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ABSTRACT 

Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs 

reported annually in the United States. Broadly, TBI can be classified into focal injury, associated 

with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of 

pathological alterations and may lead to a transient blood-brain-barrier (BBB) breakdown. 

Although the BBB dysfunction after TBI may provide a window for therapeutic delivery, the 

current drug delivery approaches remains largely inefficient due to rapid clearance, inactivation 

and degradation. One potential strategy to address the current therapeutic limitations is to employ 

nanoparticle (NP)-based technology to archive greater efficacy and reduced clearance compared 

to standard drug administration. However, NP application for TBI is challenging not only due to 

the transient temporal resolution of the BBB breakdown, but also due to the heterogeneous 

(focal/diffuse) aspect of the disease itself. Furthermore, recent literature suggests sex of the 

animal influences neuroinflammation/outcome after TBI; yet, the influence of sex on BBB integrity 

following TBI and subsequent NP delivery has not been previously investigated. The overarching 

hypothesis for this thesis is that TBI-induced compromised BBB and leaky vasculature will enable 

delivery of systemically injected NPs to the injury penumbra. This study specifically explored the 

feasibility and the temporal accumulation of NPs in preclinical mouse models of focal and diffuse 

TBI. Key findings from these studies include the following.  (1) After focal TBI, NPs ranging from 

20-500nm exhibited peak accumulation within the injury penumbra acutely (1h) post-injury. (2) A 

smaller delayed peak of NP accumulation (40nm) was observed sub-acutely (3d) after focal brain 

injury. (3) Mild diffuse TBI simulated with a mild closed head injury model did not display any 

measurable NP accumulation after 1h post-injury. (4) In contrast, a moderate diffuse model (fluid 

percussion injury) demonstrated peak accumulation at 3h post-injury with up to 500 nm size NPs 

accumulating in cortical tissue. (5) Robust NP accumulation (40nm) was found in female mice 

compared to the males at 24h and 3d following focal brain injury. Taken together, these results 

demonstrate the potential for NP delivery at acute and sub-acute time points after TBI by 

exploiting the compromised BBB. Results also reveal a potential sex dependent component of 

BBB disruption leading to altered NP accumulation. The applications of this research are far-
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reaching ranging from theranostic delivery to personalized NP delivery for effective therapeutic 

outcome. 
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PREFACE 

The work represented in this dissertation document has been previously published in the form of 

a review article[1] (Chapter 1) and an original research article[2] (Chapters 2). These published 

works have been expanded upon and adapted for use in this dissertation document.  
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CHAPTER 1 

INTRODUCTION 

1.1   Epidemiology of Traumatic Brain Injury 

Diagnosis and treatment of acquired brain injuries remain a considerable challenge, 

particularly of traumatic brain injury (TBI)[3-7]. TBI is a leading cause of disability worldwide[8] 

with 1.7 million TBIs reported annually in the United States[9]. TBI accounts for an estimated 

235,000 hospitalizations yearly in the US, with 80,000 of these cases resulting in lasting 

disability[10]. TBI is the leading cause of mortality and morbidity for persons under 45 years of 

age[11]. Moreover, brain injuries affect a large patient population, with major physical and 

emotional suffering for patients and their relatives and at a significant cost to the society[9,12-14]. 

These injuries may not only lead to substantial tissue damage with an irreversible functional loss, 

they also lead to disruption of the intricate neural circuits and connections involved in cognitive, 

sensor-motor functions[15,16].  

1.2   Pathophysiology of TBI  

TBI is damage to the brain that occurs as a result of direct and indirect damage due to a 

traumatic event such as falls and traffic accidents[17]. Brain injury characterized by structural 

failure and neurologic dysfunction begins at the time of initial injury and lasts from hours to 

weeks[18,19]. The initial mechanism of injury results in a cascade of neural and vascular events, 

which eventually lead to the clinical syndrome of TBI[18,19] (Figure 1.1.).  

 

Figure 1.1 Microenvironment of a healthy and injured brain: pathological changes after brain 

injury. Healthy brain microenvironment consists of an intact BBB with healthy astrocytes, 

microglia, and neurons. Brain-injured microenvironment may shift to an altered state that evolves 
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over time and may include compromised BBB, reactive astrocyte, activated microglia, and 

necrotic/degenerating neurons. 

 

1.2.1 Response phases of TBI 

The pathology of TBI leads to immediate and delayed injury response phases, Fig 1.2. 

The immediate primary injury is due to the external impact and is considered untreatable, but 

preventable. On the macroscopic level, such damage includes shearing of white-matter tracts, 

focal contusions, hematomas, and diffuse swelling[12,15,20]. The pathology that follows the 

primary injury is known as the secondary injury including inflammation, receptor-mediated 

damage, oxidative damage and calcium-mediated damage[12,15,20]. Each type of head injury 

might initiate such pathophysiological mechanisms with variable extent and duration[12,15,20].  

The secondary process develops over hours and days, thus allowing a time window for 

intervention. 

 

Figure 1.2 Temporal phases of TBI response: the mechanical impact leads to the primary 

injury due to immediate mechanical damage that occurs at the time of the injury. Secondary injury 

occurs due to the biochemical and physiological events from the primary injury. 

 

1.2.2 Blood-brain barrier (BBB) dysfunction 

TBI causes a widespread release of inflammatory cytokines and other inflammatory 

mediator results in oxidative stress and upregulates endothelial expression of cell adhesion 

molecules[15,21]. Consequently, an influx of inflammatory cells into the brain parenchyma further 
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progresses the injury and incites excitotoxicity and neuronal loss[15,21].  In some cases of TBI, 

the microvessel disruption caused by the impact rapidly activates the coagulation cascade 

forming intravascular thrombi in capillaries of the pericontusional area[17,21]. Platelet and 

leukocyte-platelet aggregates have also been observed within pial and parenchymal venules after 

injury. Such aggregates may lead to reduced cerebral blood flow in pericontusional brain tissue 

with a potential risk for secondary ischemic injury. Ischemia causes a reduction in oxygen 

accessibility and ionic gradient failure that results due to energy depletion in the neuronal cells 

through interruption of the ATP-dependent Na+/K+-ATPase and Ca2+-ATPase activity. When the 

ionic balance is disrupted, cations in the extracellular fluid (e.g. Na+) accumulate inside the cells 

finally leading to cytotoxic edema[22,23]. Moreover, Na+ uptake causes extensive plasma 

membrane depolarization and eventually bringing additional Ca2+ into the cell[22]. An influx of 

Ca2+ stimulates the release of neurotransmitters such as glutamate or dopamine into the 

synapse, leads to neurotoxic shock and ensuing neuronal cell death and development of an 

ischemic core[24]. Consequently, calcium homeostasis in the central nervous system (CNS) is 

disrupted leading to the generation of mitochondrial reactive oxygen species (ROS) and a host of 

catalytic enzymes that damage proteins and DNA[22,24]. Collectively, these neurochemical 

events contribute to lipid peroxidation and disruption of the BBB[23-25].  

 The BBB is one of the most vital components of a physiological normal brain creating a 

restrictive barrier between the CNS and the rest of the body[17]. The BBB performs the major 

function as physical and transports barrier to monitor the influx of substances from blood via 

paracellular/transcellular diffusion and/or transport proteins[26]. After TBI, the shearing forces 

generated by head trauma imparts mechanical damage to endothelial cells and may lead to acute 

BBB permeability and extravasation of plasma protein and red blood cells[15,17,27]. Studies 

have shown immediate and delayed dysfunction in the BBB/gliovascular unit after TBI[15,21,28-

30]. In cases of focal injury, the immediate (minutes to hours) BBB breakdown can be a 

combination of the direct mechanical impact leading to the cerebrovascular walls disruption and 

the functional changes occurring at the BBB[15,21]. The delayed (days) BBB opening can arise 
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due to inflammation-related mechanisms, astrocytic dysfunction and metabolic 

disturbances[15,21]. The BBB dysfunction at the delayed time point is mainly associated with 

dysregulation of tight junction proteins[15,31]. Tight junction protein complexes situated between 

endothelial cells control BBB permeability by limiting paracellular diffusion; key tight junction 

proteins include junctional adhesion molecules, occludin, claudins and membrane-associated 

guanylate kinase-like proteins (ZO-1,-2,-3) [32]. Oxidative stress due to ROS and free radical 

production after brain trauma alter the critical organization of tight junctions proteins at the BBB 

resulting in increased paracellular leakage[15,33]. Additionally, astrocytes influence the BBB 

disruption after brain injury by mechanisms such as the opening of paracellular channels, 

physical disruption of astrocyte-endothelial junctions and digestion of BBB matrix proteins[34,35].  

Conclusively, a better understanding of the brain injury pathology and the BBB permeability is 

instrumental in developing improved therapeutic interventions. The BBB dysfunction (initial and 

delayed opening) enables blood-borne substances that are normally restricted, such as proteins, 

red blood cells to enter the brain parenchyma. The BBB disruption may provide opportunities for 

therapeutic delivery via nanoparticles (NPs). The strategies for therapeutic interventions via NP 

delivery are aimed at salvaging the pericontusional/penumbra area for possible neuroprotection 

and neurovascular unit preservation. 

1.2.3 Sex dependence and BBB disruption 

The role sex differences in the treatment and outcome of brain injury is a growing area of 

research. Numerous studies have shown sexual dimorphism in the anatomical structure, cerebral 

blood flow and neural organization in the brain [36-40]. For example, studies have confirmed a 

higher cerebral blood flow in females compared to males[41-43]. One of the studies focused on 

the role sex hormones such as estrogens play in the neural organization of the cerebral cortex, 

cell-mediated immunity, axonal and dendritic growth and synapse formation[39]. However, the 

complexity of neural structure and function with respect to sex has not been fully elucidated.   

Of particular interest to the TBI field, it is not known if the permeability of BBB (specifically 

after TBI) is regulated differently in females and males. Seizure studies have demonstrated 
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female rats showed pronounced extravasation of Evans-blue (BBB permeability tracer) compared 

to the male rats[40,44-46]. Specifically, Evans-blue was injected 5 minutes before administering 

seizures in rats and were perfused after 30mins to analyze the tissue[44]. Furthermore, TBI 

studies have investigated the sex differences in the degree of tissue injury showing more severe 

cerebral edema, a significant cause of secondary brain injury, in males compared to 

females[47,48]. Furthermore, Roof et. al. showed that reduction in edema severity with 

progesterone treatment was also associated with improved BBB integrity[47,48]. Another aspect 

of BBB permeability is the close association with the neuroinflammatory response after TBI[21]. 

Recently, Villapol’s group reported a sex-dependent inflammatory response after TBI (mouse 

model). Specifically, they observed a less robust neuroinflammatory profile in female mice 

compared to a pronounced activation in male mice[49]. Taken together, understanding how sex 

affects the BBB permeability after TBI is a critical step toward developing not only effective but 

also personalized TBI treatment. 

1.3   Types of TBI and Animal Models 

 In clinical settings, TBIs are classified based on the presence or absence of focal lesions 

as focal or diffuse. Injuries may be considered predominantly heterogeneous with both focal and 

diffuse components, but most injuries are heterogeneous with a combination of both the 

components[20]. Lesions such as contusion, subdural hematoma, epidural hematoma, and 

intraparenchymal hemorrhage are considered focal injury[20]. The diffuse injury is associated 

with axonal injury, hypoxic-ischemic injury and microvascular injury that affect widely distributed 

anatomic regions[20]. The pathophysiological heterogeneity observed in TBI patients may arise 

from the mechanism of primary injury (the location, nature, and severity) and the effects of other 

factors such as age, health, sex, genetics, and medication/drug use[50]. Animal models have 

been developed to improve our understanding of the complex molecular cascade involved in 

clinical TBI[51]. In preclinical setting, a single animal model may not be able to fully recapitulate 

all the aspects of human TBI[52,53]. For successful clinical translation, multiple TBI animal 

models must be incorporated to develop new strategies.  
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Figure 1.3 Animal models of traumatic brain injury: Focal injury model: Controlled cortical impact 

is schematically depicted in panel (a). The two types of commonly used diffuse injury models are 

depicted in panel (b) midline fluid percussion injury and (c) mild closed head injury models. 

(modified/reprinted by permission from Springer Nature, [41]). 

 

1.3.1 Focal brain injuries 

 Focal injuries are thought to be responsible for two-thirds of brain injury-related 

deaths[18]. Clinically, the focal injuries are associated with contusions, epidural hematomas and 

skull fracture[53,54]. Focal injuries are typically induced due to penetrating object to the skull, 

such as gunshot wound, or a blow. Such injuries typically result in macroscopically visible 

damage at the impact site. Experimental focal brain injuries in rodents can be induced by 

techniques such as controlled cortical impact (CCI) [51,53,55]. Here, a pneumatically or 

electromagnetic driven impactor is used at a specific velocity and depth, through a craniectomy to 

deform the brain[51,53,55], Fig 1.3 (a). CCI produces contusion with hemorrhagic and necrotic 

contusion with cortical tissue loss, acute subdural hematoma, axonal injury, concussion, cytotoxic 

and vasogenic edema and BBB dysfunction[51,53,56,57]. 

1.3.2 Diffuse brain injuries 

Clinically, the hallmark of diffuse injury is diffuse axonal injury (DIA) encompassing a 

spectrum of injuries of severe injuries result in vegetative/highly dysfunctional outcomes but also 

those mild brain injuries of concussive type[18]. Indeed, DIA is thought to be one of the most 

common pathologic features of TBI[9,53,58,59]. The main outcome of dynamic deformation of 
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white matter tracts during trauma is the disruption of axonal transport, leading to axonal swellings 

within a few hours of trauma[53]. One of the widely used diffuse injury models is midline fluid 

percussion injury and mild closed head injury.  

1.3.2.1 Midline fluid percussion injury (FPI) 

The midline FPI models a closed head injury and the applied mechanical forces are the 

hydraulic pressure produced by a device[51,53,60,61]. The pressure fluid pulse is delivered onto 

the intact dura through a craniectomy that lies along the midline suture. The procedure does 

breach the cranial vault, but the skull is sealed to the injury device, thus restoring a closed 

system[51,53,60,61], Fig 1.3 (b). Midline FPI leads to bilateral cortical alterations, 

cerebrovascular changes, hypertension, elevated intracranial pressure, BBB 

permeability[51,53,60,61]. Histopathological findings display association with petechial 

hemorrhage in the brain parenchyma, subarachnoid hemorrhage and axonal damage[60,61].  

1.3.2.2 Mild closed head injury (mCHI) 

About 70-90% of all TBIs are mild head trauma, most common among professional 

athletes engaged in contact and collision sports[51,60,62]. The primary cause of mTBI in sports is 

the application of both linear and rotational acceleration and impact deceleration forces to the 

brain[62]. Such impacts cause non-penetrating diffuse damage rather than focal injury[62]. A 

modified model of weight-drop model, termed as mild closed head injury (mCHI) is known to 

produce a diffuse brain injury[63]. The study reports recapitulating the nature of CHI where animal 

is unrestrained and under goes linear and rotational impact forces[63], Fig 1.3 (c). The mild CHI 

model is known to produce several of the cognitive and behavioral outcomes associated with 

clinical mTBI[63,64].  
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Figure 1.4 Traumatic mechanical insults: The two broad categories of the mechanical impact, 

static and dynamic, can induce traumatic brain injury. Dynamic loading is the most common type, 

can be further classified as impact and impulsive loading. The insult parameters and the 

mechanical response will dictate the types of injury (focal and/or diffuse TBI). 

 

1.3.3 Traumatic mechanical insults 

At a mechanistic level, TBI can be mechanically induced by blunt or penetrating impacts, 

inertial loading or non-impact blast waves. Such mechanical impact induces a mechanical 

response at the cell and tissue level that ultimately cause pathophysiological injury response. The 

point at which an external load causes tissue damage, known as the threshold is dependent on 

the type and duration of the load[54]. The mechanical conditions (insult parameters) can broadly 

be categorized, (Fig 1.4), into static and dynamic loading[54,65]. Static loading is gradually 

applied direct load and dynamic loading is rapidly applied load[54,65]. Dynamic loading is the 

most common type and can be further classified into impact loading and impulsive loading[54,65]. 

Impact loading is where a direct impact occurs on the head. Depending on the magnitude of the 

force and area of the impact, impact loading can result in either focal or diffuse injury[54,66]. 

Impulsive loading occurs due to indirect loads and leads to diffuse injury[54]. In this study, we use 
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mice models to simulate the different models of focal and diffuse TBI for pre-clinical study. We 

use controlled cortical impact to model focal brain injury and fluid percussion injury as well as mild 

closed head injury to model diffuse brain TBI.  

1.3.5 Inference 

The complex cascade of events in the pathophysiology that ensues after brain injury 

limits effective diagnostic and therapeutic options available[16]. Moreover, access to the brain is 

typically regulated by the blood-brain barrier (BBB) thus presenting a formidable obstacle for 

small and macromolecular therapeutics to enter the brain[75]. Therefore, diagnosis/treatment via 

systemic administration or local delivery of drugs is largely inefficient[76]. Despite these 

challenges, the potential benefits of nanotechnologies for brain injury applications are 

tremendous and may eventually offer the novel clinical opportunities to address current 

limitations.   

1.4 Drug Delivery and Nanoparticles 

 Drug delivery can be defined as the process of delivery a drug/bioactive agent within the 

therapeutic threshold for dosing and time in a safe and reproducible manner[67,68]. However, for 

many drugs ideal dosing to the target tissue(s) are not met with standard approaches (i.e. oral or 

intravenous dosing of free drug). Therefore, it is critical to improve drug delivery methods using 

current advances in drug discovery and rational design[67,68]. Drug dosing and delivery 

mechanisms are limited by small molecule 1) aggregation due to poor solubility, 2) elevated 

toxicity and dosage, 3) nonspecific delivery, 4) in vivo degradation and 5) short circulation half-

lives[67,68]. Additionally, one of the main limitations of clinical failure specifically for TBI is lower 

drug efficacy due to drug clearance, inactivation and, degradation[52,69,70,69,71]. One strategy 

to improve drug efficacy is by encapsulating small molecules/drugs into nanoparticles 

(NPs)[68,72-74]. The advantages of using NPs as a drug delivery system include the ability of 

easy manipulation of the NP particle size and surface characteristics to achieve both passive and 

active drug delivery after administration[68,72-74]. Moreover, NPs can be used to achieve an 

increase in drug therapeutic efficacy, reduce side effects, and preserve drug activity[68,72-74]. 
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1.5   Nanoparticle Delivery after TBI 

Nanoparticles (NPs) as defined for pharmaceutical purposes are solid colloidal particles 

ranging from 1 and 1000 nm in size[73,77,78] and are utilized for various biomedical applications 

due to their pharmacological attributes[79,80]. Their small size and mobility enable NPs to access 

a wide range of tissues and cells for both extracellular and intracellular delivery. Administration of 

NPs through the microcirculation is a viable approach for facilitating drug delivery to the brain, 

since the diameter of the smallest capillaries is approximately 5-6 µm[81]. NPs can be used to 

deliver hydrophilic/hydrophobic drugs, proteins, vaccines, biological macromolecules, gene 

delivery, etc[82]. Engineered NPs have the potential to revolutionize the diagnosis and treatment 

of many diseases due to their unique function and structural organization[83,84]. Over two-dozen 

NPs systems have been approved by the US Food and Drug Administration (FDA) for clinic to 

either treat or diagnose diseases with additional formulations in clinical trials[85,86]. One 

advantage of nanomaterials is the potential interaction with biological systems at a molecular and 

supra-molecular level. Such interactions may be tailored to induce desired physiological 

responses in cells while reducing undesirable systemic side effects[87]. 

For a NP delivery system to achieve the desired benefits, the residence time in the 

bloodstream must be long enough for the NP to reach or recognize its site of action. However, the 

major obstacle to the realization of this goal is NP clearance from the bloodstream where 

previous studies report only 1-5% of injected NPs may actually reach their intended target 

site[88,89]. The main NP clearance mechanisms are the same as the body’s removal of foreign 

material from the bloodstream. These coordinated mechanisms include opsonization, renal 

clearance, and sequestration in the mononuclear phagocytic system (MPS), previously known as 

the reticuloendothelial system. Phagocytic recognition and clearance is dependent on initial 

particle opsonization and as such recent research has focused on developing methods to 

effectively slow this process resulting in increased blood circulation half-life[90]. Key NP 

parameters identified to help evade clearance mechanisms include surface modification, size, 
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charge and shape[88]. Furthermore, we note that recent reviews have addressed the complex 

response of the MPS and NP clearance[88,91] that are only briefly mentioned in the sections 

below.  

1.5.1 Composition 

Nanoparticles can be synthesized using various materials and protocols where the 

parameters of which are trailered to design the desired NPs. Most essential characteristics for 

drug delivery considerations are size, payload encapsulation efficiency, zeta potential and 

payload release characteristics[68,72,79,81]. The ideal properties of NPs for brain drug delivery 

are not only to be nontoxic, biodegradable and biocompatible, but also have physical stability in 

blood with prolonged blood circulation and ability to cross BBB[68,73,74,92]. Different NPs used 

for brain injury applications include polymeric NPs (liposomes, dendrimers, chitosan) [93-96], lipid 

NPs[97], inorganic NPs (silica, metals) [98,99] and hybrid NPs[100,101]. 

1.5.2 Surface modification  

Surface modification of NPs is a key parameter used to escape clearance mechanisms, 

particularly opsonization. Seminal studies demonstrated masking of NPs from opsonization by 

conjugating the hydrophilic polymer polyethylene glycol (PEG) onto NP surface[102-104]. PEG 

substantially reduces nonspecific interactions with proteins through its hydrophilicity and steric 

repulsion effects, which results in reduced opsonization[105]. For example, Lu et. al., 

demonstrated markedly prolonged blood circulation of PEGylated liposomal doxorubicin 

compared to native liposomes. Specifically, the elimination half-time of regular and PEGylated 

liposomes were ~26 and ~46 h, respectively, thus nearly doubled by simply PEGylating the NP 

surface[103]. Similarly, Sadzuka et. al., observed prolonged plasma circulation of liposomes and 

increase of drug accumulation in the tumor by employing PEGylated liposomes[106]. Therefore, 

PEGylation dramatically influence the NP delivery to improve NP circulation half-life.  

1.5.3 Size  
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Small molecules (< 1kDa) such as free drug and contrast agents are removed from blood 

circulation via renal clearance by glomerular filtration into the urine. Glomerular filtration is 

dictated largely by a molecular size with a cut-off for compounds smaller than 5-6 nm[107]. For 

systemic delivery, the upper size limit of NPs size is about 5-8 μm dictated by the smallest 

diameter of lung micro-capillaries[108]. Larger particles carry the risk of clogging the vessels 

inducing embolism[108]. Generally, for brain delivery NPs ranging from 20 – 100 nm are used for 

leveraging minimal clearance NPs[104,109,110]. Studies have shown a clear inverse correlation 

between NP size and BBB penetration[2,111]. We previously reported NP delivery to the brain via 

the transiently breached BBB due to focal brain trauma. The study demonstrated the ability of 

smaller NPs (20, 40 nm) for prolonged access to the injured brain compared to larger NPs (100, 

500 nm) [2]. To this end, for systemic brain delivery, the NP size plays an important role for 

enabling prolonged blood circulation and access to the brain. 

