
Smoothed Airtime Linear Tuning and Optimized REACT with Multi-hop Extensions

by

Matthew J. Mellott

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2018 by the
Graduate Supervisory Committee:

Violet Syrotiuk, Chair
Charles Colbourn
Ilenia Tinnirello

ARIZONA STATE UNIVERSITY

May 2018

©2018 Matthew J. Mellott

All Rights Reserved

ABSTRACT

Medium access control (MAC) is a fundamental problem in wireless networks.

In ad-hoc wireless networks especially, many of the performance and scaling issues

these networks face can be attributed to their use of the core IEEE 802.11 MAC

protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning

(SALT) is a new contention window tuning algorithm proposed to address some of the

deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level

and optimized implementation of REACT, a distributed resource allocation protocol,

to ensure that each node secures the amount of airtime allocated to it by REACT.

The algorithm accomplishes that by tuning the contention window size parameter

that is part of the 802.11 backoff process. SALT converges more tightly on airtime

allocations than a contention window tuning algorithm from previous work and this

increases fairness in transmission opportunities and reduces jitter more than either

802.11 DCF or the other tuning algorithm. REACT and SALT were also extended

to the multi-hop flow scenario with the introduction of a new airtime reservation

algorithm. With a reservation in place multi-hop TCP throughput actually increased

when running SALT and REACT as compared to 802.11 DCF, and the combination of

protocols still managed to maintain its fairness and jitter advantages. All experiments

were performed on a wireless testbed, not in simulation.

i

DEDICATION

This thesis is dedicated to my parents, Dr. Ramona Mellott and Dr. Micheal

Mellott. Without your constant support I would have never been able to complete

this work. And without your encouragement I may never have tried.

ii

ACKNOWLEDGMENTS

I would like to acknowledge my wonderful committee chair, Dr. Violet Syrotiuk.

There were ups. There were downs. And it took longer than we thought, and then

longer than that. Thank you for sticking with me through it all and especially for

having faith in me when I was ready to throw in the towel. Special thanks also goes to

my committee members Dr. Charles Colbourn and Dr. Ilenia Tinnirello for supporting

this work and for waiting so long in suspense.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 6

2.1 w-iLab.t Testbed . 6

2.1.1 Finding Topologies on the w-iLab.t Testbed 7

2.1.2 Topologies Found . 8

2.2 Quantitative Convergence Comparisons . 9

2.3 REACT . 12

2.4 Garlisi et al. Tuning . 12

2.5 Summary . 15

3 REACT PROTOCOL OPTIMIZATIONS . 16

3.1 Convergence Time . 16

3.1.1 Update Time . 17

3.1.2 Convergence Proof . 18

3.2 Messaging Overhead . 19

3.2.1 Comparison of Options for Reducing Messaging Overhead . . 19

3.2.2 Experimental Evaluation for Reducing Messaging Overhead 23

3.3 Summary . 24

4 CONTENTION WINDOW TUNING . 25

4.1 SALT: Smoothed Airtime Linear Tuning . 25

4.2 SALT Implementation . 27

iv

CHAPTER Page

4.3 SALT Evaluation . 28

4.3.1 β,k Parameters Experiment . 29

4.3.2 Comparison Experiment . 31

4.4 Summary . 33

5 MULTI-HOP REACT AND MULTI-HOP RESERVATIONS 39

5.1 Multi-hop Algorithm Description . 40

5.2 Multi-hop Reservation Evaluation . 41

5.3 Summary . 44

6 CONCLUSION . 45

REFERENCES . 49

v

LIST OF TABLES

Table Page

1. REACT Update Time vs. Number of Neighbors . 17

2. Throughput and Convergence Time by Messaging Implementation Strategy . 24

vi

LIST OF FIGURES

Figure Page

1. The Hidden and Exposed Node Problems . 3

2. Map of 100% Transmission Probability Links on the Testbed 9

4. Map of Non-Zero Transmission Probability Links on the Testbed 10

6. Testbed Map Showing the Position of Each Node . 11

7. Topologies Used in Upcoming Experiments Shown on Testbed Map 11

8. REACT Kernel Level Implementation Headers Appended to 802.11 Headers . 20

9. All Testbed Topologies with Single-Hop Flows . 29

10.Convergence Time Heat Maps for Each β,k on Each Topology 30

11.Airtime vs. Time Graphs with β = 0.7, k = 500 for All Topologies 31

12.Comparison Experiment Airtime vs. Time Graphs for Complete Topology . . . 33

13.Comparison Experiment Airtime vs. Time Graphs for Star Topology 34

14.Comparison Experiment Airtime vs. Time Graphs for Line Topology. 35

15.Comparison Experiment Statistics for Complete Topology 36

16.Comparison Experiment Statistics for Star Topology . 37

17.Comparison Experiment Statistics for Line Topology . 38

18.Line Topology with Multi-Hop Flow . 42

19.SALT/REACT with Multi-Hop TCP Reservation Placed vs. 802.11 43

vii

Chapter 1

INTRODUCTION

Most wireless networks we encounter regularly rely on fixed network infrastructure.

At a coffee shop your laptop accesses the network through an access point that is

backed by the wired network provided by that shop’s ISP. Cellular coverage depends

on a vast network of towers and each tower covers an fixed area or “cell”. Conversely,

ad-hoc wireless network are formed by nodes communicating directly. Such a network

can emerge spontaneously because it does not require the presence of infrastructure

like an access point or cell tower. In the presence of seemingly ubiquitous Wi-Fi and

cell coverage ad-hoc networks might seem irrelevant, but there are still many situations

where network infrastructure is not present or unusable or perhaps even maliciously

inoperative. For example after disasters, like the Boston marathon bombing [1], phone

networks (landlines and cellular) are frequently overwhelmed. If first responders could

form an ad-hoc network they could communicate across the disaster area and relay

data to allow radios to communicate beyond their physical range limitations. In the

2016 Gambian presidential election both the Internet and cell phone networks were

blocked [2]. Hong Kong street protesters faced a similar problem in 2014 and turned

to an app called FireChat [3]. This app uses the capabilities already present in mobile

phones, through support in the 802.11 standard (i.e., Wi-Fi), to let users communicate

on an ad-hoc basis. Thus despite the government’s crackdown, protesters were still

able to communicate with each other. But while successful in this case, 802.11 based

ad-hoc networks still face many challenges.

Performance problems are one of the main challenges facing ad-hoc networks. Data

1

flows can exhibit severe instability problems [4], [5], and when there are many hops

transmission control protocol (TCP) throughput degrades quickly [4]. Under load these

networks suffer from a high degree of contention and reach saturation at data rates

much lower than in comparable wireless local area networks (WLANs) [6]. Unfairness

in regards to transmission opportunities (where some nodes get a disproportionately

large share of the channel while others are starved) is also a problem and drives or

exacerbates the other problems [4], [5]. These performance problems can primarily

be attributed to the medium access control (MAC) protocol used in wireless ad-hoc

networks [4]–[7].

The distributed coordination function (DCF) is the default 802.11 MAC protocol.

To transmit, a node must first wait the duration of a DCF interface space (DIFS). If

the channel is not sensed busy during the DIFS then the node is allowed to transmit.

However if the channel was sensed busy the node must wait for the channel to be

idle for a DIFS and then start decrementing its backoff counter. The backoff counter

is picked randomly from the interval [0, C), called the contention window, where C

is the contention window size. C starts at Cmin and is doubled every transmission

failure up to Cmax. On success C is reset to Cmin. The resizing of the contention

window is one of the causes of unfairness. It causes nodes that have already acquired

the channel to be more likely to acquire it again than nodes that have sensed it busy.

If the channel is sensed busy at any point while counting down then backoff becomes

frozen; the counter is no longer decremented until the channel is idle for a DIFS.

Once transmission does occur the receiving node transmits an ACK after waiting the

duration of a Short Interframe Space (SIFS) after the packet is received. Positive

acknowledgment is used instead of requiring the transmitting node to detect a collision

itself while transmitting. Since the SIFS plus its propagation delay is shorter than a

2

DIFS no node is able to detect the channel idle for a DIFS until the end of the ACK.

