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ABSTRACT

The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscil-

lators move with the same frequency and show a collective rhythm. Kuramoto-like

dynamics are considered a relevant model for instabilities of the AC-power grid which

operates in synchrony under standard conditions but exhibits, in a state of failure,

segmentation of the grid into desynchronized clusters.

In this dissertation the minimum coupling strength required to ensure total fre-

quency synchronization in a Kuramoto system, called the critical coupling, is inves-

tigated. For coupling strength below the critical coupling, clusters of oscillators form

where oscillators within a cluster are on average oscillating with the same long-term

frequency. A unified order parameter based approach is developed to create approxi-

mations of the critical coupling. Some of the new approximations provide strict lower

bounds for the critical coupling. In addition, these approximations allow for predic-

tions of the partially synchronized clusters that emerge in the bifurcation from the

synchronized state.

Merging the order parameter approach with graph theoretical concepts leads to a

characterization of this bifurcation as a weighted graph partitioning problem on an

arbitrary networks which then leads to an optimization problem that can efficiently

estimate the partially synchronized clusters. Numerical experiments on random Ku-

ramoto systems show the high accuracy of these methods. An interpretation of the

methods in the context of power systems is provided.
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Chapter 1

INTRODUCTION

Synchronization is an emergent self-organizational phenomenon present in a vari-

ety of different natural systems. Metronomes, when set to different beats and placed

on a movable surface will eventually synchronize to the same frequency (Strogatz,

2000). Pedestrians on a bridge may begin to walk in step with each other without

any outside agent directing them. Fireflies will blink as a group even though they

are without a leader. Electrical generators and loads will synchronize their operating

frequencies when connected together by power lines. Some common characteristics

between systems exhibiting synchronization are:

• Each agent in the system, when alone, exhibits periodic behavior. Metronomes

beat, pedestrians walk with a consistent gait, fireflies blink, and AC electrical

devices have a periodic voltage phase.

• The frequencies and phases of the periodic behavior can be different for each

agent. Metronomes can be set to different rhythms, pedestrians have different

preferred walking speeds, fireflies blink at different rates, and electrical devices

operate at different power levels.

• There is some coupling mechanism by which information is transmitted between

agents. Metronomes and pedestrians send vibrations through flexible surfaces,

fireflies can see each other through line-of-sight, and electrical devices transmit

power through transmission lines.

• Under appropriately high levels of similarity in agent’s preferred behavior and
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appropriately high amounts of coupling, agents will alter their behavior to match

each other.

The example of a power grid has the additional property that coupling information

is not transmitted between all agents simultaneously, but only through a network of

power lines. Some nodes in the network may not have a direct connection to one

another, but through an indirect path they may still be able to communicate and

synchronize. In general, networks with a higher density of connections are more

likely to lead to synchronization, but fascinatingly not all connections are created

equal. Synchronization can occur with a remarkably sparse number of connections in

a power grid if only the most important connections are chosen.

In power grid engineering, frequency synchronization is an important phenomenon

in the study of faults and blackouts (Kundur et al., 2004) because power grids op-

erate using Alternating Current (AC). In an AC system, voltages of machines vary

sinusoidally in time and the power flow between two machines is constrained by the

phase difference between generator and load.

The Power-Angle equation is

Pe =
|E∗V |
x′d

sin(φ− ψ)

where x′d is the ransfer reactance between nodes, V = |V |eiψ is the complex voltage at

the terminal, and E = |E∗|eiφ is the complex voltage at the transmitting node. Due

to the sin(φ − ψ) term, if the sending and receiving machines are not synchronized

to the same frequency then the phase difference between them will be constantly

changing from negative to positive and back again, and power cannot efficiently flow.
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Figure 1.1: An example of frequency synchronization. The blue and orange voltage

curves are frequency synchronized in time, so their phases grow at the same rate and

the phase difference is constant.

Figure 1.2: An example of unsynchronized frequencies. The blue and orange sig-

nals have phases that grow at different rates and so the phase difference grows also.

The phase difference is shown modulo 2π, and repeatedly switches from positive to

negative.

If two generators have a synchronized frequency as in figure 1.1 then power can
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be transmitted between them. In normal operating conditions, every node in a power

network should be synchronized to every other node so that power can freely flow

to where it is needed. This ensures that there is no excess or lack of power at any

particular location in the grid.

In this paper, we study the network Kuramoto model. The Kuramoto model is

a simplified model of synchronizing phase oscillators with global coupling, and the

networked version of the model restricts coupling to only occur between nodes in

an associated graph. The model is significantly simpler than the true physics of a

power grid, but it shares some essential similarities including the creation of islands

of synchronized nodes when full synchronization of the entire system is not possible.

We believe that a strong understanding of the network Kuramoto model is required

before an equal level of understanding is possible in the power grid.
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Chapter 2

THE NETWORK KURAMOTO MODEL

A network Kuramoto system is a collection of time-varying phase oscillators em-

bedded in a network with coupling along edges. A given oscillator i has a constant

internal driving frequency ωi and a sinusoidal coupling to each of its neighbors in

the network. The edge connections are represented through the symmetric network

adjacency matrix A.

Definition 1. A network Kuramoto system (A, ω) is a collection of phase oscillators

with dynamics given by

φ̇i = ωi + σ
∑
j

Aij sin(φj − φi) (2.1)

Here φi ∈ R is the phase of oscillator i, ωi ∈ R is the inherent driving frequency of

node i, and σ ∈ R+ is the coupling strength.

The Kuramoto model is one of many models of synchronization on networks

(Abrams et al., 2016).

Definition 2. The adjacency matrix A ∈ RN×N
+ associated to a weighted graph is

defined by

Aij =


wij if there exists an edge from node i to node j

0 otherwise

where wij is the weight of the edge from node i to node j. If A is symmetric, then we

say the associated graph is undirected, and if all weights are 0 or 1, we say the graph

is unweighted.
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The network variant of the Kuramoto model has relevant applications to the

electrical dynamics of power grids. In (Nishikawa and Motter, 2015), Nishikawa and

Motter present a standardized description of power grid modeling techniques, and

the key properties of their framework are that each generator or load in the system

represents a node in an associated network, that each node is modeled by a phase

variable, that the phase at each node has dynamics based on a combination of internal

and external dynamics, and that the external dynamics are proportional to the phase

difference across an edge in the network.

Under the Nishikawa/Motter modeling framework a network Kuramoto system

can readily be seen as a simplified power grid model without any inertial term. With

this interpretation of the network Kuramoto model, φi can be interpreted as the

complex power angle of node i, ωi as the internal power created or drawn by node

i (positive for generators, negative for loads), and σ ∗ Aij as the admittance of the

electrical line between nodes i and j, if such a line exists.

2.1 Synchronization in the Kuramoto model

In the Kuramoto model, it is important to distinguish between different types of

synchronization.

Definition 3. Two nodes i and j are phase synchronized if their phases are asymp-

totically identical modulo 2π, i.e., given ε > 0, there exists a time T > 0 such that

|φi − φj| (mod 2π) < ε ∀t > T.

We say that a Kuramoto system is phase synchronized if all nodes in the system are.

Definition 4. Two nodes i and j are frequency synchronized if their phase difference

is bounded in time, i.e.
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lim sup
t→∞

|φi − φj| <∞.

We say that a Kuramoto system is frequency synchronized if all nodes in the system

are.

It is well known(Rodrigues et al., 2016) that it is only possible for a Kuramoto

system to fully phase synchronize if all oscillators have identical internal frequencies

ω, or in the infinite coupling limit. We only study systems of nonidentical oscillators

with finite coupling, so we will primarily refer to frequency synchronization. When

discussing frequency synchronization it is convenient to define the long-term frequency

of an oscillator (Ottino-Löffler and Strogatz, 2016).

Definition 5. The long-term frequency of oscillator i is

lim
t→∞

φi
t
.

It is a trivial observation that two oscillators have identical long-term frequencies

if they are frequency synchronized. For intermediate levels of coupling the network

Kuramoto model exhibits an islanding behavior, wherein some subsets of oscillators

group together in frequency-synchronized clusters.

Definition 6. A frequency-synchronized cluster is a maximal set of frequency-synchronized

oscillators in a Kuramoto system.

Our definition of a cluster is based on long-term frequencies rather than restric-

tions on the oscillator’s phases (Favaretto et al., 2017b) or their decay rates to equi-

librium (Romeres et al., 2013). Frequency synchronization can also be interpreted

as an equivalence relation on the set of Kuramoto oscillators. Clusters are then the
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equivalence classes of this relation and partition the set. It is important to recog-

nize that the definitions of frequency synchronization and cluster synchronization are

based on the trajectories of the oscillators in the system, and therefore vary when

the initial conditions change, when the coupling strength σ changes, and ultimately

depend on the solution curves for the dynamical system.

A similar concept occurs in a power grid when a fault occurs in a power grid.

Initially, power grids are designed to be totally frequency synchronized and the entire

network will be one large cluster. If the fault is not immediately corrected, phase in-

stability can cause the grid to split into frequency-synchronized islands, where some

parts of the system are electrically disconnected from others (FERC, 2012). The

islands can still be connected physically, but without proper synchronization the

amount of power that can flow between islands is severely limited and inconsistent.

The network structure, power loads, and power generators all play a role in determin-

ing what islands will form. It is generally preferred that if a fault is unavoidable, the

bulk of the network remain synchronized while a small section (possibly a single city,

neighborhood, or even a single generator) form a separate cluster. However, it can

happen that the clusters are the sizes of entire states or countries. If this occurs, it

can be a major undertaking to re-synchronize the network. Predicting which clusters

will form in a blackout is therefore a key planning step when preparing for future

power blackouts. We believe that methods for determining synchronized clusters in

the Kuramoto system could be useful in the future for performing the same task with

power grids.
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Figure 2.1: Frequency-synchronized islands in the 2011 southwest blackout FERC

report (FERC, 2012).

To investigate the Kuramoto model’s dependence on initial conditions, we created

1000 Kuramoto systems by generating a random connected Erdős–Rényi graph on

25 nodes and 40 edges and associated to each of them a uniformly randomly vector

of frequencies. The critical coupling was computed for each system by iteratively

running simulations at different values of σ. Finally, each system was simulated

at a coupling 0.1% higher than the critical coupling with 1000 uniformly random

initial conditions. We found that in 88.3% of systems, all 1000 initial conditions

converged to the same fixed point. In the remaining systems an average of 86.0% of

initial conditions converged to the same fixed point. This experiment provides strong

evidence that when a stable fixed point exists in a Kuramoto sytem it is usually

globally stable, and even when it isn’t the stability basin occupies a majority of the
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state space. However it is important to note that with other random graph structures

such as ring graphs, the dependence on initial conditions can be much more severe

(Wiley et al., 2006) (Ottino-Löffler and Strogatz, 2016).

The bulk of this work will be to examine how frequency-synchronization in the

network Kuramoto model varies with the coupling strength, and to attempt to predict

the frequency-synchronized clusters without finding solution curves.

2.2 Example Systems

Consider a simple Kuramoto system on N = 2 nodes, with adjacency matrix

A =

0 1

1 0

 and frequencies ω =

 1

−1

 . The dynamics of the system are given by

φ̇1 = 1 + σ sin(φ2 − φ1)

φ̇2 = −1 + σ sin(φ1 − φ2).

We will investigate the behavior of the system as the parameter σ varies. Set the

initial conditions φ1(0) = φ2(0) = 0 and vary σ.
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Figure 2.2: A comparison of the cumulative phase vs time for a Kuramoto system of

two nodes at different coupling strengths. As the coupling increases, the long-term

frequencies of each node converge. As σ approaches 1, the long-term frequencies

approach 0. This is the onset of synchronization.

Simulations show that this system settles into a consistent periodic pattern. The
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long-term behavior of the system is a mostly linear change in φ (equivalent to a mostly

constant angular frequency) with fluctuations occurring as the phases mod 2π move

past each other on the unit circle. The magnitudes of the long-term frequencies have

a decreasing dependence on the coupling σ, and as σ approaches 1, the long-term

frequencies for both nodes approach 0. For σ ≥ 1, the system is totally synchronized

and exhibits a fixed point. The fixed point corresponds to frequency synchronization

but not phase synchronization, as the phases are still different for each node. This

difference is again a function of σ.

The dependence on σ is more easily observed by plotting the long-term frequencies

limt→∞
φ
t

for each node vs. σ. We call this plot the frequency bifurcation diagram.

Figure 2.3: Frequency bifurcation diagram for a Kuramoto system with two nodes.

For 1000 choices of σ the system was simulated numerically forward in time until a

limit T , where T is sufficiently large such that all transients have decayed to zero.

The first 50% of each simulation was thrown out to remove any remaining transient

behavior and the ending 50% was used to estimate the long-term frequency of each

oscillator, plotted on the vertical axis.
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In figure 2.3 we see that the magnitudes of the long-term angular frequencies

of both nodes in the N = 2 system decrease as σ increases, eventually achieving

frequency synchronization at σ = 1, exactly as we observed from the phase plots.

Next consider a random connected Erdős–Rényi graph with N = 25 nodes, M =

40 edges, and uniformly random frequencies.

Figure 2.4: The randomly generated Kuramoto system on 25 nodes.

13



Figure 2.5: A comparison of the cumulative phase vs time for a Kuramoto system

of 25 nodes at different coupling strengths. A cascade of synchronizing events as σ

increases is more obvious here.

The same basic story is told by the system of 25 nodes. As σ increases, the average

long-term angular frequencies of the nodes approach 0. Eventually, total frequency
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synchronization occurs and a fixed point emerges. The 25 node system also showcases

nontrivial cluster synchronization as σ changes. The cluster synchronization is most

easily observed on the frequency bifurcation diagram for a Kuramoto system.

Figure 2.6: Bifurcation diagram for a Kuramoto system with 25 nodes. Vertical black

lines correspond to σ values of 15, 20, and 25 respectively.

In figure 2.6 we see the complete bifurcation diagram for the N = 25 system. As

σ increases, there is a cascade of cluster synchronization events before total synchro-

nization occurs. At σ = 0, there are 25 distinct long-term frequencies corresponding

to the 25 nodes in the system. With increasing σ the long-term frequencies begin to

coalesce into fewer and fewer clusters until only one remains. At σ = 15 and σ = 20

there are six and three distinct frequencies, respectively, corresponding with the ob-

servations we made from the phase diagram. The clustering cascade is not purely

monotone. As σ increases near 20 the number of clusters falls to two, briefly climbing

back to three and then four before falling to one as total synchronization occurs.
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2.3 The Critical Coupling and Saddle-Node Clusters

The transition to total frequency synchronization is the primary process we study

in this dissertation. The coupling value for this event is significant and we give this

value of σ a special name, the critical coupling.

Definition 7. The critical coupling of a Kuramoto system, denoted σc, is the least

such coupling such that a frequency synchronized solution exists.

If ω has mean zero, then at the critical coupling a Kuramoto system undergoes a

saddle-node bifurcation as a fixed point solution is created. The dynamics can easily

be analyzed for the two-node case. Instead of studying each oscillator separately,

instead examine the dynamics of the one-dimensional phase difference Ψ := φ1 − φ2,

Ψ̇ = φ̇1 − φ̇2 = 1 + σ sin(φ2 − φ1)− [−1 + σ sin(φ1 − φ2)]

Ψ̇ = 2− 2σ sin(Ψ).

The 2-node Kuramoto system is actually a one-dimensional dynamical system in Ψ.

There is a saddle-node bifurcation when 2σ exceeds 2 in magnitude, so the critical

coupling for the two node system is exactly σc = 1. There is a unique globally stable

periodic orbit when σ < 1, and unique stable and unstable fixed points when σ > 1.

The exact critical coupling for the 25-node example system is unknown, and an

exact explicit description probably does not exist. For this system, it has been com-

puted numerically to be approximately 20.92.

We are also interested in the behavior of the system just below and just above the

critical coupling. A thorough analysis of the bifurcation is performed in (Maistrenko

et al., 2005) for networks of size seven or less. Above the critical coupling there ex-

ists a steady state phase distribution satisfying φ̇ = 0. The Kuramoto dynamics are
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nonlinear so explicitly calculating or even approximating this distribution is nontriv-

ial. Just below the critical coupling the phase oscillators self-organize into a set of

frequency-synchronized clusters. These clusters have been observed to correlate with

symmetries in the system’s network structure (Sorrentino and Pecora, 2016).

