
 

 

Validating a Novel CRISPR/Cas9 System for 

Simultaneous Gene Modification and Transcriptional Regulation 

by 

Jennifer E. Chapman 

 
 
 
 
 

A Thesis Presented in Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 
 
 
 
 

Approved March 2018 by the 
Graduate Supervisory Committee: 

 
Samira Kiani, Co-Chair 

Tatiana Ugarova, Co-Chair 
Gary Marchant 

 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 
 

May 2018 
 



 

i 
 

ABSTRACT 

 A novel clustered regularly interspaced short palindromic repeats/CRISPR-

associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed 

and tested.  This study used the CRISPR-associated protein 9 (Cas9) endonuclease in 

complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using 

the Krüppel associated box (KRAB) domain, while also performing a separate gene 

modification using a 20-nt gRNA targeted to a reporter vector.  DNA Ligase IV (LIGIV) 

was chosen as the target for gene repression, given its role in nonhomologous end 

joining, a common DNA repair process that competes with the more precise homology-

directed repair (HDR).   

To test for gene editing, a 20-nt gRNA was designed to target a disrupted 

enhanced green fluorescent protein (EGFP) gene present in a reporter vector.  After the 

gRNA introduced a double-stranded break, cells attempted to repair the cut site via HDR 

using a DNA template within the reporter vector.  In the event of successful gene editing, 

the EGFP sequence was restored to a functional state and green fluorescence was 

detectable by flow cytometry.  To achieve gene repression, a 14-nt gRNA was designed 

to target LIGIV.  The gRNA included a com protein recruitment domain, which recruited 

a Com-KRAB fusion protein to facilitate gene repression via chromatin modification of 

LIGIV.  Quantitative polymerase chain reaction was used to quantify repression.   

 This study expanded upon earlier advancements, offering a novel and versatile 

approach to genetic modification and transcriptional regulation using CRISPR/Cas9.  The 

overall results show that both gene editing and repression were occurring, thereby 
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providing support for a novel CRISPR/Cas system capable of simultaneous gene 

modification and regulation.  Such a system may enhance the genome engineering 

capabilities of researchers, benefit disease research, and improve the precision with 

which gene editing is performed.   
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1.    INTRODUCTION 

1.1  CRISPR/Cas Genome Editing 

Clustered regularly interspaced short palindromic repeats/CRISPR associated 

(CRISPR/Cas) technology encompasses a revolutionary genome editing technology with 

tremendous potential for curing human diseases through the development of novel gene 

therapies.  Diseases that have long plagued humanity, causing untold suffering, impaired 

quality of life, and early death, now face a formidable opponent.  Transformed from an 

adaptive immune system utilized by many bacteria and archaea to defend against foreign 

nucleic acids, such as viruses or plasmids (Jinek et al., 2012; Wiedenheft, Sternberg, & 

Doudna, 2012) CRISPR/Cas, or simply CRISPR, is rapidly becoming a powerful tool, 

not only in clinical medicine, but in microbiology, synthetic biology, agricultural product 

development, fundamental genetic research and more (Barrangou & Doudna, 2016; Hsu, 

Lander, & Zhang, 2014). 

CRISPR immunity is conferred through a genetic, chronological record of 

previous infections by foreign nucleic acids, which is embodied in a CRISPR locus 

within the genome of the host microorganism (Jinek et al., 2012; Wiedenheft et al., 

2012).  See Fig. 1.  The genomic CRISPR locus generally includes sequences for trans-

activating RNA (tracrRNA), an operon of cas genes, and a CRISPR array (Doudna & 

Charpentier, 2014; Jinek et al., 2012).  When challenged by foreign genetic material, a 

microorganism with CRISPR immunity cleaves and integrates fragments of the 

transgressing DNA into the CRISPR array to protect against future invasions (Doudna & 

Charpentier, 2014).  These acquired fragments of foreign DNA, or spacers, are separated 
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in the CRISPR array by short repeat sequences (Doudna & Charpentier, 2014; Jinek et 

al., 2012).  The type II CRISPR system, which was utilized in this study and is referenced 

throughout this text, uses CRISPR-associated protein 9 (Cas9) as a DNA endonuclease, 

or cutting enzyme, to cut and destroy the invading DNA (Jinek et al., 2012).   

The CRISPR system targets and destroys invading DNA through a series of steps.  

See Fig. 1.  The CRISPR array is transcribed, resulting in a precursor CRISPR RNA (pre-

crRNA) molecule (Deltcheva et al., 2011).  Each repeat sequence within the pre-crRNA 

molecule has complementarity to, and base pairs with, tracrRNA (Deltcheva et al., 2011).  

The resulting duplex RNA undergoes cleavage and multiple stages of processing, 

resulting in individual mature CRISPR RNAs (crRNAs) paired with mature tracrRNAs 

(Deltcheva et al., 2011).  Each crRNA:tracrRNA duplex is bound to Cas9, forming a 

ribonucleoprotein complex that patrols the microorganism’s intracellular environment for 

foreign genetic material (Jinek et al., 2012).  If Cas9 recognizes a specific protospacer 

adjacent motif (PAM) site in the DNA being surveyed, the 20-nucleotide (nt) crRNA 

sequence interrogates the adjacent DNA for a sequence complementary to its own 

(Sternberg, Redding, Jinek, Greene, & Doudna, 2014).  If the crRNA identifies and base 

pairs with complementary DNA, Cas9 induces a double-stranded break (DSB) in the 

DNA, thereby destroying the invading genetic material (Jinek et al., 2012).  As such, the 

crRNA:tracrRNA duplex acts as a guide for Cas9, targeting the endonuclease to the site 

of desired DNA cleavage.   
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From Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., & Charpentier, E. (2012). A 
programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 
816-821. doi:10.1126/science.1225829.  Reprinted with permission from AAAS. 
 
Fig. 1  Type II CRISPR/Cas Locus.  The CRISPR locus contains a sequence for 
tracrRNA, an operon of cas genes, and a CRISPR array made up of repeat sequences 
(black rectangles) and unique spacer sequences (colored diamonds), which is transcribed 
into a pre-crRNA.  Each repeat sequence within the pre-crRNA has complementarity to 
tracrRNA, which binds to the pre-crRNA.  After undergoing multiple stages of 
processing, individual mature crRNA:tracrRNA structures, each in a ribonucleoprotein 
complex with Cas9, seek to identify and destroy foreign DNA (Jinek et al., 2012).   
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Jinek et al. (2012) streamlined this DNA targeting and cutting mechanism by 

engineering a single chimeric RNA guide, commonly referred to as a single guide RNA 

or simply a guide RNA (gRNA), composed of a programmable crRNA sequence fused to 

tracrRNA.  (The term gRNA is used interchangeably throughout this text to refer to either 

the entire crRNA:tracrRNA duplex or just the programmable crRNA sequence alone.)  

The gRNA can be designed to target any DNA of interest and Cas9 will introduce a DSB 

at the sequence targeted by the gRNA three base pairs (bps) upstream of the PAM site 

(Jinek et al., 2012).  This powerful, two-component gRNA:Cas9 system has been shown 

to successfully edit DNA in a variety of cells and organisms (Doudna & Charpentier, 

2014; Hsu et al., 2014; Sander & Joung, 2014). 

When a DSB is introduced, cells typically attempt to repair the cut site by 

initiating one of two distinct DNA repair mechanisms: nonhomologous end joining 

(NHEJ) or homology-directed repair (HDR) (Maruyama et al., 2015).  During NHEJ, 

cells attempt to ligate the cut ends back together (Davis & Chen, 2013).  This process is 

imperfect, however, and often introduces insertions or deletions (indels), rather than 

restoration of the broken DNA back to the original sequence (Maruyama et al., 2015).  

During HDR, however, cells use a sequence with homology to the cut site, such as a 

sister chromatid, as a repair template to precisely repair the cut site (Davis & Chen, 

2013).  In the laboratory, researchers can use the imprecise NHEJ repair pathway to 

disrupt gene function (Su et al., 2016).  Alternatively, researchers can use custom-

designed, exogenous donor DNA with homology to the flanking ends of a desired cut site 

to facilitate precise genome editing in the event of HDR (Chu et al., 2015).  See Fig. 2.   
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From Chapman, J.E., Gillum, D., & Kiani, S. (2017). Approaches to reduce CRISPR off-target effects for 
safer genome editing. Applied Biosafety, 22(1), 7-13. doi:10.1177/1535676017694148 
 
Fig. 2  CRISPR/Cas9 Gene Editing.  Top: Induction of a DSB.  If Cas9 detects the 
PAM site (green) and the 20-nt crRNA (purple) base pairs with complementary DNA, 
Cas9 cleaves 3 bps upstream of the PAM site, inducing a DSB.  Bottom: DNA repair 
mechanisms.  Following induction of a DSB, the cell attempts to repair the broken DNA.  
During NHEJ, key molecules work in conjunction with one another to ligate the cut DNA 
strands back together, often causing indels (red) that may disrupt the gene’s expression.  
During HDR, cells can use donor DNA as a homologous template to repair the DSB.  
Researchers may include a custom-designed DNA sequence (dark green) in the donor 
DNA to precisely modify the targeted gene. 
 
 
1.2  The Need for Simultaneous Gene Editing and Regulation 

Along with the ability to modify the genome, the advancement of gene therapies 

will benefit from effective regulation of the genome, such as through the controlled 

activation and/or repression of genes.  Indeed, simultaneous genome modification and 

regulation offers researchers even greater versatility when interrogating and engineering 
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the genome.  Correction of some forms of genetic diseases may only require gene editing, 

while other diseases may require a sophisticated combination of gene modification and 

regulation.   

As described by Li et al. (2016), cancer cells exhibit elevated metabolic demands 

to support their rapid growth and proliferation.  The knockout of a key gene involved in 

glucose metabolism, PDHA1, caused prostate cancer cells to compensate by relying on an 

alternative glutamine-dependent metabolic pathway for survival and proliferation (Li et 

al., 2016).  To promote glutamine metabolism, cells increased their expression of two key 

enzymes, GLS1 and GLUD1 (Li et al., 2016).  Targeted inhibition of these enzymes, 

which are over-expressed in many cancer types, has been shown to stunt tumor growth 

and proliferation (Wang et al., 2010; Yang et al., 2009).  Knockdown of other genes, such 

as FOXK1, has been similarly shown to suppress the proliferation and invasion of cancer 

cells (Chen, Xiong, Dou, & Ran, 2017).  Thus, the ability to modify genes involved with 

glucose metabolism in cancer cells, while repressing genes involved with alternative 

metabolic pathways or other mechanisms of proliferation, is one potential application of 

simultaneous gene modification and transcriptional control. 

 Simultaneous control over gene modification and regulation may also help 

improve the precision with which genome editing is performed.  HDR and NHEJ are 

competitive DNA repair processes (Chu et al., 2015).  Repressing key molecules 

associated with NHEJ, for instance, increases the efficiency of HDR (Chu et al., 2015; 

Maruyama et al., 2015).  During NHEJ, DNA Ligase IV (LIGIV), in complex with other 

NHEJ factors, ligates the broken DNA strands back together (Conlin et al., 2017).  Chu et 
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al. (2015) showed that introducing short hairpin RNAs to suppress key NHEJ proteins, 

such as LIGIV, either alone or in conjunction with suppression of KU70, resulted in a 

concomitant increase in HDR.  HDR has also been increased by suppressing LIGIV using 

small molecule inhibitors or certain proteins that mediate its degradation (Chu et al., 

2015; Maruyama et al., 2015).  Similarly, ligIV-deficient Drosophila embryos exhibited 

increased frequency of HDR (Beumer, Trautman, Mukherjee, & Carroll, 2013; Bozas, 

Beumer, Trautman, & Carroll, 2009).  Thus, a genome engineering tool that can be 

utilized to regulate key genes involved with NHEJ while also performing genome 

modification at distinct genomic loci offers the potential to increase HDR at the site(s) of 

modification, thereby bolstering the efficiency with which precise genome edits are 

performed. 

