
Graph Search as a Feature

in Imperative/Procedural Programming Languages

by

Christopher George Henderson

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2018 by the
Graduate Supervisory Committee:

Ajay Bansal, Chair
Timothy Lindquist

Ruben Acuna

ARIZONA STATE UNIVERSITY

May 2018

i

ABSTRACT

Graph theory is a critical component of computer science and software engineering, with

algorithms concerning graph traversal and comprehension powering much of the largest

problems in both industry and research. Engineers and researchers often have an accurate view

of their target graph, however they struggle to implement a correct, and efficient, search over that

graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we

propose a new programming language construct - the search statement. Given a supra-root

node, a procedure which determines the children of a given parent node, and optional definitions

of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search

over any graph or network. Structurally, this statement is modelled after the common switch

statement and is put into a largely imperative/procedural context to allow for immediate and

intuitive development by most programmers. The Go programming language has been used as a

foundation and proof-of-concept of the search statement. A Go compiler is provided which

implements this construct.

 ii

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. V

DECLARATIVE PROGRAMMING ... 1

Backtracking.. 2

Discovery .. 3

Dynamic Description of a Graph and Separation of Concerns .. 5

REFINEMENT .. 7

Output ... 8

The Lineage Problem .. 8

Children .. 11

A Tree Becomes a Forest .. 13

The First Choice Generator ... 15

FCG Replaces Root .. 17

The Move to a Searching Engine ... 18

Constructing a Webcrawler .. 19

Acceptance and Rejection ... 22

Generalization ... 23

CONSTRUCTION ... 23

Design... 24

Shape and Signature ... 24

Implicit vs Explicit Receivers .. 26

Strong Closures vs OOP ... 29

Function-Like Statement Blocks... 33

Grammar ... 34

 iii

 Page

Transpiler .. 35

The Engine .. 35

Python... 37

Python Closures .. 37

Inlining .. 39

Go ... 40

A Brief Introduction .. 41

Structure, Block Delimiters, and Aesthetics .. 42

Addressing the Type System ... 43

Extraction and Text Processing ... 45

Scoping ... 47

Results .. 48

Compiler ... 49

Abstract Syntax Tree Splicing .. 49

Scoping ... 52

The Type System .. 53

Perfect Hashing ... 55

Keyword Reservation and Toolchain Bootstrapping ... 55

Concurrency .. 56

RESULTS ... 58

Idioms ... 58

Children Generator Goroutines .. 58

An Empty Graph .. 60

Cycle Detection ... 61

Manual Solution Handling .. 63

Breaking Out ... 67

 iv

 Page

Concurrency .. 68

Scalability .. 69

Efficiency... 69

Comparison in Execution Time to Google Optimizations Tools ... 72

Foregoing Solution Construction .. 74

Distributed Computing ... 75

Feature List ... 77

WORKS CITED... 79

APPENDIX A .. 80

APPENDIX B .. 83

 v

LIST OF FIGURES

 Figure Page

1. A is a root which produces B via first. C and D are produced via next. B is a root which

produces E via first. F and G are produced via next. And so on recursively. 6

2. The NQueens visualized with first and next procedures. Calls to first are in red. Calls to

next are in black. .. 9

3. Who are the siblings of the red node? Depending on where we came from, they can

either be the blue nodes [(3, 2), (3, 4), (4, 3)] (came from the right) or the orange nodes

[(2, 2), (2, 4), (1, 3)] (came from the left). We can only know for certain if we know who

the parent was. And even then, it is not simple to generate siblings without a cycle

occurring. ... 10

4. NQueens (1, 1) node generating (2, 1) via first, with the rest of the second column being

generated via next. ... 11

5. NQueens (1, 1) node generating the entire second column as children. 12

6. The only possible first choice to this graph is the node (1, 1) ... 14

7. In the NQueens problem, each first choice of a queen placement generates the next first

choice as a sibling. ... 14

8. A graph search with multiple entry points would have to be executed multiple times as

this is actually a forest. ... 15

9. An FCG followed by no graph. An FCG followed by a single graph. An FCG followed by

multiple graphs. .. 16

10. An FCG connecting all first choices into a single DAG... 16

11. The node (0, 0) is off of the chess board, but it acts as the FCG for the search. 18

12. An AST with a search statement somewhere within the tree.. 50

13. The constructed AST of the search statement engine. .. 51

14. Splicing the completed search statement engine back into the target AST. 52

 vi

 Figure Page

15. An actual trace of the NQueens of 4 problem. Each color represents a different worker

solving a subgraph. Notice how a given worker (orange, red, and green in this case) can

jump around to solve different parts of the graph as they become available................... 57

16. Although it is often avoided, following the cycle from D back to B is not an inherently

illegal maneuver. .. 62

17. A solution has been accepted. The latest node in the solution must now be removed and

the rest of tree considered. ... 65

18. The search of all children have been exhausted. The parent must now also be removed

from the solution. .. 66

19. The NQueens average execution time. ... 70

20. The NQueens average memory allocations... 71

 1

DECLARATIVE PROGRAMMING

Declarative programming languages often ask only of the user that they provide a desire, or goal,

that they wish to achieve. The operational semantics of that goal are out of the user’s hands as

the language’s runtime environment makes decisions that the user is not a part of.

SELECT *
FROM Employee
WHERE name = “Alice”

“Retrieve for me all employees whose name is Alice”. SQL is perhaps the most well known declarative language on the

planet. Exactly how this data is stored or how the system retrieves it is usually of little concern to the user.

That is, declarative languages allow for the easy definition of a goal, however defining how that

goal is reached is often difficult, if not impossible.

Conversely imperative/procedural programming languages allow for the trivial definition of how to

achieve a goal. These languages are stemmed from the tradition of Turing Machines and are the

predominant languages used in both industry and academia. Outside of database management

systems and artificial intelligence research, imperative/procedural languages dominate much of

the world (although functional languages have been making a resurgence). For whatever the

reason may be (whether it be psychological, machine performance, sheer cultural momentum, or

something else altogether) these languages dominate and nearly every new programmer’s first

language is a member of the imperative/procedural family tree.

However, those who delve into the world of declarative programming often emerge with a great

appreciation for the paradigm. They begin to find joy in releasing themselves from the tyranny of

manipulating physical memory and relish the transformation from what was a large, and

questionable, procedure to a collection of small, and trivially true, facts.

 2

If we are to use imperative/procedural languages, can we not adopt particular features from the

declarative paradigm regardless? Afterall, users of imperative/procedural languages rarely argue

for the “purity” of the paradigm. Indeed, the Rust programming language is a systems language

which implements a classic declarative feature - pattern matching. [1] What else could the more

“traditional” languages borrow from the world of declarative programming?

Of the long list list of features commonly found in declarative programming languages, we shall

focus our discussion on automatic backtracking. Ultimately we shall attempt to port automatic

backtracking into an already existing imperative/procedural programming language. Throughout

the discussion we will frequently return to the NQueens [2] problem as the canonical example of a

backtracking problem.

Backtracking

It is clear that it is possible to provide backtracking in a generic, opaque, fashion. Afterall,

backtracking is a feature of the Prolog programming language, which Prolog calls a Proof Search.

[3]

f(a).
f(b).

g(a).
g(b).

h(b).

k(X) :- f(X), g(X), h(X).

Given k(X), Prolog will succeed in unifying f(a) and g(a) but fail to unify h(a). Prolog will then bactrack and attempt to unify

f(b), g(b), and h(b) which all succeed, thus unifying X with b.[3]

What is not clear is whether backtracking can be provided in a more transparent and direct (I.E.

imperative) programming language without burdening the user too greatly. In order to succeed at

this, we must find a quintessential backtracking algorithm. One which can solve any backtracking

problem, yet one whose implementation can be neatly hidden away by a compiler and requires

 3

only minimal information from the user. We discovered a candidate algorithm which asserts the

following.

In order to apply backtracking to a specific class of problems, one must provide the data P for

the particular instance of the problem that is to be solved, and six procedural parameters, root,

reject, accept, first, next, and output. These procedures should take the instance data P as a

parameter and should do the following:

1. root(P): return the partial candidate at the root of the search tree.

2. reject(P,c): return true only if the partial candidate c is not worth completing.

3. accept(P,c): return true if c is a solution of P, and false otherwise.

4. first(P,c): generate the first extension of candidate c.

5. next(P,s): generate the next alternative extension of a candidate, after the extension s.

6. output(P,c): use the solution c of P, as appropriate to the application.

The backtracking algorithm reduces the problem to the call bt(root(P)), where bt is the following

recursive procedure:

procedure bt(c)
 if reject(P,c) then return
 if accept(P,c) then output(P,c)
 s ← first(P,c)
 while s ≠ Λ do

 bt(s)

 s ← next(P,s)

A candidate backtracking engine and interface. [4]

This is a promising candidate. However, it is an assertion and is not trivially true, so first we must

explore the validity of this claim.

Discovery

Our assertion is that, given the six procedures root, reject, accept, first, next, and output that any

backtracking algorithm can be conducted. This is not easy to show outright, so it is useful to first

 4

construct working examples so that the behavior can be observed. We shall accomplish this by

using higher order functions written using Python. We shall also use the NQueens problem as the

canonical example now, and throughout this paper.

def backtrack(P, root, accept, reject, first, next, output):
 if reject(P, root):
 return
 P.append(root)
 if accept(P):
 output(P)
 P.pop()
 return
 s = first(root)
 while s is not None:
 backtrack(P, s, accept, reject, first, next, output)
 s = next(s)
 P.pop()
 s = next(root)
 if s is not None:
 backtrack(P, s, accept, reject, first, next, output)

A higher order procedure implementing a backtracking algorithm.

Immediately we see small differences between the provided pseudo code and the

implementation. Chief among them is that the P data structure, representing the solution thus far,

is being managed by the algorithm itself rather than the userland code (the assumption made

before was that the user managed this structure themselves). Additionally, root is not a procedure

anymore, rather it is a given node that is recursively taken to be the root of a subgraph.

Finally, there is an additional call to the next procedure before the backtracking algorithm

terminates. This is an artifact of our canonical example being the NQueens problem and that the

traditional root for the NQueens problem is the most top-left corner of the board, (1, 1). However,

the root (1, 1) itself has siblings. Namely, (1, 2), (1, 3), (1, ...), and so on down the first column.

This makes the NQueens problem seem more like a forest rather than a directed acyclic graph.

This issue will be addressed further in the First Choice Generator section.

Given our higher order procedure, the following is an encoding of the NQueens of 8 problem.

 5

N = 8

def reject(P, candidate):
 C, R = candidate
 for column, row in P:
 if (R == row or
 C == column or
 R + C == row + column or
 R - C == row - column):
 return True
 return False

def accept(P):
 return len(P) == N

def first(root):
 # Generate the first extension of the root.
 # That is, if we have a placed queen at 1, 1 (column, row)
 # then this should return 2, 1.
 return None if root[0] >= N else (root[0] + 1, 1)

def next(child):
 # Generate the next alternative extension of a candidate,
 # after the extension s.
 # So if first generated (2, 1) then this should produce (2, 2).
 return None if child[1] >= N else (child[0], child[1] + 1)

def output(P):
 print(P)

backtrack([], (1, 1), accept, reject, first, next, output)

Procedure definitions for the NQueens problem with a call to the backtracking engine.

Dynamic Description of a Graph and Separation of Concerns

We must reflect on the semantics of these facts and procedures at a signature level. That is, not

the semantics of the body, which describes a given graph, rather we must understand what the

first, next, accept, and reject procedures are for all graphs. They are, in fact, dynamic descriptions

of a graph.

 6

Figure 1: A is a root which produces B via first. C and D are produced via next. B is a root which produces E via first. F

and G are produced via next. And so on recursively.

first and next are responsible for the dynamic generation of a graph. accept and reject are

consultants on the current state of the solution. Given the ability to request any set of nodes in a

graph, and the ability to consult on the state of a solution, a caller can select to traverse that

graph in any fashion that they desire.

This accomplishes a profound separation of concerns that will serve as the foundation for the

search statement. We shall refer to the caller as the “engine”. We shall refer to the callee as the

“userland”.

The engine need not ever concern itself with the semantics of the graph. To the engine a node-is-

a-node and as long as it is receiving nodes and consultations it can continue its algorithmic work.

