

Disentangling the generative factors relating to the shadow and an object allows

machine learning models to separate the two and focus solely on the object for more

6



effective classification. In general, disentanglement leads to a clear understanding of

the core features and attributes of the data and brings greater control and performance

in machine learning tasks .

2.2 Generative Models

Given training data X that is distributed by P (X), the goal of generative models

is to learn a model P̂ (X) , which can generate new samples similar to the ones in X.

The generation of new data and the process of learning P̂ (X) are both powerful, useful

tools. Generative models have demonstrated to be able to create new, realistic art,

increase the resolution of blurry images, and color black and white images. Outside

of working with images, generative models for time-series data can be used for many

reinforcement learning applications. The latent representations learned by generative

models are useful themselves. The data representations of generative models can be

adapted and then utilized for new tasks. Recently, two generative models have risen

in popularity, the VAE (Kingma and Welling (2013)) and the GAN (Goodfellow et al.

(2014)) which both make use a differentiable generator network.

2.2.1 Variational Autoencoders

The VAE is a generative model that approximates the data distribution P (X)

of input from X into a low dimensional representation by using a decoding gen-

erative network and an encoding inference network paired together in an autoen-

coder(Kingma and Welling (2013)). The VAE model utilizes an inference network as

a probabilistic encoder qϕ(z|x) that produces a distribution over the possible values

of latent code z. The decoding network pθ(z|x), given z, produces a distribution over

possible values of x that could have produced z. VAEs are trained by maximizing

7



the variational lower bound LV AE associated with data x:

LV AE = Ez∼q(z|x)[− log pG(x|z)] + KL(q(z|x)||p(z)) (2.1)

The first term in the equation can be seen as the log-likelihood reconstruction and

ensures the autoencoder network is able to reconstruct input x. The second term

acts as a regularizer and aims to minimize the Kullback-Leibler divergence between

the approximate posterior distribution q(z|x) and the model prior p(z), encouraging

the approximate posterior to be closer to prior p(z). Typically, p(z) is chosen to

be a centered isotropic multivariate Gaussian, i.e. p(z) = N (z, 0, I). Encouraging

this Gaussian distribution forces the encoder network to find efficient variables and

features in order to represent data in the latent space. In some cases, the different

variables within the latent space can correspond to disentangled generative factors

(Higgins et al. (2016)).

Normally, backpropagation cannot flow through a random node, which is present

in a VAE when sampling z. VAEs avoid this limitation by reparameterizing z as a

function that takes a noise vector ϵ as well as the outputs of the encoder network µ

and σ:

z ∼ N (µ,Σ) where z = µ+ σϵ, ϵ ∼ N (0, I), Σ = σσT (2.2)

2.2.2 Generative Adversarial Networks

GANs pair a generator network with a discriminator network to generate high-

fidelity images(Goodfellow et al. (2014)). GANs learn in a game theoretic scenario

where the generator and discriminator network compete against each other. The

generator network generates samples x = g(z; θ(g)) with z typically being a random

noise vector. The discriminator, on the other hand, learns to classify the source of

incoming samples, whether they be taken from the original training data or generated
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samples. This binary classification is given by d(x; θ(d)). This competition between

the two networks can be seen as a zero-sum game, with function v(θ(g), θ(d)) acting

as the utility of the game, and can be modeled by:

v(θ(g), θ(d)) = Ex∼pdata log d(x) + Ex∼pmodel
log(1− d(x)) (2.3)

The first term in the equation relates to the success of the discriminator in classifying

original data as original data while the second term positively relates to the ability

for the generator to create data classified as original by the discriminator. Since these

two terms are intrinsically opposed, the model trains in an oscillating manner. At

each training step, if either network improves, the other network learns to improve in

the next step. Convergence in a successful GAN occurs when the model hits a saddle

point where the oscillation becomes negligible. At this point, the generator creates

data so similar to the original data that the discriminator can only correctly identify

the generated images half of the time.

Although GANs have the capability for high fidelity image generation, they still

suffer from stabilization issues. In many cases the generator or discriminator of a

model becomes unpropotionally better at the zero-sum game. Because the GAN

relies heavily on the balance of generation and discrimination, these mismatched net-

works perform sub-optimally. Thus, is it often necessary to finely tune the model

architecture as well as the model’s hyper-parameters. Extensions to the GAN, such

as a deep convolution GAN (DCGAN) (Radford et al. (2015)), have worked to further

stabilize and improve GANs, but complete stabilization is still an open problem. In a

DCGAN, the discriminator is set up similarly to a deep convolutional neural network

(CNN) (LeCun et al. (1995)) and utilizes powerful convolutional layers to learn highly

discriminatory hierarchical features that downsample input to be more compact and

abstract at each layer. The generator, on the other hand, utilizes transposed convo-
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lutional, or deconvolutional, layers (Zeiler et al. (2011)) that upsample a compact,

abstract vector at each layer until the last layer, which outputs an image.

2.3 Transfer Learning

A large number of machine learning methods work well when the training and

test data are taken from the same distribution and feature space. In most models,

changing the test data to some other dataset dramatically affects the success of the

task because these models are trained to specifically handle one type of data. Transfer

learning aims to produce machine learning methods that reduce this degradation by

learning transferable data representations that can be utilized in multiple settings

and tasks by learning the underlying, hidden structure of the data.

In machine learning, A domain D is composed of a feature space X and a marginal

probability distribution P (X). In a domain, X = x1, ...xn ⊂ X is the set of samples

found in the feature space. This thesis includes multiple datasets and variations on

these datasets. Each variation of dataset is considered a different domain because they

differ to various extents in their feature spaces and marginal probability distributions.

A task T is composed of a label space Y and f(·), a function of f : X → Y . This

function is originally unknown and must learn to predict the correct label of an input

x. Given a source domain DS with an accompanying task TS and a target domain DT

with task TT , transfer learning aims to improve the target predictive function fT (·)

in DT using knowledge from DS and TS (Pan and Yang (2010)).

2.3.1 Domain Adaptation

One type of transfer learning is domain adaptation. In domain adaptation, there

is a single task T shared by a source DS and target DT domain. In most cases, the

label spaces ofDS andDT are the same, but the two domains differ in their joint prob-
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ability distributions of PS(X,Y ) and PT (X,Y ) (Bruzzone and Marconcini (2010)).

Typically, data in the source domain is labeled, and the target domain has a little

to no label information, leaving no straightforward method of estimating P̂T (X,Y ).

Since the two domains share a label space, they usually share many attributes and

features, especially higher level ones, leaving the possibility to approximate P̂T (X,Y )

by adapting P̂S(X,Y ).

Within domain adaptation, there are two problem scenarios: semi-supervised and

unsupervised (Chapelle et al. (2009)). In the semi-supervised setting, the source

domain contains labeled data DS = {xs
i , y

s
i }ns

i=1 and the target domain contains some

labeled and some unlabeled data DT = {xt
i, y

t
i}

nT
i=1∪{xt

i}nt+nu
i=nt+1. In the target domain,

there are a sparse number of nt labeled data points and a much larger number of nu

unlabeled points. Due to the sparse number of labeled data points in DT , P̂T (X,Y )

cannot be estimated without severe overfitting. Semi-supervised methods rely heavily

on P̂S(X,Y ) to estimate P̂T (X,Y ), but also make use of the labeled target data to

assist in the alignment of P̂T (X,Y ) with PT (X,Y ).

In the unsupervised scenario, the source domain contains labeled data DS =

{xs
i , y

s
i }ns

i=1 and the target domain contains only unlabeled data Dt = {xt
i}nt

i=1. Since

there is no information in the target domain, the estimation of P̂T (X,Y ) solely relies

on information gleaned from P̂S(X,Y ). This results in a much harder problem than

semi-supervised learning but is much more common, with no requirement for labels in

the target domain. Unsupervised models rely on matching and adapting knowledge

in the source and target dataset.

Currently, the best performing algorithms utilize deep learning approaches because

of the powerful discriminatory features found in their convolutional layers (Goodfel-

low et al. (2016)). As these deep networks get trained, the convolutional layers learn

to find the most useful features for whichever loss they are given rather than utilizing
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handcrafted feature extractors. This automatic process allows deep networks to spe-

cialize their layers to extract powerful, specialized features. Another quality about

deep neural networks is that they learn to extract hierarchical features, meaning that

their earlier layers extract lower-level spaces and find simpler features. In images, this

would include edges or curves. Later layers of a deep network extract higher-level,

abstract features that are combinations of their lower level features. These abstract

features can end up representing complicated shapes, the orientation of an object,

and much more.

The powerful features found using deep neural networks are great for the domain

adaptation task. Alexnet (Krizhevsky et al. (2012)), a deep CNN trained for the

challenging ImageNet classification task, learns to extract features in order to classify

millions of images as one of a thousand categories. Even though these features are

trained for a specific task, the features, to some extent, can be used for other tasks

such as domain adaptation (Razavian et al. (2014)). Similarly, a target domain can

be directly input to a deep network trained on a source domain to some success, called

nave domain adaptation. This form of domain adaptation can be further improved

by fine-tuning specific layers of the CNN(Oquab et al. (2014)).

Another set of deep learning domain adaptation techniques involve aligning domain-

invariant features. In networks like the deep adaptation network(DAN) Long et al.

(2015), the domain adaptive hash (DAH) network (Venkateswara et al. (2017)), and

the residual transfer network (Long et al. (2016)), the models use various losses like

maximum mean discrepancy (MMD) loss and domain confusion loss(Tzeng et al.

(2014)) to align the features found when analyzing both source and target data.

Since the features found in source and target data are aligned, a classifier trained on

the source domain will have some level of success in the target domain. In a similar

fashion, disentangling generative factors can be used for domain adaptation. Since the
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label space is the same for both domains in domain adaptation, data from both do-

mains typically share most factors that relate to the labels. Another method of feature

alignment is to first separate the domain-invariant factors from the domain-variant

factors. This separation allows the model to focus only on the domain-invariant

factors when aligning domains and performing classification(Bousmalis et al. (2016)).

Aside from adapting or transferring features, domain adaptation can be accom-

plished through adapting or transferring images themselves. With the rise of genera-

tive models and new ways to synthesize data, images themselves can be transferred,

or translated, into another domain. These translated images can be used to help train

a classifier or be classified themselves (Liu et al. (2017)).

2.3.2 Image-to-Image Translation and Style Transfer

In the context of transferable data representations, one important application of

generative models is image-to-image translation. In this translation, the content of

an inputted image is captured and represented in a new, generated image in another

domain, resulting in an image that has the same content but a new style. Content, in

this context, relates to the main objects of an image and typically relate to an image’s

label. The style of an image relates to the specifics of how the content is portrayed

and can include attributes like color, size, and rotation.

Style transfer can be seen as a version of image-to-image translation that only

focuses on conserving and transferring the style elements a single image to another

(Gatys et al. (2015)). Typically, images going through image-to-image translation

may have many plausible outcomes because of the range of styles in a domain, simi-

lar to languages that have multiple ways of saying the same thing. On the other hand,

style transfer typically transfers the stylistic elements, or the textures, of a singular

image onto another (Gatys et al. (2016)). To accomplish style transfer, early tech-
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niques like (Efros and Leung (1999)) transfer only the low-level features which contain

the textures found in images. Deep CNNs expand on early style transfer approaches

by adding the capability to achieve some high-level content conservation due to the

hierarchical nature of features found in CNNs. With deeper image representations,

and sufficient amount of labels, convolutional style transfer provided better looking

results.