1.5.4 Charge 

Another key parameter to consider for systemic delivery of NPs is the surface charge, 

which influences clearance and stability in circulation. Here one must consider the impact blood 

proteins and cells have on the stability of NPs in vivo. For example, in vitro studies limited to NPs 

suspended in saline or deionized water require a high zeta potential of more than 30 mV (either 

positive or negative) to maintain the stability and prevent aggregation. [112,113] Yet, systemically 

delivered positively charged NPs in vivo readily form aggregates with the negatively charged 

serum proteins and often cause embolism(s) in the lung capillaries[108]. Generally, negative NPs 

(~ - 40 mV) exhibit strong MPS uptake and positive NPs (~ + 40 mV) induce serum protein 

aggregation[104,114]. NPs with neutral charge (within +/- 10 mV) exhibit the least MPS 

interaction and the longest circulation in vivo[104,114]. Specifically, for brain delivery studies have 

shown that highly positive NPs (~ + 45 mV) cause immediate toxicity with BBB disruption[115]. 

On the other hand, neutral and moderately negative NPs did not show toxic effect and can be 

utilized for brain delivery[115]. 

1.5.5 Shape 
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The morphology and shape of the NPs also contributes significantly to cellular uptake, 

transport and biodistribution[116]. The shape of NPs is significant in cellular uptake and 

internalization pathway[117]. Round shape/ spherical NPs are the most common due to their 

ease of synthesis and fast rate of endocytosis while other shapes (rod, cube, disk) have gained 

attention for their advantage in cellular internalization and efficiency of drug loading[118]. For 

example, NPs with disc or rod or spherical shape of size 150-200 nm, display enhanced cellular 

uptake and internalization in cells via clathrin-mediated endocytosis[119]. In contrast to NPs 

larger than 200 nm are preferentially taken up via macropinocytosis or phagocytic pathway[119]. 

However, it is noted that at some level, both mechanisms could happen simultaneously[119]. 

Furthermore, shape-induced NP enhancement of vascular targeting in the brain via receptor 

mediated delivery was confirmed by Kolhar and group[120]. Specifically, the rod shaped 

polystyrene NPs decorated with an anti-transferrin receptor antibody showed 7-fold increase in 

brain accumulation compared to NPs with spherical shape with the same surface chemistry[120]. 

Regional distribution of NPs within the brain following systemic injection has also been linked with 

NP shape. Chaturbedy et al demonstrated the preferred regional localization of iron oxide NPs 

with various shapes (sphere, biconcave, spindle, and nanotube) across the cerebral cortex and 

cerebellum in vivo[121].  

 Taken together, systemically delivered NPs eventually will be cleared through renal 

clearance, phagocytosis or by the MPS (either by the liver and/or the spleen uptake). The studies 

outlined above and summarized in (Table 1.1) describe strategies aimed at slowing this process 

by escaping different clearance mechanisms leading to prolonged blood circulation and delivery 

to the brain.  

Factors Parameter Outcome 

Surface modification PEGylation Optimal for prolonged 

circulation[103],[106] 
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Size 70-200 nm Optimal for prolonged 

circulation[104,109,110,122] 

 20-100 nm Optimal for brain 

delivery[2,109,110,123] 

 > 300 nm Prone to splenic uptake[114] 

 ~ 5 nm Prone to renal clearance[107] 

 

Charge Neutral Reduced MPS uptake and optimal for 

brain delivery[104,114],[115] 

 Positive Agglomeration[104,114] 

 Negative MPS uptake[104,114] 

   

Shape Spherical Easy to prepare[118] 

 Ab coated rod Increased brain accumulation[120] 

 

Table 1.1 Summary of factors affecting the biodistribution and pharmacokinetics of nanoparticles 

for systemic delivery (optimal NP size for brain delivery pertains to injured brain). 

 

1.6   Strategies for Nanoparticle Delivery to the Brain: Mechanisms of Delivery via Systemic 

Administration 

The blood brain barrier (BBB) is comprised of brain capillary endothelial cells (BCEC) and 

other cell types such as neuronal cells, pericytes, and astrocytes[124]. The tight junctions among 

BCECs play significant roles in maintaining homeostasis by preventing unregulated transport 

into/out of the brain[33]. BBB provides about one of the largest surface area (~ 20 m2) between 

the periphery and CNS, thereby generating a key access route for most endogenous and drug 

delivery molecules[124]. In addition, foreign molecules are also transported from brain to blood 

via efflux mechanism to mitigate toxicity and maintain homeostasis in the brain[125]. Therefore, 
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NP delivery to the brain at large needs to consider strategies to first cross the BBB to enhance 

the NP delivery to the brain. Such strategies may be broadly classified into passive and active 

delivery approaches.  

1.6.1 Passive delivery 

Passive delivery of NPs in the brain predominately relies on the functional state of the 

BBB. Particular pathological events such as inflammation or hypoxia (typically due to tumor, 

infarct, and/or trauma) has previously been shown to disrupt the normally tightly regulated BBB to 

produce leaky blood vessels[126]. Such permeable blood vessels provide an opportunity for the 

systemically circulating NPs extravasate and spontaneously accumulate in the interstitial 

space[2,126-128]. In tumor literature particularly, such passive NP delivery is known as enhanced 

permeability and retention (EPR) effect, where NPs enter the tumor interstitial space and are 

retained due to compromised lymphatic filtration[126]. Analogous to tumor microenvironments, a 

dysfunctional BBB occurs after brain injury or neuroinflammation diseases can lead to opening of 

the tight junctions resulting in a leaky vasculature[15,110]. The NPs may accumulate in the brain 

parenchyma due to increased paracellular permeability through the leaky vasculature[92,110]. 

However, the BBB permeability is transient and the timing of the NP delivery needs to be fine-

tuned to take advantage of these changes in the membrane permeability[2]. For example, our 

group has demonstrated a critical time window (~ 13 h) for NP delivery after brain injury in pre-

clinical rodent moderate/severe TBI models[2]. NPs passively accumulate within the injury 

penumbra and the amount of NPs accumulation depends on temporal resolution of the BBB 

permeability post trauma[2].  
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Figure 1.5 Therapeutic targets for brain injury for nanoparticle mediated drug delivery. Brain 

injury leads to a cascade of secondary damage events (denoted in grey boxes). These secondary 

injuries are potential targets for therapeutics where NP delivery may be useful. Potential 

interventions strategies are highlighted with red/green/blue font where inhibitors/blocking agents 

are in red, neuroprotective agents via pathway modulation in green, and targeting ligands in blue. 

1.6.2 Active delivery 

Although passive delivery may facilitate the transport of NPs through BBB, poor 

distribution of NPs in the brain remains a challenge[129]. Thus, active transport such as 

adsorptive-mediated and receptor-mediated transcytosis has been commonly explored in effort to 

enhance selective targeting and reach intracellular compartment after delivery. The adsorptive-

mediated transcytosis mechanism is based on NP surface functionalization (conferring  a positive 

charge) allowing electrostatic interaction with the BBB luminal surface (negatively charged) [92]. 

One strategy is to synthesize the NPs composed of positively charged constituents such as 

cationic cholesteryl hydrochloride[92]. An alternative strategy is to functionalize the NP’s surface 

with cationic biomolecule such as cell-penetrating peptides (TAT peptide) and cationic proteins 

(albumin) [130]. For example, Lu et. al generated cationic albumin-conjugated PEGylated NPs for 

gene therapy of gliomas and NPs successfully crossed the BBB and arrived at the endothelial 
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cytoplasm, which then in turn induced apoptosis and delayed in tumor growth[130]. Caution 

should be noted for this strategy as research has shown that vesicular transport is actively down-

regulated due to nonspecific exposure to cationic molecules thereby potentially inducing damage 

to the BBB[115]. 

More recent strategies for NP delivery across BBB is receptor-mediated transcytosis 

which is based on the presence of specific receptors on the luminal surface of cells. 

[92,125,131,132] Specifically, NP delivery is facilitated by displaying high affinity ligands on the 

NP surface to overexpressed BCEC receptors (i.e., transferrin (Tf) receptor, [133] low-density 

lipoprotein receptor, [134] insulin receptor, [132] or leptin receptor[135]) or common pathogenic 

targets (see review[136]). Upon ligand/receptor engagement, a clathrin-coated vesicle (diameter 

of 120 nm) forms from the plasma membrane initiating endocytosis[137]. The vesicle(s) then 

moved through BCEC cytoplasm and transported to the abluminal side of the cell[137]. The last 

step consists of exocytosis of said vesicle(s) at the abluminal side of the brain capillary 

endothelium[138]. Particularly, for BBB targeting the Tf receptor expressed on hepatocytes and 

endothelial cells of the BBB is of one the most extensively studied[92,131,132]. Wiley et al used 

gold NPs conjugated with Tf to probe receptor-mediated transcytosis mechanism via the 

transferrin receptor[133]. The study reported that accumulation of NPs in the brain parenchyma 

was directly dependent on the NP surface Tf concentration implying the tuning possibility of NPs 

avidity to the target receptors. However, caution should also be exercised when choosing the 

high affinity ligands for specific receptor, which strong bonding is not always efficient. For 

example, Cabezon et al reported anti-Tf antibody (8D3) enabled the transport of gold NPs (size of 

20nm) via Tf-receptor mediated and independent clathrin-receptor pathway[139]. Results showed 

that although large amount of the NPs entered the BCECs, a small fraction of the NPs did not 

reach the brain parenchyma due to strong interaction between Tf receptor and anti-Tf antibody.  

Therefore, decreasing the affinity between antibody and receptor by utilizing low-affinity 

antibody[140] or single antibody fragment[141] might serve as a better strategy to complete the 

transcytosis of NPs.  
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 Another receptor-mediated transcytosis mechanism is via lipoprotein receptors that are 

known to be highly expressed on endothelial brain microvessels and specifically recognize 

apolipoprotein E (apoE)[92,131,132]. Strategies to exploit this target have been reported by 

functionalizing the NPs with surfactants. Coating of NPs with surfactants such as polysorbate 

80[142], Pluronic P85[143], and poloxamer 188 are known to preferentially adsorb apoE and 

display ability to cross the BBB via lipoprotein receptors[131,132,144-146]. For example, 

studies[147,148] used poly(butylcyanoacrylate) (PBCA) NPs loaded with drugs and coated with 

polysorbate 80 and showed significantly higher concentration of the drug in the brain. The PBCA 

NPs did not induce nonspecific BBB disruption but occurred due to apoE adsorption to facilitate 

BBB crossing[148]. 

Elucidating the transport mechanism is important in design and development of NPs for 

maximum efficiency of delivery to the target location. Passive and active mechanisms have been 

used for NP delivery to the brain across the BBB. Therapeutic targets for TBI for NP deliveries 

are summarized in Fig 1.5. Passive delivery of NPs via the leaky vasculature results in 

accumulation of large amount of NPs at the enhanced permeability region, however these 

pathway also might induce non-specific targeting[129]. Active delivery of NPs occurs via receptor-

mediated transcytosis (such as transferrin and lipoprotein receptor) that relies on ligand-receptor 

affinity. Endogenous ligands, antibodies, peptides, and surfactants have been utilized in delivery 

of NPs across BBB to induce specific site targeting and reduce systemic side effects[131].  

1.7   Objectives and Specific Aims 

The pathology of TBI results in highly heterogeneous tissue damage including substantial 

blood-brain barrier (BBB) dysfunction immediately and delayed time point after injury. As the BBB 

breaks down, normally impermeable blood constituents may freely extravasate into the brain 

parenchymal space and may offer a unique opportunity to deliver drugs/nanoparticles that are 

normally excluded from the brain. Two broad types of TBI are focal and diffuse; for successful 

clinical translation, different models of TBI needs to be considered. However, there is a critical 

gap in the characterization of nanoparticle (NPs) and the investigation of the potential for delayed 



19 

 

NPs to characterize differences between sexes has not been previously tackled. Thus, the critical 

gap must be addressed to achieve effective theranostics for TBI that will aid in personalized 

delivery 

Our long-term goal is to promote effective and personalized nanoparticle therapeutic 

interventions post-TBI. Our short-term objectives are 1) to optimize the key NP delivery 

parameters (NP size and time of injection) for maximal passive accumulation in focal and diffuse 

injury models of TBI, and 2) to determine the feasibility of delayed NP delivery and investigate 

sex dependence of NP accumulation. Our central hypothesis is that NPs will specifically 

accumulate within the injury penumbra, due to the compromised BBB and leaky vasculature 

following TBI.  

We plan to attain the objective of this proposal through the following three specific aims: 

Specific Aim 1: Temporal assessment of nanoparticle accumulation after experimental focal brain 

injury: Effect of particle size - controlled cortical impact. Hypothesis 1a: NPs will passively 

accumulate at the injury location after the injury due to the leaky vasculature. Hypothesis 1b: 

Higher NP accumulation will occur at immediate time points and smaller NPs will show prolonged 

accumulation as compared to larger sized NPs after focal brain injury. 

Specific Aim 2: Temporal assessment of nanoparticle accumulation after experimental diffuse 

brain injury – fluid percussion and mild closed head injury. Hypothesis 2a: Passive accumulation 

of NPs at the injury location will occur at the specific injury region due to leaky vasculature after 

fluid percussion injury and mild closed head injury.  

Specific Aim 3: Investigate NPs delivery: sub-acute time point and sex dependence after focal 

brain injury. Hypothesis 3a: NPs will accumulate at sub-acute time point due to secondary BBB 

breach. Hypothesis 3b: Accumulation of NPs will show sex dependence with males having higher 

NP accumulation compared to females at the sub-acute time point. 
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Taken together, we expect to characterize the NP accumulation after focal and diffuse 

brain injuries to further inform the size range of NPs and optimal injection time after injury. 

Moreover, we expect to achieve localized NP accumulation at the sub-acute time point and robust 

NP accumulation in females compared to males. 
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CHAPTER 2 

TEMPORAL ASSESSMENT OF NANOPARTICLE ACCUMULATION AFTER EXPERIMENTAL 

BRAIN INJURY: EFFECT OF PARTICLE SIZE 

 

Nanoparticle (NP) based therapeutic and theranostic agents have been developed for 

various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier 

(BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient 

breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This 

study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. 

Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous 

injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) 

immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before 

perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the 

injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their 

continued accumulation within the penumbra. NP accumulation preferentially occurred in the 

primary motor and somatosensory areas of the injury penumbra as compared to the parietal 

association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at 

different times acutely after injury, indicating the potential of NP-based TBI theranostics in the 

acute period after injury. 

2.1   Introduction 

Traumatic brain injury (TBI) is a leading cause of disability worldwide[8] with 1.7 million 

TBIs reported annually in the United States [9]. The pathology of TBI occurs from both immediate 

and delayed mechanisms resulting in highly heterogeneous tissue damage[17]. This pathology 

may include substantial blood-brain-barrier (BBB) dysfunction due to alterations in the capillary 

endothelial cells, specifically deregulation of tight junctions and/or vesicular transport [15]. As the 

BBB breaks down, normally impermeable blood constituents may now freely extravasate into the 

brain parenchymal space [21]. This transient, increased permeability within the injury penumbra 
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may offer a unique opportunity to deliver drugs that are normally excluded from the brain. In order 

to exploit this potential avenue for delivery after TBI, further characterization of the temporal 

profile of the “permeability window” as well as the size range for molecule/particle extravasation is 

necessary. 

 In laboratory settings, experimental animal brain trauma models provide insights into the 

events that occur during and after injury. One of the most commonly used models is the 

controlled cortical impact (CCI) model in the rodent; this model produces focal damage leading to 

major cortical damage directly in the zone of impact [27]. Previous CCI model studies with rats 

established the presence of a compromised BBB as indicated by the extravasation of horseradish 

peroxidase (HRP) [27] or Evans Blue (EB) [149,150] post-injury. Specifically, the BBB was 

compromised immediately after injury and remained significantly permeable for 5-7 days post-

injury within the injury penumbra (with a second peak at ~3 days) [27,149].  Furthermore, 

Habgood et al. used weight-drop injury model to demonstrate that large molecular weight (MW) 

markers (HRP ~40 kDa) were permeable up to 24 h post-injury, as compared to smaller MW 

markers (biotin-dextran-amine, <10 kDa) that remain permeable as late as 4 days post-trauma 

[151]. Therefore, the BBB, post-injury, displays variable permeability based on the MW, with 

equivalent hydrodynamic diameter of about 3-6 nm [152,153]. These seminal studies provided 

evidence of BBB dysfunction after TBI [27,149,151]; however, the dynamic size range for particle 

extravasation greater than ~10 nm has not been previously elucidated. 

Nanoparticles (NPs), particles ranging from 10-1000 nm in diameter [78], are utilized for 

various biomedical applications due to their pharmacological attributes. The unique 

physicochemical properties of NPs have shown promise in delivering a range of molecules, 

including water-insoluble drugs and large payloads, to desired sites in the body [154-157]. 

Specifically, surface modified NPs have been designed to achieve greater efficacy of therapeutic 

agents, prolonged pharmacological effects by improved drug protection, and reduced renal 

clearance compared to standard drug administration [158-160]. Moreover, contrast agents may 

be incorporated into NPs enabling visualization of the diseased site to diagnose and/or monitor 
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the in vivo efficacy of the therapeutics [154,161]. However, these remarkable attributes of NPs 

are commonly unattainable for neural applications due to BBB permeability limitations. We 

postulate the BBB disruption after TBI may afford a unique opportunity for NP delivery. Our 

hypothesis was recently supported by two independent studies demonstrating the feasibility and 

utility for intravenous NP delivery after TBI [128,162]. Yet, a systematic evaluation of the temporal 

window and the NP size range for NP delivery after TBI has not been previously performed. 

Therefore, the focus of this study was to establish the effect of NP size and time of NP injection 

after experimental TBI while maintaining a constant circulation time. As such, we investigated the 

accumulation of four different sized (20, 40, 100, and 500 nm) fluorescent polystyrene NPs at five 

time points acutely (up to 24 h) after TBI using the murine CCI model.  

2.2   Methods 

2.2.1 Materials 

Carboxylated polystyrene NPs of different sizes were purchased from Life technologies 

(Carlsbad, CA, USA). Specifically, 20 nm (F8783), 40 nm (F8793), 100 nm (F8797) and 500 nm 

(F8813) NPs with dark red (λex/λem=660/680), red (λex/λem=580/605), blue (λex/λem=350/440) and 

yellow-green (λex/λem=505/515) fluorescence, respectively, were used. Methoxypolyethylene 

glycol amine 2000 (mPEGamine 2KDa) (06676), methoxypolyethylene glycol amine 750 

(mPEGamine 750Da) (07966), n-[3-dimethylaminopropyl]-n-ethyl, n-[3-dimethylaminopropyl]-n-

ethyl [EDC] (E1769), MES hemisodium buffer (M8902), N-Hydroxysuccinimide (NHS) (56405), 

and Peroxidase type II from horseradish (P8250-50KU) were purchased from Sigma Aldrich (St. 

Louis, MO, USA). ImmPACT DAB peroxidase (HRP) substrate (SK-4105) was purchased from 

Vector laboratories (Burlingame, CA, USA). Slide-A-Lyzer Cassettes (20K) (66003) were 

purchased from ThermoFisher scientific (Waltham, MA, USA). Fluorescent mounting media 

(Vectashield, Vector Labs, Burlingame, Ca, USA) 

2.2.2 Nanoparticle PEG conjugation 

 Carboxylated NPs were PEGylated using EDC/NHS chemistry. Briefly, mPEGamine 750 

Da was mixed with 20 nm NPs (NH2:COOH at 2:1 mole excess) whereas  mPEGamine 2 kDa 
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was mixed with 40  nm, 100  nm and 500  nm NPs; (NH2:COOH at 5:1 mole excess). EDC/NHS 

(in MES buffer) was added to NP / PEG mixture (8 mM/4 mM for 20 nm and 200 mM/100 mM for 

other NPs) and HEPES buffer was added to obtain a final pH of 7.8 before incubating for 3 h at 

room temperature. Glycine (100 mM) was added to quench the reaction. Unbound PEG was 

removed via dialysis (20 kDa MW). PEGylated NPs were suspended in a 20 mM HEPES (pH 

7.4). The concentration of each NP solution was determined with fluorescent standard curves 

generated from known concentrations of as-received Fluorospheres (FLUOstrar Omega 

fluorescence plate reader; BMG Labtech, Ortenberg, Germany). Yields of NPs ranged between 

40-60 %. A concentration of 13.3 mg/ml for each NP was used for all in vivo studies. 

2.2.3 Nanoparticle characterization 

PEGylated NPs were visualized using transmission electron microscope (TEM). NPs in 

water were applied to 300-mesh, carbon coated copper grids for 60 s. After this, excess water 

was removed by blotting with filter paper before imaging using JEOL 1200EX TEM (Peabody, 

MA, USA), operated at 80 kV and images were collected with a CCD camera (Scientific 

Instruments and Accessories; Duluth, GA, USA). The hydrodynamic diameter and zeta potential 

of NPs in 20 mM HEPES (pH 7.4) were measured pre and post-PEGylation with a dynamic light 

scattering (DLS) device (Zetasizer Nano Malvern; Malvern, UK). For each NP, three 

measurements were made and the mean ± standard error of mean (s.e.m.) was reported.  

2.2.4 Controlled cortical impact model 

All animal studies were approved by Arizona State University’s Institute of Animal Use 

and Care Committee (IACUC) and were performed in accordance with the relevant guidelines. 

Traumatic brain injury (TBI) was modeled using the well-established controlled cortical impact 

(CCI) injury model [56]. Briefly, adult C57Bl/6 mice (9-10 weeks old) were anesthetized with 

isoflurane (3 % induction, 1.5 % maintenance) and placed in stereotaxic frame. The frontoparietal 

cortex was exposed via 3 mm craniotomy and the impact tip was centered at -1.5 mm bregma 

and 1.5 mm lateral from midline. The impactor tip diameter was 2 mm, the impact velocity was 

6.0 m/s and the depth of cortical deformation was 2 mm and 100 ms impact duration (Impact 
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ONE; Leica Microsystems). The skin was sutured and the animals were placed in a 37°C 

incubator until consciousness was regained. The naïve group did not undergo surgery.  

2.2.5 Nanoparticle and horseradish peroxidase (HRP) injection 

Retro-orbital injections of the venous sinus in the mouse were performed for intravenous 

delivery of the particles; this technique is an alternative to tail-vein injection [163]. Animals were 

anesthetized with isoflurane (3 %) and the NP cocktail (75 μl) of different sized NPs (50 mg/kg 

b.w.) was injected to the right eye, one hour before perfusion and sacrifice. HRP (83 mg/kg b.w.in 

25 μl) was injected to the left eye ten mins before perfusion and sacrifice. Depending on the injury 

group, animals were sacrificed at 1 h, 3 h, 6 h, 13 h, and 24 h post injury. The NP circulation time 

of 1 h was held constant for each of the cohorts. 

