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ABSTRACT

In this study, the differences in delivery of methylated and unmethylated prokary-

otic DNA in mammalian cells was investigated. 3 plasmids, DH5-α, ER2925 and

GM272 were extracted and transformed from E. coli bacteria. DH5-α is the regular

methylated plasmid, however,ER2925 and GM272 lack Dam and Dcm enzymes which

methylate adenine and internal cytosine in prokaryotes respectively, hence they are

unmethylated. The 3 plasmids were delivered via different delivery vectors in two

cell lines, UMUC3 and MDA-MB-231 which are human bladder cancer cell line and

human triple negative breast cancer cell line, respectively.

Luciferase and BCA assay were carried out to quantify transgene expression to

compare the efficacy of gene delivery in three aforementioned plasmids. In addition,

hydrodynamic diameter and zeta potential was measured for all delivery vectors, to

correlate with other transgene expression data. The results show that methylated

plasmid has significantly higher transgene expression in mammalian cell lines. This

can be either a result of smaller size and more positive zeta potential that the methy-

lated plasmid had, or a result of having Dam and Dcm enzymes which enhance binding

of DNA and transcription factors and enhance gene expression. Having smaller size

and more positive zeta potential was proven to be the case for the methylated plasmid

in this study. However the latter hypothesis should be investigated furthermore.
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Chapter 1

INTRODUCTION

1.1 Gene Delivery

Gene delivery is the process of transferring exogenous nucleic acid into the host cell

nucleus.It has several applications including expression of therapeutic proteins, gene

therapy, and is a technique to understand biological pathways Christensen (2016).

These applications are discussed below.

Gene delivery can be used to employ the cells to produce recombinant proteins in

large scale for downstream use. These proteins can be used directly as therapeutics

or in protein vaccines Jin et al. (2014); Baldi et al. (2007). Potential treatment

of several genetic disorders, either inherited or acquired, is now considerable by gene

therapy. Cancer, AIDS and cardiovascular disease are some examples of such deceases.

The principle that this approach is based on, is to deliver the foreign DNA to alter

defective gene expression at the origin of the defect. This alteration is done with two

approaches. The first approach is to correct the genetic malfunctions and ultimately

rescue the cell and the organ. The second approach though, leads the host cells to

self destruction. This approach is mainly used in cancer gene therapy. The advantage

of gene therapy against others is that the limitations of some protein drugs can be

bypassed with this technique Jin et al. (2014); Liu and Huang (2002); Christensen

(2016); Siu et al. (2012). In molecular biology, in vitro gene delivery is used as a study

tool to study biological pathways. For example, it is used to study gene functions via

manipulative protein expression. Silencing a specific gene ,which can be carried out

by delivering siRNA or shRNA, can help us determine specific protein functions Jin

1



et al. (2014); Christensen (2016).

There are many intercellular barriers to nucleic acid transfer that are thoroughly

discussed in the next section. However, in this section, we talk about two methods

that are employed to circumvent the intercellular barriers. Gene delivery methods

should ideally have high transfection efficiency and low toxicity to the cells Jin et al.

(2014). Currently, three main categories of gene delivery methods are employed. viral

vector based, non-viral vector based and physical Mali (2013).

Virus vectors are either replication-deficient viruses, which contain our nucleic

acid of interest but the decease causing sequence is deleted from their genome,or

genetically modified viruses Kamimura et al. (2011); Mali (2013).

Non-viral gene delivery methods are done using natural or synthetic compounds

to bound with DNA and form a complex with it. Complexes of DNA with protein,

lipids and polymers are examples of non-viral vectors Kamimura et al. (2011); Mali

(2013). Usually, the transgene expression of the plasmids delivered via cationic vectors

have two phases. In the first few days the transgene expression is dramatically high

and after that transgene expression continues at a lower intensity Al-Dosari and Gao

(2009). This can be due to several reasons. Most of the times, the transfered plasmid

stays in the cell nucleus episomal DNA molecule and do not integrate with the target

cell’s genomic DNA. During cell division, these plasmids are not replicated and as

the population percentage of newly divided cells grow and old cells die, transgene

expression lowers. Another reason for this decline in transgene expression may be the

programmed death of transfected cells or that the transfected cells simply die because

of the injuries caused by tansfection Nguyen et al. (2007). In addition, transfected

cells may be eliminated due to the immune response to producing foreign proteins

Wolff et al. (1992).

Physical methods focuses on overcoming membrane and intercellular barriers us-
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ing physical principles. For examples, one of the physical methods is to inject the

DNA directly to the target tissue with a needle. Injection into muscle cells, skin,

cardiac muscle, liver and solid tumor had been successfully done. Some other are

Electroporation, Sonoporation, Photoporation, Photoporation, etcKamimura et al.

(2011); Mali (2013).

