
3D Printed Heat Exchangers  

An Experimental Study  

by 

Gokul Chandrasekaran 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 
 
 
 
 

Approved April 2018 by the 
Graduate Supervisory Committee:  

 
Patrick Phelan, Chair 
Konrad Rykaczewski 

Karl Schultz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 

May 2018  



 i 

ABSTRACT 
  

As additive manufacturing grows as a cost-effective method of manufacturing, 

lighter, stronger and more efficient designs emerge. Heat exchangers are one of the most 

critical thermal devices in the thermal industry. Additive manufacturing brings us a design 

freedom no other manufacturing technology offers. Advancements in 3D printing lets us 

reimagine and optimize the performance of the heat exchangers with an incredible design 

flexibility previously unexplored due to manufacturing constraints.  

In this research, the additive manufacturing technology and the heat exchanger 

design are explored to find a unique solution to improve the efficiency of heat exchangers. 

This includes creating a Triply Periodic Minimal Surface (TPMS) geometry, Schwarz-D in 

this case, using Mathematica with a flexibility to control the cell size of the models 

generated. This model is then encased in a closed cubical surface with manifolds for fluid 

inlets and outlets before 3D printed using the polymer nylon for thermal evaluation. 

 In the extent of this study, the heat exchanger developed is experimentally 

evaluated. The data obtained are used to derive a relationship between the heat transfer 

effectiveness and the Number of Transfer Units (NTU).The pressure loss across a fluid 

channel of the Schwarz D geometry is also studied. 

The data presented in this study are part of initial experimental evaluation of 3D 

printed TPMS heat exchangers.Among heat exchangers with similar performance, the 

Schwarz D geometry is 32% smaller compared to a shell-and-tube heat exchanger. 
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CHAPTER 1 

INTRODUCTION 

1.1 Triply Periodic Minimal Surfaces (TPMS) 

A minimal surface can be defined as a local-area-minimizing surface in a defined perimeter. 

Common examples of minimal surfaces are soap films in a bounded space which, due to 

surface tension, form a surface minimizing the local surface area. The minimal surface is a 

solution for Plateau’s problem, defined as a part of calculus of variations by Lagrange in 

1760[1]. If we extend the soap film definition of the minimal surface in a three-dimensional 

Euclidian space, we get a unique geometry for any given bounded space. These minimal 

surfaces, by definition, have a zero-mean curvature [2]. A common soap film example of a 

minimal surface is shown in Fig.1. 

 

Fig 1: Plateau’s Memory by A. van der Net [3] 

Hermann Schwarz originally described periodic minimal surfaces in the 1880s with his 

student E.R. Neovius. After defining suitable polygons in a unit cell, they used the solution 
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for Plateau’s problem for a polygon and symmetry arguments to construct the periodic 

surfaces. These were later named by Alan Schoen in his report [2] where he identified several 

new examples of periodic minimal surfaces. 

 

For topological genus definitions, the Schwarz minimal surfaces fall under genus 3, meaning 

they fall under triply periodic minimal surfaces. In rough terms, genus 3 surfaces have 3 

holes in the surface. Alan Schoen studied the partition of the three-dimensional Euclidian 

space into two interpenetrating labyrinths by intersection-free infinitely repeating periodic 

minimal surfaces [2].  Alan Schoen named these symmetric surfaces in three-dimensions 

based on the space group they resemble. They are commonly referred by the common 

names assigned by crystallographers to the lattices they represent, namely, P (primitive), G 

(gyroid), D (diamond), etc. as shown in Fig. 2[4]. 

 

Fig 2: Schwarz D, Schwarz G, Schwarz P geometries. 

The primary focus of this study is the Schwarz D (diamond). It resembles an inflated tubular 

version of the tetrahedral bond structure found between carbon atoms in a diamond, with 

two intertwined congruent labyrinths. A TPMS is balanced, if it has congruent labyrinths like 

Schwarz P and D. Schwarz derived a Weierstrass approximation with elliptic integrals to 
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define these surfaces [2]. But these integrals can be approximated to an implicit surface 

defined by the following expression [2]: 

sin(𝑥) sin(𝑦) sin(𝑧) + sin(𝑥) cos(𝑦) cos(𝑧) +     

cos(𝑥) sin(𝑦) cos(𝑧) + cos(𝑥) cos(𝑦) sin(𝑧) = 0    (1) 

This expression is commonly used while modelling and prototyping the Schwarz D 

geometry. One type of Schwarz D geometry is shown in Fig. 3. 

 

Fig. 3: A representation of a Schwarz D geometry using Mathematica. 

1.2 Additive manufacturing 

Additive manufacturing is a term describing any manufacturing process that builds a 3D 

object by adding material layer-by-layer. The manufacturing process includes using a 

computer and a 3D modelling software to model the object which is fed through to the 

equipment which builds each layer to construct a 3D object. 
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Additive manufacturing offers flexibility in prototyping that is fast, cheap and easy to 

manufacture. It offers a more efficient resource utilization in the manufacturing process by 

minimizing material waste compared to traditional methods of manufacturing [5]. More 

industries are considering additive manufacturing as a cost-effective method of 

manufacturing. We can rethink established designs and processes that were dictated by 

constraints due tomanufacturing. 

FDM is the most common additive manufacturing method and is based on a process that 

uses some form of thermoplastic polymer which turns into a liquid state and solidifies soon 

after its contact with the built layer. The most common desktop 3D printers use materials 

like PLA (Polylactic acid), ABS (Acrylonitrile Butadiene Styrene), HIPS (High Impact 

Polystyrene), etc. These materials are inexpensive and are used for prototyping to visualize a 

product. Desktop printers have a low-quality surface finish but are often great to test some 

prints before printing the parts on high-end printers. In this study, the prototype printed 

heat exchanger was built on an FDM printer using PLA. 

High-end printers from manufacturers like EOS (Fig.4) use another method of additive 

manufacturing known as Selective Laser Sintering (SLS), more specifically a powder bed 

SLS. In this process a layer of powdered material is fused into the desired shape with high 

powered lasers. Unlike the FDM printers, the build is supported by the unsintered powder 

from the previous layers. The material used in this study is PA 2200 – Polyamide White or 

Nylon 12. It provides high detail resolution and has the highest quality of surface finish 

among the polymers discussed.  
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Fig 4: EOS P110 SLS printer. [3] 

 

1.3 Heat exchanger 

A heat exchanger is a thermal device used to transfer heat between two media, for example 

solid to fluid or between two or more fluids. In most fluid-to-fluid heat exchangers, the 

fluids are separated by a solid wall to prevent mixing. The shell-and-tube and plate-fin heat 

exchangers are the most commonly used types of heat exchangers due to their simplistic 

design and ease of manufacturing. This simplicity comes at the cost of weight and the 

material cost associated with it. In addition to that, the metals used in heat exchangers need 

special treatments to prevent corrosion from the working fluids further emphasizing the 

need for a better alternative. 