 7

The userland need not ever concern itself with the algorithm of the traversal. To the userland, all

that must be done is to provide nodes when requested and consult when the engine believes it

may have come across a solution.

This uncoupling of the graph algorithm and the graph semantics is key to providing a first-class

interface embedded within a language. That is, the algorithm and the semantics are no longer

entangled. Rather they communicate with each other.

let procedure backtrack():
 while algorithm:
 semantics
 if semantics:
 algorithm
 algorithm

Algorithm → Semantics
 Semantics
Algorithm ← Semantics
Algorithm
Algorithm → Semantics

Left: The algorithm and the semantics intertwined with each other. Right: The algorithm and the semantics communicate

with each other, however they never violate each other.

Similar to how a C style for construct separates the exact implementation of a loop from the

user’s desired loop behavior, we can separate the exact implementation of a graph traversal from

the user’s desired graph.

REFINEMENT

Six mandatory pieces of information and procedures from the user is, however, burdensome and

the resulting construct would appear, at best, baroque. In order to make the construct more clear,

concise, and easier to pronounce we shall attempt to identify reductions in tahese requirements.

Namely, we will collapse the first and next procedures into the singular children procedure, we will

make accept and reject optional, and we will eliminate output altogether. Ultimately, we will

identify that we have discovered not only a backtracking engine, but in fact a much more general

searching engine.

 8

Output

We shall eliminate the output procedure altogether. It is unnecessary as any desired “output”

behavior can just as easily be placed within the accept procedure before returning true.

let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 if accept(solution):
 output(solution)
 return

for child ∈ children(root):
 backtrack(child, solution)

let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 if accept(solution):
 return

for child ∈ children(root):
 backtrack(child, solution)

Left: Output as called by the engine. Right: Output is left to the accept procedure to call, if called at all.

let procedure accept(solution):
 if valid(solution):
 output(solution)
 return true
 return false

An example accept procedure which calls output before returning true.

The Lineage Problem

first and next work well for problems where siblings can easily identify each other. Problems such

as the NQueens can be expressed as the appropriate increments of the given node’s current

state.

let procedure first(queen):
 return (queen[0] + 1, 1)

let procedure next(queen):
 if queen[1] + 1 > N:
 return nil
 return (queen[0], queen[1] + 1)

The NQueens first and next procedures readily generating each other.

This works well in code, but is rather unwieldy in representation. A graphical representation of the

NQueens problem, solved using first and next, is what most would consider extremely awkward.

 9

Figure 2: The NQueens visualized with first and next procedures. Calls to first are in red. Calls to next are in black.

Every node produces the first row of the next column as its first, and every node produces the

next row of its own column as its next. What worked so well in code is far from what a

programmer would naturally think of as a natural and reasonable DAG.

However, being unnatural is the least of the concerns for the first and next constructs. Lineage

becomes a very real, non-stylistic, concern for the algorithm. In a problem which has lineage, the

answer to one’s next procedure is dependent upon the ancestry of the given node - any change

in your ancestry changes who your siblings are.

Lineage is not an issue for the NQueens problem. For example, the node at (2, 1) does not

require any specific knowledge of its ancestry in order to produce its siblings - they will always be

[(2, 2), (2, 3), (2, 4)]. Changing the parent of (2,1) to from, say, (1, 1) to (1, 2) will not change this

fact.

 10

However, what about the maze problem? For any given node, its first can be any arbitrary

selection of the four cardinal directions. However, once that first is visited, who are its siblings?

0, 0, 0, 0, 0, 0
1, 1, 0, 0, 0, 0
0, 1, 0, 0, 0, 0
0, 1, 1, 1, 1, 1
0, 1, 0, 1, 0, 0
0, 0, 0, 1, 0, 0

Figure 3: Who are the siblings of the red node? Depending on where we came from, they can either be the blue nodes [(3,

2), (3, 4), (4, 3)] (came from the right) or the orange nodes [(2, 2), (2, 4), (1, 3)] (came from the left). We can only know for

certain if we know who the parent was. And even then, it is not simple to generate siblings without a cycle occurring.

All of the possible siblings of a given node are all of the children of that nodes’ possible parents.

That is, in order to ascertain your siblings, you must at minimum have a notion who your parent

was. However, that is still not enough. If the childrens’ only knowledge is who their parent is, then

the possibility of an infinite loop occurs as siblings begin producing each other with no notion of

who has already been visited. Two immediate solutions to this infinite loop presented themselves.

1). Introduce a visited set that the siblings pass around to each other as they are visited.

2). Introduce an unvisited set that the parent produces and passes off to its first child. The

siblings then proceed to remove themselves from the set as they are discovered.

These solutions introduce cycle detection in the small. Cycle detection in the large (I.E. for the

maze problem as a whole) must still be present. Within using the first/next, either of these

approaches were candidates for becoming idioms for solving similar problems. The second,

unvisited, solution was what we elected to use when first solving such problems that require a

lineage.

This solved the issue at the moment, however it left us unsatisfied. Suddenly the user is no longer

solving their own graph search. Rather they are implementing awkward micro-level cycle

 11

detection that would otherwise never have existed in their original problem if they had just written

their solution from scratch. That is, the first/next construct has made their program significantly

harder to write.

Children

The user provided procedures describes the graph while the underlying engine solves the graph

in a black-box manner. That is, the root procedure describes where to start, accept and reject

describe where to stop, and first and next describe how to walk the graph.

Figure 4: NQueens (1, 1) node generating (2, 1) via first, with the rest of the second column being generated via next.

We have identified that using first/next to walk a graph is, at best, conceptually awkward and at

worst difficult in implementation. However, the key observation is not in how first/next are

describing a graph, but rather that it is describing a graph. As such, is there a better, more

natural, way to describe any graph?

Parent-child relationships are the classical way of thinking about directed graphs. The concept

can even be used ephemerally on non-directed graphs (the current node being visited could be

thought of as being the parent, with any other nodes connected by vertices being children - the

moment any of the children are visited, the visited child becomes the parent and the parent

becomes a child).

let V be the set of all vertices

 12

let E be the set of all edges
let G = {V, E}
let procedure Connected(Edge, Parent, Child) ->
 true ↔ Edge = (Parent, Child)
let procedure Children(G, Parent) ->
 {Child: Child ∈ V ⋀ ∃Edge ∈ G.E Connected(Edge, Parent, Child)}
let procedure Walk(G, Root) ->
 for each Child ∈ Children(G, Root)
 walk(G, Child)

Psuedo code of a the walking of a DAG.

The above is a classical Depth-First Search, sans cycle detection. Since cycles are not

necessarily present for any and all graphs, cycle detection is left to the user to define as desired.

procedure DFS(G,v):
 label v as discovered
 for all edges from v to w in G.adjacentEdges(v) do
 if vertex w is not labeled as discovered then
 recursively call DFS(G,w)

Psuedo code of a Depth-First Search. [5]

Swapping out first/next for children has not only made our representations more natural, but it is

has made the engine verifiable.

Figure 5: NQueens (1, 1) node generating the entire second column as children.

It is trivially true that, given a procedure that can return a list of children of a given node, an

engine can perform a walk of that graph in any fashion that it desires.

let procedure DFS(parent):
 ….

for child ∈ children(parent):

 13

 DFS(child)
 …

let procedure BFS(parent):
 while len(queue) is not 0:

 ….
 parent = get(queue)

for child ∈ children(parent):
 put(queue, child)
 ...

Psuedo code of a DFS and BFS with no cycle detection.

From hereon, we will abandon the use of the first and next procedures in favor of the children

procedure. Our engine is now:

let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 if accept(solution):
 return

for child ∈ children(root):
 backtrack(child, solution)

backtrack(root(G), ())

Psuedo code of the backtracking engine with the children procedure replace the first and next procedures.

We are down from six mandatory procedures to five.

A Tree Becomes a Forest
The move to the children procedure has an interesting affect on how the graph search is

initialized. Previously, with the first and next procedures, the user provided root was responsible

for generating its siblings.

Graphs which have only one possible first choice look, relatively speaking, natural.

 14

Figure 6: The only possible first choice to this graph is the node (1, 1)

There is only one possible starting point for the graph search, and therefore only one possible

root. However, for searches that have multiple possible entry points, the graph becomes

trapezoidal.

Figure 7: In the NQueens problem, each first choice of a queen placement generates the next first choice as a sibling.

This is strange, but workable. However, with the move to the children procedure, the above

graphs transforms from a trapezoidal DAG into a forest.

 15

Figure 8: A graph search with multiple entry points would have to be executed multiple times as this is actually a forest.

The nodes at level zero can no longer generate each other. As such, for the NQueens problem, a

search for a solution that starts with a queen at (1, 1) is separate from a search for a solution that

starts with a queen at (1, 2).

This problem presents itself frequently. When coloring a map, which U.S. state do we start from?

When solving a maze, there may be multiple entries, which entry do we start from?

It is certainly possible to run this search in a loop, where each iteration of the loop generates the

next root node to search from. This solution, however, was unsatisfactory. These problems are

rarely thought of as being forests, so it is inappropriate to treat them as such. What we need

instead is a node which represents the point from which no choice has yet been made.

The First Choice Generator

Every graph has, external to the universe of the graph itself, a node which selects all of the

possible first choices of that graph. It is the node from which no choices have yet been made. We

will call this node the First Choice Generator (FCG). The FCG is not a member of the graph itself

nor will it ever be a member of the solution to a particular search. The FCG acts solely as an

oracle which informs the algorithm of all possible starting points for a given search. The definition

of the FCG and its graphs is the following recurrence relationship:

 16

1. A FCG is followed by zero or more graphs.

2. A graph is a node followed by zero or more graphs.

Figure 9: An FCG followed by no graph. An FCG followed by a single graph. An FCG followed by multiple graphs.

Using an FCG, we can connect the supposed NQueens forest into a single tree.

Figure 10: An FCG connecting all first choices into a single DAG.

 17

All parents generate their children, and all possible first placements of a queen are connected into

a single tree using an FCG. At last, the NQueens problem looks natural.

FCG Replaces Root

The use of an FCG obviates the presence of the root procedure. The FCG has as its children all

possible starting points of the graph search. That is, rather than provide a procedure which

accepts a graph and returns a root, the FCG can be given as a naturally occuring parent node to

the children procedure.

If the children procedure for the NQueens problem is defined as follows:

N = 8
let procedure children(parent):
 let l list
 let column = parent[0] + 1
 for row 1...N:
 append(L, (column, row))
 return l

Example children procedure accepting an FCG and producing all first choices for a graph search.

Then all first choices of the NQueens problem can be generated by the call children((0, 0)).

 18

Figure 11: The node (0, 0) is off of the chess board, but it acts as the FCG for the search.

Our definition of the backtrack procedure remains the same. What changes is our call to the

procedure.

let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 if accept(solution):
 return

for child ∈ children(root):
 backtrack(child, solution)

backtrack((0, 0), ())

A call to the backtracking engine providing an FCG in lieu of a root node.

We are down from four mandatory procedures to three.

The Move to a Searching Engine
Up to this point we have been discussing a subset of graph search algorithms - backtracking. We

have given mention to several different, or more broad, class of algorithms such as DFS and

BFS, however backtracking has remained our focus thus far. Let us discuss how we might

generalize our previous discoveries into a more universal searching engine.

 19

During the course of the research, we came across several example problems whose accept and

reject procedures were either empty (hardcoded to return false) or were completely arbitrary in

their presence (E.G. setting a maximum depth or width, just to ensure that the program halted in

a timely fashion). This led us to consider why these problems appeared to be ambivalent to the

accept and reject procedures and whether the results had consequences for our engine. One of

the most demonstrative examples was a simple webcrawler.

Constructing a Webcrawler

Let us consider a simple webcrawler. The world wide web is a colossal, directed, often cyclic

graph of named nodes - a network. The network is alive, meaning that it is growing or, less

commonly, shrinking even as you are reading this. Our little webcrawler would like to capture a

snapshot of at least some small portion of the web as it currently is.

Traditional webcrawler technology describes a seed page, an extraction routine, a frontier of

candidate pages, and a database to store results in. Although you will likely select a select a seed

page that is conducive to mining the topic you are interested in (E.G. Olympic curling), any web

page will do. The extraction routine is any procedure that can download, parse, and extract

outgoing links from the page. The frontier is any data structure that can aggregate candidate

links, what exactly this data structure is is dependent on what type of search you wish to conduct.