The goal of cross-domain image-to-image translation is to synthesize image xT

that contains a similar content as image xS from domain DS but looks similar to

images in domain DT . This version of image translation requires a comprehensive

understanding of the content and style from both domains. The CycleGAN (Zhu

et al. (2017)), an early approach for cross-domain image-to-image translation, does

not explicitly understand the content and style of images it transfers. Instead a Cy-

cleGAN utilizes a cyclical loss to ensure that the translation of some image to a new

domain and back would result in an image similar to the original image. Due to this

lack of an explicit method of content conservation, the domains that the CycleGAN

can accurately translate are severely limited. CycleGANs, due to the lack of explicit

content conservation and reliance on only a cyclical loss, are unable to perform ge-

ometric transformations in image translation. Similar to style transfer techniques,

CycleGANs simply transfer textures when translating from one domain to another.

More recent approaches to cross-domain image-to-image translation like UNIT (Liu

et al. (2017)) and CyCADA (Hoffman et al. (2017)) utilize semantic loss functions in

order to explicitly understand the content of original and translated images. Although

these content conservation loss functions severely complicate training, they allow the

models to correctly translate images. The better a model is at understanding the

content and style of an image, the better the translation.
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Chapter 3

LITERATURE SURVEY

3.1 Generative Models

In order to create something, one must first understand how it is put together.

With a motto that creation leads to understanding, there has recently been much

work to use deep machine learning models to understand data by learning how to

generate it.

3.1.1 Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow et al. (2014)) are a subset of gener-

ative models that utilize adversarial learning to generate data and have exploded in

popularity and performance in recent years. A traditional GAN has two components,

a generator and discriminator, that are set up to oppose each other. The discrimina-

tor acts as a classifier of samples as either real or fake, having come from the original

distribution or not. While the discriminator is learning to classify the domains of

images, the generator learns how to create realistic images. While working against

each other, the discriminator and generator also work together and learn from each

other by constantly outdoing the other.

Many works extend the original GAN in order to expand the range of applica-

tions, increase performance, and improve training stability. DCGANs improve on the

original GAN by utilizing deep convolutional networks for the generator and discrimi-

nator (Radford et al. (2015)). This shift to deep modeling improves image quality and

stability. DCGANs are also shown to model a subset of the generative factors when
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learning to generate new images. DCGANs are able to find these factors by learning

a hierarchy of representations of the data in both the generator and discriminator

similar to those found in Convolutional Neural Networks (CNNs).

Another important extension of GAN is the conditional GAN (Mirza and Osindero

(2014), which introduces a conditional input to GANs. Prior to adding a controlled

variable in the input, the output of a GAN was solely correlated to a random noise

vector, resulting in a relationship that was difficult to analyze. The controlled input

gives conditional GANs the ability to directly correlate the input of a GAN with the

output, resulting in more powerful applications. One model that utilizes these control

variables is the information maximizing GAN, or InfoGAN (Chen et al. (2016)).

InfoGANs are able to map previously unknown attributes of synthesized images from a

GAN to interpretable variables in the input in an unsupervised manner. An InfoGAN

finds this mapping by maximizing the mutual information in sets of generated images.

3.1.2 Variational Autoencoders

The VAE is a variational inference method that understands images by finding

a set of compact, normally distributed latent variables that can describe all of the

data in a dataset (Kingma and Welling (2013)). Each VAE is made of two smaller

networks, an encoder, that maps data into a compressed latent space, and a decoder,

which upsamples the latent variables back into an image. Because of the constraint

of compression, the representation of the data in the latent space becomes efficient

at modeling the key attributes of the data. One weakness of the VAE is that the

resulting images tend to be blurry due to the compression in the latent space.

VAEs and GANs are both successful generative models with their own benefits

and deficiencies. In the work on the VAE-GAN (Larsen et al. (2015)), researchers

combine the two models in order to make a model with the strengths of both. This
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work combines the powerful representations learned by VAEs with the image quality

of GANs resulting in better image quality than the traditional VAE, better training

stability than a GAN, and more variation in generated images than typical GANs.

3.1.3 Disentangling Generative Factors

Recently, there has been much work using machine learning models to disentangle

the generative factors of data. These generative factors, or factors of variation(Bengio

(2012)), relate to different attributes of data that vary independently. If a model

learns to understand the different factors of a set of data and also how these factors

work together, the model can break down data into its different core aspects for

further analysis and modification.

An InfoGAN network disentangles the generative factors by maximizing the mu-

tual information between the observations and a subset of latents (Chen et al. (2016)).

This information maximization allows the network to map specific generative factors

found in the generated images to interpretable variables, effectively disentangling

these interpretable variables.

The VAE can be seen as a disentangling network that disentangles its generative

factors in the latent space to a certain degree. The disentanglement occurs because

the compression forces the VAE to use efficient data representations, and the most

efficient data representation comes in the form of disentangled independent generative

factors. β-VAE (Higgins et al. (2016)) is a modified version of VAE that focuses on

the degree of disentanglement of a VAE by varying the weight of the loss based on

the KL divergence in order to limit the information flow of the latent space, forcing

more efficient and more disentangled factors.

The disentanglement of a β-VAE provides a simple, powerful solution to under-

standing the composition of various domains and environments. The Symobl-Concept
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Association Network, or SCAN (Higgins et al. (2017b)), utilizes the disentangled gen-

erative factors from a β-VAE to learn a hierarchical composition of the visual concepts

found within a domain. Using a small subset of image-symbol pairs, SCAN can also

be used to learn the visual concepts associated with certain symbols. The Disentan-

gled Representation Learning Agent (DARLA) (Higgins et al. (2017a)) utilizes β-VAE

to learn a disentangled representation of observations in a reinforcement learning en-

vironment. This robust understanding of the environment allows DARLA to learn a

source policy capable of zero-shot domain adaptation.

Another disentangling model is the Adversarial Autoencoder (AAE) (Makhzani

et al. (2015)), which can learn to disentangle the content and style of an image. Al-

though it does not disentangle at the level of generative factors, an AAE disentangles

sets of generative factors. An AAE is set up similar to a VAE, except for the use

of an adversarial training procedure in the AAE. This procedure is used to impose a

prior distribution on the hidden code rather than the KL divergence used in VAEs.

AAEs can learn to disentangle in supervised settings by providing a label vector to

the generator of the model, making the content of the generated image rely solely on

this inputted vector and having the rest of the AAE handle the style.

3.2 Applications of Deep Generative Models

The rise of deep generative models like GAN and VAE and their various exten-

sions have brought a wide array of new methods to understand and represent data.

Generative models can utilize their deep understandings to excel in many challenging

tasks.

18



3.2.1 Image-to-Image Translation

Many models based off of the original GAN have been utilized for cross-domain

image-to-image translation. Pix2Pix (Isola et al. (2017)) learns to perform super-

vised image-to-image translation by comparing a generated image with the known

translated version of the image. The goal of Pix2Pix is to perform unsupervised

translation at a similar level of supervised translation without the requirement of

having prior translated pairs of images. Unsupervised image-to-image translation is

a tougher task, because there is no straightforward way to check if an image is trans-

lated correctly without labels in both domains. The CycleGAN(Zhu et al. (2017))

performs unsupervised translation without pairing through a pixel-level cyclical loss

that compared an original image with a version of the image that was translated to

another domain and then translated back. CycleGANs can demonstrate high-quality

unsupervised translation, but the datasets that it is capable of successfully trans-

lating are quite limited, especially when geometric transformations are necessary for

translation. The Domain Transfer Network (DTN) (Taigman et al. (2016)) utilizes

an f-constancy term, which encourages an original image and the generated image

translation to have similar higher-level features. Compared to the pixel-wise loss of

CycleGAN, this loss based on feature-consistency allowed the translation of more

domains. The unsupervised image-to-image translator, or UNIT (Liu et al. (2017)),

achieves unsupervised image-to-image translation by utilizing a pair of coupled VAE-

GANs, with each VAE-GAN handling the encoding and decoding of images in its

domain. UNIT assumes that the two translated domains can share a common latent

space. Because of this assumption, UNIT utilizes weight sharing of the higher-level

layers of the two VAE-GANs, forcing both subnetworks to map the data into a shared

latent space. Because of this shared latent space, images from both domains can be
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realized as an image from either domain. Most recently, the Cycle-Consistent Ad-

versarial Domain Adaptation model, or CyCADA(Hoffman et al. (2017)) extends the

CycleGAN by adding feature consistency losses as well as reclassification losses, sim-

ilar to the DTN. The resulting model is able to achieve state-of-the art results, but

requires much fine-tuning in order to balance the complicated objective loss.

3.2.2 Style Transfer

Style transfer typically refers to a type of image-to-image translation that focuses

on transferring the artistic style of one image to another i.e. morphing a cityscape

photograph to look like a Van Gogh oil painting. Recent style transfer techniques

utilize a combination of convolutional layers and Gram matrices originally proposed

by in Gatys et al. (2015). Their method combines the content of an image with the

style of another by jointly minimizing a content loss based off of the squared-error loss

between higher level layers as well as a style loss which is done by comparing Gram

matrix statistics. In typical style transfer images, the main shapes of the original is

kept consistent while everything else changes.

3.2.3 Domain Adaptation

Aside from generative approaches, two deep domain adaptation methods have

risen in popularity: discrepancy-based and discriminative models. The Deep Adap-

tation Network (DAN) (Long et al. (2015)) learns to reduce the domain discrepancy in

multiple fully connected layers, making these features more transferable. The Adver-

sarial Discriminative Domain Adaptation network(Tzeng et al. (2017)), or ADDA,

proposes a discriminative adversarial network that improves unsupervised domain

adaptation by combining adversarial learning with discriminative feature learning.

ADDA does this by learning a discriminative mapping of target images into the source
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feature space that must also look realistic to a domain discriminator. The Domain

Adversarial Neural Network (DANN) (Ganin and Lempitsky (2014)) added a domain

discriminator to the traditional convolutional neural network framework that works

to ensure the feature distributions from both the source and target domain would be

made similar, resulting in the network finding more domain-invariant features and

better classification of the target domain using these features. Another domain adap-

tation model is the Domain Separation Network, or DSN (Bousmalis et al. (2016),

which explicitly separates domain-variant and domain-invariant generative factors us-

ing various similarity and difference metrics. The isolated domain-invariant factors

can then be used to train a classifier using the source domain and labels. This classi-

fier can also be used on the target domain with the assumption that the two domains

share features relating to classification.

Recently, deep generative models have raised the standard of unsupervised domain

adaptation. Capable unsupervised image-to-image translation networks like DTN,

UNIT, and CyCADA can be utilized to perform unsupervised domain adaptation.

Rather than adapting layers of a classification network, translation networks adapt

target images into the source domain which can then be classified with a classifier

network trained on the source dataset.
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Chapter 4

SEMI-SUPERVISED ADVERSARIAL TRANSLATOR

Recently, many unsupervised image translation techniques have been proposed in-

cluding: Pix2Pix, CycleGAN, DTN, and UNIT. One consistent deficiency of these

techniques is the ability to handle image-to-image translation of drastic domain shifts

when the source domain contains a much simpler feature space than the target do-

main i.e. black and white vs. color or two-dimensional vs. three-dimensional images.

