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ABSTRACT 

The energy consumption by public drinking water and wastewater utilities 

represent up to 30%-40% of a municipality energy bill. The largest energy consumption is 

used to operate motors for pumping. As a result, the engineering and control community 

develop the Variable Speed Pumps (VSPs) which allow for regulating valves in the 

network instead of the traditional binary ON/OFF pumps. Potentially, VSPs save up to 

90% of annual energy cost compared to the binary pump. The control problem has been 

tackled in the literature as “Pump Scheduling Optimization” (PSO) with a main focus on 

the cost minimization. Nonetheless, engineering literature is mostly concerned with the 

problem of understanding “healthy working conditions” (e.g., leakages, breakages) for a 

water infrastructure rather than the costs. This is very critical because if we operate a 

network under stress, it may satisfy the demand at present but will likely hinder network 

functionality in the future. 

This research addresses the problem of analyzing working conditions of large water 

systems by means of a detailed hydraulic simulation model (e.g., EPANet) to gain insights 

into feasibility with respect to pressure, tank level, etc. This work presents a new 

framework called Feasible Set Approximation – Probabilistic Branch and Bound (FSA-

PBnB) for the definition and determination of feasible solutions in terms of pumps 

regulation. We propose the concept of feasibility distance, which is measured as the 

distance of the current solution from the feasibility frontier to estimate the distribution of 

the feasibility values across the solution space. Based on this estimate, pruning the 

infeasible regions and maintaining the feasible regions are proposed to identify the desired 

feasible solutions. We test the proposed algorithm with both theoretical and real water 
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networks. The results demonstrate that FSA-PBnB has the capability to identify the 

feasibility profile in an efficient way. Additionally, with the feasibility distance, we can 

understand the quality of sub-region in terms of feasibility. 

The present work provides a basic feasibility determination framework on the low 

dimension problems. When FSA-PBnB extends to large scale constraint optimization 

problems, a more intelligent sampling method may be developed to further reduce the 

computational effort. 
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1 CHAPTER 1: INTRODUCTION        

This study addresses the problem of efficiently and effectively assessing the quality and 

safety of working conditions of complex water distribution networks. In view of this goal, 

we propose an innovative feasibility determination approach which defines metrics and 

exploits them in order to identify acceptable operational conditions for pumps. In 

perspective, this characterization can be used as input information to identify cost-optimal 

operational conditions.  

In this chapter, we present the background (section 1.1), an overview of the problem of 

analyzing and controlling complex water distribution networks. A brief introduction to the 

proposed methodology is provided in section 1.2. Finally, section 1.3 presents the main 

structure of the thesis. 

1.1 Problem Relevance 

An example of real network that refers to the urban area of Milan is presented in  Figure 

1-1 [1]. The large size of the network consists 118,950 pipelines, 26 different pump stations 

with 95 pumps, and 33 storage tanks. The Company Metropolitana Milanese (MM), 

managing the WDN, faces approximately 16,000,000 euros of energy costs, 45% due to 

pumping operations in the distribution network [2]. 
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 Figure 1-1 Milano WDN Model [1] 

A recent report by Copeland and Carter [3], reveals that energy consumption by public 

drinking water and wastewater utilities, which are primarily owned, and operated, by local 

governments, can represent 30%-40% of a municipality’s energy bill. How to manage 

energy costs in water distribution systems is an important and increasingly pressing 

challenge. How can we optimize the behavior of water networks? Looking closer into the 

main sources of consumption, pumping is responsible for 80% of the overall cost. Hence, 

controlling pumps in WDNs becomes one of the most crucial aspects to ensure the 

satisfaction of supply service in terms of quality and quantity of water and achieve 

performance goal [4].  
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In this thesis, we face the problem of hourly regulating the pumps in the distribution and 

transmission network. Such regulation has to be performed in a way that yields a flow able 

to respond the customer demand, while guaranteeing safe working conditions over the 

WDN. This problem has been deeply investigated by the research and engineering 

communities under three main perspectives: (1) Energy Cost Reduction, (2) Pump 

Scheduling Optimization, (3) Network Resiliency. While the proposed approaches in each 

of these areas provide contribution in the direction of maximizing the service level of the 

network while controlling the energy costs, fewer works look into the problem from the 

perspective of feasibility/safety of the operational conditions of the system. But how do we 

define “safe working conditions”, and why are they important? In this regard, in a complex 

hydraulic system, there are several physical constraints to consider when operating water 

pumps. These constraints define the working conditions, feasibility, of the system and they 

are typically too complicated to be formulated in closed form. Instead, simulation is 

required to obtain point estimates of such measures (several simulators have been proposed 

in the literature such as EPANet, Finesse, H2Onet, and Water CAD [7, 8, 9, 10]). The 

importance of feasibility analysis comes from the fact that minimum cost solutions tend to 

be “stressful for the network”: when the cost-optimal solution is close to the boundary of 

the feasible set, the optimal pump operation may lead to network malfunction (e.g., 

breakages, leakages [4]). For example, if the pressure at a pump is close to its upper bound 

of feasibility, while this will result in satisfactory customer service, it may also lead to 

leakages and breakages. We argue that having more insights into feasibility of network 

working conditions will improve and unify the analysis and control of WDNs to achieve 
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performance goals in terms of energy consumption and efficient pump scheduling in the 

networks.  

In light of this, we bridge the gap between design, scheduling, and control of WDNs, by 

proposing a new feasibility driven perspective, coupled with simulation-optimization. This 

approach can provide insights to practitioners regarding energy costs and the working 

conditions under the specific pump settings. In order to do so, we decompose the Pump 

Scheduling Optimization (PSO) problem into two stages: (1) the first stage is to determine 

the feasible set of pump speed settings, and the (2) second is the energy cost optimization 

and pump scheduling control. This work works in providing methods to tackle problem in 

(1).  
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1.2 Solution Approach 

 

Feasibility determination is the main issue we would like to address in the thesis. The whole 

process to find a safe and optimal pump scheduling setting is described in Figure 1-2. 

 

 Figure 1-2 Process of Pump Scheduling Optimization 

As previously mentioned, there are two main different types of pumps, one is the single 

speed ON/OFF binary pump and the other is the variable speed pump (VSP). The pump 

speed can be characterized by its pump curve (the combination of heads and flows that the 

pump can produce), and any VSP can be programmed to run at many different rotational 

speed settings, which shifts the position and shape of the pump curve. Specifically, it is 

possible to regulate the pump speed by controlling the relative speed parameter, e.g. if 

running the pump at half speed, the relative setting is 0.5 [7].  

This work considers networks with VSP pumps and, to approach the feasibility 

determination, the approach uses the outputs from WDN computational models such as: 

pressure, load, tank level, and demand. These measures are time series characterizing the 

several locations of the simulated system. 
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Figure 1-3 WDN Simulation Process 

Figure 1-3 depicts a schematic of the WDN simulation system. The simulator requires, as 

input, the set of proposed pump speeds for each installed pump in the network for each 

hour of the daily schedule, and it returns, as output, the measures we would like to consider 

in feasibility determination and energy cost optimization: the pressure at each junction in 

the system, the load at each pipe, the tank level, the supply at each demand node and the 

energy cost. As previously mentioned, the energy cost is the metric to be minimized, which 

is used only during the optimality phase, while the pressure, load, tank level, and demand 

are the measures characterizing the feasibility of the proposed solution in terms of pump 

regulation, i.e., they describe the working conditions of the water network for that energy 

cost.  

1.3 Thesis Structure 

 

In chapter 2, simulation of water networks as well as several optimization techniques 

dealing with Pump Scheduling Optimization and the related results are presented, also, the 

Probabilistic Branch and Bound algorithm, at the basis of the method proposed in this thesis 

is investigated along with its challenges when applied to our case [12]. Considering the 

lack of the current literature, in chapter 0, we propose our innovative algorithm. In 
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particular, this work results into a completely novel “feasibility phase” in order to apply 

partitioning to feasibility determination. The new proposed algorithm is called Feasible Set 

Approximation Probabilistic Branch and Bound (FSA-PBnB). The algorithm is analyzed 

through a series of preliminary experiments with theoretical nonlinear functions and 

different numbers of black box constraints. In chapter 4, we apply FSA-PBnB over two 

different WDNs modeled using EPANet and the result of the approximate feasible set is 

discussed. Finally, Chapter 5 draws the main achievements along with the open questions 

for future research. 

2 CHAPTER 2: LITERATURE REVIEW 

The literature related to WDNs is vast and we focused onto three main areas: (1) Simulation 

of WDNs, (2) Pump Scheduling Optimization, (3) Probabilistic Branch and Bound 

algorithms. In section 2.1, we introduce in detail an open-source hydraulic simulation 

software, EPANet. Several algorithms which have been proposed to address the Pump 

Scheduling Optimization are presented in section 2.2. In section 2.3, we review a stochastic 

optimization algorithm, Probabilistic Branch and Bound, which is at the basis of our new 

proposed feasibility determination approach.   

2.1 EPANet  

In this work, we adopted a state-of-the-art hydraulic simulator, EPANet 2.0 [7], an open-

source freeware that is widely adopted in the literature, to describe the detailed workings 

of a complex hydraulic system. The main network components considered within EPANet 

are pipes, nodes (junctions), pumps, valves and storage tanks or reservoirs.  
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More specifically, the (minimum) set of data needed to create a model of a WDN consists 

of: (a) coordinates and altimetry for each node; (b) demand profile (i.e., a “pattern”) over 

the simulation time horizon of the water request for each consumption node in the network; 

(c) size and shape of each tank, with an initial level; (d) connectivity of the WDN (links 

connecting nodes); (e) length, diameter and roughness of each pipe; (f) efficiency curve of 

each pump (which can be on/off or VSPs); and (g) energy tariff over the simulation period. 

A simple example of a WDN model (named Net1) is presented in Figure 2-1. This network 

has one variable speed pump, one reservoir, one storage tank, and nine nodes. Examples of 

the input to EPANet for hourly demand pattern and pump curve are illustrated in Figure 

2-2 and Figure 2-3, respectively. 

 

Figure 2-1 Simple WDN Example as Represented in EPANet Interface 
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Figure 2-2 An EPANet Hourly Demand 

Pattern 

 

Figure 2-3 An EPANet Pump Efficiency 

Curve 

 

Concerning the output from the simulator, as mentioned in section 1.2, we focus on four 

main metrics output from EPANet: pressure, load, supply and tank level. The 

characteristics of these four measures are defined in the following, along with the way we 

can estimate them through EPANet [4]. 