The database is irrelevant to this discussion. Although irrelevant to this discussion, you will likely

also want some sort of cycle detection (pages often have a banner that link back to itself).

Let us decide that our webcrawler will conduct itself in a DFS manner, and thus our frontier must

be a stack. We will implement this stack implicitly using function calls recursively.

let procedure extraction(seed, database):
content = download(seed)
put(database, content)
links = parse_hrefs(content)

 20

return links

let procedure crawl(seed, database):
 for link ∈ extraction(seed, database):
 crawl(link, database)

A simple webcrawler. Procedures that can write to a database and parse all HREFs from an HTML document are

assumed to be available.

Considering the depth, breadth, and growth rate of the web the crawl procedure is unlikely to

terminate on its own. Indeed, server maintenance, power outages, and stack overflows are far

more likely culprits. Effectively, we can say that this algorithm does not halt.

But what if we did want it to halt? One solution is to introduce a maximum search depth:

let depth = 0
let max_depth = 1000

let procedure extraction(seed, database):

content = download(seed)
put(database, content)
links = parse_hrefs(content)
depth++
return links

let procedure crawl(seed, database):
 if depth >= max_depth:
 return
 for link ∈ extraction(seed, database):
 crawl(link, database)

A webcrawler limited to a maximum depth and width.

Another way to limit the search is to set a domain restriction. Crawling a single domain is a much

more tractable problem than crawling the entirety of the web, so it at least has a chance of

halting.

let root_domain = us.olympiccurling.org

let procedure crawl(seed, database):
 if domain_of(seed) != root_domain:
 return
 for link ∈ extraction(seed, database):

 21

 crawl(link, database)
A webcrawler with a domain restriction. It shall never leave the seed’s host domain.

We can combine these two strategies to construct a webcrawler that will only search to a

maximum depth on a single domain.

let procedure crawl(seed, database):
 if domain_of(seed) != root_domain:
 return
 if depth >= max_depth:
 return
 for link ∈ extraction(seed, database):
 crawl(link, database)

A webcrawler limited to the seed’s host domain as well as to a maximum depth and width.

The non-halting crawl procedure is simply a renamed DFS.

let procedure crawl(seed, database):
 for link ∈ extraction(seed, database):
 crawl(link, database)

let procedure DFS(root, solution):
for child ∈ children(root):
 DFS(child, solution)

A webcrawler which never halts is merely a DFS that stores its result in a database.

The halting crawl procedure is a type of backtracking DFS where we accept a solution if we have

reached maximum depth, and we reject if we are attempting to leave the root domain.

let procedure crawl(seed, database):
 if domain_of(seed) != root_domain:
 return
 if depth >= max_depth:
 return
 for link ∈ extraction(seed, database):
 crawl(link, database)

let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 if accept(solution):
 return
 for child ∈ children(root):
 backtrack(child, solution)

A domain and depth limited webcrawler is very similar to the outline of the backtracking engine.

Either, both, or neither of the crawler’s reject and accept branches may be present. They are

informative of desired stopping points, but they are not required for the webcrawler to function.

And, in fact, with neither reject nor accept present the webcrawler becomes a simple DFS over

the web, starting from a seed page.

 22

The removal of the reject and accept procedures from our backtracking engine produces the

same result - the transition from a backtracking algorithm to a pure DFS.

let procedure backtrack(root, solution):
 for child ∈ backtrack(root):
 backtrack(child, solution)

let procedure DFS(root, solution):
for child ∈ children(root):
 DFS(child, solution)

Side-by-side of a backtracking engine with no accept nor reject, and a DFS procedure.

Acceptance and Rejection
This spawns the realization that the reject and accept procedures are optional. When neither are

present, the engine becomes a traditional DFS. When both are present, the engine becomes a

traditional backtracking algorithm. When either/or are present, the engine becomes a

backtracking algorithm that will never accept/reject.

Search
Engine

Reject No reject

Accept let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 if accept(solution):
 return
 for child ∈ children(root):
 backtrack(child, solution)

let procedure backtrack(root, solution):
 if accept(solution):
 return
 for child ∈ children(root):
 backtrack(child, solution)

No Accept let procedure backtrack(root, solution):
 if reject(root, solution):
 return
 for child ∈ children(root):
 backtrack(child, solution)

let procedure backtrack(root, solution):
 for child ∈ children(root):
 backtrack(child, solution)

Different implementations of a webcrawler based on different halting criteria.

Applied to our webcrawler, the semantics of the above table are:

Webcrawler Reject No Reject

Accept Search through only
the root domain,
only up to a
certain maximum
depth.

Search only up to a
certain maximum depth.

No Accept Search through only
the root domain.

Search the web.

Different semantics of a webcrawler based on different halting criteria.

All of these semantics are correct. Therefore the reject and accept procedures are optional.

 23

Generalization
This generalizes our construct, allowing for the à la carte implicit selection of a generic DFS or

one of three different types of backtracking. This changes the engine in two ways - the renaming

of the engine from backtrack to search and the removal of the mandatory requirement of a reject

and accept procedure.

The engine is now as follows. Optional blocks are notated in brackets.

let procedure search(root, solution):
 [if reject(root, solution):
 return]
 [if accept(solution):
 return]

for child ∈ children(root):
 search(child, solution)

Psuedo code of the search engine. Blocks encased in brackets are optional.

We are down from three mandatory procedures to one.

CONSTRUCTION

We have thus far shown that a generalized search algorithm can indeed be compressed to a

small, ergonomic, signature - provided an FCG and a procedure that, given a node, can return all

children of that node, a graph search can be conducted in a DFS manner. Given additional

procedures that define a success state and a failure state, the search can be pared back to a

backtracking algorithm. Many of our examples and demonstrations thus far have been

accomplished through either psuedo-code or the use of a higher order function implemented in

Python. Our challenge now is in the implementation of this feature, embedded within a

imperative/procedural programming language.

Up until now many implementation details have been ignored in favor of talking about general

graph definitions and recurrence relationships. This does not mean that the proposed engine is

not without technical nuance. This chapter promises to bring these topics to light. This includes

 24

construction and management of the solution data structure, stack management, userland

isolation, concurrency, type information, and so on.

Our goal is to demonstrate our keyword in a fully functional, and feature rich, programming

language, primarily of the imperative/procedural tradition. While we could have constructed a new

language built around our core concept, however time and scope simply did not allow for it. As

such, we instead chose to embed the new feature in an existing programming language. The

target language was initially Python, but quickly shifted to Go.

Design

Shape and Signature

Our goal is to inject this construct into a procedural/imperative programming language in such a

way that it flows naturally, and well, with its host language. Factors to that goal are the general

aesthetics, relatability, and consistency that the construct conveys to users of the language. Any

difficulty in learning the construct must stem from understanding the underlying problem and not

from confusion, or forgetfulness, caused by the syntax.

As previously stated, the two pieces of information required to conduct even the most bare

minimum search are a first choice generator and a children procedure. The importance of these

directives led to us to investigate their use as the search signature.

Backtrack DFS

search FCG; children:
 accept:
 …
 reject:
 …

search FCG; children:
 {empty}

A backtrack and a DFS.

That is:

 25

search <expression>; <procedure_name>:
 [<procedure_name>]:
 <body>
 [<procedure_name>]:
 <body>

Search statement grammar.

.

This appears good until we begin to think on how to associate a <body> with the children

procedure. Assuming that we are within a language with first class functions we can simply

provide a name to a target procedure which as already been declared within scope.

let procedure NQueensChildren(parent):
 …

search Queen{0, 0}; NQueensChildren:
 accept:
 …
 reject:
 …

Search statement accepting first class functions as a signature paramter.

This, however, quickly becomes burdensome as the user is required to frequently declare

closures or to declare the procedure elsewhere in their code. This defeats the desire for

immediacy as well as the lack of ceremony that the research is attempting to reach. It may be

possible, however, to declare the procedure body within the search signature as a lambda.

search Queen{0, 0}; procedure(parent):
 {…}

 :
 accept:
 …
 reject:
 …

Children procedure defined in the signature as a limbda.

This solution, however, introductions three different levels of indentation in a straddled,

uncommon, and very unnatural fashion.

 26

….
 ….

 ….
The three levels of indentation.

It does, however, provide us with our desired immediacy. That is, it satisfies our desire to simply

state the procedure as locally as possible. We find that if we simply place the children procedure

with its peers that immediacy is maintained while simultaneously correcting the indentation issue.

Backtrack DFS

search FCG:
 children:
 …
 accept:
 …
 reject:
 …

search FCG:
 children:
 …

A backtrack and DFS example with the children procedure moved to the body of the search statement.

Implicit vs Explicit Receivers
In object-oriented programming, the issue of an implicit reciever versus explicit receiver is the

discussion of whether or not the programmer must explicitly declare, and name, the instance

bound to a given method, or if the instance magically appears within the method’s scope at some

predefined, and unchangeable, name.

Python Go

class person(object):
 …

 def walk(self, distance):
 …

type Person struct {}

func (p *Person) walk(distance int) {
 ...
}

Python and Go using explicit receivers.

In Python, the first formal parameter must always be the instance bound to that method. Naming

the receiver self is merely convention, it can be named anything. Similarly, in Go, all methods are

 27

prefaced with the type and name of instance bound to that method. Again, naming the receiver as

the first letter of the type is simply convention and nothing more.

Java C++

public class Person {
 …
 void walk(int distance) {
 …
 }
}

class Person {
 …
 void walk(int distance) {
 …
 }
}

Java and C++ using implicit receivers.

In both Java and in C++ the individual programmer does not name the receiver to the method.

Rather they implicitly receive within their local namespace the object named this. The name of

which cannot be changed.

The decision between the two is one borne of style, philosophy, and frankly personal preference

and it is one that we must make for our search construct.

Explicit Implicit

search FCG:
 children(parent):
 …
 accept(solution):
 …
 reject(candidate, solution):
 …

search FCG:
 children:
 …
 accept:
 …
 reject:
 …

Comparison of explicit and implicit receivers in the search statement.

In the case of the explicit receiver the programmer is responsible for naming each parameter of

each procedure. The benefit to this approach is that the programmer is explicitly aware of the

objects available to them within their scope. Additionally, the programmer may chose to name the

parameters to something more descriptive to their business logic. The construct, however, is

verbose and perhaps burdensome.

 28

In the case of the implicit receiver the programmer receives magical object references within each

procedure. This has the benefit of making the code appear cleaner, more organized, and

consistent. All of that at the cost of having “magic” in the code which requires the programmer to

simply be in the know that they are receiving these object references.

While our research attempted to maintain the general style and flow of our candidate language, it

was not our goal to carry the torch of that language. That is, despite whatever the candidate

language’s opinion is on the matter, our decision was to be irrespective of that opinion.

As such, we elected for the use of implicit receivers. Specifically, the parameters shall always be

named node and solution.

The name solution was chosen merely at a whim, as it is both descriptive and intuitive, albeit

relatively long for a mandatory name. The name node, however, required forethought. Two of our

procedures refer to some object within their bodies that is representative of a node in the graph.

In one context, the object is semantically the parent node being visited. In the other, the object is

a candidate node that may, or may not, be rejected. From the outset, we named these two

parameters parent and candidate in their respective blocks. However, remembering two different,

mandatory, names became burdensome, even on the very creators of the construct itself. We

shifted to the shared name, node, upon reflection of the common name, this. The use of the

name this in Java and C++ is accepting that it is non-descriptive of the business logic, however it

is very descriptive of what it is in the context of the language - it is the self-referential object. node

is similar in that it does not describe the context of the object in the business logic, but instead

recognizes that the object is just some node within the graph.

 29

This discussion on implicit versus explicit receivers, as well as their names, is largely stylistic,

philosophical, and psychological. The decisions made in this section have no technical bearing on

the research itself and we provide no proof nor study on the effects of these decisions.

Strong Closures vs OOP

The venerable master Qc Na was walking with his student, Anton. Hoping to

prompt the master into a discussion, Anton said "Master, I have heard that

objects are a very good thing - is this true?" Qc Na looked pityingly at

his student and replied, "Foolish pupil - objects are merely a poor man's

closures."

Chastised, Anton took his leave from his master and returned to his cell,

intent on studying closures. He carefully read the entire "Lambda: The

Ultimate..." series of papers and its cousins, and implemented a small

Scheme interpreter with a closure-based object system. He learned much, and

looked forward to informing his master of his progress.