In these cases, the way that the models represents and understands the source do-

main does not have the capacity to also fully understand the more complicated target

domain. Chapter (4), introduces a novel semi-supervised approach to the image-

to-image translation task. With the addition of several semi-supervised losses, the

semi-supervised adversarial translator (SAT) explores the benefits and complications

arising from the addition of a limited number of target labels to image-to-image

translation.

In this chapter, the SAT, its architecture, its methods, and its applications are

outlined. Section (4.1) introduces the model as well as the notation of the model.

Section (4.2) details the setup of the network and provides explanations for different

architectural decisions. Section (4.3) details two applications of the SAT, image-

to-image translation and domain adaptation. In section (4.4), the model and its

performance in different applications are evaluated and discussed. Lastly, section (4.5)

summarizes the model, details the contributions, and proposes several extensions.
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4.1 Overview

Currently, unsupervised image-to-image translation models still have certain lim-

its. One notable limitation is the translation of simpler domains such as MNIST

into a more complicated domain like SVHN. In order to help overcome this obsta-

cle, the SAT utilizes a limited number of labels in the target domain. The SAT is

a semi-supervised generative adversarial model for image translation across two do-

mains, a labeled source domain, XS, and a sparsely labeled target domain, XT . The

variables xS and xT represent images taken from their respective domains and are

used as inputs to the network with xS ∼ XS and xT ∼ XT . Every image from the

source domain has an associated one-hot label vector yS taken from label space YS

with K categories where yS ∈ {0, 1}K while a limited amount of images in the target

domain are associated with a one-hot label vector yT taken from label space YT where

yT ∈ {0, 1}K . The network is composed of two coupled VAE-GANs, similar to the

UNIT network(Liu et al. (2017)), with each VAE-GAN handling the interpretation

and synthesis of images from either the source or target domains. For the source

domain, the model contains an encoder ES, a decoder GS, a domain discriminator

DS,D, and a category discriminator DS,C subnetwork. Similarly, the VAE-GAN that

handles the target domain is composed of an encoder ET , a decoder GT , a domain

discriminator DT,D, and a category discriminator DT,C subnetwork.

For each domain, the encoders take their respective inputs xS and xT and maps

them into a shared, compressed latent space Z as latent variables zS and zT . These

variables can then be utilized by either decoder to generate a corresponding image

in either domain as x̃S and x̃T . The decoders each are tasked with two roles, recon-

struction and translation. When the decoders generate an image in the domain of the

original input, they can be seen as a reconstructor with outputs of x̃S→S
S and x̃T→T

T . If
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Figure 4.1: The proposed Semi-Supervised Adversarial Translator framework. La-
beled source images xS are encoded into latent vector zS by source encoder ES and
sparsely labeled target images xT are encoded into latent vector zT . The latent vec-
tors zS and zT , because of weight sharing throughout the network, can be decoded by
either GS into a source image or by GT into a target image. Vector zS can be decoded
into x̃S→S

S in the source domain and x̃S→T
T in the target domain. Similarly, zT can

be decoded into x̃T→S
S in the source domain and x̃T→T

T in the target domain. Cross-
domain image-to-image translation occurs when these latent vectors are decoded into
the other domain (x̃T→S

S and x̃S→T
T ). Each domain has a multi-purpose discriminator

that branches into a category discriminator(DS,C and DT,C) and a domain discrimi-
nator (DS,D and DT,D) that ensure that the model is able to synthesize images that
conserve the original contents while being stylistically similar to the new domain.

the generated image is in the other domain, the decoders are viewed as a cross-domain

translator with outputs of x̃S→T
T and x̃T→S

S . The discriminators, DS,C ,DT,C ,DS,D and

DT,D, are used for classification of an image’s label and domain.

4.2 Architecture

4.2.1 Variational Autoencoder

In each domain, the paired encoder and decoder can be viewed as a VAE. For the

source domain, ES and GS together form V AES, which reconstructs image xS into

x̃S→S
S . The encoder ES is a deep neural network that acts as a variational inference

network, mapping input xS to latent code zS in the latent space Z, which is assumed
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to be conditionally independent and have a normal distribution. Due to the nature of

variational autoencoders, this latent code inherently contains compressed information

on the content and style of the input image. The encoder ES, given input xS, outputs

a mean vector ES,µ(xS) and variance vector ES,σ2(xS) which are representative of the

latent code. These outputs are then used as the parameters of distribution qS(zS|xS),

which is sampled from in order to obtain zS ∼ qS(zS|xS). The decoder GS is a deep

neural network that then takes latent code zS and attempts to upsample the latent

code to reconstruct the original input xS denoted as x̃S→S
S = GS(zS). VAES is trained

by minimizing the variational upper bound of the objective function given by

LVAES
= γ1ExS∼XS ,zS∼qS(zS |xS)[− log pGS

(xS|zS)] + γ2KL(qS(zS|xS)||p(Z)) (4.1)

In the objective function, p(Z) is the prior distribution of Z, which is set to a stan-

dard isotropic Gaussian prior N (0, I). The expression, EzS∼qS(zS |xS)[−logpGS
(xS|zS)],

is equivalent to minimizing the Euclidean distance between the original and recon-

structed image. The KL stands for Kullback-Leibler divergence, which is a mea-

sure of disparity between the goal probability distribution of p(Z) and the encoder’s

distribution of qS(zS|xS). The hyper-parameters γ control relative weights of the

reconstruction and divergence losses and are varied throughout experimentation.

A similar procedure occurs for VAET in the target domain, which has an objective

function given by

LVAET
= γ1ExT∼XT ,zT∼qT (zT |xT )[− log pGT

(xT |zT )] + γ2KL(qT (zT |xT )||p(Z)) (4.2)

4.2.2 Domain Coupling

This model also utilizes weight sharing, or coupling, between the respective sub-

networks of each domain. Domains being translated using this model are assumed to
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Figure 4.2: A section of the proposed SAT framework that illustrates the source
VAE subnetwork. The source and target VAEs act as the generators of the SAT.
Similar to traditional VAEs, the latent vector is pushed to have an isotropic Gaussian
distribution and a reconstruction loss is utilized to ensure correct original images are
correctly represented in the latent vector. A similar subnetwork handling target data
can also be found in the SAT

share some characteristics like having similar and corresponding classes in each do-

main. This similarity allows the assumption that the domains used also share many

higher level features that correspond to the category and overall structure of the

image. Because of this assumption, the subnetworks from each domain share their

higher level layers with their corresponding subnetworks from the other domain. This

weight sharing forces the higher level features that are evaluated to be similar in each

domain. Each VAE also makes use of skip connections between some of the shared

layers of the encoder and decoder. Skip connections allow information to bypass the

normal flow of data and send outputs of one layer directly to a layer further down

the network. These skip connections allow some lower level information to bypass the

information bottleneck found in the compressed latent vector. These skip connections

are ultimately able to preserve some features specific to each domain and ultimately

allow more faithful reconstructions and translations.
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4.2.3 Generative Adversarial Network

Attached to each VAE is a multi-purpose discriminator that provides feedback

to the generator concerning both the realism of the generated image as well as its

content. The discriminator is a deep convolutional network that branches out into two

subnetworks, a domain discriminator and a categorical discriminator. Each branch

shares the weights of their early layers but also utilize unique layers used to perform

their specific function.

4.2.3.1 Domain Discriminator

The domain discriminator has the same role as the discriminator in Goodfellow’s

GAN (Goodfellow et al. (2014)). In the source domain, the network learns to dis-

criminate xS, which come from the discriminator’s domain, from images reconstructed

or translated into the source domain, x̃S→S
S and x̃T→S

S . In the SAT model, each do-

main discriminator forces it’s associated decoder to generate domain-like images from

compressed latent vectors originating from either domains. The source domain dis-

criminator accomplishes this by utilizing the objective function given by

LGANS,D
=γ3ExS∼XS

[logDS,D(xS)]

+ γ4EzS∼qS(zS |xS)[log(1−DS,D(GS(zS)))]

+ γ4EzT∼qT (zT |xT )[log(1−DS,D(GS(zT )))]

(4.3)

The first term ensures that inputs from the original source domain are categorized

as source images. The second and third term tries to maximize the probability that

generated images originating from the source as well as target domain are classified as

source images. Similarly, the target domain discriminator is trained with an objective
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function given by

LGANT,D
=γ3EzT∼pX1

[logDT,D(xT )]

+ γ4EzT∼qT (zT |xT )[log(1−DT,D(GS(zT )))]

+ γ4EzS∼qS(zS |xS)[log(1−DT,D(GS(zS)))]

(4.4)

Figure 4.3: Source Multi-class Conditional Generative Adversarial subnetwork
found in the proposed SAT framework. The conditional source generator, composed
of both encoders and the source decoder of the SAT network, acts as the generator
in the typical GAN setup opposed to a source discriminator that classifies both the
category and domain of generated images in the source domain. A similar subnetwork
handling target data can also be found in the SAT

4.2.3.2 Category Discriminator

The category discriminators classify the category of the input image for their

associated domain. The outputs of the category discriminator are used to force the

variational autoencoders to maintain the original input’s class through reconstruction

or translation. In the source domain, the category discriminator is trained to correctly

classify original source images through minimizing a cross-entropy term between the

predicted conditional distribution p(yS|xS, DS,C) and the true label yS given by

CE[yS,p(yS|xS, DS,C)] = −
K∑
i=1

yS,i log p(yS,i|xS, DS,C) (4.5)
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Where p(yS|xS, DS,C) = [p(yS,1|xS, DS,C), p(yS,2|xS, DS,C), ..., p(yS,K |xS, DS,C)]
T .

Also, yS,i = 1 if the label of xS is i. Otherwise, yS,i = 0. The cross entropy equation

is then put into a larger objective function designed to force the generators and

discriminator to generate images that are correctly classified and is given by

LGANS,C
=γ5ExS∼XS ,yS∼YS

[
CE[yS,p(yS|xS, DS,C)]

]
+ γ6ExT∼XT ,yT∼YT ,zT∼qT (zT |xT )

[
CE[yT ,p(yT |GS(zT ), DS,C)]

]
+ γ7ExT∼XT ,ỹT ,zT∼qT (zT |xT )

[
CE[yT̃ ,p(yT |GS(zT ), DS,C)]

] (4.6)

The first term of the equation forces the categorical discriminator correctly classi-

fies images taken from the original source domain. The second term pushes the model

to translate labeled images from the target domain into the source domain with the

correct category. The last term, which usually has a weighting much lower than the

previous terms, obtains a pseudo-label ỹT of an unlabeled target image by using the

target’s categorical discriminator and then pushes the model to translate the target

image into an source-like image classified as the pseudo-label.

The target’s categorical discriminator is trained similarly to the source categorical

discriminator with the exception of the use of pseudo-labeled target images. Due to

the nature of the semi-supervised problem, there are few labels to train the target

categorical discriminator. This is taken into account when assigning weights to the

components of the objective function. The objective function is given by

LGANT,C
=γ5ExT∼XT ,yT∼YT

[
CE[yT ,p(yT |xT , DT,C)]

]
+ γ6ExS∼XS ,yS∼YS ,zS∼qT (zS |xS)

[
CE[yS,p(yS|GT (zS), DT,C)]

] (4.7)

4.3 Semi-Supervised Image-to-Image Translation

The SAT model is able to translate images between the source and target domains

by using the encoder of the original domain and the decoder of the opposite domain.
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Translation using the SAT is achieved with a compound objective function utilizing

losses from the variational autoencoders and the domain and category discriminators

as well as the use of weight sharing between corresponding subnetworks.