 Although other technologies exist that can regulate gene expression, 

CRISPR/Cas9 has several advantages.  Zinc-finger nucleases (ZFNs) and transcription 

activator-like effector nucleases (TALENs) are more expensive and challenging to design 

and test (Qi et al., 2013), and RNA interference (RNAi) can exhibit substantial off-target 

effects and irregular on-target efficiency (Evers et al., 2016).  Although CRISPR also 

results in off-target effects, several innovative strategies for addressing this limitation are 

being actively developed by a rapidly growing field of researchers (Chapman, Gillum, & 

Kiani, 2017).  Additionally, the use of a single genome engineering technology, 

CRISPR/Cas9, for both editing and regulating the genome simplifies the testing 

environment, as compared to using a variety of technologies that require multiple skill 

sets, a more expansive knowledgebase, and a broader inventory of materials and 
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resources.  It is anticipated that reliance on a single technology may also help pave the 

way for regulatory approval in the event of downstream clinical applications.   

 

1.3  Gene Repression Using CRISPR Interference 

With the development of CRISPR/Cas technology, the world was presented with 

a powerful new genome editing system.  Not long after CRISPR’s gene editing 

capabilities became widely known, however, researchers began repurposing its 

components in a variety of ways to further harness its capabilities.  This included 

strategies for using CRISPR/Cas technology to regulate the genome through targeted 

activation and repression of genes.  

As it relates to gene repression, which is the focus of this study, CRISPR 

interference (CRISPRi) is a transcription modulation system that uses a catalytically 

inactive form of Cas9, known as dCas9, to repress gene expression through inhibition of 

transcription (Gilbert et al., 2013; Qi et al., 2013).  dCas9 is a noncleaving mutant of 

Cas9, which researchers modified to silence its RuvC1 and HNH endonuclease domains 

(Jinek et al., 2012; Qi et al., 2013).  Pairing dCas9 with a gRNA targeted to a specific 

sequence in the genome results in the gRNA binding to its target site without dCas9 

inducing a DSB (Qi et al., 2013).  Instead, this gRNA:dCas9 complex represses gene 

expression by blocking transcription initiation and elongation (Qi et al., 2013).  

Additionally, CRISPRi can be used to inhibit transcription by fusing effector domains, 

such as the Krüppel associated box (KRAB) domain, to dCas9 to repress the targeted 

gene through chromatin modification (Gilbert et al., 2013).  With either approach, 



 

9 
 

CRISPRi uses dCas9 as the platform for gene regulation.  Due to the silenced 

endonuclease domains in dCas9, neither a DSB nor gene editing occur at the target site.  

 

1.4   Cas9 as the Platform for Simultaneous Gene Editing and Regulation 

 CRISPRi attempted to address the need for a simpler, cheaper, and more efficient 

approach to genome regulation, as compared to ZFNs, TALENs, and RNAi (Qi et al., 

2013).  The repurposing of Cas9 into a non-cleaving dCas9 enzyme resulted in an 

innovative tool capable of reversible genome regulation.  However, dCas9’s inability to 

perform targeted genomic modifications restricted its functionality, leaving open the 

question of whether the catalytically-active Cas9 could be used to both edit and regulate 

the genome.   

Building on a prior study showing that gRNAs ≤ 16-nts resulted in significantly 

reduced Cas9 nuclease activity as compared to gRNAs 17 to 20-nts in length (Fu, Sander, 

Reyon, Cascio, & Joung, 2014), Kiani et al. (2015) further exploited Cas9’s potential as a 

multifunctional protein by demonstrating that when Cas9 was fused to VPR (Cas9-VPR), 

a potent transcriptional activator, and introduced into cells contemporaneously with 14-nt 

and 20-nt gRNAs targeted to separate endogenous genes, simultaneous gene activation 

(via the 14-nt gRNA) and mutation (via the 20-nt gRNA) occurred.  Thus, Cas9 could be 

directed to perform either genome editing or activation by simply varying the length of 

the gRNA.  As it relates specifically to repression, Kiani et al. (2015) used 14-nt gRNAs 

bound to Cas9-VPR or dCas9 to target specially engineered CRISPR-repressible 
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promoters (Kiani et al., 2014) contained within plasmids, thereby sterically blocking the 

cell’s transcription machinery and resulting in tenfold repression.   

The relevant advancement by Kiani et al. (2015) was to show proof-of-concept 

that 14-nt gRNAs in complex with Cas9 can be used to regulate, rather than edit, the 

genome.  By modifying the length of the gRNA, genome modification and activation 

were performed simultaneously at distinct genomic loci (Kiani et al., 2015).  Although 

the study by Kiani et al. (2015) also demonstrated repression using 14-nt gRNAs, the 

gRNAs were targeted in close proximity to a TATA box contained within a plasmid.  In 

the genome, an ideal gRNA target site, with minimal off-target effects and limited 

mismatches, may not always exist in close proximity to a TATA box.  Therefore, an 

opportunity existed for further studies drawing on this earlier foundational work.   

 

1.5  Aim of Project 

The purpose of this project was to design and test a novel CRISPR/Cas9 tool 

capable of performing simultaneous gene modification and repression.  Gene 

modification was carried out using a fluorescence-based assay.  The ideal tool would use 

14-nt gRNAs targeted to an endogenous gene to achieve repression without requiring 

precise targeting in close proximity to a TATA box.  The 14-nt gRNAs used in this study 

targeted an endogenous gene, as opposed to a plasmid-based assay, and used a KRAB 

effector domain to effectuate repression, as compared to the previous study utilizing 

steric blocking (Kiani et al., 2015).  The gene of interest selected for repression in this 

study was LIGIV, given its central role in DNA repair.   
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2.    MATERIALS & METHODS

2.1  Overview of Vectors 

1 

2.1.1    pDRGFP 

 pDRGFP, a gift from Maria Jasin (Addgene plasmid # 26475), is a fluorescence-

based assay (Pierce, Johnson, Thompson, & Jasin, 1999).  It contains an enhanced green 

fluorescent protein (EGFP) gene, which was mutated through the inclusion of the 18-bp 

recognition sequence of the endonuclease I-SceI containing two stop codons, thereby 

disrupting expression of green fluorescent protein (GFP) (Pierce et al., 1999).  

Introduction of I-SceI into cells containing pDRGFP (or introduction of Cas9 and a 

gRNA targeting the I-SceI recognition sequence, as was performed in this study) results 

in a DSB at the site of mutation.  Cells can then use a donor template also contained 

within pDRGFP to repair the DSB during HDR, thereby restoring the EGFP gene.  The 

resulting GFP+ 

 

cells can be quantified by flow cytometry, which acts as a reporter for 

HDR and successful gene editing.  See Fig. 3. 
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Fig. 3  pDRGFP.2  The pDRGFP vector contains an EGFP gene modified to include the 
18-bp recognition sequence for the endonuclease I-SceI containing two stop codons 
(Pierce et al., 1999).  During HDR, cells repair a DSB at the I-SceI recognition sequence 
using pDRGFP’s supplied donor template, thereby restoring the EGFP gene.  The 
resulting GFP+

 

 cells, signifying successful gene editing, can be measured by flow 
cytometry. 
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2.1.2    pX330 

 pX330-U6-Chimeric_BB-CBh-hSpCas9 (pX330), a gift from Feng Zhang 

(Addgene plasmid # 42230), is a Type II CRISPR/Cas system, containing human codon-

optimized Cas9 (hCas9) and a gRNA insert site (Cong et al., 2013).  After a gRNA of 

interest is inserted into pX330, its expression is driven by a human U6 promoter (hU6).  

A nuclear localization signal (NLS) on each side of hCas9 aids with importation into the 

nucleus.  See Fig. 4.  In the present study, pX330 was modified to include a gRNA 

targeting the mutated EGFP gene in pDRGFP. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  pX330.2

 

  pX330 contains the sequence for hCas9 and a gRNA sequence that can 
be modified to target a gene of interest (Cong et al., 2013). 
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2.1.3    pJZC74 

pJZC74 was a gift from Wendell Lim & Stanley Qi (Addgene plasmid # 62342) 

(Zalatan et al., 2014).  See Fig. 5.  As described by Zalatan et al. (2014), pJZC74’s gRNA 

was extended to include a 3’ RNA hairpin sequence for com, which is connected to the 

gRNA by a short, 2-bp linker.  This com protein recruitment domain is recognized by 

Com, a RNA binding domain that is fused to a KRAB effector domain (Zalatan et al., 

2014).  With the Com-KRAB fusion protein bound to pJZC74’s gRNA, the effector 

domain is recruited to the gene targeted by the gRNA, and KRAB inhibits the gene’s 

transcription via chromatin modification (Groner et al., 2010).  Although pJZC74 was 

designed for use with dCas9 as a single master controller of transcriptional regulation 

(Zalatan et al., 2014), this study achieved repression using Cas9 in complex with 14-nt 

gRNAs.  See Fig. 6.   

pJZC74 does not contain ideal restriction enzyme sites immediately flanking its 

gRNA which, if present, would allow a desired gRNA to be easily inserted.  For its use in 

this study, pJZC74 was modified to include a customizable gRNA insert site, which was 

then utilized to insert a variety of gRNAs targeting LIGIV.     

 
 
 
 
 
 
 
 
 
 
 
 



 

15 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5  pJZC74.2

 

  pJZC74 expresses the Com-KRAB fusion protein, which is recruited to 
pJZC74’s gRNA by the com protein recruitment domain (Zalatan et al., 2014).  The 
KRAB effector domain uses chromatin modification to inhibit transcription of the gene 
targeted by the gRNA, thereby repressing its expression (Groner et al., 2010). 
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Fig. 6  Com-KRAB Bound to pJZC74’s gRNA.  pJZC74’s gRNA was extended to 
include a com protein recruitment domain that recruits the Com-KRAB fusion protein 
(Zalatan et al., 2014).  KRAB then facilitates repression of the gene targeted by pJZC74’s 
gRNA.  Shown here is the strategy utilized in this study of using a 14-nt gRNA in 
complex with Cas9 to target the gene of interest for repression without inducing a DSB. 
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2.1.4    hCas9 

 hCas9, a gift from George Church (Addgene plasmid # 41815), contains a human 

codon-optimized Cas9 driven by a cytomegalovirus (CMV) promoter and followed by a 

NLS to aid in nuclear transport (Mali et al., 2013).  See Fig. 7.  hCas9 was used in this 

study to supplement the Cas9 expressed by pX330. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 7  hCas9.2

 

  The hCas9 vector expresses human codon-optimized Cas9 (Mali et al., 
2013). 
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2.2    Modification of pX330 

2.2.1    Design of gRNA Targeting Mutated EGFP in pDRGFP 

 The gRNA inserted into pX330 was designed to induce a DSB in the mutated 

EGFP gene in pDRGFP.  In the event of HDR, cells repaired the DSB using pDRGFP’s 

donor template, resulting in green fluorescence.  The 20-nt gRNA was designed with 

appropriate overhangs for insertion into pX330.  An extra guanine nucleotide was 

included at the 5’ end to promote optimal expression by the hU6 promoter in pX330 

(Graham & Root, 2015).  See Fig. 8.  