2.2.6 Tissue collection  

According to the experimental groups – 1 h, 3 h, 6 h, 13 h and 24 h post-injury, animals 

were deeply anesthetized with lethal dose of sodium pentobarbital solution until a tail pinch 

produced no reflex movement. Animals were transcardially perfused with cold phosphate-

buffered saline (PBS), followed by 4 % buffered paraformaldehyde solution. Brain tissue were 

collected and fixed overnight in 4 % buffered paraformaldehyde followed by immersion in 30 % 

sucrose solutions in 1X PBS for cryoprotection for 24 h. Samples were embedded within optimal 

cutting temperature (OCT) medium and frozen on dry ice. Samples were stored at -80°C until 

sectioned coronally at a 25 μm thickness with a cryostat.  

2.2.7 Quantification of nanoparticle accumulation 

Slides containing the frozen sections were incubated at room temperature for 20 mins in 

1X PBS to rehydrate the tissue and remove OCT compound. Coverslips were mounted on the 

section after adding one drop of fluorescent mounting media (Vectashield). These sections were 

imaged using confocal microscopy (Leica TCS SP5 AOBS Spectral Confocal System, 20X 

magnification). Four region of interest (ROI) of the dimension 775 μm X 775 μm, were selected 

surrounding the injury penumbra (eight sections per animal, four animals per cohort) and two 
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ROIs at contralateral region (two sections per animal, four animals per cohort). Scanning settings 

for each NP: 20 nm, 40 nm, 100 nm and 500 nm were λex/λem=633/700-758 nm (800 V gain); 

λex/λem=561 nm/572-619 nm (645 V gain); λex/λem=405 nm/420-465 nm (585 V gain), and 

λex/λem=488 nm/507-535 nm (725 V gain), respectively. Configuration settings were maintained 

constant for all the images collected. For each ROI, Z stacking was performed and total Z width 

ranged from 20-25 μm with a slice thickness of 1 μm. The Z stacks images were converted to a 

single image by maximum projection tool using Leica software (LAS AF, Leica microsystems). 

The sum of four ipsilateral ROI for each section (eight sections per animal, four animals per 

cohort) were averaged and compared to the sum of the two contralateral ROI (two sections per 

animal, four animals per cohort). The maximum projected images were thresholded to remove 

background fluorescence using tissue sections from NP injected naïve brain and total intensity 

was calculated, using ImageJ software.  The fluorescent intensity values were then converted to 

number of NPs based on an empirical method (See Appendix A Fig. A.2).  

2.2.8 Quantification of HRP extravasation 

The same tissue section used for NP analysis or their adjacent sections were incubated 

in PBS buffer for 20 mins. Freshly prepared DAB substrate solution (200 μl) was added and 

incubated for ten mins at room temperature. Slides were then washed in PBS buffer three times 

(two mins each) and coverslips were mounted after adding a drop of aqueous mounting media. 

Sections were imaged using color camera mounted microscope (Leica microscope) at 5X 

magnification and ROI dimension of 1.50 mm x 2.50 mm were used. ROI were selected 

surrounding the injury penumbra (eight sections per animal, four animals per cohort) and at 

contralateral region (two sections per animal, four animals per cohort). The ROI images were 

then analyzed using ImageJ software (National institute of health, Bethesda, MD, USA) to obtain 

total number of positive pixels. 

2.2.9 Statistics 

Statistical analyses were conducted in GraphPad Prism 5.0 (GraphPad Software, Inc., La 

Jolla CA). Comparison between zeta potential change of NPs post-PEGylation was done using 
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student’s t-test. Analysis of total positive pixels in ipsilateral and contralateral region of interest for 

HRP and number of accumulated NP at different time points was conducted using ordinary two-

way ANOVA. For HRP and each NP, comparison between ipsilateral ROI and its contralateral 

ROI was done by student’s t-test. Comparison between ipsilaterlal ROI for HRP, and individual 

NPs, over time was conducted using Tukey’s post hoc test. Spatial distribution of HRP 

extravasation and NP accumulation was done using ordinary two-way ANOVA, followed by 

Tukey’s post hoc tests.  

2.3   Results 

2.3.1 Nanoparticle characterization 

Four sizes of carboxylated polystyrene NPs (20 nm, 40 nm, 100 nm and 500 nm), each 

internally loaded with a distinct fluorescent dye with negligible overlap in signal were employed in 

the study (Fig. 2.1). The surface of carboxylated NPs was modified with amine-polyethylene 

glycol (PEG) [102,157] to reduce their zeta potential for improved NP stability and to prolong 

blood circulation time. The NPs were characterized via transmission electron microscope (TEM) 

and dynamic light scattering (DLS). PEGylation of NPs via amine/carboxyl EDC/NHS chemistry 

was confirmed through DLS based on a decrease in zeta potential and modest increase (~10 nm) 

in hydrodynamic diameter of the NPs (Fig. 2.1b and 2.1c, Table1; n = 3). A statistically significant 

decrease in zeta potential was observed for each NP after PEGylation (p<0.05; Table1, Fig. 

2.1b). TEM images of NPs show monodispersed, spherical shaped particles for each population 

(Fig. 2.1d). To simplify nomenclature, the four NP groups employed in this study will be 

addressed by their nominal diameters, 20 nm, 40 nm, 100 nm, and 500 nm. 
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Figure 2.1 Nanoparticle characterization (a) Schematic of nanoparticle PEG conjugation using 

EDC/NHS chemistry. (b) Zeta potential of non-PEGylated and PEGylated nanoparticles, * p<0.05, 

t-test. (c) Hydrodynamic diameter of non-PEGylated and PEGylated nanoparticles. Error bars 

represent standard error of mean with n=3 per group. (d) TEM images of monodispersed 

nanoparticles (PEGylated) with their respective excitation fluorescent spectra [58]. Scale bar = 

0.25 µm. 

Nominal 

NP size 

(nm) 

Hydrodynamic Diameter (nm) Zeta Potential (mV)  

non-

PEGylated 

PEGylated non-

PEGylated 

PEGylated 

20 19.6 ± 2.0 24.7 ± 2.0 -44.1 ± 3.3 -28.4 ± 3.2* 

40 50.1 ± 3.5 58.4 ± 4.0 -46.0 ± 3.5 -9.2 ± 4.0* 

100 91.5 ± 5.4 101.9 ± 6.0 -55.3 ± 3.1 -22.4 ± 3.5* 

500 507.0 ± 27.5 517.6 ± 34.8 -57.9 ± 1.5 -26.5 ± 2.0* 
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Table 2.1 Nanoparticle characterization: Hydrodynamic diameter and zeta potential of non-

PEGylated NP and PEGylated NP, mean ± standard error of mean (n = 3). * p<0.05, t-test. 

Measurements in 20 mM HEPES (pH 7.4).  

2.3.2 In vivo study: Horseradish peroxidase (HRP) extravasation 

 A lateral CCI was imparted on the frontoparietal cortex generating a cortical lesion 

ipsilateral to the impact and leaving the contralateral hemisphere uninjured. An intravenous retro-

orbital [163] HRP injection 10 min prior to sacrifice was included as a positive control to evaluate 

the blood brain barrier (BBB) integrity, as extravasation of HRP is a well-accepted indicator of 

breached BBB [27],[29,151,164] (Figure 2.1). Specifically, we observed extravasation of HRP in 

the primary and the adjacent injury region at 1 h post injury. However, the HRP extravasation was 

only localized to the primary injury site at and after 3 h post injury. Therefore, the quantification of 

HRP staining for 1 h cohort included both the primary and adjacent tissue region; analysis for the 

remaining cohorts focused only the primary injury site. Quantification of HRP extravasation to 

obtain the number of positive pixels using ImageJ software, demonstrated significant differences 

between ipsilateral and contralateral locations (p=0.0002) while a time dependent effect was not 

observed (p=0.038) using two-way ANOVA. Pair-wise analysis of extravasation of HRP 

specifically for each time point revealed a significant increase in HRP extravasation in the injury 

penumbra compared to contralateral tissue at all investigated time points (1 h, 3 h, 6 h, 13 h and 

24 h) post injury (p<0.05; Fig. 2.2b). Comparing the ipsilateral HRP staining over time revealed a 

nearly 35% reduction in HRP staining at the 3 h, 6 h, 13 h, and 24 h time points compared to the 

maximal HRP staining at 1 h post-injury. This reduction was statistically significant for 13 h and 

24 h cohorts (p<0.05) compared to 1 h cohort, thus demonstrating potential resolution of the BBB 

over time. Therefore, HRP extravasation confirmed the BBB dysfunction up to 24 h post-injury 

corroborating previous studies [27] (Fig. 2.2). 
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Figure 2.2 HRP Extravasation after TBI: (a) Representative images of extravasation of HRP 

injured region after 1 h, 3 h, 6 h, 13 h and 24 h post injury (a-e); contralateral region 1 h post 

injury (f).  (b) Quantitative analysis of HRP extravasation over time.  p<0.05 compared to their 

respective contralateral ROI, Student’s t-test.  p<0.05 compared to 13 h and 24 h ipsilateral 

ROI, Tukey’s post-hoc test. Error bars represents standard error of mean with n=4 per group. 

Scale bar = 500 µm. 

 

2.3.2 In vivo study: Accumulation of nanoparticle within injury penumbra 

We used a NP cocktail containing particles with diameters ranging from 20 nm to 500 nm, 

to determine the extent of NP accumulation acutely (up to 24 h) after brain injury with a constant 
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1 h circulation time. Specifically, we quantified the accumulation of each fluorescent NP within 

processed brain tissue sections spanning across the injury lesion (~-0.18 mm bregma to ~-3.28 

mm bregma) via confocal microscopy (Fig. 3.3). Interestingly, we observed maximum 

accumulation of all NPs 1 h after injury, including the 500 nm particles. Additionally, the results 

indicated prolonged NP accumulation of 20 nm and 40 nm up to 13 h post injury within the injury 

penumbra where as significant accumulation of 100 nm and 500 nm NPs was found up to 6 h.  

Two-way ANOVA results from our study revealed a significant difference between the 

ipsilateral and contralateral location for 20 nm (p<0.0001), 40 nm (p<0.0001), 100 nm (p=0.0392) 

and 500 nm (p<0.0001), (Fig. 2.4 (a-d)). Moreover, the analysis demonstrated a significant time 

dependent effect for 20 nm, 40 nm, 100 nm and 500 nm (P=0.0001), (p<0.0001), (p=0.043), 

(p=0.0364) (Fig. 2.4 (a-d)), respectively. To take a closer look at the effect of each of these 

variables individually, post-hoc pair-wise analyses of critical comparisons are described below.  

2.3.2.1 Analysis of the BBB breach in injured and uninjured brain tissue  

The first pairwise analysis focused on comparing NP accumulation within the ipsilateral 

injury penumbra to contralateral tissue at different time points (Fig. 2.4). Specifically, for 20 nm 

and 40 nm, ipsilateral accumulation markedly increased for all time points compared to 

contralateral tissue, except 24 h cohort (Fig. 2.4 a, b; p < 0.05). For 100 nm, statistically 

significant increase in NP accumulation on the ipsilateral side was only observed at 3h and 6 h 

post-injury (Fig. 2.4c; p < 0.05). Finally, the 500 nm NP accumulation was significantly greater for 

ipsilateral versus contralateral up to 6 h. Overall, 20 and 40 nm NPs significantly accumulated in 

the injury penumbra compared to the contralateral tissue up to 13h after injury while the time 

window was reduced by nearly half (6 h) for the 100 and 500 nm.  

2.3.2.2 Analysis of the BBB breach within injured region across different time points - 

The second critical pairwise analysis focused on comparing the temporal changes in NP 

accumulation within the ipsilateral injury penumbra across time points. For 20, 40 and 100 nm, 

there was a significant reduction in accumulation for 3 h, 6 h, 13 h and 24 h time points as 
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compared to 1 h post injury (p<0.05); less than 35 % of 1h NP accumulation was observed for 

other time points. (Fig. 2.4 a, b, c). Accumulation of the 500 nm NP was nearly 25 % of 1 h cohort 

for 3 h, 6 h, and 13 h post-injury and was significantly reduced (p<0.05; Fig. 2.4d). Interestingly, 

the mean NP accumulation for the 500 nm NP at 24 h exhibited similar accumulation as 

compared to the 1 h post injury; we noted that variance within this group was quite large as two of 

the four animals displayed high NP accumulation whereas the other two animals had modest NP 

accumulation. The overall trend for different sized NPs demonstrated maximum accumulation at 

1h post-injury compared to other time points.  

 

 

Figure 2.3 Accumulation of different size nanoparticles over time after injury. (a) 

Representative images of injured brain section (~-1.655 mm bregma, 25 μm thick). (b) Panel of 

20X confocal images near the injury region on ipsilateral hemisphere (shown in (a)). Rows of the 

panel show time course and the columns show the different nanoparticle size. (c) Panel of 20X 

confocal images on contralateral hemisphere (shown in (a)), for each nanoparticle at 1 h post 

injury. Scale bar = 250 µm. 
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Figure 2.4 Nanoparticle accumulation after TBI. Accumulation of (a) 20 nm, (b) 40 nm, (c) 100 

nm, (d) 500 nm nanoparticles at different time points after traumatic brain injury in mice.  p<0.05 

compared to their respective contralateral ROI, Student’s t-test.  p<0.05 compared to 3 h, 6 h, 

13 h, and 24 h ipsilateral ROI,  p<0.05 compared to 3 h, 6 h, and 13 h ipsilateral ROI; Tukey’s 

post-hoc test. Error bars represents standard error of mean with n=4 per group. 

 

2.3.3 In vivo study: Spatial distribution of HRP and nanoparticles 

The CCI impact to the frontoparietal cortex (-1.5 mm bregma, 1.5 mm lateral from 

midline) generates an injury lesion mainly to the cortex, which includes damage to the primary 

motor area (M1), primary somatosensory area, posterior parietal association area and 

anteriomedial visual cortex (V1). Interestingly, we observed selective distribution of HRP and NP 

accumulation based on the cortical region, a trend that held consistently with all post-injury time 
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point cohorts. In this regard, we examined a series of coronal sections across the injury lesion 

from anterior to posterior. We binned the tissue sections into three spatial sub-groups: anterior (~-

0.18 mm bregma), middle (~-1.65 mm bregma) and posterior (~-3.28 mm bregma) (Fig. 2.5a). 

Our results demonstrated maximal accumulation of the NPs and HRP within the anterior and 

middle regions of the injury penumbra (statistically significant only at 1 h), as compared to that of 

posterior and contralateral regions (Fig. 2.5 and 2.6). Strikingly, the accumulation in the posterior 

region was similar to that of the contralateral region. 

HRP extravasation significantly varied across the injury penumbra (p=0.0003) (Fig. 2.5 

(b)). Further pairwise post-hoc analysis revealed a significant increase in extravasation for 1 h 

post-injury within the anterior and middle injury penumbra regions, compared to both posterior 

injury penumbra and contralateral tissue. Furthermore, HRP extravasation within the posterior 

injury penumbra was not significantly different than contralateral tissue. 

Significant difference in accumulation was observed across the different regions of the 

brain for 20 nm, 40 nm, and 500 nm (p=0.0002), (p<0.0001), (p=0.02), respectively yet not 

significant for 100 nm (p=0.10), (Fig. 2.6). Tukey’s post-hoc analysis of the 20 nm and 40 nm NPs 

demonstrated a significant increase in accumulation for the anterior injury region at 1 h compared 

to both the posterior injury region, and contralateral tissue (p<0.05) (Fig. 2.6 (a,b)). The 

accumulation of 20 nm, 40 nm, 100 nm and 500 nm NP within the core of the injury penumbra 

was significantly more than the posterior injury penumbra, and contralateral tissue at 1 h post 

injury (p<0.05) (Fig. 2.6 (a-d)). Interestingly, no significance was observed in NP accumulation 

between the posterior injury penumbra and the contralateral tissue regardless of the NP size. 
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Figure 2.5 Spatial distribution analysis. (a) Representative brain images showing anterior, 

middle and posterior regions of the brain w.r.t. bregma. (b) Quantitative analysis of HRP 

extravasation at different anatomical regions and different time points after TBI.  p<0.05 

compared to contralateral ROI (Contra), p<0.05 compared to posterior ROI (Posterior); Tukey’s 

post-hoc test. Error bars represents standard error of mean with n=4 per group. 



36 

 

 

Figure 2.6. Spatial distribution of nanoparticle accumulation. Quantitative analysis of (a) 20 

nm, (b) 40 nm, (c) 100 nm, (d) 500 nm nanoparticles at different anatomical regions and different 

time points. ❋ p<0.05 compared to contralateral ROI (contra),  p<0.05 compared to posterior 

ROI (posterior); Tukey’s post-hoc test. Error bars represents standard error of mean with n=4 per 

group. 

 

2.4 Discussion and Conclusion 

Theranostic delivery for the brain has been largely hindered by limitations of BBB 

permeability. However, short windows of BBB dysfunction or damage as a result of disease or 

injury pathology may provide an opportunity for delivery of contrast agents and poorly soluble 

drugs via NPs. To fully utilize the window of opportunity of BBB opening that occurs after TBI, we 
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need to further assess the spatiotemporal accumulation of NPs after injury. The study presented 

here directly addresses the critical knowledge gap to determine to effect of different size NP 

accumulation and the injection time points after experimental TBI, where the results provide key 

insights into NP behavior after TBI. Specifically, three key findings include: 1. NPs up to 500 nm 

may be delivered to TBI injured brain, 2. Maximal NP accumulation after occurs 1 h after TBI, 3. 

NP accumulation of 20 nm and 40 nm NPs occurred out to 13 h post-injury. 

Systemic NP delivery depends on many parameters to ensure stability, prolonged blood 

circulation, and efficient delivery to the target tissue/organ. Specifically NP surface charge 

influences the physiochemical stability of NPs and the rate of particle elimination from circulation; 

previous studies have shown near neutral/slightly anionic NPs have reduced clearance by the 

reticuloendothelial system [112,165,166]. Functionalizing the surface of the NP with polymer 

polyethylene glycol (PEG) is most commonly used to minimize opsonization not only through 

steric hindrance but also charge shielding [102,157]. Since this study focused on evaluating size 

and time dependent NP accumulation after brain injury, we aimed to minimize the influence of NP 

parameters outside of size by PEGylating all of our NPs and obtained slightly anionic NPs for 

efficient systemic delivery. 

 Passive systemic NP delivery to the injured brain hinges on a damaged BBB and 

confirmation of a dysfunctional BBB was obtained with the HRP marker (~44 kDa with an 

estimated radius of ~3 nm10). We observed extravasation of HRP in the primary and the adjacent 

injury region at 1 h post-injury. However, for all subsequent cohorts, the HRP staining was 

localized to the primary injury site. A survey of the literature indicates some disagreement in 

utilizing HRP to classify the underlying mechanisms for BBB breakdown (i.e., injury induced 

rupture and/or paracellular permeability) [27,151,167] . As stated previously, the current study 

focused on evaluating NP accumulation ultimately for acute TBI theranostics. Therefore, it was 

necessary to correlate NP accumulation with BBB damage through HRP staining. One important 

observation is that while the incidence of HRP staining reduced over 24 h post injury, significant 

positive staining was observed out to 24 h after injury indicating the persistence of localized 
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dysfunctional BBB and opportunity for localized NP accumulation. These findings are critical in 

elucidating the optimal temporal delivery window for NPs (10 – 1000 nm) as the interest in using 

NPs for TBI has gained traction recently [128,162]. Specifically, two previous studies employed 

systemic NP delivery after TBI where the NPs ranged from 60 nm to 300 nm in diameter. These 

studies demonstrated feasibility for NPs to preferentially localize within the injury penumbra when 

delivered within 4 h post injury [128,162]. Yet, little is known about the impact of NP size and 

injection time to achieve effective delivery after TBI. We directly addressed this critical gap by 

evaluating a cocktail injection of different sized PEGylated NPs at different time points after injury 

while maintaining a consistent circulation time (1 h). The peak accumulation for all sized NPs was 

observed with injections immediately after injury (+1 h circulation time) mirroring the HRP 

extravasation results. Not surprisingly, we observed prolonged accumulation for two smallest NPs 

(20 nm and 40 nm) out to 13h post injury, whereas significant accumulation for the two largest 

NPs (100 nm and 500 nm) was seen only out to 6 h. Our report is the first to show the evidence 

of accumulation of up to 500 nm sized PEGylated NPs within the injury penumbra acutely after 

brain injury. This finding is supported by a NP study on cortical implants in mice where 

accumulation of up to 500 nm NPs near the implant region was observed at 4 weeks post-implant 

[168]. Overall, it is evident that our study not only corroborates previous reports, but more 

importantly expands our current knowledge regarding time and size dependent NP delivery after 

TBI. 

We postulate that TBI pathology directly contributes to NP accumulation within the injury 

penumbra. TBI, particularly the CCI model, leads to physical rupture of the blood vessels, 

dysfunction of the BBB and permeable blood vasculature within the injury region [169,170]. A 

similar leaky vasculature phenomenon has been defined as the enhanced permeability and 

retention (EPR) effect in oncology literature [114,126,171-173]. Poorly structured and highly 

permeable vasculature contributes to increased passive accumulation of NPs within solid tumors 

[171,173,174]. Thus, the unique pathophysiological nature of the dysfunctional BBB and leaky 

vasculature after TBI, may lead to localized accumulation of NPs at the injured area due to a 

similar EPR effect. In the present study we observed localized areas of brain tissue containing 
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multiple sizes of NPs. In contrast, we did not observe significant NP accumulation in uninjured 

brain tissue as compared to injured tissue, suggesting localized leaky vessels near the injury site. 

Although the exact mechanism for the NP accumulation at the injury location was not probed, 

potential mechanisms include accumulation via mechanically-induced ruptured vessels or 

paracellular diffusion[21]. Future studies are warranted to better understand such mechanisms. 

Overall, the accumulation of different sized NPs occurred specifically within the primary injury 

site. 

One interesting finding was preferential spatial accumulation within specific cortical 

regions within the injury penumbra. The CCI injury generated a cortical lesion encompassing the 

primary motor area (M1), somatosensory area, posterior parietal association area and 

anteriomedial visual cortex (V1) (from anterior to posterior). Remarkably, at 1 h post-injury 

significantly higher levels of both HRP and NPs were found within the more anteriorly located 

primary motor, and somatosensory area (M1) compared to posteriorly located parietal association 

and visual area (V1) of the brain. The specific mechanism that leads to lower accumulation of 

NPs in the posterior area is not clear. However, we postulate that the heterogeneous nature of 

the inherent cortical cerebral blood flow and injury-induced alterations in blood flow play key 

roles. Specifically, regional neural cellular density has been directly correlated with microvessel 

densities in murine models [175]. Such variations in microvascular density is directly linked to 

cortical blood flow [176,177] .  Comparing the cortical regions encompassed in the injury 

penumbra, we found reports of reduced neural cell density within the parietal cortex [178]. 

Therefore, the inherently reduced cortical blood flow/microvascular density within the parietal 

cortex area may largely contribute to a low level of NP accumulation after TBI. Secondarily, TBI 

promotes localized alterations in the cerebral blood flow, depending on the size and location of 

contusions and hematomas [179] leading to abnormal blood supply to injured tissue. The blood 

supply to the motor, sensory and parietal cortex is supplied by the middle cerebral artery (MCA) 

[180], The CCI injury imparted over this region may damage the MCA or its branches resulting in 

rupture of anteriorly located blood vessels. This type of vascular damage may lead to two 



40 

 

phenomena potentially contributing to the regional distribution of NPs, 1. enhanced NP 

accumulation in anteriorly located blood vessels, and 2. hypoperfusion in downstream posteriorly 

located regions leading to reduced NP accumulation.  Collectively, inherent variations in 

capillaries combined with injury-induced blood flow alterations may contribute to anteriorly 

dominate NP accumulation after CCI. 