Over the last decade, several studies on polymer heat exchangers were conducted to find a 

suitable combination of non-corrosive, light weight, cheaper and easily manufacturable 

material [7][8]. The polymers can significantly improve the life and performance of the heat 
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exchangers due to their antifouling and anticorrosive properties. Polymer heat exchangers 

are lighter weight than their metal counterparts and thus reduce the costs of the heat 

exchanger and the structural supportsalso become lighter [7]. 

Some of the studies in recent years have applied additive manufacturing technologies like 3D 

printing to design and fabricate heat exchangers [7][8][9]. The common heat exchangers 

found in these studies are again the familiar shell-tube and plate-fin type heat exchangers. 

The study by Martinus et al. [8], on air-water straight plate-fin polymer heat exchangers 

produced comparable results with a commercial product. This reinforces the need for 

innovations in heat exchanger materials. 

Though introduction of additive manufacturing technology offers an immense design 

flexibility only a very few heat exchanger studies focus on designs other than shell-and-tube 

or plate-fin. One such study is based on microfluidic membrane devices and estimates the 

structure-dependent performance of microfluidic heat exchangers with sheet-like triply-

periodic minimal-surface (TPMS) architectures [9]. The TPMS geometries, namely Schawarz 

P,D,G were fabricated and it was found that the Schwarz D geometry exhibited the best heat 

transfer characteristics with respect to inherent pressure drop [9]. It provides the motivation 

for this study which is aimed at evaluating the performance of a 3D-printed Schwarz D heat 

exchanger, but on a macro rather than a micro scale. 
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CHAPTER 2 

APPROACH 

The present study involves testing the performance of a heat exchanger that is drastically 

different from existing conventional designs. A heat exchanger is designed, built and 

fabricated to conform to the triply periodic minimal surface (TPMS), with defined inlets and 

outlets for the heat transfer fluids. A custom test rig is designed and built to obtain the 

necessary data for all the parameters needed to analyze the performance of the system. This 

section details several aspects of design considerations for both the heat exchanger and the 

experimental setup. 

 

2.1 Heat exchanger design 

 

The heat exchanger in this study is a triply periodic minimal surface with a diamond lattice 

structure known as Schwarz D. This geometry is defined by the implicit expression [2]: 

sin(𝑥) sin(𝑦) sin(𝑧) + sin(𝑥) cos(𝑦) cos(𝑧) +    

cos(𝑥) sin(𝑦) cos(𝑧) + cos(𝑥) cos(𝑦) sin(𝑧) = 0   (1) 

We can use this equation to define the Schwarz D geometry in any mathematical plotter or 

Computer Aided Design (CAD) software. Initial attempts were made to visualizing the 

geometry, using MathMod ver. 5.1, of a 4-channel Schwarz D model. The software which 

was great for visualizing mathematical models was limited, however, when it came to the 

output file formats. The 3D printers commonly use a STL file format (abbreviated for 

stereolithography, a common additive manufacturing process) which gives the raw 
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unstructured triangulated surface and normal to define a 3D object. This enables cross 

platform compatibility among different types of 3D printers. 

 

Generating these surfaces using raw data points in CAD software like SolidWorks and 

Autodesk Fusion proved a bit challenging. Wolfram Mathematica, however, offers a direct 

STL format geometry output from a 3D mesh plot. Using the documentation provided on 

TPMS on the Wolfram Demonstrations Project [4], several modifications were made to 

generate custom Schwarz D geometries in a single unit space as shown in Fig. 5 by moving 

the range bar from single unit cell to any desired number of flowchannels. The visual style 

and opacity of the geometry can be controlled by clicking on the respective buttons in the 

dynamic evaluation window as well as the number of recursions. 
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Fig 5: Dynamic window in Mathematica to manipulate the Schawarz D geometry. 

The geometry is discretized using the “DiscretizeGraphics” command as shown in Fig.6, 

which is then meshed to get the final geometry.  

 

Fig 6: Discretized graphic of the Schwarz D geometry. 

 

The final mesh geometry can be exported as an STL file format mesh that can be read 

directly by a 3D printer to produce a physical geometry as shown in Fig. 7. The output file is 

exported to the default document location and is saved as a file named “S_D1.stl”. The STL 

file can be accessed using built-in windows 3D Builder or any compatible CAD software. 
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Fig 7: Geometry region meshed. 

 

The geometry generated from Mathematica is an open heat exchanger without any defined 

boundaries or walls or any defined inlet and outlet as seen in Fig 8. The raw format of the 

STL files works to our advantage as it just defines the surfaces and not the scale of the 3D 

geometry. A single file can be used to print geometries of different sizes just by updating the 

dimension and scale used in that iteration. To simplify the manifolds, we can scale the 

geometry to match the outer diameter of the inlet and outlet pipes for a simple geometrical 

fit, in this case, 0.5in (12.7mm). This defines the scale of our heat exchanger, the inlets and 

the outlets. 
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Fig 8: Heat exchanger in STL format generated using Mathematica. 

 

After determining the scale of the heat exchanger, a boundary wall with defined openings for 

inlets and outlets can be modelled using SolidWorks. A boundary box with defined fluid 

lines is positioned over the heat exchanger with proper orientation. An incredible advantage 

with these TPMS surfaces is that every alternate channel is connected, so there are several 

points where we can define our inlets and outlets. The walls of the box are defined such that 

there is a solid enclosure between adjacent channels. The finished heat exchanger after 

encasing the boundary boxand is shown in Fig. 9. The boundary box is a cube of side 10.8 
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cm (4.25 in) with a thickness of 0.3 cm (0.12 in). Figure 10 shows an X-ray view of the 

Schwarz geometry inside the boundary box. 

 

Fig 9: Heat exchanger with defined fluid channels. 

 

Fig 10: X-Ray view of the heat exchanger. 

FLUID 1 

FLUID 2 
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The flow paths inside the Schwarz D core can be visualized by creating a negative of the 

geometry in Fig 8. The flow paths in a Schwarz D core are shown in Fig. 11. 

 

Fig 11: Visualizing the two flow paths (red and blue) inside a Schwarz D core. 

2.1.1 Fabrication 

After designing the heat exchanger, we must choose a method of fabrication. As discussed 

earlier, we have a variety of combinations of materials and printers we can use to print our 

model. Earlier attempts to print the model using PLA extruders like MakerBot replicator 

showed poor surface finish and dimensional tolerances. Finally, the model was printed using 
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PA-2200 or Polyamide, nylon 12 using an EOS P110 SLS printer by selectively sintering 

layer-by-layer using a high-powered laser on a powder bed. 

We focus on finding a non-dimensional parameter to quantify heat transfer effectiveness and 

pressure loss for the given geometry. As a significant number of studies [7][8] have been 

conducted on polymer heat exchangers the present study provides additional data to 

characterize the performance of nylon-12. The fabricated model is shown in Fig. 12. 

 

 

Fig 12:Fabricated Schwarz D heat exchanger 

 

The thermal properties of Nylon-12 or PA 2200 can be found in Table 1. 