All these methods have their advantages and disadvantages in comparison to one

another. Virus vectors are the most efficient, however there are some safety issues

with them and they are very costly as well. Non-viral vectors are much less toxic than

the viral vectors. Another advantage of them is that they are more likely to be used

for delivering long nucleic acid sequences and they are less immunogenic. Advantage

of physical methods in comparison to the two methods previously mentioned is its

simplicity since DNA is delivered straightly to the target without the usage of other

substances which can be toxic to the cell or immunogenic and is the method utilized

in DNA vaccination. In addition, non-endocytic strategies such as microinjection

and electroporation allow the nucleic acid to circumvent many intercellular barriers

such as escaping the endocytic vesicles. However, the disadvantages of this method

is its low efficiency and the fact that gene delivery is only restricted to the injected

cells. Thus their application is limited in gene therapy and industrial scale protein

production Kamimura et al. (2011); Mali (2013); Christensen (2016).

Some advantages and disadvantages and characteristics of different non-viral meth-

ods are listed in the table below:

1.2 Intercellular Barriers for Non-viral Gene Delivery

There are many intercellular barriers that gene delivery vectors should circumvent

for a successful transfection. They are demonstrated in 1.1 and in the following

subsections, we will discuss them in detail.
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Figure 1.1: Intercellular Barriers to Gene Delivery Christensen (2016) Used with

Permission

1.2.1 Cellular Uptake and its Barriers

In encodytic cellular uptake, the cargo can enter the cell via four different path-

ways, clathrin-mediated endocytosis, caveolae, phagocytosis and macropinocytosis.

Size and surface charge of the cargo have a huge impact on cellular uptake as well as

the cell itself. Moreover, multiple mechanisms may occur simultaneously due to the

heterogeneity of the cargoes.

Clathrin-mediated Endocytosis

Clathrin-mediated endocytosis is mediated by a large protein named Clathrin. On

the inner surface of the cell plasma membrane, a coated pit is formed with the help

of this protein. The ligands of this protein complex bind to the plasma membrane
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receptors and lipids and clatherin forms a coat around the cargoIrajizad et al. (2017).

Then from this pit the cargo comes into the cytoplasm of the cell as a coated vesicle.

Later, the vesicles lose their clatherin coating. the fusion a similar vesicles ultimately

form early endosomes DeB (1998); Christensen (2016).

Caveolaes

Caveolaes are cave like structures in the membrane. Many cell types have caveolaes

on their surface and they can take up to a third of plasma membrane surface. The

pits are relatively narrow with a diameter of approximately 50 nm. They consist of

a cholesterol binding protein called Vip21 and a bilayer of cholesterol and glycolipids

Christensen (2016). cellular uptake is mediated via receptors in caveolaes however

it’s clatherin independent. Unlike clatherin mediated uptake which the vesicles then

goes to form an early endosome, the cargo taken up via cavolaes can go directly to

Golgi or endoplasmic reticulum for sorting. As a result, they bypass the pathway in

which are lead to degradation by lysosome which can affect the delivery of nucleic

acid’s efficacy Parton and Simons (2007).

Phagocytosis

Phagocytosis, is the cellular uptake pathway most commonly used by the immune

system cells to take up pathogens and other large particles (larger than 500 nm in

diameter)Christensen (2016). Phagocytosis can also occur in cells other than immune

system cells and has the potential to be used for delivery of particles that are too large

to be taken up by caveolaes or clatherin mediated pathways. Despite its applications

in gene delivery, for in vivo gene delivery, phagocytic cells in the immune system

might take up the delivered nucleic acid in the blood and affect gene delivery efficacy

Dash et al. (1999). The takeup vesicle with this pathway is called phagosome. It’s
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ultimately lead to fusion with lysosome for degredation Falcone et al. (2006).

Macropinocytosis

Macropinocytosis is another pathway of cellular uptake. This pathway involves uptake

of large particles which results in 500-5000 nm vesicle diameter. Another difference

of this pathway in comparison to caveolae and clatherin mediated is that no receptors

are involved. The vesicle later forms early endosomesFalcone et al. (2006).

Delivery vectors can be taken up and trafficked in the cells in via different path-

ways. Even subtle differences in delivery vectors can change the pathway in which the

cargo is taken up. The hydrodynamic diameter of the cargo its surface charges have

tremendous effects on cellular take-up. For example, a study shows that in murine

melanoma cell line, different cellular take-up pathways were utilized depending on

the size of the latex bead cargoes. Cargoes smaller than 200 nm in diameter were

taken up via clatherin mediated pathway. However, cargoes larger than 500 nm were

taken up by caveolae. Since in caveolae takeup, the cargo circumvents degradation

by lysosomes, it can be relatively more efficient in this case Christensen (2016).

1.2.2 Endosomal Escape

Sorting endocytosed materials before they are degraded by lysosomes are done by

endosomes. Internalized cargoes from the plasma membrane can either go to lyso-

some for degradation or be recycled back to the plasma membrane. Depending on

the stage after endocytosis, endosomes are classified as early, sorting, or late endo-

somes. Different stages of endosomes have different mythologies. Early endosomes

have tubules however late endosomes mostly don’t and are spherical. This is due to

early endosome’s loss of tubules to recycling pathways back to the plasma membrane

Barua and Rege (2009). Endocytic vesicles fuse into early endosomes after being un-
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coated. Later, early endosomes mature into late endosomes and ultimately fuse with

lysosomes. In the stage of maturation of early endosomes into late endosomes, the

pH level lowers. The drop in pH level can assist endosomal escape for gene delivery

before endosomal maturation and ultimately fusion with lysosome Mellman (1996);

Suh et al. (2003).