To maximize the NP size spectrum, each animal received an intravenous delivery of a 

NP cocktail containing four different sized NPs. Our analysis focused on direct comparison within 

each NP size and did not include cross NP size comparisons. Each NP injection contained an 

equal mass concentration yet varying number of NPs for each size group, thereby preventing 

direct comparison across NPs with high fidelity. Each NP group was loaded with a unique 

fluorophore with discrete fluorescent spectra. Therefore, accumulation of each NP within brain 

tissue at different time points post-injury was determined through an empirical conversion of total 

fluorescent intensity specific to each fluorophore to the total number of NPs (Appendix A Fig. 

A.2). Nonetheless, these limitations did not constrain the critical analysis within each NP size 

group where we revealed never before presented data on the dynamic size NP range delivery 

after TBI. The results of our study are integral for developing NP-based contrast agents or drug 

delivery. NPs for brain delivery applications [92] vary widely in composition ranging from 

amphiphilic monomers to lipids to more rigid polymer-based[181] [182]. Smaller NPs (<100 nm) 

have shown to have slower clearance, higher amount of encapsulated drug accumulation, 

efficient cellular uptake, and enhanced penetration of poorly permeable tissue, as compared to 

larger NPs (>200 nm) [174,183,184]. Previous studies have successfully used NPs (20 - 60 nm) 

as indicators of BBB damage in experimental stroke models [185,186] and as theranostic tools for 

imaging and drug delivery [174,184]. Results of our study can potentially be applied to devise 

multifunctional NPs with therapeutic drugs for brain injury such as superoxide dismutase[187], 

erythropoietin[52], statins [52] to be loaded into these NPs. 

In conclusion, we established that PEGylated polystyrene nanoparticles of different sizes 

(20 nm, 40 nm, 100 nm and 500 nm) accumulate predominately near the injury region after CCI 
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injury in mice. Furthermore, maximal accumulation for all NP sizes was observed at 1 h post-

injury. With a constant circulation time of 1 h across all cohorts, we identified an inverse 

relationship between the NP size and their accumulation at different time points post injury. The 

accumulation of NPs was not only influenced by the NP size and time after injury but also varied 

spatially within the brain tissue cortex. The anterior and middle regions of the injured tissue had 

maximal accumulation of NPs compared to the posterior region 1 h after brain injury. Detailed 

studies on biodistribution of each NP and their total accumulation per brain tissue are yet to be 

addressed. However, our current study provides the groundwork for NP delivery after TBI. 

Potential application of our study ranges from delivery of targeted contrast agents to therapeutics 

after TBI. Therefore, better understanding of NP accumulation will facilitate effective utilization of 

the BBB breakdown for TBI theranostics. 
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CHAPTER 3 

BLOOD-BRAIN-BARRIER DISRUPTION DICTATES NANOPARTICLE ACCUMULATION 

FOLLOWING EXPERIMENTAL BRAIN INJURY 

 

Clinically, traumatic brain injury (TBI) results in a complex heterogeneous pathology that 

cannot be recapitulated in a single pre-clinical animal model. Therefore, we focused on evaluating 

the utility of nanoparticle (NP)-based therapeutics following three diffuse-TBI models: mild-closed-

head injury (mCHI), repetitive-mCHI and midline-fluid percussion injury (FPI). We hypothesized 

that NP accumulation after diffuse TBI correlates directly with blood-brain-barrier permeability. 

Mice received PEGylated-NP cocktail (20-500nm) (intravenously) after single- or repetitive-(1 

impact/day, 5 consecutive days) CHI (immediately) and midline-FPI (1h, 3h, and 6h). NPs 

circulated for 1h before perfusion/brain extraction. NP accumulation was analyzed using 

fluorescent microscopy in brain regions vulnerable to neuropathology. Minimal/no NP 

accumulation after mCHI/RmCHI was observed. In contrast, midline-FPI resulted in significant 

peak accumulation of up to 500nm NP at 3h post-injury compared to sham, 1h, and 6h groups in 

the cortex. Therefore, our study provides the groundwork for optimal NP-delivery based on NP-

injection time and NP-size after mCHI/RmCHI and midline-FPI.  

3.1   Introduction  

Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs 

reported annually with an annual estimated economic cost of $76.5 billion in the United States 

alone[9,14]. TBI occurs due to damage to the brain resulting from an external mechanical force, 

including rapid acceleration or deceleration, blast waves, crushing force, an impact or penetration 

by a projectile[12]. Broadly, TBI can be classified into focal injury, associated with cerebral 

contusion and hematoma, and diffuse brain injury, associated with multifocal and widespread 

microscopic pathology[188]. Over time, research has revealed TBI to be a complex disease 

process and not just a single pathophysiological event[11,15,21]. Upon sustaining a TBI the 

mechanical forces from impact inflict heterogeneous tissue damage, referred to as the primary 
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injury phase[11]. This insult initiates a myriad of pathophysiological and biochemical secondary 

injury signaling cascades, including hypo- or hyper-perfusion, edema, blood-brain-barrier (BBB) 

dysfunction and inflammation that evolves from minutes to days post-trauma[15].   

The heterogeneous pathophysiology observed clinically following a TBI likely arises from 

the variations in the mode of the impact such as the location, type, and severity, as well as other 

factors including age, sex, and genetics[50]. Pre-clinical animal models have been developed in 

the laboratory to effectively study and evaluate TBI pathology using a reproducible injury event 

while also controlling for above factors[51,55]. However, a single injury model may not fully 

recapitulate all the facets of the secondary injury that are observed in human TBI[51]. The most 

commonly used focal injury model is the controlled cortical impact (CCI), which produces a focal 

lesion, axonal injury, and necrosis[56]. Pre-clinical models of diffuse brain injury include mild 

closed head injury (mCHI), repetitive mild CHI (RmCHI) and midline fluid percussion injury (FPI). 

The RmCHI model produces early deficits in motor coordination and locomotor hyperactivity with 

increased astrocytic reactivity[64]. Midline FPI produces a diffuse injury and results in 

neurological and physiological alterations[61,189]. Clearly, RmCHI and FPI provide clinically-

relevant, albeit different, injury phenotypes with distinct cellular alterations. Taken together, 

preclinical parameters such as injury phenotype is essential to successfully shepherd therapeutic 

approaches to clinical trials. Therefore, therapeutic strategies need to be evaluated in multiple 

TBI models while considering opportunities for different optimal therapeutic windows for each 

injury phenotype. However, a critical gap exists in understanding if/when BBB opening may occur 

after diffuse TBI, which can facilitate nanoparticle (NP) delivery.  

 The BBB dysfunction after injury may lead to extravasation of blood components into the 

brain parenchyma. Studies in different TBI animal models have demonstrated acute and delayed 

BBB disruption followed by restoration as evidenced by extravasation of endogenous serum 

immunoglobulins (IgG) [167,190] and/or intravenously injected small molecule tracers, including 

Evans Blue[191] and horseradish peroxidase (HRP) [167,190]. For example, Tanno et. al. 

established the transient BBB breakdown occurred after FPI (lateral) and the time course for re-

establishment of the BBB varied based on the regions of the brain and proximity to the injury 
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hub[167]. Similarly, Schmidt et. al. [190] demonstrated that BBB disruption displayed regional 

differences following FPI (midline) with prominent HRP leakage in the cerebral cortex (proximal to 

injury hub) and corpus callosum[190]. In contrast to RmCHI, a recent study reported no positive 

IgG immune-reactivity at 7 days after final impact and thus potentially no BBB breakdown[64]. 

Yet, these results raise the question regarding the state of the BBB at acute time points after 

RmCHI. Collectively, these seminal studies support the notion that TBI compromises the BBB 

resulting in the extravasation of blood constituents into the normally impermeable brain 

parenchymal space. 

BBB breakdown/permeability offers a unique opportunity to deliver drugs/nanoparticles 

that are normally excluded from the brain[1,17,75,129]. Previously, we and others demonstrated 

the feasibility of delivering NPs to brain lesions after a focal brain injury via the disrupted 

BBB[2,128,162]. The NP delivery to the brain through the transient BBB opening after focal TBI 

was dependent on the size of the particle, with smaller particles having prolonged permeability 

compared to larger particles[2,151]. However, the utility of NPs to deliver diagnostic/therapeutic 

agents in other injury phenotypes such as diffuse brain injury is largely unknown. Therefore, in 

this study, we assessed NP-size dependent accumulation in three different diffuse brain injury 

models: mild closed head injury (mCHI), repetitive mild CHI (RmCHI) and midline fluid percussion 

injury (FPI). We hypothesized that NP accumulation in diffuse injury models would correlate 

directly with blood-brain barrier permeability. 
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Figure 3.1 In vivo experimental study design: Cocktail of different size nanoparticles was 

intravenously injected (a) immediately after mild closed head injury (mCHI), (b) immediately after 

the fifth impact of a repetitive mild RmCHI, and (c) immediately, 2 h and 5 h after fluid percussion 

injury (FPI). Animals were killed one hour after NP injection. The positive control permeability 

marker, horseradish peroxidase (HRP), was injected intravenously, 10 min before brain 

collection. 

3.2 Materials and Methods  

3.2.1 Materials 

Carboxylated polystyrene NPs of different sizes were purchased from Life Technologies 

(Carlsbad, CA, USA). Specifically, the materials (with catalog numbers) used were 20 nm 

(F8783), 40 nm (F8793), 100 nm (F8797) and 500 nm (F8813) NPs with dark red (λex/λem=660 

nm/680 nm), red (λex/λem=580 nm/605 nm), blue (λex/λem=350 nm/440 nm) and yellow-green 

(λex/λem=505 nm/515 nm) fluorescence, respectively. Methoxypolyethylene glycol amine 2000 

(mPEGamine 2KDa) (06676), methoxypolyethylene glycol amine 750 (mPEGamine 750Da) 

(07966), n-[3-dimethylaminopropyl]-n-ethyl, n-[3-dimethylaminopropyl]-n-ethyl [EDC] (E1769), 
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MES hemisodium buffer (M8902), N-Hydroxysuccinimide (NHS) (56405), and Peroxidase type II 

from horseradish (P8250-50KU) were purchased from Sigma Aldrich (St. Louis, MO, USA). 

ImmPACT DAB peroxidase (HRP) substrate (SK-4105) was purchased from Vector laboratories 

(Burlingame, CA, USA). Slide-A-Lyzer Cassettes (20K) (66003) and Kimwipes (06-666) were 

purchased from ThermoFisher scientific (Waltham, MA, USA). Vectashield antifade mounting 

medium (H-1000) from Vector Labs (Burlingame, Ca, USA) and Anti-mouse IgG antibody 488 

(ab150105) from Abcam (Cambridge, UK) were purchased. 

3.2.2 Nanoparticle PEG conjugation  

Carboxylated NPs of different sizes, 20nm, 40nm, 100nm, and 500nm were PEGylated 

using EDC/NHS chemistry. See Appendix B for details.  

3.2.3 Animals 

Male C57BL/6 mice (20-24g) (Envigo, Inc., Indianapolis, IN) were used for all 

experiments (n=3 per group). Animal care was approved by the Institutional Animal Care and Use 

Committees at the University of Arizona (Tucson, AZ). Each study has been approved by an 

institutional review committee and the procedures followed are in accordance with institutional 

guidelines and humane treatment of the animals. See Appendix B for details.  

(1) Closed head injury (CHI) 

Mice were subjected to mild CHI or repetitive mCHI using the protocol previously 

described[63,64]. Briefly, mice were lightly sedated via isoflurane inhalation and placed on 

Kimwipe secured to a Plexiglas stage. External anatomical landmarks (such as ear canals, eyes) 

were used to carefully position the animal to center under the vertical aluminum guide tube. The 

impact weights (9mm diameter) with the desired mass (100g or 50g) was positioned at the top of 

aluminum tube and was allowed to fall freely down (865mm) the aluminum guide tube on to the 

head of the mouse. A cushion sponge was located below the Kimwipe stage to receive the falling 

mouse. Animals received a single impact of either 100g or 50g (n=6, pooled across the different 

weights, animals that displayed hematoma/skull fracture were excluded from the study). The 

RmCHI cohort (n=3) received 50g impact, 1 per day for 5 consecutive days.  

(2) Midline Fluid Percussion Injury (FPI) 
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For injury induction 24h post-surgery for craniotomy (Appendix B), mice were re-

anesthetized with 5% isoflurane delivered for three minutes. The cap was removed from the 

injury-hub assembly and the dura was visually inspected through the hub to make sure it was 

intact with no debris. The hub was then filled with normal saline and attached to an extension 

tube connected to the male end of the fluid percussion device (Custom Design and Fabrication, 

Virginia Commonwealth University, Richmond, VA). An injury pressure of 1.1-1.2atm was 

administered by releasing the pendulum onto the fluid-filled cylinder. Sham-injured mice 

underwent the same procedure except the pendulum was not released. Mice were monitored for 

the presence of a forearm fencing response and righting reflex times were recorded for the 

injured mice as indicators of injury severity[192]. The righting reflex time is the total time from the 

initial impact until the mouse spontaneously rights itself from a supine position. The fencing 

response is a tonic posturing characterized by extension and flexion of the forearms that has 

been validated as an overt indicator of injury severity[192].  

Furthermore, naïve animals (no impact/injury) were injected with the cocktail of nanoparticles (20, 

40, 100 and 500nm) and were perfused one hour post-injury.  

 

3.2.4 Nanoparticle (NP) and horseradish peroxidase (HRP) injection – mCHI/RmCHI 

Retro-orbital injections of the venous sinus in the mouse were performed for intravenous 

delivery of the NPs and HRP, an alternative technique to tail-vein injection[163]. Animals were 

anesthetized with isoflurane (3%) and the NP cocktail (75μl) of 20 and 40nm NPs for 

mCHI/RmCHI (at a dose of 50mg/kg b.w.) was injected to the right eye, one hour before 

perfusion. HRP (83mg/kg b.w. in 25μl) was injected behind the left eye ten minutes before 

perfusion. Animals were killed at 1h after mCHI/RmCHI. The NP circulation time of 1h was held 

constant for each of the cohorts. Schematics show the experimental timeline for mCHI (Figure 

3.1a) and RmCHI (Figure 3.1b). 

3.2.5 Nanoparticle (NP) and horseradish peroxidase (HRP) injection – midline FPI 

Retro-orbital injections of the venous sinus in the mouse were performed for intravenous 

delivery of the NPs and HRP, an alternative technique to tail-vein injection[163]. Animals were 
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anesthetized with isoflurane (3%) and the NP cocktail (75μl) of 20, 40, 100 and 500nm NPs for 

the midline FPI study (at a dose of 50mg/kg b.w.) was injected to the right eye, one hour before 

perfusion. HRP (83mg/kg b.w. in 25μl) was injected behind the left eye ten minutes before 

perfusion. Depending on the cohort group, animals were killed at 1 h, 3 h, and 6 h after midline 

FPI. The NP circulation time of 1 h was held constant for each of the cohorts. A schematic shows 

the experimental timeline for midline FPI (Figure 3.1c). 

3.2.6 Tissue collection  

According to the injury groups, mCHI/RmCHI animals (1h after final impact) animals were 

deeply anesthetized with isoflurane overdose. For the FPI study, animals (1h, 3h, and 6h post-

injury) were deeply anesthetized with lethal dose of sodium pentobarbital solution until a tail/toe 

pinch produced no reflex movement. Animals were transcardially perfused with cold phosphate-

buffered saline (PBS), followed by 4% buffered paraformaldehyde solution. Brain tissue was 

collected and fixed overnight in 4% buffered paraformaldehyde followed by immersion in 30% 

sucrose solutions in 1X PBS for cryoprotection for 24h. Samples were embedded in optimal 

cutting temperature (OCT) medium and frozen on dry ice. Samples were stored at -80°C until 

sectioned coronally at a 25μm thickness with a cryostat.  

3.2.6 Analysis of HRP and NP accumulation after mCHI/RmCHI and FPI 

Tissue sections were incubated in PBS buffer for 20mins at room temperature prior to 

use. For HRP analysis, freshly prepared DAB substrate solution (200μl) was added to the tissue 

and incubated for ten mins at room temperature. Slides were then washed in PBS buffer three 

times (two mins each) and coversliped after adding a drop of aqueous mounting media. Sections 

were imaged using Slide Scanner (PathScan Enabler IV, Meyer Instruments, TX, USA). See 

Appendix B for details.  

For NP analysis, slides containing the frozen sections were incubated at room 

temperature for 20mins in 1X PBS to rehydrate the tissue and remove OCT compound. Slides 

were coverslipped after adding one drop of fluorescent mounting media (Vectashield). The whole 

brain sections were imaged with conventional epifluorescent/confocal microscopy at 10X/20X 

objective, respectively. See Appendix B for details.  
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3.2.7 Immunohistochemical analysis for mCHI/RmCHI 

 The sections were incubated with a solution made up of anti-mouse IgG secondary 

antibody 488 (1:200) with 2% goat serum and 0.1% Triton X-100 for 2h at room temperature in 

the dark. The sections were rinsed with PBS (4 times, 5 min each). A conventional epifluorescent 

microscope (Leica DMI6000 B, Leica Microsystems, Wetzlar, Germany) was used to image the 

stained sections. See Appendix B for details. 

3.2.8 Statistics  

Statistical analyses were conducted in GraphPad Prism 5.0 (GraphPad Software, Inc., La 

Jolla CA). For the midline FPI study, the analysis of HRP/NP percent area in the regions of 

interest between the injured and sham groups at different time points was conducted using an 

ordinary two-way analysis of variance (ANOVA). Specifically, to compare the HRP/NP percent 

area between the injury and the sham group at each time point, Bonferroni’s post-hoc test was 

conducted. Tukey’s post-hoc test was conducted for pairwise comparison of HRP/NP percent 

area for each group (injury and sham) at different time points. For correlation analysis of HRP and 

NP, Pearson correlation test was conducted. The statistical values (P-value, F-value, and degree 

of freedom) are included in Appendix B sections. The P-values are reported in the results section. 

 

3.3 Results 

3.3.1 Absence of HRP after mCHI/RmCHI 

Our previous study using the CCI model of focal TBI, the highest level of HRP 

extravasation was observed within 1h following impact[2]. Therefore, we evaluated this time point 

in the mCHI model and observed minimal to no HRP accumulation (50 g and 100 g impact; 

Figure 3.2) suggesting an intact BBB acutely after mCHI (~50 mins after CHI). Furthermore, we 

did not observe any HRP staining within 1h following the fifth impact in the RmCHI model (one 

per day for five consecutive days). Representative images of HRP staining after mCHI after single 

50g (Figure 3.2a), and 100g (Figure 3.2b), and multiple impacts (50g, 5X; Figure 3.2c) were 

comparable to naïve brain tissue (Figure 3.2d). Furthermore, to investigate if evidence of BBB 

breach was not captured by the exogenous HRP tracer, we immunostained for endogenous IgG. 
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We observed positive IgG staining at 1h post-impact after single and multiple (5X) impacts 

(images in Appendix B), suggesting that the BBB may have opened transiently prior to the HRP 

tracer injections. 

 

Figure 3.2 Representative images of HRP extravasation after mCHI and repetitive mCHI (a) 

single impact mCHI (50g), (b) single impact mCHI (100g), (c) multiple impacts (5X) RmCHI (50g), 

(d) control (naïve). HRP circulated for 10mins prior to tissue collection at 1 h post-injury. Scale 

bar = 1500µm 

 

3.3.2 Positive HRP extravasation after midline FPI 

Representative images of HRP staining pattern of each FPI cohort at different time-points 

are shown in Figure 3. The two-way ANOVA identified a significant difference between the two 

groups (injured and sham) for both cortex (p=0.0002) and corpus callosum (p=0.025) (See Table 

B2 for full statistical data, (Appendix B)).  Also, a significant time-dependent effect for both cortex 

(p=0.0067) and corpus callosum (p=0.0117) was observed. In the cortex, Bonferroni’s post hoc 

test comparing the injury and sham groups demonstrated a significant difference in the 3h cohort 
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(p=0.0001). Comparing the cortex of the injured groups at different time points, using Tukey’s 

post-hoc test, revealed HRP staining at the 3h time point was three-fold greater than the 1h 

(p=0.0018) and 6h time point (p=0.007; Figure 3.3ii). In the corpus callosum, there was minimal to 

no HRP extravasation at 1h and 6h post-injury (Figure 3.3iii). However, a peak accumulation at 

3h post-injury was observed (about 15-fold increase) compared to the sham group (Bonferroni’s 

post hoc, p=0.0024) in the corpus callosum. Moreover, Tukey’s post-hoc test demonstrated a 

peak accumulation at 3h post-injury (about 15-fold increase) compared to the 1h (p=0.0021; 

Figure 3.3ii) and 6h (p=0.0021; Figure 3.3iii). Therefore, HRP extravasation confirmed the BBB 

dysfunction at 3h after FPI in the cortex and corpus callosum.  

 

Figure 3.3 Extravasation of HRP after FPI Representative images of HRP extravasation after 

FPI with injured and sham groups of 1h (a-b), 3h (c-d), 6h (e-f). HRP was injected ten mins before 

sacrifice. Quantification of HRP extravasation after FPI. (ii) Cortex, (iii) Corpus callosum. *p<0.05 

compared to respective sham group, two-way ANOVA, Bonferroni’s post-hoc test. #p<0.05 

compared to 1h and 6h injured cohort, two-way ANOVA, Tukey’s post-hoc test. Error bars 

represent standard error of mean with n=3. Scale bars = 200µm. 

3.3.3 Accumulation of NP after diffuse injury  
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To determine the extent of NP accumulation after acute TBI, we intravenously injected 

NP cocktail after mCHI/RmCHI (only 20nm and 40nm) and FPI (20, 40, 100 and 500nm) and with 

a constant circulation time of 1h.  

3.3.3.1 Absence of NP Accumulation after mCHI/RmCHI:  

For the mCHI study, there was no fluorescent signal observed in any of the tissue 

sections after either single impact or multiple impacts (figures in Appendix B).  

3.3.3.2 Presence of NP Accumulation after midline FPI: 

We quantified the accumulation of each fluorescent NP via confocal microscopy for the 

midline FPI model (Figure 4-6). In the cortex, there was a significant effect between the injury and 

sham group for 20nm (two-way ANOVA, p = 0.0002), 40nm (p = 0.0006), 100nm (p = 0.0071), 

and 500nm (p = 0.0003). Moreover, the analysis demonstrated a significant time-dependent 

effect for 20nm (p = 0.0002), 40nm (p = 0.0006), 100nm (p = 0.0069), and 500nm (p = 0.0013) 

(Figure 3.5a-d). To examine the effect of each of these variables individually, post-hoc pair-wise 

analyses of critical comparisons are described below. 