Pressure: Pressure is a key measure for guaranteeing that the water network is working in 

safe conditions. Indeed, a large pressure may lead to leakages and breakages hindering the 

functionality of the network, on the other hand, a lower pressure may not satisfy service 

level requirements of an end consumption points. This measure is easy to derive from the 

simulator in the form of time series (Figure 2-4 illustrates the pressure at two junctions in 

the network (red and green curve) over a time period of 24 hours). The granularity of the 

time series for each node of the network can be set at a predefined sampling frequency. 

Since optimization often pushes solutions to the boundary of the feasible region, 

identifying the boundary is an important information for WDN managers who can then 
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take considerations not modeled in the simulator (such as leakage due to high pressure) 

into account. 

Load: While pressure is typically important for the analysis of junctions distress, load is 

relevant for performing similar analyses on the network links. While a low load may be 

desirable to preserve the health of the piping system, it will not guarantee the desired 

service level. Since EPANet can be run for extended simulation periods, every measure is 

provided in the output as a time series. We need to investigate ways to derive time series 

charactering the load form the simulation output. 

Tank Level: A WDN not only supplies water to consumption points through pipes, it also 

utilizes storage devices such as tanks to prevent shortage in presence of demand spikes or 

small network failures. While a minimum tank level is required to reduce the effect of 

variance in the demand on the network stress, the tank level must not exceed a predefined 

upper limit to avoid engineering issues. Storage levels are also easily derived from the 

output of the simulator for each node at a specified sampling frequency. Figure 2-5 shows 

the tank level as a time series for the Net1 example.  

Supply: Water networks need to provide water to demand nodes. Therefore, it is important 

to guarantee a satisfactory service level in terms of supply per time unit against request. 

Especially, since an accurate demand forecast can lead pump scheduling optimization more 

efficient and effective, WDN managers need to reliably estimate the water demand in the 

short-term [5]. While an aggregate measure of the daily service level is easy to derive from 

the simulation output, a dynamic measure is difficult to gather from EPANet. In particular, 

a first idea is to use the measured network inflow delivered by the pump and the water flow 
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gathered/delivered by the tank against time. The difference between these two flows is a 

proxy of the pumped water used for demand satisfaction. 

 

Figure 2-4 Pressure Measured at Two 

Consumption Nodes of Net1 

 

Figure 2-5 Tank Level 

2.2 Pump Scheduling Optimization 

A recent review on Pump Scheduling Optimization (PSO) and control in WDNs can be 

found in [6], which reports several classes of existing approaches, including linear 

programming [13], nonlinear programming [14], and dynamic programming [15]. 

Mathematical programming-based approaches try to formalize the problem by 

linearizing/convexifying the equations regulating the flow, thus greatly simplifying the 

complex water distribution system [4]. As a result, most of the applications are limited to 

solve the optimization problem only on simple water distribution networks.  

Meta-heuristic algorithms, such as Genetic Algorithm [16], Simulated Annealing [18], and 

Harmony-Search Algorithm [19] have also been proposed. Most of the PSO approaches do 

not consider the presence of Variable Speed Pumps (VSPs). As a result, the problem is 

reduced to the decision variables are the pump statuses (0 = pump off, 1=pump on) during 

a  time interval Δt [6]. 

In general, most of the literature focuses on energy cost minimization, while fewer 

contributions look at the problem from a feasibility perspective. In fact, most of the 
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contributions consider the feasibility of pump operation settings by means of a penalty 

function, added to the objective function [20]. The main idea of penalization is to try to 

minimize the true objective while also driving the penalty to 0, thus leading to the 

identification of a feasible, optimal, solution. Lagrangian relaxation is among the most 

popular techniques used in this area [21]. Although Lagrangian relaxation [20] can 

guarantee the identification of the optimal solution, it fails to provide insights into 

feasibility and it is not appropriate in black box settings. This motivates us in the direction 

of creating algorithms for efficient black-box feasibility determination. Aiming to provide 

insights to practitioners regarding to feasibility perspective, we develop a feasibility 

determination algorithm whose output is a set of sub-regions that constitute a controllably 

accurate approximation of the unknown feasible region.  

2.3 Probabilistic Branch and Bound  

Our main reference for the proposed new method is the Probabilistic Branch and Bound 

(PBnB) algorithm [22], that was designed to provide, at each iteration, an approximation 

of the level set for black box functions.  

Specifically, the Probabilistic Branch and Bound (PBnB)[12] algorithm is a partitioning-

based random search simulation optimization approach, which was designed for 

optimizing noisy as well as deterministic black box functions over a potentially mixed 

continuous integer solution space. Aimed at approximating a user-defined target level set, 

under a statistically guarantee, PBnB iteratively maintains, prunes and branches subregions.  

While many simulation optimization algorithms have been proposed that find a single local 

or global optimal solution, PBnB provides a set of solutions that captures the target level 
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set, allowing decision makers to make trade-offs between optimal solution and other 

potential issues. 

Before providing the details of the algorithm, Table 2-1 contains the main notation used 

for the description of the original PBnB algorithm. We will use the same notation in the 

contributed algroithm. 

 

 

Table 2-1 Notation in PBnB 

Notation Description 

𝛼 Confidence level of the estimation of target level set 

δ Define the δ-quantile for the target level set 

ϵ The volume of solutions that can be tolerated to 

incorrectly prune or maintain  

S Initial solution space 

𝑦(δ, S) Target threshold  

k Iteration index 

B Partition one region into number of disjoint sub-

regions  

�̃�𝑘
𝑈 All undecided region in iteration k 

�̃�𝑘
𝑀 All maintained region in iteration k 

�̃�1
𝑃 All pruned region in iteration k 

𝜎𝑖,𝑘 𝑖𝑡ℎ sub-region in �̃�𝑘
𝑈 

 



  14 

A first version of PBnB was proposed in [12] and it is summarized in Figure 2-6. As 

mentioned at the beginning, PBnB does not return a 

single optimal solution, but a subset of solutions that 

approximate a level set chosen by the user to be 

arbitrarily close to the true (unknown) optimal value of 

the function. In particular, the user can decide the 

closeness through the parameter 0 < δ < 1 . As an 

example, if the user is interested in the set of top 10% 

solutions, he will set δ = 0.1 . The associated 

unknown, target threshold (i.e., the level specifying the 

desired target set) is referred to as 𝑦(δ, S) . The 

parameter 𝛼, 0 < 𝛼 < 1, is used to control the quality 

of the 𝑦(δ, S) approximation. With the user-defined parameters, the PBnB algorithm starts 

to partition the solution space S into B disjoint sub-regions. Based on the new generated 

sub-regions, PBnB uniformly samples 𝑁𝑘 points in each sub-region and ranks the regions 

by comparing sampled objective evaluations (step 2 in Figure 2-6). In particular, the 

ranking step in [12] suggests the sub-regions are ranked by the best-found-so-far sampled 

point. That is, in terms of a minimization problem, the best region 𝜎𝑖∗,𝑘is the one which 

contains a minimum sampled objective realization.  

Subsequently, the algorithm starts to prune the undesired sub-region when it is statistically 

valid to do so. The pruning step states that a sub-region 𝜎𝑖,𝑘 is to be pruned if the best-

found realization in 𝜎𝑖,𝑘 is worse than the best-found realization in the best sub-region 𝜎𝑖∗,𝑘 

(step 3 in Figure 2-6).  

Figure 2-6 Flow chart of Probabilistic 

Branch and Bound as in [12] 
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Finally, after PBnB terminates, the remaining sub-regions are the portions of the desired 

solution set. More, recently [22] proposed a confidence interval driven implementation of 

the algorithm, which is diplayed in Figure 2-7. 

 

 

Figure 2-7 Flow Chart of Probabilistic Branch and Bound as in [22]  

The lastest version of PBnB in [22] estimates the confidence interval for the unknown 

threshold  𝑦(δ, S) . A new parameter ϵ  is introduced to quantify the tolerance of the 

incorrectly pruning or maintaining. In the recent version, PBnB includes two types of sub-

region: pruned and maintained sub-region. Pruned sub-region contains the identified 
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undesired solutions, on the contary, maintained sub-region has high quality solutions. The 

rest of sub-regions are referred to as undecided (current, incumbent). 

Each algroithm iteration has two stages: (1) the “inner loop”, and (2) the “outer loop”.  

(1) The inner loop classifies the sub-regions as maintained or pruned. For a minimization 

problem, the “maintained region” indicates the union of all the sub-regions that contain 

points with sampled objective evaluations less than the confidence interval lower bound of 

𝑦(δ, S), on the contrary, the “pruned region” is the union of the sub-regions  with sampled 

valus all larger than the confidence interval upper bound of 𝑦(δ, S). The remaining sub-

regions are reflected as undecided (incumbent). 

(2) The outer loop stage is responsible for the update of the confidence interval for 𝑦(δ, S). 

Specifically, additional 𝒞  points are sampled at this stage across the entire remaining 

region and the samples are used to update the estimation of the quantiles for 𝑦(δ, S).  

While PBnB is our inspiration, we try to address the challenges in applying the algorithm 

to our feasibility determination problem. In fact, PBnB was not designed to handle the 

presence of black box constraints.  
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3 CHAPTER 3: METHODOLOGY 

As mentioned in Chapter 1, feasibility, as a proxy of quality of working conditions, plays 

a very important role in water distribution networks and can define the network state much 

better than the only energy cost. In fact, as highlighted in [6], the cost functions used in the 

reviewed literature do not fully capture the network working conditions. This is particularly 

critical because, if a cost-optimal solution is near to the boundary of the feasible set, the 

“optimal” pump operation may lead to network malfunctioning (i.e., leakages, breakages). 

Due to the interest in the identification of feasible regions, we propose a novel partitioning 

algorithm to tackle the issue of identifying safe working conditions for highly complex 

water networks that can only be evaluated by means of simulation.  

3.1  FSA-PBnB 

 

In this thesis, we propose, for the first time, a feasibility determination algorithm called 

Feasibility Set Approximation – PBnB (FSA-PBnB) to find the feasible set in presence of 

multiple black box constraints for which we can only have a point estimate at specific 

locations of the solution space by running a simulation model.  

Most of partitioning methods developed in the literature make use of penalty functions in 

order to estimate the feasibility region for a generally non-linearly constrained problem. 

However, penalty functions provide a poor estimation of the feasibility in that we only 

associate a binary value to a point and we fail to analyze the impact of each configuration 

component into the violation of each constraint.  