On his next walk with Qc Na, Anton attempted to impress his master by

saying "Master, I have diligently studied the matter, and now understand

that objects are truly a poor man's closures." Qc Na responded by hitting

Anton with his stick, saying "When will you learn? Closures are a poor man's

object." At that moment, Anton became enlightened. [6]

A stated goal of the research is to insert this feature into a primarily imperative/procedural

programming paradigm. The reason for this is to showcase it as a first class feature of the

language, and not merely a linear combination of extant features. We also wanted the ability to

 30

say immediately, and with little ceremony, exactly what one wanted to say about their target

graph.

For theses reason OOP languages, in particular Java, were avoided. The proclivity to use the

interface and class keywords to solve all problems would have led to something akin to the

following.

public abstract class Backtracker {
 ...
}
public class NQueens extends Backtracker {
 ...
}
ArrayList<ArrayList<Queen>> solutionList = new ArrayList<ArrayList<Queen>>();
new NQueens(8, solutionList, new Queen(0, 0)).backtrack();

A skeleton of a Bactracker class and implementation in an object oriented fashion.

In fact, from outset of the research when Java was being considered as a target language, the

PoC code looked very similar to the above example.

While this is not unattractive, it is hardly ergonomic. A similar construct that faces this problem is

the common for...each style of looping. In many older, or OOP, languages this is solved by an

iterator pattern.

Iter iter = container.iter();
while (iter.HasNext()) {
 ...
}

An iterator pattern.

A perfectly reasonable solution. However most modern languages choose to make an iterator a

core feature of the language.

Python for index, obj in enumerate(container):
 ...

Go for index, obj := range container {
 ...

 31

}

Rust for (index, obj) in container.enumerate() {
 ...
}

The iterator pattern implemented by the language in Python, Go, and Rust.

A built in iterator pattern may not afford the user any additional power over the iterator pattern,

however it is compact, intuitive to say, and consistent throughout the entire use of the language

(I.E. not in peril of individual developers slightly modifying the contract due to personal taste).

These are the traits that we desired in the search construct.

However, there is state involved. Or rather, a context is involved with each graph search. OOP is

well known, indeed designed for, handling state well. Let’s look again at the construction of the

NQueens problem in an OOP fashion.

new NQueens(8, solutionList, new Queen(0, 0)).backtrack();
A call to the object oriented NQueens backtrack implementation.

The first argument to the constructor of the NQueens class is the size of the problem, in this case

eight. The second argument is a resizable array. Presumably, after execution of bactrack, this list

will contain all computed solutions to the NQueens problem. This collection could not be given to

the backtrack method because the base class does not allow for that particular signature.

Alternatively, the NQueens class could assume the desire for this list of solutions and allocate the

list within its own constructor. Or the NQueens class could offer a constructor that does not

aggregate solutions at all, choosing instead to visit each solution and throw it away.

NQueens
as OOP

Given Constructed

Aggregate new NQueens(8, solutionList, new
Queen(0, 0)).backtrack();

new NQueens(8, true, new Queen(0,
0)).backtrack();

Do Not new NQueens(8, null, new Queen(0,
0)).backtrack();

new NQueens(8, false, new
Queen(0, 0)).backtrack();

 32

Aggregate

Different ways to construct and call the NQueens problem in an object oriented fashion.

Already, quite a bit of decision making and style enforcement are occurring just to answer the

question of how to persist the solutions to the question. One could imagine further design

patterns that may aid in this problem.

Now let us consider the same question using a nested procedure with access to its most local

state, I.E. a closure.

Aggregate Do Not Aggregate

N = 8
solutions = list()
search Queen(0, 0):
 children:
 …
 accept:
 if len(solution) == N:
 append(solutions, solution)
 return True
 return False
 reject:
 …

N = 8
search Queen(0, 0):
 children:
 …
 accept:
 return len(solution) == N
 reject:
 …

Using a closure, how to aggregate solutions and where the data resides is obivous.

There is one, obvious, and non-controversial way to accomplish the task. Anything more would

likely be derided during a code review as being over-engineered.

Indeed, the ability to inject state into the behavior with little ceremony was a boon to this very

research. Many of the traces and visualizations provided in the Results were built simply by

capturing a local reference to a file object and constructing a valid dot file on the fly from within

the search algorithm.

 33

Function-Like Statement Blocks
During the design phase it was an option that our user provided procedures follow an expression-

oriented paradigm, similar to that of the Rust programming language, or as seen in Ruby’s implicit

return.

fn main() {
 let x = 5u32;

let y = {
let x_squared = x * x;
let x_cube = x_squared * x;
// This expression will be assigned to `y`
x_cube + x_squared + x

};
}

Example Rust code showcasing assignment from a code block. [7]

This would facilitate a more declarative style of procedure. Consider the following examples

which show an accept whose body is written as though it were a function and one that is written

in an expression-oriented fashion, I.E. it’s final expression is returned as the final value for block.

Procedural Expressional

accept:
 return len(solution) == N

accept:
len(solution) == N

Explicit return versus implicit final expression return.

The second, expression-oriented, piece of code feels natural and is easy to pronounce. “This

graph search is accepted if the number of accepted nodes is N”. The first, function-like, piece of

code is not unnatural, per se, but it does beg the question of why we are saying the word return

outside of a function body.

It was our preference that these blocks take the expression-oriented route, as we personally

found it to be more expressive. However, none of the candidate target languages supported this

type of implicit return. Adding this feature to the target language was deemed out scope of the

research, both in terms of time and in reach.

 34

As such, the function-like syntax was adopted for the final compiler. In fact, as is touched upon in

the Compiler section these user provided blocks of code get inserted into a function node of the

target abstract syntax tree. Therefor, they look and act like functions because they are, indeed,

functions.

Grammar
Finally, we propose the following construct for implementation in an imperative/procedural

programming language in Extended Backus-Naur Form.

StmtBlock = Inherited from the parent language;
SearchStmt = “search”, expression, “:”, SearchBlock;
SearchBlock = ChildrenBlock | ChildrenBlock, RejectBlock |
RejectBlock, ChildrenBlock | ChildrenBlock, AcceptBlock | AcceptBlock,
ChildrenBlock | ChildrenBlock, AcceptBlock, RejectBlock |
ChildrenBlock, RejectBlock, AcceptBlock | RejectBlock, ChildrenBlock,
AcceptBlock | RejectBlock, AcceptBlock, ChildrenBlock | AcceptBlock,
RejectBlock, ChildrenBlock | AcceptBlock, ChildrenBlock, Rejectblock;
ChildrenBlock = “children”, “:”, StmtBlock;
AcceptBlock = “accept”, “:”, StmtBlock;
RejectBlock = “reject”, “:”, StmtBlock;

EBNF of the search statement.

The following is an example NQueens of 8 solution solved using the above grammar.

N = 8
search Queen(0, 0):
 children:
 for row in range(1, N+1):
 yield Queen(node.Column + 1, row)
 reject:
 for queen in solution:
 if (node.row == queen.row or
 node.column == queen.column or
 node.row + node.column == queen.row + queen.column
 node.row - node.column == queen.row - queen.colum):
 return True
 return False
 accept:
 return len(solution) == N

Example NQueens solution.

 35

This grammar, and the provided example, will change gradually as we implement it into extant

language - technical difficulties and style matching come into play. However, it is representative

of our current goal.

Transpiler

Transcription from a source language to another, already well established, target source

language is a common practice for prototyping emergent programming languages. The very first

Go programs where transpiled into C before being compiled into an executable. [8] The very first

C++ compiler, CFront, depended heavily on translations into C. [9] As a proof of concept, we will

do likewise for the search construct.

The target output of this transpiler is intended to be a quickly constructed proof-of-concept only.

In fact, the implementation of the transpiler has several technical limitations. This includes the

inability to rearrange the order of the children, accept, and reject procedures as well as the

inability to recursively define a search within a search. These limitations are an artifact of the

transpiler implementation and not of the construct itself. In fact, these limitations naturally fade

away once properly implemented in a compiler.

The Engine
The following is psuedo code of our target implementation. It will be our goal to transliterate this

these semantics into a target programming language.

// User definitions //
//////////////////////
let root = FCG
// Our user provided procedures. children is a mandatory
// procedure, and thus can always be assumed to be present.
// If either the reject or accept procedures are left out by
// the user, then these procedures default to returning
// false in all scenarios (I.E. if no subtree is either rejected
// nor accepted, then a full DFS is conducted).
let USER_children function(node, solution) → iterable
let USER_reject function(node, solution) → boolean if provided : false
let USER_accept function(node, solution) → boolean if provided : false

 36

// Supplemental procedures //
///////////////////////////
// next implements the iterator pattern.
// Returns null on an empty iterator.
let next function(iterable) → node : null
// len implements finding the length of an iterable.
let len function(iterable) → integer
// pop implements a pop from a stack. It is safe
// in that a pop from an empty stack returns null.
let pop function(iterable) → type : null
// push implements the push to a stack.
let push function(iterable, type)

// Engine initialization //
///////////////////////////
let children iterable<node>
let candidate node
let stack list<(node, iterable<node>)>
let solution list<node>

children = USER_children(root, solution)
while true:
 candidate = next(children)
 if candidate == null:
 if len(stack) == 0:

 // Engine termination.
// No further items in the stack, thus
// all possible subtrees have been considered.

 break
 // Remove the most recently accepted node
 // from the solution. This will be the parent whose
 // children are currently under consideration.
 pop(solution)
 // Select the last known good sub-tree by popping
 // from the stack.
 root, children = pop(stack)
 continue
 reject = USER_reject(candidate, solution)
 if reject:
 // candidate node rejected out-of-hand. There is no need
 // for data structure updates as rejection is checked
 // before stack or solution manipulation.
 continue
 // If a candidate is not rejected then it is a member
 // of a potential solution.
 push(solution, candidate)
 accept = USER_accept(candidate, solution)
 if accept:
 // If a solution is accepted, then remove it

// from the solution and continue to search for more solutions.
 pop(solution)
 continue
 // Push the current root and its children to the stack
 // for future consideration.
 push(stack, (root, children))
 // Recurse the structure by making the candidate the
 // new root and receiving its children iterable.
 root = candidate
 children = USER_children(root)

Implementation psuedo code of the search statement engine.

 37

Python
Much of our executable code examples written during the discovery phase were in Python. This

was due to a combination of a strong support for imperative/procedural programming, first class

functions in order to facilitate a higher order function, a lack of type checking which allowed for

rapid prototyping, and the general familiarity and comfort that the authors had with the language.

As such, it was natural that Python was the first target language of choice.

However, ultimately, Python was not chosen as the final target language. For the sake of

thoroughness and understanding, this section will attempt to explain how Python was discovered

to be inappropriate for our uses.

Python Closures
In Python closures are weak. That is to say, data that is captured by a closure is read only.

def curryIncrementedAdd(left):
 # Adds left to right, then increments
 # left for the next call to the procedure.
 def closure(right):
 ret = left + right
 left += 1 # illegal write
 return ret
 return closure

add = curryIncrementedAdd(5)
print(add(4))

>> UnboundLocalError: local variable 'left' referenced before
assignment

Weak closures in Python disallow for writes to the closed data.

A stated goal of the research was to give the user provided procedures natural, and powerful,

scoping rules. Clearly, simply translating these procedures into Python closures will not work. We

do, however, have recourse available to us. Python provides the builtin functions, globals and

locals, which return a reference to the dictionary used by the Python interpreter to handle global

and local scoping. As such, it is possible to pass, as an argument to a subroutine, a reference to

one’s local variables.

 38

def caller(name):
 callee(locals())

def callee(l):
 print(“callee:“, l["name"])

caller("Guido")

>> callee: Guido

Referring to a name local to the parent caller.

However, updates to this dictionary do not take effect in the parent routine.

def caller(name):
 callee(locals())
 print(“caller”, name)

def callee(l):
 print("callee:", l["name"])
 l["name"] = "Van Rossum"
 print("callee:", l["name"])

caller("Guido")

>> callee: Guido
>> callee: Van Rossum
>> caller: Guido

Writes to the passed namespace do not reflect in the parent caller.

In addition, the names passed to the subroutine are not available in the subroutine as bare

names, I.E. they must be referred to via a dictionary lookup.