 

 

Table 1: Thermal properties of Nylon-12 (PA 2200)[10]: 
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Property Measurement Method Value(units) 

Thermal conductivity – 

Vertical to sintered layers 

DIN52616 

0.144 W m-1 K-1 

~Thermal conductivity – 

Horizontal to sintered 

layers 

0.127 W m-1 K-1 

Water Absorption – 100oC 

saturation 

ISO62/DIN53495 

1.93% 

Water Absorption – 23oC 

96% RF 
1.33% 

Water Absorption – 23oC 

50% RF 
0.52% 

 

2.2 Experimental setup 

The experimental setup is designed to extract data to analyze the performance of the heat 

exchanger. The output of the experiments included 4 temperature measurements, THI, TCI, 

THO, TCO, flow rates on the hot and cold side, and the differential pressure across the hot 

side of the heat exchanger. Figure 13shows a photograph of the experimental setup and Fig. 

14 shows a schematic diagram for better understanding. 
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Fig 13: Photograph of the experimental setup 

 

Fig 14: Schematic of the experimental setup. 
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The flow must be fully developed before it enters the heat exchanger. The volume flow rates 

in the experiment were regulated between 0.8 and 1.6 gpm (5.05 to 10.10 x 10-5 m3 s-1). The 

flow is turbulent, Re>4000. So the entrance length is calculated using the equation [12]: 

𝐿𝑒 = 4.4𝑅𝑒

1

6𝑑      (2) 

where 𝐿𝑒 is the entrance length, 𝑅𝑒 the Reynolds number, and d the diameter of the inlet 

pipe. For the maximum flow rate of 1.6 gpm (10.10 x 10-5 m3 s-1), 𝐿𝑒 = 26.5 𝑐𝑚. 

The temperatures for both the hot and cold channels are measured at the fluid inlet and 

outlet. Each temperature is measured using a calibrated Omega T-type beaded thermocouple 

with a 0.508 mm (0.20 in) diameter. The thermocouples are attached to the fluid line as 

shown in Fig. 15. 

 

Fig 15: Thermocouple arrangement in the hot fluid side. 
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The initial pressure measurements were made using a Setra Model 230 True wet-to-wet 

Differential Pressure Transducer. But after the initial experiments it was found that the range 

of pressures observed was below the resolution of the transducer. A simpler alternative was 

to set up a U-tube manometer to measure the differential pressure.Two U-tubes were 

therefore configured, one on the inlet and outlet of the hot side and attached along a vertical 

scale. This gives us two water level measurements, one for each of the higher and lower 

pressure regions in the flow. The pressure difference across the hot side flow at different 

flow rates was measured as the difference in the water levels of the two manometers before 

converting the values into equivalent pressure by using ∆𝑃 = 𝜌. 𝑔. ∆ℎ. The setup of the 

manometer is shown in Fig. 16. 

 

Fig 16: Manometerarrangement. 
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The flow was controlled by the valves attached to the rotameters positioned on both the hot 

and cold sides. The rotameters were calibrated by using the time taken to fill a graduated 

3500 ml cylinder at a fixed flow rate. 

The hot and cold side flows were controlled by using two pumps (EcoPlus 528 and EcoPlus 

1000), where the cold side was controlled to a constant 0.8 gallon per minute(gpm) (5.05x 

10-5 m3 s-1) flow rate and the hot side flow rate was regulated between 0.8 and 1.6 gpm (5.05 

to 10.10x 10-5 m3 s-1)for this experiment using the knobs on the rotameter. The hot side was 

heated with an immersion heater inside the reservoir. Initial trials suggested that the 

temperature difference in the hot side was small enough to recirculate the water. For the 

cold side, the flow was sent through an ice chest, filled with ice, before returning for 

recirculation. Figure 17 shows the fluid reservoirs with marked inlets and outlets. 

 

Fig 17: Hot and cold fluid reservoirs along with the ice chest on the cold side. 

 

Hot Supply 

Hot Return 

Cold Supply 

Ice Chest 

Cold Return 
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The setup was built using 0.5 in (12.7 cm) copper tubing and connectors to make it uniform. 

The tubes were connected using T-joints at the points where the temperature and pressure 

measurements were needed. All the joints were soldered to avoid any leaks as shown in Fig. 

15, with all the ends soldered.  

The heat exchanger which structurally fits in to the setup is sealed using hot glue, a common 

adhesive used with nylon-12 parts. Prior to data acquisition, all the exposed copper tubing 

was insulated using 0.25 in (6.35 mm) foam to avoid external heat input or heat losses. 

Figures 18and 19 show the side view and the top view of the heat exchanger fixed 

completely into the setup. The cold side inlet and outlet is marked to provide a reference on 

how the heat exchanger is mounted. 

 

Fig 18: Side view of the heat exchanger mounted in the setup. 

Cold Inlet 
Cold Outlet 
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Fig. 19:  Top view of the heat exchanger mounted in the setup. 

2.2.1 Data acquisition 

The flow rate and pressure data for this experiment are measured manually by reading the 

indicators in the instruments. Most of the temperature measurements, except for the 

reservoir temperatures, are collected using a National Instruments (NI) NI-9213 C series 

temperature input module mounted on a compact Data Acquisition (cDAQ) 9174 chassis. 

We did not expect rapid temperature changes in the system, so the sampling rate was set at 1 

S/s (samples/second). The thermocouples used were Omega T type beaded type 

thermocouples with a 0.508 mm (0.20 in) diameter. We already established how the 

thermocouples were mounted to the fluid channel in the previous section. The 

thermocouples were calibrated usinga Thermo Scientific Haake DC10 P5 model thermostat, 

Cold Inlet 

Cold Outlet 

Hot Inlet 

Hot Outlet 
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shown in Fig. 20, which followed the thermostat reading to the nearest 0.05 оC. Each trial of 

the experiment was run till the temperature fluctuations in the data were within this limit. 

 

 

Fig 20: Thermostat used for calibrating the thermocouples. 

As discussed before the flow rates were measured using rotameters. A 3500-ml graduated 

cylinder was filled and timed using a stopwatch at different flow rates fixed on the rotameter. 

The data obtained from these measurements were close to the rotameter reading within ± 

0.04 gallon/min. 

During the calibration experiments conducted for the originally intended differential 

pressure transducers, the water column was connected to the high-pressure end and the low-

pressure end wasexposed to atmospheric pressure. The data collected between 10 inches and 

43 inches of water column had less than 1% deviation from the actual pressure reading and 

followed a linear plot. The pressure difference in this experiment, however, after the initial 

trials was less than what could be easily resolved by the transducer.  
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Hence, for pressure measurements we had to resort back to the U-tube manometers. The 

pressure was measured by reading the length of the water column on the two manometers 

on the high and low-pressure side on the hot side of the heat exchanger and noting the 

difference in the height of the water column. This was compared to the standard inches of 

water to psi chart to get the pressure difference. In the worst-case scenario, our error in 

pressure measurement was between±8%, if the readings were misread. 