To “explicitly” consider feasibility information produced by the black-box simulation in a 

natural and efficient way, we propose to look into the details of the distance from the 

feasible frontier instead of the traditional penalty. We use this measure as the basis for a 
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new partitioning scheme, which adopts a newly proposed Bayesian posterior elimination 

probability to select the partitioning plane. More specifically, we choose the plane, which 

is most likely to separate feasible and infeasible solutions. By doing so, the new generated 

sub-regions in each iteration will be characterized by higher probability to be eliminated, 

positively impacting the efficiency of the approach. 

Section 3.1.1 describes the details of new partition scheme, while section 3.1.2 presents 

two different criteria to characterize whether a sub-region generated by the procedure is 

feasible or not.  

3.1.1 Dynamic Partitioning Scheme - Probability of Elimination 

In order to reduce the sampling effort, we propose a Dynamic Partitioning Scheme, which 

allows us to intelligently and adaptively choose the partitioning plane at each iteration 

rather than partitioning the axis recursively as proposed in [12]. In order to achieve such 

an “intelligent” partitioning, we introduce a metric, the Probability of Elimination, to 

estimate the probability of a sub-region being “eliminated”. The “eliminated” sub-region 

will not be sent to the next iteration for further partitioning and sampling, instead, it will 

be left out of investigation.  

But when does a region get eliminated? In the feasibility determination phase, there are 

two possible scenarios leading to a sub-region being “eliminated”: the sub-region is highly 

likely to be feasible, or the sub-region is highly likely to be infeasible. The former will lead 

the sub-region to be maintained, and the latter will lead to pruning. In both cases, the sub-

region is eliminated from further consideration. 
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The Dynamic Partitioning Scheme enhances the algorithm presented in section 2.3 by 

adaptively selecting the partitioning direction in a way that the generated sub-regions have 

maximum Probability of Elimination. 

In the following, we characterize the approach to obtain the Probability of Elimination for 

all existing sub-regions. For each point 𝒙, we define the following feasibility distance 

vector as the metric of interest: 

𝒅(𝒙) = min (𝝑𝒖 − 𝒇(𝒙), 𝒇(𝒙) − 𝝑𝒍)        (3.1) 

Where 𝒇 is a vector of size C (i.e., c = 1,2, … , C), representing the number of black box 

constraints, and 𝝑𝒖, 𝝑𝒍  are the vectors of the upper and lower reference values for C 

constraints, respectively. We can derive the feasibility distance of each point x with respect 

to each constraint, by using equation (3.1). A point x is infeasible if it violates at least one 

constraint, namely, ∃ c, c = 1,2, … , C: 𝑑𝑐(𝒙)  < 0. 

In the interest of characterizing the feasibility of the sub-regions generated by the 

partitioning plane, instead of considering the feasibility of each point, we look into the 

feasibility of a specific sub-region 𝜎𝑖,𝑘 . To achieve this goal, we study the multivariate 

random variable 𝐃(𝜎𝑖,𝑘), of dimension C, representing a measure of feasibility distance 

over each constrains but across the sub-region 𝜎𝑖,𝑘 . Namely, if 𝑁𝑖,𝑘  points have been 

sampled in the region 𝜎𝑖,𝑘 at iteration k, we have:  

𝐃(𝜎𝑖𝑘)|{𝑑(𝒙𝑖𝑘)}, 𝒙𝑖𝑘 ∈ 𝕊𝑖𝑘~𝒩(𝜽𝑖𝑘)                                                                      (3.2)          
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where {𝑑(𝒙ℎ)} represents the collection of vector measures in equation (3.1) evaluated for 

all the points in the sampled set of sub-region i at iteration k, namely 𝕊𝑖,𝑘 such that |𝕊𝑖,𝑘| =

𝑁𝑖,𝑘 . These points constitute the input for the evaluation of the parameters of the 

distribution 𝒩, i.e., 𝜽(𝜎𝑖,𝑘). The density derived in equation (3.2) is at the basis of the 

derivation of the probability of a region to be very infeasible (and pruned by our algorithm) 

or to be very feasible (and maintained by our algorithm). Since we are looking into a 

measure of average feasibility distance within a specific sub-region, regardless of the shape 

of the population distribution given random and independent samples, we assume the 

distribution of sample means approaches normality as the number of samples increases by 

the Central Limit Theorem result. Hence, we assume that the feasibility metric (distance) 

for each constraint in each region follows a normal distribution and the constraints are all 

independent. As a result, 𝑫(𝜎𝑖𝑘) is a Multi Variate Normal Distribution and 𝜽(𝜎𝑖,𝑘)  in (3.2) 

represents the C × 1 mean vector (𝛍) and C × C variance-covariance matrix (𝚺) with all 

off-diagonal values equal to 0. 

Through the feasibility metrics, the probability of 𝜎𝑖,𝑘  to be feasible can be derived as the 

probability of all C the components of the multivariate random variable 𝐃(𝜎𝑖,𝑘) to have 

positive value (referring to the joint distribution as P): 

�̂�𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘)  =  P(𝐃(𝜎𝑖,𝑘)  > 𝟎) = ∏[1 − 𝐹𝐷𝑐(𝜎𝑖𝑘)(0)]

𝐶

𝑐=1

  

Where 𝐹𝐷𝑐(𝜎𝑖𝑘) refers to the cumulative density function (CDF) obtained by marginalizing 

the CDF of 𝐃(𝜎𝑖𝑘) with respect to the c-th component (constraint).  
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Conversely, the probability of 𝜎𝑖,𝑘 to be infeasible is that at least one of the constraint is 

violated, Probability of infeasible is defined as: 

�̂�𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘)  =  1 −  P(𝐃(𝜎𝑖,𝑘)  > 𝟎) 

As mentioned at the beginning, the Probability of Elimination is the  probability of a sub-

region to be maintained (feasible) or pruned (infeasible). Hence, choosing the maximum 

between �̂�𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘) and �̂�𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘) helps to identify the  possibility for 𝜎𝑖,𝑘 to be 

eliminated.  

�̂�𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝜎𝑖,𝑘)  =  Max (�̂�𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘) , �̂�𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘) ) 
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Figure 3-1 Example of Alternative Partitioning Planes 

 

Figure 3-1shows an example of 2-dimensional case with n=16 sampled points. There are 

two partitioning options, i.e., according to plane A or B, that are compared. For each 

partitioning option, we compute the posterior elimination probability of each sub-region. 

Next, the partitioning plane A is characterized by 𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐴) =

max(𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝜎𝐴1), 𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝜎𝐴2)). Likewise, partitioning plane B is characterized 

by 𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐵) = max(𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝜎𝐵1), 𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝜎𝐵2)) . We then select the 

partitioning plane with the largest associated Probability of Elimination. 

The procedures of the Dynamic Partitioning Scheme is depicted in Figure 3-2.  

 

Figure 3-2 Dynamic Partitioning Scheme for n-dimensional Case 
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To explain what m-axis aligned plane is in the first step, we use the 2-dimensional case (x 

(horizontal) and y(vertical) axis) in Figure 3-1 as example. At beginning, we define two 

disjoint sub-regions will be generated by one partitioning plane. The partitioning plane 

candidates are x-axis aligned plane(s) and y-axis aligned plane(s). If x-axis is selected, the 

x-axis aligned plane(s) is perpendicular to y-axis and evenly partition the solution space 

into 2 sub-regions, therefore, we can derive plane A in Table 3-1. Likewise, if y-axis is 

selected, the y-axis aligned plane(s), plane B, is perpendicular to x-axis and evenly partition 

the solution space into 2 sub-regions. 

Preliminary Results for Dynamic Partition Scheme 

 

Consider a four-dimensional Sinusoidal function as an example, namely: 

𝑓𝑥(𝒙) =  −2.5 ∏ sin (
𝜋𝑥𝑖

180
) − ∏ sin (

𝜋𝑥𝑖

36
)

4

𝑖=1

4

𝑖=1

  ,    0 ≤ 𝑥𝑖 ≤ 180, 𝑖 = 1, … ,4 

Figure 3-3 and Figure 3-4 display the outcome of the distribution of the Probability of 

Elimination of new sub-regions in each iteration.  

  



  24 

 

 

 

Figure 3-3 Probability of Elimination of 

New Sub-regions in Each Iteration by 

Original Partitioning Scheme in [12] 

 

Figure 3-4 Probability of Elimination of 

New Sub-regions at Each Iteration 

Resulting from the Dynamic Partitioning 

Scheme 

 

Figure 3-3 shows the original partitioning scheme resulting from the implementation of the 

original PBnB algorithm [12]. We can observe that there is large variance of 

𝑃𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝜎𝑖,𝑘) at each iteration, resulting in inefficiencies in separating feasible and non-

feasible solutions. This is not surprising since the original algorithm does not look into 

elimination probability. 

On the contrary, the proposed dynamic partition scheme in Figure 3-4 shows the majority 

of the new sub-regions in each iteration are with high Probability of Elimination. Through 

the result, we can see the dynamic partitioning scheme leads the algorithm to find a good 

partitioning direction to separate the feasible and infeasible regions iteratively.  
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3.1.2 Classification Criteria – Classify Feasible Region and Infeasible Region  

 

Differently, and complementary, to the choice of the separation plane, the classification 

aims at establishing whether a sub-region is feasible or infeasible, once partitioning has 

been performed. We propose two classification frameworks to identify the feasible set. 

Section 3.1.2.1 illustrates the Pointwise Comparison framework, while Section 3.1.2.2 

shows the Quantile Comparison framework. 

3.1.2.1  Pointwise Comparison 

 

Concerning the identification of the sub-regions based on the feasibility, the criteria for 

determining whether a specific sub-region needs to be pruned, maintained or branched 

plays a critical role. While the original implementation of the PBnB algorithm described 

in section 2.3 has good performance in optimization settings, in terms of the feasibility 

determination, the rule for sub-regions to be classified leads to quick elimination of feasible 

regions, which is clearly a drawback for our application. This “extreme” elimination is due 

to the fact that in [12] sub-regions are ranked according to the most promising point 

evaluation, that is, translated into our settings, the “most feasible” point within the “most 

feasible” sub-region leads to the determination of the rank-1 feasible region. The 

elimination criteria proposed therein compares the “most feasible” point within the “most 

feasible” sub-region against the “most feasible” point in other regions. Doing so, every 

sub-region will always be eliminated unless the evaluation of the “most feasible” point in 

non-best region and the “most feasible” point in “most feasible” region have the same value.  