There is one further option available to us - a technique wherein we use the builtin exec function

to execute an arbitrary string as code, which allows us to do consequent updates to the local

namespace, thus allowing us to refer to bare names.

def caller(name):
 callee(locals())
 print("caller:", name)

def callee(l):
 exec ("") in locals(); locals().update(l)
 print("callee:", name)

 39

caller("Guido")

>> callee: Guido
>> caller: Guido

Referring to a bare name local to the parent caller.

However, name is once again read only in the callee namespace. Additionally, this technique only

works with Python 2 - support for it is broken in Python 3.

Already, the complexity and instability of this technique has far exceeded the tolerable threshold

for this research. As such, further extrapolation of the idea was abandoned.

Inlining

A second option was to inline the user provided code into the engine. That is, replace every call

of a user provided procedure with a block of actual code.

Source Inlined

accept:
return len(solution) == N

accept = false
Enter user land.
accept = len(solution) == N
Exit user land.

 The accept block transpiled to inline code.

We simply replace return statements with assignments. However, this completely breaks down in

the presence of multiple, or early, returns.

Source Inlined

accept:
 if len(solution) == N:
 print(solution)
 return True
 return False

accept = false
Enter user land.
 if len(solution) == N:
 print(solution)
 accept = True
 accept = False
Exit user land.

Early returns cause incorrect semantics while inlining code.

 40

In the provided case, the accept block will never result in a final assignment to True. This is an

artifact of the fact that a return is a type of tightly controlled goto statement. In order to achieve its

equivalent we require access to the same functionality as a goto.

Source Inlined

accept:
 if len(solution) == n:
 print(solution)
 return True
 return False

accept = false
Enter user land.
 if len(solution) == N:
 print(solution)
 accept = True
 goto END_ACCEPT
 accept == False
 goto END_ACCEPT
Exit user land.
label END_ACCEPT

In order to facilitate early returns in inlined code, we must have access to a goto-like construct.

This, however, is not possible in pure Python. It may be possible to modify a given Python

interpreter to accommodate this, however the point of a transpiler is to rapidly prototype a proof-

of-concept before taking on more complicated work on a compiler or interpreter. As such, such an

avenue was deemed inappropriate.

The failures to inject user provided code as either a closure or as an inlined block led us to

quickly abandon the use of Python. In its place is a pivot to the Go programming language.

Go

We will attempt to pivot quickly away from Python and instead into the Go programming

language.

Go (commonly referred to as Golang in order to prevent confusion with the popular board game

as well as to yield more relevant results in search engines) is a statically typed, statically linked,

garbage collected, concurrent, imperative/procedural programming languages with support for

functional programming as well as a bare-bones OOP.

 41

Go has several characteristics that were very conducive to this research. The stated issues that

we had with Python do not apply to Go as Go has both strong closures as well as a, not often

encouraged, goto and label system - we could realistically chose to do either-or. It is primarily an

imperative/procedural programming language which makes it fit in well with the desires of the

research, while simultaneously supporting OOP just enough that a comfortable amount of

convenience is provided without being too distracting. It is also an incredibly small language

(relative to a language such as C++). In fact, it has such few features that the addition of a search

statement yields fairly predictable interactions with the language’s extant features.

Finally, the Go compiler is written in Go and the authors are intimately familiar with programming

in Go. Meanwhile, the authors are not particularly experienced in working with very large C

projects, such as the CPython interpreter. This familiarity made the future task of compiler

modification a much more tractable problem within the time constraints of the research.

A Brief Introduction

At the time of writing, Go is a new enough programming language that we believe that it is

worthwhile to very briefly explain at least several key concepts and terminology that will be

required to continue on.

1. Functions are first class.

2. Lambdas are assignable to variables.

3. A slice is a built in, resizable, linear collection.

4. A goroutine is a lightweight thread managed by the Go runtime.

5. A chan is a reader/writer queue used for communication and, optionally, synchronization

between goroutines.

6. The := operator performs simultaneous implicit declaration and initialization, such that lhs

:= rhs is the statement that, “lhs is declared to be a variable whose type and initial value

 42

is the result of the evaluation of rhs”. The statements x := 5 and var x int = 5 are

semantically equivalent.

7. The built in function make allocates and initializes the three primitive data structures in

Go - the slice, the map, and the chan.

a. make([]int, 0, 5) // a slice of ints with a length 0 and an optional capacity 5

b. make(map[int]string, 5) // a map of ints to strings with an optional capacity 5

c. make(chan int, 0) // an unbuffered channel of ints

8. It is idiomatic for the verbosity of a variable name to be a function of its importance and

scope. Consequently very local, ephemeral, variables tend to have single character

names. The authors acknowledge that this may not be to everyone’s taste and will

attempt to keep this style in check.

9. The defer keyword ensures that the deferred function call is always executed upon the

exit of the current function. E.G.

a. func talk() {

b. defer fmt.Println(“Second”)

c. fmt.Println(“First”)

d. }

10. The <- operator puts into and receives from a channel. The position of the operator is a

mnemonic for how it is behaving.

a. channel <- value // put into channel

b. value := <-channel // receive from channel

We expect that these clarifications will be enough such that the C-like nature of Go will allow for

the reader to fill in any further gaps.

Structure, Block Delimiters, and Aesthetics
With the switch to Go, the aesthetics of the search construct changes slightly. Go is a C-like

language with the following rules.

 43

1. Statement blocks are delimited with { and }.

2. The only exception to 1 are the case and default statements within a switch, which are

delimited with a : and closed either by another case, default, or the } which closes the

switch itself.

3. Statements are terminated by a ;. However, in any case where a statement may legally

end and a newline is encountered, the compiler inserts an implicit semicolon.

4. Indentation level is not significant.

Using these rules, we will model our search statement off of Go’s switch statement. The idiomatic

style in Go for a switch is to have each individual case at the same indentation level as the switch

itself, and as such we will do the same for search.

search FCG {
children:

…
accept:

…
reject:

…
}

The search statement grammar implemented in Go.

Addressing the Type System

Python’s dynamic typing allowed for rapid prototyping as no type system had to be considered. In

Python, the solution list was comprised of objects whose type is that returned by the children

procedure - whatever that may be. However, we must now work with Go’s type system, such that

the following hold true.

1. The given target type is called T.

2. The FCG is of type T.

3. The solution data structure is a slice of type T.

 44

4. The children procedure accepts a a type T and a slice of type T and returns a channel of

type T.

5. The reject procedure accepts a type T and a slice of type T and returns a boolean.

6. The accept procedure accepts a type T and a slice of type T and returns a boolean.

As of Go 1.10 the language has no support for generic/templated programming. The runtime has

facilities for reflection, however in Go types are not values. That is to say, something like the

following is not possible.

// Runtime information about a type is available,
// however this cannot be used to, say, declare
// or initialize new variables and structures of that type.
t := reflect.TypeOf(FCG)
solution := make([]t, 0) // Will not compile
children := func(node t, solution []t) bool {} // Will not compile

In Go, types are not values, disallowing the use of reflection to simulate generics.

Since a transpiler is merely a text processor, no type information can be accurately inferred. This

forces us to ask the user explicitly what type they are referring to. For this, we have chosen to

include the name of the user defined type as the second field in the search signature.

search FCG; Type {
children:

…
accept:

…
reject:

…
}

The explicit name of the target type is to be placed in the search statement signature.

The second field in the signature, the target type, can then be interpolated into the target source

text where necessary.

 45

This is unsatisfactory, and technically unnecessary in the core context of the research, but

necessary for the moment. We will attempt to remove this technical blemish when working in the

compiler, as type information should be then available. However, for now, it must stay.

Extraction and Text Processing

Language parsing requires, of course, a parser. However, to write a parser for a transpiler is to

write a smaller compiler whose output is piped into a larger compiler. While this is fine, and

indeed desirable for longer term solutions, the goal of this stage of the research is to rapidly

produce a proof that core engines works and that, at least in general, the desired syntax is

workable.

When one thinks of rapidly producing text processors a natural first instinct is, “can I solve this

using regular expressions”. Surprisingly, in this case, yes although it will take a single pass of pre-

processing to do so. Let us consider the skeleton of the search statement.

…
search FCG; Type {
children:

…
accept:

…
reject:

…
}
…

A statement list,, followed by a search statement, followed by a statement list.

The above, of course, is not a regular language. Immediately apparent is the archetypal

balanced-parenthesis problem. However, the balanced-parenthesis problem is really our only

barrier-to-entry to solving this problem using a regular expression. That is, the signature is a

regular language (search followed by any text, followed by a semicolon, followed by any text,

followed by a left curly brace) as are the individual procedure blocks (the given keyword, followed

by a colon, followed by any text in a non-greedy fashion). The only trouble is how to tell if a given

 46

right curly brace is the terminal brace for the search statement. Therefore, we must solve the

balanced-parenthesis problem first, then supply the output to a regular expression engine. We will

accomplish this by isolating the target block of source code in the following fashion.

1. Consume consume characters until a search signature is found.

2. Begin counting curly braces.

3. While curly braces are unbalanced, consume characters and place them into an

intermediate buffer.

Once this first pass over the text completes, we will have the following in an intermediate buffer.

search FCG; Type {
children:

…
accept:

…
reject:

…
}EOF

After a single pass of the search statement, it becomes a search statement followed by an end-of-file.

That is, by balancing the curly braces once we no longer need to look for a balanced closing curly

brace for the search statement - we need only look for }EOF.

We can now construct a regular expression that can capture the appropriate groups (the FCG,

the node type, and the procedure blocks) from which we can simply perform a string interpolation

to produce a block of pure Go source code.

Merely for the sake of curiosity (and perhaps a fascination of the abomination), the following is in

fact the regular expression that captures our construct. Its syntax targets the Go standard library

regexp package.

 47

(?sU)\s*search\s+from\s+(?P<FCG>.*)\s+;(?P<UTYPE>.*)\s*{\s*children\s*
:\s*(?P<CHILDREN_BODY>(?:.*)*)\s*(?:accept\s*:\s*\s*(?P<ACCEPT_BODY>(?
:.*)*))?\s*(?:reject\s*:\s*(?P<REJECT_BODY>(?:.*)*))?\s*}$

Regular expression of the search statement.

Scoping
Our transpiled engine does contain names used by the engine itself that are not intended for

consumption by the user. We shall use Go’s scoping rules in order to prevent the user from

accidentally, or intentionally, clobbering or violating names not meant for them.

In Go, local scopes have read/write access to all names declared within scopes higher than itself,

up to the maximum of the package level scope.

number := 0
if true {
 number = 1 // assignment with no declaration
}
log.Println(number) // 1

A lower scope writing to a name declared in a higher scope.

Names, however, can be shadowed in local scopes. That is, the same name can be redeclared in

a scope without affecting the more global name.

number := 0
if true {
 number := 1 // new declaration and assignment via := operator
 log.Println(number) // 1
}
log.Println(number) // 0

A new declaration shadowing the declaration of the same name in a higher scope.

Additionally, declarations in lower scopes do not persist in consequent higher scopes.

if true {
 bob := “bob”
 log.Println(bob) // bob
}
log.Println(bob) // Compiler error, name not found

 48

Names are limited to their most local scope.

We will leverage this by first placing all user defined procedures at the very top of the search

engine so that they do not have access to names declared below them. Second, we will place the

entire engine in an unconditionally true block.

if true {
 children := func() {...}
 accept := func() {...}
 reject := func() {...}
 root := FCG
 ...
}

Scoping the entire search statement engine by enclosing it an unconditionally true block.

This prevents any consequent user code from accessing internal names. Additionally, it quickly

nominates all names defined with the scope for garbage collection immediately after the search

terminates.

Results
The transpiler successfully translates, writes to disk, and submits to the Go compiler a valid Go

program. Examples of such programs will be provided in the Idioms as we discuss working

programs and emergent idioms.

This transpiler, however, is not a satisfactory end to the implementation of the search statement.

Downfalls include:

1. A lack of the type inferencing required to discover the type of the FCG.

2. The children, accept, and reject blocks cannot be rearranged in any order that the user

likes.

3. A transpiler precludes any research that can be done on compiler code optimization.

 49

4. User code is difficult to debug due to differing line numbers in the source code and the

transpiled code.

5. It is significantly slower and more cumbersome than the Go compiler itself.

Compiler

The Go compiler shall be our target workspace. We will be working off of the Go 1.10 release.