 

(A) Sequence in pDRGFP targeted by gRNA  

 

(B) gRNA targeting pDRGFP 

 

Fig. 8  Design of gRNA Targeting Mutated EGFP in pDRGFP.  (A) Sequence in 
pDRGFP targeted by gRNA.  The sequence shown here is the mutated portion of the 
EGFP gene in pDRGFP, which disrupts its expression.  The I-SceI recognition sequence 
(gray shaded box) inactivates expression of the EGFP gene.  Arrows (▲▼) indicate I-
SceI cut sites.  When Cas9 recognizes the PAM site (NGG; green underline) and the 
gRNA binds to the target sequence (blue underline), Cas9 induces a DSB (dashed blue 
line). (B) gRNA targeting pDRGFP.  A 20-bp gRNA (blue underline) complementary 
to the target sequence in pDRGFP was designed to include overhangs (red underline) 
complementary to the overhangs in digested pX330 and an extra guanine nucleotide (pink 
shaded box) to promote optimal expression by the hU6 promoter expressing the gRNA in 
pX330 (Graham & Root, 2015). 
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2.2.2    Anneal and Kinase of pX330 gRNA Oligos 

 Top and bottom single-stranded oligos for the gRNA to be inserted into pX330 

were ordered from Integrated DNA Technologies and received as dried down DNA.  

Each oligo was centrifuged upon receipt at 12000g for 60 seconds to concentrate the 

dried DNA in the bottom of the tube.  The oligos were individually reconstituted to a 

concentration of 100µM using nuclease-free water.  To anneal and kinase the top and 

bottom oligos, a 20µL reaction was setup on ice in a PCR tube, including 2µL of the top 

oligo (100µM), 2µL of the bottom oligo (100µM), 2µL of T4 DNA Ligase Buffer, 1µL 

of T4 PNK, and 13µL of nuclease-free water.  After all components were added, the tube 

was tapped gently to mix and incubated in a thermocycler at 37°C for 30 minutes, 95°C 

for 5 minutes, then 25°C for 2 minutes.   

 

2.2.3    Golden Gate Assembly of gRNA Into pX330  

 The gRNA for targeting the mutated EGFP gene in pDRGFP was ligated into 

pX330 using Golden Gate Assembly.  The gRNA insert site in pX330 is flanked by two 

BbsI Type II restriction enzyme recognition sequences on opposing DNA strands.  See 

Fig. 9A.  BpiI, an isoschizomer of BbsI, was used to digest pX330, leaving 4-bp 

overhangs at the gRNA insert site.  See Fig. 9B.  The annealed and kinased gRNA oligo, 

designed to include overhangs complementary to the overhangs in the digested pX330, 

was then ligated into pX330 using Golden Gate Assembly, removing the BbsI 

recognition sequences.  See Figs. 9C-D.   
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To ligate the gRNA into pX330 using Golden Gate Assembly, the gRNA insert 

and vector were diluted to establish a 6:1 ratio of insert-to-vector.  A 20µL reaction was 

setup in a PCR tube on ice, including 1µL of the diluted pX330 vector (100ng), 1µL of 

the diluted gRNA insert, 2µL of T4 10X ligase buffer, 1µL of T4 DNA ligase, 1.5µL of 

the restriction enzyme BpiI, and 13.5µL of nuclease-free water.  After all components 

were added, the tube was tapped gently to mix and incubated in a thermocycler for 50 

cycles of 37°C for 10 minutes followed by 16°C for 5 minutes.  After these 50 cycles 

were complete, the temperature was raised to 50°C for 5 minutes, then 80°C for 5 

minutes.  

 Before experimental use, the modified pX330 vector was transformed, inoculated, 

and the resulting DNA was extracted and purified by Miniprep, then digested and 

analyzed by gel electrophoresis to confirm appropriate band sizes were present.  See 

Section 2.4 for protocols.  The vector was also sequenced to confirm the gRNA was 

successfully ligated into pX330.  See Appendix A. 
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Fig. 9  Insertion of gRNA Targeting pDRGFP Into pX330.  (A) pX330 gRNA insert 
site before digestion.  The pX330 gRNA insert site included BbsI recognition sites (gray 
shaded boxes).  BbsI cut sites are indicated by arrows (▲▼).  (B) pX330 following 
digestion.  After digestion with BbsI (or one of its isoschizomers, such as BpiI), the 
gRNA insert site is removed leaving 4-bp overhangs (purple underline).  (C) Annealed 
& kinased gRNA oligo targeting pDRGFP.  The 20-bp gRNA (blue underline) was 
designed to include overhangs (red underline) complementary to the overhangs in the 
digested pX330 vector.  The gRNA also included an extra guanine nucleotide (pink 
shaded box) to promote optimal expression by pX330’s hU6 promoter (Graham & Root, 
2015).  (D)  gRNA ligated into pX330. The gRNA was inserted into pX330 using 
Golden Gate Assembly. 
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2.3    Modification of pJZC74 

2.3.1    Design of gBlock with Customizable gRNA Insert Site  

To enhance the modularity of pJZC74, a customizable gRNA insert site was 

designed and inserted into the vector.  This gRNA insert site was then utilized to insert a 

variety of gRNAs targeting LIGIV.  To facilitate insertion of the customizable gRNA 

insert site, a 550-bp gBlock was designed to be identical to a 550-bp section of pJZC74, 

with the exception of the customizable gRNA insert site that would replace pJZC74’s 

original gRNA sequence.  The gBlock was flanked on its ends by recognition sequences 

for the restriction enzymes XbaI and BamHI, which were used to create proper overhangs 

for insertion of the gBlock into pJZC74.  The customizable gRNA insert site was 

designed to include BsmBI recognition sequences, such that when the vector was 

digested with BsmBI, the customizable gRNA insert site was cut away, leaving 

overhangs complementary to the overhangs in any custom-designed gRNA to be inserted 

into pJZC74.  See Fig. 10.   

 

2.3.2    Digestion of gBlock for Insertion Into pJZC74 

 Upon receipt, the gBlock was spun down and reconstituted in 10µL of nuclease-

free water, then briefly vortexed and spun down again.  Prior to insertion of the gBlock 

into pJZC74, a small excess of nucleotides were digested off both outer ends of the 

gBlock using XbaI and BamHI-HF.  This created overhangs in the gBlock that were 

complementary to the overhangs in linearized pJZC74.  The gBlock was digested using a 

50µL reaction, including 10µL of diluted gBlock, 2µL of XbaI, 2µL of BamHI-HF, 5µL 
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of CutSmart® Buffer, and 31µL of nuclease-free water.  This reaction was incubated for 

2 hours at 37°C.   

 

 
 
 
Fig. 10  gBlock with Customizable gRNA Insert Site.  The entire gBlock is 550 bps.  
Restriction enzyme cut sites are indicated by arrows (▲▼).  Top: A small excess of base 
pairs flank both ends of the gBlock (N30

 

) to allow proper binding of XbaI and BamHI on 
their recognition sequences (gray shaded boxes) (Green & Sambrook, 2012).  Overhangs 
remaining after digestion with XbaI and BamHI-HF are underlined in pink. Bottom: 
Customizable gRNA insert site includes BsmBI recognition sequences (gray shaded 
boxes).  When digested with BsmBI, 4-bp overhangs (blue underline) remain for 
insertion of a gRNA of interest.  

2.3.3    Linearization of pJZC74 

 pJZC74 was linearized using restriction enzymes XbaI and BamHI-HF, whose 

recognition sequences flank the region of pJZC74 where the gBlock containing the 

customizable gRNA insert site was to be placed.  See Fig. 5.  A 40µL reaction was setup 

on ice using 10µL of pJZC74, 2µL of XbaI, 2µL of BamHI-HF, 4µL of CutSmart® 

Buffer, and 22µL of nuclease-free water.  Digestion was performed at 37°C for 3 hours.  
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When 30 minutes was remaining in the incubation period, calf-intestinal alkaline 

phosphatase was added.  The digested vector was then gel purified, along with the 

digested gBlock. 

 

2.3.4    Gel Purification of Linearized pJZC74 and gBlock 

 Gel purification of linearized pJZC74 and the gBlock containing the customizable 

gRNA insert was performed using the QIAQuick Gel Extraction Kit, according to the kit 

instructions.  A 1% agarose gel was prepared using the protocol in Appendix G, 

substituting UltraPureTM

After ~1 hour, 8µL of 6X purple loading dye was added to linearized pJZC74 and 

the digested gBlock, which were then loaded into alternate wells in the gel.  The gel 

electrophoresis apparatus was run at 150V.  After an hour and a half, the samples were 

visualized using an Invitrogen Safe Imager

 Low Melting Point Agarose for ME Agarose.  The gel was cast 

and a wide-toothed comb was placed to allow for adequate separation of samples.   

TM

After briefly vortexing the samples, 100% isopropyl alcohol was added to each 

tube in a volume equal to 1X the weight of the gel in grams and mixed gently by pipette.  

750µL of this gel-solution was transferred to a spin column and centrifuged.  (All 

 2.0, a blue light transilluminator.  See 

Appendix B.  Based on the band sizes visualized, the desired DNA fragments were 

identified and extracted using a clean spatula.  The gel fragments were transferred to 

individual, sterile microcentrifuge tubes and weighed.  Buffer QG was added to the gels 

in an amount equal to 3X the weight of the gel.  The tubes were then incubated in a 58°C 

heat block for approximately 10 minutes to allow the gel to completely dissolve. 
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centrifugation steps were performed at 12000g for 1 minute.)  The flow-through was 

discarded and the remaining gel-solution was added to the spin column and centrifuged.  

After again discarding the flow-through, 500µL of Buffer PE was added to the spin 

column, the columns were centrifuged, and the flow-through was discarded.  This was 

repeated two additional times, then a final dry spin centrifugation cycle was performed.  

The spin column was placed into a sterile microcentrifuge tube and 30µL of nuclease-free 

water was added directly to the membrane.  After 3-5 minutes, the tubes were centrifuged 

a final time to elute the DNA.   

 

2.3.5    Ligation of gBlock Containing Customizable gRNA Insert Site Into pJZC74 

 Following gel purification, the gBlock containing the customizable gRNA was 

ligated into pJZC74.  See Fig. 11.   Ligation was performed using the New England 

Biolabs (NEB) Quick LigationTM Kit.  A 3-fold molar excess of the gBlock was 

combined with 50ng of pJZC74.  A 20µL reaction was setup on ice with 1.2µL of 

linearized pJZC74 (50ng), 3µL of the gBlock, 10µL of 2X Quick Ligation Buffer, 1µL of 

Quick T4 DNA Ligase, and 4.8µL of nuclease-free water.  Tubes were spun down and 

incubated at 25°C for 10 minutes.  The ligation reaction was held at -20ºC until ready for 

transformation, inoculation, and DNA purification.  See Section 2.4 for protocols.  