To overcome this difficulty, we developed a pointwise comparison alternative which ranks 

the sub-regions based upon the average of the distance measures with the sub-region. Then 

we compare the “most infeasible” point in the “most feasible” sub-region against the “most 
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feasible” point in all other sub-regions. More specifically, we identify the feasible regions 

through the Euclidean distance measure associated to each point 𝒙, namely: 

𝑑E(𝒙) = ‖𝒅+(𝒙)‖2                      (3.3) 

Where 𝒅+(𝒙) = [|𝑚𝑖𝑛(0, 𝑑1(𝐱))|, |𝑚𝑖𝑛(0, 𝑑2(𝐱))|, . . . , |𝑚𝑖𝑛(0, 𝑑𝐶(𝐱))|]  is the vector 

having as positive components only the infeasible distances derived from the elements in  

equation (3.1). The subscript E in 𝑑E(𝒙) refers to “Euclidean”. The new metric introduced 

in equation (3.3) is the Euclidean distance between the point 𝒙 and the feasible frontier. If 

the sample point 𝒙 is feasible, the metric 𝑑E(𝒙) =  0.  

Specifically, for each sampled solution 𝒙, we measure the amount of infeasibility instead 

of just using a large penalty value (as more traditional in Lagrangian-type approaches). 

With the Euclidean distance metric, we can provide more insights and better inform the 

partitioning algorithm.  

The FSA-PBnB with Pointwise Comparison algorithm is presented in the following with 

the detailed steps. 

Step0: Initialize the Parameters and sample initial points 

Input the user defined parameters 𝛼, 𝛿, 𝐵, 𝑆, 𝑁𝑘.  Initialize the maintained, pruned, 

undecided regions and iteration counter k: Σ1 = 𝕏 (where 𝕏 is the set considering only box 

constraints for initial solution space), Σ̃1
𝑈 = 𝕏, Σ̃1

𝑀 = ∅, Σ̃1
𝑃 = ∅, k = 1, 𝛼1 =

𝛼

2
. 

For the initial undecided region Σ̃1
𝑈 = 𝕏, uniformly sample 𝑁1 initial points over the entire 

space. 

𝑁1 = ⌈
ln(𝛼1)

ln(1 − 𝛿)
⌉ 
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Step1: Dynamic Partitioning Plane Selection  

Based on all the sampled points within the current undecided region Σ̃𝑘
𝑈 , assess the 

Probability of Elimination among all proposed partitioning planes, as in the flow chart in 

Figure 3-2 and perform the partitioning along the selected direction. Denotes Σ̃𝑘
𝑈′

as the 

union of all new generated sub-regions after partitioning. 

Step2: Sample Points and Rank the sub-regions 

Sample points up to 𝑁𝑖
𝑘 for each undecided sub-region 𝜎𝑖,𝑘 ∈ Σ̃𝑘

𝑈′
, where i is the index of 

sub-region and 𝑁𝑖
𝑘 = ⌈

ln(𝛼𝑘)

ln(1−𝛿)
⌉ [12]. 

Evaluate the sampled points by the distance function 𝑑E(𝒙𝒊,𝒋,𝒌) in equation (3.3), where 

𝒙𝒊,𝒋,𝒌 ∈  𝜎𝑖,𝑘 , i =1,…| Σ̃𝑘
𝑈′

| and for j = 1,…, 𝑁𝑖
𝑘, and calculate the average distance value 

for 𝜎𝑖,𝑘 , 𝑑E
̅̅ ̅, as it follows: 

𝑑E
̅̅ ̅(𝜎𝑖,𝑘) =

∑ 𝑑E(𝒙𝒊,𝒋,𝒌)
𝑁𝑖

𝑘

𝑗=1

𝑁𝑖
𝑘  

Rank the current sub-regions according to 𝑑E
̅̅ ̅(𝜎𝑖,𝑘) with  𝜎(𝑖) denoting the 𝑖𝑡ℎ  best sub-

region, 

𝑑E
̅̅ ̅(𝜎(1),𝑘) ≤ 𝑑E

̅̅ ̅(𝜎(2),𝑘) ≤. . . . ≤ 𝑑E
̅̅ ̅ (𝜎

(|Σ̃𝑘
𝑈′

|),𝑘
) 

Rank all the sample points 𝒙(𝒊),𝒋,𝒌 ∈  𝜎(𝑖),𝑘 according to 𝑑E(𝒙(𝒊),𝒋,𝒌) with  𝜎(𝑖),(𝑗),𝑘 denoting 

the 𝑗𝑡ℎ best point in the 𝑖𝑡ℎ best sub-region, 

𝑑E(𝒙(𝒊),(𝟏),𝒌) ≤ 𝑑E(𝒙(𝒊),(𝟐),𝒌) ≤. . . . ≤ 𝑑E (𝒙(𝒊),(𝑵𝒊
𝒌),𝒌) 

From the above ranking methodology, we define 𝜎(1),𝑘 is the most feasible sub-region and 

𝒙(𝟏),(𝑵𝒊
𝒌),𝒌 is the most infeasible point in 𝜎(1),𝑘. 
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Step3: Maintain the region 

Define the indicator functions ℐ𝑚,𝑘 for m = 1,…, |Σ̃𝑘
𝑈′

| as: 

ℐ𝑚,𝑘 = {
1, 𝑖𝑓 𝑑E

̅̅ ̅(𝜎(𝑚),𝑘) = 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Where ℐ𝑚,𝑘 = 1 indicates that the sub-region 𝜎(𝑚),𝑘 can be maintained.  

Step4: Prune the region 

Denote the most feasible sub-region 𝜎(1),𝑘 and the most infeasible point 𝒙(𝟏),(𝑵𝒊
𝒌),𝒌 as 𝜎∗

𝑘 

and 𝒙∗(𝟏),𝒌
, respectively. 

Define the indicator functions ℐ𝑝,𝑘 for p = 2,…, |Σ̃𝑘
𝑈′

| 

ℐ𝑝,𝑘 = {
1, 𝑖𝑓 𝑑E(𝒙(𝒑),(𝟏),𝒌) > 𝑑E(𝒙∗(𝟏),𝒌

) 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Where ℐ𝑝,𝑘 = 1 indicates that the sub-region 𝜎(𝑝),𝑘 can be pruned.  

Step5: Update undecided Region  

Update the undecided sub-regions, which are not be maintained or pruned, at the k-th 

iteration: 

�̃�𝑘+1
𝑈 = Σ̃𝑘

𝑈′
\( ⋃ 𝜎(𝑚),𝑘

{𝑚∶ ℐ𝑚,𝑘=1}

)\( ⋃ 𝜎(𝑝),𝑘

{𝑝∶ ℐ𝑝,𝑘=1}

) 

Update the set of the maintained sub-regions 

�̃�𝑘+1
𝑀 = �̃�𝑘

𝑀 ∪ ( ⋃ 𝜎(𝑚),𝑘

{𝑚:ℐ𝑚,𝑘=1}

) 

 

Step6: Terminate FSA-PBnB 
 

If the criteria to terminate FSA-PBnB is reached, output the Σ̃𝑘+1
𝑈  and Σ̃𝑘+1

𝑀 . Otherwise, let 

𝛼𝑘+1 =
𝛼𝑘

2
, 𝑘 → 𝑘 + 1, and go back to step1.  
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Ranking sub-regions is an important step in PBnB because, through ranking, we can choose 

the best sub-region among all the contending sub-regions in terms of distance measure and 

take it as a reference region to perform pruning. In order to evaluate a region, the average 

of the distance measures allows us to include information from all the samples, returning a 

more accurate representation of the feasibility of a sub-region than just the minimum 

distance value. Regarding to the criteria in step 3, the sub-region 𝜎(𝑚),𝑘 will be maintained 

if all sampled points in 𝜎(𝑚),𝑘 are feasible, that is, all the distance measures 𝑑E(𝒙(𝒎),𝒋,𝒌) 

within the sub-region are equal to 0.  

With respect to the issue of quick elimination of feasible regions, the criteria in Step 4 

asserts that the sub-region will be pruned if its “most feasible” point is worse than “the 

most infeasible” point in the most feasible sub-region. For example, 𝜎(𝑝),𝑘 is pruned if the 

smallest distance measure in 𝜎(𝑝),𝑘 is larger than the largest distance measure in 𝜎∗
𝑘. As a 

result, if the sampled points in a sub-region 𝜎𝑖,𝑘 are all infeasible, as long as the smallest 

distance measure in 𝜎𝑖,𝑘 is smaller than the largest distance measure in the most feasible 

region, the 𝜎𝑖,𝑘 will be kept in the next iteration.  

3.1.2.2 Quantile Comparison 

In connection with the proposed Dynamic Partitioning Scheme, which characterizes the 

feasibility of each sub-region by means of the feasibility distance metric 𝐃(𝜎𝑖,𝑘), we 

propose the quantile comparison elimination criteria, which uses the distribution of the 

feasibility metric and the estimates of the related upper and lower quantiles.  
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Herein, we adopt the feasibility measure in equation (3.1) to construct the feasibility 

distribution of each constraint and perform the quantile comparison. The resulting, 

modified, algorithm is provided in the following with the detail of the algorithmic steps. 

Step 0, and Step1 are identical to the Pointwise comparison (section 3.1.2.1) case and are 

therefore omitted. 

Step2: Sample Points and Rank the sub-regions  

Sample points up to 𝑁𝑖
𝑘  for each undecided sub-region 𝜎𝑖,𝑘 , where 𝑁𝑖

𝑘 = ⌈
ln(𝛼𝑘)

ln(1−𝛿)
⌉, and 

estimate the parameters of the multivariate random variable 𝐃(𝜎𝑖,𝑘). 

Assume 𝐃(𝜎𝑖,𝑘)  has independent components, and compute the probability of being 

feasible for sub-region 𝜎𝑖,𝑘 using: 

𝑃𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎𝑖,𝑘)  =  ∏ P(D𝑐(𝜎𝑖,𝑘)  > 0)

𝐶

𝑐=1

 

Where C is the number of constraints. 

Rank all the “contending” sub-regions according to 𝑃𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎(𝑖),𝑘) with 𝜎(𝑖),𝑘 denoting 

the 𝑖𝑡ℎ best sub-region:  

𝑃𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎(1),𝑘) ≥ 𝑃𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎(2),𝑘) ≥. . . . ≥ 𝑃𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝜎
(|Σ̃𝑘

𝑈′
|),𝑘

) 

From the above ranking methodology, the sub-region 𝜎(1),𝑘  has the largest associated 

probability to be feasible.  