In general, successful image-to-image translation has two requirements. The first

is to maintain content consistency between the original input and the generated image.

The second requirement is to create an image that could have originated from the

target domain. The losses of the SAT work together to maximize both of these

requirements . The reconstruction loss and regularization loss ensure that encoders

and decoders are learning to encode and decode inputs from their respective domain.

When reconstructing, the domain discriminators push the decoders to produce higher

fidelity images. When translating, the domain discriminators push the decoders to

learn to decode encoded images from another domain and translate these into pictures

the decoder’s domain. Using the regularization, reconstruction, and discriminator

losses results in an unsupervised method of translating images similar to Liu et al.

(2017). However, like most adversarial networks, training is a highly volatile training

environment, with different losses pulling the model into opposing directions, causing

failures like mode-collapse or a loss of class-consistency during training. Utilizing

categorical losses in the generators for both the source and target domains helps

push the cross-domain translator in the right direction. By associating images with

their labels, the categorical losses ensure that labeled images are always classified as

their original label despite the domain. Without the domain coupling or categorical

discriminator, mixing these subnetworks results in unintelligible or class-inconsistent

outputs.

30



Figure 4.4: Illustration of the process of cross-domain image-to-image translation
from a target domain into a source domain. In order to perform image-to-image
translation, an image is first mapped to its latent vector. The decoder then decodes
a combination of the latent vector and information from the skip connects into an
image in new domain.

4.4 Semi-Supervised Domain Adaptation

The translation model can also be used for semi-supervised domain adaptation on

the target domain. Using only the sparse amount of labeled target samples results in

severe over-fitting and poor performance in a classifier. However, the larger number

of labeled source images can be utilized for the target domain by translating target

data into the source domain for classification.

4.5 Training

Training the SAT network is achieved through jointly optimizing the compound

objective function from the VAE and discriminator subnetworks. In a similar fashion

to a GAN, the discriminators are trained to maximize the probabilities of assigning the

correct class and domain while training the generator networks made of the encoders

and decoders to be labeled correctly and fool the discriminator. This is achieved by

having the discriminator and generator play a two-player minimax game with a value
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function V(ES,ET ,GS,GT ,DS,D,DT,D,DS,C ,DT,C):

min
[ES ,ET ,GS ,GT ,DS,C ,DT,C ]

max
[DS,D,DT,D]

V (ES, ET , GS, GT , DS,D, DT,D, DS,C , DT,C) =

LVAES
+ LVAET

+ LGANS,D
+ LGANT,D

+ LGANS,C
+ LGANT,C

(4.8)

The model is trained similarly to the original GAN in a repeating two-step proce-

dure Goodfellow et al. (2014). In the first step, the parameters of the discriminators

are adjusted to optimize their part of the objective function. In the next step, the

parameters of the encoders and decoders are trained.

Loss Affected Subnetworks Role

Reconstruction Encoders and Decoders Ensures decoders are faithful to the original input

Kullback-Leibler Divergence Encoders Ensures latent feature space maintains a normal distribution

Domain Encoders, Decoders, and Discriminators Ensures reconstructions and translations look realistic

Categorization Encoders, Decoders, and Discriminators Ensures the content of the original input is preserved

Table 4.1: Descriptions of the different losses of the SAT Model

4.6 Experiments

This section outlines some of the experiments conducted to test the SAT model.

The experiments were conducted using Tensorflow 1.2.1 on an Intel Core-i5 3.9 GHz

paired with an Nvidia GTX 1070.

4.6.1 Datasets

The datasets used are cropped SVHN, MNIST, and MNIST-V, a modified MNIST.

Digit datasets are used for because they contain relatively simple images and have a

consistent amount of categories. SVHN, or the Street View House Numbers Dataset,

contains real-world images of house numbers taken from Google Street View. SVHN

contains the most complex pictures of the tested domains because of the variation

found in real-world images(color,font, angle, size, background, clarity). MNIST con-

tains normalized and fixed-size handwritten digits. This normalization causes there
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to be much less variation in the domain. MNIST-V contains every image from MNIST

with random scale shifts and random pixel value multipliers. MNIST-V is used to

examine the changes in translation and domain adaptation caused by the similarity

and complexity of domains.

4.6.2 Semi-Supervised Translation

Figure 4.5: Original and translated versions of images obtained using the SAT.
Top row: MNIST(left) translated into MNIST-V(middle) and SVHN (right). Middle
row: MNIST-V(left) translated into MNIST(middle) and SVHN(right). Bottom row:
SVHN(left) translated into MNIST(middle) and MNIST-V(right)

To evaluate the translation capabilities of the SAT model, an SAT network is

trained to translate a pair of the MNIST, MNIST-V, and SVHN datasets. In these

33



results, images from the source domain are translated into a target domain that had

100 labels, or 10 labels for each category. Each combination of the three datasets

provides some meaningful insights into the way the model performs as the choice of

source and target domains dramatically affects translation performance.

The first set of results found in Figure 4.5 are the translations from source MNIST

images into the MNIST-V and SVHN domains. Translating from MNIST, the do-

main with the least variation and complexity, into MNIST-V yields generated images

that exhibit the same digit as the original. Similar to the MNIST-V dataset, the

new images exhibit a range of background colors and colors of the digits. Translat-

ing MNIST into SVHN achieves relatively good content consistency, but translated

images do not necessarily look like images from the SVHN domain. The colors of the

translated images are consistent with other images of the domain, but the style of the

numbers are still more similar to an MNIST image. Perfect content consistency and

domain consistency may be achievable with the model, but would require extensive

fine-tuning the various parameters of the network. Throughout experimentation, con-

tent consistency is given priority when setting the parameters and result is a visible

trade-off with the domain consistency or image fidelity. This priority is because this

content consistency is not present in current unsupervised image-to-image transla-

tion models. Typically, these models can produce higher quality images, but with

the severe trade-off of not correctly translating the original image. The translation

of MNIST images into SVHN images is the most difficult of these sets of translations

because of the steep domain shift between the simple source domain and complicated

target domain. SVHN labels are much more valuable than MNIST labels because

each SVHN label is associated with images that contain much more information and

variation. But with the little amount of SVHN labels, the SAT learns to decently

preserve the content. Similar unsupervised solutions, like the UNIT model, will gen-
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erate very realistic images, but with incorrect digits. An example of this content

inconsistency during translation is shown in Figure 4.6

Figure 4.6: Translation of MNIST data(left) into SVHN domain(right) using a UNIT
network.

The next set of results are the translations fromMNIST-V into MNIST and SVHN.

Translating from MNIST-V into MNIST, for the most part yields great results. The

digits in the generated images look similar to the digits of the original image ex-

cept with a black background and white digit. These results are the best example

of translation because the source is more complex than the target and the domain

shift between MNIST-V and MNIST is relatively small compared to the shifts be-

tween other sets of domains. Translating images from MNIST-V into SVHN yields

higher quality images than the translation of MNIST into SVHN because of the added

complexity in MNIST-V. The variety in MNIST-V that is introduced when adding

noise to the original MNIST dataset forces the SAT to learn a deeper understanding

of MNIST-V, which in turn makes the data representation more robust and better

suited to understand the target SVHN dataset.

The last set of translation results are the translations from SVHN into MNIST

and MNIST-V. Translating from SVHN into MNIST yields some great images that

preserve the original content, but a subset of these translations contain large amounts
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of artifacting. In this case, the target decoder is not able to handle the large number

of variations of the SVHN dataset’s background and foreground color. Since the

MNIST dataset only contains images with a black background and a white digit, the

SAT model learns to handle one variation of image, resulting in the artifacting present

in the translated images. Translating from SVHN into MNIST-V yields images that

preserve the original digit and contain much less artifacting than the translations into

MNIST. The SAT achieves better results because the variation and complexity found

in the MNIST-V dataset is able to express much more of the variation found in the

SVHN dataset.

In these different translation scenarios, the SAT is able to find a shared latent

space from which it is able to generate reconstructions or translations of images.

This success shows that the latent variables are able to contain powerful data rep-

resentation that can be used for generating new images that exhibit the same digit,

but with a style more similar to another domain. Because of this shared represen-

tation, the SAT is also able to transfer knowledge of labels in the source domain

into the target domain, allowing category consistency to be present in image trans-

lation. Without this transfered knowledge, these generated translations would not

know which digit is being portrayed. These translations, however, are not perfect.

In training, it was found that image fidelity and category preservation were hard to

achieve simultaneously. A further increase of the weight of the losses relating image

fidelity would result in more realistic images but a decline in the content-consistency.

On the other hand, increasing the weight on categorical preservation would result in

worsened image quality. Overall, the quality of translated images diminished with

the addition of a categorical loss in the target domain, but the content-consistency

was drastically better, especially in situations of a complicated target domain.

36



4.6.3 Semi-Supervised Domain Adaptation

Target Domain Target Labels CNN Deep Features SAT(MNIST) SAT(MNIST-V) SAT(SVHN)

MNIST 50 60.34 61.45 - 92.40 67.14

MNIST 100 73.29 68.23 - 92.66 76.27

MNIST 200 78.73 79.40 - 93.15 82.59

MNIST 1000 88.65 90.42 - 94.29 90.67

MNIST-V 50 25.90 51.03 50.79 - 57.84

MNIST-V 100 31.63 58.35 55.23 - 64.28

MNIST-V 200 41.10 67.85 59.16 - 71.04

MNIST-V 1000 77.70 85.30 85.62 - 80.47

SVHN 50 16.51 19.05 23.8 48.33 -

SVHN 100 20.28 28.03 27.2 52.55 -

SVHN 200 33.08 30.66 37.0 54.97 -

SVHN 1000 57.72 44.12 62.6 69.31 -

Table 4.2: Recognition accuracies (%) on the MNIST, MNIST-V, and SVHN
datasets across multiple semi-supervised algorithms with varying amounts of labeled
target data. CNN is a Convolutional Neural Network with an architecture similar
to LeNet. Deep Features trains a CNN using deep features of the input obtained
from VGG-16 trained on imagenet. SAT is the proposed Semi-Supervised Adversar-
ial Translator utilizing various source domains. SAT(MNIST) implies MNIST is the
source domain. The best results are emboldened.

To evaluate the domain adaptation capabilities of the SAT model, an SAT network

was trained to translate a pair of the MNIST, MNIST-V, and SVHN datasets. In

these results, images from the target domain are translated into a source domain.

These translated In the experimentation, the entire source dataset had associated

labels while the target dataset had a varying number of labels.

Since there is currently little work on semi-supervised domain adaptation in gen-

erative models, the classification results of the SAT on target data is compared to

a classifier based on a convolutional neural network trained with similar numbers of

labels as well as a classifier that utilizes deep features obtained from a pre-trained

imagenet network and a similar number of labels. Results from the SAT consistently
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outperform these two methods.

Further domain adaptation comparisons were made with the unsupervised UNIT

model to analyze the effects of the addition of target labels and losses in Table 4.3.

For instances of target domains being much more complicated than the source like

MNIST → SVHN and MNIST-V → SVHN, there are very clear improvements on

performances. However, in other situations, the semi-supervised domain adaptation

of the SAT is worse than the unsupervised domain adaptation of the UNIT network.