This allows that ACK to follow right after a received packet without contending and

with a lower probability of being interfered with. If a transmitting node does not get

an ACK after a certain amount of time then it determines its transmission failed.

When all nodes are within transmission range of each other the ACK scheme can

work well. However when there are nodes in the network outside the transmission

range of each other we can encounter problems like the hidden node problem and the

exposed node problem (shown in Figure 1).

A B C

(a) Hidden Node

A B C D

(b) Exposed Node

Figure 1: The hidden and exposed node problems

The hidden node problem is where two nodes A and C are interfering with each

other at node B but neither A nor C can detect that the other is transmitting. This

is especially problematic because when B tries to ACK a transmission from either

A or C the other node might interfere with the ACK because it never sensed the

transmission B is acknowledging.

The exposed node problem involves two transmitting nodes within range of each

other that are contending with each other for the channel even though at their separate

destinations their transmissions would not interfere. Both of these problems can show

up in WLANs but in ad-hoc networks there is no central access point that has full

knowledge of the network and that could coordinate transmissions. An example of

such coordination are RTS and CTS packets. When a station receives at CTS packet

it knows to not transmit, even if the medium is not physically sensed busy, for an

3

interval specified in the packet. In a wireless LAN the access point will be sending

out the CTS packet in response to a RTS from some node connected to it that wants

to transmit. The access point is by definition within range of all nodes in the network

so the CTS it sends out will prevent all nodes from interfering with the node that

is ready to transmit. Ad-hoc networks can also utilize the RTS/CTS (i.e., virtual

carrier sense) feature of 802.11. However they lack a central coordinator like an access

point and so nodes that are outside of CTS reception range but within interference

range can still cause contention. Virtual carrier sense also does nothing to address

the problem of exposed nodes in ad-hoc networks.

Many solutions to the problems of unfairness and high contention in ad-hoc

networks have been proposed. In [8] the authors propose a protocol, SSCH, that

has nodes switching between channels so that communicating nodes share the same

channel while nodes with disjoint communications do not. SSCH reduces contention

when communicating nodes can be efficiently partitioned onto separate channels.

However there can still be a high degree of contention on the single shared control

channel, and the scheme is limited by the number of separate frequencies available. [9]

takes a similar approach, and has similar drawbacks, but instead implements channel

assignment at the MAC level. In [10] the authors make significant improvements to

fairness using rate limiting. Each node has a fixed maximum data rate, and because

there is a limit no node can saturate the channel, which would lead to unfairness.

Thus rate limiting solves the problem of unfairness by not letting it occur. This

approach, however, is dependent on precise knowledge of the channel’s capacity (to

ensure the chosen rates will prevent saturation). The authors of [11] address the

problem of contention directly by using contention window tuning. Their CW tuning

scheme is formulated such that the network achieves its theoretical maximum aggregate

4

throughput, but the question of fairness is completely neglected. The REACT protocol

was first proposed in [12] as part of a scheduled MAC protocol and takes a different

approach to address both unfairness and high contention using a distributed auction

for channel resources. In [13] REACT was transformed into a contention based scheme

using a contention window tuning algorithm to realize the airtime allocated to nodes

by REACT. In this thesis we will build upon REACT and the work already done on

contention window tuning algorithms.

This thesis will demonstrate that REACT and contention window tuning are

even more effective techniques than shown in previous work and can be extended to

multi-hop scenarios. Chapter 2 discusses REACT and contention window tuning in

more depth and introduces the testbed and other background knowledge that might be

helpful when reading subsequent chapters. In Chapter 3 we introduce a new user-space

implementation of REACT and discuss related optimizations for this implementation.

Perhaps the most significant contribution of this thesis comes in Chapter 4 where we

introduce a new contention window tuning algorithm and a experimental evaluation

of this new algorithm on the testbed. Finally in Chapter 5 we extend REACT and

the new tuning algorithm to the multi-hop scenario by introducing a new multi-hop

reservation algorithm.

5

Chapter 2

BACKGROUND

In this chapter we discuss some of the information that is required to understand

the contributions of this thesis. We introduce the testbed that our experiments were

performed on in Section 2.1. This introduction includes explaining how topologies were

found on the testbed and describing which topologies we used in our experiments in

Section 2.1.1 and Section 2.1.2. A metric for quantitatively comparing the convergence

times of our experiments is described in Section 2.2. Finally we describe REACT and

the tuning algorithm from [13] in Section 2.3 and Section 2.4 respectively.

2.1 w-iLab.t Testbed

All experiments were performed on the CREW project w-iLab.t testbed [14]. This

testbed has two separate locations: the “office” location in Ghent, Belgium and the

“Zwijnaarde” location in Zwijnaarde, Belgium. We used the latter and it is commonly

referred to as the Wilab2 testbed. Wilab2 is composed of 60 wireless nodes, called

the “zotac” nodes, with two IEEE 802.11a/b/g/n antennas along with several other

interfaces we did not use (e.g., IEEE 802.15.4, IEEE 802.15.1, Software Defined Radio,

spectrum scanners). Some of these nodes are also mobile and are mounted on Roomba

vacuum robots. We used one of these mobile nodes but it remained stationary. While

the testbed is large and provides many nodes, finding specific wireless topologies is a

non-trivial task.

6

2.1.1 Finding Topologies on the w-iLab.t Testbed

For REACT especially it is very important that topologies are “high-quality”. This

means that nodes cannot successfully receive packets from other nodes that are not

supposed to be within transmission range. If a single broadcasted control packet makes

it to a node “outside” of transmission range this can ruin an experiment by completely

changing the airtime offered to all nodes at that auction. The high-quality topologies

we found were created in two steps: first we performed a ping experiment and then

we used the results of these experiments to create graphs from which topologies could

be derived.

This ping experiment was fairly straightforward. It involved reserving every node

on the testbed and then having each node ping every other node 100 times. Each

node starts off by pinging itself as a sanity check. Then each node pings the next

node after itself in order, wrapping around if need be. For example node 5 pings

node 6 after pinging itself and node 60 pings node 1. This was done so that no two

nodes would be pinging the same node at the same time. The number of successful

pings out of 100 is the transmission probability between those two nodes. While there

certainly can exist uni-directional links in a wireless network pings require a response.

Since we are not interested in uni-directional links this is fine and checking that the

transmission probabilities from a node to another and then vice versa are the same

provides another sanity check.

With the transmission probability data we created two graphs of the network. The

first graph, G100, only has an edge between two nodes if their transmission probability

is 100% and can be seen in Figure 2. The second graph, Gall, has an edge between

every two nodes that have a non-zero transmission probability and can be seen in

7

Figure 4. Both graphs are important because we want topologies with high quality

links, which we can find with G100, but we also want to ensure there are no low quality

links that would violate our topologies by checking Gall. For example to find a line

topology with a certain number of hops the logic is as follows. For each pair of nodes,

check if the length of the shortest paths (there can be multiple shortest paths) between

these nodes in G100 is if of the target length. If it is, check that there there does not

exist a shorter path between the nodes in Gall. If there is not a shorter path then

the shortest paths in G100 are “high-quality” paths. This is because each link in the

path has a 100% transmission probability and there are no lower probability links

that would form a shorter path between the pair of nodes. Several different topologies

were found on the testbed using logic similar to this.

2.1.2 Topologies Found

Three topologies were used in all of our experiments. There is the complete

topology with four fully-connected nodes. There is the star topology with four leaf

nodes connected to one center node. There is the line topology with four nodes

arranged in a line with three hops. A map of the testbed can be seen in Figure 6

and Figure 7 shows each topology superimposed on top of that map. The red lines

represent links in the network. If there are no lines connecting nodes then they cannot

directly communicate. The nodes used in each topology are colored purple (instead of

the normal blue).