Definition 8. The saddle-node clusters of a Kuramoto system are the disjoint frequency-

synchronized clusters that naturally form in a Kuramoto system for σ = σc − ε for

arbitrarily small ε.

Our definitions for the steady state phase distribution and the saddle-node clusters

assume uniqueness, but this assumption need not be true for arbitrary Kuramoto

systems. A change in initial conditions could lead to a different fixed point or different

clusters. Much has been said about local and global stability results for Kuramoto

systems as σ →∞ and often as N →∞, and our numerical experiments suggest that

global stability is frequently true for systems of random size, structure, and coupling.

For this reason, we will neglect considerations of stability and initial conditions for

the remainder of this dissertation as they are largely unimportant for the type of

statistical predictor results we seek. We wish to emphasize though that rigorous

results must take stability into consideration, as one can easily construct Kuramoto

systems which have multiple stable solution types at the same coupling, differing only

in initial conditions (Ottino-Löffler and Strogatz, 2016).

2.4 The Influence of the Network Structure on Synchronized Clusters

In the 25 node bifurcation diagram of figure 2.6 it is apparent that clusters begin

to form even at low coupling. There are several groups of nodes near zero angular fre-

quency that cluster almost immediately. Intuitively, these nodes do not require much

coupling to cluster because they have similar inherent frequencies. With similar fre-
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quencies their phase difference is slowly varying, allowing a low coupling to overpower

the separation what would ordinarily come from their small difference in angular fre-

quency. This argument, while it carries some truth, quickly degrades when other pairs

of nodes with similar frequencies are observed that do not synchronize until very high

σ. An example is highlighted in figure 2.7.

Figure 2.7: The same bifurcation data for the 25 node Kuramoto system, but with

two pairs of nodes highlighted. Both pairs have similar inherent frequencies between

them with no coupling, but the orange/red pair synchronizes at a very low σ while

the blue/purple pair requires a very high σ before synchronization takes place.

Accurate clustering predictions cannot be achieved only from observations of sim-

ilarities in inherent frequencies. The network structure plays a substantial role. In

the figure 2.7 example, the orange/red pair is well connected in the network, but the

blue/purple pair is not. Figure 2.8 demonstrates how the clustering in the system is

biased towards nodes that have connectivity with each other in the network.
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Figure 2.8: Three clusterings of the N = 25 node Kuramoto system at couplings of

10, 15, and 20. The nodes in the network are colored according to which clusters

they belong. The color choices carry no meaning other than to assign nodes in the

same cluster the same color. There are eleven clusters when σ = 10, six when σ = 15,

four when σ = 20, and the data clearly demonstrates a high amount of network

connectivity within the clusters that the Kuramoto system naturally forms. Notice,

however, that it is possible for a cluster to be disconnected in the network. There is

one such example when σ = 20.

Given a data set, statisticians have developed many techniques to partition the

data points (Wikipedia, 2017). There is no one technique that is best; it is up to

the statistician to identify what method most suits the data. Likewise, network re-

searchers have developed clustering techniques for breaking a network into simple, well

connected pieces(Newman, 2010). Most techniques rely on some definition of connec-

tivity in a graph, and it is up to the mathematician to decide which choice best fits

the network. In (Gómez-Gardenes et al., 2007) it was observed that scale-free net-
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works were relatively more likely to have a single dominant cluster while Erdős–Rényi

networks often had groups of clusters similar in size. The Kuramoto oscillators have a

self-organizational behavior that produces a hierarchical clustering through a combi-

nation of both the frequency data and the network structure (Sorrentino and Pecora,

2016) (Favaretto et al., 2017b). To understand how their behavior works we require

a method of prediction that does the same.

2.5 Questions to Answer About the Kuramoto System

As with most nonlinear dynamical systems, finding analytic solutions to the Ku-

ramoto model is infeasible and likely impossible for many choices of system param-

eters. Instead we must ask more qualitative questions about the overall behaviour

of the model and think about how changes in the system parameters affect this

behaviour. Here we will collect some important questions and results about the net-

work Kuramoto model, for a more complete study the review articles by Rodrigues

et al.(Rodrigues et al., 2016) and Dörfler et al. (Dörfler and Bullo, 2014) are recom-

mended.

Problem 1. Assuming that a Kuramoto model frequency synchronizes, to which fre-

quency does it synchronize?

Answer: If we adopt the stronger definition of frequency synchronization that the

phase difference between two oscillators must be constant, not just bounded, then each

connected component of the associated network synchronizes to the mean inherent

frequency of that component.

Proof. Without loss of generality assume that a Kuramoto network has only one

connected component. Assume that all oscillators synchronize to the same frequency

ω̃. Then, we must have
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φ̇i = ωi + σ
∑
j

Aij sin(φj − φi) = ω̃

for all oscillators. Compute the sum of all phase derivatives to get

∑
i

φ̇i =
∑
i

[
ωi + σ

∑
j

Aij sin(φj − φi)

]
= N ∗ ω̃.

Now observe that
∑

i

∑
j Aij sin(φj−φi) = 0, because we assume A to be a symmetric

matrix, the i and j summations over over the same set, and sine is an odd function.

Therefore, every term in the double summation will have a corresponding term to

cancel it when i and j are flipped, and when i and j are equal the sine term is zero.

So we have

∑
i

ωi + σ ∗ 0 = N ∗ ω̃

ω̃ =
1

N

∑
i

ωi

and the synchronization frequency is the mean of all inherent oscillator frequencies,

regardless of the network structure.

Corollary 1. We can always assume a reference frame in which 1
N

∑
i ωi = 0. Then,

strong frequency synchronization is equivalent to the existence of a stable fixed point.

Proof. Simply apply the transformation φ̃i = φi −
[

1
N

∑
i ωi
]
∗ t. Then,

˙̃φi = φ̇i −
1

N

∑
i

ωi

˙̃φi = ωi + σ
∑
j

Aij sin

(
φ̃j +

[
1

N

∑
i

ωi

]
∗ t− φ̃i −

[
1

N

∑
i

ωi

]
∗ t

)
− 1

N

∑
i

ωi

˙̃φi = ωi −
1

N

∑
i

ωi + σ
∑
j

Aij sin
(
φ̃j − φ̃i

)
.
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Therefore we can instead consider the Kuramoto system (A, ω − 1
N

∑
i ωi) on the

φ̃ phase variables as equivalent to the original system under a rotating reference

frame.

A rotating reference frame is useful because then the strong frequency synchro-

nized state is equivalent to a fixed point, and the transition to synchronization is a

saddle-node bifurcation in σ.

Problem 2. Does every network Kuramoto system frequency synchronize as σ →∞?

Answer: Yes.

Proof. First convert the network Kuramoto dynamics into vector form. Let φ ∈ RN×1

be the phase vector and ω ∈ RN×1 be the inherent frequency vector. Assign to each

edge in the network an arbitrary orientation and choose an ordering of the edges from

1 to M . Let B ∈ RN×M be the oriented incidence matrix defined by

Bij =


−1 if edge j leaves node i

1 if edge j enters node i

0 otherwise

. Then the network Kuramoto dynamics become

φ̇ = ω − σB sin(BTφ).

Consider the σ-normalized version of the Kuramoto model by letting φ̃i = φi
σ

. Then,

˙̃φ =
ω

σ
−B sin(σBT φ̃).

and in the limit as σ →∞, the φ̃ system approaches an identical oscillator form of the

Kuramoto model, where all oscillators are assumed to have inherent frequency zero.
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Identical oscillator Kuramoto models are known to always exhibit an exponentially

stable, phase synchronized fixed point where all phases are zero(Grabow et al., 2010).

Indeed, if ω
σ
→ 0 then φ̃ = 0N is clearly a fixed point, and for small perturbations we

can linearize the sine function to get

˙̃φ ≈ −σBBT φ̃ = −σLφ̃

where we have used the well known fact that BBT = L, the network Laplacian,

regardless of which oriented incidence matrix B is chosen. L is positive semidefinite

and has non-negative eigenvalues, and the zero eigenvalue corresponds to the fact that∑
i φi is a conserved quantity. In a rigorous sense the Kuramoto system is neutrally

stable, but if we consider the dynamics only on the invariant set defined by
∑

i φi = 0

then the zero vector is an asymptotically stable state of the φ̃ system. Because the

original φ system is a multiple of φ̃, it must also have a linearly stable fixed point as

σ →∞.

These problems cover a few of the basic properties we are interested in for net-

work Kuramoto systems and are integral for our analysis in the remainder of this

dissertation. The questions we are most interested in going forward are

Problem 3. Given a network Kuramoto system (A, ω), what is the critical coupling?

Problem 4. Given a network Kuramoto system (A, ω), what are the saddle-node

clusters?

2.6 Outline and Contributions

In this dissertation we address problems (3) and (4) simultaneously using a cluster

order parameter optimization problem. In chapter 3 we review the standard order

parameter and in section 3.3 we introduce a new order parameter based on clusters. In
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section 3.4 we explain the analytical use of the cluster order parameter in Kuramoto

systems, culminating in theorem 2. Theorem 2 establishes a lower bound on the

critical coupling but the bound is unwieldy to calculate. In chapter 4 we show that

the calculation of the bounds in theorem 2 and particularly in equation (3.22) are

equivalent to a variation of the minimum isoperimetric ratio problem in spectral

graph theory. We adapt an algorithm from the literature to approximately solve the

problem and numerically test the accuracy for the estimates of the critical coupling

and saddle-node clusters on random network Kuramoto systems. Finally in chapter

5 we interpret these results in the context of power systems.

The primary contributions of this dissertation are the generic order parameter

intersection framework for estimating the critical coupling in chapter 3, the introduc-

tion of the cluster order parameter in 11 and its associated theorem 2 and conjecture

1 for bounding the critical coupling and identifying the saddle-node clusters respec-

tively, and the observation in chapter 4 that the computation of the maximal cluster

intersection for horizontally projected cluster order parameters is a variation of the

isoperimetric problem in spectral graph theory.

2.7 Calculating the Steady State Phase Distribution

Problem 5. Assuming that a Kuramoto system is frequency synchronized, what is the

synchronized phase distribution? Equivalently, what is the fixed point in the Kuramoto

system after the saddle-node bifurcation?

Answer: Generally, finding the fixed point is a matter of finding the root of a

system of nonlinear equations. Call the fixed point φ∗. φ∗ satisfies

ωi + σ
∑
j

Aij sin(φ∗j − φ∗i ) = 0
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for all i. Or, equivalently in vector notation,

ω − σB sin(BTφ∗) = 0. (2.2)

φ∗ is not uniquely determined by this nonlinear condition because BT has a nullspace

equal to the span of 1N and any vector in the space {0, 2π}N may be added to φ∗ to

also solve equation (2.2). To avoid these trivial solutions we define φ∗ to be the vector

in (−π, π)N with 1TNφ
∗ = 0. If φ∗ is still not uniquely determined then we define φ∗ to

be the fixed point with the largest basin stability (Hellmann et al., 2016). The basin

stability of a fixed point is the probability that a trajectory will asymptotically return

to the fixed point after a uniformly random perturbation in (−π, π)N orthogonal to

1N is added.

φ∗ can be found numerically through Newton’s method or by simulating the sys-

tem. Analytically, it is tempting to try to solve for φ∗ as φ∗ = (BT )−1 sin−1
(
B−1ω
σ

)
.

Unfortunately, B is an N ×M rectangular matrix, so B−1 does not exist. Even if

N = M and B is square, it is an oriented incidence matrix and will not have full

rank. Summing the rows of B which correspond to a cycle in the graph will always

yield 0. The number of elementary cycles in a connected graph with N nodes and

M edges is M −N + 1, so B always has rank N − 1. See (Biggs, 1997) for more on

the edge space and cycle space of a graph. Because the naive solution for φ∗ is not

correct, we have the following lemma due to (Dörfler et al., 2013).

Lemma 1. Given a Kuramoto system (A, ω), and a coupling σ > σc, the fixed point

φ∗ is well approximated as the solution to the linear system

BTφ∗ ≈ sin−1

(
B†ω

σ

)
1TNφ

∗ = 0
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where B† is the Moore-Penrose pseudoinverse of the oriented edge incidence matrix

B. The error in the approximation decreases to zero as σ → ∞. Moreover, the

Dörfler estimate

σD = ||B†ω||∞ (2.3)

is an estimate for the critical coupling.

Proof. Consider equation 2.2 in the edge space instead of the node space. Define the

M × 1 vector Ψ∗ by Ψ∗ = sin(BTφ∗). Then equation 2.2 is linear in Ψ∗, and Ψ∗ is in

the solution space to

BΨ∗ =
ω

σ
. (2.4)

Unfortunately this solution space is of dimension M − N + 1, so a unique solution

cannot yet be determined. The shift from φ∗ to Ψ∗ was not a true change of coor-

dinates because they are of different dimensions. Lost in transition was the Kirchoff

condition that net change in phase around any cycle in the graph is zero. We must

add this condition back in to Ψ∗ by imposing

∑
k∈E

sin−1(Ψ∗k) = 0 (2.5)

for an oriented sequence of edges k in each elementary cycle E. As there are M−N+1

elementary cycles in a connected graph, these conditions reduce the solution space

to zero degrees of freedom. It is likely that there exists a unique solution Ψ∗ to

both conditions, but the Kirchoff condition is nonlinear so this is not guaranteed.

If a unique Ψ∗ is found, φ∗ can then be recovered by solving the linear equations

BTφ∗ = sin−1(Ψ∗) and 1TNφ
∗ = 0, assuming that all elements of Ψ∗ are less than or

equal to 1 in magnitude.

Remarkably, if the nonlinear Kirchoff condition on Ψ∗ is replaced by the first-order
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linear approximation ∑
k∈E

Ψ∗k = 0 (2.6)

then Ψ∗ is exactly solved by Ψ∗ = B†ω
σ

. Assuming that this is a close approximation

to the nonlinear solution, we have BTφ∗ ≈ sin−1
(
B†ω
σ

)
. Additionally, for B†ω

σ
to be

in the domain of sin−1, we must have σ ≥ ||B†ω||∞. For a more extensive proof see

the paper (Dörfler et al., 2013).

In (Dörfler et al., 2013) it was observed that σD was an upper bound for the critical

coupling in more than 99.9% of random Kuramoto systems, generated according to

several different random graph models.

2.8 Terms and Definitions

N ∈ N is the number of oscillators in the system and M ∈ N is the number of

edges in the embedded network. φi ∈ R is the phase of oscillator i, ωi ∈ R is the

inherent driving frequency of node i, σ ∈ R+ is the coupling strength, A ∈ RN×N
+ is

the symmetric adjacency matrix of the associated network, L is the graph Laplacian,

and B is an oriented incidence matrix with arbitrary orientation. Aij = 1 if nodes i

and j are connected and 0 if they are not. B ∈ RN×M is defined by Bij = −1 if edge j

leaves node i, Bij = 1 if edge j enters node i, and Bij = 0 otherwise. The orientation

is chosen by convention to point from the lower indexed node to the higher so that

the edges are listed in lexicographic order. L is defined by L = D−A, where D is the

diagonal matrix of node degrees. A, B, and L all contain complete information about

the graph, so it is possible to convert from one to another with no loss. As a rule

of thumb, A is more convenient to use when discussing properties of nodes, B when

discussing edges, and L when discussing flows through the graph. L† is the Moore-

Penrose pseudoinverse of L. The Kuramoto dynamics can be equivalently stated in
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vector form as

φ̇ = ω − σB sin(BTφ) (2.7)
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Chapter 3

ORDER PARAMETERS IN THE KURAMOTO MODEL

An order parameter is a real number that measures the degree of phase synchrony

in a set of phase oscillators. Typically order parameters are defined to lie in some

specified interval, with total phase synchronization occurring at the maximal value in

that interval. Order parameters can be studied numerically as a way to measure phase

cohesiveness, or analytically as an indicator to prove phase synchronization occurs.