Successful ligation was confirmed by diagnostic digestion and sequencing.  See 

Appendix C.  Following ligation, any gRNA targeting a gene of interest could be ligated 

into pJZC74 using the customizable gRNA insert site. 
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Fig. 11  Insertion of gBlock Containing Customizable gRNA Insert Site Into 
pJZC74.  (A) gBlock before digestion.  A 550-bp gBlock included restriction enzyme 
recognition sequences for XbaI and BamHI (gray shaded boxes) and a small excess of 
base pairs (N30) on its ends.  Restriction enzyme cut sites are indicated by arrows (▲▼).  
(B) gBlock after digestion.  After digestion of the gBlock with XbaI and BamHI-HF, 
overhangs remain (pink underline).  (C) Linearized pJZC74.  The overhangs in 
linearized pJZC74 (red underline) are complementary to the overhangs in the gBlock.  
(D)  gBlock inserted into pJZC74.  The gBlock containing the customizable gRNA 
insert site was inserted into pJZC74 using the NEB Quick LigationTM Kit. 
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2.3.6    Design of gRNAs Targeting LIGIV  

 Various gRNAs were inserted into pJZC74 for repression of LIGIV.  The gRNAs 

were designed for robust testing of key regions of the LIGIV gene.  See Table 1 and Fig. 

12.  This includes targeting LIGIV’s promoters and exons, as well as regions nearby and 

within the coding domain sequence (CDS) of exon 4 (Zerbino et al., 2018).  Several 

gRNAs were tested on both DNA strands to assess whether there was any impact on 

repression efficiency.  See Appendix D for gRNA sequences. 
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gRNA(s) Region of LIGIV targeted 

1, 2  • Within promoter 1 
• Within 100 bps of start of exon 1 

3, 4 • Opposite strand of gRNA-1 & 
gRNA-2 

5, 6 • Within promoter 2 & promoter 3 
• Within 25 bps of start of exon 2 

7 • Opposite strand of gRNA-5 & 
gRNA-6 

8, 9* • Within promoter 3   
• Within 250 bps of start of exon 3 

10, 11 • Opposite strand of gRNA-8 & 
gRNA-9 (first set) 

12, 13 • Opposite strand of gRNA-8 & 
gRNA-9 (second set) 

14, 15 • Within first 50 bps of exon 4 
• At start of CDS of exon 4 

16, 17 • Opposite strand of gRNA-14 & 
gRNA-15 

18, 19 • Within CDS of exon 4 

20 

• Near end of CDS of exon 4 
• Region previously targeted for 

knockout of LIGIV (Shalem et 
al., 2014) 

 

* Complementary sequences for gRNA-8 and gRNA-9 are present twice in LIGIV. 
 
Table 1  Description of Regions of LIGIV Targeted by gRNAs.  See Fig. 12 for visual 
representation of targeted areas. 
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Fig. 12  Key Regions of LIGIV Targeted by gRNAs.2

 

  gRNAs target an array of regions 
within LIGIV, including its promoters, exons and the CDS of exon 4 (Zerbino et al., 
2018).  Complementary sequences for gRNAs 8 and 9 are each present twice in LIGIV. 

 
2.3.7    Golden Gate Assembly of gRNAs Targeting LIGIV Into pJZC74 

Top and bottom gRNA oligos designed to target LIGIV were previously annealed 

and kinased, according to the protocol in Section 2.2.2.  To ligate each gRNA insert into 

pJZC74 using Golden Gate Assembly, individual 20µL reactions were setup in PCR 

tubes on ice, including 6.5µL of pJZC74 (100ng), 6µL of the gRNA insert, 3µL of 

nuclease-free water, 2µL of T4 10X ligase buffer, 1µL of T4 DNA ligase, and 1.5µL of 

the restriction enzyme BsmBI.  BsmBI was used to digest the customizable gRNA insert 

site in pJZC74, creating overhangs for insertion of the gRNA.  After the reactions were 

setup, PCR tubes were added to a thermocycler and run for 50 cycles of 37°C for 10 

minutes followed by 16°C for 5 minutes.  Following completion of these 50 cycles, the 

temperature was raised to 50°C for 5 minutes, then 80°C for 5 minutes.   
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Before experimental use, the modified vectors were transformed using high-

fidelity 5-alpha E. coli cells, inoculated, and the resulting DNA was extracted and 

purified by Miniprep, then digested and analyzed by gel electrophoresis to confirm 

appropriate band sizes were present.  After a gRNA of interest was inserted, the BsmBI 

sites were no longer present.  See Fig. 13. 

 

 

 
 
Fig. 13  Insertion of gRNA of Interest Into pJZC74.    (A) Customizable gRNA insert 
site before digestion.  BsmBI recognition sequences (gray shaded boxes) were used to 
digest pJZC74.  BsmBI cut sites are indicated by arrows (▲▼).  (B) Customizable 
gRNA insert site after digestion.  Following digestion with BsmBI, the customizable 
gRNA insertion site was cut away and overhangs remained (blue underline).  (C)  gRNA 
targeting LIGIV ligated into pJZC74.  A 14-bp gRNA (N14

 

) targeting LIGIV was then 
ligated into pJZC74 using Golden Gate Assembly.  
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2.4    Preparation of Vectors 

2.4.1    Streaking Plates 

All vectors used in this study were initially received as transformed bacteria in 

stab culture from Addgene.  Stab cultures were stored at 4ºC for up to two weeks prior to 

streaking on 10cm growth plates prepared with Luria Broth (LB) agar, according to the 

protocol in Appendix G.  For each vector, a clean bacterial loop was inserted into the 

stab culture and used to gently streak the bacteria containing the vector on the surface of 

one third of a plate.  The initial streak was then spread across an additional third of the 

plate with a clean bacterial loop, and this was repeated a final time.  Plates were inverted 

and incubated overnight (12-18 hours) at 37°C.  After the incubation period, plates were 

removed and checked for bacterial colonies sufficient for inoculation. 

 

2.4.2    Transformation of Modified Vectors Into E. coli  

After vectors were modified, such as to contain a custom gRNA, transformations 

were performed using chemically competent 5-alpha E. coli.  For high efficiency 

transformations, chemically competent E. coli cells were purchased from NEB in single-

use 50µL vials.  Chemically competent E. coli were also prepared by lab personnel.  All 

competent cells were stored at -80°C until use. 

For each transformation, one vial of chemically-competent bacteria was thawed 

on ice for 10 minutes.  During this time, a heat block was set to 42°C and its wells were 

filled with deionized (DI) water.  After 10 minutes, 4µL of the ligation reaction was 
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added to the thawed cells, and each tube was tapped 3-4 times to mix then placed back on 

ice for 15 minutes.   

After 15 minutes, tubes were placed into the heat block for 30 seconds, then 

returned to ice for 5 minutes.  LB agar plates with Ampicillin were removed from the 4°C 

refrigerator and placed inverted into a bacterial incubator set at 37°C for pre-warming.  

After 5 minutes, each tube received 500µL of LB broth.  Tubes were then placed into an 

incubator shaker set at 37°C and agitated at 250 rpm for 1 hour.   

After 1 hour, 100µL of the bacterial mix was added in droplets onto a pre-warmed 

plate and streaked across the plate using a bacterial loop.  Plates were inverted and placed 

into a 37°C incubator for 12-14 hours to allow for colony growth.  Colonies were then 

inoculated and the DNA was extracted and purified by Miniprep and/or Midiprep. 

Diagnostic digestion, gel electrophoresis, and sequencing were subsequently performed 

to confirm the vector was successfully modified. 

 

2.4.3    Inoculation for Miniprep 

A serological pipette was used to pipette 3mL of LB media containing Ampicillin 

into 15mL polypropylene culture tubes with aerated lids.  A single, isolated bacterial 

colony was removed by gently passing a clean pipette tip over the colony and ejecting the 

tip into the culture media.  After 12-16 hours of agitation in an incubator shaker set at 

37°C and 250 rpm, tubes were removed and the DNA was extracted and purified by 

Miniprep. 
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2.4.4    Inoculation for Midiprep 

Certain modified vectors that were validated by diagnostic digestion and gel 

electrophoresis were inoculated in preparation for Midiprep.  Fifty µL of bacterial culture 

was added to 50mL of LB containing Ampicillin in a sterile, vented culture flask.  The 

cultures were agitated for 12-16 hours in a 37°C / 250 rpm incubator shaker, and the 

DNA was subsequently extracted and purified by Midiprep. 

 

2.4.5    Miniprep DNA Extraction and Purification 

 Minipreps were performed using the QIAprep Spin Miniprep Kit, according to kit 

instructions.  All centrifugation steps were performed at 4°C.  Prior to initial use of the 

kit, RNAse and LyseBlue reagents were added to Buffer P1 and molecular biology grade 

100% ethanol was added to Buffer PE.   

 Following inoculation, 1.5µL of each overnight bacterial culture was transferred 

to a sterile microcentrifuge tube and centrifuged at 2000g for 5 minutes.  Following 

centrifugation, the bacterial media was discarded.  The pelleted cells remaining were 

resuspended by adding 250µL of Buffer P1 and sweeping the tube across an empty 

microcentrifuge rack multiple times.  To lyse the cells, 250µL of Buffer P2 was added 

and tubes were inverted gently 3-4 times to mix.  After no more than 5 minutes, 350µL of 

Buffer N3 was added to halt lysis, and tubes again were inverted gently to mix.  Tubes 

were centrifuged at 12000g for 10 minutes, and the resulting supernatant was transferred 

to a spin column.  (All subsequent centrifugation steps were performed at 12000g for 1 

minute.)  Three centrifugation cycles were performed, the first following addition of 
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500µL of Buffer PB to the supernatant, and the next two after adding 750µL of Buffer PE 

with ethanol.  After each centrifugation cycle, the flow-through was discarded before the 

next buffer was added.  A final centrifugation spin was performed, and the spin columns 

were placed into sterile 1.5µL microcentrifuge tubes.  Forty µL of nuclease-free water 

was added directly to the spin column.  After 5 minutes, tubes were then centrifuged a 

final time to elute the DNA.  The DNA concentration was determined using the 

NanoDropTM One/OneC Microvolume UV-Vis Spectrophotometer (NanoDropTM

 

). 

2.4.6  Midiprep DNA Extraction and Purification 

Midiprep was performed for samples previously confirmed via diagnostic 

digestion and/or sequencing.  Bacterial cultures were obtained from cold storage and 

inoculated for Midiprep.  Following overnight agitation, Midiprep DNA extraction and 

purification was performed using the Qiagen Plasmid Plus Midi Kit, according to the kit 

instructions.  All centrifugation steps were performed at 4°C.  

The Midiprep culture was poured from its overnight culture flask into a sterile 

50mL Falcon tube and centrifuged at 3000g for 15 minutes.  The bacterial media was 

discarded, leaving the pelleted cells, and 4mL of Buffer P1 was added.  The cells were 

resuspended in Buffer P1 using a serological pipette.  To lyse the cells, 4mL of Buffer P2 

was added and tubes were inverted gently 3-4 times to mix.  After no more than 3 

minutes, 4mL of Buffer S3 was added to halt lysis and tubes were gently inverted 3-4 

times.  Each reaction was poured into a filter cartridge placed into a sterile 50mL Falcon 

tube and allowed to stand for 10 minutes.  Using a plunger, the filtrate was filtered into 
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the 50mL Falcon tube, and 2mL of Buffer BB was added.  Tubes were inverted to mix.  

After pouring this solution into a tube extender that had been placed into a spin column, 

the solution was filtered through the spin column using a vacuum. 