1.2.3 Nuclear Entry

After overcoming the barriers discussed before, cargo has to enter the cell nucleus.

As we know, The nucleus of the cell is constantly dividing due to cell division. The

Nucleus membrane of a dividing cell is much more permeable than a non-dividing

nucleus due to the nuclear membrane breakdown prior to cell division. As a result,

cargo can relatively easily penetrate dividing nuclei where as it is almost impossible

for it to enter the nucleus at any other time Jones and Takai (2001). Diffusion through

cell nucleus pore complexes only allows particles smaller than 9 nm to penetrate a

non-dividing cell nuclei. To summarize, this step of gene delivery is relatively much

more inefficient for non-viral gene delivery vehicles Christensen (2016); van der Aa

et al. (2006).

1.2.4 Delivery Vector Dissociation

When designing gene delivery vectors, we must take into account that this step

works against the previous ones. For gene transfer into the nucleus, the binding of the

nucleic acid and delivery vector should be strong. However, in this step DNA should

unbind with the delivery vector for it to be accessible to the host cell’s transcription

machinery Huth et al. (2006); Schaffer et al. (2000). Cationic carrier has can be

removed from the exogenous nucleic acid by the chromosomal DNA in the nucleus in

this step. However, removal of the cationic carrier of delivery vector in the cytoplasm
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by host cell RNA can make gene delivery more inefficient Christensen (2016); Kircheis

et al. (2001).

1.3 DNA and Histone Modification

1.3.1 Histone Modification

In eukaryotic cells, DNA is wrapped around some alkaline proteins called histone.

The structural units that DNA and histone make are called nucleosomes. Histone

not only orders the DNA into structural nucloesomes, but has other roles specially in

gene expression regulations which affects whether a gene is activated or repressed due

to the interactions between DNA and histone tails. These interactions result from

the bounds between histone and DNA getting tighter or looser. Histone proteins

have tails that can be covalently modified. Some of the most important covalent

modifications are acetylation and methylation. Acetylation has an activation role for

genes. However, methylation can have either activation or repression role depending

which histone tail is activated and how many methyl groups are attached to the

histone tails. These modifications do not make a change in genomic DNA sequence.

Delpu et al. (2013)

1.3.2 DNA Methylation

DNA Methylation in Eukaryotes

DNA methylation is very abundant in eukaryotic systems, specially in plants and

vertebrates. Methyl groups are added to DNA at two times. First, they can be added

to newly replicated DNA. Modification in methylation pattern, can later be carried

out by adding and removing methyl groups from various sites. Methylation pattern

in cancer cells is very different from normal ones as it is largely modified in them.
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This difference can be used to distinguish cancer cells. Delpu et al. (2013); Schübeler

(2015)

Methylation is carried out by the enzyme methyl transferase. For DNA methy-

lation, the enzyme is called DNA methyl transferase (DNMT). DNA methylation

sites are very specific. CpG islands in plants and vertebrates are mostly located near

the promoter of the genes. They provide many DNA methylation sites since they

are usually about 1000-2000 base pairs long Klose and Bird (2006); Jones and Takai

(2001).

Usually, the activity of DNA methylation is to silence genes and inhibit their

transcription long term. This regulatory action is specially done in tissue specific

genes. These genes help our tissues have different functions despite the genomic

DNA being the same in all of them. Tissue specific gene silencing helps prevent genes

to be expressed in the wrong tissue Bird (2002).

DNA methylation, inhibits gene transcription in two ways. First, for the initia-

tion of the transcription, activator proteins are transcription factors that bind to the

enhancer sequence present behind the promoter of the gene to be transcribed. In

eukaryotic system, transcription factors play an important role in initiation of tran-

scription. In normal situation, the activator protein attaches to the enhancer sequence

and will send some signal which will recruit the polymerase and the transcription will

go on Li et al. (1993); Jones and Takai (2001). However, due to methylation in the

CpG island, the activator protein can no longer bind to the enhancer element. As a

result, the activator protein can no longer provide any signal to call upon the poly-

merase. Hence the transcription will not take place Klose and Bird (2006); Razin

(1984).

The second way that DNA methylation can inhibit transcription in by a protein

known as ”methyl CpG binding protein” (MBD). This protein binds to methylated
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sequencesBird (2002). These proteins are recruited to the methylated sites in DNA

and attach to them by covalent binds. As a result, activator protein cannot bind to

the DNA. So the transcription will not be initiated. This kind of MBD attachment

will recruit Histone Deacetylase (HDAC) protein to detach the acetyl group from the

histone and further inhibit gene transcription Li et al. (1993); Razin (1984).