In chapter 3 we will review some of the order parameters that have previously been

used to study the Kuramoto model and introduce new parameters to study cluster

synchronization.

3.1 The Standard Order Parameter

Definition 9. The standard order parameter r of a vector of phases φ ∈ RN is the

magnitude of the complex order parameter Os, defined by

Os := rse
iΨ =

1

N

N∑
i=1

eiφi . (3.1)

The standard order parameter is most useful for analyzing a standard Kuramoto

system. We define a standard Kuramoto system to be one where the underlying

network is a complete graph.

Os is the center of mass of all the phases in the vector φ when they are arranged

on the complex unit circle, and rs is the distance of Os from the origin. The phase

variable Ψ is the mean phase of all the oscillators in φ. Figure 3.1 gives an example

of this interpretation.
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(a) rs = 0.095, no phase co-

hesiveness.

(b) rs = 0.503, partial phase

cohesiveness.

(c) rs = 0.961, high phase co-

hesiveness.

Figure 3.1: Three examples of phase distributions with varying levels of phase cohe-

siveness. The phases φ are arranged in orange around the complex unit circle while

their center of mass Os is shown in yellow. The order parameter rs is the distance of

the center of mass from the origin, shown in black.

If the phase vector φ is time-dependent as it is in the Kuramoto model, then Os

and the order parameter rs will also be time-dependent. Studying how rs changes in

time gives insight towards the transition to synchrony as a Kuramoto system moves

past a transient phase and into its long-term stable dynamics. In (Mirollo, 2012),

Mirollo studies the time evolution of the standard order parameter in the N → ∞

limit, and even in this limiting case the dynamics are nontrivial and rigorous analysis is

dependent on initial conditions. Instead we observe the time-dependence numerically.
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(a) The time evolution of a standard Kuramoto system above critical cou-

pling. There is a transient period before total frequency synchronization

and partial phase synchronization occurs.

(b) The phase cohesiveness of the same system, tracked by its order pa-

rameter. The transition to synchrony is captured by the asymptotic in-

crease in the order parameter.

Figure 3.2: An example Kuramoto system of twenty phase oscillators was simulated

forward in time from a random initial distribution of phases. The order parameter is

near zero for the random starting point, but increases through the transient region

and asymptotically approaches a limit as time goes to infinity.
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Above the critical coupling, we use the notation rs(σ) to refer to the t → ∞

asymptotic limit of rs for a Kuramoto system with coupling σ. Below the critical

coupling, we define the time-averaged order parameter 〈rs〉t to study how frequency

synchronization changes with σ.

Definition 10. The time-averaged order parameter 〈rs〉t is defined by

〈rs〉t := lim
τ→∞

1

τ

∫ τ

0

rs(t)dt = lim
τ→∞

1

τ

∫ τ

0

∣∣∣∣∣ 1

N

N∑
i=1

eiφi(t)

∣∣∣∣∣ dt. (3.2)

Numerically, it is more convenient to average from T to T + τ , where both T and τ

are large.

Time-averaging of the order parameter gives a significant measurement of syn-

chronization even at coupling strengths where total frequency synchronization doesn’t

occur.
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(a) The long-term frequency bifurcation plot for an all-to-all Kuramoto system.

(b) The time-averaged order parameter as a function of σ.

Figure 3.3: An example Kuramoto system with the time-averaged order parameter

used to measure frequency synchronization.

Kuramoto (Kuramoto, 1975) (Kuramoto, 2012) showed the importance of the
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standard order parameter analytically using a mean-field approach. We will present

his findings in a slightly different way than they are shown in (Strogatz, 2000), and

instead follow (Almendral et al., 2010) and make use of the trigonometric identity

∑
j

aj sin(x+ zj) = A sin(x+ Z) (3.3)

where

A2 =
∑
p,q

apaq cos(zp − zq)

tan(Z) =

∑
p ap sin(zp)∑
p ap cos(zp)

.

The standard Kuramoto model is

φ̇i = ωi + σ
N∑
j=1

sin(φj − φi). (3.4)

Apply identity (3.3) using x = −φi, zj = φj and aj = 1 to get

φ̇i = ωi + σr sin(Ψ− φi). (3.5)

where

r2 =
∑
p,q

cos(φq − φp)

tan(Ψ) =

∑
p sin(φp)∑
p cos(φp)

.

Now equation 3.5 appears to show that oscillator φi is decoupled, its dynamics are

influenced only by r, Ψ, σ, and its own internal properties. Of course, r and Ψ

depend on the oscillator population, so the inter-dependencies are hidden in these

two variables. Importantly though, r and Ψ are global variables and are not specific

to the oscillator φi. To connect equation 3.5 with the standard order parameter, note
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that
∑

p,q sin(φq−φp) = 0 because sine is an odd function and both p and q range from

1 to N , so each term in the sum has a corresponding term that cancels it. Therefore,

r2 =
∑
p,q

cos(φq − φp) + i sin(φq − φp)

r2 =
∑
p,q

ei(φq−φp)

r2 =
∑
q

eiφq
∑
p

e−iφp

r2 =

∣∣∣∣∣∑
q

eiφq

∣∣∣∣∣
2

.

Now it is clear the r in equation (3.5) is the standard order parameter rs multiplied

by N . Likewise, Ψ is the phase of Os. We will refer to r as ”the order parameter”.

Equation 3.5 has a simple one-dimensional saddle-node bifurcation if r is constant.

A stable fixed point exists only if σr ≥ |ωi|. We can do the same analysis for every

oscillator, so we would expect the critical coupling for the entire system to be given

by σc = ||ω||∞
r

, where ||ω||∞ is the largest magnitude component of the frequency

vector ω.

Theorem 1. Given a standard Kuramoto system with frequency vector ω and order

parameter r(σ) when the system is in steady state at coupling σ,

σ ≥ ||ω||∞
r(σ)

. (3.6)

In particular, σc ≥ ||ω||∞
r(σc)

.

Proof. For all i, the steady state solution is given by

ωi + σ

N∑
j=1

sin(φ∗j − φ∗i ) = 0.

Follow the same logic used to derive equation 3.5 to get
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ωi + σr(σ) sin(Ψ− φ∗i ) = 0. (3.7)

Therefore σr(σ) ≥ |ωi| for all i, or no root φ∗i could exist. maxi(|ωi|) = ||ω||∞, so

σ > ||ω||∞
r(σ)

.

Corollary 2. For any choice of σ where a steady state solution exists to the Kuramoto

system we have the bound

σc ≥
||ω||∞
r(σ)

. (3.8)

Proof. The argument follows from the observation that r increases with σ. Because σc

is the lowest coupling at which a steady state exists, we must have σ ≥ σc. Therefore

r(σ) ≥ r(σc) and ||ω||∞
r(σc)

≥ ||ω||∞
r(σ)

.

r can only be constant in time when the system is in steady state, but its interpre-

tation as the centroid of all phases on the complex circle (multiplied by N) provides

some intuition that r can be nearly constant in time even outside of steady state. If

the coupling is just below the critical value, then the steady state solution bifurcates

and the system converges to a stable periodic orbit on the N -torus. Qualitatively, we

expect the majority of the oscillators to remain frequency synchronized, with only a

few drifting oscillators that deviate from the main pack. Because the bulk of oscilla-

tors stay grouped on the unit circle, their centroid magnitude stays high and nearly

constant even as the oscillators rotate. The rogue oscillators contribute to some fluc-

tuations, but should not significantly impact the order parameter over time. It should

be noted that this argument breaks down when the drifting oscillators form a signif-

icant percentage of the entire system, and this is our motivation for introducing a

cluster version of the order parameter in the next section.

Figure 3.3 shows that the time-averaged order parameter increases with σ, and is

monotone increasing in the regime where a steady state solution exists. Rearranging
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inequality 3.6, we have

r(σ) ≥ ||ω||∞
σ

.

The left hand side is increasing with σ while the right hand side is decreasing with

σ. If the curves intersect, then the inequality becomes an equality for some value of

σ, which must necessarily be a lower bound for σc.

Figure 3.4: A demonstration of the intersection between the curves r(σ) and ||ω||∞
σ

for an example Kuramoto system on ten nodes.

In actuality, we only define r above the critical coupling, so for lower values of σ

we plot the time-averaged order parameter.
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Figure 3.5: A demonstration of the intersection between the order parameter and ||ω||∞
σ

for an example Kuramoto system on ten nodes. The frequencies have been normalized

such that the critical coupling σc is 1, indicated by a vertical black line. Below the

critical coupling, r is replaced by its time-averaged version. The intersection point

is clearly a lower bound for the critical coupling, as would be the intersection of any

other projection of r below σc.

Our strategy for estimating the critical coupling is to approximate the curve r as

a function of σ, and find where the approximation intersects ||ω||∞
σ

. The intersection

point is an estimate of σc, and depending on the method to estimate r(σ) may be a

strict lower bound.

38



3.2 Estimating the Order Parameter as a Function of σ

3.2.1 Bounding r by N

The simplest possible estimate of r is to assume it is constant. r → N as σ →∞

because the system phase synchronizes, and the approximation r ≈ N gives the bound

σc ≥
||ω||∞
N

. (3.9)

This is a trivial bound as mentioned in (Verwoerd and Mason, 2008) and (Dörfler

and Bullo, 2011).
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(a) Estimates using r = N intersection for

the critical coupling in systems of 10 nodes.

(b) Histogram of estimates as a percentage

of the actual critical coupling.

(c) Estimates using r = N intersection for

the critical coupling in systems of 100 nodes.

(d) Histogram of estimates as a percentage

of the actual critical coupling.

Figure 3.6: We simulated 200 standard Kuramoto systems on 10 and 100 nodes with

random frequencies and recorded their actual critical couplings in comparison to those

predicted by the estimate in equation (3.9). The frequencies were generated uniformly

on [−1, 1] and the critical coupling was computed as the smallest σ Newton’s method

returned a fixed point of the system. The accuracy results show a clear gap on the

order of 10-20% for the estimate, with a higher variance for lower N , but do confirm

that eqation (3.9) is a strict lower bound in the experiment.

3.2.2 Sampling r at a Specified Coupling

A slightly more sophisticated approach is to compute r numerically at some finite

σ∗ above the critical coupling and assume r stays constant at that value.
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Figure 3.7: The intersection found by projecting r horizontally at a sampled point

for an example system.

This leads to the bound

σc ≥
||ω||∞
r(σ∗)

(3.10)

where r(σ∗) is found numerically. An attractive choice is the Dörfler estimate σ∗ =

σD := ||BTL†ω||∞, where B is an oriented incidence matrix of the complete graph,

because σD is easily computed and is to our knowledge the tightest known upper

bound for σc in greater than 99.9% of arbitrary Kuramoto systems (Dörfler et al.,

2013).
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(a) Estimates using r = r(σD) intersection

for the critical coupling in systems of 10

nodes.

(b) Histogram of estimates as a percentage

of the actual critical coupling.

(c) Estimates using r = r(σD) intersection

for the critical coupling in systems of 100

nodes.

(d) Histogram of estimates as a percentage

of the actual critical coupling.

Figure 3.8: The same 200 standard Kuramoto system critical couplings now compared

to the estimate (3.10), with σ∗ equal to the Dörfler estimate of σc. The accuracy is

a strict improvement compared with figure (3.6), closing the gap somewhat. Eqation

(3.10) is also a strict lower bound in the experiment.

Approaches (3.9) and (3.10) are equivalent to inequality 3.6, with σ = σ∗ or

σ →∞ respectively.
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3.2.3 First-Order Numerical Approximation for r

In figure 3.5, r(σ) appears to be concave above the critical coupling. Therefore,

any linear approximation of r in this regime will be an upper bound for r. Another

strategy to estimate the critical coupling is to compute r at two points r(σ∗) and

r(σ∗ + ε), and find the intersection of the linear interpolation of the two points with

the curve ||ω||∞
r(σ∗)

. Under the assumption that r(σ) is concave, this intersection leads to

the strict lower bound

σc ≥ −b+
√
b2 + 4m||ω||∞ (3.11)

where m = 1
ε
[r(σ∗ + ε)− r(σ∗)] and b = r(σ∗)−mσ∗.

We tested this bound using σ∗ = σD and ε = 1
1000

σD on the same set of Kuramoto

systems.
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(a) Estimates using numerical first-order in-

tersection for the critical coupling in sys-

tems of 10 nodes.

(b) Histogram of estimates as a percentage

of the actual critical coupling.

(c) Estimates using numerical first-order in-

tersection for the critical coupling in sys-

tems of 100 nodes.

(d) Histogram of estimates as a percentage

of the actual critical coupling.

Figure 3.9: The same 200 standard Kuramoto system critical couplings now compared

to the estimate (3.11), with σ∗ equal to the Dörfler estimate. The accuracy is improved

over figure (3.8).

3.2.4 Approximating r by first approximating the steady state

We have

r2 =

∣∣∣∣∣∑
i

eiφi

∣∣∣∣∣
2

=
∑
i,j

ei(φi−φj)

by definition. One strategy to approximate r is to first approximate the phases φ in
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steady state and use them to evaluate the right-hand side. To our best knowledge, the

strongest approximation of the steady state Kuramoto solution is the Dörfler estimate

BTφ∗ ≈ sin−1
(
B†ω
σ

)
from lemma 1.

Unfortunately, this estimate is only well defined for σ ≥ ||B†ω||∞ ≥ σc, so we

cannot use it to estimate r below the critical coupling. In fact the gap between

||B†ω||∞ and σc can be large if there is a significant regime where the steady state

has phase differences greater than π
2

between adjacent oscillators. The best we can

do is to estimate φ∗ at the minimum possible σ = ||B†ω||∞ = σD and assume r is

constant below. This leads to the estimate

σc ≈
||ω||∞
rD

(3.12)

where rD =
∑

i,j e
i(φ∗i−φ∗j ) and φ∗ is computed with lemma 1 using σ = σD. This bound

should be comparable to (3.10) in accuracy, but is significantly faster to compute.
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(a) Estimates using approximate r(σD) in-

tersection for the critical coupling in sys-

tems of 10 nodes.

(b) Histogram of estimates as a percentage

of the actual critical coupling.

(c) Estimates using approximate r(σD) in-

tersection for the critical coupling in sys-

tems of 100 nodes.

(d) Histogram of estimates as a percentage

of the actual critical coupling.

Figure 3.10: The same 200 standard Kuramoto system critical couplings now com-

pared to the estimate (3.12). There are only slight differences compared to figure

(3.8), but this approach offers a substantial improvement in computation time and

stability, especially for N large. This is because bound (3.10) requires an iterative

scheme while estimate (3.12) is a system of linear equations. We can no longer prove

that this estimate is a strict lower bound of the crtical coupling, but the experiment

indicates that this is likely.
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3.2.5 Estimating the r(σ) Curve Asymptotically

A third option is to compute an asymptotic estimation of r(ω, σ) without relying

on first computing the steady state solution. There are many such estimates in

the literature (Verwoerd and Mason, 2008) (Dörfler et al., 2013) (Jadbabaie et al.,

2004), the first of which was probably given by Kuramoto himself in (Kuramoto,

1975). However, Kuramoto’s estimate and many which came later are asymptotic as

N → ∞ and as ω approaches a continuous frequency distribution. We instead seek

estimates for which N is finite and ω is a constant, unchanging frequency vector.

As decribed in (Dörfler and Bullo, 2011), an implicit formula for r(ω, σ) is given

in (Verwoerd and Mason, 2008). Additionally in (Dörfler and Bullo, 2011), Dörfler

gives the bound

r ≥ N

√
1 +

√
1− (σc/σ)2

2
.

This bound is based on a geometric argument on the distribution of phases on the

unit circle, and is only dependent on ω indirectly through the presence of the critical

coupling term. At σc the bound becomes r ≥ N 1√
2
, which leads to the bound

σc ≥
√

2||ω||∞. (3.13)

Another method is to use the steady state equations of the Kuramoto system to

try and find a self-consistent requirement on the order parameter. The steady state

solution φ∗i to a Kuramoto system is given by

0 = ωi + σ
N∑
j=1

sin(φ∗j − φ∗i )
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Rewriting the right hand side in polar form, we have

0 = ωi + σ
1

2i

(
e−iφ

∗
i

N∑
j=1

eiφ
∗
j − eiφ∗i

N∑
j=1

e−iφ
∗
j

)
−2iωi
σ

=

(
e−iφ

∗
i

N∑
j=1

eiφ
∗
j − eiφ∗i

N∑
j=1

e−iφ
∗
j

)
.