 A series of three vacuum filtration steps were subsequently performed, the first 

following addition of 700µL of Buffer ETR, and the next two following addition of 

700µL of Buffer PE containing molecular biology grade 100% ethanol.  A dry 

centrifugation spin was subsequently performed at 10000g for 1 minute, and the spin 

columns were transferred to sterile 1.5µL microcentrifuge tubes.  To elute the DNA, 

200µL of nuclease-free water was added to the spin column membrane and, after 7 

minutes, tubes were centrifuged at 10000g for 1 minute.   

 

2.4.7    Diagnostic Digestion 

 All reactions were performed in PCR tubes on ice.  For each diagnostic digestion, 

a 20µL reaction was prepared, including 300-600ng of the DNA to be digested, 2µL of 

an enzyme-compatible buffer, 1µL of 1-2 restriction enzymes, and sufficient nuclease-

free water to establish a 20µL total reaction volume.  If multiple enzymes were used, a 

buffer compatible with both enzymes was selected.  A master mix containing buffer, 

restriction enzymes, and nuclease-free water was prepared and thoroughly mixed by 

pipette.  An appropriate amount of master mix and DNA was added to each PCR tube.  

Tubes were briefly tapped and spun down to mix, then added to the thermocycler using 

appropriate time and temperature conditions for the particular restriction enzymes used.  



 

36 
 

After the reaction was complete, gel electrophoresis was performed to assess whether the 

expected band sizes were present. 

 

2.4.8 Agarose Gel Electrophoresis 

 A gel was prepared according to the procedure in Appendix G.  Fifteen µL of a 

1kb DNA ladder was added to one or more wells, as appropriate.  Four µL of 6X purple 

loading dye was added to each digested DNA sample. Samples were mixed once by 

pipette and loaded into individual wells.  The gel electrophoresis apparatus was run at 

150V for at least 30 minutes.  Band sizes were subsequently visualized under UV or blue 

light. 

 

2.5    Transfection Using Human Embryonic Kidney Cells 

2.5.1    Passaging Human Embryonic Kidney Cells for Transfection 

 All procedures were performed using sterile technique within a biosafety cabinet.   

Human embryonic kidney (HEK) cells were maintained on 10cm growth plates and 

passaged approximately every 3 days when the cells approached confluency.  Four mL of 

1X PBS (-/-), 2mL of trypsin diluted with PBS (0.05%) , and an appropriate volume of 

Dulbecco's Modified Eagle's Medium (DMEM) were pre-warmed in a water bath.  Using 

a  vacuum, the existing DMEM on the growth plate was aspirated with a glass Pasteur 

pipette.  Using a serological pipette on the gravity setting, 4mL of pre-warmed 1X PBS 

was added gently along the side of the plate.  After briefly swirling to distribute, the 1X 
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PBS was aspirated and 2mL of trypsin was added to detach the cells.  The plate was 

incubated in a 37ºC / 5% CO2

 After incubation, the plate was returned to the biosafety cabinet and 10mL of 

DMEM was added.  The plate was washed down and cells were resuspended using a 

serological pipette.  The cell suspension was placed into a sterile 15mL Falcon tube and 

centrifuged at 300g for 5 minutes.  Following centrifugation, the supernatant was 

aspirated from the pelleted cells.  Four mL of pre-warmed DMEM was added and the 

cells were re-suspended.  One mL of the cell suspension was added to a separate 15mL 

Falcon tube containing 3mL of pre-warmed DMEM, pipetting to mix.  After adding 

13mL of pre-warmed DMEM to a sterile growth plate, 1mL of the cell suspension was 

added to the new growth plate in drops using a serological pipette on the gravity setting.  

The plate was swirled to distribute and placed into a 37ºC / 5% CO

 incubator for 5 minutes.   

2

 

 incubator.  The 

DMEM was changed daily as described in Appendix G. 

2.5.2    Collagen-Coating 24-Well Plates for Transfection 

All procedures were performed using sterile technique within a biosafety cabinet.  

To collagen-coat a 24-well plate in preparation for transfection, 12mL of PBS was 

aliquoted into a 15mL Falcon tube, along with 40µL of 3000X collagen.  Each well of the 

24-well plate received 0.5mL of this solution, which was allowed to coat the wells for an 

hour or more.  After coating, the 24-well plate was seeded with HEK cells. 
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2.5.3    Seeding 24-Well Plates for Transfection 

 The initial steps of this protocol are the same as the steps described in Section 

2.5.1 through the centrifugation step at 300g for 5 minutes to pellet the cells.  Following 

centrifugation and aspiration of the supernatant, 3mL of pre-warmed DMEM was added 

to the pellet and the cells were resuspended by serological pipette.  Twelve mL of pre-

warmed DMEM was added to a clean Falcon tube, along with 1mL of the resuspended 

cells, and the solution was mixed well.  To seed the 24-well plate, the collagen solution 

was thoroughly aspirated from the 24-well plate using a glass pipette within the biosafety 

cabinet.  To aliquot the cells, 0.5mL of the cell suspension was added to the coated wells 

using a serological pipette set to gravity.  The plate was then returned to the 37ºC / 5% 

CO2

 

 incubator until ready for transfection. 

2.5.4    Performing Transfection 

 Transfections were generally performed when HEK cells were 60-90% confluent, 

as confirmed by microscope analysis.  DNA samples were prepared in duplicate for 

fluorescence-activated cell sorting (FACS) analysis and in quadruplicate if quantitative 

polymerase chain reaction (qPCR) analysis was also to be performed.  All transfections 

were performed using sterile technique within a biosafety cabinet. 

DNA samples were diluted to the desired concentrations by mixing DNA with an 

appropriate volume of nuclease-free water in sterile 1.5µL microcentrifuge tubes.  A 

DNA mix was then prepared by adding an appropriate volume of the desired DNA 
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components to sterile 1.5µL microcentrifuge tubes.  The total DNA concentration per 

well was normalized across all tubes by adding non-coding DNA, as appropriate. 

To prepare for transfection, polyethylenimine (PEI) was removed from the -80°C 

freezer and allowed to thaw.  The thawed PEI was vortexed and an appropriate amount 

was aliquoted to a sterile 1.5µL microcentrifuge tube in a volume necessary to achieve a 

2:1 ratio of PEI-to-DNA per well.  An appropriate volume of serum-free DMEM was 

added to the PEI, such that a total volume of 25µL of the DMEM-PEI solution would be 

available for each well.   

An appropriate volume of serum-free DMEM was added to each DNA mix 

sufficient to bring the total volume of the DMEM-DNA solution to 25µL for each well 

designated to receive the DNA components.  The aliquoted DMEM-PEI solution was 

vigorously vortexed, and the appropriate volume was added to each DMEM-DNA mix.  

Each reaction was vortexed twice for two seconds immediately after adding the DMEM-

PEI solution.  All reactions were allowed to sit for 30 minutes within the biosafety 

cabinet.  During this time, the DMEM was changed on the previously-seeded 24-well 

plates using the protocol in Appendix G.  After 30 minutes, each reaction was 

individually pipetted once to mix, and 50µL of each reaction was added to each 

designated well in drops.  At appropriate intervals, the transfection plate was tilted and 

swirled gently to distribute.   

After all transfection components were added to the 24-well plate, the plate was 

returned to the 37ºC / 5% CO2 incubator.  DMEM was changed every 24 hours using the 

protocol in Appendix G.  FACS analysis was generally performed after 72 hours.  qPCR 
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analysis was also performed after 72 hours or RNA was extracted and stored at -80ºC 

until ready for use.   

 

2.6    Analytical Methods 

2.6.1    Fluorescence Microscope Imaging 

 Images of cells were collected using an EVOS® FL Cell Imaging System set at 

4x magnification.  Images were viewed on appropriate color channels, such as DAPI and 

GFP, to visualize transfection efficiency and repair of the mutated EGFP gene in 

pDRGFP, respectively, as compared to controls.  Imaging was done before transfection 

or qPCR analysis and during the cell culturing process. 

 

2.6.2    Flow Cytometry with Fluorescence-Activated Cell Sorting Workstation 

Flow cytometry was performed using the BD FACSCelestaTM Flow Cytometer, 

generally 72 hours after transfection.  For each well of a transfection plate to be analyzed 

by FACS, 100µL of PBS-diluted trypsin (0.05%) and 450µL of 1X HBSS (Ca-/Mg-) / 

2% fetal bovine serum (FBS), or HBSS/FBS media, was pre-warmed at room 

temperature.  Working on a sterile bench, the media in each 24-well plate to be analyzed 

was discarded.  To dissociate the cells, 100µL of trypsin was added to each well and the 

plate was secured in a compact digital waving rotator set to 100rpm for 3-5 minutes.  

After this short incubation period, 200µL of HBSS/FBS media was added to each well.  

The contents of each well were gently resuspended by pipette and placed into individual 

wells on a 96-well plate.  After centrifugation at 1500rpm for 2 minutes, the supernatant 
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was aspirated from each well using a glass pipette, leaving pelleted cells in the bottom of 

each well.  Each well then received 250µL of HBSS/FBS media, and the cells were 

gently resuspended a final time.  A calibration bead suspended in 200µL of HBSS/FBS 

was added to a single well on the 96-well plate.  The plate settings were input into the 

BDS FACSDivaTM

 

 Software, and FACS was performed using a high-throughput sampler.   

2.6.3    Flow Cytometry Analysis 

 FACS data was analyzed using FlowJo® v10.  Appropriate gates were added to 

omit debris and dead cells and to isolate cells that had been successfully transfected (i.e., 

those containing enhanced blue fluorescence protein, or EBFP).  Color compensation was 

performed, and the geometric mean of GFP+

 

 cells for each well was determined. 

2.6.4    RNA Extraction 

 RNA extraction was either automated using the QIAcube robotic workstation, 

described below, or manually performed using the RNeasy Plus Mini Kit, per kit 

instructions.   

 To begin preparing the cells for analysis in the QIAcube workstation, the DMEM 

was completely aspirated from the 24-well plates from which the RNA was to be 

extracted.  To lyse the cells, 350µL of Buffer RLT Plus, previously prepared with β-

mercaptoethanol, was added to each well, and the wells were scraped with a pipette tip to 

thoroughly dissociate the cell lysate.  The cell lysate solution was added to a 

microcentrifuge tube, for a total volume of 700µL per conditions prepared in duplicate, 
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and placed on ice.  Tubes were centrifuged at 17rpm for 3 minutes and promptly returned 

to ice.    

 QIAcube rotor adapters were prepared, each with a QIAshredder spin column 

placed in a 2mL collection tube, a gDNA Eliminator spin column placed in a 2mL 

collection tube, and a 1.5mL elution tube.  Bottles containing all appropriate reagents, 

including Buffer RW1, Buffer RPE, 70% ethanol, and RNA-free water were filled to the 

maximum levels.  For each condition, 350µL of the cell lysate solution was added to a 

1.5mL microcentrifuge tube and loaded into the QIAcube workstation.  The remaining 

cell lysate was stored at -80ºC.   

 Following RNA purification by the QIAcube workstation, the RNA concentration 

of each sample was measured using the NanoDropTM

 

, while keeping the tubes on ice.  

RNA was stored at -80ºC until ready for cDNA synthesis. 

2.6.5    cDNA Synthesis 

 All RNA samples and cDNA synthesis kit components were kept on ice 

throughout this protocol.  RNA samples stored at -80ºC following RNA purification were 

thawed on ice and briefly spun down.  Each RNA sample was diluted in PCR tubes to 

100ng/µL using nuclease-free water.  Tubes were tapped briefly and spun down to mix.  