Analysis of the NP accumulation in midline FPI injured and sham brain tissue:  

The first pairwise analysis focused on comparing NP accumulation in the injured and 

sham group across time points in the two ROIs (cortex and corpus callosum). Specifically, in the 

cortex, Bonferroni’s post-hoc test displayed significant difference in 20 nm (p<0.0001), 40 nm 

(p<0.0001), 100 nm (p<0.0021) and 500 nm (p<0.0001) NPs accumulation at 3h post-injury as 

compared to their respective sham groups (Figure 3.5(a-d)). No significant difference was 

observed at 1h and 6h post-injury compared to their respective sham groups for any NP. 

Furthermore, in the corpus callosum ROI, there was no significant difference between the injured 

and the sham group for all NP sizes. Overall, all the NPs displayed significant accumulation at 3h 

post-FPI compared to the sham group in the cortex. 

Analysis of the NP accumulation in midline FPI injured group across different time points:  
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The second critical comparison focused on the NP accumulation within the injured group 

across different time points in the two ROIs: cortex and corpus callosum. In the cortex, for all the 

NP sizes, 20, 40, 100 and 500 nm, Tukey’s post-hoc test demonstrated a significant increase at 

3h post-injury for 20 nm (p<0.0001), 40 nm (p≤0.0001), 100 nm (p=0.002) and 500 nm (p≤0.001) 

compared to both 1h and 6h cohorts (p < 0.05). The peak increase of accumulation in the cortex 

at 3h post-injury was at least twice that at 1h and 6h for each NP size (Figure 3.5a-d). In the 

corpus callosum, although there was no significant difference among the NP accumulation (20, 

40, 100 and 500 nm) across time points, there was a trend with increased accumulation at 3h 

post-FPI compared to that at 1h and 6h (Figure 3.6a-d). 
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Figure 3.4 Accumulation of different size nanoparticles over time after FPI. (i) 

Representative image of whole brain scan and white box highlights the approximate location of 

the higher magnification cortical region. (ii) Representative images of NP accumulation at 1 h (a-

d), 3 h (e-h), 6 h (i- l), and sham (control) (m-p). Columns display different size of NP 
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accumulation over different time points post-midline-FPI. NPs were injected 1h before sacrifice. 

Scale bar = 100 µm. 

 

 

 

 

 

 

 

Figure 3.5 Nanoparticle accumulation after FPI in cortex. Accumulation of 20nm, 40nm, 

100nm and 500nm nanoparticles at different time points (1h, 3h, and 6h) after FPI. NPs were 

injected 1h before sacrifice. *p<0.05 compared to respective sham group, two-way ANOVA, 
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Bonferroni’s post-hoc test. #p<0.05 compared to 1h and 6h injured cohort, two-way ANOVA, 

Tukey’s post-hoc test. Error bars represent standard error of mean with n=3 animals per group. 

 

 

Figure 3.6 Nanoparticle accumulation after midline-FPI in corpus callosum. Accumulation of 

20nm, 40nm, 100nm and 500nm nanoparticles at different time points (1h, 3h, and 6h) after FPI. 

NPs were injected 1h before sacrifice. Two-way ANOVA statistical test was conducted. Error bars 

represents standard error of mean with n = 3 animals per group. 

 

 

Correlation of HRP and NP accumulation after midline-FPI 
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To further validate our hypothesis that NP accumulation directly depends on blood brain 

barrier permeability, we evaluated the relationship between HRP and NP staining with Pearson 

correlation coefficient. For the cortex ROI, in figure 3.7, each scatter plot represents 

corresponding data points of the percent area of HRP staining versus percent area of NPs across 

all the time periods. The results (Figure 3.7) show a significant correlation between the HRP 

staining and 20nm (p = 0.0005), 40nm (p < 0.0001), 100nm (p < 0.0001) and 500nm (p = 0.0002). 

Moreover, the Pearson correlation coefficient for: 20nm (r = 0.9147), 40nm (r = 0.9574), 100nm (r 

= 0.9608), and 500nm (r = 0.9388) indicates a robust correlation between HRP and the NPs. 

Particularly, HRP staining was maximally observed at 3h post-injury and those animals/brain 

tissue displayed peak NP accumulation (20nm, 40nm, 100nm and 500nm). Furthermore, the 

same analysis was performed for the corpus callosum, but no correlation was identified due to 

limited NP accumulation.  

 

 

Figure 3.7 Correlation of HRP and NP accumulation after midline-FPI in cortex. The x-axis 

shows the percentage of the HRP stain (data from Figure 3) and the y-axis shows the percentage 
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of NP accumulation (data from Figures 4-6) of (a) 20nm (r = 0.9147), (b) 40nm (r = 0.9574), (c) 

100nm (r = 0.9608), and (d) 500nm (r = 0.9388). Pearson correlation coefficient (r) was close to 

1, indicating a robust correlation between HRP and the NPs.  

 

3.4   Discussion & Conclusions 

Research on NP delivery after brain injury has gained traction over the last couple of 

years[193-197]. TBI may lead to a transient breach in the BBB that can be capitalized to 

passively deliver NPs. Previously, using experimental focal injury (controlled cortical impact) our 

group has demonstrated the feasibility of NP delivery up to 500 nm in size with a peak NP 

accumulation at 1 h post-TBI[2]. Yet, there is a critical gap in understanding the relationship 

between BBB opening and models of diffuse TBI for NP delivery. Here in this study, we used 

three models of diffuse brain injury (mild CHI, repetitive mild CHI and midline-fluid percussion 

injury (FPI)) to evaluate the effect of different size NP accumulation at acute time points after 

injury. We reported four key findings: 1) mCHI and RmCHI did not show any NP accumulation 1 h 

after final impact; 2) NPs up to 500 nm can be delivered to injured brain sustaining a diffuse TBI 

by midline-FPI model; 3) maximal accumulation occurred 3 h post-FPI for all NP sizes (20, 40, 

100 and 500 nm); and 4) significant correlation was observed between HRP staining and NP 

accumulation in the cortex after midline-FPI.  

RmCHI is common in sports-related TBIs and war combat morbodities[198,199], with the 

potential for long-term consequences, including chronic traumatic encephalopathy[200]. 

Evaluation and management of RmCHI remain a challenge due to the diffuse and microscopic 

pathology, where NP delivery for diagnostic and therapeutic approaches may provide a new 

strategy to improve detection of mCHI and clinical management. In this study, we intravenously 

injected 20 and 40nm NPs immediately following impact in mCHI and RmCHI with one-hour 

circulation time; HRP (BBB integrity marker) was injected ten minutes prior to sacrifice. We did 

not observe any HRP or NP accumulation at 1h after single impact mCHI nor after 5 consecutive 

impacts in the rmCHI model. We acknowledge that probing BBB integrity via this approach 
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captures a single snapshot of the dynamically complex response after impact. Therefore, we 

further probed BBB integrity via immunohistochemistry for endogenous IgG within the 

parenchyma. IgG is not present in healthy brain tissue, but it may get trapped due to a transient 

BBB breakdown. Intriguingly, we observed IgG staining in the hippocampus in both single and 

multiple impact groups compared to staining in the naïve group (Appendix B). The presence of 

endogenous IgG and the absence of any exogenous HRP (injected 50mins post-impact) 

suggests one of two possibilities. One, a transient BBB breach occurs immediately after and/or 

during both single and multiple impacts but sealed prior to the injection of HRP (i.e. within 

50mins). Alternatively, the presence of IgG could possibly be due to active transport across the 

endothelial cells via deregulated endocytosis pathway such as transcytosis[201]. Furthermore, 

the absence of any NP accumulation after immediate injection suggests that the BBB 

permeability was size dependent, where the 20nm NPs may have been too large for 

extravasation as compared to the smaller sized IgG (estimated radius of 5nm[152]).   

 In contrast to the mCHI study, the midline-FPI study showed both HRP and NP 

accumulation after injury. We observed extravasation of the HRP (~44kDa with an estimated 

radius of ~3 nm[152]) in the cortex (proximal to injury hub) at 1h, 3h, and 6h post-injury. 

Significant HRP staining at 3h post-injury was also noted in the corpus callosum. Previous rat FPI 

(midline-and lateral-) models reported similar observations of HRP extravasation at 1h with  a 

marked reduction at 6h post-injury in the cerebral cortex and corpus callosum[167,190]. One key 

objective of this study was to establish the feasibility of NP delivery after diffuse brain injury to 

then further develop NP-based therapeutic and diagnostics. Demonstrating the time course of 

BBB disruption after diffuse brain injury was the first step in achieving this objective. In addition, 

although mCHI did not show any NP accumulation at 1h post-injury, studies to assess NP 

accumulation at different time points is warranted. 

In the recent years, the interest for NP application for TBI has been 

increasing[2,128,197,202,203]. For example, Bailey et al used cerium oxide NPs (~10 nm) as an 

antioxidant agent in the lateral FPI model[203]. Although this study demonstrated the feasibility of 
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NP delivery following diffuse brain injury, little is known about the impact of NP size and optimal 

time window for effective delivery after TBI. We directly addressed this critical gap by evaluating a 

cocktail injection of different size PEGylated NPs at different time points after injury while 

maintaining a constant circulation time of 1 h. Furthermore, systemic NP delivery parameters 

such as size, charge and surface modification may influence the physiochemical stability and the 

rate of NP elimination from the circulation[109,114]. Since the focus of this study was to evaluate 

the size and time-dependent NP accumulation after diffuse brain injury, the NPs were PEGylated 

to obtain slightly negatively charged NPs for efficient systemic delivery and to minimize the 

influence of parameters outside of size. Maximal accumulation for all size NPs was observed at 

3h post-injury in the cortex (Figure 4). Our study is the first to report accumulation up to 500 nm 

PEGylated NPs following midline-FPI. This finding supports our previous study using the focal 

brain injury model, controlled cortical impact (CCI), where we reported accumulation of ~500nm 

NPs near the injured cortex out to 12h post-injury[2]. Taking our data one step further, we 

identified a direct correlation of the BBB integrity as measured through HRP staining with NP 

accumulation (Figure 6). Collectively, our results add to our current understanding regarding the 

size and time-dependent NP delivery after diffuse TBI. Insight into such parameters is critical for 

determining the optimal delivery window for NPs following TBI. 

An interesting finding from our study in the midline-FPI cohort was the peak accumulation 

of the NPs at 3h post-injury compared to 1h and 6h group. Acutely after FPI, regional cerebral 

blood flow reportedly decreases[204] contributing to distressed endothelial cells and ultimately 

vasogenic and cytotoxic edema[21]. This reduced cerebral blood flow may impede intravenously 

administered molecules to reach the injured area(s) of the brain[205]. Furthermore, Lin and co-

workers established a positive correlation between the BBB permeability and cerebral 

microvascular perfusion acutely after FPI in rat models[205]. Immediately and 1h post-injury, 

ischemic centers were prominent in the injured cortex indicating compromised capillary perfusion 

[205]. However, by 4h post-injury, the blood vessels were significantly more perfused compared 
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to immediate time point[205]. Therefore, such altered blood vessels/perfusion phenomena that 

occur post-injury further supports our observation of peak NP accumulation at 3h.  

Another interesting finding from our study is the differential spatial NP accumulation 

within the brain regions (cortex and corpus callosum). The midline-FPI resulted in the leaky 

vasculature in the cortex and the corpus callosum as visualized by HRP extravasation. 

Additionally, the NP accumulation was significant compared to the sham groups only in the cortex 

and not in the corpus callosum. Regional differences may be attributed to the variations in BBB 

structure in the cerebral cortex and white matter[206]. Previous studies have reported not only a 

lower capillary density[207] but also tighter barrier due to higher astrocytes and tight junction 

expressions in the corpus callosum compared to cortical regions [206]. Thus, the heterogeneity in 

the BBB structure could play a role in the absence of NP accumulation in the corpus callosum 

compared to the cortex.  

In conclusion, we established that PEGylated polystyrene NPs (20 and 40nm) failed to 

accumulate in the brain tissue after mCHI and RmCHI. In contrast, the FPI cohorts displayed NP 

accumulation of up to 500nm in size. With a constant circulation time of 1h, we observed a 

significant peak accumulation at 3h post-FPI compared to 1h and 6h post-FPI. The NP 

accumulation was not only influenced by the NP injection time, but also on the spatial location in 

the brain tissue. There was significant NP accumulation only in the cortex and not in the BBB 

breached corpus callosum. Our current study provides the groundwork for the feasibility of NP 

delivery in terms of NP injection time and NP size after mCHI and FPI. Prospective application of 

our study ranges from contrast agents to therapeutic drug delivery after TBI and is grounded on 

an improved understanding of the BBB breakdown post-injury. 
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CHAPTER 4 

EXTENDED THERAPEUTIC WINDOW AND SEX DEPENDENCE OF BLOOD BRAIN BARRIER 

DISRUPTION FOR NANOPARTICLE DELIVERY AFTER EXPERIMENTAL FOCAL BRAIN 

INJURY 

 

4.1   Introduction 

 Traumatic brain injury (TBI) is an acquired injury to the brain that occurs from sudden 

trauma to the head[14]. It is a leading cause of disability worldwide with about 1.7 million TBIs 

reported in the United States annually[8,9]. Brain injury is characterized by structural failure and 

neurologic dysfunction begins at the time of initial impact and lasts from hours to weeks[18,19]. 

The immediate primary injury occurs due to the external impact and is considered untreatable, 

but preventable. The primary injury results in the secondary injury, a cascade of neural and 

vascular events, including inflammation, excitotoxicity, hypoxia, edema, and blood-brain-barrier 

(BBB) disruption[18,19]. The secondary process develops over hours and days allowing a time 

window for intervention. However, therapeutic intervention strategies to improve outcomes of TBI 

have not been clinically successful[69,71]. One of the major limitations for effective neuro-

therapeutics is the delivery across the normally tightly and selectively regulated BBB[125]. The 

consequences of BBB breach after brain injury is known to be detrimental, yet the breach may 

provide a transient window for delivery of drugs that normally would not cross this 

barrier[1,15,27,128].  

Nanoparticles (NPs) are particles ranging from 1 to 1000nm in size[73,77,78] and can be 

systemically administered. NPs can be used to deliver a variety of different therapeutics/materials 

such as drugs (hydrophobic and hydrophilic), proteins, vaccines, macromolecules and 

genes[68,72,74]. NP delivery through the microcirculation is a viable approach for facilitating drug 

delivery to the brain since the diameter of the smallest capillaries is ~5-6um[81]. The US Food 

and Drug Administration (FDA) has approved over two-dozen NP systems for clinic[85]. A major 

advantage of the NPs is their small size and mobility to access a wide range of cells for both 

extracellular and intracellular delivery[68,74,87,208]. Another advantage of NPs is the potentially 
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tailored interaction with biological systems at the molecular and supramolecular level to induce 

desired physiological response[1,68,74,87]. The potential benefits of nanotechnologies for brain 

injuries[1] may eventually offer opportunities to address current clinical limitations. However, there 

is a critical gap in understanding the influence of BBB dysfunction for effective NP delivery after 

TBI.  

A well-established preclinical model of focal TBI is the controlled cortical impact (CCI) 

injury. This model recapitulates the human TBI characteristics such as edema, haemorrhage, 

contusion, inflammation and blood-brain barrier (BBB) disruption[2,30,56,149,150,209]. Seminal 

studies for BBB breakdown have used tracer molecules such as Evans Blue after CCI to 

establish a biphasic opening[149,210]. The first peak of the BBB breach is at 4-6 hours and the 

second peak at ~3days post-TBI[149,210]. Our group has previously established in CCI that 20-

40 nm NPs readily accumulated within the injury penumbra out to 13h post-TBI[2]. However, the 

feasibility of NP delivery after 24h post-TBI remains largely unknown. Therefore, we sought to 

profile the sub-acute time course of this possible window by examining acute (3h and 24h), sub-

acute (3d and 7d) post-injury.   

 Another important factor that can influence BBB dysfunction after TBI and thus 

subsequent NP delivery is the sex. Sex is known to play a role in the morbidity and mortality after 

TBI yet mechanisms for such sex-based differences are not well elucidated[211,212]. Sexual 

dimorphism has been reported for many brain structures and functions such as 

cognition[36,41,213,214]. For example, studies report higher global cerebral blood flow rate in 

females than males during resting state in humans[36,41,213] Although there have been an 

established differences in female and male clinical outcomes[36,213,215-220], preclinical studies 

in TBI/BBB dysfunction for the past three decades [149,151,167,190,221,222] have routinely 

been conducted using only male animals to minimize intrinsic biological variability[223]. A recent 

study in mice found that TBI leads to a more aggressive neuroinflammatory response in males 

compared to females during the acute and sub-acute post-injury phases[49]. Specifically, the 

study found significantly higher cortical microglia/macrophage activation and pro-inflammatory 

cytokine expression in males at 1d and 3d post-TBI compared to females[49]. Furthermore, 
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studies using male animals have suggested that the delayed (~3d) BBB breakdown after TBI is 

associated with neuroinflammatory response[2,30,56,149,150,209],[210]. However, sex 

differences in BBB disruption at the delayed time point (~3d) after TBI has not been studied. As 

an extension of this BBB disruption, sex differences in passive NP delivery via BBB disruption 

following TBI is unknown. 

Taken together, there is a serious gap in understanding (1) the feasibility of NP delivery 

at sub-acute time point post-TBI and (2) depicting sex differences in NP accumulation after TBI. 

Therefore, our hypothesis is twofold, (1) NP accumulation will occur at 3 days post-injury owing to 

the biphasic opening of the BBB, and (2) Robust NP accumulation in males compared to females 

at sub-acute time points due to varying neuroinflammatory response that may influence BBB 

breakdown. 

 

4.2   Materials and Methods 

4.2.1 Materials 

Carboxylated polystyrene NPs of different sizes were purchased from Life Technologies 

(Carlsbad, CA, USA). Specifically, the materials (with catalog numbers) used were 40 nm (F8793) 

NP with red (λex/λem=580 nm/605 nm) fluorescence. Methoxypolyethylene glycol amine 2000 

(mPEGamine 2 KDa) (06676), n-[3-dimethylaminopropyl]-n-ethyl, n-[3-dimethylaminopropyl]-n-

ethyl [EDC] (E1769), MES hemisodium buffer (M8902), N-Hydroxysuccinimide (NHS) (56405), 

and Peroxidase type II from horseradish (P8250-50KU) were purchased from Sigma Aldrich (St. 

Louis, MO, USA). ImmPACT DAB peroxidase (HRP) substrate (SK-4105) was purchased from 

Vector laboratories (Burlingame, CA, USA). Slide-A-Lyzer Cassettes (20 K) (66003) were 

purchased from ThermoFisher scientific (Waltham, MA, USA). Vectashield antifade mounting 

medium (H-1000) from Vector Labs (Burlingame, Ca, USA) were purchased. 

4.2.2 Nanoparticle PEG conjugation 

As presented in our previous study[2], carboxylated NPs were PEGylated using 

EDC/NHS chemistry. Briefly, mPEGamine 2 kDa was mixed with 40 nm (NH2:COOH at 5:1 mole 

excess). EDC/NHS (in MES buffer) was added to NP / PEG mixture (200 mM/100 mM) and 
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HEPES buffer was added to obtain a final pH of 7.8 before incubating for 3 h at room 

temperature. Glycine (100 mM) was added to quench the reaction. Unbound PEG was removed 

via dialysis (20 kDa MW). PEGylated NPs were suspended in a 20 mM HEPES (pH 7.4). The 

concentration of NP solution was determined with fluorescent standard curves generated from 

known concentrations of as-received Fluorospheres (FLUOstar Omega fluorescence plate 

reader; BMG Labtech, Ortenberg, Germany). Yields of NPs ranged between 40-60 %. A 

concentration of 12.5 mg/ml for each NP was used for all in vivo studies. 

4.2.3 Nanoparticle characterization 

The hydrodynamic diameter of NPs in 20 mM HEPES (pH 7.4) was measured pre- and 

post-PEGylation with a dynamic light scattering (DLS) device. Three measurements were made 

and the mean ± standard the error of mean (s.e.m.) was reported. 

4.2.4 Animals 

Female and male C57BL/6 mice (20-24 g) were used for the first set of experiments (n=4 

per group). Female and male transgenic CX3CR1-EGFP mice were used for two-photon 

microscopy experiments (n=3 per group). Mice were housed in a 14 h light/10 h dark cycle at a 

constant temperature (23°C ± 2° C) with food and water available ad libitum. Female mice of 

random cycling were used to better reflect clinical applicability. Animal studies using C57BL/6 

mice were approved by Arizona State University’s Institute of Animal Use and Care Committee 

(IACUC) and were performed in accordance with the relevant guidelines. The two-photon 

microscopy study using transgenic animals was approved by the Institutional Animal Care and 

Use Committee at the University of Arizona (Tucson, AZ). 

4.2.5 Controlled cortical impact model 

Traumatic brain injury (TBI) was modeled using the well-established controlled cortical 

impact (CCI) injury model[56]. Briefly, anesthetized (isoflurane) adult (C57Bl/6 wild-type or 

transgenic CX3CR1-EGFP) mice (females and males; n=4) were mounted onto the stereotaxic 

frame. The frontoparietal cortex was exposed via 3 mm (for wild-type) and 4 mm (for transgenic) 

craniotomy and the impact tip was centered on the craniectomy. The impactor tip diameter was 2 

mm, the impact velocity was 6.0 m/s and the depth of cortical deformation was 2 mm and 100 ms 
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impact duration (Impact ONE; Leica Microsystems). The skin was sutured and the animals were 

placed in a 37°C incubator until consciousness was regained. The naïve group did not undergo 

surgery.  

4.2.6 Nanoparticle (NP) and horseradish peroxidase (HRP) injection 

Retro-orbital injections of the venous sinus in the mouse was performed for intravenous 

delivery of the NPs and HRP, an alternative technique to tail-vein injection[163] were performed 

for intravenous delivery of the NPs and HRP. Animals were anesthetized with isoflurane (3 %) 

and the NP (dosage: 31.25 mg/kg b.w., volume:50 μL) of 40 nm NPs was retro-orbitally injected 

near the right eye, three hours before perfusion. HRP (83 mg/kg b.w.in 25 μL) was injected 

behind the left eye ten minutes before perfusion. Depending on the cohort group, animals were 

killed at 3 h, 1 d, and 3 d after CCI. The NP circulation time of 3 h was held constant for each of 

the cohorts. The summary of the experimental timeline is depicted in Figure 4.1. 

 

Figure 4.1: In vivo experimental study design: Nanoparticle (40 nm) was intravenously 

injected in CCI induced female and male mice 3h before sacrifice at 3h, 24h, 3d and 7d post-

injury. The positive control BBB permeability marker, horseradish peroxidase (HRP) was injected 

10 mins before sacrifice. 

 

4.2.7 Tissue collection  

According to the time point of the cohort, C57Bl/6 mice were deeply anesthetized with 

lethal dose of sodium pentobarbital solution until a tail/toe pinch produced no reflex movement. 

Animals were transcardially perfused with cold phosphate-buffered saline (PBS), followed by 4 % 
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buffered paraformaldehyde solution. Brain tissue was collected and fixed overnight in 4 % 

buffered paraformaldehyde followed by immersion in 30 % sucrose solutions in 1X PBS for 

cryoprotection for 24 h. Samples were embedded in optimal cutting temperature (OCT) medium 

and frozen by placing in a glass container with methybutane kept on dry ice. Samples were 

stored at -80°C until sectioned coronally at a 20 μm thickness with a cryostat.  