Recognizing that r2 =
∑

i,j e
i(φi−φj), we now multiply both sides by their respective

complex conjugates.

2iωi
σ

−2iωi
σ

=

(
e−iφ

∗
i

N∑
j=1

eiφ
∗
j − eiφ∗i

N∑
j=1

e−iφ
∗
j

)(
eiφ
∗
i

N∑
j=1

e−iφ
∗
j − e−iφ∗i

N∑
j=1

eiφ
∗
j

)
4ω2

i

σ2
= 2

N∑
j=1

eiφ
∗
j

N∑
k=1

e−iφ
∗
k − e−2iφ∗i

N∑
j=1

eiφ
∗
j

N∑
k=1

eiφ
∗
k − e2iφ∗i

N∑
j=1

e−iφ
∗
j

N∑
k=1

e−iφ
∗
k

4ω2
i

σ2
= 2r2 −

N∑
j=1

N∑
k=1

ei(−2φ∗i +φ∗j+φ∗k) + ei(2φ
∗
i−φ∗j−φ∗k)

An equivalent expression can be found for every i, so sum up all such expressions.

N∑
i=1

4ω2
i

σ2
= 2Nr2 −

(
N∑
j=1

e−iφ
∗
j

N∑
k=1

e−iφ
∗
k

N∑
i=1

eiφ
∗
i eiφ

∗
i +

N∑
j=1

eiφ
∗
j

N∑
k=1

eiφ
∗
k

N∑
i=1

e−iφ
∗
i e−iφ

∗
i

)
N∑
i=1

4ω2
i

σ2
= 2Nr2 − (O∗sO

∗
s

N∑
i=1

e2iφ∗i +OsOs

N∑
i=1

e−2iφ∗i )

Notice now that
∑N

i=1 e
2iφ∗i is a complex order parameter corresponding to a distri-

bution of phases twice as large as the steady state distribution. We now make the

approximate assumption that this distribution corresponds to the steady state of a

Kuramoto system with double the inherent frequencies.
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N∑
i=1

e2iφ∗i ≈ Os(2ω, σ)

This assumption is false, but is asymptotically correct as σ →∞.

N∑
i=1

4ω2
i

σ2
≈ 2Nr2 − (O∗sO

∗
sOs(2ω, σ) +OsOsO

∗
s(2ω, σ))

Assuming we shift the frame of reference such that the phase of the complex order

parameter Os is zero, we have Os = O∗s = r.

N∑
i=1

4ω2
i

σ2
≈ 2Nr2 − 2(r2r(2ω, σ))

4||ω||22
σ2

≈ 2r2(N − r(2ω))

A standard perturbation analysis yields

r(ω, σ) ≈ N − 1

N2

||ω||22
σ2
− 1

N5

(
||ω||22
σ2

)2

− 5

4N8

(
||ω||22
σ2

)3

− 25

16N11

(
||ω||22
σ2

)4

− ...
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Figure 3.11: The intersection found by asymptotically estimating r.

Utilizing only the first-order approximation and finding the intersection with the

curve ||ω||∞
σ

yields an estimate for the critical coupling.

σc ≈
1

N
||ω||∞ +

1

2

√
||ω||2∞
N2

+
4||ω||22
N3

. (3.14)
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(a) Estimates using asymptotic intersection

for the critical coupling in systems of 10

nodes.

(b) Histogram of estimates as a percentage

of the actual critical coupling.

(c) Estimates using asymptotic intersection

for the critical coupling in systems of 100

nodes.

(d) Histogram of estimates as a percentage

of the actual critical coupling.

Figure 3.12: The same 200 standard Kuramoto system critical couplings now com-

pared to the estimate (3.14). The estimates are closest in mean to the actual critical

coupling of any we have tried, but are not strict lower bounds as in many of the

previous cases.

3.3 A New Order Parameter on Clusters

The σc prediction histograms exhibit a variance in accuracy from one Kuramoto

system to another. We would like to better understand what properties of the system

lead our approximations to be stronger or weaker.
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One obvious problem with analysis of equation (3.5) is that it is specific to a single

oscillator φi. When we use equation (3.5) to form the bound in equation (3.6), we

are implicitly assuming that at the critical coupling bifurcation the oscillator with

maximum magnitude inherent frequency decouples alone from the rest of the system.

However, numerical studies have shown that frequently in random Kuramoto systems

the bifurcation is into two or more synchronized clusters which contain multiple oscil-

lators. This is particularly common in the network variation of the Kuramoto model.

In (Gómez-Gardenes et al., 2007), the qualitative paths of cluster synchronization

were investigated in Kuramoto systems on random Erdős–Rényi(ER) and Barabási-

Albert(BA) network topologies and further analysis was conducted in (Stout et al.,

2011). It was found that cluster growth in a network Kuramoto model followed two

basic paradigms; there could be one dominant giant cluster to which more and more

oscillators attach as the coupling increases (Lee, 2005), or there could be a coalescent

effect in which small clusters form throughout the network and synchronize to form

medium and then large clusters. It was found that BA scale-free networks had com-

paratively more affinity for the first paradigm, while ER networks had more for the

second.

To investigate how this clustering behavior affects our estimates, we repeated

the experiment from figure 3.8 and applied a color coding to identify which systems

exhibited a nonstandard bifurcation (either into more than two clusters or into two

clusters of size greater than one).
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Figure 3.13: 200 standard Kuramoto system critical couplings compared to the es-

timate (3.10), but now color coded to show the systems with nonstard bifurcation

behaviour. A standard bifurcation is into two clusters of size 1 and N − 1, these

systems are shown in blue. Systems which bifurcated into clusters of nonstard size

or into more than two clusters are shown in red and orange, respectively. There is

a clear bias in accuracy for the nonstandard bifurcation systems. The estimates for

those systems are almost universally worse than the estimates for the standard bi-

furcations, because the standard bifurcations are the ones which equation (3.6) was

designed to approximate.

We propose a new order parameter rC to better study the bifurcations of Kuramoto

systems into clusters of nonstandard size. Additionally, we define our new order

parameter on the network variant of the Kuramoto model.

Definition 11. The cluster order parameter rC is defined on a network Kuramoto
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system (A, ω) and a nonempty, strict subset of nodes C by

rC :=

∣∣∣∣∣∣
∑

i∈C,j /∈C

Aije
i(φj−φi)

∣∣∣∣∣∣ . (3.15)

Note that any subset C partitions the nodes of a Kuramoto system into two clusters,

the nodes in C and nodes not in C.

The standard order parameter is not a very useful tool for analyzing network

Kuramoto systems because it contains no information about the network structure.

Many other order parameters have been defined (Schröder et al., 2017) as tools to

study synchronization in network systems, but most are defined as a single quantity

over the entire set of oscillators. It is important to recognize that equation (3.15)

defines a separate order parameter for each and every nonempty strict subset of

nodes C. For a Kuramoto system of size N , there are 2N−1− 1 possible distinct ways

to partitions the nodes of the system into two groups, and therefore the same number

of choices for the subset C. This is a significant departure from the standard order

parameter (3.1) which is defined only once per Kuramoto system. Even in the case

where C is a single oscillator, rC still depends on the choice of oscillator and is distinct

from r. Like the standard order parameter, the cluster order parameter changes with

σ, and above σc we define rC(σ) to be the cluster order parameter for cluster C when

the system is in steady state at coupling σ. The cluster order parameter shares a

resemblance with the universal order parameter defined in (Schröder et al., 2017),

which was proven to be strictly increasing in σ in steady state. We conjecture that

the same is true for the cluster order parameter.

In the case that A is a complete graph, we have rC =
∣∣∑

i∈C e
iφi
∣∣ ∣∣∣∑j /∈C e

iφj

∣∣∣, and

we can interpret rC as the product of standard order parameters of each cluster in the

system. If A is not a complete graph, then rC cannot be factored in this way. Rather

than attempting to capture the phase cohesiveness of an entire Kuramoto system,
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the cluster order parameter measures the phase cohesiveness of the phase differences

along the subset of edges between clusters.

Definition 12. The time-averaged cluster order parameter 〈rC〉t is defined by

〈rC〉t := lim
τ→∞

1

τ

∫ τ

0

rC(t)dt = lim
τ→∞

1

τ

∫ τ

0

∣∣∣∣∣∣
∑

i∈C,j /∈C

Aije
i(φj(t)−φi(t))

∣∣∣∣∣∣ dt. (3.16)

3.4 Mean Field Formulation Using the Cluster Order Parameter

In section 3.4 we establish the usefulness of the cluster order parameter in analyz-

ing network Kuramoto systems. Assume that the oscillators of a Kuramoto system

are partitioned into those belonging to a subset C and those that do not. Define the

cluster averages γ1 and γ2 by

γ̇1 =
1

|C|
∑
i∈C

φ̇i

γ̇2 =
1

N − |C|
∑
i/∈C

φ̇i.

Then the dynamics for the cluster averages are given by

γ̇1 =
1

|C|
∑
i∈C

[
ωi + σ

∑
j

Aij sin(φj − φi)

]

γ̇2 =
1

N − |Cp|
∑
i/∈C

[
ωi + σ

∑
j

Aij sin(φj − φi)

]

Let

ω̃ =
1

|C|
∑
i∈C

ωi

for simplification purposes. We will restrict ourselves to the dynamics for γ1 from

here on, the analysis for γ2 is similar. It is convenient now that any terms in the
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double sums between nodes of the same cluster will cancel out (assuming the graph

A is undirected). We therefore only need to consider the cross-cluster connections.

γ̇1 = ω̃ +
σ

|C|
∑

i∈C,j /∈C

Aij sin(φj − φi)

We want to rewrite the right hand side in terms of γ1 and γ2 as much as possible.

Add and subtract γ terms within the argument of the sine function to get

γ̇1 = ω̃ +
σ

|C|
∑

i∈C,j /∈C

Aij sin (φj − φi + γ2 − γ1 − γ2 + γ1)

γ̇1 = ω̃ +
σ

|C|
∑

i∈C,j /∈C

Aij sin

(
φj − φi + γ2 − γ1 −

1

N − |C|
∑
k/∈C

φk +
1

|C|
∑
k∈C

φk

)

γ̇1 = ω̃ +
σ

|C|
∑

i∈C,j /∈C

Aij sin

(
γ2 − γ1 −

1

N − |C|
∑
k/∈C

[φk − φj] +
1

|C|
∑
k∈C

[φk − φi]

)
.

Let Yij = − 1
N−|C|

∑
k/∈C [φk − φj] + 1

|C|
∑

k∈C [φk − φi]. Then,

γ̇1 = ω̃ +
σ

|C|
∑

i∈C,j /∈C

Aij sin (γ2 − γ1 + Yij) .

Now we can use the trigonometric identity (3.3) to write

∑
i∈C,j /∈C

Aij sin (γ2 − γ1 + Yij) = rC sin(γ2 − γ1 + Z)

where

r2
C =

∑
i∈C,j /∈C,r∈C,s/∈C

AijArs cos(Yij − Yrs)

tan(Z) =

∑
i∈C,j /∈C Aij sin(Yij)∑
i∈C,j /∈C Aij cos(Yij)

.
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To see that this definition of rC is equivalent to (3.15), first simplify Yij − Yrs.

Yij − Yrs =
1

N − |C|
∑
k/∈C

[φk − φs − φk + φj] +
1

|C|
∑
k∈C

[φk − φi − φk + φr]

Yij − Yrs = φj − φs + φr − φi

So r2
C =

∑
i∈C,j /∈C,r∈C,s/∈C AijArs cos(φj−φs+φr−φi). Use the complex representation

of cosine to get

r2
C =

∑
i∈C,j /∈C,r∈C,s/∈C

AijArs
1

2
[ei(φj−φs+φr−φi) + e−i(φj−φs+φr−φi)]

r2
C =

1

2

∑
i∈C,j /∈C,r∈C,s/∈C

AijArse
i(φj−φs+φr−φi) +

1

2

∑
i∈C,j /∈C,r∈C,s/∈C

AijArse
−i(φj−φs+φr−φi)

Recognize that the two sums are equivalent under the change of indices i ↔ r and

j ↔ s. Then,

r2
C =

∑
i∈C,j /∈C,r∈C,s/∈C

AijArse
i(φj−φs+φr−φi)

and the summation is now separable.

r2
C =

 ∑
i∈C,j /∈C

Aije
i(φj−φi)

 ∑
r∈C,s/∈C

Arse
−i(φs−φr)

 =

∣∣∣∣∣∣
∑

i∈C,j /∈C

Aije
i(φj−φi)

∣∣∣∣∣∣
2

This is equivalent to the definition of the cluster order parameter given in 3.15, and

leads to a mean-field representation for the dynamics of γ1 similar to how the standard

order parameter did for each oscillator.

γ̇1 = ω̃ +
σ

|C|
rC sin(γ2 − γ1 + Z) (3.17)

The analogous expression for γ2 is
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γ̇2 = − |C|
N − |C|

ω̃ +
σ

N − |C|
rC sin(γ1 − γ2 − Z) (3.18)

and the dynamics for their difference is

γ̇1 − γ̇2 =

(
1 +

|C|
N − |C|

)
ω̃ − σ

(
1

|C|
+

1

N − |C|

)
rC sin(γ1 − γ2 − Z). (3.19)

This allows us to prove a theorem for clusters analogous to Theorem 1.

Theorem 2. Given a network Kuramoto system (A, ω), a subset of oscillators C,

and the respective cluster order parameter rC(σ) when the system is in steady state

at coupling σ,

σ ≥
|
∑

i∈C ωi|
rC(σ)

. (3.20)

In particular, σc ≥
|∑i∈C ωi|
rC(σc)

for all possible clusters C.

Proof. If a steady state solution exists for the Kuramoto system, one must also exist

for equation (3.19).

(
1 +

|C|
N − |C|

)
ω̃ − σ

(
1

|C|
+

1

N − |C|

)
rC sin(γ1 − γ2 − Z) = 0 (3.21)

Therefore σ
(

1
|C| + 1

N−|C|

)
rC ≥

(
1 + |C|

N−|C|

)
|ω̃| or no root could exist. We have 1

|C| +

1
N−|C| = N

|C|(N−|C|) and
(

1 + |C|
N−|C|

)
|ω̃| =

(
N−|C|+|C|
N−|C|

) ∣∣∣ 1
|C|
∑

i∈C ωi

∣∣∣ = N
|C|(N−|C|)

∣∣∑
i∈C ωi

∣∣.
Cancellation leads to σrC ≥

∣∣∑
i∈C ωi

∣∣.
Corollary 3. For any choice of σ where a steady state solution exists and for any

subset of oscillators C we have the bound

σc ≥
|
∑

i∈C ωi|
rC(σ)

. (3.22)
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Proof. The argument follows from the observation that rC increases with σ. Because

σc is the lowest coupling at which a steady state exists, we must have σ ≥ σc.

Therefore rC(σ) ≥ rC(σc) and
|∑i∈C ωi|
rC(σc)

≥ |
∑

i∈C ωi|
rC(σ)

.

Figure 3.14: Random network Kuramoto systems of size N = 16 on ER graphs

with uniformly random frequencies were generated. An exhaustive search of all 215

possible choices for C in each systems was performed. The maximal lower bound for

each system is plotted, with the line indicating perfect approximation of σc and the

Dörfler estimate σD shown for reference.

Theorem 2 invites a method to estimate σc similar to that introduced in section 3.1.

Estimate the curve rC(σ), and find the intersection point with the curve
|∑i∈C ωi|

σ
. The

intersection will be an estimate for σc, and possibly a strict lower bound depending

on how rC(σ) is approximated. A conceptual barrier is to choose the cluster C. In

principle, any choice of C leads to a lower bound on σc though equation (3.22), but

in practice the vast majority of bounds produced in this manner are extremely poor.