2.3 Errors and uncertainties 

As discussed in the previous section, our measurements have certain errors compared to the 

actual value. We can use the concepts from R.J Moffat’s work on Uncertainty Analysis to 

determine the uncertainties in this experiment [12]. From the data obtained in this 

experiment, we can find the heat transferred, �̇�, in the cold channel, for example, by using 

the following formula: 

�̇� = �̇�. 𝜌. 𝐶𝑝. (𝑇𝑐𝑜 − 𝑇𝑐𝑖)     (3) 

where �̇� is the flow rate of the water,𝐶𝑝the specific heat of water,𝑇𝑐𝑖the temperature of the 

water at the cold inlet, 𝑇𝑐𝑜 the temperature of the water at the cold outlet and 𝜌 the density 

of water. The cold side temperaturesare low and are susceptible to a relatively large relative 

error, hence they are used to find the maximum uncertainty in measuring the heat 

transferred. 

The steady-state relative error for the above expression can be found using: 

𝛿�̇�

�̇�
= {(

𝛿�̇�

𝑉
)

2

+ (
𝛿𝑇𝑐𝑜

𝑇𝑐𝑜
)

2

+ (
𝛿𝑇𝑐𝑖

𝑇𝑐𝑖
)

2

}

1

2

    (4) 

Plugging in the average steady-state temperatures and flow rates for a giventrial yields: 

𝛿�̇�

�̇�
= {(

0.04

0.8
)

2

+ (
0.5

6.21
)

2

+ (
0.5

3.18
)

2

}

1

2

    (5) 
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In other words, the heat transfer rate, �̇�, has a relative error of 18.36% for �̇� = 640.09 W at 

the worst-case scenario for the heat transfer. The trial given here has the maximum relative 

error for the flow rate and the temperatures. Hence, it has the maximum relative error 

among all the trials studied. 

The summary of all uncertainties expected in the experiment is shown in Table 2. 

Table 2: Summary of uncertainties in the experiment: 

Parameter Uncertainty in measurement 

Flow rate, �̇� ±0.04 gpm 

Temperature, T (thermocouple) ±0.05 oC 

Temperature, T (thermometer) ±0.5 oC 

Manometer, h ±0.125 in 

 

2.4 Procedure for analysis 

We have the temperature values from all the trials. From this we derive �̇� , the heat transfer 

rate on the hot side and the cold side.  

We know that the Log Mean Temperature Difference (LMTD) method is used commonly 

for counter flow heat exchangers. We can relate �̇�to the LMTD as follows [10]: 

�̇� = 𝑈𝐴 ∆𝑇𝐿𝑀      (6) 

where 𝑈is the overall heat transfer coefficient, 𝐴the heat transfer area, and∆𝑇𝐿𝑀the Log 

Mean Temperature Difference defined by: 

∆𝑇𝐿𝑀 =
∆𝑇1−∆𝑇2

ln (∆𝑇1 ∆𝑇2⁄ )
     (7) 

where for this counter-flow heat exchanger, 
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∆𝑇1 = 𝑇ℎ𝑖 − 𝑇𝑐𝑜     (8) 

∆𝑇2 = 𝑇ℎ𝑜 − 𝑇𝑐𝑖     (9) 

We can invert Eq. 5 to determine𝑈𝐴as: 

𝑈𝐴 =
�̇�

∆𝑇𝐿𝑀
      (10) 

The NTU or Number of Transfer Units is a non-dimensional method to characterize a heat 

exchanger. NTU is defined by: 

𝑁𝑇𝑈 =
𝑈𝐴

(�̇�𝐶𝑝)
𝑚𝑖𝑛

     (10) 

Another parametercharacterizing the heat exchanger is the heat exchanger effectiveness, ε, 

which is the ratio of the rate of heat transfer �̇�, to the maximum theoretical heat transfer, 

�̇�𝑚𝑎𝑥
̇ [10]: 

휀 =
�̇�

�̇�𝑚𝑎𝑥
     (11) 

�̇�𝑚𝑎𝑥
̇ = (�̇�. 𝜌. 𝐶𝑝)𝑚𝑖𝑛 . (𝑇ℎ𝑖 − 𝑇𝑐𝑖).     (12) 

We can use the data obtained to find a relationship between the effectiveness and the NTU. 
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CHAPTER 3 

RESULTS 

The data presented in this section are obtained under steady-state conditions. Steady state 

refers to the state where the inlet temperatures of both the hot and cold side vary less than 

±0.5oC from their respective reservoirs.At the same time the data from the thermocouples 

are constant within a bandwidth of ±0.05oC for at least 30 seconds. It was observed that 

steady state was achieved within 25 minutes of the start of the experiment. After each trial, 

the pumps were shut off and the system was allowed to cool off for 10 minutes before the 

next trial. After the trial began, the temperature data were monitored until the temperatures 

approached the reservoir temperatureafter which the data were logged until they reached 

steady state. At steady state an additional set of data was logged for further analysis. 

3.1 Temperatures 

Table 3: Average steady-state temperature data 

Trial 𝑉 ̇ (ℎ𝑜𝑡) 

(𝑔𝑝𝑚) 

𝑇ℎ𝑖  

(℃) 

𝑇𝑐𝑖  

(℃) 

𝑇ℎ𝑜  

(℃) 

𝑇𝑐𝑜  

(℃) 

∆𝑇1 

(℃) 

∆𝑇2 

(℃) 

∆𝑇𝐿𝑀  

(℃) 

1 0.8 32.58 8.15 32.23 8.36 24.22 24.08 24.15 

2 0.8 44.77 17.81 44.28 18.33 26.44 26.47 26.45 

3 1.2 40.16 5.39 39.82 8.61 31.55 34.43 32.97 

4 1.2 30.54 3.18 30.16 6.21 24.34 26.98 25.64 

5 1.2 33.07 3.58 32.66 6.52 26.55 29.08 27.80 

6 1.6 39.94 7.68 39.70 8.50 31.44 32.02 31.73 

7 1.6 30.83 6.55 30.66 7.34 23.49 24.11 23.80 
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Table 3 shows the average temperatures and mass flow rate for all the trials. 

 

 

Fig 21: Temperature profile of the hot inlet and outlet temperatures for trial 2. 

 

 

Figures 21 and 22 show the steady-state temperatures for trial 2 at the hot and cold 

channels.It can be observed that most points in the graphs are within the limits set for 

steady-state inlet and outlet temperatures.  
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Fig 22: Temperature profile of the cold inlet and outlet temperatures for trial 2. 

 

 

Figures 23 and 24 show the complete steady state plot for trial 2.  The variance of last 40 

data points in the plots are on the order of 10-4, which was considered steadystate. 
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Fig. 23: Transient state response on the hot side for trial 2. 