8

0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

zotacF6

zotacF4

zotacF3zotacF1

zotacB2zotacB3
zotacB1

zotacB4

zotacM18

zotacJ6

zotacD4zotacD6
zotacD1zotacD2

zotacD3
zotacE1zotacC4

zotacC6

zotacC1
zotacC3

zotacC2

zotacK4zotacK6
zotacK1zotacK3zotacK2

zotacE4
zotacE3

zotacM20

zotacG6

zotacI6
zotacI4

Figure 2: Map of 100% transmission probability links on the testbed

G100

2.2 Quantitative Convergence Comparisons

In order to compare our experimental results we had to come up with a way to

measure convergence time. Convergence is an easy thing to qualitatively gauge when

looking at a graph. In some of our airtime vs. time graphs especially you can see

the measurements converge quickly to values that they remain around for the rest of

the experiment. One thing that is harder to gauge from looking at a graph however

is how tightly things converge. You can see that the values did in fact converge but

trying to eyeball whether values remain within a 20% or 15% or 5% range of the

9

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.4

0.2

0.0

0.2

0.4

0.6

zotacF6

zotacF4

zotacF3
zotacE1

zotacF1

zotacB2
zotacB3

zotacB1

zotacB4 zotacM18zotacJ6

zotacD4

zotacD6
zotacD1
zotacD2

zotacD3
zotacC4

zotacC6
zotacC1

zotacC3

zotacC2

zotacK4
zotacK6

zotacK1
zotacK3

zotacK2

zotacE4

zotacE3
zotacM20

zotacG6

zotacI6
zotacI4

Figure 4: Map of non-zero transmission probability links on the testbed

Gall

value they converged to is a futile exercise. This convergence threshold, as we call

it, is an important factor when you are comparing two experiments on the basis of

convergence time. If in one experiment values converge more slowly but at a lower

convergence threshold that is still an important and perhaps interesting distinction.

In order to quantitatively compare convergence times for various thresholds we use a

statistic called coefficient of variation.

The coefficient of variation (CV) is the ratio of standard deviation to the mean.

It is a statistical measurement of the dispersion of our measurements expressed as a

percentage. In our experiments there are multiple nodes each with a separate series of

10

Figure 6: Testbed map showing the position of each node

(a) Complete Topology (b) Star Topology

(c) 3-hop Line Topology

Figure 7: Topologies used in upcoming experiments shown on testbed map

measurements over time that may be converging to different values. CV is useful in

this scenario because it does not matter what value our measurements are converging

to. We can compare every CV to a single threshold to determine if measurements

have converged to the value they will be converging to and if that convergence is

within the threshold we have set. In order to determine if values for a particular trial

have converged we must first set T , the convergence threshold (e.g., T = 0.1). If the

CV for all of a node’s values after a certain time t are below T then that node has

converged. Once all nodes converge then the trial has converged. The time of the last

node to converge is the convergence time for the trial. Like our intuitive notion of

11

convergence this measure quantitatively captures the same idea: after a certain point

in time no node’s values vary by more than a certain amount around its mean. All

the convergence times we mention from here are on out were found using this method

and are accompanied by the convergence threshold used to compute them.

2.3 REACT

REACT is a distributed resource allocation protocol that uses the metaphor of an

auction. When used in the context of wireless networks the resource being allocated

(or being put up for “auction”) is airtime, the percentage of time a node controls the

medium over a given period. Each node runs both an auctioneer (Algorithm 2) and a

bidder (Algorithm 1), and auctioneers offer capacity while bidders claim capacity at

adjacent auctions to satisfy their own airtime demand. Auctioneers update their offers

to satisfy all nodes bidding at their auction while also ensuring that all nodes receive a

fair allocation of the resource. Bidders update their claims to ensure that they are not

consuming any more airtime than can be offered at any adjacent auction. In [12] it was

shown that the nodes participating in REACT converge to a lexicographic max-min

airtime allocation. Auctioneers in our experiments are programmed to allocate 80%

of the channel while bidders all start with a demand for 100% of the channel. These

values were also used in previous work [13].

2.4 Garlisi et al. Tuning

In [13] the authors transformed REACT, which had previously been used in a

scheduled MAC protocol [12], into the basis for a novel contention based MAC protocol.

12

Algorithm 1 REACT Bidder for Demand i.
1: upon initialization
2: Ri ← ∅
3: wi ← 0
4: UpdateClaim()
5: end upon
6: upon receiving a new demand magnitude wi

7: UpdateClaim()
8: end upon
9: upon receiving offer from auctioneer j

10: offers[j]← offer // Remember the offer of auctioneer j.
11: UpdateClaim()
12: end upon
13: upon bidder i joining auction j
14: Ri ← Ri ∪ j // Resource j is now required by demand i.
15: UpdateClaim()
16: end upon
17: upon bidder i leaving auction j
18: Ri ← Ri \ j // Resource j is no longer required by demand i.
19: UpdateClaim()
20: end upon
21: procedure UpdateClaim ()
22: // Select the claim to be no larger than the smallest offer or wi.
23: claim← min ({offers[j] : j ∈ Ri}, wi)
24: send claim to all auctions in Ri

25: end procedure

This new system takes a node’s airtime allocation from REACT and tries to realize it

at runtime by tuning the contention window size parameter that is part of the 802.11

backoff process. REACT combined with the contention window tuning algorithm,

which we will call the “Garlisi et al. [13]” algorithm from now on, was very successful.

The authors show that the system provided for fairer opportunities for transmission

than 802.11 DCF while also reducing contention and with only a small reduction in

throughput due to the auction’s overhead.

Garlisi et al. [13] considers, over a given observation period, the amount of time

the channel is frozen, the actual airtime achieved, the number of channel accesses, and

the previous contention window size in order to determine the contention window size

for the next interval. The equation below shows exactly how each of these parameters

13

Algorithm 2 REACT Auctioneer for Resource j.
1: upon initialization
2: Dj ← ∅
3: cj ← 0
4: UpdateOffer()
5: end upon
6: upon receiving a new capacity of cj
7: UpdateOffer()
8: end upon
9: upon receiving claim from bidder i

10: claims[i]← claim // Remember the claim of bidder i.
11: UpdateOffer()
12: end upon
13: upon bidder i joining auction j
14: Dj ← Dj ∪ i // Demand i now requires resource j.
15: UpdateOffer()
16: end upon
17: upon bidder i leaving auction j
18: Dj ← Dj \ i // Demand i no longer requires resource j.
19: UpdateOffer()
20: end upon
21: procedure UpdateOffer ()
22: D∗

j ← ∅
23: Aj ← cj
24: done← False
25: while (done = False) do
26: // If D∗

j contains all bidders in Dj , then auction j does not
27: // constrain any of the bidders in Dj .
28: if (D∗

j = Dj) then
29: done← True
30: offer← Aj +max ({claims[i] : i ∈ Dj})
31: // Otherwise, auction j constrains at least one bidder in Dj .
32: else
33: done← True
34: // What remains available is offered in equal portions to the
35: // bidders constrained by auction j.
36: offer← Aj/|Dj \D∗

j |
37: // Construct D∗

j and compute Aj for the new offer.
38: for all b ∈ {Dj \D∗

j } do
39: if (claims[b] < offer) then
40: D∗

j ← D∗
j ∪ b

41: Aj ← Aj − claims[b]
42: done← False
43: send offer to all bidders in Dj

44: end procedure

14

are accounted for. W ∗
i is the next contention window size. s∗i is the airtime allocation.

σ is the length of a backoff slot as defined by the 802.11 specification. C is the length

of the observation period (note C as used here is different from how we typically use

it to represent the contention window size). F is amount of time backoff was frozen

during C. A is airtime during C. n is number of channel accesses during C.

W ∗
i =

2

σ
· A(1− s

∗
i)

n · s∗i
·
(
1− F

C − A

)
. (2.1)

2.5 Summary

In the following chapters any experiment we present can be assumed to have been

performed on the Wilab2 testbed discussed in this chapter. Similarly all references to

the complete, star, or line topologies refer to the topologies shown in this chapter and

use the exact testbed nodes highlighted on the testbed maps. Next we will build upon

previous work on REACT by considering its efficiency and possible optimizations.

15

Chapter 3

REACT PROTOCOL OPTIMIZATIONS

When considering REACT protocol optimizations there are two areas of concern:

convergence time and protocol overhead. There are two different aspects of the

protocol that could be targeted for optimization, namely the update algorithms or

the messaging scheme, in order to improve performance in either of these areas. Both

aspects of the protocol affect convergence time but in different ways.