DNA Methylation in Prokaryotes

Similar to eukaryotes, DNA methylation plays important roles in prokaryotes and is

specially very prevalent among prokaryotes. Using single molecule, real-time sequenc-

ing (SMRs) to map DNA modifications for 230 diverse bacterial and archaeal species,

DNA methylation was found in 93% of them. In that study, 840 distinct methylated

motifs and 620 620 DNA Methyltransferases binding sites were found leading to ac-

knowledge diverse presence and functions of DNA methylation in prokaryotes Blow

et al. (2016). Along with m5C (C5-Methyl-cytosine) which is most prevelant in eu-

karyotes, m6A (N6-methyl-adenine) and m4C (N4-methyl-cytosine) are also found in

bacteria. m6A is also found in lower eukarytes (not in vertebrates) but m4C is only

found in bacteria Sánchez-Romero et al. (2015). Despite the abundance, patterns and

functions of methylation in prokaryotic DNA is still relatively unknown.

DNA methylation along with restriction enzymes are components of restriction-

modification (RM) systems. The main function of this system is to protect the

integrity of prokaryotic genome. For example, they are linked to DNA base pair

mismatch repair. In addition, restriction endonuclease degrades DNA from exoge-

nous sources (eg. viruses) while methyl transferase binds to restriction endonuclease

sites in the host genome to prevent cleavage Blow et al. (2016); Modrich and Lahue

(1996); Sánchez-Romero et al. (2015). To further study RM systems in prokaryotes,

a comprehensive database of restriction enzymes, DNA methyl transferases and other
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proteins involved in the process has been gathered. This database is refereed as

”REBASE” Roberts et al. (2010).

As mentioned before, DNA methylation has an important role in eukaryotic genome

regulation. However, its role in prokaryotic genome regulation and the extent of it

is still relatively unknown. What we know is that in prokaryotes, if a regulatory

region (eg pomoter region) is methylated, the methyl groups can help binding of

transcription factors (eg RNA polymerase) with cell DNA. Some examples of such

regulation involves two methyltransferase enzymes Dam (Deoxyadenosine methylase)

and CcrM (cell-cycle regulated methyltransferase). These enzymes both methylate

adenine bases in DNA and if they methylate DNA at a regulatory region (eg pro-

moter region), they can regulate transcription. Methylation-dependent transcription

controls are divided into two groups: Clock-like and Switch-like controls. In clock-

like controls, gene methylation (which activates expression) is linked to the stage

of the cell cycle. However, switch-like controls work in a different manner. Before

DNA methylation patterns are formed, they turn on and off gene methylation, hence

gene expression Sánchez-Romero et al. (2015); Han et al. (2004). Some examples of

Dam methylation control in Gamma-proteobacteria -which E. coli is a part of- are

mentioned in the table 1.1.
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Table 1.1: Examples of Loci Under Dam Methylation Control in Gamma-

proteobacteria Sánchez-Romero et al. (2015)

Like adenine methylation, cytosine methylation in prokaryotes also have regula-

tory effects on transcription, like enhancement. Inoue et al. (1997) However, unlike

adenine methylation which typically enhances transcription, cytosine methylation can

have both enhancement and repression effect Militello et al. (2014). two studies on E.

coli suggest that lack of Dcm (DNA cytosine methyltransferase) increased expression

of stress response sigma factor RpoS and drug resistance transporter SugE. However,

relationship between m5C and transcription is not yet fully known. In these studies,

Dcm did not have an effect on E. coli growth rate or the ability to enter or persist

stationary phase Kahramanoglou et al. (2012); Sánchez-Romero et al. (2015).

Plasmid Methylation and Immune System Response

Since plasmid DNA is from a prokaryotic source, it is considered a foreign entity in

mammalian cells Yew (2005); McLachlan et al. (2000). As mentioned in the previous

sections, mammalian DNA have very abundant methylated CpG sequences. Since

CpG sequences are mostly unmethylated in prokaryotic DNA compared to mam-

malian DNA, the mammalian innate immune system recognizes the plasmid DNA.
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Krieg (1999); Reyes-Sandoval and Ertl (2004); Li and Huang (2000) As a result,

following the administration of polyplexes, an inflammatory response occurs. Un-

methylated CpG sequences activate a receptor called ”Toll-like receptor 9” which

then activated immune response from the cell ??Reyes-Sandoval and Ertl (2004).

Another reason for this immune system response may be due to the non-linear nature

of plasmids which again distinguish them from mammalian DNA Yew (2005); Zhou

et al. (2004). There are ways that we can reduce this immune response from the cell

in order to increase the efficiency of pDNA delivery. In a study it was shown that

the use of pDNA vectors which contain a reduced number of CpG motifs, results in a

reduction of inflammatory response. In that study, pDNAs were developed in a way

that all the CpG motifs from the enhancer, promoter, intron, poly- adenylation signal,

and antibiotic resistance gene were eliminated. The only remaining CpG sequences

were then found in plasmid replication origin which was about 20% of CpG sequences

in the original unmodified DNA. Delivery of this modified pDNA vector resulted in

a decrease in proinflammatory cytokines Yew et al. (2002).
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Chapter 2

PREPARATION, TESTING METHODS AND RESULTS

2.1 Methodology

2.1.1 Materials

dimethyl sulfoxide (DMSO), resorcinol diglycidyl ether (RDE) were purchased

from Sigma-Aldrich, St. Louis, USA. Aminoglycoside monomers, neomycin sulphate,

and paromomycin sulphate were purchased from Gold Biotechnology, Inc., USA. The

BCA protein assay kit was purchased from Thermo Scientific, Inc. (Rockford, IL).