Only a few choices lead to a lower bound which is a substantial percentage of σc. This
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can be seen as both a curse and blessing. On one hand, there are exponentially many

(2(N−1) − 1) choices for C, so an exhaustive search through each of their respective

bounds to find the maximum is infeasible unless N is less than 20 or 30. On the other

hand, if the cluster with the maximum bound is found, this gives us great insight

into the behavior of the Kuramoto system just below the critical coupling. Sufficient

conditions on cluster synchronization combining frequencies and edge weights were

introduced in (Favaretto et al., 2017b) (Favaretto et al., 2017a), but a predictive result

was not obtained. In this dissertation we investigate the predictive power of theorem

2.

Conjecture 1. Assume that a network Kuramoto system (A, ω) has a critical cou-

pling σc and bifurcates into exactly two clusters for σ ≈ σc−ε. We conjecture that the

clusters that form maximize the intersection point between rC(σ) and
|∑i∈C ωi|

σ
(either

cluster can be taken to be C due to symmetry).
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Figure 3.15: A demonstration of the intersections between the rC(σ) and |ω̃|
σ

curves

for three possible choices of C. We simulated a Kuramoto system on a complete

graph of 4 nodes, with random inherent frequencies normalized such that the critical

coupling is 1 (shown in black). For three of the seven possible partitions of a set of

four oscillators into two clusters, we computed the rC(σ) curves and the |ω̃|
σ

curves and

identified their intersection points. Below the critical coupling we replaced rC with

its time-average. The three clusters are color coded, and for each cluster choice the

increasing curve is rC(σ) and the decreasing curve is |ω̃|
σ

. Each of the three intersection

points gives a lower bound on the critical coupling, but the intersection corresponding

to C = {φ1, φ4} is the largest. We surveyed all seven possible choices for C and found

that this cluster had the maximum lower bound, and that the Kuramoto system

naturally split into these two clusters just below the critical coupling.
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3.5 More Than Two Clusters

Kuramoto systems can have more than two synchronized clusters for certain ranges

of the coupling strength, as seen in figure 2.8. Some systems do not even have values

of the coupling where exactly two clusters exist and instead bifurcate from total

synchronization directly to three or more clusters. A statistical study is seen in figure

3.16. These observations provide motivation to find an extension of theorem 2 for

more than two clusters.

Figure 3.16: A histogram of the number of clusters at bifurcation for random Ku-

ramoto systems. 86,000 random ER networks with 20 nodes and random numbers of

edges were generated and oscillators were embedded into the network with inherent

frequencies chosen uniformly at random. The critical coupling for each system was

computed and the number of clusters just below critical coupling was recorded.

In appendix A, we have derived expressions based on identity (3.3 for Kuramoto

systems of more than two clusters. Assume that the oscillators of a Kuramoto system
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are partitioned into sets C1, C2, C3, ... and define γp to be the mean of phases of nodes

in Cp. Then,

γ̇p = ω̃p +
σ

|Cp|
∑
l 6=p

rlp sin(γl − γp + Zlp) (3.23)

where

tan(Zlp) =

∑
i∈Cp,j∈Cl

Aij sin(Yij)∑
i∈Cp,j∈Cl

Aij cos(Yij)
(3.24)

and rlp is the multicluster order parameter between clusters Cl and Cp.

Definition 13. The multicluster order parameter rlp on a network Kuramoto system

(A, ω) with disjoint subsets Cl and Cp is

rlp :=

∣∣∣∣∣∣
∑

i∈Cl,j∈Cp

Aije
i(φj−φi)

∣∣∣∣∣∣ . (3.25)

With more than two clusters we then have a multicluster order parameter matrix

r and a phase offset matrix Z, which are respectively symmetric and anti-symmetric.

An extension of theorem 2 applies.

Theorem 3. Given a network Kuramoto system (A, ω) partitioned into sets C1, C2, C3, ...,

let γp = 1
|Cp|
∑

i∈Cp
φi and ω̃p = 1

|Cp|
∑

i∈Cp
ωi. Define rlp and Zlp by equations (3.25)

and (3.24). If the coupling σ is chosen such that the Kuramoto system has a steady

state solution, then there must also exist a solution to

ω̃p +
σ

|Cp|
∑
l 6=p

rlp sin(γl − γp + Zlp) = 0 (3.26)

for all p.

Proof. Equation (3.26) is the fixed point condition for equation (3.23). Most of the

work in the proof comes from the derivation of equation (3.23) found in appendix A.

63



Then because each γp term is a linear combination of φ variables, a fixed point for

the φ system exists only if a fixed point for the γ system exists.

If we assume both r and Z to be constant, then equation 3.23 shows that the γ

variables form a lower-dimensional network Kuramoto system with weighted, directed

edge couplings and phase offsets. Theorem 3 states that the critical coupling of γ

system is a lower bound for the critical coupling of the φ system.

Theorem 3 is an extension of theorem 2, but the usefulness of the extension to more

than two clusters is limited. With only two clusters, the phase difference dynamics

in equation (3.19) are a one-dimensional dynamical system with an easy to calculate

saddle-node bifurcation. With systems of three or more clusters the presences of cycles

complicate matters and an explicit formula for the critical coupling is not currently

known.

3.5.1 Multiple Cluster Example

Take the 25 node system from figure 2.4 at coupling σ = 15.
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(a) Phase time series for N = 25 example.

(b) Bifurcation diagram for N = 25 example with σ = 15 marked.

Figure 3.17: There are six clusters for the N = 25 example system at σ = 15. They

can be readily seen in either the time-series plot or the bifurcation diagram.

To form a reduced system of size six from these six clusters, we computed the

fixed point φ∗ at σ = 20.92 very near the bifurcation point and used it to compute

matrices r and Z.
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r =



0 0 1 1 0 1

0 0 1.97 0 0 0

0.06 0.11 0 0.07 0.16 0.06

0.5 0 0.5 0 0 0.5

0 0 1.43 0 0 0

1 0 1 1 0 0


, Z =



0 0 −0.10 0.12 0 0

0 0 −0.82 0 0 0

0.10 0.82 0 −0.14 −1.07 −1.23

−0.12 0 0.14 0 0 0.12

0 0 1.07 0 0 0

0 0 1.23 −0.12 0 0


.

Next we constructed the reduced system given by equation 3.23 and assumed r and

Z were constant matrices with no dependence on time or σ. This is clearly a false

assumption but it allows us to compare the reduced system to the full one.
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(a) Full

(b) Reduced

Figure 3.18: A comparison of the phase time series for the full and reduced systems.

67



(a) Full

(b) Reduced

Figure 3.19: A comparison of the bifurcation diagrams for the full and reduced sys-

tems.

In this example figure 3.19 shows that the critical coupling for the reduced system

is a lower bound for the critical coupling of the full system.
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3.5.2 Relation to External Equitable Partitions

Definition 14. An External Equitable Partition (EEP) of a graph is a partition of

the graph into clusters such that all nodes within one cluster have the same number of

neighbors in each respective external cluster. Additionally, if the graph is associated

to a Kuramoto system and all nodes within each cluster have identical frequencies,

then the Kuramoto system is said to respect the EEP.

In (Schaub et al., 2016) it was observed that Kuramoto systems which respect an

External Equitable Partition have an exact dimensional reduction to a lower dimen-

sional manifold. This can be seen with even small examples. Consider an N = 3 node

triangular graph with adjacency matrix A =


0 1 1

1 0 1

1 1 0

 and frequencies ω =


−1

−1

2

.

The system is 3-dimensional, but there exists a 2-dimensional invariant subspace

where φ1 = φ2 for all time. Assuming that the initial conditions for φ1 and φ2 are

identical, we can replace φ1 and φ2 by a single variable φ12 := φ1 = φ2 and recompute

the dynamics on the invariant subspace. The full dynamics for this system are

φ̇1 = −1 + σ [sin(φ2 − φ1) + sin(φ3 − φ1)]

φ̇2 = −1 + σ [sin(φ1 − φ2) + sin(φ3 − φ2)]

φ̇3 = +2 + σ [sin(φ1 − φ3) + sin(φ2 − φ3)]

which when simplified form the reduced system

φ̇12 = −1 + σ sin(φ3 − φ12)

φ̇3 = 2 + 2σ sin(φ12 − φ3).
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We can view the dynamics on the invariant subspace as the dynamics for a

weighted, directed N = 2 Kuramoto system with adjacency matrix r =

0 1

2 0


and frequencies ω̃ =

−1

2

. An eight node example from (Schaub et al., 2016) of

an EEP and its respective quotient graph is seen in figure 3.20. If all like-colored

nodes in the system have the same inherent frequency, then the Kuramoto system

respects the EEP, and the quotient graph forms a reduced system exactly matching

the dynamics on the full system’s stable manifold.
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Figure 3.20: An example due to Schaub (Schaub et al., 2016) of an eight node system

with a nontrivial External Equitable Partition of four clusters. Every node within

a cluster has the same number of neighbors in every other external cluster. The

quotient graph of the partition reproduces the exact dynamics on the stable invariant

subspace of the original system.
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If a Kuramoto system respects an EEP, then the dynamics in equation 3.23 are

equivalent to the reduction process shown in (Schaub et al., 2016).
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Chapter 4

NETWORK OPTIMIZATION PROBLEMS AND SPECTRAL GRAPH THEORY

4.1 The Cluster Optimization Problem

In chapter 4 we will investigate the implications of theorem 2 and its corollary

3.22. The corollary states that if σ is a fixed value above the critical coupling, φ∗ is

the steady state solution vector corresponding to that σ, and C is a cluster of nodes

in the Kuramoto network, then there is an associated lower bound on the critical

coupling for that cluster. The lower bound is given by

σc ≥
|
∑

i∈C ωi|∣∣∣∑i∈C,j /∈C Aije
i(φ∗j−φ∗i )

∣∣∣ . (4.1)

It’s natural to ask which choice of cluster C produces the maximal lower bound.

Problem 6. Given a Kuramoto network (A, ω) on a set of oscillators V and a fixed

coupling σ ≥ σc, the cluster optimization problem is to find

max
C∈P(V )

|
∑

i∈C ωi|∣∣∣∑i∈C,j /∈C Aije
i(φ∗j−φ∗i )

∣∣∣ . (4.2)

In other words, given a fixed vector of phases φ we wish to find the subset of nodes C

which maximizes the ratio L(C), defined by

L(C) =
|
∑

i∈C ωi|∣∣∣∑i∈C,j /∈C Aije
i(φ∗j−φ∗i )

∣∣∣ .
In chapter 4 we will explore methods for finding solutions to problem 6 and expand

on the problem’s physical relevance to a Kuramoto system. We convert the ratio
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L(C) into a standardized form and show that problem 6 is related to the well-known

problem of graph partitioning in spectral graph theory. We utilize the isoperimetric

method of (Grady and Schwartz, 2006) to find approximate solutions to the cluster

optimization problem and compare these solutions to the clusters that form naturally

in a Kuramoto system. Additionally we perform numerical experiments to compare

the maximal lower bound found in problem 6 to the true value of the critical coupling.

4.2 The Network Cut Interpretation

In conjecture 1, we conjectured that the cluster C which maximizes the inter-

section point between the curve rC(σ) and the curve
|∑i∈C ωi|

σ
would correspond to

a frequency-synchronized cluster of oscillators in the Kuramoto system just below

critical coupling. Problem 6 asks to find the cluster which maximizes L(C), an ap-

proximate guess for the intersection point. Therefore we should expect that the

solution to problem 6 should also resemble the sort of cluster we would expect to find

in a Kuramoto system.

Numerical simulations of Kuramoto systems suggest a few properties we expect to

find in synchronized clusters. Typically, a cluster is formed from oscillators of similar

inherent frequency and there are relatively fewer network connections to oscillators

outside of the cluster. The structure of L(C) suggests that the solution to problem

6 is likely to have similar properties, so we are looking for a subset of oscillators C

with high internal consistency (similar frequencies) and low external baggage (edges

connecting to non-cluster oscillators).

Maximizing L(C) is a combination of maximizing |
∑

i∈C ωi| and minimizing rC .

Maximizing |
∑

i∈C ωi| alone would be accomplished by placing all positive frequency

nodes in one cluster and all negative frequency nodes in the other, and corresponds

with our observation that similar frequency nodes tend to cluster together. Minimiz-
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ing rC alone is equivalent to finding the minimum cut in a complex-weighted graph,

where the minimum cut is defined to be the one which minimizes the sum total mag-

nitude of edge weights cut. This corresponds well to our observation that Kuramoto

clusters tend to have fewer edges connecting to external oscillators. Maximizing L(C)

is accomplished by finding a good balance in these two quantities.

Quantities related to L(C) are frequently studied in graph theory in efforts to

quantify community structures in networks. The isoperimetric ratio of a graph cut

is defined to be the number of edges severed by that cut divided by the number of

nodes in the smaller of the two components separated by that cut. It’s reasonable

that a component formed by a cut with a small isoperimetric ratio matches our

intuitive concept of a network community. We will expand more on this concept when

we introduce the isoperimetrc algorithm. For a good survey of graph partitioning

concepts and the isoperimetric ratio, we recommend (Shewchuk, 2016).

4.3 Standardized Vector Formulation of the Cluster Optimization Problem

To utilize the base of knowledge of optimizing nonlinear functions we seek to

rewrite equation 4.2 in vector form.

Lemma 2. The choice of cluster that maximizes L(C) simultaneously minimizes the

ratio

Λ(x) :=

∣∣∣∣xTLwxωTx

∣∣∣∣ (4.3)

where x is the characteristic vector of C and Lw is a weighted Laplacian matrix of

the Kuramoto network with weights defined below.

Let x be the N × 1 characteristic vector for cluster C, defined element-wise as
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xi =


1 if node i ∈ C

0 otherwise

.

Then 1N − x is the characteristic vector of the complement of C, where 1N is the

N × 1 vector of all ones. Using this vector notation, we can rewrite

∑
i∈C

ωi := Total frequency of cluster C = ωTx

Let the weighted Laplacian matrix Lw be defined by

Lw(i, j) =


Aij cos(φ∗j − φ∗i ) i 6= j

−
∑

k 6=i Lw(i, k) otherwise

Then xTLwx is the sum of edge weights from nodes in C to nodes outside of C, with

weight cos(φ∗j − φ∗i ).

Proof. To see the connection between rC and xTLwx, first convert the complex expo-

nential to Cartesian form.

rC =

∣∣∣∣∣∣
∑

i∈C,j /∈C

Aije
i(φ∗j−φ∗i )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i∈C,j /∈C

Aij[cos(φ∗j − φ∗i ) + i sin(φ∗j − φ∗i )]

∣∣∣∣∣∣
=

√√√√√
 ∑
i∈C,j /∈C

Aij cos(φ∗j − φ∗i )

2

+

 ∑
i∈C,j /∈C

Aij sin(φ∗j − φ∗i )

2

The first double summation is exactly xTLwx. The second can be simplified, because

∑
i∈C,j /∈C

Aij sin(φ∗i − φ∗j) =
∑
i∈C,j

Aij sin(φ∗i − φ∗j)−
∑

i∈C,j∈C

Aij sin(φ∗i − φ∗j)

When i and j both index over the same cluster C1, then for each (i, j) term in the sum

there will be a corresponding (j, i) term. Because A is symmetric and sine is odd,

these terms will be inverses, cancel out, and the entire sum will equal zero. Therefore,
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∑
i∈C,j /∈C

Aij sin(φ∗i − φ∗j) =
∑
i∈C,j

Aij sin(φ∗i − φ∗j)

=
1

σ

∑
i∈C

ωi +
∑
i∈C,j

Aij sin(φ∗i − φ∗j)−
1

σ

∑
i∈C

ωi

=
1

σ

∑
i∈C

[
ωi + σ

N∑
j=1

Aij sin(φ∗i − φ∗j)

]
− 1

σ

∑
i∈C

ωi.