If fewer rounds of sending out messages are required for the protocol to converge

then convergence time is reduced by the number of rounds saved multiplied by the

amount of time each of those rounds took. Optimizing the update algorithms reduces

the time each round takes; if updated offers and claims can be computed more quickly

then a new message can be sent out sooner. When it comes to protocol overhead,

however, only the messaging scheme is really relevant. Reducing the time it takes to

compute updated offers and claims does not affect the number of messages that are

required for the protocol to converge.

In Section 3.1 shows that convergence time is tightly bounded. Section 3.2 focuses

on reducing messaging overhead.

3.1 Convergence Time

There are two aspects of the REACT protocol that are relevant to convergence

times. The time it takes to update claims and offers affects convergence time and the

number of rounds of messages that must be sent before the auction converges does as

16

well. Below we show updates can happens quickly and that at most three rounds of

messaging are required for convergence.

3.1.1 Update Time

Claims and offers can be updated quickly. To show this we ran a REACT node

with varying numbers of simulated neighbors and measured how long it took the node

to update its claim and offer. This “simulation” (in which REACT was running on

a testbed node) was done by generating and sending to the node a number claim

and offer update messages equivalent to what it would get if it had the number of

neighbors in that trial. Table 1 shows the results for a number of neighbors ranging

from 10 to 100000. In the first column are the number of neighbors that were used

in that trial. The second column shows how long a full update took, which includes

updating the node’s neighbor list, claim, and offer for each simulated message. Even

for the completely unrealistic value of 100,000 neighbors all the updates happen in

very little time, 237.78 ms.

Table 1: REACT update time vs. number of neighbors

Neighbors Processing Time (ms)
10 0.03814
100 0.63896
1000 6.1771
10000 21.211
100000 237.78

17

3.1.2 Convergence Proof

After working with the REACT protocol on many topologies we noticed that it

only ever took 3 rounds at most for it to converge. We now prove that this is the case.

First we start with a few simplifying assumptions. There are n nodes. All nodes

start running REACT at the same time and send out a message after some set interval.

The length of this interval is considered one round. At startup all nodes send out

a message containing offers and claims to the other nodes. Each node can process

every message received and update its own offer and claim before the end of the

round. There are no one-way connections; if a node gets a message from another node

then that node also got its message. All these assumptions are generally true in our

experiments.

The first offer and claim is received by every node from its neighbors. To compute

its new offer a node tries to satisfy all claims it has received. If it can satisfy all claims

it has received then its new offer is whatever airtime was left after satisfying all claims

plus the maximum claim. When it sends this offer out no neighbor increases its claim

because every node’s claim was satisfied and the new offer is at least as big as the

largest claim. If the node cannot satisfy all claims then it sends out an offer that

is equal to its capacity divided by the number of neighbors. Now begins round two.

Every node gets new offers from their neighbors. Their claim, at this point, can only

go down. Either their claim was satisfiable or they got an offer that reduces their

claim. The node’s claim now becomes the smallest offer or remains unchanged (equal

to its original demand). Now begins round three. The new claim is sent out to the

first node. All claims are now at least as small as the offer it sent out previously and

so it able to satisfy every offer. REACT has now converged in three rounds.

18

3.2 Messaging Overhead

Protocol overhead is one of the primary drawbacks to using REACT when compared

to 802.11 DCF. Every byte in every control message REACT sends, or every byte that

is added to an existing header, is a byte of information that would not be sent or need

to be sent when using 802.11 DCF. In previous work REACT improved fairness in

throughput between nodes but at the cost of lower aggregate throughput for the whole

network [13]; less relevant data (i.e., data nodes care about and not control messages)

were sent when using REACT. By reducing REACT protocol overhead we mitigate

this problem and make it less costly to use REACT from an aggregate throughput

perspective. To do this we must first look at the different options for implementing

protocol messaging. The version of REACT that was implemented at the kernel level

from [13] did this by adding fields to existing 802.11 headers. The new user-space

REACT introduced in this thesis instead sends out dedicated control messages. Since

user-space REACT sends out control messages we must also determine when or if to

send them out, and this seemingly simple but nuanced decision can affect if and how

REACT converges as well as protocol overhead.

3.2.1 Comparison of Options for Reducing Messaging Overhead

In [13] REACT was implemented within the Linux kernel. The implementation

added a specific header encapsulating the full state of the protocol for that node to

each 802.11 packet. The fields in this header and their sizes can be seen in Figure 8.

A total of 15 bytes was added to every single 802.11 packet. This is an additional 15

bytes of overhead for each packet sent, and the overhead for 802.11 packets is already

19

high. On a cumulative basis this overhead increases with every packet sent, and as

the data rate increases the associated overhead also increases (unless the application

is sending out more data in each packet, as opposed to more packets per unit of time).

1 struct state_header {
2 u8 mac[6];
3 u8 closed;
4 u8 finished;
5 u8 offer;
6 u8 claim;
7 u8 w;
8 u8 status_bidd;
9 u8 status_auct;

10 u16 reserved;
11 } state_header;

Figure 8: REACT kernel level implementation headers appended to 802.11 headers

There are also two disadvantages to this scheme that are not completely relevant

to messaging overhead but still worth mentioning. Since the state of the REACT

protocol is communicated via headers, nodes won’t be updated on their neighbors

offers and claims unless their neighbors are transmitting. Thus if even a single node

can’t transmit the protocol won’t converge until all nodes have gotten sufficient

chances to transmit. Since the protocol influences which node gets to transmit this

could have the double effect of keeping the auction from converging and excluding

a node that hasn’t had sufficient chances to transmit because it is not part of the

auction and will have trouble getting sufficient chances because it is not part of the

auction. In previous work this problem did not manifest to the point where it could

be deemed significant. However it is ironic that the overhead associated with modified

headers happens only and exactly when we don’t want it to happen—when nodes

20

are transmitting data—and not when the network is idle and could accept control

messages at basically no cost to aggregate data throughput.

The second disadvantage with this scheme is that the update algorithms must run

every time a packet is sent out. Similarly, updated state must be extracted from each

incoming packet. Before a packet is sent out the offer and claim must be recomputed

based on these values extracted from incoming packets, and the fresh offer and claim

are put into the state header that is inserted in to the standard 802.11 packet. As we

have seen, the update algorithms are not a big concern time-wise because they do not

add much latency to each packet. However this is processing time that is spent for

each packet in addition to the transmit time overhead added to each packet due to

the 15-byte header.

In this thesis we introduce a new implementation of REACT that runs in user-

space. It does not modify 802.11 packet headers. Instead, user-space REACT sends

out dedicated control messages. Each control message updates other nodes on the

sender’s state, and in the implementation this message is 63 bytes in size. The naïve

implementation of user-space REACT follows the exact description of the REACT

protocol in [12] sends out control messages as fast as it processes messages from other

nodes. This means a large number of control messages get generated and in fact so

many that almost no data can be sent. The entire network capacity would be taken up

by control messages if user-space REACT was implemented exactly how the protocol

is specified in pseudo-code.

One way this deluge of messages could be reduced might be to only send out a

message if a received offer or claim from a particular node changed from last time an

offer and claim was received from that node. This turns out to be a bad idea because

if for any reason an offer or claim is lost in transmission the protocol can grind to a

21

halt without converging. The two solutions for user-space REACT that were actually

implemented and tested were a dual-queue queuing discipline and simply sending

control messages out on a timer.

In the Linux kernel a queueing discipline (qdisc) determines how packets get

buffered when waiting to get transmitted and in what order they are finally taken out

of a buffer to be transmitted or dropped. For user-space REACT we implemented

a dual-queue qdisc. Qdiscs are part of the kernel, and so the REACT qdisc was

implemented as an external kernel module that can be dynamically loaded into a

running kernel. Once loaded the qdisc is then assigned to a particular network interface,

and its queuing/dequeueing interface is then used transparently by the network stack.