This decrease in performance can be attributed to the additional complexity intro-

duced by the target labels. Adding more losses to an already complicated model

gives more sub-tasks to each component of the network. In some cases, this helps

the network model more complicated domain shifts, but in many cases, this pulls the

weights in different directions.

Source Domain Target Domain UNIT SAT-50 SAT-200

MNIST MNIST-V 98.07 50.79 59.16

MNIST SVHN 23.46 23.82 37.20

MNIST-V MNIST 99.01 92.40 93.15

MNIST-V SVHN 29.00 48.33 52.55

SVHN MNIST 83.52 51.03 82.59

SVHN MNIST-V 85.23 57.84 71.04

Table 4.3: Recognition accuracies (%) of the UNIT and SAT models on images from
the target domain while utilizing knowledge and labels from the source domain. The
numbers appended to SAT reference the total number of labels used during training.

4.7 Conclusions and Summary

Although there are a limited amount of semi-supervised generative models to

compare to, the experimental analysis indicate that the SAT is capable of handling the

tasks of image-to-image translation and domain adaptation with various complexities

of datasets. Because of a compound objective function composed of a variety of losses,
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the SAT is able to, with some level of success, represent data from multiple domains

using a shared latent space and then utilize this space to translate and reconstruct

images from either domain.

Because of inherent differences in domains, attempting to fully represent the dif-

ferent generative factors of multiple domains in a compressed latent space can be a

challenging task. As seen in the evaluation on semi-supervised translation, despite

the use of labels in a target domain, perfect domain consistency and label consis-

tency were never able to simultaneously be present. This indicates that there is some

conflict between these two objectives stemming from how they are represented in the

latent space. Fully containing the information necessary to recreate two drastically

different domains in a single shared latent space can be challenging and requires much

fine-tuning. In the next chapter, an approach is analyzed where the task of transfer-

able data representation is made easier by splitting up the representation into related

sets.
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Chapter 5

EXPLICIT DISENTANGLING NETWORK

As a direct response of the complications that arose in the SAT, the explicit disentan-

gling network (EDN) was proposed to simplify how data is represented in a generative

model while maintaining and improving on the transferability. By removing unstable

adversarial training and explicitly segmenting images into multiple components, the

EDN successfully learns transferable representations of multiple domains of data that

can be applied to various machine learning tasks.

In this chapter, the EDN, its architecture, its methods, and its applications are

outlined. Section (4.1) introduces the model and its key ideas. Section (4.2) details the

setup of the network and provides explanations for different architectural decisions.

Section (4.3) details two applications of the EDN, image-to-image translation and

domain adaptation. In section (4.4), the model and performance in the different

applications are evaluated and discussed. Section (4.5) summarizes the model, details

the contributions, and proposes several extensions.

5.1 Overview

The performance of a machine learning task heavily depends on how data is repre-

sented (Bengio et al. (2013)). This is because the method of data representation has

a profound impact on how we interact with the data. A single piece of data can be

represented in an exponential number of ways. For example, a simple image can be

broken down into countless parts, each describing a characteristic of the image. If this

image is described to a person as its specific RGB values, they will have no idea what

the image looks like. Whereas, if the image is represented by describing the image’s
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different characteristics, they could have a clear picture of the image in their head.

Both representations describe the same data, but the form of the representation can

drastically limit the ways of interacting with the data as well as the potential uses of

the created representation.

A recent approach to represent data more effectively in machine learning models

has been to disentangle the underlying generative factors of data. These generative

factors are the independent attributes found within a domain of data. A successful

disentangled representation means that the features in the data relating to a spe-

cific generative factor are separated from unrelated features. The Symbol-Concept

Association Network (Higgins et al. (2017b)), or SCAN, disentangles data using a

β-VAE (Higgins et al. (2016)) and then learns to associate compositions of these dis-

entangled generative factors with visual concepts. This association allows SCAN to

describe data using different visual concepts as well as create new data with speci-

fied combinations. The Disentangled Representation Learning Agent (Higgins et al.

(2017a)), or Darla, learns to create a disentangled representation of its environment

that it leverages to outperform conventional baselines in different zero-shot domain

adaptation scenarios. InfoGAN (Chen et al. (2016)) is an extension of the GAN that

is capable of disentangling a subset of the generative factors. InfoGAN disentangles

these factors by maximizing the mutual information between a fixed small subset of

the GAN’s noise variables and the observations in the generated image.

An explicitly disentangled representation extends the disentangled representation

by separating generative factors in such a way that a model can perform tasks on

specific factors. This allows models to specialize their architecture and methods in

order to best work with each separated set of factors. Unlike SCAN and DARLA,

explicit disentanglement requires previous knowledge of the data in order to know

which factors to separate, but this knowledge is utilized to increase stability and
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expand the potential uses of the disentangled factors.

One instance of explicit disentanglement is separating content-related generative

factors from style-related generative factors in images. The content of an image is

the information related to the ideas expressed in the data, and the style of images

relates to how the idea is expressed in the image. Either set of generative factors may

be more useful for different aspects of tasks. For example, the content related data

is strongly related to the data needed for the classification task. Separating the two

sets of factors allows specific objectives and parameters to be assigned to each set in

order to more efficiently utilize the data.

This chapter introduces the Explicit Disentangling Network (EDN), a novel method

that explicitly disentangles the content and style of images. The EDN contains two

VAEs to process content and style related factors as well as a separate decoder to com-

bine the outputs of both. The EDN constricts and restricts the flow of information

in the model using various losses and a specific network architecture. This control al-

lows the EDN to separate content and style factors into two different pathways in the

network and also allows each set of factors to be independently modified. The perfor-

mance of this explicit disentanglement is demonstrated by constructing new images

generated using a combination of different disentangled style and content vectors.

Since content-related generative factors are domain-invariant in similar domains, an

EDN is able to disentangle the content and style from data originating from multi-

ple domains in both supervised and unsupervised settings. The performance of the

EDN in multiple tasks with multiple domains is demonstrated by utilizing the model

for cross-domain image-to-image translation as well as unsupervised domain adapta-

tion. Section 2 details the architecture and methods of the EDN. Section 3 includes

the experiments on the measure of disentanglement, the style-transfer capabilities,

and domain adaptation performance of the DVN. Section 4 discusses conclusions and
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directions for future works.

5.2 Architecture

The EDN is a generative model that is capable of disentangling the content and

style of images from multiple domains. Each EDN contains two VAE-like subnetworks

that do not reconstruct their inputs themselves. Rather, the subnetworks have their

outputs combined into a final decoder that then generates a final, new image. These

VAEs learn how to deconstruct images into a content vector and a style vector, which

can be recombined to reconstruct the original image or combined with other vectors to

generate a new image. The main feature of this model is that the styles of the inputted

images become disentangled and unpaired from the content of the image, allowing the

model to mix content vectors from source and target inputs with randomly generated

style vectors or style vectors extracted from an image in the target domain. Moreover,

after training, the network for content extraction can also be used for unsupervised

domain adaptation and other machine learning tasks.

The EDN model utilizes multiple specialized variational autoencoders to separate

data. The model takes images xS and one-hot labels yS ∈ {0, 1}K from a source

domain XS and label space YS, with K referring to the number of categories in the

label space. The model also takes images xT from a target domain XT and with labels

yS ∈ {0, 1}K from label space YT . In the model, there is a variational autoencoder

specialized for content, VAEC , that learns to extract the content from the images in

the source and target domain and a variational autoencoder for style, VAES, that

extracts information concerning the specific style of target images. The outputs from

these VAEs can be combined and used by a target decoder, DT , which will generate a

final target image, x̃v1,v2→T
T . In this notation, v1 represents the source of the content

vector, v2 represents the source of the style vector, and T represents the target domain.
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Figure 5.1: The proposed Explicit Disentangling Network framework. The content
encoder explicitly separates the content-related generative factors of source images
xS or target images xT and encodes them into a content vector zC . The style encoder
extracts the style of target image xT and encodes it into style vector zS. The decoders
can take any combination of available content and style vectors and create an image
with content similar to the input to the content encoder and style similar to the input
to the style encoder. This ability to generate any combination of vectors is due to the
explicit disentanglement of content factors from style factors. The disentanglement
is possible because of the branching network architecture as well as several losses
constricting and restricting the flow of information.

5.2.1 Variational Autoencoder

There are two variational autoencoders in the EDN model. Each are similar to

a typical VAE in all aspects other than the structure of the decoder, which has two

distinct stages. The first stage contains network layers specific to each VAE and the

second stage merges the layers of the two VAEs. The content VAE, V AEC , is made

of an encoder EC and decoder DC and the style VAE, VAES, is made of encoder ES

and decoder DS. Encoder EC takes xS or xT and encodes them into content vector

zC,S or zC,T , depending on the input domain, and ES takes in xT and encodes it into

style vector zS,T . The content encoder EC , given source data xS as input for the

content vector, outputs a mean vector EC,µ(xS) and variance vector EC,σ2(xS) which
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are representative of the latent, compressed content vector. These outputs are then

used as the parameters of distribution qC(zS,C |xS), which is sampled from in order to

obtain zS,C ∼ qS(zS,C |xS). Similarly, EC can be given target data xT to find mean

vector EC,µ(xT ) and variance vector EC,σ2(xT ) and qC(zT,C |xT ). The style encoder

ES, can similarly be given target data xT to find mean vector ES,µ(xT ) and variance

vector ES,σ2(xT ) and qC(zT,S|xT ). The decoders then take their related input vectors

and upsample them into a higher dimensional space using deconvolutional layers.

Upsampled vectors from both decoders are then used by the final decoder, DT , to

create either x̃S→T
T or x̃T→T

T , depending on the domains of the style and content

vectors.

Inherent to VAE networks is a compound objective function composed of a KL

divergence component and a reconstruction component. The first component aims to

minimize the KL divergence of between the goal distribution of p(Z), which is set to a

standard isotropic Gaussian prior N (0, I), and the distributions from the outputs of

EC and ES. The reconstruction component aims to minimize the pixel-wise difference

of xT and x̃T→T
T . The resulting objective function specific to VAE losses is given by

LV AE =γ1ExT∼XT ,zS,T∼qS(zS,T |xT ),zC,T∼qC(zC,T |xT )[− log pDT
(x̃xT ,xT→T

T |zS,T , zC,T )]

+ γ2KL(qC(zC,T |xT )||p(Z))

+ γ2KL(qC(zC,S|xS)||p(Z))

+ γ2KL(qS(zS,T |xT )||p(Z))

(5.1)

5.2.2 Disentangling Style and Content

Separating the style and content of images is achieved through a specific network

architecture, and an objective loss containing reconstruction and content consistency

losses. First, separate networks, VAEC and VAES are used to extract and encode the
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content and style respectively. VAEC , in addition to the overall VAE losses, is tasked

with classifying xS and associated yS, with an objective function given by:

LClassification = γ3E
[
CE[yS,p(yS|xS)]

]
. (5.2)

In the equation, CE[yS,p(yS|xS, DS,C)] relates to the cross entropy between the

input’s associated label yS and the prediction of the network,p(yS|xS), which is set up

to be p(yS|xS, DS,C) = [p(yS,1|xS, DS,C), p(yS,2|xS, DS,C), ..., p(yS,K |xS, DS,C)]
T . The

prediction is obtained by adding a classification layer that branches off the second to

last layer of EC . Because of this classification loss, the content that is being recognized

relies heavily on features needed for classifying images in the source domain. This also

means that the success of this content and style extraction rely heavily on the fact

that features used for classification can be used for both source and target domains,

an assumption common in domain adaptation.