Step3: Find the Upper and Lower Quantile respect to each constraint for all sub-

regions  
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Define ℚ(𝜎𝑖,𝑘) as a C × 2 matrix, including C rows for the constraints and 2 columns for 

the upper quantile and lower quantile. Based on the parameters of the multivariate random 

variable 𝐃(𝜎𝑖,𝑘), it is possible to find the ℓ and 𝓊 quantiles for the constraint c such that: 

Q𝑐
ℓ(𝜎𝑖,𝑘) = 𝑍ℓ × s𝒄 + μ𝒄 

Q𝑐
𝓊(𝜎𝑖,𝑘) = 𝑍𝓊 × s𝒄 + μ𝒄 

where, s𝒄 is the standard deviation of the feasibility distance for cth constraint, and 𝑍 is the 

inverse standard normal. 

Step4: Maintain the region 

Denote ℚℓ(𝜎𝑖,𝑘) as the lower quantile vector, extracted from the first column of ℚ(𝜎𝑖,𝑘) 

Define the indicator functions ℐ𝑚,𝑘 for m = 1, …, |Σ̃𝑘
𝑈′

| 

ℐ𝑚,𝑘  = {
1, 𝑖𝑓 ℚℓ(𝜎(𝑚),𝑘) ≥ 𝟎

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Where ℐ𝑚,𝑘  = 1 indicates that the sub-region 𝜎(𝑚),𝑘 can be maintained.  

Step5: Prune the region 

Denote the most feasible sub-region 𝜎(1),𝑘  and the corresponding lower quantile vector  

ℚℓ(𝜎(1),𝑘)  as 𝜎∗
𝑘 and ℚℓ∗

, respectively. 

Define the indicator functions ℐ𝑝,𝑘 for p = 2,…, |Σ̃𝑘
𝑈′

| 

ℐ𝑝,𝑘 = {
1, ∃ c ∈ C: Q𝑐

𝓊(𝜎(𝑝),𝑘) ≤ 0 and Q𝑐
𝓊(𝜎(𝑝),𝑘) ≤ Q𝑐

ℓ∗
   

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Where ℐ𝑝,𝑘 = 1 indicates that the sub-region σ(𝑝),𝑘 can be pruned.  

The remaining steps, are exactly as the same as the step 5 and step 6 in section 3.1.2.1, and 

are therefore omitted here. 
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In order to explicitly consider the feasibility information, during step 4, we check all the 

elements within the lower quantile vector to verify the presence of negative components. 

If all the lower quantiles (worst feasibility distance) are positive (refer to equation (3.1)), 

positive distance represents feasibility), we conjecture the solutions in the sub-region 

satisfy all the constraints and the sub-region can be classified as feasible (maintained) 

region. 

In Step 5, the sub-region will be pruned if at least one upper quantile (i.e., the estimate of 

the best scenario) for any of the C constraints simultaneously satisfies two conditions: (1) 

the upper quantile of constraint c is negative, and (2) the upper quantile of constraint c is 

worse than the lower quantile (the worst feasibility scenario) of constraint c in the most 

feasible sub-region. Due to the sampling error, the sub-region which contains the feasible 

set might be characterized as infeasible and be pruned by satisfying the condition (1). To 

reduce this phenomenon, the condition (2) is added to the pruning criteria. As a result, 

similar to the pointwise comparison, the upper quantile of the constraint in a sub-region is 

compared against the lower quantile of the constraint in the best (most feasible) sub-region.  

3.2 Numerical experiments on theoratical functions 

To showcase the performance of FSA-PBnB over generally constrained optimization 

problems, we use the Sinusoidal function in different dimensions. This function is 

frequently used in the global optimization literature, and we added two constraints, defined 

as follows. 

𝑓𝑥(𝒙) =  −2.5 ∏ sin (
𝜋𝑥𝑖

180
) − ∏ sin (

𝜋𝑥𝑖

36
)

𝑛

𝑖=1

𝑛

𝑖=1

   
(3.4) 
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With constraints 

𝑓𝑥(𝒙) ≤ −2.3                                               (3.5) 

 

𝑔(𝒙) ≥ 0      , 𝑔(𝒙) = {
     5.7        𝑥1 ≤ 90
   −5.7       𝑥1 > 90

       
(3.6) 

 

0 ≤ 𝑥𝑖 ≤ 180, 𝑖 = 1, … , 𝑛  

The global optimum is located in 𝒙∗ = (90, . . . ,90) with a function value  𝑓(𝒙∗) = −3.5. 

 

Figure 3-5 Contour Plot of 2D Sinusoidal Function 

3.2.1 Parameter Settings for the Numerical experiment 

To test the robustness of the proposed algorithms, we evaluated their performance over 2, 

3, and 4 dimensional cases on the Sinusoidal Function. For each case, we first tested the 

function with one constraint, e.g. we only considered equation (3.5) and dismissed equation 

(3.6) in our experiment, then, we took both constraints into consideration.  
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The FSA-PBnB algorithm parameters were: δ = 0.1, α = 0.25, B = 3.  FSA-PBnB 

terminated when the number of iterations reached the maximum number set by the user. 

We used the values in Table 3-1Table 3-1 Criteria to Terminate the Algorithm). 

Table 3-1 Criteria to Terminate the Algorithm 

Dimension 2 3 4 

Iteration (K) 10 13 15 

  

In the interest of limiting the computational time, we set the simulation time limit to 1000 

seconds for each macro replication of the entire algorithm. For each experiment, we 

collected the metrics in Table 3-2. 

Table 3-2 Definition of Metric for Experiment Result 

Metric Definition 

𝛄 
Empirical probability of the optimal solution to end up in the 

remaining regions (remaining region = Σ̃𝑘∗
𝑈 ∪ Σ̃𝑘∗

𝑀 ) computed out of 

the algorithmic macro-replications 
T_Pts Total Number of points sampled after PBnB terminates 
R(PV) Ratio of the pruned volume to initial volume (S) 
R(UV) Ratio of the undecided volume to initial volume (S) 
R(MV) Ratio of the maintained volume to initial volume (S) 

R(Remaining) Ratio of the remaining volume to initial volume (S) 
R(TV) Ratio of the true volume against the initial volume (S) 

 

3.2.2 Numerical Experiment Result 

In this section, we present the experiment results obtained from the two algorithms: FSA-

PBnB with Pointwise-Comparison algorithm and FSA-PBnB with Quantile- Comparison. 

To evaluate the performance on feasibility determination, the true volume of the feasible 

region is compared with the numerical experiment results. While the volume of the true 

feasible region cannot be analytically derived for most of the tested nonlinear functions, 

we applied a grid search concept to approximate the true feasible volume. We divided the 

whole solution space into n equally-sized hyper-cubes and the feasibility of the central 
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point in the hyper-cube stands for the feasibility of the hyper-cube. The approximated true 

feasible volume is computed by summing up the volume of feasible hyper-cubes. The 

feasible volume of single constraint and multiple constraints cases are illustrated in Table 

3-3.  

Table 3-3 Ratio of the True Feasible Volume R(TV) of Feasible Set  

 Dimension 

 2 3 4 

Constraint (3.5) 8.77% 1.92% 0.3% 
Constraint (3.5) and (3.6) 4.5% 1.0% 0.17% 
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3.2.2.1 Pointwise-Comparison FSA-PBnB 

 

For the 2-dimensional Sinusoidal function with constraint(s), Figure 3-6 and Figure 3-7 

show the undecided regions (in orange) and the maintained regions (in blue) over the 

contours resulting from 10 iterations of FSA-PBnB. The inner space of the black dash line 

is true level set of 𝑓𝑥(𝒙) ≤  −2.3 as from equation (3.5). The red cross symbol in the 

middle is the global optima 𝑓𝑥(𝒙) =  −3.5. 

 
Figure 3-6 Result of Pointwise-

Comparison for Single Constraint 

on 2D Sinusoidal Function 

 
Figure 3-7  Result of Pointwise-

Comparison for Multiple Constraints 

on 2D Sinusoidal Function 
 

Figure 3-6 presents the result for the sinusoidal function with the single constraint in 

equation (3.5), while Figure 3-7 shows the results obtained considering both constraints. 

We can observe that the more inside the feasible boundary, the larger the blue rectangles 

are, that is, the regions are “maintained” earlier. Also, it is possible to observe how the 

undecided regions are mostly located at the boundary of the feasible set, hinting that the 

regions around the boundary require more iterations as more partitioning and sampling are 

needed to classify the regions.  
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The Pointwise-Comparison algorithm shows very good performance on capturing the true 

feasible region for the single and multiple constraints for the 2-dimensional case. 

Particularly, for the multiple constraints case, even if the global optimal is located on the 

boundary of the feasible set, it is kept within the remaining region (Σ̃𝑘∗
𝑈 ∪  Σ̃𝑘∗

𝑀 ), which 

means that, after feasibility determination, we will not lose the chance to find the global 

optimal solution in optimality phase. 

 

 

 

Figure 3-8 Detail of FSA-PBnB on 2-D Sinusoidal Function 

Figure 3-8 shows the detail of the cumulated number of sampled points in each iteration. 

We can observe that the number of sampled points grows exponentially with the iterations. 

At iteration 5, FSA-PBnB captures small parts of feasible region and, at iteration 7, the 
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profile of the feasibility set is identified. From iteration 7 to 9, FSA-PBnB is mainly 

refining the feasibility boarder. 

 

The algorithm was run 100 times under each test case for all the dimensions. The detailed 

performance is presented in Table 3-4 and Table 3-5. In each cell, except for the metric γ, 

the upper value is the mean of all replications and the value in the parenthesis is the 

coefficient of variation.  

Table 3-4 Result of Pointwise-Comparison for Single Constraint 

Dimension T_Pts γ R(PV) R(UV) R(MV) R(Remaining)/R(TV) 

2 71.475×103 

(14.38%) 
1 90.54% 

(1.13%) 

1.88% 

(3.43%) 
7.58% 

(1.13%) 
9.46% / 8.77% 

 

3 12.591×105 

(27.48%) 
1 97.43% 

(0.15%) 

1.33% 

(16.83%) 
1.25% 

(6.92%) 
2.58% / 1.92% 

 

4 47.607×105 

(20.63%) 
 

1 99.39 

(0.08%) 

0.5% 

(19.57%) 
0.1% 

(24.17%) 
0.6% / 0.3% 

 

From the numerical results on the sinusoidal function, as the dimension of the problem 

grows, γ = 1 and the true optimal solution is always included in the remaining region 

(union of the undecided and maintained sub-regions). Observing the metric R(PV), it is 

clear that the algorithm succeeded in pruning a large portion of the region in all the 

dimensional cases. Therefore, the results demonstrate Pointwise-Comparison FSA-PBnB 

algorithm helps to delete many undesired regions (infeasible region), while maintaining 

the true optimal solution. 