The first queue in our qdisc is for non-control packets; it operated with standard

FIFO mechanisms and is bounded by the system’s default tx_queue_len for that

device. The second queue is only for control packets. Its length is bounded to one,

and every time a new control packet enters the queue if there is an older packet in the

queue the older packet is dropped and the new packet takes its place. This means

that whenever a packet is taken out of the control queue to be sent it contains the

most up-to-date state for that node. The control queue also take precedence over the

non-control queue; if there is a packet in the control queue it will be sent first. A

control packet is still sent out whenever there is a control packet available to send,

but the qdisc reduces the number of packets sent because stale control packets are

dropped.

The other option for user-space REACT, after the qdisc, is to send control messages

out after a set time interval. This interval must be longer than the amount of time it

takes to update bids and offers, but that is the only restriction. It is possible that

using the approach makes it take longer for REACT to converge if the interval time is

22

much longer than the time it takes to compute offers and bids, but the interval should

also greatly reduce the overhead of control data. With this method the overhead for

control data does not increase when the data rate increases, unlike with the modified

headers method.

3.2.2 Experimental Evaluation for Reducing Messaging Overhead

To evaluate the different options for reducing messaging overhead an experiment

was performed. In this experiment there were two nodes. There was one greedy UDP

flow between the nodes. A comparison was made between four options: 802.11 DCF

(as a control), the naïve method, the qdisc method, and the time interval method.

For each method throughput of the greedy flow and convergence time was measured.

The results are given in Table 2. We see that with no control messaging, just 802.11

DCF, the throughput is very high. This throughput drops off very quickly with the

naïve method. Naïve user-space REACT is sending so many control messages that

throughput suffers considerably. In terms of throughput the qdisc method is even

worse. It turns out that even with the evicting of stale control messages REACT can

generate them so quickly that if they are prioritized almost no data can be sent. The

qdisc method converges the fastest, but this means almost nothing when barely a few

kilobits of data is being sent. In fact, the qdisc method does not even converge that

much faster than the naïve method. Finally we see that the time interval method’s

throughput is almost as good as 802.11. Unlike any of the other methods the time

interval method’s throughput is actually comparable to 802.11, but its convergence

time is more than double the other methods. The interval time was set to 100 ms

according to results from the update time experiment. This interval is long enough

23

that even updates for 10,000 neighbors would in less than a quarter of the interval

time. Even with the slowest convergence time the interval method’s convergence time

is not a problem and insignificant compared to the tuning convergence times seen in

Chapter 4.

Table 2: Throughput and convergence time by messaging implementation strategy

Variant Throughput (kbps) Convergence Time (ms)
802.11 4970.2 N/A
Naïve 571.70 95.749
qdisc 2.6834 67.720
Interval 4969.0 237.42

3.3 Summary

In this chapter we have dived into the REACT protocol and considered how it

can be best implemented. Our implementation works primarily in user-space and has

been carefully designed to reduce REACT protocol messaging overhead. This sets the

stage for the introduction of our new tuning algorithm in the next chapter that works

alongside REACT to achieve airtime allocations.

24

Chapter 4

CONTENTION WINDOW TUNING

The REACT protocol allocates resources between nodes participating in an auction,

and contention window tuning is the tool we use to realize that allocation. Tuning

of this sort is a potent tool and its power comes from the fact that it operates at

the MAC layer. As discussed in the introduction, this layer is the primary source of

performance issues and unfairness in ad-hoc networks. Moreover every packet that is

sent out onto the wireless medium must pass through the MAC layer. Thus the total

airtime consumed by a node, without distinction by flow, is affected by contention

window size choices. In this chapter we describe our novel algorithm SALT (Smoothed

Airtime Linear Tuning) and its implementation in sections 4.1 and 4.2. Next we

describe how SALT was evaluated on the testbed in Section 4.3. To evaluate SALT

it is first important to determine what values should be used for the algorithm’s

parameters, β and k. In Section 4.3.1 we make this determination. With β and k

worked out we can compare SALT to the original contention window tuning algorithm

as presented in [13]. This comparison is done in Section 4.3.2.

4.1 SALT: Smoothed Airtime Linear Tuning

We propose SALT as a new contention window tuning technique. Contention

windows are used by the 802.11 backoff algorithm to determine how long a node should

wait before attempting to transmit again after there has been a collision. SALT changes

the backoff process by programming a value Ct such that Cmin = Cmax = Ct. The

25

backoff counter is still picked from the range [0, Ct), but Ct is already at its maximum

value and cannot be doubled after transmission failures. We bound the size of the

contention window in this way because in [15] it was shown that a node’s transmission

probability depends on the average size of its contention window. Since SALT directly

controls this size by programming Ct it can change the node’s transmission probability

and tune Ct to achieve the airtime allocated to the node by REACT.

SALT measures a node’s airtime over a set interval and then uses that measurement,

at, to set Ct, the contention window size for the next interval. However at is not

passed directly to the tuning component of SALT. Using an exponentially weighted

smoothing technique the smoothed airtime, St, is computed from at and then used for

tuning. β is the smoothing parameter and is limited to the range (0, 1]. It controls

how heavily past airtime measurements are weighed when computing St. The closer

β is to zero the less Ct fluctuates in response to changes in the measured airtime.

Smoothing is done to reduce the effect of random background noise on the contention

window tuning process.

St =

 a1 if t = 1

βat + (1.0− β)St−1 if t > 1

You will notice that the t subscript for St and at start at 1. This is because at

represents the airtime measured over interval t so there is no a0; our first airtime

measurement is available after the end of the first interval. There is however a C0 in

SALT’s tuning component, shown below, because before the beginning of the first

26

airtime observation interval C0 = 0 is programmed.

Ct =

0 if t = 0

bSt − αck + Ct−1 if t > 0 and 0 ≤ bSt − αck + Ct−1 < 1024

1023 if t > 0 and bSt − αck + Ct−1 ≥ 1024

0 if t > 0 and bSt − αck + Ct−1 < 0

A starting value of 0 was chosen to minimize the amount of time nodes spend in backoff.

If the nodes do not achieve their airtime because there was too much contention the

successive Ct will be adjusted upwards but realizing allocations with the lowest possible

Ct will maximize throughput. In the equation above α is the node’s airtime allocation

from REACT and k is a constant scaling factor. Ct is inversely related to a node’s

transmission probability [15] and so Ct increases when St > α or decreases when

the opposite is true. The difference between St and α is scaled by k to convert the

difference of unit-less airtime ratios into a contention window size value.

4.2 SALT Implementation

SALT is implemented as a user-space Python program running on each Linux

testbed node in an experiment. It is part of the same program that is running REACT,

and the airtime allocation is passed from the thread running REACT to the thread

running SALT. The airtime measurement interval used is one second. SALT is invoked

after each of these one second intervals and uses data collected by the networking

subsystem to determine the airtime during the last interval. The kernel interface for

accessing the data used to compute airtime is a preexisting interface, but the interface

that SALT uses to set Cmin and Cmax required modifying the kernel.

Linux was modified to expose Cmin and Cmax to user-space programs. The interface

27

allows a user-space program to set these parameters and then the Linux kernel’s

networking subsystem honors the values. In the future patching the Linux kernel in

this way might not even be necessary. The 802.11e standard includes a feature called

Enhanced Distributed Channel Access (EDCA) and allows for the contention window

size to be set for each EDCA access category. The wireless subsystem also had to

be patched to accept contention window sizes that were not powers of 2. This patch

would still be necessary with full EDCA support.

4.3 SALT Evaluation

SALT was evaluated on the three different Wilab2 testbed topologies described in

Section 2.1.1. All the topologies are shown in Figure 9 with links between nodes shown

as black lines (all connections are bi-directional) and the flows shown as blue arrows

(denoting directionality). In the complete topology there are four single-hop flows,

one originating at each node to the next one. The star topology also has four flows

but five nodes. Each flow originates from one of the four outer nodes and terminates

at the center node. The line topology has four flows: two from the outside nodes in

and two from the inside nodes to each other.

In each topology in each experiment in this chapter we used greedy UDP flows.

These flows were setup with a target 1 Gbps UDP bandwidth far beyond the capabilities

of the wireless link (i.e., the channel was saturated), and we measured the throughput

of these flows as seen by the destination node. Jitter, drop rate, aggregate throughput,

and airtime measurements were also collected.