The appropriate volume of a master mix was prepared such that each reaction would 

receive 2µL of 10X RT Buffer, 0.8µL of 25X dNTP Mix, 2µL of 10X RT Random 

Primers, 1µL of Reverse Transcriptase, and 9.2µL of nuclease-free water.  The master 

mix was tapped briefly to mix and spun down. 
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 Fifteen µL of the master mix solution was combined with 5µL of RNA 

(100ng/µL) diluted to 100ng/µL in fresh PCR tubes on ice, such that each tube contained 

500ng of RNA along with the master mix components.  Tubes were tapped gently, spun 

down, and run on the thermocycler at 25ºC for 10 minutes, 37ºC for 2 hours, then 85ºC 

for 5 minutes.  Following cDNA synthesis, samples were held briefly at 4ºC in the 

thermocycler.   

 All RNA was assumed to have been converted to cDNA.  Thus the total cDNA 

concentration was assumed to be 500ng following cDNA synthesis.  Samples were stored 

at -20ºC or analyzed immediately by qPCR. 

 

2.6.6  qPCR Analysis 

 The gene of interest in this study was LIGIV.  The endogenous control used was 

18S rRNA.  Primers and cDNA (if previously stored at -20ºC) were thawed on ice.  

cDNA was diluted to 5ng/µL by resuspending 5µL of cDNA (at 500ng) in 20µL of 

nuclease-free water.  Master mix solutions were prepared for the gene of interest, LIGIV, 

and the endogenous control gene, 18S rRNA.  The master mix for LIGIV included 10µL 

of SYBR® Green Mastermix, 1µL of LIGIV Primetime primer, and 5µL of nuclease-free 

water.  The master mix for 18S rRNA included 10µL of SYBR® Green Mastermix, 1µL 

of 18S rRNA forward primer, 1µL of 18S rRNA reverse primer, and 4µL of nuclease-free 

water.  Each master mix was tapped gently to mix and spun down before use.   

 For both LIGIV and 18S rRNA, 16µL of the appropriate master mix and 4µL of 

cDNA was added to individual wells of a 96-well tray.  Each cDNA sample was tested in 
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duplicate.  The tray was covered with film and centrifuged at 1500g for 2 minutes, then 

loaded into QuantStudio® 3.  Comparative CT (ΔΔCT

 

) was performed to analyze LIGIV 

gene repression.  
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3.    RESULTS 
 
3.1    Initial Transfection and qPCR Analysis of gRNAs Targeting LIGIV 

An initial transfection in HEK cells was performed, with samples receiving the 

components listed in Table 2.  Twenty gRNAs, each in its own pJZC74 vector, were 

initially tested at both 250ng and 25ng with a corresponding amount of hCas9.  Each 

sample received 20ng of EBFP as a transfection control.  Following transfection, RNA 

extraction and cDNA synthesis, qPCR was performed to measure the expression of 

LIGIV.  Several gRNAs achieved robust repression of LIGIV.  See Fig. 14.   

 

Sample Components 

Control 20ng EBFP + 250ng pJZC74 with customizable gRNA insert site 

1 20ng EBFP + 250ng gRNA-1 + 250ng hCas9 

2 20ng EBFP + 25ng gRNA-1 + 25ng hCas9 

3 20ng EBFP + 250ng gRNA-2 + 250ng hCas9 

4 20ng EBFP + 25ng gRNA-2 + 25ng hCas9 

5 20ng EBFP + 250ng gRNA-3 + 250ng hCas9 

6 20ng EBFP + 25ng gRNA-3 + 25ng hCas9 

7 20ng EBFP + 250ng gRNA-4 + 250ng hCas9 

8 20ng EBFP + 25ng gRNA-4 + 25ng hCas9 

9 20ng EBFP + 250ng gRNA-5 + 250ng hCas9 

10 20ng EBFP + 25ng gRNA-5 + 25ng hCas9 

11 20ng EBFP + 250ng gRNA-6 + 250ng hCas9 

12 20ng EBFP + 25ng gRNA-6 + 25ng hCas9 

13 20ng EBFP + 250ng gRNA-7 + 250ng hCas9 

14 20ng EBFP + 25ng gRNA-7 + 25ng hCas9 

15 20ng EBFP + 250ng gRNA-8 + 250ng hCas9 

16 20ng EBFP + 25ng gRNA-8 + 25ng hCas9 

17 20ng EBFP + 250ng gRNA-9 + 250ng hCas9 
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18 20ng EBFP + 25ng gRNA-9 + 25ng hCas9 

19 20ng EBFP + 250ng gRNA-10 + 250ng hCas9 

20 20ng EBFP + 25ng gRNA-10 + 25ng hCas9 

21 20ng EBFP + 250ng gRNA-11 + 250ng hCas9 

22 20ng EBFP + 25ng gRNA-11 + 25ng hCas9 

23 20ng EBFP + 250ng gRNA-12 + 250ng hCas9 

24 20ng EBFP + 25ng gRNA-12 + 25ng hCas9 

25 20ng EBFP + 250ng gRNA-13 + 250ng hCas9 

26 20ng EBFP + 25ng  gRNA-13 + 25ng hCas9 

27 20ng EBFP + 250ng gRNA-14 + 250ng hCas9 

28 20ng EBFP + 25ng gRNA-14 + 25ng hCas9 

29 20ng EBFP + 250ng gRNA-15 + 250ng hCas9 

30 20ng EBFP + 25ng gRNA-15 + 25ng hCas9 

31 20ng EBFP + 250ng gRNA-16 + 250ng hCas9 

32 20ng EBFP + 25ng gRNA-16 + 25ng hCas9 

33 20ng EBFP + 250ng gRNA-17 + 250ng hCas9 

34 20ng EBFP + 25ng gRNA-17 + 25ng hCas9 

35 20ng EBFP + 250ng gRNA-18 + 250ng hCas9 

36 20ng EBFP + 25ng gRNA-18 + 25ng hCas9 

37 20ng EBFP + 250ng gRNA-19 + 250ng hCas9 

38 20ng EBFP + 25ng gRNA-19 + 25ng hCas9 

39 20ng EBFP + 250ng gRNA-20 + 250ng hCas9 

40 20ng EBFP + 25ng gRNA-20 + 25ng hCas9 

 
 
Table 2  Components of Transfection for Initial Screening of LIGIV gRNAs.  All 
cells received 20ng of EBFP as a transfection control.  Each sample received pJZC74 
containing a single gRNA targeting LIGIV.  Each gRNA was tested at both 250ng and 
25ng of pJZC74, along with a corresponding amount of hCas9.  An appropriate amount 
of non-coding DNA was added to each well to normalize the total amount of DNA per 
well to ~520ng.   
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Fig. 14  Initial qPCR Results Showing Repression of LIGIV by gRNAs.  Samples 
received the components listed in Table 2.  The control sample contained pJZC74 with 
the customizable gRNA insert site, but no gRNA.  Anything below the control (1.0) 
indicates LIGIV repression. Samples 18, 19 and 21, containing gRNA-9, gRNA-10 and 
gRNA-11 respectively, showed significant repression of LIGIV and were selected for 
further analysis. 
 
 

3.2    Further qPCR Analysis of Select gRNAs Targeting LIGIV 

gRNAs 9, 10 and 11 all achieved robust repression of LIGIV following initial 

qPCR analysis and were selected for further testing.  These gRNAs all fall within 

promoter 3 and within ~250 bps of the start of exon 3.  See Fig. 15.   Successful ligation 

of these select gRNAs into pJZC74 was confirmed by diagnostic digestion and 

sequencing.  See Appendix E. 

 

 

 

 

 

 * *    * 
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Fig. 15  Region of LIGIV Targeted by gRNAs Selected for Further Testing.
 

2 

 
An additional transfection in HEK cells was performed, with each sample 

receiving the components listed in Table 3 and Table 4.  Each gRNA was tested at 50ng 

and 100ng of pJZC74 (containing the indicated gRNA) with a corresponding amount of 

pX330 (containing the gRNA targeting pDRGFP) and hCas9 (50ng or 100ng) and 250ng 

of pDRGFP.  All samples received 20ng of EBFP as a transfection control.  Following 

transfection, RNA extraction and cDNA synthesis, qPCR was performed to assess the 

resulting repression of LIGIV.  See Fig. 16.   
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Sample Components 

Control  20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74 (no gRNA) 
+ 50ng hCas9 

1 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74-gRNA-9  
+ 50ng hCas9 

2 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74-gRNA-10  
+ 50ng hCas9 

3 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74-gRNA-11  
+ 50ng hCas9 

 
Table 3  Components of Transfection with 50ng of pJZC74 for qPCR Analysis. 
 
 
Sample Components 

Control 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng pJZC74 (no gRNA) 
+ 100ng hCas9 

1 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng pJZC74-gRNA-9  
+ 100ng hCas9 

2 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng pJZC74-gRNA-10  
+ 100ng hCas9 

3 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng pJZC74-gRNA-11  
+ 100ng hCas9 

 
Table 4  Components of Transfection with 100ng of pJZC74 for qPCR Analysis. 
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(A)  qPCR results (50ng of pJZC74 with gRNA) 
 

 

 

 

 

 

 

 

 

 
(B)  qPCR results (100ng of pJZC74 with gRNA) 
 
Fig. 16  qPCR Results Showing Repression of LIGIV Using Select gRNAs.  Control 
samples at 50ng and 100ng received the same components as the other samples, except 
pJZC74 only contained the customizable gRNA insert site.  An appropriate amount of 
non-coding DNA was added, as needed, to normalize the total amount of DNA per well 
to ~570ng.  At 50ng of pJZC74 (top), gRNA-9 achieved the most repression of LIGIV.  
At 100ng of pJZC74 (bottom), gRNA-11 was the best-performing gRNA.   
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3.3    FACS Analysis of Select gRNAs Targeting LIGIV 

 The same components transfected into HEK293FT cells to test for repression of 

LIGIV using qPCR analysis were also transfected to test for gene editing using FACS 

analysis.  Each sample received the components listed in Table 5 and Table 6.  Each 

gRNA was tested at 50ng and 100ng of pJZC74 (containing the indicated gRNA) with a 

corresponding amount of pX330 targeting pDRGFP and hCas9 (50ng or 100ng), as well 

as 250ng of pDRGFP.  Results by FACS analysis show high levels of GFP compared to a 

control containing only pDRGFP, indicating that HDR repair and, therefore, gene editing 

occurred.  See Fig. 17.  Fluorescence images of transfected HEK cells before FACS 

analysis was performed are shown in Appendix F.  
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Sample Components 

Control 20ng EBFP + 250ng pDRGFP  

Control 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74 (no gRNA) 
+ 50ng hCas9 

1 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74-gRNA-9  
+ 50ng hCas9 

2 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74-gRNA-10  
+ 50ng hCas9 

3 20ng EBFP + 250ng pDRGFP + 50ng pX330 + 50ng pJZC74-gRNA-11  
+ 50ng hCas9 

 
Table 5  Components of Transfection with 50ng of pJZC74 for FACS Analysis. 
 