Abstract Syntax Tree Splicing

Via our transpiler we have shown that the search statement semantics can be represented at the

highest order of abstraction - pure source code. That is, no handcrafted assembly, nor special

linking, nor any other tactic that is so close to the CPU is required. As such, we would prefer to

work in the highest abstraction that we can while still providing native compiler support. Therefor,

our target change to the Go compiler will lie in its abstract syntax tree representation. In

particular, we will take advantage of the fact that the search statement engine is static code which

merely requires that the user provide several facts and procedures to fill in the necessary gaps.

We shall accomplish this by copying a static AST that is representative of the engine, swapping in

nodes provided by the user, and splicing the resulting subtree into the target AST.

First, we begin with an unmodified AST which is comprised of some code, followed by a search

node, followed by some code. The search node is comprised of an FCG node, a children node, a

reject node which may be nil, and an accept node which may be nil.

 50

Figure 12: An AST with a search statement somewhere within the tree.

The FCG node is some expression, and each of the user provided procedures are to be treated

as function bodies. In source code, we can represent the preamble to the search engine as

follows.

root := FCG
// User CHILDREN declaration.
USER_children := func(node TYPE, solution []TYPE) <-chan TYPE {
 BODY
}
// User ACCEPT declaration.
USER_accept := func(node TYPE, solution []TYPE) bool {
 BODY
}
// User REJECT declaration.
USER_reject := func(node TYPE, solution []TYPE) bool {
 BODY
}

The target code where user provided code is to be injected.

That is, we must fill in the appropriate nodes to complete the AST representation of the above

code.

 51

Figure 13: The constructed AST of the search statement engine.

Once we have constructed this isolated abstract syntax tree we can splice it back into the original

AST where the search node use to reside.

 52

Figure 14: Splicing the completed search statement engine back into the target AST.

From hereon we must only concern ourselves with the normal actions of linking the first statement

of the search block to the statement above it, and linking the final statement of the search block

with the statement below it. Any other work is unnecessary. The user provided nodes are

stemmed from pure Go as is the preconstructed, spliced, AST. This means that any guarantees

already provided by Go are provided by our implementation as well.

Scoping

In the transpiler we forced to use our knowledge of Go’s scoping rules in order to protect engine

internal names from malicious, or unlucky, users. We accomplished this by enclosing the entire

engine in an unconditionally true block and placing all user provided definitions at the very top of

that block.

if true {

 53

 children := func() {...}
 accept := func() {...}
 reject := func() {...}
 root := FCG
 ...
}

The search statement engine scoped by an unconditionally true block.

This is unnecessary now that we are working in the compiler. The Go compiler code has facilities

for opening and closing scopes wherever one pleases. Therefor we can simply open a new scope

for the engine and forego our hack in the transpiler.

The Type System
Our transpiler was merely a text processor. As such it could not have the deeper understanding

of the type system that is required to infer the type of the FCG. This left us working with the

following signature wherein we explicitly ask the user to provide us with the type information.

search FCG; Type {
children:

…
accept:

…
reject:

…
}

The search statement with a required named type in the signature.

We will now attempt to remove this blemish.

The construction of the Go AST is a two pass algorithm. We will refer to these passes as the first

past AST and the second pass AST.

The first pass AST is constructed during the consumption of the source programs tokens. This

stage in the compiler tracks only the most basic information such as the original line of source

code as well as the original text. Errors in this stage are very forgiving - only basic syntactical

 54

errors are detected and emitted. As tokens are consumed, their structure is checked against the

languages syntactical rules and added as nodes to the target AST. Once all tokens are

consumed, this first pass AST is complete and given as input to the second pass AST.

The second pass AST is responsible for construction of the intermediate language emitted to the

assembler as well as enforcing the semantic rules of the language. Dependency resolution

(packages and names), import and exportation rules, the type system, and so on. For example, if

a name is detected to have been declared, but never used, this is the stage in the compiler which

emits the appropriate error. Such errors are detected, and emitted, immediately as they are

discovered as the second pass AST consumes the first pass AST node-by-node. As such, any

modifications we wish to make to the intermediate representation which corrects errors in the type

system must occur before the second pass AST. I.E. we must work in the first pass AST to

accomplish our goal.

A valid FCG can take on many forms. It can be a reference, a pointer, a struct literal, a slice/array

literal, a map literal, a channel, or even a function or lambda. This list is not comprehensive. The

FCG can be anything in Go which is a valid expression. The extraction of this particular node

from the AST is not difficult, relative to the search keyword it is deterministically in the same

location each time. However, at this moment in the compiler there is no deeper understanding of

the node’s type other than textual information - this deeper understanding will only come later

during the second pass AST, at which point it is too late. The textual information does contain

what appears to be necessary to infer what type the expression will evaluate to. However, given

all that an expression can be, we could not identify a simple way to accurately predict the type

without actually creating a quarantined version of the type checker itself.

Without access to help from someone with working knowledge of the Go compiler we had to

abandon our attempts to infer the type of the FCG due to time constraints. As such, it is an

 55

unfortunate failure of engineering that users must still provide the compiler with what type the

FCG evaluates to.

Perfect Hashing

In order to facilitate the rapid lookup of reserved keywords with a provable access time, the Go

compiler constructs a custom hash table of all of the language reserved keywords using a perfect

hash for the given set. The assumptions made by the Go team’s perfect hash were that A). every

keyword has at least two characters and that B). no two keywords in the language share a

common first two characters.

func hash(s []byte) uint {
 return (uint(s[0])<<4 ^ uint(s[1]) + uint(len(s))) & uint(len(keywordMap)-1)
}

The perfect hashing function for reserved keywords in the Go compiler.

This, however, is no longer true. Trivially we can see that this does not hold for search and select,

children and chan, and reject and return. Our immediate solution to this problem was to keep the

core hashing algorithm, but to select different seconds characters for our own keywords.

func hash(s []byte) uint {
 var second uint
 switch string(s) {
 case "search":
 second = uint(s[3])
 case "children":
 second = uint(s[6])
 case "reject":
 second = uint(s[2])
 default:
 second = uint(s[1])
 }
 return (uint(s[0])<<4 ^ second + uint(len(s))) & uint(len(keywordMap)-1)
}

The perfect hashing function for reserved keywords in the Go compiler after adding the search statement.

Keyword Reservation and Toolchain Bootstrapping
It was taken for granted that in our new compiler the words search, children, accept, and reject

are now language reserved keywords. That is, they are no longer valid variable, type, nor function

names. Given the fact the Go compiler is written in Go, and that the Go compiler utilizes the Go

standard library, we had to contend with the fact that immediately upon reserving a word in the

 56

language that the language itself would fail to compile as many tens-of-thousands of extant

source code files used those names freely.

search was found frequently in the source code of the implementation of Go’s map type, which is

a type of associative array implemented via a hash table and thus used the word search in its

probing algorithm for handling hash collisions. children was used rarely in the toolchain, although

there are several custom implementation of various trees, including a red-black tree, which used

the word. accept is incredibly common in Go’s networking stack. Finally, the most fascinating

word was reject which is said not even a single time in the entire Go toolchain. accept and reject

are of course antonyms. reject can just as easily be said as !accept and accept can just as easily

be written as !reject - it is merely a matter of preference and outlook. The Go team appears to

prefer the former.

The solution to this was the simple pre-pending of every offending word with an underscore.

Concurrency

With the move to Go as the target programming language we suddenly had available to us very

strong concurrency primitives as well as a strong incentive - any search down a subgraph is

irrespective of the search down any other subgraph. Upon meditation, the user interface for

conducting a concurrent graph search can be very simple - simply tell the engine how many

concurrent workers you would like to have at any given time. As such, it is fitting for a third,

optional, value in the search signature.

search FCG; Type; ConcurrencyLevel {
 ...
}

The concurrency level, an integer, as a part of the search statement signature.

The number of workers provided to the search signature must be a positive integer greater than

0. A value of 0 will successfully compile, however semantically it is stating that, “I would like to

 57

conduct this search using exactly no workers”, which will immediately result in a deadlock at

runtime. If a negative number is provided statically (I.E. a constant or literal) then the program will

not compile. If a negative number is provided dynamically (I.E. a call to a function that returns an

integer) then the program will crash during runtime.

Goroutine A searches a graph starting at the given FCG and an empty solution. Upon discovery

of a node that is not rejected and that is not accepted (I.E. a candidate member of a valid

solution, but not the terminal member of a solution) the engine checks for the availability of any

worker routines. If no workers are available, then goroutine A continues on normally. If a worker

routine is available, then the solution thus far is copied and a new goroutine, B, is created.

Goroutine B is initialized with the copy of A’s solution structure as well as the newly discovered

node acting as the FCG. Goroutine A then continues on as though the newly discovered child had

been accepted/rejected (I.E. it continues on with the next available child).

if !reject(node, solution) && !accept(node, solution) && workerAvailable {
 newFCG := node
 subsolution := make([]Type, len(solution)
 copy(subsolution, solution)
 subsolution = append(subsolution, node)
 go engine(subsolution, newFCG)
}

Control flow of the execution of a new worker.

Figure 15: An actual trace of the NQueens of 4 problem. Each color represents a different worker solving a subgraph.

Notice how a given worker (orange, red, and green in this case) can jump around to solve different parts of the graph as

they become available.

 58

RESULTS

Idioms

Children Generator Goroutines

The interface of the children block simply states that an iterable of a some kind must be returned

for consideration in the engine. What this iterable exactly is was left to the discretion of the user

when writing in Python. However, now that we are working in a static type system, we must

statically consider what this type is.

It may be possible to allow the user to return one of any number of different types which can be

used iteratively. Target, builtin, types are the slice, the map, and the chan. Any of these types can

be detected in the compiler and accommodated for in the engine. However, such a tactic faces

the exact same engineering troubles that were faced when we were attempting to work with the

type of the FCG - modification of placeholder type information can only be done after type

checking has occurred at which point it is too late. As such, we decided to choose to allow for

only type of iterable - the chan.

The chan was ultimately selected out of concerns for efficiency. Given an unbuffered channel of

children, the space complexity of the return of the children block is O(1). That is, at any given time

there is one child that is being considered as a subsolution, and one child that is waiting to be put

into in the channel.

children:
 c := make(chan int, 0)
 go func() {
 defer close(c)
 for child := node + 1; child < MAX; child++ {
 // Waits indefinitely until a receiver asks for a value.
 c <- child
 }
 }()
 return c

The generator pattern as implemented in Go used to generate children.

 59

If we were to select a slice or a map instead then the children block would be required to

precompute all children. For the children block this leads to a size complexity of O(N) where N is

the number of children a given node has.

children:
 c := make(chan int, 0)
 for child := node + 1; child < MAX; child++ {
 c = append(c, child)
 }
 return c

The children block returning a slice of children rather than a channel.

However, as we traverse the graph children iterables are pushed to the stack alongside with their

parent nodes. Therefor, if all children for a given node are precomputed then the space

complexity for keeping track of all precomputed children is O(H * N) where H is the maximum

height of the graph and N is the number of children per node. If instead all children are generated

as needed, then the space complexity is O(H).

The generator pattern is, however, more complex in code than simply returning a slice. A

goroutine must be used to asynchronously feed children into the channel. Any attempt to place a

value into the channel from within the parent goroutine will result in a deadlock.

children:
 c := make(chan int, 0)
 defer close(c)
 for child := node + 1; child < MAX; child++ {
 // Deadlock! This code will never proceed as it is waiting
 // on the engine to receive from the channel that has
 // not been returned yet.
 c <- child
 }
 return c

A deadlock caused by the improper handling of an unbuffered channel.

This may seem perilous at first, however this style of generator is incredibly common and, in fact,

idiomatic in the Go programming language. Go programmers are extremely comfortable with the

presented pattern, as well as working with goroutines and channels, both buffered and

 60

unbuffered. As such, we felt comfortable presenting this pattern as the way to handle iteration

over children.

An Empty Graph

An empty tree is easy to represent. It is an FCG followed by exactly no nodes.

search FCG; Type {
children:
 c := make(chan Type, 0)
 close(c)
 return c
}

A search that is always empty.

This is, in effect, a very expensive no-op (the compiler makes no attempt to detect that this graph

search will produce no nodes, and as such performs all necessary setup for a task that will in fact

lead nowhere).