28

zotacK1

zotacK2

zotacK3

zotacK4

(a) Complete Topology

zotacB2 zotacF3

zotacF1

zotacF4

zotacI4

(b) Star Topology

zotacB2 zotacF3 zotacI4 zotacM20

(c) Line Topology

Figure 9: All testbed topologies with single-hop flows

4.3.1 β,k Parameters Experiment

In order to answer the question of what values we should use for β and k we

performed an experiment where these parameters were both varied over ranges of

their possible values. We varied β from 0.1 to 1.0 in steps of 0.1 and k from 250

to 5000 in steps of 250, making for 120 trials on each of the three topologies. Each

trial lasted for 15 seconds and we measured airtime data for each node in the trial

over that time. The amount of time it took for airtime to converge in each trial was

then computed using the CV measurement. In this case we used a CV threshold of

0.15. The heat maps in Figure 10 shows the convergence results for each topology

and each combination of β and k. The darker the square in the heat map the faster

that particular trial converged. All graphs share a small clustering of dark squares

towards the bottom left quadrant.

29

250 500 750 100012501500175020002250250027503000
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BE
TA

Convergence Varying BETA/k
(Darker is faster)

(a) Complete Topology

250 500 750 100012501500175020002250250027503000
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BE
TA

Convergence Varying BETA/k
(Darker is faster)

(b) Star Topology

250 500 750 100012501500175020002250250027503000
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BE
TA

Convergence Varying BETA/k
(Darker is faster)

(c) Line Topology

Figure 10: Convergence time heat maps for each β,k on each topology

Now with this data the question remains regarding which β and k pair to select.

To do this we averaged the convergence time for each trial on each topology that used

the same β, k and then picked the lowest average. This turned out to be a β of 0.6 and

k of 500. This gives the best average convergence time of 7.44 seconds. The airtime

versus time graphs using this β, k are shown in Figure 11 for each topology. We can

see in these graphs that the airtime consumed by each node did in fact converge very

quickly in each trial on each topology.

30

0 2 4 6 8 10 12 14
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacK3

zotacK2

zotacK1

zotacK4

(a) Complete Topology

0 2 4 6 8 10 12 14
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacF4

zotacF1

zotacI4

zotacB2

(b) Star Topology

0 2 4 6 8 10 12 14
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacI4

zotacM20

zotacB2

(c) Line Topology

Figure 11: Airtime vs. time graphs with β = 0.7, k = 500 for all topologies

4.3.2 Comparison Experiment

In this experiment we compared SALT to the Garlisi et al. [13]. 802.11 DCF was

also tested as a control, and both contention window tuning algorithms were being

run alongside REACT. The setup for this experiment was the mostly the same as the

last experiment. However the β and k parameters for SALT were set according to our

experimental results (β = 0.6, k = 500), and one trial was performed per 802.11 DCF,

SALT, and Garlisi et al. [13]. The flows in this experiment were still greedy UDP

31

flows setup as shown in Figure 9. A wider variety of measurements were taken during

these trials including airtime, throughput, drop rate, and jitter.

The airtime results for the complete topology can be seen in Figure 12. On this

topology like all the others the 802.11 DCF airtime measurements are all over the

place. Garlisi et al. [13] converges much more quickly than SALT but not as tightly.

In fact, with a lower CV threshold of 0.10 it does not converge until after more than

100 seconds have passed. Figure 15 shows throughput, jitter, drop rate, and aggregate

throughput graphs for the complete topology. The tighter convergence with SALT

leads to the higher throughput and generally lower jitter that can be seen in these

graphs. Both Garlisi et al. [13] and SALT have a near zero drop rate while 802.11’s

drop rate is very high, above 0.6 for one node. However even with a high drop rate

802.11 still comes out ahead in throughput with SALT coming in second above Garlisi

et al. [13]. These results are broadly similar to the ones for the star and line topologies

seen in Figures 13 and 16 for the star topology and Figures 14 and 17 for the line

topology. One aberration of note is the throughput for Garlisi et al. [13] in the line

experiment. The airtime graph shows that all the nodes converged very quickly but

the throughput graph shows almost zero throughput for any node but zotacB2. The

explanation for this can be seen in the drop rate graph in that the drop rate was very

high for all the nodes except zotacB2. The throughput that we measured was that as

seen by the receiver so while these nodes were getting airtime and transmitting, drop

rates were high and actual data was not getting received. In the line topology this a

particular problem because it combines both hidden and exposed node flows.

32

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacK3

zotacK2

zotacK1

zotacK4

(a) 802.11

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacK3

zotacK2

zotacK1

zotacK4

(b) Garlisi et al. Tuning Algorithm

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacK3

zotacK2

zotacK1

zotacK4

(c) SALT

Figure 12: Comparison experiment airtime vs. time graphs for complete topology

4.4 Summary

In this chapter we introduced SALT and showed it is an effective contention window

tuning algorithm. However all the experiments in this chapter used single-hop flows.

In the next chapter we will extend REACT and SALT to the multi-hop scenario.

33

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacF4

zotacF1

zotacI4

zotacB2

(a) 802.11

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacF4

zotacF1

zotacI4

zotacB2

(b) Garlisi et al. Tuning Algorithm

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacF4

zotacF1

zotacI4

zotacB2

(c) SALT

Figure 13: Comparison experiment airtime vs. time graphs for star topology

34

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacI4

zotacM20

zotacB2

(a) 802.11

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacI4

zotacM20

zotacB2

(b) Garlisi et al. Tuning Algorithm

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

Airtime vs. Time

zotacF3

zotacI4

zotacM20

zotacB2

(c) SALT

Figure 14: Comparison experiment airtime vs. time graphs for line topology

35

zotacK1 zotacK2 zotacK3 zotacK4
Node

0

200

400

600

800

1000

1200

1400

1600

T
h

ro
u
g

h
p

u
t

(k
b

p
s)

Throughput by Node

802.11

Garlisi et al.

SALT

zotacK1 zotacK2 zotacK3 zotacK4
Node

0

10

20

30

40

50

Jit
te

r
(m

s)

Jitter by Node

802.11

Garlisi et al.

SALT

zotacK1 zotacK2 zotacK3 zotacK4
Node

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ro

p
 R

a
te

 (
%

)

Drop Rate by Node

802.11

Garlisi et al.

SALT

802.11 Garlisi et al. SALT
0

10

20

30

40

50

60

70

A
g

g
re

g
a
te

 T
h

ro
u

g
h

p
u

t
(M

iB
)

Aggregate Throughput by MAC Implementation

Figure 15: Comparison experiment statistics for complete topology

36

zotacB2 zotacF1 zotacF4 zotacI4
Node

0

500

1000

1500

2000

2500

3000

T
h

ro
u
g

h
p
u

t
(k

b
p

s)

Throughput by Node

802.11

Garlisi et al.

SALT

zotacB2 zotacF1 zotacF4 zotacI4
Node

0

100

200

300

400

500

600

Jit
te

r
(m

s)

Jitter by Node

802.11

Garlisi et al.

SALT

zotacB2 zotacF1 zotacF4 zotacI4
Node

0

20

40

60

80

100

D
ro

p
 R

a
te

 (
%

)

Drop Rate by Node

802.11

Garlisi et al.

SALT

802.11 Garlisi et al. SALT
0

10

20

30

40

50

60

70

A
g

g
re

g
a
te

 T
h

ro
u

g
h

p
u

t
(M

iB
)

Aggregate Throughput by MAC Implementation

Figure 16: Comparison experiment statistics for star topology

37

zotacB2 zotacF3 zotacI4 zotacM20
Node

0

500

1000

1500

2000

2500

3000

3500

T
h

ro
u
g

h
p
u

t
(k

b
p

s)

Throughput by Node

802.11

Garlisi et al.

SALT

zotacB2 zotacF3 zotacI4 zotacM20
Node

0

100

200

300

400

500

Jit
te

r
(m

s)

Jitter by Node

802.11

Garlisi et al.