The pGL4.5 control vector, which encodes for modified firefly luciferase protein under

the control of an SV promoter, and the Bright-GloTM luciferase assay system were

purchased from Promega Corporation (Madison, WI). acetone was purchased from

VWR international LLC, USA suppliers and was used without further purification.

MDA-MB-231 human triple-negative breast cancer cells, and UMUC3 human bladder

cancer cells were procured from the American Type Cell Culture (Manassas, VA).

2.1.2 Preparation and Testing Methods

Bacterial Transformation and Preparation of Plasmids

Plasmid pGL4.5 was used for this study. A schematic of this plasmid is shown in

??. This plasmid codes for Luc2 gene which is the firefly luciferase. Hygromycin

resistance gene is used as a biological marker in this plasmid. The plasmid has a

replication origin after the hygromycin resistance gene and also codes for ampicillin

resistance gene in order to survive after adding ampicilin to its media. Ampicillin is
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added to the media in order to eliminate all the other microorganisms in the media

and only our bacteria of interest which contains ampicillin resistance gene can survive.

Figure 2.1: Plasmid pGL4.5 Schematics (sketched Using SnapGene Software)

For this study, 3 variations of plasmid DNA pGL4.5 were prepared: DH5-α, K12

ER2925 and GM272. K12 ER2925 lacks Dam5 and GM272 lacks Dam3 and Dcm6 en-

zymes which as previously discussed, methylate adenine and cytosine bases in prokary-

otic DNA MacNeil (1988); Sun et al. (2010). Hence, These strains are relatively un-

methylated. On the contrary, DH5-α is the regular methylated pGL4.5 strain. Dam

enzyme methylates Adenine in GATC sequences and Dcm enzyme methylates the

second cytosine in CCAGG and CCTGG sequences. In pGL4.5 plasmid, there are

17 GATC and 12 CCWGG sequences in luc2 gene and its promoter. In the whole

plasmid, there are 34 GATC and 20 CCWGG sequences respectively.

Bacterial transformation of pDNA pGL4.5 was carried out in order to prepare

ER2925 and GM272 E. coli strains. For this process, 2 µl of pGL4.5 with concen-

tration of 150ng
µl

was mixed with 20 µl of component cells. The mixture was then

incubated on ice for 20 minutes. For the heat shock, mixture was put in 42◦C water

bath for 45 seconds and then incubated on ice for an additional 3 minutes. 800 µl

LB media was added to the mixture and they were placed on a shaker at 37◦C ,200
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rpm for 3 hours. Then, cells were centrifuged for 1 minute at 10000 rcf. Most of

the supernatant was discarded, however, cells with the remaining supernatant were

plated on LB + Ampicillin (100 mg/L) agar plates. 24 hours later, the colonies had

grown. Individual colonies were injected in LB + Ampicillin (100 mg/L) liquid media

and were placed on shaker at 37◦C ,200 rpm for 24 hours. Plasmid DNA were then

extracted.

Competent E. coli strains were prepared using the Mix and Go E. coli Transfor-

mation Kit and Buffer Set and plasmid DNA extraction was done using the Qiagen

Plasmid Maxi Kit.

After extraction, plasmid DNA concentration and purity were determined using

a NanoDrop Spectrophotometer (ND-1000; NanoDrop Technologies) by measuring

absorbance at 260 and 280 nm. Plasmid stocks were made with concentration of 25ng
µl

in EB buffer (Qiagen, Germany) to make polyplexes in the future.

Polymers

PG and NR

The two polymers used in this project, paromomycinGDE(PG) and neomycinRDE(NR)(GDE:

Glycerol diglycidyl ether and RDE: Resorcinol diglycidyl ether) were synthesized by

Dr. Sudhakar Godeshala according to Godeshala et al. (2016). In short, a solution of

sulphate-containing aminoglycosides neomycin and paromomycin in nanopure water

was ion exchanged in a Cl-ion exchange resin for 3 hours. After the sulphates were

removed, the resultant aminoglycosides were reacted with GDE (in case of PG) or

RDE(in case of NR) in a solution containing 1:2.2 molar ratio of water and N,N-

dimethylformamide (DMF) ), (1.5:1 v/v) for 5 hours at 60C. Acetone was used to

precipitate the reaction mixture and further purification was carried out by dialysis
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using a 3.5 kDa molecular weight cutoff(MWCO) dialysis membrane for 48 hr to re-

move unreacted aminoglycosides and diglycidylethers. To obtain the purified polymer

after dialysis, the material was lyophilized. The MW values for these polymers are

4,889 and 3,965 respectivelyPotta et al. (2014). The monomers of these polymers are

shown in 2.2.