 

Fig. 24: Transient state response on the cold side for trial 2. 
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3.2 Heat Transfer Rate 

Now comparing heat transferred on the hot side, the cold side and the maximum possible 

heat transfer rate, we get the following result shown in Table 4.  Note that the flow rate of 

the cold side is fixed at 0.8 gpm (5.05 x 10-5 m3 s-1). So, the minimum heat capacity rate Cminis 

always based on the cold side. 

Table 4: Different heat transfer rates calculated from the data  

Trial �̇�ℎ𝑜𝑡 

 (𝑊) 

�̇�𝑐𝑜𝑙𝑑 

(𝑊) 

�̇�𝑚𝑎𝑥 

(𝑊) 

휀

=
�̇�ℎ𝑜𝑡

�̇�𝑚𝑎𝑥

 

𝑈𝐴 

(WK-1) 

𝐶𝑚𝑖𝑛  

(WK-1) 

𝐶𝑚𝑎𝑥  

(WK-1) 

𝑁𝑇𝑈 

=
𝑈𝐴

𝐶𝑚𝑖𝑛
 

𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
 

1 73.9
4 

44.36 5160.85 0.0143 3.06 211.25 211.25 0.0145 1 

2 103.
51 

109.85 5695.32 0.0182 3.91 211.25 211.25 0.0185 1 

3 107.
74 

680.23 7345.18 0.0147 3.27 211.25 316.88 0.0155 0.67 

4 120.
41 

640.09 5779.82 0.0208 4.70 211.25 316.88 0.0222 0.67 

5 129.
92 

621.08 6229.78 0.0209 4.67 211.25 316.88 0.0221 0.67 

6 101.
40 

173.22 6814.94 0.0149 3.20 211.25 422.5 0.0151 0.5 

7 71.8
3 

166.89 5129.16 0.0140 3.02 211.25 422.5 0.0143 0.5 

 

We can observe that the heat transfer on the cold side is generally extremely high compared 

to the rate of heat loss on the hot side which has a relatively consistent heat transfer rate. So, 

the hot side heat transfer rate, �̇�ℎ𝑜𝑡 , is used to evaluate the Number of Transfer Units 

(NTU). Since the temperature differences are within the uncertainty limits, the data obtained 

cannot be completely trusted. This could be due to a lack of sufficient time for the heat 

exchanger to attain steady-state conditions. This could also be due to the core heating up 
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and not having enough time to release the heat reflected in the cold side abnormalities. The 

material nylon – 12 sometimes retains water and the retained water at a relatively higher 

temperature could have sparked an anomaly in the cold side heat transfer.  

 

3. 3. 휀 v NTU relationship 

The data from the hot side is used in the effectiveness equation(11) and we can find a value 

for 휀, and the NTU value for different values of 𝐶𝑟 =
𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
. Since the data points are not 

sufficient for a decent plot, we can use a logarithmic trendline to extrapolate using MATLAB 

to obtain the following plot shown in Fig 25. The data points used are marked in the figure. 

 

Fig 25: 휀 v NTU data for different capacity ratios. 

 

The logarithmic functions for each capacity ratio are given below: 
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𝐶𝑟 =  0.67, 휀 =  0.01854𝑒0.2025𝑁𝑇𝑈      (14) 

𝐶𝑟 =  0.5, 휀 =  0.01443𝑒0.0429𝑁𝑇𝑈      (15) 

The NTU values calculated for similar effectiveness values for a counter-flow shell-and-tube 

heat exchanger is discussed in section 3.5 

3.4. Pressure drop 

Heat exchanger characterization is not complete without discussing the pressure loss across 

the heat exchanger. In this experiment, we use two U tube manometers and measure 

differential pressures based on the difference in heights of the two water columns. The flow 

rate of the cold side is fixed at 0.8 gpm (5.05x 10-5m3 s-1) and because of the symmetry of the 

heat exchanger, the pressure difference is only measured on the hot side for flow rates 

between 0.8 gpm and 2.0 gpm.  The differences in heights are tabulated in Table 5. 

Table 5: Pressure measurements for the hot side of the heat exchanger 

�̇� (𝑔𝑝𝑚) ∆𝐻 (𝑖𝑛) ∆𝑃 (𝑝𝑠𝑖) ∆𝑃 (𝑃𝑎) 

0.8 1.625 0.059 406.79 

1.2 2.625 0.095 655.00 

1.6 3.500 0.126 868.74 

2.0 4.125 0.149 1027.32 

 

The plot in Fig. 26 shows the relationship between flow rate and the pressure loss.The best-

fit curve for the data obtained in the experiment is determined as 

∆𝑃 =  0.0261�̇�2 + 0.0508  RMS 0.0106    (16) 

 

 



 33 

 

Fig 26: Pressure loss v flow rate in the Schwarz D heat exchanger. 

The pressure loss in a pipe flow is directly related to the square of the average velocity, 

∆𝑃 𝛼 𝑉2. The average velocity is proportional to the flow rate. So, we can plot a polynomial 

curve of order 2 as the best-fit curve. 

3.5 Comparisonto conventional heat exchangers 

We can compare our results to a conventional heat exchanger in terms of material used, 

effective pressure loss and performance. For this comparison we need todetermine the 

hydraulic diameter of the flow. For the Schwarz D geometry, we can find the average area of 

the cross section of the fluid flow by inspecting a thin cross section. The average channel 

cross-sectional area is determined to be 193.69 mm2. From this the hydraulic diameter,𝐷𝐻 , is 

found to be 15.72 mm. The total volume, 𝑉𝑡, occupied by the Schwarz D core is 1157.625 

cm3 (cube of side 10.5 cm). The volume of material,𝑉𝑚, used for printing the heat exchanger 

is 339.2 cm3. The fluid volume, 𝑉𝑓, is the difference between the two:  𝑉𝑓 = 818.425 cm3.  
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𝑉𝑓 =
2.𝜋.𝐷𝐻

2.𝐿𝑒𝑓𝑓

4
     (17) 

and is found to be 210.84 cm. The heat transfer surface area𝐴, calculated using 𝐿𝑒𝑓𝑓and 𝐷𝐻 , 

is 1040.72 cm2. For the same heat transfer surface area and hydraulic diameter, a shell-and-

tube heat exchanger core of same length will occupy a volume of 1524.53 cm3(densely 

packed 20 cylinders of length 10.5 cm and 2 mm thick walls). Compared with the shell-and-

tube heat exchanger, the Schwarz D model is more compact and occupies 32% less space. 

The Schwarz D geometry is equivalent to 20 tubes of length 10.5 cm with the same hydraulic 

diameter, 𝐷𝐻 . We can compare the friction factor for the Schwarz D geometry, 𝑓𝐷for 

different flow rates using the pipe flow friction factor equation: 

𝑓𝐷 =
∆𝑃𝜋2𝐷𝐻

5

32�̇�2𝐿𝜌
      (18) 

The Reynolds number for the flow in the tube were found to be within the laminar region. 