SALT

zotacB2 zotacF3 zotacI4 zotacM20
Node

0

20

40

60

80

100

Dr
op

 R
at

e
(%

)

Drop Rate by Node
802.11
Old Tuning
New Tuning

802.11 Garlisi et al. SALT
0

20

40

60

80

100

A
g

g
re

g
a
te

 T
h

ro
u

g
h
p

u
t

(M
iB

)

Aggregate Throughput by MAC Implementation

Figure 17: Comparison experiment statistics for line topology

38

Chapter 5

MULTI-HOP REACT AND MULTI-HOP RESERVATIONS

Until now, nodes running REACT have only taken into account their own traffic

needs. In the auction a node’s bid secures airtime for itself, but if there are multi-hop

flows in a network this is insufficient because it does not take into account the fact that

a node might need to forward traffic ultimately destined for others. In this chapter

we present a multi-hop airtime reservation protocol that addresses this issue.

Without a reservation algorithm a node could try to predict how much airtime to

reserve for multi-hop flows passing through it. Nodes store each of their neighbor’s

claims and could make a guess based on this regarding what their demand should be to

reflect the possibility of multi-hop flows. Unfortunately claims provide no information

on the directionality of flows, multi-hop or not. A claim is sent to every node within

broadcast range and only informs the receiver that the sender is currently expecting

to utilize the amount of airtime claimed. Claims also do not tell a node anything

about the demands of nodes beyond their neighbors, where the multi-hop flow could

be originating. Multi-hop reservations allow the originators of multi-hop flows to

inform nodes of the additional traffic they are expected to forward. Nodes along the

reservation path can also inform the originator of resource saturation. The REACT

auction itself is a convenient mechanism that can be used for the purpose of making

these reservations and one that has no analogue in standard 802.11.

Each auction in the REACT protocol allocates as much capacity at a particular

node as that node chooses. In our algorithm, a reservation is made by reducing this

capacity by the reservation amount at nodes along the path and their neighbors. Once

39

the reservation is placed nodes along the reservation path increase their allocations

by the reservation amount. This secures airtime for the flows that will be passing

through the node while still maintaining the standard REACT auction for allocating

airtime in the neighborhood. Section 5.1 provides a more precise description of this

process and Section 5.2 presents our evaluation of it.

5.1 Multi-hop Algorithm Description

The multi-hop reservation algorithm is split into two parts. There is an “placement”

algorithm for the node placing the reservation, and there is a “confirmation” algorithm

for nodes whose capacity is being reserved. When attempting to make a reservation

the reservation can fail to be placed if enough capacity cannot be reserved. For

simplicity we assume that packets take a static route through the network. We define

a reservation as an amount of airtime that a node wants to reserve at each node along

a certain path. Presumably that path would be the path of a future multi-hop flow

the reserving node initiates (although perhaps there are other uses for reservations

we cannot anticipate and of course the flow could have already been started). If

the reservation is made successfully then the network has given a guarantee to the

reserving node that the airtime allocated to each node along the path is at least as

much as the reservation amount, not counting any airtime those nodes have reserved

for other reservations or have been allocated in the process of bidding.

Algorithm (Placement). Let A be the node making airtime reservation r from itself

to node Z. Determine the next node on the path to Z and let this node be B. Send

(A, r,B, Z) to all neighbors but B. If a single neighbor returns a failure message

then the reservation fails. If no neighbor returns a failure message then continue

40

and send (A, r,B, Z) to node B. If B returns a failure message then the reservation

fails otherwise the reservation was successfully placed. If the reservation fails send a

message to all neighbors telling them to unreserve any airtime that was reserved in

this node’s name for A.

Algorithm (Confirmation). Receive reservation (A, r, C, Z) from a node B. Check

if there is at least r unreserved capacity at this node. If there is enough capacity

then reserve it in B’s name for A’s reservation. If there is not then return a failure

message. If this node is not node C (meaning it could be Z or just an ordinary

neighbor) then return success to node B. Upon reaching this point the node must be

node C. Determine the next node on the path to Z and let this node be D. Send

(A, r,D, Z) to all neighbors but D. If a single neighbor returns a failure message then

the reservation fails. If no neighbor returns a failure message then continue and send

(A, r,D, Z) to node D. If D returns a failure message then the reservation fails. If

the reservation fails send a message to all neighbors telling them to unreserve any

airtime that was reserved in this node’s name for A. Return success or failure to node

B depending on if reservation succeeded or failed.

5.2 Multi-hop Reservation Evaluation

To evaluate the reservation process we tested REACT and 802.11 on the line

topology with a multi-hop TCP flow. Figure 18 shows this topology with the multi-

hop flow colored green. In the trials that used REACT and the reservation was placed

first and then the TCP flow was started. The reservation placed was for 26.6% airtime,

approximately the maximum amount of airtime that could be reserved in this scenario.

The TCP flow lasted for 120 seconds in both the REACT and 802.11 trials. Multi-hop

41

routing was done statically with each node programmed with neighbor information

before the two minutes started.

zotacB2

zotacF3

zotacM20

zotacI4

Figure 18: Line topology with multi-hop flow

In this experiment the multi-hop flow achieved a higher throughput when REACT

was running than when using standard 802.11. This result can be seen in Figure 19

along with airtime graphs for both REACT and 802.11. The reservation of 26.6%

airtime was placed after 0.9063 seconds and REACT converged after 9.041 seconds

with a CV threshold of 0.15.

Three primary reasons contribute to throughput being higher for REACT. First

the tuning algorithm parameters are themselves tuned precisely allowing REACT

to converge quickly to the reserved airtimes of 26.6%. This means that for the

majority of the experiment nodes are able to access the channel fairly and contend less.

Convergence time would be less important in a longer running experiment as the time

during which REACT had not yet converged would be shorter in proportion to the rest

of the experiment. The second reason has to do with how TCP congestion control is

affected by the reduced contention after convergence. TCP was originally designed for

wired networks and interprets dropped packets as being caused by network congestion

[16]. Wireless networks on the other hand can experience packet loss for a variety

42

0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ai
rti

m
e

(%
)

Airtime vs. Time
zotacF3
zotacI4
zotacM20
zotacB2

(a) 802.11

0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ai
rti

m
e

(%
)

Airtime vs. Time
zotacF3
zotacI4
zotacM20
zotacB2

(b) REACT with Reservation

802.11 SALT
0.0

0.2

0.4

0.6

0.8

T
h
ro

u
g
h

p
u
t

(m
b
p

s)

Throughput by MAC Implementation

(c) Throughput Comparison

Figure 19: SALT/REACT with multi-hop TCP reservation placed vs. 802.11

of reasons including interference from other nodes in the network. This is especially

problematic in multi-hop ad-hoc networks that intrinsically have hidden and exposed

nodes. However when REACT was running in our experiment nodes along the path

of the multi-hop flow were able to access the medium fairly and according to their

allocations and thus contend less. Finally, 802.11 nodes did not get fair access to the

channel and the TCP flow was severely unstable. These periods of instability reduced

802.11 throughput.

43

5.3 Summary

While the throughput difference between REACT and 802.11 in our multi-hop

scenario was small REACT’s throughput was still higher. REACT also provided for

much more fair transmission opportunities between nodes. In previous experiments

without multi-hop flows we had only seen REACT provide the latter while suffering

from throughput degradation. This shows that in the multi-hop TCP scenario the

reduction in contention that REACT provides is even more important and leads to

gains in network efficient beyond just fairness.

44

Chapter 6

CONCLUSION

In this thesis we have shown that REACT and contention window tuning are even

more effective techniques than anticipated. Previous implementations of REACT

required substantial changes to the kernel and modified MAC level headers in a

way that made nodes incompatible with ones not running REACT kernels. On the

contrary, the implementation of REACT in this thesis exists primarily in user-space,

and we demonstrated its effectiveness while maintaining minimal messaging overhead

and with only small changes to the kernel. These kernel modifications expose an

interface for setting the contention window size but do not prevent REACT nodes

from interoperating with nodes not running REACT. We have also introduced a new

tuning algorithm called SALT. Our algorithm converges more tightly to REACT’s

airtime allocations than previous implementations, and tighter convergence leads to

further reductions in unfairness and jitter as compared to 802.11 DCF. Finally we

took REACT and SALT to the multi-hop scenario by introducing a new multi-hop

reservation algorithm that leverages the airtime allocation and realization capabilities

of this combination. With a reservation in place we have shown that REACT and

SALT do reduce contention enough in a multi-hop topology that a multi-hop TCP

flow exhibited higher throughput than in the trial that used 802.11 DCF. There is

still much work that could be done to advance REACT and SALT.