(a) GDE

(b) RDE

Figure 2.2: Polymer Monomers Potta et al. (2014)

PG-C18(1:5)

A solution of 0.01 mmol PG in 2ml DMSO was stirred at room temperature for 30

minutes, after which 0.1 mmol triethyl amine(TEA) was added to the solution, and

was stirred for an additional 30minutes. The solution was then cooled to 4◦C and

a 1:5 molar ratio of alkanoyl chloride (with respect to PG) was added in a dropwise

manner. The mixture was stirred at RT for 12 hours, then precipitated in excess ether,

dialyzed against water for 48 hours using a 3500 molecular weight cutoff (MWCO)

17



membrane. To obtain the lipopolymer product, the dialyzed material was further

luophilized. he MW value for this lipopolymer is 4,519Miryala et al. (2015).

Gel Permeation Chromatography

Gel Permeation Chromatography (GPC) was used to measure the molecular weights

of PG, PG-C18(1:5) and NR. The system used was Waters 1515 GPC system, equipped

with an ultrahydrogel 250 column (Waters Corporation, MA) and a refractive index

detector (Waters 2410) with Waters Millennium 32 GPC software. A solution of 0.1%

trifloroacetic acid and 40mobile phase which was operated at 0.5 mL/min flow rate

and the temperature was set at 358C. Poly(2-vinyl- pyridine) standards (MWs: 3,300,

7,600, 12,800, 35,000, and 70,000Da) were employed for molecular weight (MW) cal-

ibration. To further investigate the MW range, purified samples after dialysis were

subjected to ninhydrin analysis which reports for reactive amine content. To deter-

mine the theamine content of the polymers, a calibration using glycine was carried

out, and the relative amounts of residual amines were compared to determine the

molecular weight range of the polymers Potta et al. (2014).

In order to make polyplexes for the experiments, polymer solution stocks were

prepared with concentration of 1.5mg
µl

in 1XPBS and were filtered through 2µm filters.

Cell Culture

UMUC3 and MDA-MB231 cells were cultured in DMEM media containing 10% v/v

fetal bovine serum (FBS) and 1% penicillin streptomycin (10,000 units/mL) solution

in an atmosphere of air (95%) and carbon dioxide (5%) in an incubator at 37 ◦C.
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Transgene Expression in Cells

When approximately 80% confluent, cells were trypsinized with 0.25% trypsin-EDTA

and plated in 96 well plates (Corning,Corning, NY, USA) with density of 10000

cells/well in DMEM media. Plates were incubated in previously mentioned situation

(Atmosphere: 95% air, 5% carbon dioxide at 37◦C) for 18-24 hours. Polyplexes

were prepared by adding the polymer solution to the DNA (with the following w/w

DNA:Polymer ratios: 1:4, 1:5, 1:10, 1:15, 1:20, 1:25, 1:50, 1:75, 1:100) and letting

them sit for 30 minutes at room temperature. Ployplexes were then added to each

well (75 ng of pDNA per well). Plates were then incubated in the previous situation

for 48 hours before screening to allow for transgene delivery and expression.

Luciferase and BCA Assay

48 hours after the transfection, media was removed from the cells and they were

washed with 1x PBS. After removing PBS, cell culture lysis reagent (Promega) was

added to the cells. Plates were incubated for 15 minutes in 37◦C for the cells to be

lysed. 30 µl of the luciferin solution (Bright GloTM Luciferase assay kit (Promega))

was added to 15 µl of cell lysate and luminescence (LUM) was immediately measured

using Synergy 2 plate reader (Biotek, Winooski, VT). Using the BCA Protein assay

kit (Pierce, Rockford, IL, USA), total protein content was determined from the cell

lysates .

Quantification of Luciferase Expression

For quantification, LUV values were determined by dividing luminescence values

(LUM) by relative cell proliferation (PRO). LUV values were normalized by the to-

tal protein content values from BCA assay. These normalized values (LUV/ µg of

protein) are used to compare different conditions.
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Cytotoxicity of Polyplexes

48 hours after the transfection is done (same time as the Luciferace assay), MTT assay

is carried out on the transfected cells to make sure that the polyplexes were not cyto-

toxic. 10 µl of MTT reagent ((3-(4,5-Dimethylthiazol-2-yl)22,5-diphenyltetrazolium

bromide)) was added to each well including the controls which are the untreated and

dead cells. Then the plate was incubated in the previous situation for 4 hours. Then,

the media was removed from the wells and 50 µl of 1:1 v/v solution of DMSO and

methanol were added to each well to dissolve remaining crystals. After being incu-

bated in room temperature for 30 minutes, the absorbance of each well at 570 nm and

670 nm was determined using the plate reader (Bio-Tek Synergy 2). Cell viability is

determined by the following formula:

%viability =
Awell−Adead
Alive−Adead

× 100

Awell=Aabsorbance at 570 - Aabsorbance at 670

Determination of Hydrodynamic Diameter and Zeta Potential

Polyplexes were prepared in a similar manner as previously mentioned in transfection

section. Size and zeta potential of the polyplexes were measured in triplicates using

a Zetasizer Nanosystems Nano-ZS instrument (Malvern Instruments, Mission Viejo,

CA).

For the size, 50 µl of polyplex diluted in 950 µl of 1xHEPES buffer (10 mM,

pH 7.4) were used for the measurements and For measuring zeta potentials, 50 µl of

polyplex diluted in 950 µl of 1xPBS (pH 7.4) were used for the measurements.