The friction factor for the pipe in shell-and-tube heat exchanger,𝑓𝑝 can be evaluated as [9]: 

𝑓𝑝 = 64/𝑅𝑒      (18) 

We can use this to evaluate a correlation factor 𝜔 for the Schwarz D geometry for laminar 

flow, where,  

𝑓𝐷 =  𝜔
64

𝑅𝑒
      (19) 

The friction factors can be found in Table 7. 
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Table 7: Friction factors for Schwarz D geometry and shell-and-tube: 

�̇� (𝑔𝑝𝑚) 𝑅𝑒 𝑓𝐷 𝑓𝑝 
𝜔 =

𝑓𝐷

𝑓𝑝
 

0.8 229.96 178.57 0.28 637.75 

1.2 344.94 127.36 0.19 670.32 

1.6 459.92 95.01 0.14 678.64 

2.0 574.9 71.91 0.11 653.73 

 

Compared to the flow in a pipe, the Schwarz D geometry has a higher frictional loss if the 

laminar flow case is considered. In the Schwarz D heat exchanger, geometry is a major cause 

of flow disturbances due to internal mixing within the hot and cold fluid channels. Assuming 

the laminar flow condition in an equivalent pipe does not consider the loss due to friction, 

hence the correlation factor 𝜔 is significantly higher but are on the same order of magnitude. 

The variation friction factors for Schwarz D (𝑓𝑑)and the pipe (𝑓𝑝)compared with the 

estimated friction factor from Femmer’s results (𝑓𝑡 =
233

𝑅𝑒
) are shown in Fig. 27. 

 



 36 

 

Fig 27: Friction factor v Reynolds number 

3.6 Estimating overall heat transfer coefficient, U 

The overall heat transfer coefficient, U can be calculated by using the equation 

𝑈 = (
1

ℎ
+

𝑡

𝑘𝑛
+

1

ℎ
)

−1

     (20) 

where ℎ is the convective heat transfer coefficient, 𝑡 the wall thickness and 𝑘𝑛 the thermal 

conductivity of nylon [9]. 

The convective heat transfer coefficient can be estimated using the Nusselt number, 𝑁𝑢, 

𝑁𝑢 =
ℎ𝐿

𝑘𝑤
      (21) 

where ℎ is the convective heat transfer coefficient, 𝐷𝐻 the hydraulic diameter and 𝑘𝑤 the 

thermal conductivity of water [9].  

For a Schwarz D geometry, the Nusselt number can be calculated using the equation, 

𝑁𝑢 = 𝑎𝑅𝑒
𝑏𝑃𝑟

1/3     (22) 

where 𝑅𝑒 is the Reynolds number, 𝑃𝑟 the Prandtl number, a (1.20) and b (1.81) are 

characteristic parameters for the Schwarz D geometry [9]. 
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The overall heat transfer coefficient using this method was found to be 36.1 W K-1m-2. 

3.7 Discussions 

The results obtained in the study were within the uncertainty limits. This can be improved 

with some updates to both the heat exchanger and the experiment.  

The heat exchanger wall thickness was 4 mm which can be reduced by manipulating the 

thickness of the Schwarz D geometry in Mathematica. A custom python program can be 

written to easily control the thickness of the geometry, which significantly improves the heat 

transferred. The current design of the heat exchanger manifolds can have null spaces in the 

heat exchanger where the flow is stagnated or there is no fluid flow. Increasing the number 

of inlet ports can provide an evenly distributed flow pattern inside the heat exchanger. Cross 

flow design provides the best flow distribution, where a single inlet can be distributed to all 

available flow channels. Transparent resin-based material can be used to print the heat 

exchanger for a better visual understanding of the flow. Nylon has a low thermal 

conductivity, thermally conductive plastics or metal embedded plastics or even metals can be 

used to print the heat exchanger for better results from the experiment.  

Some changes in the experiment design can improve the results. The manifold can be 

integrated into the fluid line instead of the pipes connecting into the heat exchanger for 

higher operational pressures. A closed-loop temperature control drastically improves the 

steady state performance, avoiding the high uncertainties in the current design by keeping 

the inlet temperatures at a fixed level. Instrumentation upgrades can lower the uncertainties 

in the results. The thermocouples must be mounted closer to the flow to avoid errors in 

measurements due to eddies.  
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CHAPTER 4 

CONCLUSION 

The primary goal of this study was to try and break free from the established design norms 

and explore new possibilities, taking advantage of the latest technologies like 3D printing in 

thermal applications. As a first phase of this research, this study was conducted to establish 

an understanding of the behavior of heat exchangers with complex 3D geometries. The 

study explored several ways of generating TPMS geometries, applying different 3D printing 

technologies like FDM and SLS to build prototype heat exchangers. 

The experimental results show some abnormalities in the cold side for the temperatures and 

the heat transfer rates. The hot side has a consistent difference across all trials. But the data 

acquired are within the uncertainty limits, so no definitive conclusions can be drawn from 

the data. There are several anomalies expected due to internal mixing and the geometrical 

factors in this case. The steady-state from the hot side was used to determine the 

effectiveness of the heat exchanger and the NTU- relation which were also within 

uncertainty limits.  

For same heat transfer surface area and hydraulic diameter, the volume occupied by a shell-

and-tube heat exchanger can be calculated. Compared to the shell-and-tube geometry, the 

Schwarz D geometry occupies less volume and is smaller by 32%. The friction factor for the 

shell-and-tube heat exchanger and the Schwarz D geometry followed similar trends, as 

observed in the studies by Femmer[9], with increasing Reynolds number. 
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CHAPTER 5 

FUTURE WORK 

Being a relatively new area of research, a more comprehensive study should be conducted 

with extensive experiments and in a more controlled environment. This would allow us to 

refine the effectiveness relationships obtained by extrapolation. 

Computational study needs to be done to better understand the flow paths inside the 

complex geometry to help optimize the shape of the heat exchanger for better performance. 

New materials like carbon/copper embedded plastics that have higher conductivity than 

nylon – 12 can be used to fabricate the heat exchangers, bridging the gap between metal and 

polymer heat exchangers. 
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APPENDIX A 

MATHEMATICA CODE 
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***Creates a 3D geometry Plot*** 
Manipulate[ 
 geometry= 
  
ContourPlot3D[Sin[x]Sin[y]Sin[z]+Cos[x]Sin[y]Cos[z]+Cos[y]Sin[z]Cos[x]+Cos[z]Sin[x]Cos[
y]==0,{x,-r,r},{y,-r,r},{z,-r,r},Axes->False,Mesh->False,Background->Black,Boxed-
>False,MaxRecursion->mr,Contours->1,MeshFunctions->Automatic,BoundaryStyle-
>If[style=="color",Directive[Yellow,Thick,Opacity[op]],None],RegionFunction-
>Function[{x,y,z},If[region=="cube",(True),Norm[{x,y,z}]<r]],ContourStyle-
>If[style=="color",{Opacity[op],Specularity[White,30],FaceForm[Orange,Blue]},{Opacity[o
p],Specularity[White,10],Lighting-
>"Neutral",Texture[ExampleData[{"Texture","Straw"}]]}],PerformanceGoal:>"Speed",Ima
geSize->400,SphericalRegion->True,PlotTheme->"ThickSurface"], 
 