The term in brackets is exactly the right hand side of the Kuramoto model, and

because φ∗ is a fixed point of the system it evaluates to zero. So
∑

i∈C,j /∈C Aij sin(φ∗i −

φ∗j) = − 1
σ
ωTx. Therefore we have

rC =

√
[xTLwx]2 +

[
1

σ
ωTx

]2

and

L(C) =

∣∣∣∣∣∣ ωTx√
[xTLwx]2 +

[
1
σ
ωTx

]2
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1√[

xTLwx
ωT x

]2

+
[

1
σ

]2
∣∣∣∣∣∣∣∣

With this simplification, we can see that the choice of x which maximizes L(C) is the

same choice which minimizes the quantity

Λ(x) :=

∣∣∣∣xTLwxωTx

∣∣∣∣ . (4.4)

The simplified form of Λ(x) admits a corresponding optimization problem

Problem 7. Given a weighted Laplacian matrix Lw ∈ RN×N and a mass vector

ω ∈ RN with 1TNω = 0, find

min
x

Λ(x) = min
x

∣∣∣∣xTLwxωTx

∣∣∣∣ (4.5)

among all possible nonzero characteristic vectors x ∈ {0, 1}N .
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4.4 The Cheeger Constant

Quantities similar in form to that of Λ(x) are studied in spectral graph theory.

The Cheeger constant (Spielman, 2017) h of an unweighted, undirected graph with

Laplacian matrix L is defined as the minimum of all isoperimetric ratios (Chung,

2007) (Shewchuk, 2016) (Chung, 1996), i.e.

h = min
x

∣∣∣∣xTLx1TNx

∣∣∣∣ . (4.6)

(the elements of x are chosen such that 1 represents membership in the smaller

cluster) For a standard Laplacian matrix, xTLx is the number of edges between the

two clusters, and 1TNx is the number of nodes in the smaller cluster. The Cheeger

constant is a measurement of the amount of bottlenecking in a network. Take for

example a network formed by joining two equally large, dense networks by a single

edge. Almost certainly the minimum isoperimetric ratio will correspond to the cut

across the edge, and the Cheeger constant will be 2
N

, quite a small number if N is

large. On the other hand, a complete graph on N nodes has Cheeger constant N
2

,

corresponding to a bisection into two equal pieces. The Cheeger constants indicate

that the first graph has a more significant bottleneck than the second.

We can then interpret equation (4.5) by noting that xTLwx is the sum of the

weights of the edges between the two clusters and |ωTx| is the frequency-weighted

mass of the nodes in one cluster. Because we assume that ωT1N = 0 for a Kuramoto

system, we no do not need to specify whether x is the smaller or larger cluster. Both

will have the same frequency-weighted mass.

The Cheeger constant is of particular interest in spectral graph theory due to the

existence of the two Cheeger inequalities (Chung, 1996) (Chung, 2007), upper and

lower bounds relating the the Cheeger constant to the spectrum of L. They can be
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stated compactly as

λ2

2
≤ h ≤

√
2λ2

where λ2 (sometimes called the algebraic connectivity) is the smallest nonzero eigen-

value of L (all Laplacian matrices have at least one zero eigenvalue). For proofs of

the Cheeger inequalities see (Chung, 1996) or (Shewchuk, 2016). The inequalities

establish a link between a physical property of a network (a bottleneck), and a spec-

tral property of one of the network’s associated matrices. λ2 is a proxy measurement

for the how bottlenecked a graph is, and its corresponding eigenvector (often called

the Fiedler vector) is a useful tool for categorizing which nodes belong together in

a community structure. This is the primary topic of study in spectral graph theory,

and we can piggyback on their results to analyze the network Kuramoto model. We

have not been able to precisely define an analogue of the Cheeger inequalities for the

solution to 4.5, but we believe that many of the methods used to analyze Kuramoto

systems based on the eigenvalues or eigenvectors of graph Laplacians (Izumida and

Kori, 2013) (Jadbabaie et al., 2004) (Arenas et al., 2008) can be explained because

Λ(x) is a weighted isoperimetric ratio.

4.5 The Isoperimetric Algorithm

To find the vector x which minimizes Λ(x), we employ the isoperimetric algorithm

first described in (Grady and Schwartz, 2006) and summarized in (Shewchuk, 2016).

The isoperimetric algorithm is a heuristic for estimating the minimum isoperimetric

ratio of a graph, and we have found that a slightly modified version is useful for

approximation the solution to problem 7.

First, note that if the graph Lw is disconnected, then any choice of x which is

a characteristic vector of a component of the graph will be in the null space of the
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matrix Lw and therefore will give Λ(x) = 0. This corresponds to the observation that

in a disconnected Kuramoto network, the clusters that form will naturally be the

corresponding components of the graph. If the graph is connected, then the problem

of minimizing Λ(x) with a characteristic vector x is equivalent to finding the corner of

the N -cube in the first quadrant of RN which minimizes the function Λ(x) : RN → R.

As with many questions about community detection in networks, this discrete version

of the problem is known to be NP-complete.

The isoperimetric method is based on the assumption that the discrete solution

is in some sense ”nearby” to the relaxed continuous solution. Consider the relaxed

problem of minimizing the function Λ(x) not on the corners of the N -cube, but instead

on the surface of a smooth (N − 1)-dimensional surface. The advantage of working

on a smooth surface is that the calculus technique of the Lagrange multiplier can

be utilized. Round the relaxed solution to determine which corner of the N -cube is

”closest” to the location of the relaxed minimum. The assumption is that the corner

which is closest will with high likelihood be the discrete solution.

Choose a surface by imposing a scaling value k ∈ R \ {0} and enforcing the

constraint ωTx = k. This transforms the expression for Λ(x) into the more tractable

form

Λ(x) :=

∣∣∣∣xTLwxk

∣∣∣∣ .
Each choice of k then gives a distinct surface with no intersection with any other

surface given by a different value of k. Minimizing Λ(x) is equivalent to minimizing

the expression xTLwx subject to the constraint ωTx = k. As described in (Grady

and Schwartz, 2006), this is accomplished by introducing a Lagrange multiplier y and

minimizing the function
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Q(x) = xTLwx− y(ωTx− k).

Differentiate Q with respect to x and set the derivative to be zero in each component

to get the system of linear equations

dQ

dx
= 2Lwx− yω = 0N .

The continuous choice of x that minimizes Λ(x) is given by the solution to

2Lwx = yω. (4.7)

Choose y so that the solution x to equation 4.7 satisfies the constraint ωTx = k .

To choose y, first solve the system for y = 1. Call this solution x1. Then, solve the

system for y = k
ωT x1

.

2Lwx =
k

ωTx1
ω (4.8)

The solution x to equation 4.8 will satisfy ωTx = k.

It was observed in (Grady and Schwartz, 2006) that the choice of scaling k along

with the leading 2 in equation 4.8 only serve to scale the solution x linearly. The

criterion cut rounding we use is independent of linear scaling so take simplest possible

relaxed solution xr, defined as the solution to

Lwxr = ω. (4.9)

To convert the relaxed solution xr ∈ RN into a binary solution xb ∈ {0, 1}N , employ

the criterion cut process as described in (Grady and Schwartz, 2006). For each element

xir in the vector xr, let xbi be the binary cut defined as
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xjbi =


1 if xjr ≤ xir

0 otherwise

.

Excluding the cut which places all nodes in a single cluster, there are N − 1 possible

cuts to consider. Do a brute force search to find the one which minimizes Λ(x), and

call the solution xb. xb is the prediction of the saddle-node clusters in the system.

This method requires only rudimentary linear algebra to compute xr, and from

there only O(N) function calculations to find xb. This is a great improvement from

the O(2N) candidates we started with. A disadvantage is that the criterion cut process

is not guaranteed to find the global minimum of Λ(x).

4.5.1 A Note on the Computation of xr

Lw is a (weighted) graph Laplacian, and is therefore singular with null space

span{1N}. For any solution xr to equation 4.9, xr + a1N will also be a solution, for

any a ∈ R. As a convention we choose a = −min(xr) so that the elements of xr will

be nonnegative, with at least one zero.

Computationally, finding xr can be accomplished by choosing a node and removing

the row and column corresponding to that node from Lw and the frequency corre-

sponding to that node from ω. This will form the nonsingular (N − 1) × (N − 1)

matrix L̂w, and the (N − 1) × 1 vector ω̂. Then, we can solve the system L̂wx̂ = ω̂

with normal methods. xr can be formed by adding the element 0 back to the vector

x̂ to replace the element that was previously removed and adding the linear multiple

of 1N as described.

It should be noted that whatever linear multiple of 1N is chosen has no effect

on quantities such as Lwxr or ωTxr, because 1N is in the null space of Lw and is

orthogonal to ω by assumption.
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4.5.2 An Illustrative Example

Figure 4.1: An example Kuramoto system with 6 nodes and 8 edges. The node

frequencies were generated randomly and are labeled inside. The node indices are in

parentheses.

Consider the randomly generated Kuramoto system pictured in figure 4.1. The

system has N = 6 nodes and 8 edges. The system has adjacency matrix A and

frequencies ω given by

A =



0 1 0 0 0 1

1 0 1 0 1 0

0 1 0 1 1 0

0 0 1 0 1 0

0 1 1 1 0 1

1 0 0 0 1 0


ω =



2.5

6.7

0.4

−4.8

−8.2

3.4
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Figure 4.2: The frequency bifurcation plot clearly shows a split into two clusters of

three nodes each.

The bifurcation plot in figure 4.2 for this system reveals that the clusters which

form just below the critical coupling are composed of nodes {1, 2, 3} and {4, 5, 6}. Our

goal is to compute these clusters without relying on the slow process of simulating

the system at many values of σ.

Begin by identifying a value of σ which is definitely above the critical coupling,

so that a fixed point will exist. A good choice is the Dörfler estimate σD = ||B†ω||∞

as described in (Dörfler et al., 2013). B† is the pseudo-inverse of the oriented edge

incidence matrix B of the graph. For this system we have
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B =



−1 −1 0 0 0 0 0 0

1 0 −1 −1 0 0 0 0

0 0 1 0 −1 −1 0 0

0 0 0 0 1 0 −1 0

0 0 0 1 0 1 1 −1

0 1 0 0 0 0 0 1


,

B†ω =



−1.3

−1.2

−3.5

−4.5

−2.9

−1

1.9

4.6



,

so σD = 4.6. Next we compute the fixed point φ∗ for the system with σ = σD

iteratively using Newton’s method. For this system, the fixed point is

φ∗ ≈



0.895

0.577

−0.389

−1.081

−0.664

0.662


.

Note that we are working in a reference frame in which φT1N = 0. Now, compute the

weighted Laplacian Lw evaluated at φ∗ (Lw is equivalent to the Jacobian divided by
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σD),

Lw ≈



−1.92 0.95 0 0 0 0.97

0.95 −1.84 0.57 0 0.32 0

0 0.57 −2.30 0.77 0.96 0

0 0 0.77 −1.68 0.91 0

0 0.32 0.96 0.91 −2.44 0.24

0.97 0 0 0 0.24 −1.22


.

As with all rescaled Kuramoto system Jacobians the weights of each off-diagonal

term are less than or equal to 1 in magnitude. Additionally, for this graph all off

diagonal terms are nonnegative. This is common but not a guaranteed property, as

it is possible for some nodes at the fixed point to have phase differences greater than

π
2

across edges. When this happens the cosine of the phase difference is negative.

Now we solve the system Lwxr = ω which has as a solution the one-dimensional

space

xr ≈



−13.41

−10.85

−1.54

2.68

0.99

−13.33


+ a



1

1

1

1

1

1


,

and we choose a = 13.41 by convention so that each element of xr is nonnegative, so
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xr ≈



0

2.55

11.87

16.09

14.40

0.08


.

Next we define the six xbi vectors according to the criterion cut.

xb1 =



1

0

0

0

0

0


, xb2 =



1

1

0

0

0

1


, xb3 =



1

1

1

0

0

1


, xb4 =



1

1

1

1

1

1


, xb5 =



1

1

1

0

1

1


, xb6 =



1

0

0

0

0

1


.

xb4 is a degenerate solution and is discarded. For the other five choices, we compute

the values of Λ(x) and L(C),

Λ(xb1) = 0.7692,Λ(xb2) = 0.09,Λ(xb3) = 0.1768,Λ(xb5) = 0.3508,Λ(xb6) = 0.2021,

L(xb1) = 1.2511, L(xb2) = 4.2499, L(xb3) = 3.5688, L(xb5) = 2.4229, L(xb6) = 3.3690.

Λ(x) and L(x) are inversely related, so minimizing Λ(x) is equivalent to maximizing

L(x) and either choice can be made. The conclusions we reach are that xb2 is the

most likely set of saddle-node clusters and that σc ≥ L(xb2) = 4.2499. An exhaustive
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search of all 31 possible distinct and non-degenerate partitions of the six nodes into

two clusters reveals that L(xb2) is the global maximum among the corners of the

N -cube.

Additionally, figure 4.2 shows that xb2 is the correct prediction for the clusters

that form, and the true value of σc is approximately 4.303. The binary σc and Dörfler

σc approximations of 4.2499 and 4.6 respectively are lower and upper bounds for the

true value of σc. For the remainder of this example we will refer to xb2 as just xb, the

binary solution to the optimization problem. Due to the symmetry of the problem

we could just as easily consider the solution 1N − xb, as all relevant quantities are

orthogonal to the vector 1N .

For this example, we have ωTxb = 12.6. This suggests that in this example, the

”correct” scaling choice should be k = 12.6. If we scale our relaxed solution vector

xr so that ωTxr = ωTxb = 12.6, we get the linearly scaled vector

xr ≈



1.171

0.985

0.307

0

0.123

1.165


.

The interesting thing about this rescaled vector xr is that L(xr) = 4.3623. In theorem

2 we proved that L(xb) is a lower bound for σc, and in this example L(xr) appears to

be an upper bound. If this is true in general, then we we have

L(xb) ≤ σc ≤ L(xr) ≤ σD.

Presently we are unable to prove that L(xr) is an upper bound for the critical coupling.
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If it is, then to the best of our knowledge L(xr) is the tightest known upper bound on

the critical coupling σc for a general networked Kuramoto system, and L(xb) is the

tightest known lower bound. Figure 4.3 shows the steps in this example graphically.

(a) A 6 node Kuramoto system with

graph A and frequencies ω. Nodes

are labeled with their respective fre-

quencies.

(b) Edge weights determined by the

scaled Jacobian matrix Lw of a fixed

point φ∗.

(c) Node weights determined by calculating

the relaxed optimization solution. The nodes

are colored according to their weights in the

relaxed vector xr.

(d) Of the 5 possible cuts on the re-

laxed vector, the one with the mini-

mum value of Λ(x) is displayed.

Figure 4.3: Steps in the isoperimetric algorithm to identify the most likely saddle-node

clusters that will form for a 6 node example system.
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4.5.3 Applying Fixed Point Estimation to the Optimization Problem

The algorithm as described so far for determining clusters is considerable faster

than iterative simulation of the system. However one disadvantage is that it re-

quires calculation of a fixed point φ∗, which requires iterative applications of Newton’s

method. It would be nice to replace this step with a direct linear algebra calculation

so that the entire algorithm could be only matrix and vector calculations. In fact,

the work of Dörfler in (Dörfler et al., 2013) gives us methods to approximate φ∗ in

just this way. We have the approximations

BTφ∗ ≈ sin−1

(
B†ω

σ

)
and

BTφ∗ ≈ B†ω

σ
,

both of which are uniquely defined when combined with the assumption mean(φ∗) =

0.

Of course what we really seek for our method is the Laplacian matrix Lw. Given

a fixed point φ∗ or an approximation of φ∗, we have defined Lw as

Lw(i, j) =


Aij cos(φ∗j − φ∗i ) i 6= j

−
∑

k 6=i Lw(i, k) otherwise

Noting that Lw is a graph Laplacian, it can be equivalently written as

Lw = Bdiag(cos(BTφ∗))BT

Given that φ∗ satisfies ω − σB sin(BTφ∗) = 0 we can form the approximations
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sin(BTφ∗) ≈ B†ω

σ

and

cos(BTφ∗) ≈

√
1M −

(
B†ω

σ

)2

where B† is the psuedoinverse of B and vector squaring is done component-wise.