 

Sample Components 

Control 20ng EBFP + 250ng pDRGFP  

Control 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng pJZC74 (no 
gRNA) + 100ng hCas9 

1 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng gRNA-9 
+ 100ng hCas9 

2 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng gRNA-10 
+ 100ng hCas9 

3 20ng EBFP + 250ng pDRGFP + 100ng pX330 + 100ng gRNA-11 
+ 100ng hCas9 

 
Table 6  Components of Transfection with 100ng of pJZC74 for FACS Analysis. 
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(A)  FACS results (50ng of pJZC74 with gRNA) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B)  FACS results (100ng of pJZC74 with gRNA) 
 
Fig. 17  FACS Results Showing Geometric Mean of GFP+ Cells.  Non-coding DNA 
was added to normalize the total amount of DNA per well to ~570ng.  (A) FACS results 
at 50ng.  Significant GFP was present for all gRNAs as compared to pDRGFP alone.  
gRNA-10 showed the highest geometric mean of GFP+ cells at 50ng of pJZC74.  (B) 
FACS results at 100ng.  gRNA-9 showed the highest geometric mean of GFP+ cells at 
100ng of pJZC74.   

 

 



 

54 
 

4.    DISCUSSION 

4.1    Summary of Study Outcomes 

 An initial screen of gRNAs was performed to test which gRNAs were the most 

effective at repressing LIGIV.  Twenty gRNAs were designed to target key regions of the 

LIGIV gene.  See Table 1 and Fig. 12.  These gRNAs were screened for repression of 

LIGIV, with cells receiving 20ng of EBFP as a control for transfection, 250ng or 25ng of 

pJZC74 with a gRNA targeting LIGIV, and a corresponding amount (250ng or 25ng) of 

hCas9.  See Table 2.  If successful, each 14-nt gRNA targeting LIGIV with the Com-

KRAB effector domain attached forms a ribonucleoprotein complex with hCas9.  When 

the gRNA binds to its targeted region of the LIGIV gene, repression of LIGIV results due 

to the chromatin-modifying effects of KRAB (Groner et al., 2010).  See Fig. 6.  Cas9 

does not induce a DSB because the gRNAs are truncated at 14 nts.  Several gRNAs 

showed significant repression of LIGIV.  See Fig. 14.   

 An additional experiment was performed to corroborate the earlier findings of 

LIGIV repression and to further test whether simultaneous gene editing was occurring.  

Three high-performing gRNAs (9, 10 and 11) were selected for further study.  See Fig. 

15.  The 20-nt gRNA in pX330 targeted the mutated EGFP in pDRGFP and the 14-nt 

gRNA in pJZC74 targeted LIGIV, each in complex with hCas9.  Because pX330’s gRNA 

was 20-nt, hCas9 induced a DSB in the EGFP gene, prompting cells to repair the cut site.  

If cells performed HDR using the donor template present in pDRGFP, GFP+ cells 

resulted.  Alternatively, if cells performed NHEJ, indels likely occurred and the EGFP 

sequence remained disrupted.  As with the initial screen, the 14-nt gRNAs in pJZC74 
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bind to LIGIV and Cas9 does not induce a DSB.  This allows the KRAB effector domain 

to repress LIGIV without any genome modification.   

 HEK cells were transfected and analyzed contemporaneously by FACS and 

qPCR.  For qPCR, cells received 250ng of pDRGFP, 50ng or 100ng of pJZC74 

(containing a gRNA targeting LIGIV), and a corresponding amount (50ng or 100ng) of 

both pX330 and hCas9.  A control received the same components in the same 

concentrations as the remaining samples, except that pJZC74 only contained the 

customizable gRNA insert site (no gRNA targeting the human genome was present).  See 

Tables 3-4.  qPCR analysis of gRNAs 9, 10 and 11 showed that all three gRNAs 

repressed LIGIV.  See Fig. 16.   

 For FACS, cells received the same components as were transfected for qPCR 

analysis.  See Tables 5-6.  Two controls were included, one containing only 250ng of 

pDRGFP and another with all the same components in the same concentrations as the 

remaining samples, except pJZC74 did not contain a gRNA.  The results showed 

abundant GFP+

  

 cells compared to the control without pX330, demonstrating that gene 

editing was occurring.  See Fig. 17.  

4.2    Advancements Presented by This Study 

 The overall results indicate that a novel CRISPR/Cas9 tool for simultaneous gene 

editing and transcriptional regulation was designed and tested.  Such a tool has important 

implications for the development of gene therapies, whereby the repression of key genes 

during genome editing may aid with the study and implementation of a host of disease 
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treatments.  Cancer, for instance, is a complex disease process that will benefit from an 

arsenal of strategies.  With the ability to repress genes that promote cancer proliferation, 

migration and invasion, while simultaneously performing targeted genome edits, 

researchers are endowed with an additional level of genomic control that could mitigate 

the disease process.   

 Furthermore, repressing key genes involved with NHEJ during genomic editing 

may benefit the efficiency of HDR, thereby improving the efficiency with which desired 

genomic edits are performed.  The ability to precisely control HDR has widespread 

implications, not only for clinical medicine, but for fundamental genomic research, 

synthetic biology, agriculture, and other applications (Barrangou & Doudna, 2016; Hsu, 

et al., 2014). 

 By expanding upon earlier advancements, the results of this study broadened the 

versatility of pJZC74 and the modularity of Cas9 as a platform for simultaneous gene 

editing and transcriptional regulation.  Similar to other repression vectors available on 

Addgene at the initiation of this study, pJZC74 was designed for use with the 

catalytically-inactive dCas9 to achieve transcriptional regulation (Zalatan et al., 2014).  

However, pJZC74 was unique compared to other repression vectors, in that it was 

designed to recruit RNA-binding effector domains (e.g., Com-KRAB) directly to the 

gRNA (via the com recruitment domain), rather than fusing the effector domain directly 

to dCas9 (Zalatan et al., 2014).  This key design element enabled the use of catalytically-

active Cas9 as the platform for transcriptional regulation, rather than dCas9, in 

conjunction with 14-nt gRNAs (Kiani et al., 2015).  With Cas9 as the platform, genome 
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editing could be simultaneously initiated by introducing a 20-nt gRNA targeted to the 

desired site of gene editing.   

 In addition to corroborating earlier findings showing that truncated gRNAs can be 

used with Cas9 to regulate gene expression (Kiani et al., 2015), this study expanded upon 

those findings by testing repression using 14-nt gRNAs targeted to the genome, rather 

than a plasmid-based assay.  This study also extended the pool of 14-nt gRNAs available 

for repression.  Whereas gene repression through steric blocking alone using 14-nt 

gRNAs had been tested on gRNAs targeted in close proximity to an engineered TATA 

box (Kiani et al., 2014; Kiani et al., 2015), the approach in this study appears to expand 

beyond those initial design constraints due to Com-KRAB’s effectuation of gene 

silencing through long-range distribution of repressive chromatin modifiers along the 

target gene (Groner et al., 2010).  As a result of this more extensive transcriptional 

regulation, a broader selection of target sites is now available when designing repression 

experiments using CRISPR/Cas9.   

 

5.    CONCLUSION & FUTURE WORK 

 Improving the efficiency of HDR is critical to the precision of genome editing.  

More comprehensive studies are recommended to test whether this tool can increase the 

efficiency of HDR by repressing a variety of key genes involved with NHEJ.  Such genes 

may include LIGIV in combination with XRCC4, XRCC5, and XRCC6, among others 

(Chu et al., 2015; Maruyama et al., 2015). 
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 Furthermore, it may be desirable to utilize an alternative reporter system to 

substantiate findings developed with pDRGFP.  For instance, Glaser, McColl, and 

Vadolas (2016) designed a simple system for quantifying HDR.  In GFP cell lines, 

gRNAs were targeted to the EGFP gene to induce a DSB (Glaser et al., 2016).  A single-

stranded donor template was used to convert GFP to BFP, in the event of HDR (Glaser et 

al., 2016).  BFP, therefore, acted as a reliable quantifier of HDR and loss of blue 

fluorescence indicated the occurrence of NHEJ (Glaser et al., 2016).  This reporter 

system would be a useful addition to further studies. 

 Expansion of the CRISPR toolkit is vital to pushing forward downstream medical 

advancements and other important applications of CRISPR/Cas technology.  This study 

offered foundational support for an innovative approach to simultaneous gene 

modification and transcriptional regulation with the potential to benefit a variety of future 

research endeavors. 
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FOOTNOTES 
 

     1

 

 Materials and methods described herein are based on standard operating procedures 
issued for Dr. Kiani’s laboratory. 

     2
 

 Image credit:  Kearse, et al. (2012). 
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APPENDIX A 
 

VALIDATION THAT PX330 CONTAINS  

GRNA TARGETING MUTATED EGFP IN PDRGFP 
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 After Golden Gate Assembly of the gRNA targeting pDRGFP’s mutated EGFP 

sequence into pX330, diagnostic digestion on the modified vector was performed using a 

20µL reaction: 2µL of the modified pX330 vector, 1µL of BbsI-HF, 1µL of AgeI-HF, 

2µL of CutSmart® Buffer, and 14µL of nuclease-free water.  Samples were run at 37°C 

for 30 minutes.  Expected band size for vectors that successfully integrated the gRNA, 

thereby eliminating the BbsI recognition sequences, was ~8.5kb.  Two reactions from 

those tested showed the correct band sizes.  Successful insertion of the gRNA sequence 

was confirmed by Sanger sequencing.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18  Diagnostic Digestion of pX330 Confirming Insertion of gRNA.  The expected 
~8.5kb band was observed following insertion of the gRNA targeting the mutated EGFP 
in pDRGFP into pX330.  
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Sample 1 

ATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTG
GGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCA
TATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTAT
ATATCTTGTGGAAAGGACGAAACACCGGTGTCCGGCTAGGGA
TAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAG
TCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTT
TGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG
TTTTTAGCGCGTGCGCCAATTCTGCAGACAAATGGCTCTAGAG
GTACCCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGAC
CGCCCAACGACCCCCGCCCATTGACGTCAATAGTAACGCCAAT
AGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAA
ACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTA
CGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCA
TTGTGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAG
TACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGA
GCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCA
CCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCG
AT 

Sample 2 

TGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTA
GAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATG
TTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTAT
TTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACA
CCGGTGTCCGGCTAGGGATAACGTTTTAGAGCTAGAAATAGC
AAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGG
CACCGAGTCGGTGCTTTTTTGTTTTAGAGCTAGAAATAGCAAG
TTAAAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTG
CAGACAAATGGCTCTAGAGGTACCCGTTACATAACTTACGGTA
AATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGA
CGTCAATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATG
GGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAA
GTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACG
GTAAATGGCCCGCCTGGCATTGTGCCCAGTACATGACCTTATG
GGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT
ATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCC
CCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATT
TTTTAATTATTTTGTGCAGCGAT 

 
Table 7  Sequencing Results Confirming Insertion of gRNA Into pX330.  Sequencing 
results confirm successful insertion into pX330 of the gRNA targeting pDRGFP’s 
mutated EGFP (red underline). 
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APPENDIX B 

GEL PURIFICATION OF LINEARIZED PJZC74 & GBLOCK WITH 

CUSTOMIZABLE GRNA INSERT SITE 
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Fig. 19  Images of Linearized pJZC74 and gBlock Containing Customizable gRNA.  
Images on blue transilluminator taken before gel purification showed bands for linearized 
pJZC74 at ~8.2kb and the digested gBlock containing the customizable gRNA insert site 
at ~550 bps, as expected. 