One aspect of REACT that has not been addressed in real-world implementations

of the protocol is that of nodes leaving an auction. In our experiments this was

unnecessary because nodes were statically configured and immobile. There are many

45

ways this could be accomplished and many reasons for why nodes may leave the

auction. The toughest scenario is when a node goes offline unexpectedly (e.g., loss of

power). Mobile nodes are a similar scenario. While less catastrophic, mobile nodes will

still cease being able to communicate with other nodes as they move away from them,

and a mobile node will probably not be able to predict exactly when its transmissions

will start to be lost. In simulation [12] used neighbor timeouts to determine when

to evict nodes from the auction and this would appear to be the only option for

unexpected neighbor loss. The timeout selected cannot be so short that nodes are

unduly evicted as this would cause unnecessary fluctuations in the allocation, but the

longer the timeout the longer essentially open capacity remains unused. A neighbor

timeout several times the length of the period control messages are sent out on would

probably be safe enough for our implementation of REACT while still being near to

as short as possible. If a node has finished transmitting and would like to forfeit its

airtime before the neighbor timeout the easiest way would be to reset its bid to zero.

One aspect of SALT that could be improved is the time that it takes to converge.

It takes longer than the Garlisi et al. algorithm and at 7-9 seconds is perhaps a bit

too high for some applications of REACT. In fact if nodes are joining and leaving the

auction at around once every 10 seconds then SALT may never converge to REACT’s

airtime allocation. This improvement could be made by finding a β and k that

minimizes convergence time, maybe to the disadvantage of throughput of jitter or

fairness. A more interesting avenue of exploration would be to combine SALT with

the Garlisi et al. tuning algorithm and perhaps leverage the benefits of both.

Adapting the reservation algorithm to a dynamic routing protocol is also left for

future work. This would likely require communication between REACT and the

routing software. If the route a multi-hop flow takes through the network changes

46

then a reservation placed for that flow along the old route needs to change. With our

current algorithm we could accommodate this, albeit poorly, if the node that placed

the reservation has some way to find out that the route has changed. This information

could come from the routing protocol software or perhaps the reserving node could

periodically perform route tracing. If the route changes the reserving node would

need to withdraw its previous reservation and then place a new one, but this is far

from optimal. A better solution might be to alter the reservation at only the nodes

that changed along the route or to have the routing algorithm take the reservation

into account when making routing decisions. In fact, a new routing protocol could

be developed that subsumes the placement and confirmation functionality of the

reservation algorithm, one which takes into account the reservations it has facilitated

placing when determining routes.

Finally, more experiments could be done. Part of the point of REACT and SALT

is to reduce jitter, and the applications this is most useful for are real-time audio or

video. It would be interesting to send video or audio traffic in a experiment, instead

of just UDP flows that serve as a proxy for this type of data, and then listen to or

watch the results. One could even use SALT on a WLAN and place a video call to

see if there is a noticeable improvement in the consistency of the quality of the call.

This last experiment also brings up an area of research enabled by the user-space

implementation of REACT: nodes using REACT can co-exist on the same network as

nodes not using REACT. However it is not clear that there would be any benefit to

using REACT and SALT if some neighbors are not. One would presume that selfish

nodes would naturally consume so much of the channel that fair nodes would not

be able to achieve their allocations or derive any other benefit from REACT. In the

WLAN scenario as well, your competition becomes centrally scheduled MAC protocols

47

that take advantage of the presence of an access point in way that REACT and SALT

do not.

The success of REACT with SALT and other tuning schemes in multiple topologies

and with a variety flow configurations shows that our techniques hold a lot of promise.

Our reservation algorithm has shown that SALT and REACT can reduce contention

in multi-hop ad-hoc networks and that TCP does not have to be avoided in these

scenarios. This work has contributed to enabling fair, scalable ad-hoc networks.

48

REFERENCES

[1] Cellphone networks overwhelmed after blasts in Boston. [Online]. Available:
https://www.bostonglobe.com/business/2013/04/16/cellphone-networks-
overwhelmed-blast-aftermath/wq7AX6AvnEemM35XTH152K/story.html.

[2] Amnesty International News, “Gambia: Communication blackout shatters illu-
sion of freedom during the election,” Amnesty International, 2016.

[3] N. Cohen, “Hong Kong protests propel FireChat phone-to-phone app,” The New
York Times, 2014.

[4] S. Xu and T. Saadawi, “Revealing the problems with 802.11 medium access
control protocol in multi-hop wireless ad hoc networks,” Computer Networks,
vol. 38, no. 4, pp. 531–548, 2002.

[5] ——, “Does the IEEE 802.11 MAC protocol work well in multihop wireless ad
hoc networks?” IEEE Communications Magazine, vol. 39, no. 6, pp. 130–137,
2001.

[6] M. Garetto, T. Salonidis, and E. W. Knightly, “Modeling per-flow throughput
and capturing starvation in CSMA multi-hop wireless networks.,” in INFOCOM,
2006.

[7] C. Chaudet, D. Dhoutaut, and I. G. Lassous, “Performance issues with IEEE
802.11 in ad hoc networking,” IEEE Communications Magazine, vol. 43, no. 7,
pp. 110–116, 2005.

[8] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: slotted seeded channel hopping for
capacity improvement in IEEE 802.11 ad-hoc wireless networks,” in Proceedings
of the 10th annual international conference on Mobile Computing and networking,
ACM, 2004, pp. 216–230.

[9] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-L. Sheu, “A new multi-channel MAC
protocol with on-demand channel assignment for multi-hop mobile ad hoc
networks,” in Parallel Architectures, Algorithms and Networks, 2000. I-SPAN
2000. Proceedings. International Symposium on, IEEE, 2000, pp. 232–237.

[10] J. Camp, J. Robinson, C. Steger, and E. Knightly, “Measurement driven de-
ployment of a two-tier urban mesh access network,” in Proceedings of the 4th
international conference on Mobile Systems, applications and services, ACM,
2006, pp. 96–109.

49

https://www.bostonglobe.com/business/2013/04/16/cellphone-networks-overwhelmed-blast-aftermath/wq7AX6AvnEemM35XTH152K/story.html
https://www.bostonglobe.com/business/2013/04/16/cellphone-networks-overwhelmed-blast-aftermath/wq7AX6AvnEemM35XTH152K/story.html

[11] F. Cali, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE 802.11 pro-
tocol to achieve a theoretical throughput limit,” IEEE/ACM Transactions on
Networking (ToN), vol. 8, no. 6, pp. 785–799, 2000.

[12] J. Lutz, C. J. Colbourn, and V. R. Syrotiuk, “ATLAS: adaptive topology-and
load-aware scheduling,” IEEE Transactions on Mobile Computing, vol. 13, no.
10, pp. 2255–2268, 2014.

[13] D. Garlisi, F. Giuliano, A. L. Valvo, J. Lutz, V. R. Syrotiuk, and I. Tinnirello,
“Making WiFi work in multi-hop topologies: Automatic negotiation and allo-
cation of airtime,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems Workshops, IEEE, 2015, pp. 48–55.

[14] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P. Demeester, “The
w-iLab.t testbed,” in Testbeds and Research Infrastructures. Development of
Networks and Communities, T. Magedanz, A. Gavras, N. H. Thanh, and J. S.
Chase, Eds., Springer Berlin Heidelberg, 2011, pp. 145–154.

[15] G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF performance
analysis,” IEEE Communications Letters, vol. 9, no. 8, pp. 765–767, 2005.

[16] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison
of mechanisms for improving TCP performance over wireless links,” IEEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 756–769, 1997.

50

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Background
	3 REACT Protocol Optimizations
	4 Contention Window Tuning
	5 Multi-hop REACT and Multi-hop Reservations
	6 Conclusion
	References