The performance of the FSA-PBnB can be observed by comparing the metrics 

R(Remaining) against the ratio of the true feasible volume, R(TV). From Table 3-4, we 

observe that a larger portion of volume is returned with respect to the true volume as the 

dimension of the problem grows. The result demonstrates that FSA-PBnB is a conservative 
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algorithm. We also recall that R(remaining) consists of R(UV) and R(MV). By looking 

into the portion of R(UV) and R(MV) in R(remaining), the 2-dimensional case shows that 

R(MV) makes up 80% and R(UV) makes up 20% of R(Remaining) at iteration 10. In the 

3-dimensional case, at iteration 13, R(MV) makes up 52% and R(UV) makes up 48% of 

R(Remaining). These ratios suggest that the majority of the feasible regions are captured 

in the maintained regions. However, in the 4-dimensional case, R(MV) makes up only 17% 

of R(remaining), that is, R(UV) may contain a large portion of infeasible solutions.  

According to the results from Figure 3-6 and Figure 3-7, we see that the sub-regions around 

the boundary require more partitioning and sampling to be accurately classified. Looking 

at the number of sampled points in Table 3-4, all the cases require a large budget to evaluate 

the feasible region. This is due to the fact that the greater part of the points are used to 

distinguish the feasible and infeasible regions from the undecided region. Hence, it is clear 

how important it is to consider the trade-off between sampling effort and shifting undecided 

regions to maintained regions.  

Table 3-5 Result of Pointwise-Comparison for Multiple Constraints 

Dimension T_Pts γ R(PV) R(UV) R(MV) R(Remaining)/R(TV) 

2 52.252×103 

(28.41%) 

1 94.89% 

(0.45%) 

1.51% 

(39.71%) 
3.6% 

(4.94%) 

5.11% / 4.5% 

 

3 10.950×105 

(40.61%) 
1 98.38% 

(0.37%) 

1.14% 

(45.02%) 

0.47% 

(33.42%) 

1.61% / 1.0% 

 

4 32.515×105 

(27.83%) 
 

1 99.62 

(0.08%) 

0.35% 

(26.59%) 

0.04% 

(28.27%) 

0.39% / 0.17% 

 

Table 3-5 shows the experimental results for the different cases obtained considering both 

constraints (3.5) and (3.6). We can observe that, regardless of the problem dimension, γ is 

always 1, which means that the true optimal solution 𝒙∗ = (90, . . . ,90) is never eliminated 

by FSA-PBnB. By comparing the results of R(Remaining) to R(TV), we observe that, 

under the stopping criteria we adopt in this experiment, the R(Remaining) is always larger 
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than R(TV). The results represent the feasible set are fully captured in dimension 2, 3 and 

4, respectively. 

3.2.2.2 Quantile-Comparison FSA-PBnB 

In this section, the Quantile Comparison version of the algorithm is used to classify feasible 

regions and infeasible regions. For the 2-dimensional Sinusoidal function with 

constraint(s), we visualize the undecided regions (in orange) and the maintained regions 

(in blue) over the contours after FSA-PBnB terminates at iteration 10 in Figure 3-9 and 

Figure 3-10. The results look similar to the pointwise comparison version. The undecided 

regions are located around the boundary of feasible set. 

 

 
Figure 3-9 Result of Quantile- 

Comparison for Single Constraint 

on 2D Sinusoidal Function 

 
Figure 3-10 Result of Quantile- 

Comparison for Multiple Constraints 

on 2D Sinusoidal Function 

 

Figure 3-9 and Figure 3-10 show the results of Quantile Comparison implementation on 

sinusoidal function with the same experiment parameter setting as Pointwise-Comparison 

FSA-PBnB. Regarding γ, all the test cases indicate that the remaining region of Quantile-

Comparison FSA-PBnB always contain the optimal solution. Looking into the metrics, 

R(UV), R(MV), and R(remaining), we do not observe statistical difference between the 

two approaches difference from the result of Table 3-4 and Table 3-5.  
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Table 3-6 Result of Quantile-Comparison for Single Constraint 

Dimension T_Pts γ R(PV) R(UV) R(MV) R(Remaining)/R(TV) 

2 79.261×103 

(14.8%) 
 

1 90.37% 

(0.14%) 

2.05% 

(3.01%) 
7.58% 

(1.38%) 
9.63% / 8.77% 

  

3 13.411×105 

(39.31%) 
 

1 97.38% 

(0.22%) 

1.35% 

(20.73%) 

1.27% 

(7.02%) 
2.62% / 1.92% 

  

4 39.866×105 

(28.14%) 
 

1 99.44% 

(0.1%) 

0.45% 

(26.22%) 

0.11% 

(19.31%) 
0.56% / 0.3% 

  

 

 

Table 3-7 Result of Quantile-Comparison for Multiple Constraint 

Dimension T_Pts γ R(PV) R(UV) R(MV) R(Remaining)/R(TV) 

2 58.238×103 

(26.96%) 
 

1 94.94% 

(0.41%) 
0.04% 

(0.01%) 

3.67% 

(3.52%) 
5.06% / 4.5% 

  

3 10.993×105 

(44.9%) 
 

1 98.4% 

(0.43%) 

1.12% 

(49.64%) 

0.49% 

(28.6%) 
1.61% / 1.0% 

  

4 31.598×105 

(42.44%) 
 

1 99.64% 

(0.1%) 

0.33% 

(31.57%) 

0.04% 

(26.28%) 
0.37% / 0.17% 

  

 

3.3 FSA-PBnB Discussion  

We developed two classification criteria to use in FSA-PBnB and we tested the 

performance of the algorithms for the identification of the feasible set for the Sinusoidal 

test function. From the experimental results both the Pointwise-Comparison version and 

Quantile-Comparison version, show satisfactory results in terms of power of pruning and 

conservativeness.   

Pointwise-Comparison uses the aggregated feasibility measure to evaluate the feasibility 

of each point. While it can identify the feasible set well, it does not make use of the 

information from each constraint in the sub-regions.  

On the other hand, Quantile-Comparison evaluates the feasibility for each constraint and 

we can interpret the sub-regions by analyzing the feasibility metric (feasibility distance) 

and find the critical or the binding constraint in the optimization problem. As mentioned in 

chapter 1, the feasibility problem plays an important role in Pump Scheduling Optimization 
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(PSO). Indeed, our algorithm can provide the insights on the safety of the working 

condition under several pump speed settings to the engineers. In chapter 4, we apply the 

Quantile-Comparison FSA-PBnB on the Water Distribution Network and show how to 

analyze and provide the insights from the output of the approximated feasible set.  
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4 CHAPTER 4: NUMERICAL RESULTS ON WATER DISTRIBUTION 

NETWORK   

In this section, we illustrate the performance of the Quantile-Comparison FSA-PBnB on 

two different Water Distribution Networks (WDNs) examples. The hydraulic networks are 

modeled by using the EPANet simulator (refer to Chapter 2, section 2.1 for details on the 

simulation tool). We have engaged in collaboration with Professor Antonio Candelieri and 

a PhD student Riccardo Perego from Università Milano Bicocca to work on the project. 

Our collaborators developed the WDN models in EPANet and exposed the simulator as a 

webservice. From our side, we created the connection between the simulator and the 

algorithm which was developed in Python3.6.   

Section 4.1 presents the preliminary results obtained for the simple network case known as 

Net1 (refer to Figure 2-1), while in section 4.2, we consider a real network “Abbiategrasso 

pilot”, located in the southern part of Milan (as shown  Figure 1-1)  

4.1 Simple Network - Net 1 

The Net1 example is provided within the EPANet package. The main hydraulic 

components are shown in Figure 2-1, this network has 1 variable speed pump, 9 nodes, 1 

storage tank and 1 reservoir. The simulation horizon was set to 2hrs with two time slots of 

1 hours each, i.e., the pump speed can take one value for each hour. The electricity tariff is 

set to 0.0244 [$/kWh].  

4.1.1 Preliminary Simulation Study on Net1 Example 

 

For the Net1 Example feasibility is entirely determined by the pressure at each node of the 

network, i.e., considering the EPANet output (refer to section 2.1 for more details). To 

understand the distribution of pressures in the Net1 case, we ran EPANet over 10,000 
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configurations in terms regulation of the variable speed pump (uniformly sampled in the 

interval (0,1)  × (0,1) for the two time-slots referring to the regulations during the first 

and second hour, respectively). The output from EPANet returns 2 values of pressure (one 

for each time slot) at each node, as shown in Table 4-1, reporting an example of the output 

when the input speed is [0.5,0.8]. 

Table 4-1 Output of Pressure Matrix from Simulator 

 1st time slot 2nd time slot 

Node1 71.329369 76.501038 

Node2 74.332375 74.479042 

Node3 73.606232 73.572853 

Node4 76.424744 76.473328 

Node5 74.84594 74.734673 

Node6 69.352013 68.95034 

Node7 74.816154 86.274994 

Node8 72.2006   73.062622 

Node9 1.767739 0.080292 

 

Since the simulator returns a matrix of pressures, we compute an aggregated measure of 

pressure. We consider the pressure reached at each time slot to be constrained to be larger 

than a lower bound of pressure 𝜗𝑐
ℓ = 0. Hence, we have c=1,2; wher one constraint is 

needed for each time slot and we only have a lower bound, i.e., 𝜗𝑐
𝑢 = ∞, c = 1,2. For each 

time slot, we only look at the junction achieving the minimum pressure as representative 

of the corresponding time step. The feasibility distance vector for each constraint (as 

described in equation (3.1) can be defined as follows: 

𝑑(𝒙) = [
𝑓1(𝒙) − 𝜗𝑐

ℓ

𝑓2(𝒙) − 𝜗𝑐
ℓ] 

Where 𝑓∙(𝑥) = min
𝑛=1,....,𝑁

𝓅𝑡.,𝑛, where N is the number of the nodes in the network and 𝓅𝑡.,𝑛 

is the pressure at the n-th node during time slot t.. 
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The aggregate measure of pressure is the Euclidean distance from a lower bound of 𝜗𝑐
ℓ =

0 to the minimum pressure of each time slot, i.e.,   

d𝐸(𝒙) = √∑((𝑓𝑐(𝒙) − 𝜗𝑐
ℓ)−)

2
2

𝑐=1

 

(4-1) 

 

When this aggregated pressure measure equals 0, the 

corresponding pump speed is considered to be infeasible 

working condition. 