 

 

 

 

 

 

 

Linearized 
pJZC74 

 

gBlock 
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APPENDIX C 

VALIDATION THAT GBLOCK WITH CUSTOMIZABLE GRNA INSERT SITE 

LIGATED INTO PJZC74 
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 After Golden Gate Assembly of the customizable gRNA insert site into pJZC74, 

diagnostic digestion was performed on the modified vector using a 20µL reaction:  4µL 

of the modified pJZC74 vector, 1µL of PciI, 2µL of BsmBI, 2µL of NEBufferTM

 

 3.1, and 

11µL of nuclease-free water.  After adding 1µL of PciI initially, samples were run at 

37°C for 1 hour.  Thereafter, 2µL of BsmBI was added, and samples were run at 55°C for 

2 hours.  Expected band size for vectors that successfully integrated the gRNA insert site 

was ~900 bps, 1.8kb and 6.1kb.  Successful insertion of the customizable gRNA insert 

site was confirmed by Sanger sequencing. 

 

 

 

 

 

 

 

 

 

Fig. 20  Diagnostic Digestion of pJZC74 Confirming Insertion of gBlock.  The 
expected band sizes of ~900 bps, 1.8kb and 6.1kb were observed following insertion of 
the gBlock containing the customizable gRNA insert site into pJZC74. 
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GAGATCCAGTTTGGTTAGTACCGGGCCCGCTCTAGAGATCCGACGCGCC
ATCTCTAGGCCCGCGCCGGCCCCCTCGCACAGACTTGTGGGAGAAGCTC
GGCTACTCCCCTGCCCCGGTTAATTTGCATATAATATTTCCTAGTAACTA
TAGAGGCTTAATGTGCGATAAAAGACAGATAATCTGTTCTTTTTAATAC
TAGCTACATTTTACATGATAGGCTTGGATTTCTATAACTTCGTATAGCAT
ACATTATACGAAGTTATAAACAGCACAAAAGGAAACTCACCCTAACTG
TAAAGTAATTGTGTGTTTTGAGACTATAAGTATCCCTTGGAGAACCACC
GGAGACGGGATACCGTCTCTGTTTAAGAGCTATGCTGGAAACAGCATA
GCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCG
AGTCGGTGCCTGAATGCCTGCGAGCATCTTTTTTTGTTTTTTATGTCTCT
GCAGAGTTCGGTCTCGAGTACTAGGATC*ATTAGGCGGCCGCGTGGATA
ACCGTATTAC 

 

Table 8  Sequencing Results Confirming Insertion of gBlock Into pJZC74.  
Sequencing results confirm successful insertion into pJZC74 of the gBlock containing the 
customizable gRNA insert site (red underline). 
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APPENDIX D 

SEQUENCES OF GRNAs TARGETING LIGIV 
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1 GGCAAATGCCCCCGC 

2 GGCAAATGCCCCCGC 

3 GGCGGGGGCATTTGC 

4 GGCGGGGGCATTTGC 

5 GCGGCGAGCAGCTGG 

6 GCGGCGAGCAGCTGG 

7 GGCTGCTCGCCGCGC 

 8* GGTGTCTGGGACGTC 

 9* GGTGTCTGGGACGTC 

10 GACCTGACGCCCCTC 

11 GACCTGACGCCCCTC 

12 GAGTCTACAGCGCTG 

13 GAGTCTACAGCGCTG 

14 GCATCACCGCTTTGA 

15 GCATCACCGCTTTGA 

16 GGGCAGCCATCAAAG 

17 GGGCAGCCATCAAAG 

18 GGACAAAAGAGGTGA 

19 GGACAAAAGAGGTGA 

20 GTCGACGCCACACCGTTTATT 
 

 

Table 9  Sequences of gRNAs Targeting LIGIV. gRNAs 1, 3, 5, 8, 10, 12, 14, 16, 18, 
and 20 were placed into a pJZC74 vector that contained an extra TTGTT sequence, 
which followed the gRNA.  The purpose of this short sequence was unclear from a 
review of relevant literature. Therefore, certain gRNAs were tested with and without this 
sequence.  * Complementary sequences for gRNAs 8 and 9 each appear twice in LIGIV.  
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APPENDIX E 

VALIDATION THAT SELECT GRNAS TARGETING LIGIV  

LIGATED INTO PJZC74 

  



 

75 
 

 After Golden Gate Assembly of gRNAs 9, 10 and 11 into pJZC74, diagnostic 

digestion was performed.  Each digestion included 1-1.2µL of pJZC74 with the gRNA, 

1µL of PciI, 1µL of BsmBI, 2µL of NEBufferTM

 

 3.1, and sufficient nuclease-free water to 

bring the reaction to 20µL.  After adding 1µL of PciI initially, samples were run at 37°C 

for 1 hour, then 2µL of BsmBI was added and samples were run at 55°C for an additional 

2 hours.  Expected band size for vectors that successfully integrated the gRNA, thereby 

eliminating the BsmBI recognition sequences, was ~900 bps and 8.0kb.  Successful 

insertion of each gRNA was confirmed by Sanger sequencing. 

 

 

 

 

 

 

 
 
 
 
Fig. 21  Diagnostic Digestion of pJZC74 Confirming Insertion of Select gRNAs 
Targeting LIGIV.  The expected band sizes of ~900 bps and 8.0kb were observed 
following insertion of the gRNAs targeting LIGIV into pJZC74. 
 
 

   

  

 

gRNA-9 

 

gRNA-10 gRNA-11 
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gRNA Sequencing results 

gRNA-9 TATCCCTTGGAGAACCACCGGTGTCTGGGACGTCGTTTAAGAGC
TATGCTGGAA 

gRNA-10 CTTGGAGAACCACCTTGTTGACCTGACGCCCCTCGTTTAAGAGC
TATGCTGGAA 

gRNA-11 TATCCCTTGGAGAACCACCGACCTGACGCCCCTCGTTTAAGAGC
TATGCTGGAA 

 
Table 10  Sequencing Results Confirming Insertion of Select gRNAs Into pJZC74.  
Sequencing results confirm successful insertion into gRNAs 9, 10 and 11 targeting LIGIV 
into pJZC74 (red underline). 
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APPENDIX F 

FLUORESCENCE MICROSCOPE IMAGES OF HEK CELLS  

BEFORE FACS ANALYSIS 
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Fig. 22  GFP Images of HEK293FT Cells Receiving 50ng of pJZC74 with gRNAs.  

 
Control 

250 pDRGFP + 50 pX330 + 50 pJZ_cust + 50 hCas9 
 

 
Control 

250 pDRGFP 

 
Sample 1 

250 pDRGFP + 50 pX330 + 50 gRNA-9 + 50 hCas9 
 

 
Sample 2 

250 pDRGFP + 50 pX330 + 50 gRNA-10 + 50 hCas9 

 
Sample 3 

250 pDRGFP + 50 pX330 + 50 gRNA-11 + 50 hCas9 
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Fig. 23  GFP Images of HEK293FT Cells Receiving 100ng of pJZC74 with gRNAs.  

 
Control 

250 pDRGFP 

 
Control 

250 pDRGFP + 100 pX330 +100 pJZ_cust + 100 hCas9 

 
Sample 1 

250 pDRGFP + 100 pX330 + 100 gRNA-9 + 100 hCas9 

 
Sample 2 

250 pDRGFP + 100 pX330 + 100 gRNA-10 + 100 hCas9 

 
Sample 3 

250 pDRGFP + 100 pX330 + 100 gRNA-11 + 100 hCas9 
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APPENDIX G 

SELECT PROTOCOLS

 

1 
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Preparation of Agarose Gel 

 To prepare a 1% gel, 1.5g of powdered ME Agarose and 150mL of 1X TAE were 

added to a 250mL glass bottle.  (Note: UltraPureTM

 

 Low Melting Point Agarose was 

substituted for ME Agarose when a gel purification was to be performed).  The solution 

was mixed by gently shaking, then microwaved until the gel dissolved, approximately 2-3 

minutes.  After cooling for ~10 minutes, 15µL of 10,000X SYBR® Safe, a nucleic acid 

stain, was added and swirled vigorously to mix.  The gel was poured into an 

electrophoresis tray and an appropriately-sized comb was placed.  The gel was allowed to 

solidify for at least 30 minutes, after which the comb was removed, the tray was properly 

positioned in the gel electrophoresis apparatus, and 1X TAE was poured into the 

chambers to cover the gel.  The desired samples and a DNA ladder were then loaded, as 

appropriate. 

Preparation of DMEM 

 In a biosafety cabinet, 450mL of DMEM (with sodium pyruvate, 4.5g/L glucose), 

50mL of pre-warmed FBS, and 5mL of non-essential amino acids, Glutamine, and 

Penicillin Streptomycin was filter sterilized using a 500µL filter flask. 

 

Changing Media on HEK Cell Growth Plates 

 To change the media on a growth plate, 14mL of DMEM was pre-warmed in a 

water bath.  Within the biosafety cabinet, the existing DMEM on the plate was aspirated 

using a glass pipette under vacuum.  Using a serological pipette on the gravity setting, 
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14mL of pre-warmed DMEM was added carefully along the sides of the plate.  The plate 

was then returned to the 37ºC / 5% CO2

 

 incubator. 

Changing Media on 24-Well Transfection Plates 

 For each 24-well plate to receive media, 12mL of DMEM was pre-warmed.  

Within a biosafety cabinet, the existing DMEM was aspirated from each well using a 

sterile glass pipette.  Using a serological pipette, 0.5mL of pre-warmed DMEM was 

added to each well along the side of the plate using the gravity setting.  The plate was 

promptly returned to the 37ºC / 5% CO2

 

 incubator. 

Preparation of Luria Broth Agar Growth Plates with Antibiotic 

 To prepare the plates, 800mL of DI water and 32g of powdered LB agar were 

added to a 1000mL glass bottle.  After shaking to distribute, the lids were loosened 

slightly and covered with aluminum foil.  The bottles were labeled with autoclave tape 

and autoclaved in a tray containing water.  After cooling, 800µL of 1000x concentrated 

Ampicillin antibiotic was added and the bottles were swirled briefly to thoroughly 

distribute.  Sterile, 10cm polystyrene plates were placed on a sterile bench, and media 

was poured into each plate to partially fill.  Plates were covered with their lids and 

allowed to solidify.  Plates were inverted and allowed to continue cooling overnight, then 

placed into sealed plastic bags and stored at 4°C until use.  Any remaining LB agar media 

was also stored at 4°C. 
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Quantification of DNA or RNA Concentration 

 To measure DNA or RNA, the appropriate sample type was selected on the 

NanoDropTM (DNA or RNA).  The instrument was blanked with nuclease-free water and 

both arms of the instrument were cleaned with DI water using a KimwipeTM

 

.  The desired 

sample was pipetted onto the probe (1-1.2µL) and the upper arm was lowered to measure 

the concentration. 

Glycerol Stock Preparation 

 Long-term storage of vectors was done using a glycerol stock solution composed 

of equal parts of DI water and 100% glycerol, making a 50% glycerol solution.  The 

solution was vortexed until well-mixed and stored at room temperature until ready to use.  

 To prepare the glycerol stock of a desired sample, 500µL of the 50% glycerol 

solution was aliquoted into a sterile 1.5µL microcentrifuge tube, to which 500µL of the 

bacterial culture was added.  The tube was vortexed and placed on ice before prompt 

storage in a -80°C freezer. 
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APPENDIX H 

COPYRIGHT PERMISSIONS 
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