Using this approximation for cos(BTφ∗), we can form the approximation for Lw

Lw ≈ Bdiag

√1M −
(
B†ω

σ

)2
BT . (4.10)

This approximation can be calculated directly and is not dependent on the unknown

quantity φ∗, nor any simulations of any kind. However, the approximate Lw is not

guaranteed to produce a lower bound for σc, merely an estimate.

4.5.4 Summary of the Isoperimetric Method for Predicting Kuramoto Clusters

The goal of the isoperimetric algorithm for graph reduction is to provide upper

and lower bounds for the critical coupling, and to estimate what clusters form when

a Kuramoto system desynchronizes. The technique is

1. Choose a reference coupling σ∗ at which the Kuramoto system is guaranteed to

have a fixed point φ∗. A good choice is σ∗ = ||B†ω||∞, as Dörfler has shown that

this value is an upper bound to the critical coupling in most systems. Therefore,

a fixed point will exist.

2. Compute the rescaled Jacobian matrix Lw at φ∗. Lw is a weighted Laplacian, so

it can be expressed in the form Lw = Bdiag
(
cos(BTφ∗)

)
BT , where cos(BTφ∗)

is the vector of edge weights, and φ∗ is the fixed point or an approximate fixed
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point of the system at σ∗. We always assume that 1Nφ
∗ = 0, but this still leaves

several options to approximate φ∗.

Some options for φ∗ are:

• The actual, true fixed point of the system.

• The least squares approximation to the inconsistent systemBTφ∗ = sin−1(B
†ω
σ∗

).

• The solution to the consistent but approximate system BTφ∗ = B†ω
σ∗

. With

this choice, we get Lw = Bdiag
(

cos(B
†ω
σ∗

)
)
BT .

• Rather than approximate φ∗, we can approximate Lw directly as

Lw = Bdiag

(√
1M − (B

†ω
σ∗

)2

)
BT , the matrix obtained under the assump-

tion that BTφ∗ = sin−1(B
†ω
σ∗

) is consistent.

We will refer to these as φ∗ approximations (1) through (4) respectively. In

theory, (1) should provide the best results, but it is the most computationally

expensive to compute. (2), (3), and (4) each have about the same computation

cost, but their effectiveness as an estimation tool varies. Additionally, it may

be that any of these four choices could be more susceptible to analysis.

3. Solve Lwxr = ω to compute the relaxed solution vector xr. Note that Lw is

rank deficient, as the span of 1N is always in its null space. To work around

this issue, choose an arbitrary reference node i, and delete the ith row and ith

column from Lw and the ith element of ω to form L̂w and ω̂, then solve the

system L̂wx̂r = ω̂. Obtain a solution for xr from x̂r by adding the 0 element

reference node which was deleted back in, and then adding any multiple of 1N

which is desired.

Alternatively, solve the augmented system with 1Nxr = 0, and then add any

multiple of 1N to xr.
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4. Find xb by iteration through xr. Sort the entries of xr, then compute the

minimum value of xTLwx for each of N − 1 binary roundings of xr. xb is

an estimate of the characteristic vector of the final two clusters prior to total

synchronization.

5.

L(xb) =
1√[

xTb Lwxb
ωT xb

]2

+ 1
σ∗2

is the binary estimate of the critical coupling.

6. To get the second estimate, replace xb with a linear multiple of xr that has

an equivalent weight to xb with respect to the vector ω. The choice ωT xb
ωT xr

xr

accomplishes this, and leads to the approximation

L(xr) =
1√[

ωT xbxTr Lwxr
(ωT xr)2

]2

+ 1
σ∗2

.

L(xr) is the relaxed estimate of the critical coupling.

4.6 Numerical Experiments on Predictions of Critical Coupling and Saddle-Node

Clusters

The isoperimetric heuristic solution to problem (7) is a fast computation and

an estimate of the critical coupling for an arbitrary Kuramoto system. In section

4.6 we test the accuracy of this estimate through numerical experiments. We also

compute Adjusted Rand Index (ARI) scores (Rand, 1971) to test the accuracy of the

predictions for the saddle-node clusters.
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(a) Isoperimetric bounds using the weighted Laplacian at the true fixed point.

(b) Isoperimetric estimates using the weighted Laplacian with asymptotic estimates for the

fixed point.

Figure 4.4: Distributions of estimates for the critical coupling in randomly generated

Kuramoto systems.

In figure 4.4 we produced random connected Erdős–Rényi graphs with 25 nodes
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and 40 edges and assigned uniformly random frequencies to the nodes. We used the

isoperimetric algorithm to approximately solve the optimization problem 6 with the

true weighted Laplacian (a) and an approximate weighted Laplacian (b). Additionaly

we compared the critical coupling predictions with the Dörfler estimate in (Dörfler

et al., 2013). When the Laplacian is weighted with the true steady state phases in

(a), the isoperimetric predictions are strict lower bounds with accuracy comparable

to the Dörfler estimate. When an approximate Laplacian is used in (b), the accuracy

is lowered and the lower boundedness is lost, but computation is sped up significantly.

To compare the accuracy of cluster predictions to those that actually occur at

bifurcation in Kuramoto systems, we simulated a large number of random systems

and assigned each prediction an ARI score (Rand, 1971). The ARI is a statistical

measurement of how well one clustering assignment matches another, adjusted for

the probability that elements would be assigned correctly by chance. An ARI of one

indicates perfect predictions, while a negative score or a score near zero indicates a

prediction indistinguishable from a random guess. Scores in between zero and one

are effective predictions with errors.
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(a) Distribution of ARI for estimates on Erdős–Rényi

graphs.

(b) Distribution of ARI for estimates on regular graphs.

(c) Distribution of ARI for estimates on random regular

graphs.

Figure 4.5: Distributions of ARI scores for cluster predictions on assorted network

types. 12,000 random systems were created for each type of network and frequencies

were chosen uniformly at random.
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Figure 4.5 contains data on cluster predictions for 36,000 total random Kuramoto

systems of three different network types. Each system had 64 nodes and oscillators

were embedded into random Erdős–Rényi, regular graphs of constant degree 3 (Kim

and Vu, 2003), or 8x8 rectangular grid networks. The intention of figure 4.5 is to assess

the accuracy of the saddle-node cluster predictions using the isoperimetric algorithm

and to study how the accuracy depends on the network type. For all network types

the most common ARI result was one, indicating a perfect prediction. Predictions

were easiest for ER networks, mostly because of the chance that ER networks would

have a high bottleneck. Regular and grid networks tend to not have bottlenecks.

ARI scores from 0.2 to one are still good and indicate that most of the nodes were

assigned to the correct clusters with a low percentage of errors. There were some

systems with an ARI score near 0 indicating that the isoperimetric prediction was

completely wrong. Some of these were due to systems that had multiple potential

bottlenecks of relatively similar severity.
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Chapter 5

POWER SYSTEMS

In this dissertation we have imagined the network Kuramoto system as a simplified

model for power flow in AC electrical grids. We have used the power grid interpreta-

tion as motivation for deciding which analogous questions to ask about the Kuramoto

system. Namely, calculating the critical coupling is the analogue of determining if a

power grid is in steady state, and identifying synchronized clusters is the analogue

of predicting islanding behavior in the event of a blackout. In reality, the network

Kuramoto model is far too simple to produce real predictive results for actual power

systems, but a second-order model is much closer (Grzybowski et al., 2016).

In chapter 5, we introduce a more advanced second-order power system model

based on the swing equation (Anderson and Fouad, 2008). Following the work

in(Nishikawa and Motter, 2015) the swing equation is converted into a second-order

phase oscillator network model. We show that the second-order model can also be

expressed through an order parameter, and see a glimpse of how our methods for

analyzing the Kuramoto system can be adapted. We give an interpretation of the op-

timization program in chapter 4 as a restriction on balanced power flow. Finally, we

show numerical clustering predictions for a selection of Kuramoto systems with net-

works taken from test cases in the MATPOWER software package, and we compare

the results of the isoperimetric heuristic to a globally optimal solver.

5.1 The Swing Equation and Nishikawa and Motter’s Second-Order Model

In (Nishikawa and Motter, 2015), Nishikawa and Motter converted the swing equa-

tion into a unified second-order phase oscillator dynamical system for simulating
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power systems.

2Hi

ωR
δ̈i +

Di

ωR
δ̇i = Ai −

∑
j 6=i

Kij sin(δi − δj − γij) (5.1)

Here, each oscillator i represents a generator or load in the power system. For each

oscillator, δi is the phase angle, Hi and Di are inertia and damping constants, Ai

is the net power created or used, K is a network admittance matrix, and γij is an

inductive phase shift along a power line, and ωR is a reference system frequency. In

their paper, Nishikawa and Motter cover many of the pros and cons of different options

for calculating each of these parameters, but for our purposes we will just assume that

each parameter is specified and constant. If we make the variable changes φi = δi,

Bi = 2Hi

Di
, ωi = AiωR

Di
, Aij = ωR

Di
Kij, then equation (5.1) can be rewritten as

Biφ̈i + φ̇i = ωi +
∑
j 6=i

Aij sin(φj − φi + δij). (5.2)

If we assume that the damping constant Di is identical for all oscillators then A is a

symmetric adjacency matrix, and if we assume that the phase shift along power lines

is symmetric then δij = δji. Under these assumptions, equation 5.2 is a second-order

network Kuramoto system on an undirected graph with σ = 1 and we can again

assume a reference frame in which 1TNω = 0.

Many of the questions we have about second-order Kuramoto systems can be

answered by studying the first-order model. Crucially, the fixed point equation is

identical for both models, and thus so is the critical coupling. Near a fixed point,

the second-order model is asymptotic to a first-order model and shares the same

local stability properties. For a lower bound on the critical coupling and a study of

what synchronized clusters are likely below the bifurcation, we perform an analysis

analogous to the derivation of equation (3.17). If we take C to be an arbitrary subset
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of oscillators in the system and define γ̇1 = 1
|C|
∑

i∈C φ̇i, then we can derive the

dynamics

β1γ̈1 + γ̇1 = ω̃ +
σ

|C|
rC sin(γ2 − γ1 + Z) (5.3)

where

β1 =

[∑
i∈C

Bi

]

r2
C =

∑
i∈C,j /∈C,r∈C,s/∈C

AijArs cos(φj − φs + φr − φi + δij − δrs)

tan(Z) =

∑
i∈C,j /∈C Aij sin

(
1
|C|
∑

k∈C [φk − φi]− 1
N−|C|

∑
k/∈C [φk − φj] + δij

)
∑

i∈C,j /∈C Aij cos
(

1
|C|
∑

k∈C [φk − φi]− 1
N−|C|

∑
k/∈C [φk − φj] + δij

) .
Bounds on the critical coupling similar to those in chapter 3 can then be derived, but

we omit them in this dissertation. A power systems engineer would be interested in

whether the critical coupling is greater than or less than one, because we have σ = 1 in

equation (5.2). We have investigated the second-order Kuramoto model numerically

and found that in addition to having identical fixed points to the first-order model,

identical cluster-synchronization partitions frequently exist in both models when fixed

points do not. The second-order inertial term has a strong effect on the trajectories

of periodic orbits and on global stability results, so initial conditions are much more

significant in the second-order model.

5.2 Power Grid Interpretation of Critical Coupling Bounds

In steady state power system, not all sections of the grid carry an equal amount

of power. Larger, more central lines are built to accommodate a higher capacity of

power flow to a larger proportion of users while smaller peripheral lines carry small
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amounts of power to fewer people. Additionally, an uneven distribution of demand

dictates an uneven distribution of power flow, so even lines of equal quality there

may carry radically different amounts of power. Given a single power line and the

demand of power through that line, it is relatively trivial to calculate if there is enough

capacity to meet the demand. In a power network, deciding if the demand can be met

is much trickier, because a required amount of power could be drawn from multiple

parts of the network. We are interested in identifying the sections of a given power

grid which have the most power flow demand relative to their capacity. The function

Λ(x) in equation 4.4 can be interpreted as a power flow ratio which measures the

ratio between capacity and demand for an arbitrary cut x in the grid. If we interpret

the cut set as a variable we can optimize the power flow ratio over the entire grid.

The cut set which minimizes the ratio is the one closest to capacity in the system.

We can study cluster synchronization in power grids by comparing the required

power flow across a set of lines to the total capacity of those lines. It’s obvious

that for any given set of of power lines the total power flowing through them cannot

exceed the sum of their capacities, and if the lines are at capacity then power must

be rerouted to other parts of the grid. However if we consider a set of lines which cut

the grid then there is nowhere else to reroute excess power.

Definition 15. A subset of edges of a graph are called an edge cut set if removing

them increases the number of connected components.

An edge cut set partitions a connected graph into two clusters of nodes based on

which side of the cut set the nodes lie. Assuming a balanced power grid and a random

cut set, it is highly unlikely that the clusters are individually balanced. One of the

clusters will have an excess of power generated while the other has a deficit, and the

excess power must flow through the cut set. If the cut set does not have sufficient
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capacity then this can lead to islanding behavior in the power grid, analogous to the

synchronized clusters in the Kuramoto system below critical coupling. In equation

3.20, the quantity
∣∣ωTx∣∣ is analogous to the total power that must be transmitted

between two clusters. The assertion that ωT1N = 0 is equivalent to assuming the

power grid is balanced.

Definition 16. The Laplacian matrix L of a network with N nodes is defined by

Lij =


−wij if an edge exists between nodes i and j

0 if no edge exists between i and j

−
∑

k Lik if i = j

The Laplacian matrix of a connected graph always has one zero eigenvalue correspond-

ing to the eigenvector 1N .

In the case where the weights wij of the graph represent the admittances of their

respective electrical lines, L is known as the admittance matrix of the network. Given

an edge cut set corresponding to a characteristic vector x, the
∣∣xTLx∣∣ term in equation

(4.4) is the sum of admittances across lines in the cut set. Given a cut set, we are

interested in comparing the power across that cut set with the total admittance of

its corresponding edges. This is why we consider Λ(x) to be a power flow ratio in the

context of power systems.

Definition 17. The power flow ratio Λ(x) is defined by

Λ(x) :=

∣∣∣∣xTLxωTx

∣∣∣∣ (5.4)

where x is the characteristic vector of a subset C and L is the admittance matrix.

High values of Λ(x) (much greater than one) suggest that the edge cut set repre-

sented by x has more than enough admittance to accommodate the power that must
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flow through it. If Λ(x) is close to one, however, this suggests that the power grid is

operating close to capacity across this edge set. A ratio less than one is indicative of

a system beyond capacity and a fault is likely to occur. Problem 7 is analogous to

finding the most critical power flow ratio in the system.

5.3 Applying Fixed Point Estimation to the Optimization Problem as Error

Correction

The power flow ratio Λ(x) assumes that each line in the cut set formed by x

can individually be made to maximize the power flow across that line according to

its admittance. In reality, this is often not possible due to the phase constraints of

AC power. In an alternating current system, the power that flows across a line is

proportional to the sine of the phase difference between the sending and receiving

nodes. If this phase difference is a free variable, then the line can reach its capacity

if needed. If, however, the line is part of one or more cycles in the network, then

Kirchoff’s law places a constraint on the phase difference (here we refer to a version

of Kirchoff’s law which states that the sum of phase differences around a cycle in

the grid must sum to zero). For each edge in a cut set that is part of a cycle, there

must be at least one other corresponding edge in the cut set which is part of the

same cycle. Therefore, the phase differences along these two edges are dependent due

to the Kirchoff’s law constraint, and it may not be possible for each line to reach

capacity simultaneously.

To correct for this constraint, we propose using the steady state solution of a bal-

anced power system to approximate the relative phase differences that are achievable.

This approximation entails a weighted reduction of each of the admittances in the

admittance matrix L, where the reduction factor of each line is given by the cosine of

the phase difference across that line in steady state. Such a strategy requires finding
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the steady state, or equivalenty the fixed point φ∗ of a Kuramoto system. This is

exactly the difference between the bounds in equations (3.9) and (3.10) from chapter

3. Observations of the Braess paradox in power systems (Coletta and Jacquod, 2016)

can be interpreted as situations where lines are connected between nodes with steady

state phases greater than π
2

in difference. These edges would be assigned a negative

weight and decrease the power flow ratio.