In order to make sure this content information is kept consistent throughout the

image generation process, a content consistency loss is used. During training, a target

image is constructed using target image xT1 as the source of the style and target image

xT2 as the source for the content. When combined, the EDN generates x̃xT1,xT2→T
T ,

which is then subsequently sent back into the content encoder to obtain the activations

at a specified layer of the content encoder, F (x̃xT1,xT2→T
T ). These activations are then

compared to the activations of the original input of the content encoder, F (xT1), with

d(F (xT ), F (x̃xT1,xT2→T
T )) representing the Euclidean distance between the activations

from the two inputs. The resulting objective function is then given by the total

difference between the features of the original input and the reconstruction:

LContent = γ4
∑

xT1.xT2∼XT

d(F (xT1), F (x̃xT1,xT2→T
T )) (5.3)

This content consistency loss ensures that the content of the image is only de-

pendent on the information from VAEC by enforcing that the content of generated
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images be consistent despite changing the style vector.

In the EDN model, there is no explicit style loss. Instead, the network learns to

model the style of the image due to the restriction and constriction of the information

flow throughout the network. First, the weight, γ3, of the above classification loss in

the content encoder is set to be much higher than the weight of the reconstruction

loss, γ1, allowing little information beyond what is necessary for classification to flow

through VAEC . This restricts style-related information from flowing through the

content encoder and forces information not pertaining to the content to flow through

VAES. In order to ensure VAES does not completely take over the reconstruction

task and contain information for both the content and style, the size and capability

of the network must be restricted so that reconstruction relies on both VAES and

VAEC .

5.3 Training

The training of EDN occurs by iteratively minimizing a compound loss made of

the three KL divergence losses, the target image reconstruction loss, the classification

loss, and the content consistency loss. The complete objective function is given by:

LEDN =γ1EzS,T∼qS(zS,T |xT ),zC,T∼qC(zC,T |xT )[− log pDT
(x̃xT ,xT→T

T |zS,T , zC,T )]

+ γ2KL(qC(zC,T |xT )||p(Z))

+ γ2KL(qC(zC,S|xS)||p(Z))

+ γ2KL(qS(zS,T |xT )||p(Z))

+ γ3E
[
CE[yS,p(yS|xS)]

]
+ γ4

∑
xT1.xT2∼XT

d(F (xT1), F (x̃xT1,xT2→T
T ))

(5.4)

Throughout the different contexts during the evaluations of the EDN, the weights,
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Figure 5.2: Illustration of flow of various losses in the EDN. The Kullback Leibler
divergence losses ensure that the encoders generate content and style vectors that are
normally distributed. The class loss ensures that the content encoder learns to extract
and find content-related features and also restricts the flow of style information. The
Binomial Cross-Entropy loss (BCE) acts as the reconstruction loss and ensures a
target image can be reconstructed if input as the content and style inputs and affects
the whole network. The content loss ensures that the content of images synthesized
with various combinations of content and style vectors is conserved. The content loss
is found by comparing the activations of the original image and synthesized image in
the content encoder.

γ1,γ2,γ3,γ4 are kept constant. What must change is the size of the latent style vector.

In order to achieve the correct flow of information, the vector must be adjusted so

that it is large enough to contain the generative factors of the target domain, but

must also be limited so that the classification information does not flow through the

style encoder.

5.4 Unsupervised Domain Adaptation

In order to disentangle the content and style of images, the EDN requires a pow-

erful content extractor. This extractor can also be used for great performance in

unsupervised domain adaptation. VAES specializes in reading and extracting por-

tions of the input directly related to classification. Labels in the source domain

allow EC to find the features necessary for classification of source images. However,
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Figure 5.3: Translating source images into target images using random noise. An
alternative to using images as inputs to the encoders is to use randomly sampled
vectors. This is possible because the KL Divergence losses ensure that these vectors
are normally distributed.

there will always be some level of domain shift between two different domains. The

EDN model addresses this discrepancy by applying KL divergence losses on both the

source and target data that are sent through the content encoder. This loss forces

the content-related features of the network to model the high level features of both

source and target data with similar normal distributions, further aligning the higher

level features of both domains. Aside from content extraction, the VAES must also

help in image generation. Because of the model’s overall reconstruction loss, EC is

required to extract the content information of target data required for re-creating

target images. Because of these different factors, EC can learn to understand the

content of both the source and target domains despite the lack of target labels to

some success.

5.5 Image-to-Image Translation

The EDN model approaches the image-to-image translation task by breaking it

up into smaller problems, content and style transfer. Content transfer is achieved

through VAEC , which specializes in reading and extracting the parts of the input

directly related to the classification of the labeled source images. The style transfer
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aspect of image-to-image translation relates to creating an image that could have

originated from a different domain and is achieved through VAES.

Image-to-image translation can occur in a EDN in two ways. Given a trained

EDN network and xS, an image from a source domain, the extracted content from

xS from the VAEC network can be paired with a randomly sampled style vector or

an extracted style vector from xT , an image from the target domain. Utilizing this

content and style vector for image generation results in a translated version of xS that

has the style contained in style vector. Because of this change in style, along with a

transfer of content, the newly synthesized image can be considered transfered to the

target domain. This method is notably different than the SAT, UNIT, CycleGAN,

and DTN translation methods by allowing a single image to be translated into a

new domain in multiple ways because of the explicitly disentangled understanding of

content and style.

Unsupervised image-to-image translation can be performed in the EDN by using

a single classification loss for the source domain in EC with some success. For more

consistent success in translation, another classification loss for the target domain

may be added, although then the classification of the task must switch to supervised

image-to-image translation.

5.6 Evaluation

This section outlines some of the experiments conducted to test the EDN model.

The experiments were conducted using Tensorflow 1.2.1 on an Intel Core-i5 3.9 GHz

paired with an Nvidia GTX 1070.
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5.6.1 Datasets

With a focus on finding relationships across image domains, our experiments focus

on two large digit datasets, MNIST1, which contains 70000 handwritten digits that are

size-normalized, centered, and black and white, as well as a cropped version of SVHN2,

which contains over 600000 digits taken from color photos of house numbers. MNIST

is a simpler dataset, with no background noise and simpler digits while the SVHN

datasets contains images with different, multi-colored backgrounds and a variety of

fonts and styles. Along with the original versions of MNIST and SVHN, the EDN is

evaluated on the MNIST-N and MNIST-R datasets. MNIST-N is a copy of MNIST

with added noise in the form of inverting half of the images to introduce more variation

and complexity. MNIST-R3, is a version of MNIST whose digits are randomly rotated.

These datasets were chosen for multiple reasons. The first reason is that they

all share a common label space of the digits from 0-9. A variety of datasets and

variations are used in order to examine how the network performs under different

degrees and directions of domain shift. Lastly, these datasets were chosen due to

their large number of data. Domains consisting of a wider array of images and labels,

like the Office-Home dataset, were considered, but no deep generative transfer models

have been successful converge during training with these datasets due to the lack of

associated data for each label.

5.6.2 Disentangling Performance

In order to demonstrate that the content-related information of a trained EDN

is being sent through VAEC and the style-related information is being sent through

1http://yann.lecun.com/exdb/mnist/
2http://ufldl.stanford.edu/housenumbers/
3http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
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VAES, the content and style was classified in images synthesized using different com-

binations of inputs. Complete disentanglement would lead to the content of the

generated image being solely determined by the content input and the style to be

solely determined by the style input.

In this evaluation, the content label was classified by inputting a synthesized image

with specific content and style inputs into a CNN trained to classify the domain of

the input. The style accuracy was evaluated by using a nearest neighbor classifier

based on euclidean distances to a set of 10 original style images. Aside from using

images from the domain, randomized content and style vectors were also used during

the evaluation process.

Content Input Style Input Classification Accuracy Classification Accuracy

using A’s digit using A’s style

A B 80.82% 10.80%

A R 82.12% 8.97%

B A 12.44% 100.00%

R A 11.79% 100.00%

Table 5.1: Classification of style and digit of a generated images with various inputs.
A and B are subsets of SVHN was used while R indicates a random vector was
used during generation. Digit accuracy was evaluated using a simple neural network
trained to classify SVHN while style accuracy was evaluated using a nearest neighbor
classifier based off of euclidean distances to the set of original style images.

Table 5.1 demonstrates that successful classification of the class label is only

present if labeling the class of the content input and not the style input. Other-

wise, the classification scores are similar to randomly guessing. Similarly, the style

is found to be solely dependent on the style vector. Since this network is shown to

explicitly disentangle the content and style related generative factors, this model can

further utilize its powerful transferable data representation for other useful tasks.
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5.6.3 Unsupervised Domain Adaptation

Because EC of the EDN is able to perform explicit inference of content-related

features, EC can perform efficient unsupervised domain adaptation. VAEC is trained

to handle three different tasks, classification of source data, content extraction for

reconstruction of target data, and reclassification of generated data. When the VAEC

learns to handle input from multiple domains simultaneously, it finds a saddle point

where these three tasks perform well. In this middle-ground, the extractor learns to

find the domain-invariant features for content extraction without the use of labels in

the target domain. Classification of unlabeled target images can occur by creating a

classifier on the domain-invariant content features of the source domain and then use

this classifier on images from the target domain.

In Table 5.2, results of unsupervised domain adaptation are compared between

EDN and other unsupervised domain adaptation methods using different combina-

tions of of digit datasets to evaluate the different model’s performances in different

scenarios. In most of the combinations of source and target domains, the EDN per-

forms better or comparable to the other methods.

The most recent of the baseline comparisons is the UNIT network, which uses

coupled VAE-GANs that attempt to model multiple domains using a single latent

space. The two large differences between EDN and UNIT is the simplicity of the

EDN due to a lack of adversarial training as EDN’s capability of explicitly segmenting

generative factors in order to increase performance. The separation of generative

factors in the EDN allows it to learn more efficient data representations of separate

style and content factors that perform well in unsupervised domain adaptation. The

EDN performs especially well in comparison to other models when source domain

is more simple than the target domain. When transferring knowledge, the ability to
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Source Target EDN(proposed) UNIT DANN DAN

M MN 67.60% 98.07% 57.38% 66.72%

M MR 61.72% 15.70% 22.14% 41.29%

M SVHN 53.84% 23.46% 17.81% 27.85%

MN M 97.67% 99.01% 93.59% 98.59%

MN MR 37.18% 24.99% 20.10% 35.07%

MN SVHN 55.89% 29.00% 22.64% 47.07%

MR M 95.44% 93.07% 42.38% 93.22%

MR MN 57.03% 70.26% 23.49% 53.05%

MR SVHN 25.14% 12.04% 18.56% 19.92%

SVHN M 83.50% 57.29% 33.38% 59.20%

SVHN MN 85.20% 88.25% 46.69% 62.30%

SVHN MR 30.80% 17.25% 24.37% 26.54%

Table 5.2: Classification accuracies (%) on the MNIST, MNIST-N, MNIST-R and
SVHN datasets across multiple unsupervised domain adaptation algorithms. CNN
is a Convolutional Neural Network with an architecture similar to LeNet. Deep
Features trains a CNN using deep features of the input obtained from VGG-16 trained
on imagenet. SAT is the proposed Semi-Supervised Adversarial Translator utilizing
various source domains. SAT(MNIST) implies MNIST is the source domain. The
best results are emboldened.

disentangle the content related vectors, which are more domain-invariant, reduces the

domain-shift between the domains of the factors relating to the classification task.