Results from the simulation study are shown in Figure 

4-1, where each control value set for the pump in two 

time-slot 𝐱 ∈ (0,1)  × (0,1)  (“x_time_slot1” and 

“x_time_slot2”) and “Pressure_distance” represent the 

aggregated pressure measure. 

 

4.1.2 Implementation of Quantile Comparison FSA-PBnB to Net1 Example 

As mentioned multiple times in this thesis, the EPANet simulator is a black-box. By 

connecting to the simulator through the webservice, we can embed EPANet within the 

FSA-PBnB algorithm with Python3.6.  

  

Figure 4-1 Aggregate Pressure 

Measure for Net1 
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Figure 4-2 Projection of 

Pressure Distance 

 
Figure 4-3 

Approximation of Feasible 

Region(Iteration=6) 

 
Figure 4-4 

Approximation of Feasible 

Region(Iteration=7) 

 

Figure 4-2 shows the projection of pressure distance in Figure 4-1 onto X1_time_slot1and 

X2_time_slot2, the feasible points (d𝐸(𝒙) = 𝟎) are in blue and infeasible points (d𝐸(𝒙) >

𝟎) are in red. 

Figure 4 3 and Figure 4 4 present the results obtained by an application of the FSA-PBnB 

with a different number of iterations K. The maintained sub-regions are in blue, pruned in 

red, and undecided in orange. The approximation of the feasible region (in blue) in Figure 

4 3 is close to the area in Figure 4 2. Figure 4 3 shows that, at iteration 6, after 3707 

simulation runs, the algorithm can better refine the region profile. The feasible region is 

small compared to the overall search space and the undecided regions form an “orange 

belt” which can be interpreted as the feasibility boundary in terms of the pressure. After 

the 7th iteration, the number of simulation runs grows up to 8025, but only a small part of 

the undecided sub-regions shifts to the maintained sub-regions. As a result, the 

exponentially growing effort in simulation does not appear to be justified by the 

improvement. Hence, users have to trade the sampling effort off against the accuracy 

level of the approximated feasible region. 
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According to the graph, it can be observed that the leftmost red rectangle is pruned at the 

1st iteration, which indicates the searching space reduces to 
2

3
 at the very beginning and 

save the sampling effort to the next iteration.  

As mentioned in section 3.1.2.2, with Quantile Comparison FSA-PBnB, we estimate the 

random feasibility distance parameters with equation (3.2) and the algorithm finds the 

lower quantile to decide the maintained regions (also called feasible region). Table 4-2 

shows the lower quantile of the feasibility measure at each time step (constraint) of four 

randomly chosen maintained regions (as indicated in Figure 4-4). Details for all the 

maintained regions are reported in the appendix A. 

Table 4-2 Feasibility Measures for Selected Regions 

Sub-Region A B C D 

Feasible Speed 

Range 

[X1_time_slot1] 

[X2_time_slot2] 

 

[ 0.667, 1] 

[ 0.667, 1] 

 

[ 0.556, 0.667] 

[ 0.667, 1] 

 

[ 0.444, 0.556] 

[ 0.889, 1] 

 

[ 0.63, 0.667] 

[ 0.556, 0.667] 

Q𝑐_1𝑠𝑡 ℎ𝑜𝑢𝑟
ℓ  3.29 2.18 1.18 2.93 

Q𝑐_2𝑛𝑑 ℎ𝑜𝑢𝑟
ℓ  1.32 0.29 0.16 0.24 

 

We can analyze the safety of the regions by means of Q𝑐_1𝑠𝑡 ℎ𝑜𝑢𝑟
ℓ  and Q𝑐_2𝑠𝑡 ℎ𝑜𝑢𝑟

ℓ . Assume 

the larger the value is, the safer the working condition is, then we can observe that region 

A might be the safest range to operate the pump for the Net1; however, regarding to the 

corresponding speed range, the higher speed might yield more energy cost. 

In short, the distance measure does provide some information to engineers to understand 

the water distribution system and they can choose the desired regions to run the optimality 

phase.   
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4.2 Abbiategrasso Pilot Network – 2 Pumps with 2 Time-Slots 

The second WDN test case is the urban area of Milan ( Figure 1-1). We consider the 

“Abbiategrasso pilot”, located in the southern part of the city. The model consists of 7546 

nodes, 6073 pipes, 1961 valves, 1 reservoir and two variable speed pumps. The model is 

built in EPANet and the hydraulic components are shown in Figure 4-5. The electricity 

tariff with 0.0244 $/kWh for 00:00-07:00 and 0.1194 $/kWh for 08:00-24:00 is considered 

for simulations. 

 
Figure 4-5 Abbiategrasso Pilot Model as Presented in the EPANet Interface 

The pump operation of variable speed pumps (VSPs) is proposed by relative speed within 

interval (0,1)  in two time-slots (referring to the regulations during the first and second 

half of the day). The input of the simulator is the speed of 2 pumps with 2 time-slots, which 

is arranged as: 

[pump1_timeslot1, pump1_timeslot2, pump2_timeslot1, pump2_timeslot2]  



  49 

The simulation duration is 24hrs with two time slots. The first time slot controls 00:00-

07:00 hours and the second time slot controls 07:00-24:00 hours. i.e., the pump speed can 

take two values during the day.   

Since the simulation duration is based on 24hrs simulation, the EPANet run returns 24 

values of pressure at the pump (one for every hour).  

The output of the pressure matrix is illustrated below: 

Pressure = [

𝑝𝑛=1,𝑡1 ⋯ 𝑝𝑛=1,𝑡24

⋮ ⋱ ⋮
𝑝𝑛=7546,𝑡1 ⋯ 𝑝𝑛=7546,𝑡24

] 

According to the data provided from the company Metropolitana Milanese S.p.A, (MM) 

[2], the lower bound of the pressure in “Abbiategrasso pilot” is 20 [Pa] and no upper bound 

is provided.  

For the real case, Abbiategrasso pilot model, in our experiment, again, feasibility is entirely 

determined by the pressure at each node of the network. We consider the pressure reached 

at each time step (1hour) to be constrained to be larger than the lower bound of the pressure. 

As a result, the number of constraints in the experiment is 24. The experiment setting is the 

same in section 4.1.2. We find the most infeasible pressure node (junction) (the minimum 

pressure) in each column to stand for the pressure of the corresponding time step. 
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Experiment Result 

 

 
Figure 4-6 Volume Change in 

Pruned/Maintained/Undecided region 

 
Figure 4-7 Region Result on 

Pump1::time_slot1 and Pump2_time_slot1 

 

After FSA-PBnB terminated at iteration 5 with 5948 simulation runs, there is up to 70% of 

total volume being pruned. However, there is no region being classified as maintained 

region (feasible region) at this stage. All the remaining regions belong to the undecided 

regions. Figure 4-6 shows that the ratio of undecided volume and the ratio of volume 

pruned keep changing by iterations, but the ratio of volume maintained is always 0. We 

presume that the real-world problem is supposed to be more complicated than the 

theoretical case. In this experiment, running 5 iterations is not enough to shape the 

feasibility profile. Therefore, it may require more partitioning and sampling to identify the 

feasible regions from the undecided regions. 

We display the obtained result with two dimensions (pump::timeslot2 × pump2::timeslot2) 

of four-dimensional sub-regions in Figure 4-7. The pruned regions are in blue and the 

undecided regions are in orange. Regarding the pruned regions, we can observe that, 

regardless of the pump speed ranges for pump1::timeslot2 and pump2::timeslot2, as long 
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as both of the speed of pump1::timeslot1 and pump2::timeslot2 are less than 0.67 

simultaneously, the pump speed configuration is infeasible.  

Furthermore, as mentioned in 3.1.2.2, Quantile Comparison FSA-PBnB returns the 

remaining (sum of maintained and incumbent) regions and the feasibility distance of each 

constraint within the sub-regions. In this regard, Figure 4-8 and Figure 4-9 demonstrate the 

feasibility distance metric in two undecided sub-regions, respectively.  

In Figure 4-8, the distance metric defined in equation (3.1) is reported for all the points 

sampled up to the fifth iteration of the FSA-PBnB algorithm for the undecided sub-region 

defined by the four vertexes (𝑥1,𝑡1

𝑙 =0.66, 𝑥1,𝑡1

𝑢 =71),(𝑥1,𝑡2

𝑙 =0, 𝑥1,𝑡2

𝑢 1), (𝑥2,𝑡1

𝑙 =0.66, 𝑥2,𝑡1

𝑢 1), 

and (𝑥2,𝑡2

𝑙 =0.15, 𝑥2,𝑡2

𝑢 =0.19). The x-axis represents each hour of the day for which EPANet 

returns the desired values of pressure. It is important to highlight that we can use only two 

speeds. One is in the interval [00:00AM-7:00AM] and the second set up for the rest of the 

day. As a result, we notice a clear difference in the pressure distribution when we compare 

the first hours in the day against the later timings.  Referring to the green line as the 

feasibility reference, it is possible to observe that the second time slot is more likely to be 

infeasible, while the first time slot does not show particular problems. However, the 

presence of both feasible and infeasible samples leads to the inability to maintain/prune the 

region. 
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Figure 4-8 Distribution of Feasibility Distance(pressure) in Sub-region  

[0.66-71]×[0-1] × [0.66-1] × [0.15-0.19] 

 

 
 

 
Figure 4-9 Distribution of Feasibility Distance(pressure) in Sub-region 

[0.66-71] × [0-1] × [0.66-1] × [0.96-1] 
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5 CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 

In this thesis, a new feasibility determination approach is proposed to analyze the quality 

of working conditions in complex water distribution networks (WDNs). Most of the 

literature focuses on cost minimization, fewer contributions look at the problem from a 

feasibility perspective. Nonetheless, feasibility is a critical issue in WDNs because if the 

network is set up to work in “extreme” conditions, it has higher possibility to leak and or 

break. In this thesis, we analyze the feasibility of the WDNs operations. Due to the 

complexity of the water supply system, it is difficult to assess the operational feasibility in 

closed form and a simulator needs to be used instead. We adopt a hydraulic solver EPANet 

2.0 to simulate the response of the water distribution network with varying pump operation.  