5.4 Comparing Heuristic and Optimal Approaches for a Selection of Real Power

Networks

We calculated minimum values of Λ(x) along with their critical partitions x for

all of the example power systems included the the MATPOWER package (Gilg and

Mittelmann, 2018). We first wanted to see if there were any interesting properties of

these systems we could identify by looking at the critical partitions. For most of the

test cases, the critical partition consisted of a single node in one cluster, and all the

remaining nodes in the opposite cluster. This would suggest that the most probable

point of failure in these systems is easily fixable, as the network splitting across such

an edge set still leaves the network mostly intact. In this section, we will instead

focus on the cases where the critical partition has two large clusters. Intuitively,

these partitions are more serious because a failure across a large edge set is more

likely to lead to a catastrophic cascade of power failure.

Secondly, we wanted to compare the heuristic solutions produced using the isoperi-

metric method with the optimal solutions found by traditional global optimization

techniques. The isoperimetric heuristic calculation is purely linear algebra and there-

fore very fast to compute, whereas the global solution requires solving a discrete

(binary) decision problem.

In the following cases, the power network topologies are graphed using the second
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and third eigenvectors as coordinates. They should not be interpreted as geographical

locations of the system nodes, only the graph topology is used. Each partition solution

x is represented as a red/blue color map of the nodes, where nodes of one cluster are

colored red and the other is colored blue. The choice of red or blue is arbitrary, they

are used solely as indicators of the partition. It is also important to recognize that the

admittances of lines and the active power required of each oscillator are not displayed

in the figures, although they are used to find the partition.
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(a) Heuristic solution.

(b) Optimal solution.

Figure 5.1: A comparison of the isoperimetric heuristic algorithm calculation of clus-

ters that minimize Λ(x) to an optimal solver for the PEGASE 1354 test case.

The PEGASE 1354 system is a power grid of 1,354 nodes representing a condensed

power system in France and the predicted critical saddle-node clusters are pictured

in figure 5.1. Although there are clearly many strands of isolated nodes trailing

off of various parts of the main network, the critical partition is into two relatively
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large clusters which are not immediately obvious from the network topology alone.

The smaller strands of nodes either have relatively low power requirements, or have

relatively high admittances on their nearby lines, to the point where the most signif-

icant power constraint cut set in the system is nontrivial. The heuristic and optimal

solutions are almost identical, differing by only a single nodes. The isoperimetric

algorithm assigns 99.93% of nodes to the correct clusters. The objective value for the

heuristic solution is 18% higher than the optimal.
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(a) Heuristic solution

(b) Optimal solution.

Figure 5.2: A comparison of the isoperimetric heuristic algorithm calculation of clus-

ters that minimize Λ(x) to an optimal solver for the Polish Winter 2383 test case.

The Polish winter 2383 test case in figure 5.2 is a system of 2,383 nodes repre-

senting the power flow of a system in Poland in winter. Just as in the PEGASE case,

the critical partition of the system is into two clusters of relatively similar size. Here,

the optimal solution is more readily seen from the just the graph topology, the active
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power requirements and line admittances are apparently not as relevant. The isoperi-

metric heuristic solution is significantly different than the optimal. Although they

have a high percentage of nodes in common, the heuristic solution is a union of three

blue clusters, while the optimal solution is only one. The isoperimetric method is not

guaranteed produce a connected solution. The heuristic solution assigns 98.07% of

nodes correctly and the objective for the heuristic is 34% higher than for the optimal

solution.
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(a) Heuristic solution.

(b) Optimal solution.

Figure 5.3: A comparison of the isoperimetric heuristic algorithm calculation of clus-

ters that minimize Λ(x) to an optimal solver for the Polish Winter 3375 test case.

The system in figure 5.3 is another power system in Poland in the winter, this

time with 3,375 nodes. The heuristic and optimal solvers in this case differ by only

two nodes. 99.94% of oscillators are assigned to the correct cluster and the objective

for the heuristic is 11.5% higher than for the optimal solution.
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(a) Heuristic solution.

(b) Optimal solution.

Figure 5.4: A comparison of the isoperimetric heuristic algorithm calculation of clus-

ters that minimize Λ(x) to an optimal solver for the PEGASE 2869 test case.

Another PEGASE test system from France with 2,869 nodes is in figure 5.4. Re-

markably, although the critical partition is nontrivial, both the heuristic and optimal

solvers find the same solutions. This is a significant achievement considering that

calculating an optimal Cheeger constant is known to be NP-complete and there are
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22868 possible two-cluster partitions.

Out of all of the test systems available in MATPOWER, the Polish Winter 2383

case in figure 5.2 had the most extreme difference between heuristic and optimal

solutions. The isoperimetric heuristic solution is dramatically faster to compute in

comparison to the global solver and assigned 100% of nodes to the correct clusters in

more than half of the cases. In the cases where the solution differed, they typically

were only different by a tiny percentage of nodes. A complete description of all results

will appear in (Gilg and Mittelmann, 2018).
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Chapter 6

FUTURE WORK

In the future, we are interested in expanding the optimization approach in problem 7

to estimate the secondary bifurcation from two to three synchronized clusters. Com-

plementary to the network reduction interpretation in section 3.5 this would involve

a calculation of the critial coupling for an arbitrary system of three oscillators em-

bedded in a weighted, directed network. There is an enormous jump in complexity

from two to three node Kuramoto systems due to the presence of cycles. As described

in section 2.7, cycles force a nonlinear constraint on the oscillator phase differences

and the phase offsets in coupling terms become relevant for calculating the critical

coupling when cycles are present. A qualitative description of the bifurcations for an

undirected three node system are found in (Maistrenko et al., 2005), but a quantita-

tive prediction is required to form an optimization problem.

A hierarchichal method could also be developed to predict the secondary bifurca-

tions into three or more clusters. We would first calculate the split into two clusters,

and then recursively subdivide each of the resulting clusters to form more. However,

as evidenced by figure 3.16, there is a nontrivial chance for a random Kuramoto system

to bifurcate directly from one to three or more clusters. In (Boccaletti et al., 2016)

these are called first-order phase transitions in contrast to the standard second-order

phase transition from one cluster to two. A hierarchichal method could not possibly

capture this distinction. We are interested in whether or not an optimization problem

approach could.

The critical coupling estimate in problem 7 could be improved with better esti-

mates of rC(σ). In section 3.2 we surveyed a few different approximations for the
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standard order parameter including bounds on the curve, a numerical first-order es-

timate, and an asymptotic expansion. Techniques similar to these could also be used

to estimate rC(σ) and obtain a more accurate estimate for the intercept point with∣∣ ω̃
σ

∣∣ rather than assume rC is constant at some fixed phase distribution.

We would like to find Cheeger inequality analogues for the optimization problem 7.

(Shewchuk, 2016) gives a proof for a variant of the Cheeger inequalities where vertices

are assigned nonnegative masses, but the proof relies on the positive definiteness of

a mass-adjusted Laplacian. When ω is used for the vertex masses, some are assigned

a negative mass and the Laplacian is no longer positive definite. Despite this, we

still believe there exists a Cheeger inequality variation for the problem with negative

masses.

One interesting statistic is the expected critical coupling for a Kuramoto system

with a network chosen according to some random network type and a fixed, specified

frequency vector. That expectation is difficult to compute, but perhaps the expected

values of maxx L(x) or minx Λ(x) are within reach. These are proxy estimates for the

critical coupling, so their distributions would still be interesting. It is reasonable to

expect that random matrix theory would have tools to compute statistics like these.

For the second order model in section 5.1 we assumed that all oscillators had

identical damping coefficents and each line had symmetrical phase offsets. In the

future we would like to drop these assumptions and find an analogue of problem 6 for

a more general power systems model. We would also like to better understand the

effects the second-order inertial term has on the system trajectories.

Finally, we think it would be interesting to design Kuramoto systems to promote

certain synchronization qualities under constraint. One example would be to find the

network with some constant number M edges with the minimum critical coupling

for a fixed vector of frequencies. A proxy for this problem would be to maximize
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minx Λ(x) or to maximize Λ(xr) where xr is the relaxed solution to the optimization

problem. Optimizing a function of xr is appealing because the relaxed solution is

fast to compute, so heuristic searchers could use monte-carlo based methods like

simulated annealing, genetic programming, or machine learning to search a large

number of potential networks. It would be interesting to see which types of networks

would maximize Λ(xr) or other functions of xr such as a p-norm, and it would be

interesting to see what the dynamics of the Kuramoto systems on those networks

would look like.
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Motivated by power failures and the phenomenon of geographical islands of AC

voltage machines in power grids which oscillate with the same frequency internally

but are not synchronized relative to each other, we studied the network Kuramoto

model. The network Kuramoto model consists of a network of phase oscillators that

experience their own inherent forcing frequency and are coupled nonlinearly to other

oscillators through the phase difference between linked oscillators. It is well known

that for large coupling strengths such a network will synchronize and oscillate with

the mean inherent frequency of all the oscillators. As the coupling strength decreases,

this synchronized state becomes unstable at a critical coupling and splits into clusters

of oscillators. All oscillators in a cluster on average oscillate with the same frequency

but the cluster frequencies differ from each other. In this dissertation we introduce

methods to estimate the critical coupling and predict the clusters arising from a

saddle node bifurcation for arbitrary and finite Kuramoto networks. We describe

an approach that unifies previous approaches to estimate the critical coupling. This

unified order parameter allows us to design new and better approximations that can

be shown to be strict lower bounds for the critical coupling bifurcation.

Extending this approach we define new cluster order parameters leading to prov-

able cluster-based lower bounds for the critical coupling. We show that finding the

maximal lower bound is equivalent to the solution of an optimization problem over

cut sets in the network. The relationship between the isoperimetric ratios and the

Cheeger constant from spectral graph theory and the cluster-based lower bounds and

the maximal lower bound, respectively are elucidated. Adapting the isoperimetric al-

gorithm to approximate the solution to the optimization problem establishes a highly

effective method for predicting these saddle-node clusters, confirmed by numerical

simulations of clustering for tens of thousands of random networks.

Cycling back to the motivation we interpret the network Kuramoto system in
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the context of power systems and perform numerical experiments on real power net-

work test cases with thousands of nodes to assess the veracity of the critical coupling

estimates and saddle-node cluster predictions. Typical simulations show correct as-

signment of network nodes to the bifurcating clusters for more than 95% of the nodes.
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Ottino-Löffler, B. and S. H. Strogatz, “Frequency spirals”, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 26, 9, 094804 (2016).

Rand, W. M., “Objective criteria for the evaluation of clustering methods”, Journal
of the American Statistical association 66, 336, 846–850 (1971).

Rodrigues, F. A., T. K. D. Peron, P. Ji and J. Kurths, “The kuramoto model in
complex networks”, Physics Reports 610, 1–98 (2016).

Romeres, D., F. Dörfler and F. Bullo, “Novel results on slow coherency in consensus
and power networks”, in “Control Conference (ECC), 2013 European”, pp. 742–747
(IEEE, 2013).

Schaub, M. T., N. O’Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte and M. Bara-
hona, “Graph partitions and cluster synchronization in networks of oscillators”,
Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 9, 094821 (2016).
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APPENDIX A

CLUSTER ORDER PARAMETER FOR MULTIPLE CLUSTERS
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Assume that the oscillators of a Kuramoto system are partitioned into sets C1, C2, C3, ....
Define γp to be the mean of phases of nodes in Cp.

γ̇p =
1

|Cp|
∑
i∈Cp

φ̇i

γ̇p =
1

|Cp|
∑
i∈Cp

[
ωi + σ

∑
j

Aij sin(φj − φi)

]

Let

ω̃p =
1

|Cp|
∑
i∈Cp

ωi

for simplification purposes. It is convenient now that any terms in the double sums
between nodes of the same cluster will cancel out (assuming the graph is undirected).
We therefore only need to consider the cross-cluster connections.

γ̇p = ω̃p +
σ

|Cp|
∑

i∈Cp,j /∈Cp

Aij sin(φj − φi)

We then rewrite this sum to separate terms within specific clusters.

γ̇p = ω̃p +
σ

|Cp|
∑
l 6=p

∑
i∈Cp,j∈Cl

Aij sin(φj − φi)

where l ∈ {1, 2, ..., k}.
We want to rewrite the right hand side in terms of γp as much as possible. Add

and subtract γ terms within the argument of the sine function.

γ̇p = ω̃p +
σ

|Cp|
∑
l 6=p

∑
i∈Cp,j∈Cl

Aij sin

φj − φi + γl − γp −
1

|Cl|
∑
k∈Cl

φk +
1

|Cp|
∑
k∈Cp

φk


γ̇p = ω̃p +

σ

|Cp|
∑
l 6=p

∑
i∈Cp,j∈Cl

Aij sin

γl − γp − 1

|Cl|
∑
k∈Cl

[φk − φj] +
1

|Cp|
∑
k∈Cp

[φk − φi]


Let Ψlp = γl − γp and Yij = − 1

|Cl|
∑

k∈Cl
[φk − φj] + 1

|Cp|
∑

k∈Cp
[φk − φi]. Then,∑

i∈Cp,j∈Cl

Aij sin (Ψlp + Yij) = rlp sin(Ψlp + Zlp)

where

r2
lp =

∑
i∈Cp,j∈Cl,r∈Cp,s∈Cl

AijArs cos(Yij − Yrs)
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tan(Zlp) =

∑
i∈Cp,j∈Cl

Aij sin(Yij)∑
i∈Cp,j∈Cl

Aij cos(Yij)

Yij − Yrs =
1

|Cl|
∑
k∈Cl

[φk − φs − φk + φj] +
1

|Cp|
∑
k∈Cp

[φk − φi − φk + φr]

Yij − Yrs = φj − φs + φr − φi

r2
lp =

∑
i∈Cp,j∈Cl,r∈Cp,s∈Cl

AijArs cos(φj − φs + φr − φi)

We can also express rlp using the identity cos(α+β) = cos(α) cos(β)−sin(α) sin(β)
with α = φj − φi and β = φr − φs.

r2
lp =

∑
i∈Cp,j∈Cl,r∈Cp,s∈Cl

AijArs[cos(φj − φi) cos(φr − φs)− sin(φj − φi) sin(φr − φs)]

The summation is now separable.

r2
lp =

 ∑
i∈Cp,j∈Cl

Aij cos(φj − φi)

2

+

 ∑
i∈Cp,j∈Cl

Aij sin(φj − φi)

2

and

γ̇p = ω̃p +
σ

|Cp|
∑
l 6=p

rlp sin(Ψlp + Zlp)

Finally, rlp is the cluster order parameter for clusters Cl and Cp.
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APPENDIX B

NUMERICAL METHODS
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Connected Erdős–Rényi networks with N nodes and M edges were generated by
first creating a random spanning tree on the complete graph of size N . A random
spanning tree was constructed by choosing a starting node at random and simulating
a random walk on the complete graph. Each time a new node was discovered by the
random walk, the last traversed edge was added to the spanning tree. This process
was repeated until all nodes were visited. The remaining M −N + 1 edges were then
chosen uniformly from all possible remaining potential pairs of nodes.

Random regular graphs were constructed using the Matlab script provided by
(Kim and Vu, 2003).

Fixed points of Kuramoto systems were calculated using Newton’s method with
convergence assumed once the 2-norm of the residual fell below 10−10.

True critical couplings for Kuramoto systems were calculated using a bisection
algorithm. An initial interval was chosen sufficiently large to include the critical
coupling, and coupling values at the endpoints were checked for valid fixed points.
This was repeated with the interval halved at each repitition until the interval was of
length 0.01 or less.

Kuramoto systems were simulated using a forward Euler solver with a timestep of
0.005 and an initial fixed point of all zero phases with inherent frequencies generated
uniformly on [−20, 20]. To create bifurcation diagrams, systems were simulated for
a minimum time of 100 and a minimum of 30% of the beginning of trajectories were
thrown out to account for transients. In bifurcation diagrams, initial conditions were
chosen to match the ending position of the previous simulation, to minimize transient
behavior.
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