This reduction in domain-shift is more necessary in the challenging simple domain to

more complicated domain situation, resulting in the EDN performing relatively well.

5.6.4 Image-to-Image Translation

Another application of the EDN is image-to-image translation, where the network

learns to transfer the style of images by sending the original image into the content

input and sending an image with the desired style through the style input. When

transferring the style of images from the same domain, the content encoder only
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Figure 5.4: Style transfer between images in the same domain. The top image
illustrates style transfer in the MNIST-N dataset and the lower image illustrates style
transfer in the SVHN dataset. Top row: Source content image. Middle row: Target
style image. Bottom row: Generated image

encounters a single dataset, allowing it to have strong performance in its roles as a

classifier as well as an encoder for image generation and reconstruction.

The EDN also has the capability of performing image-to-image translation on

images from the same domain as well as two different domains. In cross-domain

image-to-image translation, the content encoder is required to extract the content of

images from two different datasets. The generated images of both experiments show

that content and style are both carried over from their input. Although some of the

generated images are blurrier than images typically generated from an adversarial

network, the images are clearer than a typical VAE because of the presence of a

dedicated stylization subnetwork VAES.

In the results of supervised intradomain translation found in figure 5.4, the results

of successful disentanglement as well as the ability to swap and change style and

content can be seen. Consistent with the results of disentanglement performance, the

generated images keep the label of the content image consistent while changing the

overall style of the image. This is best observed in the SVHN results, where translated
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Figure 5.5: Style transfer between images in the different domains. Source and
target datasets from top to bottom: MNIST and MNIST-N, MNIST-R and MNIST,
MNIST-R and MNIST-N, MNIST-R and SVHN, SVHN and MNIST, SVHN and
MNIST-N. Top row: Source content image. Middle row: Target style image. Bottom
row: Generated image

images look very similar to the original style image aside from the change in digit. In

the MNIST-N dataset, the style transfer can be seen in the preservation of the colors

used for the background and digit, but the origin of other aspects of style of the digit

is not as easy to infer. These images also demonstrate the EDN’s ability to translate

images into more than one output. Rather than correlating the edges of an image

into another domain, similar to CycleGAN, this translation is able to understand the

56



Figure 5.6: Style transfer between images in the different domains. Source and
target datasets from top to bottom: MNIST and MNIST-N, MNIST-R and MNIST,
MNIST-R and MNIST-N, MNIST-R and SVHN, SVHN and MNIST, SVHN and
MNIST-N. Top row: Source content image. Middle row: Target style image. Bottom
row: Generated image

content and style of images and knows how to transfer and change both.

Inter-domain translation is a more challenging task, but can be appropriately han-

dled by the EDN if given labels in the target domain. The main difference between

inter-domain and intra-domain translation is that EC must interpret the content of

data from multiple domains in a single latent space. Compared to other techniques,

the explicit disentangling on the domain-invariant content-related generative factors

lets EC focus on examining the shared factors of the two domains. It must be noted

that this translation is successful because it is completely supervised. Training with-

out target labels typically leads to varied levels of mode collapse present in challenging

translation problems like MNIST→ SVHN, a problem found in all current translation

models.
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5.7 Conclusion

This work presents a new model, the EDN, that explicitly disentangles the gener-

ative factors relating to content and style. This disentanglement allows the EDN to

perform specific actions on each set of factors, resulting in new, more efficient ways

of handling data. The EDN accomplishes this explicit disentanglement by utilizing

two unique subnetworks with their own losses and parameters, with one specializing

in content extraction and the other in style extraction. This work demonstrates that

the proposed model can manipulate these sets of factors to perform unsupervised

domain adaptation and supervised image-to-image translation. The domain adapta-

tion performance is comparable and even better than other recently proposed models,

and the image-to-image translation results demonstrate some powerful benefits of ex-

plicit disentanglements. Although the scope of this works evaluations is limited, this

method of explicit disentanglement may be extended to increase performance of more

unsupervised problems, handle more domains and data types, and utilized for more

types of machine learning tasks.

The next step of the EDN is to segment generative factors in new ways. An

interesting idea would be to separate the style extractor of the EDN into two parts,

one which would be similar to the current extractor and the other would be similar to

work on style-transfer using Gramm matrices. This addition could allow more control

and insight into the style aspect of the data. Another method could be to separate

the factors based on similarity between multiple domains, similar to DSN(Bousmalis

et al. (2016)), resulting in explicitly separating domain-variant and domain-invariant

factors. Finding different ways to segment data can also lead to different types of

data being used, like finance data or datasets modeling human behavior.

In the larger picture, further development of the explicit disentangling approach
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can allow better overall transfer learning. By categorizing different parts of decon-

structed data, future models have a new way to interact and modify data.
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Chapter 6

CONCLUSIONS

This thesis aimed to find better ways of learning transferable data representations

in machine learning models. It proposed two models, the SAT and EDN, which

explored two different methods. Each of these models were evaluated in two tasks

that require transferring and adapting knowledge, image-to-image translation and

domain adaptation.

The SAT utilized coupled VAE-GANs to learn to represent data from two do-

mains in a common latent space. This common latent space meant that the SAT

would interpret data from multiple domains in a similar fashion, giving the model the

ability to decode data from both domains into either domain. It extended past re-

search by evaluating the addition of target labels to an unsupervised image-to-image

translation model in order to help the model align features relating to categoriza-

tion. In semi-supervised cross-domain image-to-image tasks, the SAT was able to

successfully conserve content in even the most difficult of the domain combinations

presented at the expense of requiring some target labels as well as lessened image

quality. In semi-supervised domain adaptation tasks, the SAT was demonstrated to

improve upon simple semi-supervised domain adaptation methods but only had some

marginal improvements. In some cases, the SAT was worse than similar deep unsu-

pervised methods. From experimentation, it was found that the addition of target

labels did increase performance of transfer tasks with complicated target domains.

However, along with this benefit came the consequence of adding another level of

complexity, which is unnecessary in simpler contexts and can lead to degradation in

performance.
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The EDN, as a direct response to the deficiencies of the SAT model, attempted to

simplify previous models. This simplification was achieved by explicitly disentangling

incoming data into content-related and style-related generative factors. Without the

use of an adversarial loss, an EDN can disentangle these factors, put these factors

together to reconstruct inputs, and combine different sets of factors to create a im-

ages. The results from the evaluations of the disentanglement, unsupervised domain

adaptation, and supervised cross-domain image-to-image translation all demonstrate

that the EDN and approach of explicit disentanglement work well and deserve fur-

ther research. Immediate future plans for the EDN and explicit disentanglement

include fine-tuning parameters and network architecture for increased performance,

expanding the domains of data and types of data used to include domains like the

Office-Home dataset, and expanding types of tasks that explicit disentanglement can

work on. Explicit disentanglement can be used by many machine learning models in

order to separate certain generative factors in order to apply specialized actions and

modifications to specific parts of the data. By having machine learning models sepa-

rate data into more abstract and more useful concepts, transfer learning will progress

further and further and might eventually compete with human intelligence in more

and more tasks.
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The following section utilize this notation:

Notation Meaning
CONV Convolutional layer
DCONV Transposed Convolutional layer
ReLU Rectified Linear Unit

CONCAT Concatenation
N Neurons
K Kernel Size
S Stride
{} parameters
() inputs

A → B evaluation of model with A as the source
domain and B as the target domain

Table A.1: Notation used when describing the networks

Semi-Supervised Adversarial Translator

Layer Encoder Input Weight-Sharing
E1 CONV{N64,K5,S2}, BatchNorm, LeakyReLU Input Image No
E2 CONV{N128,K5,S1}, BatchNorm, LeakyReLU E1 Yes
E3 CONV{N256,K8,S1}, BatchNorm, LeakyReLU E2 Yes
E4 CONV{N512,K1,S1}, BatchNorm, LeakyReLU E3 Yes
Eσ CONV{N128,K1,S1}, LeakyReLU, softplus E4 Yes
Eµ CONV{N128,K1,S1} E4 Yes

Layer Decoder Input Weight-Sharing
D1 CONV{N512,K4,S2}, BatchNorm, LeakyReLU Sampling Eσ and Eµ Yes
D2 CONV{N256,K4,S2}, BatchNorm, LeakyReLU D1 Yes
D3 CONV{N128,K4,S2}, BatchNorm, LeakyReLU D2 Yes
D4 CONV{N164,K4,S2)} BatchNorm, LeakyReLU D3 No

Output CONV{N3,K1,S1)} BatchNorm, LeakyReLU D4 No
Layer Discriminator Input Weight-Sharing
DS1 CONV{N128,K5,S1}, ReLU, MaxpoolK2,S2,dropout.3 Output, xS, xT No
DS2 CONV{N256,K5,S1}, ReLU, MaxpoolK2,S2,dropout.5 DS1 Yes
DS3 CONV{N512,K5,S1}, ReLU, MaxpoolK2,S2,dropout.5 DS2 Yes
DS4 CONV{N1024,K5,S1}, ReLU, MaxpoolK2,S2,dropout.3 DS3 Yes
DSC5 CONV{N1024,K2,S1} DSC4 Yes
DSC6 CONV{N1,K1,S1} DSC5 Yes
DSD5 CONV{N1024,K2,S1} DS4 Yes
DSD6 CONV{N10,K1,S1} DSD5 Yes

Table A.2: Network architecture for evaluation of SAT
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Loss Weight Input
Target KL .1 SEσ(xT ),SEµ(xT )
Source KL .1 CEσ(xT ),SEµ(xT )

Target Reconstruction MSE 1 xT , Output{xT → T}
Source Reconstruction MSE 1 xS, Output{xS → S}
S→S Domain Discriminator .5 Output{xS → S}
T→T Domain Discriminator .5 Output{xT → T}
S→T Domain Discriminator .5 Output{xS → T}
T→S Domain Discriminator .5 Output{xT → S}
S→S Class Discriminator .5 Output{xS → S}

T→T Pseudo Class Discriminator .2 Output{xT → T}
S→T Class Discriminator .5 Output{xS → T}

T→S Pseudo Class Discriminator .2 Output{xT → S}
Table A.3: Objective loss hyper-parameters for training the autoencoders in exper-
iments with SAT model

Loss Weight Input
Target Image Domain 1 SEσ(xT ),SEµ(xT )
Source Image Domain 1 CEσ(xT ),SEµ(xT )

S→S Domain .5 Output{xT → T}
T→T Domain .5 Output{xT → T}
S→T Domain .5 Output{xT → T}
T→S Domain .5 Output{xT → T}

Source Classifier .25 Output{xT → T}
Target Classifier .25 Output{xT → T}
S→T Classifier .1 Output{xT → T}

Table A.4: Objective loss hyper-parameters for training the autoencoders in exper-
iments with SAT model
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MNIST, MNIST-N → SVHN

Layer Content Encoder Input
CE1 CONV{N64,K5,S1}, ReLU, maxpool(S2) Content Image
CE2 CONV{N128,K5,S1}, ReLU, maxpool(S2) CE1
CE3 CONV{N256,K5,S1}, ReLU, maxpool(S2) CE2
CE4 CONV{N512,K5,S1}, ReLU, maxpool(S2) CE3
CE5 CONV{1024,K5,S1}, ReLU, maxpool(S2) CE4
CEσ CONV{N128,K1,S1}, ReLU, softplus CE5
CEµ CONV{N128,K1,S1} CE5