 {{r,10,"range"},1,10,ImageSize->Tiny}, 
 {{op,.6,"opacity"},1,.3,ImageSize->Tiny}, 
 {{mr,1,"recursion"},{0,1,2,3}}, 
 {style,{"color","texture"}}, 
 {region,{"cube"}},ControlPlacement->Left] 
 

***Creates discretized points*** 

geometry2 = DiscretizeGraphics[geometry] 

***Creates a Mesh*** 

geometry3 = MeshRegion[geometry2, PlotTheme -> "Lines"] 

***Saves mesh as a STL file*** 

Export["S_D1.stl", geometry3] 
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APPENDIX B 

STEADY-STATE TEMPERATURE DATA 
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TRIAL 1 

 

 

 

Time T_hi T_ci T_ho T_co

1 32.59852 8.151139 32.25498 8.336994

2 32.60859 8.147521 32.25132 8.345938

3 32.59671 8.137849 32.24394 8.351676

4 32.59986 8.14686 32.25993 8.352861

5 32.59791 8.160687 32.24964 8.359573

6 32.58114 8.145863 32.23984 8.348073

7 32.59214 8.157456 32.24004 8.349944

8 32.58755 8.147872 32.24084 8.346764

9 32.5825 8.150618 32.23129 8.34619

10 32.57205 8.139374 32.22759 8.343246

11 32.59257 8.156484 32.22988 8.348024

12 32.57651 8.145016 32.22417 8.352441

13 32.57945 8.143131 32.23229 8.350794

14 32.58641 8.155212 32.23566 8.363817

15 32.58359 8.152006 32.23103 8.342126

16 32.57303 8.156524 32.23983 8.356359

17 32.57588 8.153366 32.23165 8.360787

18 32.58506 8.1628 32.23858 8.357419

19 32.5801 8.154489 32.22371 8.360014

20 32.58022 8.159357 32.21775 8.358481

21 32.57918 8.153042 32.21648 8.356435

22 32.572 8.158521 32.22213 8.354327

23 32.57327 8.1563 32.21507 8.35424

24 32.57277 8.157911 32.21232 8.362485

25 32.56424 8.154853 32.21144 8.359904

26 32.56209 8.166097 32.21919 8.364033

27 32.57015 8.165348 32.22028 8.366839

28 32.56216 8.169966 32.21363 8.371218

29 32.5697 8.168906 32.22501 8.368262

30 32.56723 8.167247 32.20925 8.359968

31 32.56788 8.168644 32.20945 8.377243

32 32.55172 8.171777 32.2131 8.379189

33 32.55969 8.178278 32.21613 8.395641

34 32.56247 8.180487 32.21687 8.399982

35 32.55643 8.183607 32.22862 8.403337

36 32.54707 8.175883 32.2143 8.404622

37 32.54727 8.184394 32.2109 8.419763
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TRAIL 2 

 

 

 

 

 

Time T_hi T_ci T_ho T_co

1 44.77389 17.82499 44.28988 18.32014

2 44.77066 17.82483 44.28027 18.32392

3 44.78032 17.81136 44.28137 18.32507

4 44.77714 17.82866 44.28587 18.318

5 44.76586 17.81302 44.28228 18.30795

6 44.77308 17.81787 44.28138 18.31256

7 44.77412 17.81502 44.28483 18.3074

8 44.76506 17.80613 44.27796 18.30849

9 44.77632 17.81897 44.28505 18.31366

10 44.78249 17.8104 44.27958 18.31508

11 44.76571 17.80776 44.27136 18.31452

12 44.77366 17.80989 44.27778 18.32384

13 44.77605 17.82054 44.27907 18.33749

14 44.77051 17.8126 44.27638 18.3328

15 44.77109 17.80439 44.2662 18.32994

16 44.77812 17.80532 44.2662 18.33643

17 44.76749 17.79919 44.26985 18.32869

18 44.78243 17.80848 44.26809 18.34261

19 44.77652 17.80618 44.27361 18.34936

20 44.78765 17.79891 44.27947 18.34626

21 44.77496 17.79873 44.28259 18.3317

22 44.78312 17.79552 44.2756 18.3118

23 44.76272 17.80088 44.27716 18.32759

24 44.76401 17.80341 44.29142 18.33313

25 44.75704 17.79301 44.27169 18.32785

26 44.7667 17.79603 44.27982 18.31881

27 44.76669 17.80554 44.28948 18.33758

28 44.76913 17.81369 44.29104 18.33714

29 44.76991 17.80964 44.29842 18.33588

30 44.76272 17.79298 44.28683 18.32342

31 44.77589 17.80111 44.30177 18.34127

32 44.7715 17.79484 44.29144 18.32272
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TRIAL 3 

 

 

 

 

Time T_hi T_ci T_ho T_co

1 40.18627 5.357002 39.8482 8.597448

2 40.17095 5.344331 39.84862 8.593396

3 40.17496 5.351502 39.84087 8.584881

4 40.17619 5.357128 39.84543 8.592126

5 40.16623 5.360722 39.8348 8.613932

6 40.16528 5.371623 39.83984 8.604147

7 40.17366 5.373732 39.83448 8.597951

8 40.18444 5.389389 39.84814 8.614444

9 40.1719 5.385434 39.84048 8.622361

10 40.17975 5.392693 39.84545 8.614171

11 40.16955 5.395543 39.83324 8.602315

12 40.17719 5.381581 39.83778 8.611192

13 40.17683 5.395982 39.8301 8.611042

14 40.16749 5.394048 39.83141 8.61907

15 40.17242 5.3972 39.83811 8.612962

16 40.16459 5.406192 39.8376 8.621889

17 40.17578 5.406781 39.83681 8.628869

18 40.15513 5.406266 39.82148 8.611304

19 40.16811 5.398532 39.81495 8.618548

20 40.14537 5.389078 39.81636 8.608924

21 40.15168 5.403027 39.80804 8.605009

22 40.13915 5.399083 39.80415 8.611752

23 40.14682 5.407336 39.81338 8.608339

24 40.13785 5.393624 39.80751 8.60491

25 40.1397 5.39085 39.79916 8.608077

26 40.13789 5.398207 39.80977 8.606855

27 40.13935 5.40097 39.80014 8.621206

28 40.13843 5.399978 39.79656 8.605772

29 40.13632 5.392697 39.79289 8.602095

30 40.13434 5.395334 39.79401 8.611108

31 40.1238 5.40165 39.79589 8.606721

32 40.13203 5.403824 39.80346 8.624513

33 40.12862 5.401825 39.81158 8.614475
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TRIAL 4 

 

 

 

 

 