We propose a novel algorithm called Feasible Set Approximation – PBnB (FSA-PBnB) to 

tackle the feasibility determination problem. The algorithm is tested to one theoretical 

function, Sinusoidal function, with 2,3, and 4 dimensional cases. The obtained results show 

that PBnB (FSA-PBnB) successfully prunes large amount of undesired regions and reaches 

satisfactory approximations of the feasible set. Results also put the light on the trade-off 

between the sampling effort and the marginal gain in terms of accuracy of the identification 

on feasible region.  

The algorithm was applied to two different Water Distribution Networks. First, we 

considered a simple network Net1 with one variable speed pump (VSP) and a two-hour 

simulation duration. The result shows the ratio of approximated feasible region volume 

(maintained region) is 37.8%, and ratio of infeasible region (pruned region) is around 60%, 

which leads to a significant reduction of the solution space.  
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To the real network, Abbiategrasso pilot example, after running 5 iterations, while there is 

no feasible region being identify, FSA-PBnB pruned 70% of initial solution space volume. 

To achieve long-term planning as well as short-term (hourly) control of networks, it is 

necessary to do further studies in feasibility measures like Load and Demand. Additionally, 

the dependency between constraints is required to do further investigation to describe the 

working condition of networks more realistic.  

Applying FSA-PBnB with these feasibility measures helps to better understand the 

working conditions in the network with respect to different pump operating conditions. 

From the engineering perspective, results can be integrated with domain knowledge to 

better characterize and design a safe water distribution system.  
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APPENDIX A 

 

MAINTAINED REGIONS OF NET1 
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Region  

indices 

X1_time slot1 X1_time slot2 Lower quantile of 

pressure_distance 

(con1) 

Lower quantile of 

pressure_distance 

(con2) 
1.  [ 0.66666,  0.99999] [ 0.66666,  0.99999]         3.29         1.32 

2.  [ 0.55555,  0.66666] [ 0.66666,  0.99999]         2.18         0.29 

3.  [ 0.77777,  0.88888] [ 0.     ,  0.33333]         4.14         0.2  

4.  [ 0.88888,  0.99999] [ 0.     ,  0.33333]         5.36         1.37 

5.  [ 0.77777,  0.88888] [ 0.33333,  0.66666]         4.29         0.92 

6.  [ 0.88888,  0.99999] [ 0.33333,  0.66666]         5.48         1.86 

7.  [ 0.44444,  0.55555] [ 0.88888,  0.99999]         1.18         0.16 

8.  [ 0.66666,  0.77777] [ 0.44444,  0.55555]         3.29         0.14 

9.  [ 0.66666,  0.77777] [ 0.55555,  0.66666]         3.34         0.68 

10.  [ 0.62963,  0.66667] [ 0.55555,  0.66666]         2.93         0.24 

11.  [ 0.51852,  0.55556] [ 0.77777,  0.88888]         1.9          0.19 

12.  [ 0.74074,  0.77778] [ 0.11111,  0.22222]         4.04         0.02 

13.  [ 0.74074,  0.77778] [ 0.22222,  0.33333]         4.03         0.04 

14.  [ 0.7037 ,  0.74074] [ 0.33333,  0.44444]         3.67         0.16 

15.  [ 0.74074,  0.77778] [ 0.33333,  0.44444]         4.04         0.51 

16.  [ 0.61729,  0.62964] [ 0.55555,  0.66666]         2.84         0.08 

17.  [ 0.50618,  0.51853] [ 0.77777,  0.88888]         1.81         0.02 

18.  [ 0.74074,  0.75309] [ 0.     ,  0.11111]         4.04         0.02 

19.  [ 0.75309,  0.76544] [ 0.     ,  0.11111]         4.16         0.13 

20.  [ 0.76544,  0.77779] [ 0.     ,  0.11111]         4.27         0.25 

21.  [ 0.62963,  0.64198] [ 0.51852,  0.55556]         2.96         0.02 

22.  [ 0.64198,  0.65433] [ 0.48148,  0.51852]         3.07         0.01 

23.  [ 0.64198,  0.65433] [ 0.51852,  0.55556]         3.07         0.15 

24.  [ 0.65433,  0.66668] [ 0.48148,  0.51852]         3.19         0.12 

25.  [ 0.65433,  0.66668] [ 0.51852,  0.55556]         3.18         0.25 

26.  [ 0.58025,  0.5926 ] [ 0.62963,  0.66667]         2.49         0.02 

27.  [ 0.59259,  0.60494] [ 0.62963,  0.66667]         2.61         0.14 

28.  [ 0.60494,  0.61729] [ 0.59259,  0.62963]         2.72         0.09 

29.  [ 0.60494,  0.61729] [ 0.62963,  0.66667]         2.71         0.24 

30.  [ 0.40741,  0.41976] [ 0.96296,  1.     ]         0.95         0.12 

31.  [ 0.41976,  0.43211] [ 0.92592,  0.96296]         1.05         0.02 

32.  [ 0.41976,  0.43211] [ 0.96296,  1.     ]         1.06         0.24 

33.  [ 0.43211,  0.44446] [ 0.92592,  0.96296]         1.16         0.18 

34.  [ 0.43211,  0.44446] [ 0.96296,  1.     ]         1.16         0.41 

35.  [ 0.53087,  0.54322] [ 0.74074,  0.77778]         2.04         0.11 

36.  [ 0.54322,  0.55557] [ 0.7037 ,  0.74074]         2.14         0.   

37.  [ 0.54322,  0.55557] [ 0.74074,  0.77778]         2.16         0.22 

38.  [ 0.46914,  0.48149] [ 0.85185,  0.88889]         1.48         0.1  

39.  [ 0.48148,  0.49383] [ 0.85185,  0.88889]         1.6          0.23 

40.  [ 0.49383,  0.50618] [ 0.81481,  0.85185]         1.71         0.12 

41.  [ 0.49383,  0.50618] [ 0.85185,  0.88889]         1.72         0.36 

42.  [ 0.7037 ,  0.71605] [ 0.2963 ,  0.33334]         3.67         0.07 

43.  [ 0.71605,  0.7284 ] [ 0.2963 ,  0.33334]         3.79         0.19 

44.  [ 0.7284 ,  0.74075] [ 0.25926,  0.2963 ]         3.9          0.03 

45.  [ 0.7284 ,  0.74075] [ 0.2963 ,  0.33334]         3.91         0.31 
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46.  [ 0.67901,  0.69136] [ 0.40741,  0.44445]         3.42         0.07 

47.  [ 0.69136,  0.70371] [ 0.33333,  0.37037]         3.54         0.01 

48.  [ 0.69136,  0.70371] [ 0.37037,  0.40741]         3.55         0.1  

49.  [ 0.69136,  0.70371] [ 0.40741,  0.44445]         3.54         0.2  
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APPENDIX B 

UNDECIDED REGIONS OF ABBIATEGRASSO PILOT NETWORK 
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Region  

indices 

Pump1_time slot1 Pump1_time 

slot2 

Pump2_time slot1 Pump2_time slot2 

1.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.03704,  0.07408] 

2.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.22222,  0.25926] 

3.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.51852,  0.55556] 

4.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.62963,  0.66667] 

5.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.66666,  0.7037 ] 

6.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.7037 ,  0.74074] 

7.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.74074,  0.77778] 

8.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.77777,  0.81481] 

9.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.81481,  0.85185] 

10.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.85185,  0.88889] 

11.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.88888,  0.92592] 

12.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.92592,  0.96296] 

13.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.96296,  1.     ] 

14.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.22222,  0.25926] 

15.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.25926,  0.2963 ] 

16.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.44444,  0.48148] 

17.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.48148,  0.51852] 

18.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.55555,  0.59259] 

19.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.7037 ,  0.74074] 

20.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.74074,  0.77778] 

21.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.77777,  0.81481] 

22.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.81481,  0.85185] 

23.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.85185,  0.88889] 

24.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.88888,  0.92592] 

25.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.92592,  0.96296] 

26.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.96296,  1.     ] 

27.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.     ,  0.03704] 

28.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.11111,  0.14815] 

29.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.18519,  0.22223] 

30.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.22222,  0.25926] 

31.  [0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.2963 ,  0.33334] 

32.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.37037,  0.40741] 

33.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.40741,  0.44445] 

34.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.59259,  0.62963] 

35.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.62963,  0.66667] 

36.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.66666,  0.7037 ] 

37.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.7037 ,  0.74074] 

38.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.74074,  0.77778] 

39.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.77777,  0.81481] 

40.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.81481,  0.85185] 

41.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.85185,  0.88889] 

42.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.88888,  0.92592] 

43.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.92592,  0.96296] 

44.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.     ,  0.33333] [ 0.96296,  1.     ] 

45.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.03704,  0.07408] 

46.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.07408,  0.11112] 
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47.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.11111,  0.14815] 

48.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.25926,  0.2963 ] 

49.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.33333,  0.37037] 

50.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.40741,  0.44445] 

51.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.66666,  0.7037 ] 

52.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.7037 ,  0.74074] 

53.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.74074,  0.77778] 

54.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.77777,  0.81481] 

55.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.81481,  0.85185] 

56.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.85185,  0.88889] 

57.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.88888,  0.92592] 

58.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.92592,  0.96296] 

59.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.33333,  0.66666] [ 0.96296,  1.     ] 

60.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.14815,  0.18519] 

61.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.2963 ,  0.33334] 

62.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.33333,  0.37037] 

63.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.59259,  0.62963] 

64.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.62963,  0.66667] 

65.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.66666,  0.7037 ] 

66.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.7037 ,  0.74074] 

67.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.74074,  0.77778] 

68.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.77777,  0.81481] 

69.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.81481,  0.85185] 

70.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.85185,  0.88889] 

71.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.88888,  0.92592] 

72.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.92592,  0.96296] 

73.  [ 0.66666,  0.99999] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.96296,  1.     ] 

74.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.03704,  0.07408] 

75.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.22222,  0.25926] 

76.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.51852,  0.55556] 

77.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.62963,  0.66667] 

78.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.66666,  0.7037 ] 

79.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.7037 ,  0.74074] 

80.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.74074,  0.77778] 

81.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.77777,  0.81481] 

82.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.81481,  0.85185] 

83.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.85185,  0.88889] 

84.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.88888,  0.92592] 

85.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.92592,  0.96296] 

86.  [ 0.     ,  0.33333] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.96296,  1.     ] 

87.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.22222,  0.25926] 

88.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.25926,  0.2963 ] 

89.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.44444,  0.48148] 

90.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.48148,  0.51852] 

91.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.55555,  0.59259] 

92.  [ 0.33333,  0.66666] [ 0.,  1.] [ 0.66666,  0.99999] [ 0.7037 ,  0.74074] 

 