Classifier CONV{N10,K1,S1} CE5
Layer Style Encoder Input
SE1 CONV{N16,K5,S2}, BatchNorm, LeakyReLU Style Image
SE2 CONV{N32,K5,S2}, BatchNorm, LeakyReLU CE1
SE3 CONV{N64,K8,S1}, BatchNorm, LeakyReLU CE2
SE4 CONV{N64,K1,S1)} BatchNorm, LeakyReLU CE3
SEσ CONV{N32,K1,S1}, ReLU, softplus CE5
SEµ CONV{N32,K1,S1} CE5
Layer Content Decoder Input
CD1 DCONV{N512,K4,S2}, LeakyReLU Sampling CEσ and CEµ
CD2 DCONV{N256,K4,S2}, LeakyReLU CD1
CD3 DCONV{N128,K4,S2}, LeakyReLU CD2
Layer Style Decoder Input
SD1 DCONV{N512,K4,S2}, LeakyReLU Sampling SEσ and SEµ
SD2 DCONV{N256,K4,S2}, LeakyReLU SD1
SD3 DCONV{N128,K4,S2}, LeakyReLU SD2
Layer Combined Decoder Input
D1 DCONV{N64,K4,S2}, LeakyReLU CONCAT(CD3,SD3)

Output DCONV{N3,K1,S1}, TANH D1
Table A.5: Network architecture for experiments with the EDN model with source
domains of MNIST, MNIST-N, MNIST-R, SVHN and target domains of MNIST,
MNIST-N, MNIST-R

Loss Weight Input
Target Style KL .01 SEσ(xT ),SEµ(xT )

Target Content KL .01 CEσ(xT ),SEµ(xT )
Source Content KL .1 CEσ(xS),SEµ(xS)
Reconstruction MSE 2 Output(Content:xT , Style:xS)

Source Feature Consistency MSE 35 CE4(xS), CE4(Output Content:xS, Style:xT )
Target Feature Consistency MSE 35 CE4(xT ), CE4(Output Content:xT , Style:xT )

Source Classification CE .2 Classifier(xS), yS
Table A.6: Objective loss hyper-parameters for experiments with the EDN model
with source domains of MNIST, MNIST-N, MNIST-R and target domains of MNIST,
MNIST-N, MNIST-R
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Explicit Disentangling Network

SVHN → SVHN

Layer Content Encoder Input
CE1 CONV{N64,K5,S1}, ReLU, maxpool(S2) Content Image
CE2 CONV{N128,K5,S1}, ReLU, maxpool(S2) CE1
CE3 CONV{N256,K5,S1}, ReLU, maxpool(S2) CE2
CE4 CONV{N512,K5,S1}, ReLU, maxpool(S2) CE3
CE5 CONV{1024,K5,S1}, ReLU, maxpool(S2) CE4
CEσ CONV{N128,K1,S1}, ReLU, softplus CE5
CEµ CONV{N128,K1,S1} CE5

Classifier CONV{N10,K1,S1} CE5
Layer Style Encoder Input
SE1 CONV{N28,K5,S2}, BatchNorm, LeakyReLU Style Image
SE2 CONV{N56,K5,S2}, BatchNorm, LeakyReLU CE1
SE3 CONV{N112,K8,S1}, BatchNorm, LeakyReLU CE2
SE4 CONV{N112,K1,S1)} BatchNorm, LeakyReLU CE3
SEσ CONV{N28,K1,S1}, ReLU, softplus CE5
SEµ CONV{N28,K1,S1} CE5
Layer Content Decoder Input
CD1 DCONV{N512,K4,S2}, LeakyReLU Sampling CEσ and CEµ
CD2 DCONV{N256,K4,S2}, LeakyReLU CD1
CD3 DCONV{N128,K4,S2}, LeakyReLU CD2
Layer Style Decoder Input
SD1 DCONV{N512,K4,S2}, LeakyReLU Sampling SEσ and SEµ
SD2 DCONV{N256,K4,S2}, LeakyReLU SD1
SD3 DCONV{N128,K4,S2}, LeakyReLU SD2
Layer Combined Decoder Input
D1 DCONV{N64,K4,S2}, LeakyReLU CONCAT(CD3,SD3)

Output DCONV{N3,K1,S1}, TANH D1
Table A.7: Network architecture for experiments with the EDN model with a source
domain of SVHN and target domain of SVHN

Loss Weight Input
Target Style KL .01 SEσ(xT ),SEµ(xT )

Target Content KL .01 CEσ(xT ),SEµ(xT )
Source Content KL .1 CEσ(xS),SEµ(xS)
Reconstruction MSE 5 Output(Content:xT , Style:xS)

Source Feature Consistency MSE 15 CE4(xS), CE4(Output Content:xS, Style:xT )
Target Feature Consistency MSE 15 CE4(xT ), CE4(Output Content:xT , Style:xT )

Source Classification CE .2 Classifier(xS), yS
Table A.8: Objective loss hyper-parameters for experiments with the EDN model
with a source domain of SVHN and target domainof SVHN
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MNIST, MNIST-N, MNIST-R, SVHN → MNIST, MNIST-N, MNIST-R

Layer Content Encoder Input
CE1 CONV{N64,K5,S1}, ReLU, maxpool(S2) Content Image
CE2 CONV{N128,K5,S1}, ReLU, maxpool(S2) CE1
CE3 CONV{N256,K5,S1}, ReLU, maxpool(S2) CE2
CE4 CONV{N512,K5,S1}, ReLU, maxpool(S2) CE3
CE5 CONV{1024,K5,S1}, ReLU, maxpool(S2) CE4
CEσ CONV{N128,K1,S1}, ReLU, softplus CE5
CEµ CONV{N128,K1,S1} CE5

Classifier CONV{N10,K1,S1} CE5
Layer Style Encoder Input
SE1 CONV{N16,K5,S2}, BatchNorm, LeakyReLU Style Image
SE2 CONV{N32,K5,S2}, BatchNorm, LeakyReLU CE1
SE3 CONV{N64,K8,S1}, BatchNorm, LeakyReLU CE2
SE4 CONV{N64,K1,S1)} BatchNorm, LeakyReLU CE3
SEσ CONV{N32,K1,S1}, ReLU, softplus CE5
SEµ CONV{N32,K1,S1} CE5
Layer Content Decoder Input
CD1 DCONV{N512,K4,S2}, LeakyReLU Sampling CEσ and CEµ
CD2 DCONV{N256,K4,S2}, LeakyReLU CD1
CD3 DCONV{N128,K4,S2}, LeakyReLU CD2
Layer Style Decoder Input
SD1 DCONV{N512,K4,S2}, LeakyReLU Sampling SEσ and SEµ
SD2 DCONV{N256,K4,S2}, LeakyReLU SD1
SD3 DCONV{N128,K4,S2}, LeakyReLU SD2
Layer Combined Decoder Input
D1 DCONV{N64,K4,S2}, LeakyReLU CONCAT(CD3,SD3)

Output DCONV{N3,K1,S1}, TANH D1
Table A.9: Network architecture for experiments with the EDN model with source
domains of MNIST, MNIST-N, MNIST-R, SVHN and target domains of MNIST,
MNIST-N, MNIST-R

Loss Weight Input
Target Style KL .01 SEσ(xT ),SEµ(xT )

Target Content KL .01 CEσ(xT ),SEµ(xT )
Source Content KL .1 CEσ(xS),SEµ(xS)
Reconstruction MSE 2 Output(Content:xT , Style:xS)

Source Feature Consistency MSE 35 CE4(xS), CE4(Output Content:xS, Style:xT )
Target Feature Consistency MSE 35 CE4(xT ), CE4(Output Content:xT , Style:xT )

Source Classification CE .2 Classifier(xS), yS
Table A.10: Objective loss hyper-parameters for experiments with the EDN model
with source domains of MNIST, MNIST-N, MNIST-R and target domains of MNIST,
MNIST-N, MNIST-R

MNIST, MNIST-N, and MNIST-R → SVHN
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Layer Content Encoder Input
CE1 CONV{N64,K5,S1}, ReLU, maxpool(S2) Content Image
CE2 CONV{N128,K5,S1}, ReLU, maxpool(S2) CE1
CE3 CONV{N256,K5,S1}, ReLU, maxpool(S2) CE2
CE4 CONV{N512,K5,S1}, ReLU, maxpool(S2) CE3
CE5 CONV{1024,K5,S1}, ReLU, maxpool(S2) CE4
CEσ CONV{N512,K1,S1}, ReLU, softplus CE5
CEµ CONV{N512,K1,S1} CE5

Classifier CONV{N10,K1,S1} CE5
Layer Style Encoder Input
SE1 CONV{N32,K5,S2}, BatchNorm, LeakyReLU Style Image
SE2 CONV{N64,K5,S2}, BatchNorm, LeakyReLU CE1
SE3 CONV{N128,K8,S1}, BatchNorm, LeakyReLU CE2
SE4 CONV{N128,K1,S1)} BatchNorm, LeakyReLU CE3
SEσ CONV{N128,K1,S1}, ReLU, softplus CE5
SEµ CONV{N128,K1,S1} CE5
Layer Content Decoder Input
CD1 DCONV{N512,K4,S2}, LeakyReLU Sampling CEσ and CEµ
CD2 DCONV{N256,K4,S2}, LeakyReLU CD1
CD3 DCONV{N128,K4,S2}, LeakyReLU CD2
Layer Style Decoder Input
SD1 DCONV{N512,K4,S2}, LeakyReLU Sampling SEσ and SEµ
SD2 DCONV{N256,K4,S2}, LeakyReLU SD1
SD3 DCONV{N128,K4,S2}, LeakyReLU SD2
Layer Combined Decoder Input
D1 DCONV{N64,K4,S2}, LeakyReLU CONCAT(CD3,SD3)

Output DCONV{N3,K1,S1}, TANH D1
Table A.11: Network architecture for experiments with the EDN model with a
source domain of SVHN and target domains of MNIST, MNIST-N, and MNIST-R

Loss Weight Input
Target Style KL .01 SEσ(xT ),SEµ(xT )

Target Content KL .01 CEσ(xT ),SEµ(xT )
Source Content KL .01 CEσ(xS),SEµ(xS)
Reconstruction MSE 8 Output(Content:xT , Style:xS)

Source Feature Consistency MSE 20 CE4(xS), CE4(Output Content:xS, Style:xT )
Target Feature Consistency MSE 20 CE4(xT ), CE4(Output Content:xT , Style:xT )

Source Classification CE 100 Classifier(xS), yS
Table A.12: Objective loss hyper-parameters for experiments with the EDN model
with a source domain of SVHN and target domains of MNIST, MNIST-N, and
MNIST-R
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Figure B.1: Examples from the Office-Home Dataset

A new deep learning domain adaptation dataset called the Office-Home dataset
was created in conjunction with the other work presented in the thesis. This dataset,
along with other work, was published in the paper ”Deep Hashing Network for Unsu-
pervised Domain Adaptation” (Venkateswara et al. (2017)). The Office-Home dataset
consists of around 15,500 images from 65 categories from 4 domains (art, clipart, prod-
uct, and real-world) and was created due to the lack of domain adaptation datasets
with enough images, domains, and categories to fully train deep domain adaptation
models.
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