In addition to polyplexes, size and zeta potential of 3 plasmids and 3 polymers

were measured. Polymer and plasmid solutions were prepared with conc. of 75 µg
ml

in

1xHEPES buffer (10 mM, pH 7.4) and in 1xPBS (pH 7.4) and were used to measure
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size and zeta potential of them respectively.

All the measurements were done in room temperature.

Zeta potentials and size distribution measurements were carried out at least three

times after Polyplex formation. Positive charges on the surface of polymer and neg-

ative charges on the surface of DNA interact to form nanoscale polymer-DNA com-

plexes. Moreover, positively charged polyplexes can be delivered more efficiently.
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2.2 Results

Figure 2.3: LUV
µgofProtein

for Each Plasmid-PG Polymer Polyplex Was Measured in

UMUC3 and MDA-MB-231 Cell Lines
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Figure 2.4: LUV
µgofProtein

for Each Plasmid-PGC18 (1:5) Lipopolymer Polyplex Was

Measured in UMUC3 and MDA-MB-231 Cell Lines
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Figure 2.5: Log LUV
µgofProtein

for Each Plasmid-NR Polymer Polyplex Was Measured in

UMUC3 and MDA-MB-231 Cell Lines
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Figure 2.6: Viability Was Measured for Each Condition in Both Cell Lines
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(a) Hydrodynamic Diameter in 1xHEPES Buffer

(b) Zeta Potential in 1xPBS Buffer

Figure 2.7: Hydrodynamic Diameter and Zeta Potential of Each Plasmid-PG Polymer

Polyplex
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(a) Hydrodynamic Diameter in 1xHEPES Buffer

(b) Zeta Potential in 1xPBS Buffer

Figure 2.8: Hydrodynamic Diameter and Zeta Potential of Each Plasmid-PGC18

(1:5) Lipopolymer Polyplex
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(a) Hydrodynamic Diameter in 1xHEPES Buffer

(b) Zeta Potential in 1xPBS Buffer

Figure 2.9: Hydrodynamic Diameter and Zeta Potential of Each Plasmid-NR Polymer

Polyplex
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(a) Hydrodynamic Diameter in 1xHEPES Buffer

(b) Zeta Potential in 1xPBS Buffer

Figure 2.10: Hydrodynamic Diameters and Zeta Potentials of 3 Polymers
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(a) Hydrodynamic Diameter in 1xHEPES Buffer

(b) Zeta Potential in 1xPBS Buffer

Figure 2.11: Hydrodynamic Diameters and Zeta Potentials of 3 Plasmids

To quantify the difference of gene delivery between methylated and unmethylated

plasmids, transfections were carried out in 2 different cell lines, UMUC3 and MDA-
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MB-231. The extent of expression of luciferase protein in each condition (different

cell line, carrier polymer, DNA:polymer weight ratio and different methylated and

unmethylated plasmids) determined how well the gene was delivered and transcribed.

To examine the first set of conditions, polyplexes were formed by slowly adding

different concentrations of PG polymer solution to three different plasmid solutions

(DH5-α, ER2925 and GM272) to make different weight ratio polyplexes. After adding

the polymer, the mixture is incubated for 30 minutes in room temperature for the

polyplexes to form. Different DNA:Polymer weight ratios tested were 1:10, 1:15, 1:20,

1:25, 1:50, 1:75, 1:100. Polyplexes were then added to UMUC3 and MDA-MB-231

cells for gene delivery.

figure 2.3 and show LUV
µgofProtein

for each plasmid-PG polyplex in UMUC3 and MDA-

MB-231 cell lines. As seen in figure 2.3 , in all conditions, the methylated plasmid

(DH5α) had considerably higher expression in comparison to the other two unmethy-

lated plasmids. Gene expression enhances as the DNA:Polymer increases at first and

then declines. The peak of transgene expression for DH5α and ER2925 plasmids are

in the 1:20 and 1:25 ratios in UMUC3 and MDA-MB-231 cell lines respectively. For

GM272 plasmid, the peak of expression is in 1:25 ratio in both cell lines.

Similarly, to examine the second set of conditions, polyplexes were formed using

the 3 plasmids and PGC18 (1:5) lipopolymer at DNA:Polymer weight ratios of 1:10,

1:15, 1:20, 1:25, 1:50, 1:75, 1:100. Figure 2.4show LUV
µgofProtein

for each plasmid-PGC18

(1:5) polyplex in UMUC3 and MDA-MB-231 cell lines. Similar to figure 2.3 the

methylated plasmid DH5α has significantly more expression than the other two un-

methylated plasmids. The peaks and trend are also the same where we see transgene

expression enhancement first and then it declines and the peaks are in 1:20-1:25 area.