4.2.8 Quantification of HRP extravasation 

The tissue section was incubated in PBS buffer for 20 mins at room temperature prior to 

use. The tissue sampling regions were ~-1.65 mm Bregma (three sections per animal, n=2 for 3h 

cohort and n=4 for all other time points). For HRP analysis, freshly prepared DAB substrate 

solution (200 μl) was added to the tissue and incubated for ten mins at room temperature. Slides 

were then washed in deionized water three times (two mins each) and coverslips were mounted 

after adding a drop of aqueous mounting media. Sections were imaged using Slide Scanner 

(PathScan Enabler IV, Meyer Instruments, TX, USA). The ROI images were then analyzed using 

ImageJ software (National institute of health, Bethesda, MD, USA) to obtain total number of 

positive pixels. 

4.2.9 Quantification of NP accumulation 

For NP analysis, slides containing the frozen sections were incubated at room 

temperature for 20 mins in 1X PBS to rehydrate the tissue and remove OCT compound. 

Coverslips were mounted on the section after adding one drop of fluorescent mounting media 

(Vectashield). The tissue sampling regions were ~-1.65 mm Bregma and ipsilateral cortex (four 

sections per animal; n=3 for 3h cohort and n=4 for all other time points) and contralateral cortex 

(two sections per animal; n=3 for 3h cohort and n=4 for all other time points) were imaged with 

conventional epifluorescent microscopy at 10X objective.  

4.2.10 Two-photon microscopy surgery and cranial window placement 

Transgenic mice (female and male) underwent the CCI injury induction as described 

above. Based on the imaging time points (immediately after injury or at 1, or 3 days post-injury), 

anesthetized animals received intravenous nanoparticle injections (50 mg/kg b.w. 50 μL; retro-

orbital). Following the injection, cranial window was placed for imaging. The cranial window 
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protocol is modified from a previously published protocol[224,225]. Briefly, the craniectomy/injury 

region was cleaned using saline and gelfoam soaked in saline was applied to stop any bleeding 

(if any). The region around the craniectomy was dried using cotton swab. After ensuring no 

bleeding, 5 mm diameter glass coverslip was gently placed on the brain tissue, centered at -2 mm 

bregma and 2 mm lateral midline. The glass coverslip was sealed using dental cement to secure 

it and to create a well for the water-immersion objective. On cohort of control, naïve animals were 

used to establish baseline nanoparticle extravasation across the BBB. These control animals 

were anesthetized, injected with nanoparticles, then subjected to craniectomy (4mm), and cranial 

window placement according to the aforementioned protocol. For imaging, animals were under 

anesthesia and were mounted on a microscope adaptable animal holding frame. Animals were 

placed on the mount using ear bars to stabilize their heads for imaging.  Animals were imaged for 

a maximum of 3 hours under anesthesia (isoflurane). After two-photon imaging was completed, 

while animals are still under anesthesia, horseradish peroxidase (83mg/kg of b.w. maximum 

injection volume of 50 μL) was injected via retro-orbital ten mins before sacrifice. Animals were 

perfused using the protocol explained above. The detailed two-photon experimental set-up is 

illustrated in Figure 4.2. 
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Figure 4.2: The experimental setup for two-photon microscopy imaging. (a) Sagittal view of 

the entire setup. (b) Cross sectional view of the location of imaging region with respect to the 

contusion and penumbra region. Transgenic (CX3CR1-EGFP) female and male mice were used 

for this study. After a craniectomy (4 mm) and impact (2 mm), a glass coverslip of 5 mm was 

placed on top of the swollen brain tissue and was secured with dental cement. A water-immersion 

objective lens was used and the anesthetized animal was secured on stereotaxic stage for two-

photon imaging. 

 

4.2.11 Two-photon microscopy NP extravasation measurement in vivo: 

Two-photon microscope from Olympus (number) was used to image NP extravasation 

after TBI in anesthetized transgenic female and male mice. After placing the cranial window, 

water immersion 25X objective lens (NA=1.05) was used to image NPs filled in the cerebral 

microvessels and diffuse NP signal displaying the NP extravasation outside of the blood vessels. 

12 bit images of 512 X 512 pixels (0.509 X 0.509 mm in x-y plane) were obtained. We used 

galvano scanner with one-way scan direction and sampling speed of 4.0 us/pixel. The excitation 

wavelength of 920 nm was used for red channel and green channel with ~15% laser 

transmissivity. 

4.2.12 Statistics 

Statistical analyses were conducted in GraphPad Prism 5.0 (GraphPad Software, Inc., La 

Jolla CA). Analysis of total positive pixels in ipsilateral and contralateral region for HRP and 

number of accumulated NP at different time points was conducted using ordinary two-way 

ANOVA. Furthermore, two sets of pairwise analysis were conducted using Bonferroni’s multiple 

comparison tests. The first pairwise analysis was for the hemispheres - ipsilateral and 

contralateral. The second pairwise analysis was conducted for the sex - female and male cohorts.  

4.3   Results 

4.3.1 Horseradish peroxidase (HRP) extravasation 

 Controlled cortical impact (CCI) was used to induce focal TBI in mice. The impact to the 



71 

 

frontoparietal cortex generates a cortical lesion ipsilateral to the impact and leaving the 

contralateral hemisphere uninjured. The BBB integrity was evaluated using a well-established 

BBB permeability marker, horseradish peroxidase (HRP) [29,167,226]. For each cohort, HRP was 

injected 10 mins prior to sacrifice. Representative images of the ipsilateral and contralateral 

hemispheres are shown in Figure 4.3. The extravasation of HRP at all the time points was 

restricted to the primary injury region.  

 

Figure 4.3: Representative images of HRP staining after TBI: (i) Ipsilateral hemisphere: HRP 

extravasation at 3h ((a)-(b)), 24h ((c)-(d)), 3d ((e)-(f)) and 7d ((g)-(h)) post-CCI. (ii) Contralateral 

hemisphere: HRP staining at 3h ((a)-(b)), 24h ((c)-(d)), 3d ((e)-(f)), 7d ((g)-(h)) post-CCI and naïve 

((i)-(j)). The first column for each panel shows the HRP response in female cohort and the second 

column in males. Scale bar=1mm. 

 

4.3.2 Quantification of HRP stain: Analysis of HRP extravasation across different time points 

We found that both female, Figure 4.4(a) and males cohorts, Figure 4.4(b) displayed 

significantly higher HRP stain at 3h, 24h, and 3d post-injury compared to their respective 

contralateral hemispheres and to the 7d ipsilateral hemisphere. In contrast to the females, males 
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displayed significantly higher (~150% increase) HRP stain at 3h and 3d ipsilateral compared to 

24h ipsilateral hemisphere shown in Figure 4.4(b). 

Female cohort: 

Among the female cohort the HRP extravasation was significantly dependent on 

hemisphere (p<0.0001) and time points (p=0.001), Figure 4.4(a). Significant difference at 3h 

(p=0.0002), 24h (p<0.00001), 3d (p=0.0003) and no significance for 7d (p>0.999) was observed 

compared to their respective contralateral hemisphere. Furthermore, there was significantly 

higher HRP extravasation in the female group at 3h (p<0.0001), 24h (p<0.0001) and 3d 

(p=0.0005) ipsilateral hemisphere compared to that of 7d. No significance was observed between 

3h, 24h and 3d ipsilateral hemispheres (p>0.33). 

Male cohort: 

HRP extravasation in male mice was significantly dependent on hemisphere (p<0.0001) 

and time points (p<0.0001), Figure 4.4(b). Significant difference at 3h (p<0.0001), 24h 

(p=0.0148), 3d (p<0.0001) and no significance for 7d (p>0.999) was observed compared to their 

respective contralateral hemisphere. We report that HRP extravasation was significantly (more 

than ~200%) higher at 3h (p<0.0001) compared to 24h and 7d ipsilateral hemisphere. At 24h 

post-injury, HRP extravasation was only different from 7d (p<0.0001) and not any other time 

point. The second wave of HRP extravasation peak was seen in 3d post-injury, that was 

significantly (more than ~150%) higher compared to 24h (p<0.0001) and 7d (p=0.0178).  
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Figure 4.4: Quantification of HRP stain across different time points: Extravasation of HRP in 

female cohort (a) and male cohort (b) at different time points post-injury. *p<0.05 compared to 

their respective contralateral hemisphere and 7d ipsilateral hemisphere, two-way ANOVA, 

Bonferroni’s multiple comparisons. $p<0.05 compared to the 24h male ipsilateral hemisphere, 

two-way ANOVA, Tukey’s multiple comparisons. Error bars represent standard error of mean. 

n=2, for 3h cohort and n=4, for all other time points. 

4.3.2 Quantification of HRP stain: Analysis of HRP extravasation between female and male 

cohort  

We analyzed the sex difference in HRP extravasation via the BBB breach at different 

time points after TBI. We found a significant difference between ipsilateral and contralateral for 

both female and male cohorts at 3h post-injury. However, there were no sex differences in HRP 

stain at 3h post-injury. At 24h post-injury, the females displayed significantly higher HRP 

extravasation compared to their contralateral, whereas the males were not. We found sex 

difference at 24h post-injury where the females displayed significant (~180%) higher HRP stain 

compared to their male counterpart. At 3d post-injury, we found significantly higher HRP 

extravasation in the ipsilateral hemispheres for both female and male cohorts but no sex 

difference.  

3h post-injury: The HRP extravasation at 3h post-injury displayed significant difference (p=0.002) 

between the hemispheres, Figure 4.5(a). Specifically, significantly increase HRP stain was seen 

in the ipsilateral compared to contralateral in females (p=0.011) and male (p=0.014). There was 

no significance for sex difference. 

24h post-injury: HRP extravasation at 24h post-injury displayed significant difference between the 

hemispheres (p<0.0001) and sex (p=0.004), Figure 4.5(b). We report a significant difference for 

female cohort (p<0.0001) but not for males (p=0.082). Furthermore, there was significantly 

(~180%) increase HRP stain in the female ipsilateral hemisphere compared to that of males 

(p=0.001).  
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3d post-injury: The HRP stain at 3d post-injury displayed a significant difference between the 

hemispheres (p<0.0001), Figure 4.5(c). The ipsilateral hemisphere displayed higher HRP stain 

compared to contralateral for the female cohort (p=0.003) and for males (p=0.001). There was no 

significance for sex difference. 

7d post-injury: Analysis for HRP extravasation at 7d post-injury did not show any significance for 

the hemispheres nor for sex, Figure 4.5(d). 

  

Figure 4.5: Quantification of HRP stain between female and males post-injury: 

Extravasation of HRP at 3h (a), 24h (b), 3d (c) and 7d (d) post-injury. *p<0.05 compared to their 

respective contralateral hemisphere, two-way ANOVA, Bonferroni’s multiple comparisons. 

^p<0.05 compared to the male ipsilateral hemisphere, two-way ANOVA, Bonferroni’s multiple 

comparisons. Error bars represent standard error of mean. n=2, for 3h cohort and n=4, for all 

other time points. 
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For each cohort, PEGylated polystyrene NP (40 nm, 48.2±11 nm) was injected 3 hours 

prior to sacrifice. NP accumulation was quantified at the middle region of the injury (~-1.65 mm 

bregma) via epifluorescent microscopy. Representative images of the ipsilateral and contralateral 

hemispheres are shown in Fig 4.6 and Fig 4.7, respectively. Interestingly, we observed significant 

peak NP accumulating at 3h followed by a smaller peak at 24h and 3d post-injury within the injury 

penumbra whereas no significant accumulation at 7d post-injury. 

 

 

Figure 4.6: NP accumulation after TBI in ipsilateral hemisphere: Representative images of 

NP extravasation at 3h ((a)-(b)), 24h ((c)-(d)), 3d ((e)-(f)) and 7 days ((g)-(h)) post-CCI. The first 
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column shows the HRP response in female cohort and the second column in males. Scale 

bar=750μm. 

 

Figure 4.7: NP accumulation after TBI in contralateral hemisphere: Representative images of 

NP accumulation at 3h ((a)-(b)), 24h ((c)-(d)), 3d ((e)-(f)), 7 days ((g)-(h)) post-CCI and naïve ((i)-

(j)). The first column shows the HRP response in female cohort and the second column in males. 

Scale bar=750μm. 

4.3.4 Nanoparticle accumulation after CCI: Analysis of NP accumulation across different time 

points 
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Overall, in female cohorts, we found significantly higher NP accumulation at 3h, 24h, and 

3d post-injury compared to their respective contralateral hemispheres and to the 7d ipsilateral 

hemisphere. No significant NP accumulation was observed at 7d. In contrast, the male cohorts 

showed significantly higher NP accumulation at 3h, and 3d post-injury compared to contralateral 

hemispheres and to the 7d ipsilateral hemisphere. At 24h post-injury, males did not show 

significant NP accumulation compared to contralateral. Moreover, 3h male cohorts displayed 

significantly higher NP accumulation compared to the 24h ipsilateral hemisphere.  

Female cohort: 

NP accumulation in female mice across different time points showed significance in the 

hemisphere (p<0.0001) and time points (p<0.0001), Figure 4.8(a). We report significantly higher 

NP accumulation at 3h (p<0.0001), 24h (0.00007), 3d (p=0.0032) and not significant for 7d 

(p>0.999) compared to their respective contralateral hemispheres. Furthermore, there was 

significantly higher NP accumulation in the female 3h ipsilateral hemisphere (p<0.0001, more 

than 160% increase) compared to that of 24h, 3d, and 7d. There was also a significant difference 

in 24h (p=0.0009) and 3d (p=0.0026) ipsilateral hemisphere compared to 7d. No significance was 

observed between 24h ipsilateral compared to that of 3d (p=0.9702). 

Male cohort: 

NP accumulation in male mice was significantly dependent on hemisphere (p<0.0001) 

and time points (p<0.0001), Figure 4.8(b). We report a significantly increased NP accumulation at 

3h (p<0.0001), 3d (p=0.0084) and not significant for 24h (p=0.0684) and 7d (p>0.999) compared 

to their respective contralateral hemisphere. Furthermore, there was significantly higher NP 

accumulation in the male 3h (more than 500% increase) (p<0.0001) compared to 24h, 3d and 7d 

in the ipsilateral. There was also significant difference in 3d (p=0.0082) ipsilateral hemisphere 

compared to 7d. No significance was observed between 24h ipsilateral compared to that of 3d 

(p=0.7743) and 7d (p=0.0672). 
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Figure 4.8: NP accumulation across different time points after injury: Accumulation of NP in 

the female cohort (a) and male cohort (b) at different time points post-injury. *p<0.05 compared to 

their respective contralateral hemisphere and 7d ipsilateral, two-way ANOVA, Bonferroni’s 

multiple comparisons. $p<0.05 compared to the 24h male ipsilateral hemisphere, two-way 

ANOVA, Tukey’s multiple comparisons. Error bars represent standard error of mean. n=3, for 3h 

cohort and n=4, for all other time points. 

4.3.5 Nanoparticle accumulation after CCI: Analysis of NP accumulation between female and 

male cohort 

To summarize our findings (Figure 4.9), we found a significant difference in NP 

accumulation between ipsilateral and contralateral for both female and male cohorts at 3h post-

injury. However, there were no sex differences in NP accumulation at 3h post-injury. At 24h and 

3d post-injury, the females and males displayed significantly higher NP accumulation compared 

to their contralateral. Interestingly, found sex dependence in the extent of NP accumulation at 

both 24h and 3d post-injury was observed where the females displayed significant ~170% and 

~95% higher, respectively, compared to their male counterpart. At 7d post-injury, we found no 

significance in NP accumulation for hemispheres/sex.  

3h post-injury: NP accumulation at 3h post-injury displayed significant difference (p<0.001) 

between the hemispheres Figure 4.9(a). Particularly, NP accumulation in the ipsilateral 

hemisphere was significantly increased for female (p=0.0002) and male (p<0.0001) compared to 
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their respective contralateral tissue. The sex of the animal did not play a significant role on NP 

accumulation at 3h post-injury.   

24h post-injury: NP accumulation at 24h post-injury displayed a significant difference between the 

hemispheres (p<0.0001) and sex (p=0.0001) Figure 4.9(b). We report a significant difference 

between the ipsilateral and contralateral hemisphere for the female cohort (p<0.0001) and for 

males (p=0.002). Furthermore, there was significantly (~170%) higher NP accumulation in the 

female ipsilateral hemisphere compared to that of males (p<0.0001).  

3d post-injury: At 3d post-injury, NP accumulation displayed a significant difference between the 

hemispheres (p<0.0001) and the sex (p=0.0007) Figure 4.9(c). There was a significant difference 

between the ipsilateral and contralateral hemisphere for the female cohort (p=0.003) and for 

males (p=0.001). Furthermore, there was significantly (~95%) higher NP accumulation in the 

female ipsilateral hemisphere compared to that of males (p=0.0001).  

7d post-injury: NP accumulation at 7d post-injury did not show any significance for the 

hemispheres (p=0.175) nor for sex (p=0.35) Figure 4.9(d). 
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Figure 4.9: Quantification of NP accumulation between female and male post-injury: 

Accumulation of 40 nm NP at 3h (a), 24h (b), 3d (c) and 7d (d) post-injury. *p<0.05 compared to 

their respective contralateral hemisphere, two-way ANOVA, Bonferroni’s multiple comparisons. 

^p<0.05 compared to the male ipsilateral hemisphere, two-way ANOVA, Bonferroni’s multiple 

comparison. Error bars represent standard error of mean. n=3, for 3h cohort and n=4, for all other 

time points. 

4.3.6 Two-photon microscopy imaging 

We used two-photon microscopy to confirm our findings of NP accumulation outside of 

the vasculature and in the brain parenchyma. In Figure 4.10, the images show NP (in red) and 

the microglia (green) residing in the brain parenchyma. In the naïve animals, we observed intact 

large and small blood vessels (no NP extravasation) and in close proximity to healthy ramified 

microglia. In both female and male mice, at 3h, 24h, and 3d there was diffused signal around the 

blood vessels demonstrating NP extravasation in the brain parenchyma. At 24h and 3d post-

injury we observed activated microglial with amoeboid morphology. 
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Figure 4.10: Two-photon microscopy in vivo imaging of CCI induced transgenic animals. A 

water-immersion objective lens was used and the anesthetized animal was secured on 

stereotaxic stage for two-photon imaging. Animals were injected with 40 nm NPs 3h before 

imaging. NPs are in red and CX3CR1 microglia in green. Representative images of NP 

extravasation in (a) females and (b) males at 3h, 24h and 3d post-CCI. Representative images of 

the male sham group are displayed in (c). Scale bar=100um. 
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There are ongoing analyses to further validate our two-photon microscopy data. The 

amount of NP extravasation into the brain parenchyma will be quantified by analyzing the 

intensity of diffused signal around the vasculature. The quantification will be completed for each 

sex and at different time points post-injury. We will use the sham group as a control to compare 

the extent of NP extravasation. Overall, these studies provide support regarding the NP 

accumulation and extravasation into the parenchyma space and help improve our understanding 

of the NP delivery via BBB breakdown. 

4.4   Discussion & Conclusions 

The blood-brain barrier (BBB) is a unique property of the brain that regulates molecular 

transport from the bloodstream to the brain, which restricts certain molecules in the bloodstream 

from penetrating the brain parenchyma. Previous reports have suggested that sex of the animal 

may play an important role in BBB disruption in neurological diseases[40,44]. Although the BBB 

disruption after TBI is detrimental, such opening may provide an opportunity for delivery of drugs 

and therapeutics via NPs. To fully utilize the window of opportunity of BBB opening after TBI, a 

complete assessment the temporal resolution and the sex dependence for NP accumulation via 

the BBB was warranted. In this study, we directly address the critical gap using focal TBI mouse 

model and PEGylated polystyrene NPs. The key insights include: (1) significant NP accumulation 

occurred at 3h, 24h and 3d post-injury after focal brain injury regardless of the sex, (2) contrary to 

our hypothesis, NP accumulation was significantly higher in female mice at 24h and 3d post-injury 

compared to age-matched male counterparts. 

 Horseradish peroxidase (HRP) is a large molecule tracer for BBB dysfunction. After focal 

brain injury, we observed significant HRP extravasation at 3h, 24h and 3d post-injury, indicating a 

breach in BBB at these time points. Specifically, males had significantly increased HRP at 3h and 

3d compared to 24h. This observation is supported by previous seminal studies showing a 

biphasic BBB disruption after CCI, with the first peak at the acute time point (~4h) and the second 

peak at 3d[149,227]. Majority of the animal studies in TBI and BBB distribution have used male 

animals[149,151,167,190,221,222]. To the best of our knowledge, this is first report showing that 
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the temporal progression and the degree of BBB disruption after TBI is sex-dependent. 

Specifically, we found that female mice did not show a biphasic trend similar to that reported and 

observed in males. We establish that the females had a consistent and significant HRP 

extravasation at 3h, 24h and 3d compared to the respective contralateral hemisphere and did not 

show decrease in BBB opening at 24h (as seen in males). Moreover, the degree of BBB opening, 

in terms of the extent of HRP extravasation exhibited significantly higher (~50%) HRP stain at 

24h post-injury in females compared to males. 

 NP accumulation displayed a peak accumulation at 3h post-injury in both sexes. The 

acute (3h) BBB disruption can largely be associated with the mechanical disruption of the vessels 

due to the primary impact. CCI consistently produces major cortical damage including tearing of 

the dura, parenchyma and severe vascular disruption directly at the site of impact[27,150]. No 

difference in HRP or NP accumulation at 3h post-injury was observed, leading to the notion that 

this acute BBB breakdown is largely associated with the mechanical disruption. Later time points 

at 24h and 3d post-injury, there was not only significant NP accumulation in both females and 

males but contrary to our hypothesis, we observed sex dependence in the extent of NP 

accumulation. Specifically, at 24h and 3d, the females displayed a robust NP accumulation 

(~40% more) significantly higher than male counterpart. Our current findings are largely 

consistent with our previous report[2], where we found peak accumulation at 1h and reduced over 

time post-CCI. It should be noted that the NP accumulation is critically dependent on the 

circulation time. A variance in NP accumulation is at 24h post-injury was observed between our 

current study (significant NP accumulation at 24h in males) and the previous one (no significance 

at 24h). The longer circulation time in this study (3h vs 1h) may have contributed to the 

significance observed at 24h. The longer circulation time in this study was selected to 

accommodate the two-photon microscopy study. Taken together, we demonstrated the feasibility 

of NP delivery to the injured brain region at 3h, 24h and 3d post TBI.  

The NP accumulation at 3d correlated with the BBB disruption and the extent of HRP 

stain. This BBB disruption at the delayed time point is mainly associated with the secondary injury 

that follows the primary injury, although the mechanism(s) have not been clearly 
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elucidated[15,21]. Evidence suggests increased paracellular permeability due to disruption of 

tight junction complexes and integrity of the basement membrane as a dominant 

mechanism[15,21],[15,31]. Tight junction protein complexes situated between endothelial cells 

control BBB permeability by limiting paracellular diffusion; key tight junction proteins include 

junctional adhesion molecules, occludin and claudins[32]. Oxidative stress due to ROS and free 

radical production after brain trauma alter the critical organization of tight junctions proteins at the 

BBB resulting in increased paracellular leakage[15,33]. Additionally, the disruption of vasculature 

and brain tissue caused by the primary impact, triggers the coagulation cascade and causes 

oxidative stress with increased production of proinflammatory mediators[15,228]. These 

pathophysiological processes lead to activation of the glial cells and alter their interaction with the 

cerebrovascular endothelial cells and may contribute to BBB dysfunction[15,21],[34,35]. 