Time T_hi T_ci T_ho T_co

1 30.54547 3.18222 30.16437 6.21197

2 30.58149 3.179777 30.18653 6.199272

3 30.58753 3.19266 30.19937 6.213974

4 30.57847 3.185921 30.18713 6.2149

5 30.59223 3.203636 30.19977 6.232734

6 30.57025 3.194701 30.17709 6.208857

7 30.57746 3.191091 30.18545 6.215511

8 30.5804 3.19205 30.18545 6.209082

9 30.57561 3.183128 30.18087 6.219746

10 30.5721 3.192829 30.17578 6.222476

11 30.55634 3.185699 30.17244 6.213727

12 30.57318 3.193017 30.17573 6.222187

13 30.55353 3.186556 30.16285 6.210768

14 30.54946 3.176964 30.15561 6.198384

15 30.54622 3.180005 30.15169 6.207595

16 30.5433 3.174982 30.1612 6.196414

17 30.52994 3.171599 30.14399 6.193292

18 30.52407 3.178804 30.15011 6.197591

19 30.53195 3.172531 30.15844 6.199219

20 30.53123 3.175849 30.15433 6.200371

21 30.53738 3.187646 30.16433 6.207803

22 30.53749 3.191115 30.16353 6.205295

23 30.52634 3.187922 30.15283 6.203791

24 30.53076 3.179428 30.15499 6.213213

25 30.52591 3.189144 30.15918 6.222864

26 30.51991 3.177508 30.14617 6.208926

27 30.51689 3.175502 30.14903 6.217886

28 30.52503 3.175021 30.15762 6.222886

29 30.52052 3.171916 30.15333 6.221469

30 30.50026 3.165049 30.14753 6.223221

31 30.50534 3.164922 30.14289 6.226429

32 30.50917 3.171863 30.14039 6.221178
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TRIAL 5 

 

 

 

 

 

 

Time T_hi T_ci T_ho T_co

1 33.05024 3.587241 32.63861 6.535234

2 33.0484 3.589597 32.64038 6.538288

3 33.05762 3.596064 32.64218 6.543523

4 33.04906 3.59628 32.64103 6.529222

5 33.0485 3.59904 32.64385 6.540768

6 33.05361 3.594186 32.64491 6.53666

7 33.05162 3.587277 32.6517 6.525514

8 33.07022 3.587933 32.66086 6.543536

9 33.05407 3.591324 32.6636 6.543573

10 33.06082 3.578389 32.65347 6.525964

11 33.06971 3.586432 32.6554 6.529195

12 33.06426 3.588047 32.663 6.538652

13 33.08026 3.59072 32.66866 6.529409

14 33.06515 3.582764 32.67739 6.52103

15 33.06647 3.581302 32.67624 6.538852

16 33.08117 3.575161 32.67767 6.524185

17 33.07754 3.579195 32.67921 6.527955

18 33.07552 3.575854 32.68304 6.529395

19 33.0594 3.566336 32.6759 6.508517

20 33.07634 3.567623 32.67756 6.51979

21 33.08438 3.575464 32.67188 6.498785

22 33.08145 3.559894 32.67953 6.518775

23 33.0862 3.571657 32.6782 6.508091

24 33.08447 3.560233 32.67715 6.501502

25 33.08963 3.566928 32.68636 6.504345

26 33.08235 3.550791 32.67165 6.489504

27 33.09382 3.552947 32.67345 6.493074

28 33.08771 3.544525 32.67837 6.49494

29 33.08868 3.548194 32.67124 6.481688
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Trial 6 

 

 

 

 

 

Time T_hi T_ci T_ho T_co

1 39.96715 7.673753 39.68262 8.496401

2 39.96991 7.66697 39.69802 8.496739

3 39.96902 7.678365 39.70312 8.490107

4 39.95392 7.670984 39.69512 8.489136

5 39.96496 7.680191 39.70838 8.503301

6 39.96438 7.690725 39.7078 8.510736

7 39.96114 7.686776 39.70744 8.503478

8 39.96211 7.682594 39.70974 8.495275

9 39.96637 7.683833 39.71001 8.49983

10 39.9571 7.672963 39.70872 8.503905

11 39.96352 7.679361 39.7147 8.509107

12 39.94316 7.675364 39.695 8.484979

13 39.94171 7.666221 39.70264 8.490541

14 39.94271 7.677727 39.70319 8.484257

15 39.95766 7.68234 39.70063 8.492416

16 39.94519 7.666147 39.69903 8.487862

17 39.93633 7.681105 39.69482 8.494974

18 39.92162 7.676045 39.69297 8.489449

19 39.94746 7.670712 39.69863 8.484125

20 39.92804 7.670338 39.6812 8.480909

21 39.93057 7.680635 39.69127 8.48716

22 39.94256 7.680185 39.68442 8.513483

23 39.93264 7.676203 39.69423 8.507139

24 39.9315 7.683773 39.686 8.502612

25 39.93559 7.686959 39.6974 8.495605

26 39.93278 7.689883 39.69636 8.513687

27 39.92401 7.689759 39.69048 8.508351

28 39.92338 7.700478 39.68431 8.506256

29 39.91913 7.697819 39.68271 8.506919

30 39.90693 7.699717 39.69003 8.502418

31 39.92043 7.698982 39.69755 8.510687

32 39.92242 7.700362 39.69022 8.499776
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TRIAL 7 

 

Time T_hi T_ci T_ho T_co

1 30.84702 6.520961 30.67466 7.324335

2 30.84002 6.525006 30.6654 7.329323

3 30.84141 6.518142 30.66747 7.324609

4 30.83477 6.531368 30.66263 7.324509

5 30.85193 6.527323 30.67438 7.334249

6 30.85417 6.547524 30.67977 7.351563

7 30.84044 6.525682 30.6744 7.330235

8 30.84177 6.527084 30.6798 7.344462

9 30.84178 6.536139 30.66444 7.337111

10 30.84305 6.524867 30.6743 7.343674

11 30.84426 6.53138 30.66874 7.334735

12 30.84336 6.544705 30.66806 7.342098

13 30.84719 6.541362 30.67731 7.3504

14 30.83966 6.541524 30.67023 7.348899

15 30.8474 6.549439 30.67662 7.355137

16 30.8399 6.561048 30.6829 7.369101

17 30.8395 6.554436 30.69018 7.357988

18 30.83412 6.561385 30.68209 7.368963

19 30.83475 6.556101 30.67278 7.360362

20 30.84073 6.566206 30.68147 7.365224

21 30.83713 6.552895 30.66183 7.352174

22 30.83411 6.558993 30.67349 7.366337

23 30.83455 6.558266 30.67325 7.353023

24 30.82421 6.54856 30.66223 7.347134

25 30.82477 6.541772 30.66234 7.340121

26 30.827 6.548409 30.65779 7.339858

27 30.82343 6.5437 30.64609 7.330881

28 30.82845 6.559693 30.65699 7.337583

29 30.82361 6.552216 30.6413 7.328218

30 30.82482 6.547069 30.64229 7.340895

31 30.81415 6.551051 30.6307 7.315653

32 30.81983 6.559893 30.63187 7.319966