It is useful, however, when writing a procedure that can accept any FCG to a given graph type

and solve that graph. For example, let us consider a simple walk through a given person’s social

media account, looking for all connections to that person. The root person’s account is the FCG

to the graph search.

func find(FCG Account) {
 search FCG; Account {
 children:
 c := make(chan Account, 0)
 if isolated(node) {
 close(c)
 return c
 }
 go func() {
 defer close(c)
 for connection := range connections(node) {
 c <- connection
 }
 }()
 return c
 }
}

find(celebrity) // Many millions of connections
find(politician) // Likely fewer than the celebrity, but still many

 61

find(toddler) // An infant will (should) have no connections on social media
A search that is conditionally empty.

The toddler has no connections on social media, and thus is marked as being isolated, and thus

is the FCG to an empty graph. However, there is an even more natural way to represent this.

func find(FCG Node) {
 search FCG; Node {
 children:
 c := make(chan Node, 0)
 go func() {
 defer close(c)
 for connection := range connections(node) {
 c <- connection
 }
 }()
 return c
 }
}

A search that is conditionally empty by virtue of having no children.

That is, a node that yields an empty collection of connections is implicitly isolated, and thus is an

FCG that yields an empty graph.

Cycle Detection
A question that arose during the research was whether or not it was possible to detect, and

prevent cycles on behalf of the user. In terms of implementation it is possible, if inefficient. If the

user provided nodes are of a pointer type then it is trivial to detect cycles - simply place known

pointers into a hash set. However, if the user provided nodes are of a reference type then deep

equality must be performed in order to discover cycles. Given the typical size of graph problems,

this seemed rather egregious to chose to do implicitly.

However, efficiency and logistics aside, we decided against automatic cycle detection for the sole

purpose that it would be incredibly surprising to many developers who did not intend for such a

 62

thing to happen. That is, it is not a provable fact that just because a cycle has been detected that

it must not be followed.

Figure 16: Although it is often avoided, following the cycle from D back to B is not an inherently illegal maneuver.

A toy example is that of an offroad race track. Let us say that the sponsors of an upcoming race

would like to use our search statement in order to design a race track which maximizes difficulty

as well visibility to live bystanders and camera crews. In order to accomplish this, they would like

certain loops within the race track to be ran by the participants at least several times in a row

before moving on with the rest of race. If the search engine code automatically, and implicitly, kills

computations of these cycles then the developers will be left confused and frustrated as to why

none of the desired cycles appear. That is, until they discover that they are at the mercy of the

engine, at which point they will most likely abandon the engine itself rather than attempt to fork

and modify it.

However, cycle detection is more common than not. Fortunately it is rather easy to construct

cycle detection in userland code. Let us consider cycle detection in a webcrawler. We have two

choices, either we can detect the cycle as we are generating children, and thus decide to not

generate a particular child if a cycle is detected, or we can elect to inject our code into the reject

block which will return true if the given URL has been visited before. The accept block is too late

as at that point the node has been already been considered valid and appended to the solution.

Children Reject

visited := make(map[string]bool, 0) visited := make(map[string]bool, 0)

 63

search seed; string {
children:
 c := make(chan string, 0)
 hrefs := ExtractAllHrefs(node)
 visited[node] = true
 go func() {
 defer close(c)
 for _, href := range hrefs {
 if visited[href] {
 continue
 }
 c <- href
 }
 }()
 return c
}

search seed; string {
children:
 c := make(chan string, 0)
 hrefs := ExtractAllHrefs(node)
 visited[node] = true
 go func() {
 defer close(c)
 for _, href := range hrefs {
 c <- href
 }
 }()
 return c
reject:
 return visited[node]
}

Cycle detecting implemented in either the children block or the reject block.

Either is semantically valid in all cases. During the research it was the preference of the authors

to perform cycle detection while generating children, simply for the sake of failing candidates as

fast as possible. It can be argued, however, that this notion is a slippery slope - if one’s goal is to

eliminate choices early then seemingly in all cases the user can forgo the use of the reject block

and place the same logic into the children block, thus obviating the reject block altogether. From

this perspective, the reject block is the one true location for cycle detection since being a cycle is

a type of rejection itself.

Manual Solution Handling
The search engine maintains a single data structure meant for the consumption of the user - the

solution slice. However, it may be beneficial for a given user to maintain their own solution

structure and forego the use of the engine provided structure. Specific examples of why this

would be desirable are covered in the Scalability section, but for now let us observe how it would

be accomplished.

It is at this point that some specific knowledge about the underlying algorithm may be helpful in

expediting one’s understanding. However, we will attempt to avoid addressing the underlying

algorithm directly, instead favoring our desired approach - thinking about the behavior of graphs.

 64

First we will consider when to add a node to a candidate solution. Intuitively, a node may be

considered a member of a solution if that node has not been rejected.

reject:
 if valid(node) {
 solution = append(solution, node)
 return false
 }
 return true

Manually constructing a solution upon non-rejection of a node.

Alternatively, one may consider a node a member of a candidate solution if that node has been

asked for its children (that is, it has been visited).

children:
 solution = append(solution, node)
 c := make(chan Type, 0)
 go func() {
 ...
 }
 return c

Manually constructing a solution upon visiting a node.

It is technically possible to append a node to the solution in the accept block, as a call to the

procedure is immediately preceded by a return of false by the reject block. However, we will

ignore this as it is semantically strange and it leverages knowledge about the underlying

algorithm.

Second we will consider when a node should be removed from a solution. The remove operation

in this case must be a pop type operation. In the case of removal, rather than having two different

options, we have two different requirements. That is, there are two cases where a node must be

removed - after a solution has been accepted and after a node has completely exhausted all

possible children. Removal during rejection does not make sense since at that point the

candidate is not even a member of the solution.

 65

Figure 17: A solution has been accepted. The latest node in the solution must now be removed and the rest of tree

considered.

Removal must occur in the event of the acceptance of a solution. Failure to do otherwise will

result in a solution structure which aggregates all previous accepted solutions in addition to the

currently considered solution.

accept:
 if valid(solution) {
 …
 pop(solution)
 …
 return true
 }
 return false

Removing a node from the solution if it is the final node of an accepted solution.

Removal must also occur in the event that a parent node has exhausted all possible children.

That is, having no children left to consider means that the parent should no longer be considered.

 66

Figure 18: The search of all children have been exhausted. The parent must now also be removed from the solution.

From within the code, removal of the parent has the greatest pitfall that we have encountered in

the user code. The following is intuitive, but incorrect.

children:
 c := make(chan Type, 0)
 go func() {
 defer close(c)
 for child := range connected(node) {
 c <- child
 }
 pop(solution) // Incorrect early removal
 }
 return c

Early removal of a node from a solution. This will remove a parent from a solution before the final child has been fully

explored.

The above removes the parent from the solution immediately upon submitting a child for

consideration. That is, the code is stating that, “the parent is to be immediately removed after all

children have been submitted for consideration”. Rather, the code should say, “the parent is to be

removed immediately after all children have been considered”. A parent is signaled that a given

child has been completely considered once the parent is asked for the next of its children. As

such, correct code waits on the ability to send on the channel.

 67

children:
 c := make(chan Type, 0)
 go func() {
 defer close(c)
 for child := range connected(node) {
 c <- child
 }
 c <- Type{} // Wait and send some invalid zero value
 pop(solution) // All children have now been considered.
 }
 return c

The engine asking for another child is a signal that the previous child has been completely explored.

Using these techniques, it is possible for userland code to manage their own solution data

structure.

Breaking Out
It may be desirable for the user to terminate a search early. Most commonly, this would likely be

when the user wishes to find only some answer rather than all answers.

accept:
 if valid(solution) {
 break
 }
 …

The early break of a search.

However, in our implementation, a break would merely force a return of the block, as it is

implemented as a function in the AST of the compiler. Additionally, goto may not refer to a label

defined outside of a function. Therefore, as all user defined behavior is implemented as a

function, the user has no succinct way to terminate the engine early. Instead, they must manually

shutdown the search. A good way to accomplish this is to signal to the children block to stop

generating children.

var done bool
search FCG; int {
children:
 c := make(chan int, 0)
 go func() {

 68

 defer close(c)
 for child := node + 1; child < MAX; child++ {
 if done {
 return
 }
 c <- child
 }
 }()
 return c
accept:
 if valid(solution) {
 done = true
 return true
 }
 return false
}

Manually handling the early termination of a search by setting a “done” signal.

Concurrency

Concurrent graphs searches do not require any special attention by the user that is unexpected.

However, it is worth noting the obvious that a synchronization strategy must be used for any data

for which the userland code executes a write.

var done bool
var lock sync.Mutex
search FCG; int; 8 {
children:
 c := make(chan int, 0)
 go func() {
 defer close(c)
 for child := node + 1; child < MAX; child++ {
 lock.Lock()
 if done {
 lock.Unlock()
 return
 }
 lock.Unlock()
 c <- child
 }
 }()
 return c
accept:
 lock.Lock()
 defer lock.Unlock()
 if valid(solution) {
 done = true
 return true

 69

 }
 return false
}

A search conducted using eight worker routines.

The method of synchronization that the user selects is at their discretion.

Scalability

Efficiency

The time complexity of the engine itself, in a single worker context, is a amortized O(1). That is,

the engine’s computational performance is entirely dependent upon the time complexity of the

userland code. It is an amortized O(1) due to the use of Go’s builtin slice type for stack and

solution management, which is a dynamic array. However, the execution of the engine in a multi-

worker context opens the possibility for a higher time complexity. As workers become available

the solution to their parent node is copied for consideration in a subgraph. The size of this

solution has a maximum size of H - 1, where H is the maximum height possible within the search.

If the number of workers available to the computation is equivalent to the number of nodes in the

graph, then it is possible to incur this copy at every possible point in the graph. This gives a time

complexity of O(H2). The average case, however, is much more difficult to calculate as it is

dependent upon three variables - the number of workers available, the exact nature of the graph,

and the semi-random behavior of the Go runtime scheduler.

The space complexity of the engine is 2HW, or O(HW), where H is the maximum height of the

graph and W is the number of workers active in the computation. Much like the time complexity,

as the number of workers saturate the graph in question, the space complexity trends towards

O(H2).

 70

We provide the following benchmark comparisons. We will solve the NQueens problem from

sizes 1 to 15, inclusive. For each size of the NQueens problem we will execute it on 1 to 8 CPU

cores, inclusive. Each size/core combination will be executed 40 times. The average execution

time and number of memory allocations will be calculated for each size/core combination.

Figure 19: The NQueens average execution time.

Performance gains due to concurrent programming are logarithmic for the NQueens problem. As

more cores/workers are added, the more overhead of copying data structures is incurred.

Additionally, graphs have an inherent saturation level that is dependent upon the number of

failure and acceptance nodes within the graph. The higher the number of terminal node, the more

likely it is for a worker to be spawned only to be immediately killed and restarted. This saturation

level is much less likely to be achieved on something like a large social network where terminal

 71

node are rare, however in the NQueens problem terminal nodes with the graph are incredibly

common.

Figure 20: The NQueens average memory allocations.

Memory allocations, however, appear to be linear in growth with respect to the number of

workers. We surmised that it is possible for space complexity to eventually reach O(H2) given

enough workers (enough being the total number of nodes in the graph), however it appears in

practice that the growth is much closer to O(H).

However, having logarithmic performance gains with linear increases in memory usage is

problematic. We will attempt to address these issues in Foregoing Solution Construction and

Distributed Computing.

 72

Comparison in Execution Time to Google Optimizations Tools

Google Optimization Tools (OR-Tools) is a fast and portable software suite for solving

combinatorial optimization problems. [10] Specifically, we will be running comparisons against

OR-Tools’ constraint problem solving library, cpsolver.

 Language Algorithm Hardware

search Go Backtracking Intel Core i7

2600k 16GB

RAM

cpsolver C++ with an interface to

CPython

Constraint Logic

Programming

Intel Core i7

2600k 16GB

RAM

We will be using the NQueens program provided by Google in their tutorial page on cpsolver. [11]

While this is not a perfectly one-to-one comparison (different languages and paradigms), it is still

quite useful to compare our search statement against extant solutions that are agreed upon to be

fast.