The key finding of our study is the sex dependence in the time course and the extent of 

NP accumulation at 24h and 3d post-CCI that was contrary to our proposed hypothesis. We 

observed that the females showed NP accumulation with comparable peaks at both 24h and 3d. 

In contrast, the males displayed modest NP accumulation at 24h with a subsequent increased 

peak at 3d post-CCI. Moreover, the extent of NP accumulation at 24h and 3d was significantly 

higher in females compared to males. Our observation is contrary to our hypothesis of expecting 

a higher level of BBB dysfunction and thus NP accumulation in males compared to females. 

However, robust BBB permeability in females compared to males reflects the findings of previous 

BBB breakdown studies in the epileptic mouse model[40,44]. We have ongoing studies to 

investigate the neuroinflammatory response for microglia/macrophage and astrocyte response 

after injury. These studies will provide more insights into the role of sex differences in 

neuroinflammation and if there is any pertinent role of neuroinflammation directly influencing BBB 

breakdown at different time points post-injury. 

Many studies have reported sex differences in brain structure and metabolism. For 

instance, females have higher cerebral blood flow compared to males[36] and sex differences in 

brain metabolism have been reported where females have higher whole brain glucose metabolic 

rates compared to males[229]. Literature suggests sexual dimorphisms of the 
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brain[212,214,230],[37,38,215,231] or sex hormones[48,232,233] or in combination could play a 

role in regulations of such sex differences. One hypothesis for robust NP accumulation in females 

as compared to males is due to the potential neuroanatomical sex differences and variable 

physiological response after injury. Many of animal and human studies have demonstrated 

normal sexual dimorphisms of the brain such as cerebrum is larger in male than females and 

females show higher cell packing density in some regions of the brain[37,38,215,231]. Studies in 

corpus callosum have shown that female mean axonal diameters are smaller and thinner than 

that of males in rats[234,235] and humans[236]. A recent in vitro study by Dolle and group[230] 

showed that female axonal injury was accompanied by higher calcium influx and thus more 

susceptible to injury compared to male axons. These studies demonstrated that the female and 

males may have a different physiological response to injury due to variations in the 

neuroanatomy. Therefore, it is plausible that females might show an overall greater structural and 

physiological damage after trauma leading to a robust BBB breakdown compared to the males.  

 Another or combinatory hypothesis is that sex hormones such as estrogen may influence 

the regulation of BBB. The delivery of exogenous estrogen is known to be neuroprotective and to 

reduce BBB breakdown[237-240], yet these positive outcomes significantly depend on the 

plasma estradiol level[241] after brain injury. Harukuni and group[241] show the deleterious 

outcome of estrogen at normal physiologic range presenting a shift from the neuroprotective role 

(via exogenous estrogen) to possible pro-excitatory effect after brain injury. Additionally, estrogen 

is known to enhance nitric oxide (NO) production by endothelial NO synthase (eNOS) [232]. 

Previous studies have established that NO can modulate the BBB permeability[242,243] and the 

effect of NO on BBB permeability is sex dependent[244,245]. Therefore, the normal estrogen 

level in female mice (random estrous cycle) could lead to pro-excitatory effect and enhanced NO 

leading to higher BBB permeability compared to the male cohort. Taken together, female mice 

may have a variable neuroanatomical structure with greater physiological damage and/or the 

estrous cycle could lead to pro-excitatory effect and modulation of neurotransmitters such as NO 

contributing to increased BBB permeability post-injury with robust NP accumulation compared to 

males. 
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In conclusion, in this work, we have demonstrated that female mice exhibit a robust NP 

accumulation at the sub-acute time point after moderate-severe TBI compared to male mice, 

primarily due to sex differences in BBB permeability. However, at 7d post-injury, both females 

and males did not display any BBB breach. Future studies to elucidate the underlying hormonal 

and sex-related differences for variable BBB permeability are warranted. The BBB permeability 

after TBI is a complex phenomenon and the delineation of the time course of permeability 

become extremely important. As such, the BBB permeability at acute and sub-acute time points 

in females and males will provide the opportunity to more accurately tailor time-dependent 

therapeutics via NPs. 
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CHAPTER 5 

CONCLUSIONS & FUTURE DIRECTIONS 

5.1 Summary of Findings 

 

Figure 5.1 A graphical illustration of nanoparticle accumulation/extravasation after brain 

trauma. Different sizes of nanoparticles can be delivered to the brain tissue after injury in case of 

blood-brain-barrier breach after injury. 

 

5.1.1 Aim 1: Temporal assessment of nanoparticle accumulation after experimental focal brain 

injury: Effect of particle size - controlled cortical impact (CCI). 

We determined that nanoparticles (NPs) passively accumulate within the injury penumbra 

following focal brain injury due to the leaky vasculature. Polystyrene PEGyated NPs of different 

sizes (20 nm, 40 nm, 100 nm, and 500 nm) accumulate near the injury region after CCI injury in 

mice. Furthermore, maximal accumulation for all NPs was observed at 1 h post-injury. We 

identified an inverse relationship between the NP size and their accumulation at different time 

points post-injury. The smaller NPs, 20 nm and 40 nm, had prolonged accumulation (until 13 h) 

post-injury compared to larger NPs, 100 nm and 500 nm, had significant accumulation until 6 h 

post-injury. NP accumulation was not only influenced by the NP size and time after injury but also 
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varied spatially within the brain tissue cortex. The anterior and middle regions of the injured tissue 

had a maximal accumulation of NPs compared to the posterior region 1h after brain injury.  

5.1.2 Aim 2: Blood-brain barrier disruption dictates nanoparticle accumulation following 

experimental diffuse brain injury – fluid percussion and mild closed head injury. 

We determined that passive accumulation of NPs at the cortex (proximal to injury hub) 

due to BBB breach only in the fluid percussion injury (FPI). We report that mild closed head injury 

(mCHI) and repetitive mCHI did not show any NP accumulation 1h post-final impact. 

Furthermore, in FPI study we observed 20nm, 40nm, 100nm and 500nm NPs accumulate in the 

primary somatosensory and primary and secondary motor cortex sustaining a diffuse TBI. 

Moreover, maximal NP accumulation occurred at 3h post-FPI for all NP sizes. We determined 

that there was a significant correlation between blood-brain barrier permeability marker (HRP) 

staining and NP accumulation in the cortex after midline-FPI.  

5.1.3 Aim 3: Investigate NPs delivery: sub-acute time point and sex dependence after focal brain 

injury. 

To fully utilize the window of opportunity of BBB opening after TBI, thorough assessment 

of the temporal resolution and the sex dependence for NP accumulation via the BBB is 

necessary. In this study, we directly address this critical gap using focal TBI mouse model and 

PEGylated polystyrene NPs. The key insights include: (1) Significant NP accumulation occurred 

at 3h, 24h and 3d post-injury after focal brain injury in both female and male cohorts. (2) NP 

accumulation was significantly higher in female mice at 24h and 3d post-injury compared to age-

matched male counterparts. 

5.2 Discussion and Future Studies 

Effective diagnostic and therapeutic options available for brain injuries are limited by the 

complex brain injury. Brain trauma may lead to BBB opening and provide opportunities for 

therapeutic delivery via NPs. The approaches for therapeutic interventions via NP delivery are 

aimed at salvaging the pericontusional/penumbra region for possible neuroprotection and 
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neurovascular unit preservation. However, a systemic evaluation of the BBB therapeutic window 

for the NP strategies in multiple TBI animal models and considering both the sexes had not been 

previously performed. Indeed, we found striking differences in the dynamics of the NP 

accumulation across different TBI models and sexes. In focal injury model, we clearly 

demonstrated that higher levels of NP accumulation occurred immediately after injury and smaller 

NPs showed prolonged accumulation as compared to larger NPs. The second model we 

investigated was mild closed head injury model (mCHI) and we did not observe any HRP or NP 

accumulation at 1h after single impact mCHI or after 5 consecutive impacts in the repetitive mCHI 

model. In contrast, the midline-FPI cohort displayed a peak accumulation of the NPs at 3h post-

injury compared to 1h and 6h group. Furthermore, we report significantly increased NP 

accumulation at 3h, 24h and 3d in both females and males after focal brain injury. Interestingly, 

we observed significantly higher NP accumulation in females compared to males at 24h and 3d 

post-CCI. In sum, we have demonstrated that the dynamics of NP delivery depends on the injury 

phenotype and sex predominantly attributed to BBB breach. 

In this study, we have demonstrated the key factors that contribute to successful NP 

delivery after brain injury. These factors are (1) NP design/size (ranging from 20 -500nm). (2) NP 

delivery time with respect to BBB breakdown, (3) mechanism of injury: focal/diffuse and injury 

phenotype, and (4) sex (female vs male). Due to the breadth of these study, we have yet to probe 

additional parameters that contribute to the NP delivery. These include NP design characteristics, 

such as PEG density, NP biodistribution, mechanism of NP accumulation in the injured region, 

and mechanism of sexual dimorphism/sex hormones in NP delivery after TBI. Therefore, future 

studies will need to explore these parameters/mechanisms for better understanding and 

utilization of NP delivery following TBI. 

 To study the dynamics of NP delivery, we used a PEG-modified surface with a spherical 

shape and slightly anionic NP with varying sizes. For systemic NP delivery system to achieve the 

desired benefits, the residence time in the bloodstream must be long enough for the NP to reach 

or recognize its site of action[72,74,92,110,159]. Key parameters identified to help evade 
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clearance mechanisms include surface modification, charge, shape, and size[88]. Since the first 

two studies aimed at evaluating the size and time-dependent NP accumulation after brain injury, 

we minimized the influence of NP parameters outside of size by PEGylating the NPs. PEGylated 

NPs of different sizes (20nm, 40nm, 100nm and 500nm) showed significantly reduced zeta 

potential and had slightly negative charge within the range of -9 to -28mV. PEGylation of the NP 

is known to improve blood circulation time by reducing blood clearance[92,110,117,246]. Optimal 

PEG coating in terms of thickness and density reduces protein adsorption and phagocytic uptake 

for long circulating NPs in the blood[246,247]. Moreover, previous report[248] demonstrate that 

NPs with a dense PEG density can penetrate brain extracellular space compared to uncoated 

NPs. Therefore, the precise PEG coating densities are required to be confirmed by future studies. 

 Therapeutic NP delivery to the brain under normal physiological conditions is largely 

hindered by the BBB permeability. However, a short transient window of BBB dysfunction or 

damage as a result of TBI pathology may provide a window of opportunity for delivery. Previous 

preclinical studies using molecular tracers such as Evans blue and horseradish peroxidase 

(estimated hydrodynamic diameter of <10nm) showed that the BBB was compromised acutely 

and sub-acutely post-injury that eventually resolves. Yet, the dynamic size range for NP 

extravasation greater than 10nm was not previously investigated. Therefore, we hypothesized 

that NPs (10-1000nm) will passively accumulate at the injury location after brain injury due to 

BBB disruption at acute and sub-acute time points post-TBI. Moreover, human TBI is a 

heterogeneous event and a single injury model may not fully recapitulate all the facets of the 

secondary injury that are observed in human TBI[51]. Besides, previous studies[49,249] indicate 

the role of sex difference might affect BBB breakdown after TBI and yet there have been no 

studies exploring this aspect. To address these limitations, we investigated the NP delivery in 

three different animal models of TBI and different sexes. We found that the dynamics of NP 

delivery was different depending on the animal model being investigated, yet, NP accumulation 

largely correlated with BBB disruption as evidenced by concomitant correlation with small 

molecule extravasation. Furthermore, females and males at 24h and 3d time points post-focal 
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injury showed stark differences in the amount of NP accumulation and directly correlated with the 

extent of BBB disruption in each sex. 

In focal brain injury, we report up to 500nm size NP significantly accumulate in the injured 

region. Also, we found that smaller size NPs, 20nm and 40nm showed prolonged accumulation 

until 13h post-injury compared to larger size NPs. For the diffuse TBI (FPI) study we observed 

accumulation of NPs up to 500nm and did not observe any differences based on the NP size with 

respect to time post-injury. In the current study, we used different size of NPs (20nm, 40nm, 

100nm, and 500nm) each loaded with a unique fluorescent dye such that we could inject them 

together and yet image them separately. As such, this approach resulted in an inability to directly 

compare the amount of NP dye/number of NP accumulation after injury. Therefore, future studies 

can be designed to address this limitation that will help inform NP size/design strategies for an 

improved delivery system. Moreover, we found NPs up to 500nm in size can be delivered to the 

brain due to BBB disruption after both focal and diffuse (FPI) injury. Although up to 500nm NPs 

can be intravenously delivered to the BBB breached regions, it must be noted that the 

extracellular space (ECS) of the brain parenchyma does impose a restriction for free 

penetration/diffusion through the ECS[248]. A Previous study established that the ECS is 

restricted by NP size and surface coating[248]. They report that densely PEG coated NP of about 

100nm in size can rapidly penetrate the brain tissue compared to uncoated and/or larger size 

NPs[248]. Overall, these factors are critical in designing the NPs for a value-added delivery 

system. 

Focal and diffuse brain injuries lead to a different injury phenotype due to different 

mechanism of injury. The acute BBB breakdown is known to be primarily caused by the 

mechanism of the injury and the mechanical threshold for BBB disruption may overlap with the 

thresholds for tissue injuries[250,251]. In focal brain injury such as CCI that produces a focal 

cortical mechanical injury resulting in cortical tissue damage leading to contusion[56,252]. 

Consequently, the location of the acute BBB breakdown region observed in our study 

corresponds to those gross region of cortical tissue pathologies[27,56,149,252]. The mechanical 
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force at the time of impact exceeds the mechanical threshold for tissue and BBB integrity leading 

to the damage/disruption. The BBB breakdown at the sub-acute time points after CCI occurs due 

to the downstream pathophysiological alterations to the BBB and overlaps with the gross cortical 

tissue pathology. In diffuse TBI such as midline FPI is known to produce rapid secondary 

axotomy within the cortex and thalamus without cell death[61,253,254]. In our study we observed 

BBB breakdown only in the cortical tissue specifically the primary somatosensory and motor 

cortex, suggesting that the physical forces required to damage axons in the cortical tissue may 

also lead to BBB disruption. In contrast, the mild CHI is known to produce mild astrocyte reactivity 

in the cortex and hippocampus[64]. However, we did not observe any BBB breach in the 

cortex/hippocampus or any other brain regions implying that the mechanical threshold for 

astrocyte damage may be lower than that of the BBB damage. Taken together, a better 

understanding of the BBB disruption may serve as an assessment tool presenting the regions 

that endured the highest deformations after brain injury. Such improved understanding can help 

direct non-invasive diagnosis via neuroimaging techniques and potential pharmacological 

interventions. 

The BBB breach directly contributes to NP accumulation within the injury penumbra. 

Such leaky vasculature phenomenon has been defined as the enhanced permeability and 

retention (EPR) effect which contributes to increased passive NP accumulation[114,126,171-

173],[171,173,174]. However, the exact mechanism for EPR effect at the injury location is not 

clearly known. EPR effect can occur due to mechanical damage to the cerebral vessels and/or 

paracellular transport through BBB breach leading to passive NP accumulation. The acute (~3h) 

BBB breakdown after focal injury could primarily be caused by the mechanism of the injury 

leading to physical damage to the BBB unit leading to vascular disruption[149]. The BBB breach 

at sub-acute (24h and 3d) time point after focal injury and at 3h post diffuse injury (FPI) is mainly 

associated with the known mediators of BBB disruption leading to paracellular transport[149]. The 

mechanism of passage of substances between endothelial cells is called paracellular transport 

and tight junctions play a critical role in maintaining the balance of the transport to support a 
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healthy BBB[110]. TBI pathology may lead to BBB dysfunction due to factors such as glutamate, 

reactive oxygen species, matrix metalloproteinases (MMPs), pro-inflammatory cytokines such as 

TNF alpha and IL-1beta and vascular endothelial growth factor A (VEGFA)[21]. These factors 

lead to disruption and/or down regulation of tight junctions and basal lamina proteins thus causing 

BBB breach[21]. Overall, the pathology contributes to persistent gaps between endothelial cells 

facilitating paracellular diffusion of the NPs through the BBB[168,255,256]. As such, 

understanding the mechanism for passive NP delivery via BBB will help improve the strategies for 

optimizing the delivery time and achieving effective theranostics. 

In focal injury, the NP accumulation at acute time points could be associated largely with 

the physical damage to the BBB leading to leaky vasculature. We found significant NP 

accumulation at 1h post-focal injury near the injured cortical region. Moreover, at sub-acute time 

points, we found that the extent of BBB disruption was dependent on the sex. Specifically, we 

found female mice exhibited significantly larger extent of BBB disruption displayed by the tracer 

molecule extravasation compared to males at 24h post-injury. The amount of NP accumulation 

correlated well with the extent of BBB breakdown demonstrating the NP accumulation directly 

correlates with the BBB disruption. Although the exact mechanism for the sex difference in the 

extent of BBB disruption is not clearly know, we postulate that it could be due to the role of sexual 

dimorphism of the brain and/or sex hormones.  

Sex is considered to be an important factor for TBI yet there is no definite conclusion 

about the exact role of sex/sex hormones in outcome after TBI. In clinical settings, studies show 

gender associated morbidity in terms of the mortality and complication rates after TBI[257-

260],[219,261,262]. Specifically, concussion studies showed sex differences not only in the injury 

outcome but also in the structural brain alterations[263-265]. In sports-related concussion, 

females demonstrated a higher risk, performed worse on neurocognitive tests, presented greater 

post-concussive symptoms severity and longer periods of recovery compared to males[263-265]. 

Moreover, a recent repetitive concussion study demonstrated sex differences in structural brain 

alterations including the internal capsule and corona radiate of the right hemisphere[220]. 
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Furthermore, in pre-clinical settings, several studies indicate that the brain’s response to injury is 

sex dependent[48,49,212,237,266-271] however there is no conclusive elucidation of whether the 

observed differences stem from distinct developmental mechanisms and/or are singularly 

hormone-dependent[219]. For example, studies have investigated the role of 

microglia[49,212,266] and signaling events such as cell death and/or inflammation exhibiting 

sexual dimorphism in injured brain[219,267-270]. Additionally, studies have demonstrated 

positive outcome after brain injury due to endogenous estrogen and/or following estrogen 

treatment[48,237,271], as such, a few studies show contradicting evidence[241,272]. Overall, the 

role of sexual dimorphism of the brain and/or sex hormones in neuroinflammation/outcome needs 

to be clearly investigated to critically understand the role of sex in BBB permeability to design 

sex-dependent NP theranostics. 

Sex differences in NP delivery: The role of sex is not only important in the outcome of TBI 

but is also an important aspect in pharmacokinetic and pharmacodynamics research[273,274]. 

The physiological changes during menstrual cycle with fluctuation in hormonal level such as 

estrogen and progesterone as well as plasma protein levels have been reported[273]. 

Specifically, variations in the plasma constituents may affect NP/plasma protein interactions 

resulting in altered pharmacodynamics in females compared to males[273,275]. Sex dependence 

on NP delivery has only recently been considered with few peer-reviewed publications. Notably, 

with either inhalation or oral delivery of gold NPs, biodistribution analysis demonstrated a two-fold 

higher NP accumulation in the kidneys of female rats compared to males [276,277]. Yet, no such 

study has been completed for intravenous delivery of NPs and is warranted. In sum, these 

studies indicate that sex may play an important role in the biodistribution of the NPs after delivery 

thereby further influencing NP delivery following TBI.    

Limitations of NP toxicity: Although the use of NPs therapeutics for brain injury represents 

a major innovative pharmacological strategy, limitations do exist for NPs [86,92] such as the 

particle-particle aggregation due to their small size and large surface area that make the physical 

handling of NPs difficult in liquid and dry forms[72]. Moreover, little is known about the behavior of 
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NPs and their interactions with the human brain. Clinical and animal studies investigating the 

toxic effects of NPs on CNS are limited. Recent in vivo toxicity studies of NPs in animal models 

have indicated toxicity for some NPs (such as quantum dots and carbon nanotubes), but reported 

limited negative effects for others (such as silica coated magnetic NPs, liposomes, and iron 

oxides)[86,92]. Neurotoxicity of NPs can occur not only due to the NP core structure but also 

because their surface functionalization (peptides/antibodies for active delivery) that can alter the 

biological response[86,92]. Surface functionalization using surfactants/peptides may assist in NP 

delivery via BBB permeability, yet in doing so may increase the risk to induce non-specific 

permeability of toxic substances[86,92]. Also, neurotoxicity may arise from NPs functionalized 

with cationized proteins[86,92]. Nevertheless, some NPs have passed rigorous toxicity testing for 

regulatory approvals and have been successfully used in the clinic[86,92]. Further investigation of 

the influence of the composition, size, and surface properties of NP for safe NP applications will 

aid in translation from preclinical to clinical applications.  

The therapeutic intervention strategies to improve outcomes of TBI have not been 

successful in the clinic[69,71]. One of the main limitations of clinical failure is efficacy due to drug 

clearance, inactivation and degradation[52,69,70]. A plethora of literature shows that 

nanoparticles can be used to improve efficacy[174,183,184]. Previous studies have successfully 

used NPs (20 - 60 nm) as indicators of BBB damage in experimental stroke models[185,186]. 

Studies in ischemic and TBI models showed significantly improved delivery of therapeutics when 

encapsulated in NPs (~300 nm) compared to bolus injection[194,278]. Moreover, NPs can be 

developed utilizing the material properties to create systems such as active polymer 

emulsions[128] and antioxidants[202]. The studies demonstrated that using therapeutic NPs (~50 

– 100 nm)[128,202] in CCI model led to improved outcome in rodent models. Furthermore, small 

NPs such as cerium oxide (~10nm) have shown to improve cognitive functions after FPI by 

reducing oxidative damage[203]. These reports provide support to our study that NPs can be 

used for diagnostic/therapeutics delivery after brain injury.  As such, our current study lays the 
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groundwork for understanding the temporal window for NP delivery via BBB in different injury 

models and sexes.  

Nevertheless, as briefly discussed earlier, several areas for future work should be 

considered, including elucidating the mechanism of NP accumulation and the role of sexual 

dimorphism/sex hormones in BBB disruption. A few of these approaches are discussed below. 

5.1.1 Detailed nanoparticle characterization 

The circulation time for our study was kept consistent for either 1h or 3h depending on 

the study design. However, based on the short circulation time and previous reports[248,279] of 

successful PEGylated polystyrene NPs usage, we did not conduct PEG density characterization 

and stability testing. Future studies need to characterize the PEG density using technique such 

as H1 nuclear magnetic resonance (NMR)[280]. The NP stability can be probed in the presence of 

proteins by dynamic light scattering studies[280]. Therefore, these studies will inform about the 

NP stability and PEG coating density that is important for stealthiness and effective diffusion in 

the extracellular matrix in the brain parenchyma. Overall, these factors are important design 

considerations for effective NP delivery strategies for brain injury. 