Figure 2.5 shows LOG LUV
µgofProtein

for conditions of making plasmid-NR polyplex in

different DNA:Polymer weight ratios (1:4, 1:5, 1:7.5, 1:10, 1:20, 1:25, 1:50, 1:75, 1:100)
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in the 2 different cell lines, UMUC3 and MDA-MB-231. The scales of LUV
µgofProtein

for

the measurements in low DNA:Polymer ratios (1:4, 1:5, 1:7.5) were very different

from the rest of the values. In order to be able to see all the y-values and the trend,

y-axis in these graphs are plotted logarithmic. Staying consistent with the previous

two sets of conditions in figures 2.3 and 2.4, it shows the same peaks and trend were

we first see an increase in LUV
µgofProtein

and then it declines and the peak is around 1:20-

1:25 for all conditions. In addition, the methylated plasmid has significantly more

transgene expression in all the conditions than the other two unmethylated plasmids.

The reason why the DNA:Polymer weight ratios are different here in comparison to

PG and PGC18 (1:5) polymers is that according to figure 2.6 after 1:25 weight ratio,

the toxicity of the polyplex is too high and most likely affects the LUV
µgofProtein

values.

In order to be able to see an accurate trend, lower DNA:Polymer weight ratios were

used for experiments in addition to previous ones.

In conclusion, figures 2.3-2.5 all show the same trend where the methylated plas-

mid shows the highest transgene expression, hence the highest delivery with all three

polymers in both cell lines in comparison to the two unmethylated plasmids. Also

the highest transgene expression happens in 1:20-1:25 DNA:Ploymer ratios.

To make sure that the transgene expression data is accurate, cytotoxicity of each

polyplex, was investigated through MTT assay. MTT assay was carried out for each

of the conditions in figures 2.3-2.5 to calculate cell viability. Low viability shows that

the polyplex was too toxic for the cells, resulting in less accurate data. For this study,

cell viabilities more than 70% were considered to give accurate results. In figure 2.6,

cell viability for each condition has been graphed as a reference for figures 2.3-2.5.

As previously discussed, in order to compare gene delivery, the transgene expres-

sion was compared. However, in order to investigate gene delivery more thoroughly,

we can compare the cellular uptake of different polyplexes by measuring the size
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and zeta potential of all the polyplexes. As discussed before in sections 1.1 and 1.2,

smaller hydrodynamic diameter and higher (more positive) zeta potential can facil-

itate cellular uptake, hence the delivery of the transgene. However, we know that

the relationship between hydrodynamic diameter, zeta potential and gene delivery

efficacy is not always that simple. For example, as discussed in section 1.2, cellular

uptake may be different in a cell line depending on the particle, or as much as positive

zeta potential is beneficial for cellular uptake, before entering the nucleus, polymer

and plasmid must be able to unbind and overly positive zeta potential may make this

stage a bit harder.

Figures 2.7a, 2.8a and 2.9a show the hydrodynamic diameter for each polyplex. As

visible in these figures, DH5α has the lowest diameter in comparison to the other two

in all conditions which correlates with trends in figures 2.3-2.4 showing that smaller

nanoparticles have better chance of cellular uptake and delivery. Also, the smallest

size for all the polyplexes is happening around 1:20-1:25 ratio which correlates with

the peak of transgene expression inprevious transgene expression data in 2.3-2.4.

Similarly for zeta potential, figures 2.7b, 2.8b and 2.9b demonstrate the zeta

potential for each polyplex. These figures demonstrate that DH5α has the most

positive zeta potential in comparison to the other two plasmids in all conditions

which again correlates to the trends we had in figures 2.3-2.4 for transgene delivery.

Also, the most positive zeta potential is in ratios 1:20-1:25 which correlates to the

peaks in 2.3-2.4.

Furthermore, size and zeta potential of the polymers and plasmids themselves

were measured using DLS for comparison with polyplex data. ?? show zeta potential

values for each plasmid at 75 ng
µl

. These data, show the boundaries for previous size

and zeta potential measurements in 2.7-??. We can see in 2.11 the methylated plasmid

has the biggest size and the most positive zeta potential due to the attachment of the
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methyl groups.

In addition to size and zeta potential, other factors may contribute to the trends

and values in figures 2.3-2.4 which correlate to transgene expression. In section 1.3.2,

the effects of Dam and Dcm in prokaryotic gene expression were discussed. Since

adenine and internal cytosine methylation (which is caused by Dam and Dcm) may

enhance the binding of transcription factors and RNA polymerase, hence enhancing

transcription, lacking Dam and Dcm may be a contributing factor that transgene

expression was less in unmethylated plasmids in comparison to the methylated one.

However, this hypothesis must be further examined.
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Chapter 3

CONCLUSION

In conclusion, methylated plasmid had significantly higher efficacy in transgene

delivery and transgene expression in comparison to the two unmethylated plasmids.

This was partially due to the smaller size and more positive zeta potential that poly-

plexes with methylated plasmid. As mentioned in previous section, smaller size and

more positive zeta potential can help the efficacy of cellular uptake. Another hypoth-

esis is that methylation in adenine and internal cytosine also contribute to higher

transgene expression in methylated plasmid. As previously mentioned, methylation

in adenine and internal cytosine can help the binding of DNA and transcription fac-

tors such as RNA polymerase, hence enhance transcription. However, this hypothesis

should be tested in future studies.

In addition, The highest transgene expression was found to be within 1:20-1:25

DNA:Polymer weight ratio in all the conditions.
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