NQueens Size search time (s) cpsolver time (s)

1 0.000098 0

2 0.000084 0

3 0.000075 0

4 0.000074 0

 73

5 0.000131 0

6 0.000311 0

7 0.001007 0

8 0.004274 0.002

9 0.024649 0.008

10 0.100438 0.031

11 0.478346 0.145

12 2.754791 0.75

13 15.693549 4.055

14 100.471620 23.045

15 652.413299 141.604
Single core performance comparison between the search statement and cpsolver. cpsolver provides timings at a

maximum resolution of milliseconds.

cpsolver consistently outperforms the search statement in single core performance. This

difference, however, is not in an entirely different complexity class. Given access to additional

CPU cores, the search statement does catch up to the speed of cpsolver by the addition of the

eighth core.

NQueens Size search 8 workers time (s) cpsolver single worker time (s)

1 0.000085 0

2 0.000076 0

3 0.000074 0

4 0.000075 0

5 0.000152 0

6 0.000234 0

7 0.000452 0

 74

8 0.001367 0.002

9 0.005019 0.008

10 0.022851 0.031

11 0.109989 0.145

12 0.611703 0.75

13 3.429158 4.055

14 21.740712 23.045

15 139.937767609 141.604
Multi core performance comparison between the search statement and cpsolver. cpsolver provides timings at a

maximum resolution of milliseconds.

It is unknown whether cpsolver can scale to hardware in a similar fashion to our search. However,

from our benchmarks, it is fair to say that the single core performance of cpsolver is roughly

equivalent to the eight core performance of search.

Given the circumstances (Go versus C++, backtracking versus constraint logic programming,

natural performance with little optimization done, Google optimization research teams versus

ASU graduate research) we are pleased with the performance of the search statement.

Foregoing Solution Construction
The solution data structure is the only data structure that is managed by the engine that passes

through the engine:userland barrier. It is assumed that the user use holds an interest in this

constructed solution is all cases. However, we have already visited a case where this is not

necessarily true - the webcrawler.

seen := make(map[string]bool, 0)
search “asu.edu”; string; 8 {
children:
 c := make(chan Page, 0)
 hrefs := ExtractAllHrefs(node)
 seen[node] = true
 go func() {

 75

 defer close(c)
 for _, href := range hrefs {
 if seen[href] {
 continue
 }
 c <- href
 }
 }()
 return c
}

A webcrawler which makes no reference to the solution data structure.

The webcrawler makes no reference to the solution. It is maintaining another structure that may

act as a proxy for the solution, the seen hashset. However all order is lost because the problem

does not care about the order - it merely wants to visit all pages starting at asu.edu. However, the

engine is still maintaining a slice of strings, recording all web pages that have been visited. Given

a long running webcrawler the effects on memory consumption would be startling.

A proposed compiler optimization is to detect that the name solution is never referred to by the

user code. Upon detection of such code, the engine can be swapped out for a version that does

not maintain the any solution at all.

Due to time constraints this compiler optimization did not make it into the final implementation of

the compiler, and is thus being left as a point of future research.

Distributed Computing

We have shown several critical, atomic, components to the search statement’s story of scalability.

1. Graph searches may be concurrent.

2. The depth and width of a given instance of a search can be controlled by the user.

3. The user is capable of maintaining their own solution data structure.

 76

4. In the future, the user may be able to hint to the compiler to not maintain an ongoing

solution.

Our problem of scalability is as follows.

1. Given a reasonably bounded amount of time, a single compute node is unsatisfactory.

2. Even given an infinite amount of time, a single compute node will still eventually fail. The

search engine requires a stack for internal management. Although this stack is allocated

to the heap, even the heap is finite, and thus a given search must be finite.

3. Thus we must find a way to orchestrate a graph search across many compute nodes,

where each compute node solves only a tractable portion of the graph.

Given that the only structure that is out of the user’s control is the stack, it is possible for them to

treat any sort of cycle detection or ongoing solution as remote storage. That is, although a given

compute node may have access to dozens of gigabytes of RAM, a remote storage server may

have access to many hundreds of gigabytes of RAM.

Consider the following worker for a distributed webcrawler. It has swapped out the use of a map

for cycle detection with some unknown, remote, implementation. Additionally it is only considering

a portion of the graph that goes as deep as the maxDepth with maxWidth being the maximum

number of children a parent URL can have. And, finally, any URL that falls out of the maxDepth

and maxWidth constraints are submitted to a remote supervisor which will dispatch that URL as

the root for another instance of the same worker to consider. Upon completion of its work over its

smaller, more tractable, subgraph the search engine core is dumped, the worker declares that it

is ready for another portion of the graph. It waits until it receives such work from the supervisor

and a new search is conducted.

type Page struct {

 77

 URL string
 Depth int
}

var maxWidth = 1000
var maxDepth = 1000

func receive() {
 for {
 // Receive work from supervisor.
 seed := acceptWork()
 crawl(seed)
 }
}

func crawl(seed string) {
 // Declares to the supervisor that this worker is busy.
 startWorker()
 // A remote, in memory, store used to share cycle detection amongst all workers.
 seen := NewRemoteCycleDetection(settings.RemoteCycleDection.Addr)
 // Submits new subgraphs for dispatch to available worker nodes.
 subsearch := NewRemoteWorkQueue(settings.RemoteWorkQueue.Addr)
 search Page{seed, 0}; Page; 8 {
 children:
 c := make(chan Page, 0)
 if node.Depth >= maxDepth {
 // This node is beyond this worker's max depth.
 // Submit it as work for another, available, worker.
 subsearch.Add(node)
 close(c)
 return c
 }
 hrefs := ExtractAll(node.URL)
 seen.Set(node) = true
 go func() {
 defer close(c)
 w := 0
 for _, href := range hrefs {
 if seen.Get(href) {
 continue
 }
 if w >= maxWidth {
 // This node is beyond this worker's max width.
 // Submit it as work for another, available, worker.
 subsearch.Add(href)
 continue
 }
 c <- Page{href, node.Depth + 1}
 w++
 }
 }()
 return c
 }
 // Declare to the supervisor that this worker is available.
 stopWorker()
}

A worker in a distributed webcrawler.

Feature List
An idea that arose during the research was the feature of compiler provided memoization. The

use of an externally provided memoization facility is not unprecedented (for example, the Python

 78

library functools provides the decorator lru_cache which memoizes results from the decorated

function). Memoization is, of course, a trade off increasing space complexity in order to reduce

time complexity. As such, we felt uncomfortable silently implementing memoization for all graph

searches in general. We did not implement any such facility in the compiler, however it is

worthwhile to look at what this interface may look like. The challenge in this is not so much the

implementation as it is the presentation of the feature.

Already the search statement is nearing its limit for a small, concise, clean interface. However, if

we can inject one more aggregate field then we can allow the user to readily modulate the

behavior of the engine. Let us call this the feature list. The feature list may contain an unordered

list of features or algorithms that the user wishes the engine to use.

Memoize BFS with Cycle Detection

[cache]
search FCG; Type {
 ...
}

[cycle, bfs]
search FCG; Type {
 ...
}

An example of a memoized search and a BFS with cycle detection via use of the feature list.

Such a feature list would greatly expand the power and flexibility of the engine. However, the

topic remains a point of future research.

 79

WORKS CITED

1. The Rust Project Developers. 2010. The Rust Programming Language. Retrieved April 6, 2018
from https://doc.rust-lang.org/1.6.0/book/patterns.html

2. Wikipedia. 2018. Eight queens puzzle. Retrieved April 6, 2018 from
https://en.wikipedia.org/wiki/Eight_queens_puzzle

3. Patrick Blackburn, Johan Bos, Kristina Striegnitz. 2012. Learn Prolog Now!. Retrieved April 3,
2018 from http://lpn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse6

4. Wikipedia. 2018. Backtracking. Retrieved March 31, 2018 from
https://en.wikipedia.org/wiki/Backtracking

5. Goodrich and Tamassia; Cormen, Leiserson, Rivest, and Stein

6. Anton van Straaten. 2003. RE: What's so cool about Scheme? Retrieved March 31, 2018 from
http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

7. Jorge Aparicio. 2018. Rust by Example. Retrieved March 31, 2018 from
https://rustbyexample.com/expression.html

8. Andrew Gerrand. 2013. The first Go program. Retrieved March 31, 2018 from
https://blog.golang.org/first-go-program

9. Wikipedia. 2017. Cfront. Retrieved from https://www.wikipedia.org
https://en.wikipedia.org/wiki/Cfront

10. Google Optimization Research. 2018. Retrieved April 3 from
https://developers.google.com/optimization/

11. Google Optimization Research. 2017. Retrieved April 3 from
https://developers.google.com/optimization/cp/queens

 80

APPENDIX A

SEARCH ENGINE FULL CODE TEMPLATE

 81

// This is the one piece of internals that the userland
// can potentially see due to scoping rules.
type __GraphNode struct {
 Active bool
 ID int
 Parent int
}
// User CHILDREN declaration.
USER_children := func(node {UTYPE}, solution []{UTYPE}, gid *__GraphNode) <-chan {UTYPE} {
 return make(chan {UTYPE}, 0)
}
// User ACCEPT declaration.
USER_accept := func(node {UTYPE}, solution []{UTYPE}, gid *__GraphNode) bool {
 return false
}
// User REJECT declaration.
USER_reject := func(node {UTYPE}, solution []{UTYPE}, gid *__GraphNode) bool {
 return false
}
root := changeme
maxgoroutine := 1
// Parent:Children PODO meant for stack management.
type StackEntry struct {
 Parent {UTYPE}
 Children <-chan {UTYPE}
}
lock := make(chan int, maxgoroutine)
wg := make(chan int, maxgoroutine)
ticket := make(chan int, maxgoroutine)
// You have to declare first since the function can fire off a goroutine of itself.
var engine func(solution []{UTYPE}, root {UTYPE}, gid *__GraphNode)
engine = func(solution []{UTYPE}, root {UTYPE}, gid *__GraphNode) {
 _children := USER_children(root, solution, gid)
 // Stack of Parent:Chidren pairs.
 stack := make([]StackEntry, 0)
 // Current candidate under consideration.
 var candidate {UTYPE}
 // Holds a StackEntry.
 var stackEntry StackEntry
 // Generic boolean variable
 var ok bool
 for {
 if candidate, ok = <-_children; !ok {
 // This node has no further children.
 if len(stack) == 0 {
 // Algorithm termination. No further nodes in the stack.
 break
 }
 // With no valid children left, we pop the latest node from the solution.
 solution = solution[:len(solution)-1]
 // Pop from the stack. Broken into two steps:
 // 1. Get final element.
 // 2. Resize the stack.
 stackEntry = stack[len(stack)-1]
 stack = stack[:len(stack)-1]
 // Extract root and candidate fields from the StackEntry.
 root = stackEntry.Parent
 _children = stackEntry.Children
 continue
 }
 // Ask the user if we should reject this candidate.
 _reject := USER_reject(candidate, solution, gid)
 if _reject {
 // Rejected candidate.
 continue
 }
 // Append the candidate to the solution.
 solution = append(solution, candidate)

 82

 // Ask the user if we should accept this solution.
 _accept := USER_accept(candidate, solution, gid)
 if _accept {
 // Accepted solution.
 // Pop from the solution thus far and continue on with the next child.
 solution = solution[:len(solution)-1]
 continue
 }
 select {
 case lock <- 1:
 wg <- 1
 s := make([]{UTYPE}, len(solution))
 copy(s, solution)
 go engine(s, candidate, &__GraphNode{Active: true,
 ID: <-ticket, Parent: gid.ID})
 // pretend we didn't see this
 solution = solution[:len(solution)-1]
 continue
 default:
 }
 // Push the current root to the stack.
 stack = append(stack, StackEntry{root, _children})
 // Make the candidate the new root.
 root = candidate
 // Get the new root's children channel.
 _children = USER_children(root, solution, gid)
 }
 <- lock
 wg <- -1
 gid.Active = false
}
shutdown := make(chan struct{}, 0)
go func() {
 // Goroutine ticketing system.
 id := 0
 for {
 select {
 case ticket <- id:
 id++
 case <-shutdown:
 close(ticket)
 return
 }
 }
}()
lock <- 1
wg <- 1
go engine(make([]{UTYPE}, 0), root, &__GraphNode{Active: true, ID: <-ticket, Parent: 0})
count := 0
for c := range wg {
 count += c
 if count == 0 {
 break
 }
}
close(shutdown)
close(wg)
close(lock)

 83

APPENDIX B

NQUEENS BENCHMARK DATA

 84

 85

 86