5.1.2 Mechanisms of NP accumulation 

 TBI may lead to dysfunction of the BBB and permeable blood vasculature within the 

injury region[167,169,170,190] and leads EPR effect and hence the NP accumulation. However, 

we have not directly surveyed the mechanism of NP accumulation. EPR effect can occur due to 

mechanical damage to the cerebral vessels and/or paracellular transport through BBB breach 

leading to passive NP accumulation. Therefore, future studies will need to explore the mechanism 

of NP accumulation and probe the expression of putative factors of BBB breakdown such as 

proinflammatory cytokines, MMP9, VEGFA[21,281]. Techniques such as immunohistochemical 

(IHC), fluorescent in situ hybridization (FISH), western blot analysis and gelatin zymography can 

be used. Particularly, (a) IHC staining for blood vessels/endothelial cells, tight junction protein 

such as occludin, glutamate and VEGFA (b) FISH analysis for mRNA expression of 
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proinflammatory cytokines. (c) Western blot analysis for expression of tight junction protein such 

as occludin, claudin-5 and ZO-1 (d) Gelatin zymography for upregulation of preform MMP9 

activity. (e) Changes in vascular permeability by MMP inhibition. Moreover, PEG coated gold NPs 

can be used to study the paracellular NP transport though BBB and brain tissue sections 

analyzed using transmission electron microscopy. From these studies, we intend to learn the 

expressions levels (increase or decrease) of BBB breakdown factors and can be correlated with 

the extent of BBB breakdown. Moreover, these studies will provide direct evidence of NP 

transport via BBB. Consequently, these studies will help us identify the key contributors for BBB 

breakdown and thus transport mechanism of NP delivery. 

5.1.3 Nanoparticle uptake and cellular co-localization 

In this study we assessed the delivery of NPs to the brain at different time points after 

brain injury. In order to evaluate the temporal window for NP delivery we maintained a short 

circulation time of 1h or 3h, depending on the experimental design. Even with 3h circulation time 

we observed limited NP uptake by macrophages/microglia as examined by two-photon 

microscopy studies. Our study has not evaluated a longer (> 3h) circulation time and more 

information regarding the amount of macrophage /microglia uptake and/ or cell penetration in 

brain parenchyma can be obtained by increasing the blood circulation time. Future in vivo studies 

with longer NP circulation time and histological analysis of NP co-localization with macrophage, 

microglial and astrocytes will be beneficial. These analyses will provide the necessary information 

for understanding the cellular NP uptake and co-localization and eventually aid in developing 

improved NP strategies for brain injuries.  

5.1.4 Elucidating the role of sexual dimorphism/sex hormones on NP accumulation via BBB 

disruption after TBI 

The sub-acute BBB breakdown is largely known to be associated with the secondary 

injury after TBI. The factors that influence the BBB breakdown such as the role of sex has not 

been investigated and here we demonstrated that the females had a robust sustained BBB 

breakdown compared to their male counterparts. However, the nature of these differences 
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between sexes is not clearly understood. Studies have shown sexual dimorphism in the 

neuroanatomy that could result in variable structural damage and physiology[215,230] after injury. 

Moreover, sex hormones are known have an important role in the central nervous system 

functions and disorders, leading to modulation of neurotransmitters such as nitric oxide 

contributing to increased BBB permeability[232,249]. Therefore, future studies need to investigate 

the role of sex on BBB breakdown/NP accumulation after TBI using intact females (non-

ovariectomized, proestrous), intact females (non-ovariectomized, nonproestrous), ovariectomized 

females, orchidectomized males and intact males. Comparison of intact females: proestrous 

(higher estrogen level and lower progestrone) and intact female: non-proestrous (lower estrogen 

and higher progesterone) level will inform about the effect of different female sex hormones 

(estrogen vs progestrone). Comparison of orchidectomized males and intact males will inform 

about the effect of testosterone/male sex hormone. Moreover, comparison of ovariectomized 

females with orchidectomized males will inform about the sexual dimorphism and variability in the 

physiological response after brain injury. Therefore, from these studies we expect to learn about 

the effect of sex hormone and/or sexual dimorphism for NP delivery via BBB breach after brain 

injury. 

Furthermore, to understand the implications of neuroinflammatory response, there is 

ongoing IHC analysis for microglia and astrocytes. This study is carried out to determine the 

levels of glial cell expressions across different time points and sexes. As such, this study will 

better inform us about the sex differences in our experiments in terms of neuroinflammation post-

TBI. We can then analyze if the neuroinflammatory response could have any direct/indirect 

relationship with the BBB breakdown/NP accumulation.   

5.1.5 Active NP delivery strategies 

The studies presented in this thesis focused on investigating the feasibility of NP delivery 

after experimental brain injury. The passive delivery of NPs via the leaky vasculature/paracellular 

transport results in accumulation of large amount of NPs at the enhanced permeability region; 

however, these pathway also might induce non-specific targeting[129]. Therefore, building on the 
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current work future studies can expand the focus to active targeting for NP delivery. Active 

delivery of NPs occurs via receptor-mediated transcytosis (such as transferrin and lipoprotein 

receptor) that relies on ligand-receptor affinity. Nanobodies such as ligands, antibodies, peptides, 

and surfactants have been utilized in delivery of NPs across BBB to induce specific site targeting 

and reduce systemic side effects[1,131]. 

5.1.6 Biodistribution and neurotoxicity 

Although the use of NPs therapeutics for brain injury represents a major innovative 

pharmacological strategy, valid concerns about NP biodistribution and toxicity remain.[86,92] 

Therefore, future studies need to analysis and track the amount of NP/drug concentrations in all 

major tissues after administration over a period of time until the elimination. Furthermore, little is 

known about the behavior of NPs and their interactions with the human brain with limited clinical 

and animal studies investigating the toxic effects of NPs on CNS. Neurotoxicity of NPs can occur 

due to the NP core and the surface functionalization. Nevertheless, some NPs have passed 

rigorous toxicity testing for regulatory approvals and have been successfully used in the 

clinic.[86,92] Therefore, critical investigation of the influence of the composition, size, and surface 

properties of NP for safe NP applications will aid in translation from pre-clinical to clinical 

applications.  

Considering the discussed limitations, this study significantly impacted the TBI-NP field 

by contributing to the knowledge of delivery window via BBB breach. For successful clinical 

translation, therapeutic strategies need to be evaluated in multiple TBI animal models and both 

sexes while considering opportunities for different optimal therapeutic windows for each injury 

phenotype. As such, we found striking differences in the dynamics of the NP accumulation across 

different TBI models and sexes. Thus, the results from this project will enhance the TBI-NP field 

by stimulating researchers to explore strategies to advance NP delivery for improved TBI 

outcome. 
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A. SUPPLEMENTARY FROM CHAPTER 2 

  

Figure A.1 In vivo experimental study design: Cocktail of different size nanoparticles (NP: 20 

nm, 40 nm, 100 nm and 500 nm) was injected intravenously at various time points post CCI and 

animals were sacrificed one-hour post injection. HRP was injected intravenously, 10 min before 

sacrifice.  
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Figure A.2 Calibration curves for each NPs. (a) – (d) Linear fit calibration curves for 20 nm, 40 

nm, 100 nm and 500 nm NP (a.u. arbitrary units). Data (n =5) and fits presented on a log-log 

scale for clarity, with R2 ranging from 0.969 – 0.999.  

 

Known concentrations of NPs with five dilutions: 1333 μg/ml, 133.3 μg/ml, 13.33 μg/ml, 

1.333 μg/ml, and 0.1333 μg/ml were used, in triplicates. 1ul of solution was carefully pipetted into 

hemocytometer and measured using 20X magnification of confocal microscope. The confocal 

microscopy parameters were kept consistent with that used for the brain tissue sections. Two 

regions for each four of the channels were measured in three different samples. The amount of 

solution in these regions was determined by dividing the total volume of solution added and total 

number of squares on hemocytometer. The amount of solution (μg) was then converted to the 

number of NPs using the information provided by the manufactures for each NP size. A 

calibration curve with the intensity on y-axis and number of NP on x-axis was plotted (Figure S1). 

Each NP showed linear trend, with R2 ranging between 0.96-0.99. The reciprocal of slopes 
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obtained from each curve was multiplied with the intensity obtained for the brain tissue 

measurement, to calculate the number of each NP.  
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B. SUPPLEMENTARY FROM CHAPTER 3 

B.1 Nanoparticle (NP) PEG conjugation 

 As presented in our previous study[2], carboxylated NPs were PEGylated using 

EDC/NHS chemistry. Briefly, mPEGamine 750 Da was mixed with 20 nm NPs (NH2:COOH at 2:1 

mole excess) whereas mPEGamine 2 kDa was mixed with 40  nm, 100  nm and 500  nm NPs; 

(NH2:COOH at 5:1 mole excess). EDC/NHS (in MES buffer) was added to NP / PEG mixture (8 

mM/4 mM for 20 nm and 200 mM/100 mM for other NPs) and HEPES buffer was added to obtain 

a final pH of 7.8 before incubating for 3 h at room temperature. Glycine (100 mM) was added to 

quench the reaction. Unbound PEG was removed via dialysis (20 kDa MW). PEGylated NPs 

were suspended in a 20 mM HEPES (pH 7.4). The concentration of each NP solution was 

determined with fluorescent standard curves generated from known concentrations of as-received 

Fluorospheres (FLUOstar Omega fluorescence plate reader; BMG Labtech, Ortenberg, 

Germany). Yields of NPs ranged between 40-60 %. A concentration of 13.3 mg/ml for each NP 

was used for all in vivo studies. 

B.2 Nanoparticle characterization 

The hydrodynamic diameter and zeta potential of NPs in 20 mM HEPES (pH 7.4) were 

measured pre- and post-PEGylation with a dynamic light scattering (DLS) device (Zetasizer Nano 

Malvern; Malvern, UK). For each NP, three measurements were made and the mean ± standard 

error of mean (s.e.m.) was reported (Table B.1). 

B.3 Animals and Study Design 

Mice were housed in a 14h light/10h dark cycle at a constant temperature (23°C ± 2° C) 

with food and water available ad libitum according to the Association for Assessment and 

Accreditation of Laboratory Animal Care International. All mice used in this study were group 

housed. Mice were acclimated to their environment following shipment for at least three days 

prior to any experiments. All animal studies were conducted in accordance with the guidelines 

established by the internal IACUC (Institutional Animal Care and Use Committee) and the NIH 

guidelines for the care and use of laboratory animals. Studies are reported following the ARRIVE 
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(Animal Research: Reporting In Vivo experiments) guidelines[282]. Randomization of animals 

was achieved by assigning animals to time points before the initiation of the study to ensure equal 

distribution across groups. A power analysis was performed to calculate group sizes based on 

preliminary data and previously published work from our group investigating nanoparticle 

accumulation following controlled cortical impact in the mouse[2]. Data collection stopped at pre-

determined final endpoints based on time post-injury for each animal.  

B.4 Midline Fluid Percussion Injury (FPI)- Craniotomy 

Mice were subjected to midline fluid percussion injury (FPI) consistent with methods 

previously described [283-288]. Group sizes are indicated in the results section and figure 

legends for individual studies. Mice were anesthetized using 5% isoflurane in 100% oxygen for 

five minutes and the head of the mouse was placed in a stereotaxic frame with continuously 

delivered isoflurane at 2.5% via nosecone. While anesthetized, body temperature was maintained 

using a Deltaphase® isothermal heating pad (Braintree Scientific Inc., Braintree, MA). A midline 

incision was made exposing bregma and lambda, and fascia was removed from the surface of 

the skull. A trephine (3 mm outer diameter) was used for the craniotomy, centered on the sagittal 

suture between bregma and lambda without disruption of the dura. An injury cap prepared from 

the female portion of a Luer-Loc needle hub was fixed over the craniotomy using cyanoacrylate 

gel and methyl-methacrylate (Hygenic Corp., Akron, OH). The incision was sutured at the anterior 

and posterior edges and topical Lidocaine ointment was applied. The injury hub was closed using 

a Luer-Loc cap and mice were placed in a heated recovery cage and monitored until ambulatory 

before being returned to their home cage. 

After injury induction, the injury hub was removed and the brain was inspected for 

uniform herniation and integrity of the dura. The dura was intact in all mice; none were excluded 

as technical failures. The incision was cleaned using saline and closed using sutures. Diffuse 

brain-injured mice had righting reflex recovery times greater than five minutes and a positive 

fencing response. Sham injured mice recovered a righting reflex within 20 seconds. After 

spontaneously righting, mice were placed in a heated recovery cage and monitored until 
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ambulatory (approximately 5 to 15 additional minutes) before being returned to their home cage. 

Adequate measures were taken to minimize pain or discomfort[289].  

B.5 Analysis of HRP and NP accumulation after mCHI/RmCHI 

Tissue sections were incubated in PBS buffer for 20 mins at room temperature prior to 

use. The tissue sampling regions were directly under the impact, specifically, -1 mm to -3 mm 

Bregma (three sections per animal, three animals per cohort). For HRP analysis, freshly prepared 

DAB substrate solution (200 μl) was added to the tissue and incubated for ten mins at room 

temperature. Slides were then washed in PBS buffer three times (two mins each) and coversliped 

after adding a drop of aqueous mounting media. Sections were imaged using Slide Scanner 

(PathScan Enabler IV, Meyer Instruments, TX, USA).  

For NP analysis, slides containing the frozen sections were incubated at room 

temperature for 20 mins in 1X PBS to rehydrate the tissue and remove OCT compound. Slides 

were coverslipped after adding one drop of fluorescent mounting media (Vectashield). The tissue 

sections sampling under the impact region, specifically, -1 mm to -3 mm Bregma (three sections 

per animal, three animals per cohort) were used. The whole brain sections were imaged with 

conventional epifluorescent microscopy at 10X objective. 

B.6 Analysis/quantification of HRP extravasation after midline FPI 

The tissue sections were incubated in PBS buffer for 20 mins at room temperature. 

Freshly prepared DAB substrate solution (200 μl) was added and incubated for ten mins at room 

temperature. Slides were then washed in PBS buffer three times (two mins each) and 

coverslipped after adding a drop of aqueous mounting media. Sections (three sections per 

animal, three animals per group) were imaged using Slide Scanner. Sections were located ~-1.65 

mm Bregma. Quantitative analysis of HRP staining was accomplished by defining two regions of 

interest (ROI) based on previously established HRP staining patterns for FPI: (1) cortex (includes 

primary somatosensory and primary, and secondary motor cortex) and (2) corpus callosum [190], 

(S1). Specifically, ImageJ software (National institute of health, Bethesda, MD, USA) was used to 
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draw ROIs manually and grid lines were used as a reference tool. The full brain scan images 

were rotated such that the midline was oriented at the center of the grid. Next, the horizontal line 

tangential to the ventral aspect of the corpus callosum was used to mark the maximum extent of 

ROI Next, the line just below the corpus callosum was used to mark the maximum extent of the 

ROI (Figure S1). The ROI for the corpus callosum was drawn spanning through the entire corpus 

callosum above the maximum extent line. The images were then thresholded to remove 

background using tissue sections from HRP injected naïve brain. Thresholded images were 

analyzed using ImageJ to obtain percent area of positive HRP staining. Pixel value higher than 

that of the threshold value was considered positive for HRP stain.  

B.7 Quantification of NP accumulation after midline FPI 

The brain tissue was processed and analyzed similar to our previous study[2]. Briefly, 

slides were incubated at room temperature for 20 mins in 1X PBS to rehydrate the tissue and 

remove OCT compound. Coverslips were mounted on the section after adding one drop of 

fluorescent mounting media (Vectashield). The full brain sections (three sections per animal, 

three animals per group) were scanned using confocal microscopy (ZEISS LSM 800 with 

Airyscan, Carl Zeiss, CA, USA) at 10X magnification. Sections were located ~-1.65 mm Bregma. 

Scanning settings for each NP: 20 nm, 40 nm, 100 nm and 500 nm were λex/λem=656 nm/683nm 

(600 V gain); λex/λem=576 nm/607 nm (600 V gain); λex/λem=357 nm/414 nm (640 V gain), and 

λex/λem=503 nm/514 nm (600 V gain), respectively. Configuration settings were maintained 

constant for all the images collected. For brain sections, Z stacking was performed and total Z 

depth was 20 μm with a slice thickness of 5 μm. The Z stacks were converted to a single image 

by maximum projection tool using Zeiss software (Zen, Carl Zeiss, CA, USA). Quantitative 

analysis of NP accumulation was accomplished by defining two regions of interest (ROI) based 

on previously established HRP staining patterns for FPI: (1) cortex (includes primary 

somatosensory and primary, and secondary motor cortex) and (2) corpus callosum [190], (Figure 

S1). Specifically, ImageJ software was used to draw ROIs manually and grid lines were used as a 

reference tool. The full brain scan images were rotated such that the midline was oriented at the 
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center of the grid. Next, the horizontal line tangential to the ventral aspect of the corpus callosum 

was used to mark the maximum extent of ROI (Figure S1). The ROI for cortex was manually 

drawn spanning through the entire cortex above the maximum extent line. The ROI for corpus 

callosum was drawn spanning through the entire corpus callosum above the maximum extent 

line. The ROI images were thresholded to remove background fluorescence using tissue sections 

from NP injected naïve brain. The percent area of total positive NP pixels was calculated using 

ImageJ software. Pixel intensity value higher than that of the threshold value was considered 

positive for NP. 

B.8 Immunohistochemical analysis for mCHI/RmCHI 

 Due to the complex pathophysiology of the mCHI and RmCHI models, we assessed the 

integrity of the BBB by the presence of intracerebral mouse IgG (immunoglobulin). A positive IgG 

stain within the brain parenchyma indicated the BBB was compromised at some point after injury. 

Brain sections from the mCHI study with single and multiple CHI impacts were used. The sections 

(stored at -80°C) were incubated at room temperature for 20 mins before placing them in PBS 

bath and washed 3 times. The slides were incubated with a solution made up of anti-mouse IgG 

secondary antibody 488 (1:200) with 2% goat serum and 0.1% triton X-100 for 2h at room 

temperature in the dark. The sections were rinsed with PBS (4 times, 5 min each) before placing 

the coverslip with fluorescent mounting media (Vectashield). A conventional epifluorescent 

microscope (Leica DMI6000 B, Leica Microsystems, Wetzlar, Germany) was used to image the 

stained sections. 
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Figure B.1 Region of interest for quantification of FPI cohorts for HRP staining and NP 

accumulation. (a) Colored area shows the primary somatosensory, primary and secondary 

motor cortex. (b) Colored area shows the region of the corpus callosum immediately below the 

ROI of cortex. 

 

 

 

 

Figure B.2 Immunostain for endogenous IgG after mild/repetitive mild CHI. Positive staining 

of IgG shown in hippocampus (green, white arrows) and DAPI (blue) at 1h post mild CHI (50g) 
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(a), mild CHI (100g) (b), and repetitive mild CHI (c). As a control, naïve tissue displays no IgG but 

only DAPI stain (d). Scale bar = 100 µm. Note: IgG stain was observed in cortex as well (data not 

shown). 

 

Figure B.3 Representative images from epifluorescent microscopy after mild/repetitive 

mild CHI. No fluorescence is observed in green (λex 488 nm) and red (λex 555 nm) channels (ch) 

after mild 50g CHI ((a)-(c)), mild 100g CHI ((d)-(f)), repetitive mild CHI ((g)-(i)), and in control 
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naïve groups ((j)-(l)). Overlay images were obtained by overlaying DAPI, green and red channel. 

Scale bar = 500 µm. 

 

Nominal NP 

size (nm) 

Hydrodynamic 

size (nm) 

Zeta potential 

(mV) 

20 23.9±2.0 -26.7±4.1 

40 56.9±3.5 -10.1±5.0 

100 102.3±5.6 -24.4±4.4 

500 519.1±29.1 -27.1±2.2 

Table B.1 PEGylated nanoparticle characterization for diffuse TBI study: Hydrodynamic 

diameter and zeta potential of PEGylated NP, mean±standard error of mean (n=3). 

Measurements in 20 mM HEPES (pH 7.4). 

 

1 
HRP - 

Cortex 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 7.76 P=0.0069 Yes 

Injured vs Sham F (1, 12) = 29.02 P=0.0002 Yes 

Time points F (2, 12) = 7.814 P=0.0067 Yes 

 

2 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 6.619 P=0.0116 Yes 
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HRP - 

Corpus 

callosum 

Injured vs Sham F (1, 12) = 6.457 P=0.0259 Yes 

Time points F (2, 12) = 6.585 P=0.0117 Yes 

NP - Cortex 

3 20 nm 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 17.71 P=0.0003 Yes 

Injured vs Sham F (1, 12) = 27.49 P=0.0002 Yes 

Time points F (2, 12) = 18.14 P=0.0002 Yes 

 

4 40 nm 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 13.94 P=0.0007 Yes 

Injured vs Sham F (1, 12) = 20.97 P=0.0006 Yes 

Time points F (2, 12) = 14.72 P=0.0006 Yes 

 

5 100 nm 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 5.373 P=0.0216 Yes 

Injured vs Sham F (1, 12) = 10.47 P=0.0071 Yes 

Time points F (2, 12) = 7.76 P=0.0069 Yes 
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6 500 nm 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 11.15 P=0.0018 Yes 

Injured vs Sham F (1, 12) = 26.16 P=0.0003 Yes 

Time points F (2, 12) = 12.23 P=0.0013 Yes 

NP - Corpus callosum 

7 20 nm 

Comparison F(DFn, DFd) P value Significant 

Interaction F (2, 12) = 0.4299 P=0.6602 No 

Injured vs Sham F (1, 12) = 0.7643 P=0.3991 No 

Time points F (2, 12) = 1.736 P=0.2176 No 

 

8 40 nm 

Comparison F(DFn, DFd) P value Significant 

Interaction F (2, 12) = 1.015 P=0.3915 No 

Injured vs Sham F (1, 12) = 1.502 P=0.2438 No 

Time points F (2, 12) = 1.081 P=0.3701 No 

 

9 100 nm 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 3.555 P=0.0613 No 

Injured vs Sham F (1, 12) = 2.893 P=0.1147 No 

Time points F (2, 12) = 3.106 P=0.0818 No 
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10 500 nm 

Comparison F (DFn, DFd) P value Significant 

Interaction F (2, 12) = 0.8051 P=0.4698 No 

Injured vs Sham F (1, 12) = 1.491 P=0.2455 No 

Time points F (2, 12) = 1 P=0.3965 No 

 

Table B.2 Statistical analysis for HRP and NP after FPI study: Tabular results of two-way 

ANOVA for HRP extravasation in the cortex (row 1) and corpus callosum (row 2). The two-way 

ANOVA results of Nanoparticle accumulation in the cortex for 20 nm (row 3), 40 nm (row 4), 100 

nm (row 5) and 500 nm (row 6) are displayed. The two-way ANOVA results for nanoparticle 

analysis in the corpus callosum for 20 nm (row 7), 40 nm (row 8), 100 nm (row 9) and 500 nm 

(row 10) are shown. 

 

 

 


