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ABSTRACT 

The sensor industry is a growing industry that has been predicted by Allied 

Market Research to be a multi-billion industry by 2022.  One of the many key drives 

behind this rapid growth in the sensor industry is the increase incorporation of sensors 

into portable electrical devices.  The value for sensor technologies are increased when the 

sensors are developed into innovative measuring system for application uses in the 

Aerospace, Defense, and Healthcare industries.  While sensors are not new, their 

increased performance, size reduction, and decrease in cost has opened the door for 

innovative sensor combination for portable devices that could be worn or easily moved 

around.  With this opportunity for further development of sensor use through concept 

engineering development, three concept projects for possible innovative portable devices 

was undertaken in this research.  One project was the development of a pulse oximeter 

devise with fingerprint recognition.  The second project was prototyping a portable 

Bluetooth strain gage monitoring system.  The third project involved sensors being 

incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable 

devices.  All these systems were successfully tested in lab.
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1 

CHAPTER 1 

INTRODUCTION 

Humans use their five senses to interpret what is happening around them, on the 

other hand, electric systems have no way to perceiving what is occurring outside the 

microcontroller without the aid of sensors.  All electronic sensor provide some form of 

signal to the processor to evaluate and/or process about the physical quantity the sensor is 

being used to detect.  Wilhelm Von Siemens developed in 1860 one of the earliest 

sensors which was a temperature sensor (Staff 1995).  Today, the global sensor market 

has grown into a multibillion dollar industry.  In a recent market forecast report by Allied 

Market Research, it was reported that the global sensor market is expected to a $241 

billion market by 2022 which translates to a compound annual growth rate of 11.3%.  

There are many driving factors behind this expected growth rate.  Some of the driving 

factors that were mentioned in the Allied Market Research Sensor Market Overview 

report are advancement in sensors themselves, advancement in consumer electronic 

products, increasing usage of sensors in smartphones, robust demand in automation 

industry, surge in the automotive sector and growing demand of wearable devices 

(Bajpai, Shukla and Singh 2016).  Additional, as the objects in our world become more 

interconnected, like with smart home devices, the demand for sensors will continue to 

grow.  As Figure 1 illustrates, there is more than just the sensor’s development itself that 

is increasing the demand and value for sensors.  Two early links in this value chain that 

provides areas for research are “Concept and Engineering Test” and “Measurement 

System.”  An important factor in deciding what type of sensor to use in developing a  
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concept and testing to become a marketable system involves looking at what sectors of 

the industrial markets are highly involved in the expected growth for that particular 

sensor.  Besides the Electronic industry, there are the Aerospace, Defense, and Healthcare 

industries who are all looking at new and efficient ways to incorporate sensors into 

products.  

 

Sensor are classified by the form of energy that the sensor will be interacting 

with.  Mechanical, thermal, electrical, magnetic, radiant, and chemical are the six 

common energy forms which a sensor element receive (Staff 1995).  Within each of these 

energy forms, there can be many different physical quantity or property which can be 

measured.  For example, some of the elements that could be measured within the 

electrical energy form are voltage, current, resistance, capacitance, or frequency.  Table 1 

show a more complete list of measurable properties in relationship to the different energy 

form classifications (Staff 1995). 

Figure 1. Illustrate Value Chain Analysis for Sensor Market (Bajpai, Shukla and Singh 

2016). 
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Table 1. Measurable Properties Grouped by the Different Energy Forms for Sensors 

(Staff 1995) 

Sensors, in their most generalistic form, are comprised of three basic components 

which are a sensor element, sensor packaging, and sensor signal processing hardware.  

The sensor element is the mechanism that converts the measured energy form into 

another energy form which can be processed into a meaningful energy signal.  Sensor 

elements can be divided further by whether they are self-generating/passive or 

modulating/active sensors.  Active sensors have an external, modulated, energy that is 

add to the sensor element which is a needed part of transforming the input energy into the 

desired output energy form.  The packaging for a sensor provides the physical means to 

protect, move, and connect to the sensor.  Within the sensor package there is often more 

than just a sensor element as shown in Figure 2.  There could be LEDs, multiple sensor 

elements, secondary sensor element, and calibration controls.  If the sensor includes an 

on-chip signal processing system, the sensor is referred to as a smart sensor.  By having 

the signal processor hardware embedded into the sensor package, this minimizes the 

Energy Form Example Property Measured 

Mechanical 
Length, volume, velocity, acceleration, force, 

torque, pressure, acoustic wavelength 

Thermal Temperature, heat flow, entropy, specific heat 

Electrical 
Voltage, current, resistance, capacitance, 

electric field, frequency, inductance 

Magnetic Field intensity, flux density, magnetic moment 

Radiant Intensity, phase, wavelength, transmittance 

Chemical Composition, concentration, pH, reaction rate 
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external hardware that would otherwise be needed to complete the sensor system that 

would have been incorporated and integrating with the sensor’s energy output to 

transform it into a signal form that a microcontroller can process (Staff 1995). 

 

While wearable devices are a portable device that have become a popular term 

since pre-millennial, the first portable devise was a heart rate monitor that Dr. Norman 

Holter introduced in 1957 (Lemay, et al. 2014).  Wearable and portable devices 

development has a lot of focus application development for health care application.  

Advancing wearable healthcare technology has been identified by the United States 

National Academy of Engineering as one the fourteen great challenges for the twenty-

first century (Poon, et al. 2014).  Wearable healthcare device for use outside of a clinical 

facilities are used in many ways for improving the care, monitoring, and detection of 

medical problems.  For example, there are many cardiovascular disease, like 

Hypertension, that are not identified until it is too late.  But with a wearable blood 

pressure devise, long-term monitoring, in an economical way, is now means in which 

Figure 2. Illustration of Anatomy of a Sensor System (Staff 1995) 
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doctors can detect the variation in one’s blood pressure to which can aid in the 

diagnosing heart disease and asses the risks factors the patient could be facing (Poon, et 

al. 2014). 

Beside disease recognition, wearable healthcare devices can be used as part of the 

recovery treatment plan.  Wearable devices that monitors the human gait actives to 

observe the balance and walking patterns to provide information which can be used in 

refining the care and physical treatment the patient receives.  Wearable body temperature 

devices can be used to monitor the process and treatment sleeping disorders.  Epilepsy 

patients benefit from wearable device by monitoring their seizure activities by the aid of 

accelerometers and gyroscope sensors (Poon, et al. 2014). 

This thesis is organized by presenting in the following chapters the developmental 

work and research of some novel sensors.  Chapter two presents the design of a wireless 

pulse oximeter with fingerprint recognition.  This is followed by chapter three discussing 

the development of a wireless multipurpose data acquisition device.  The last design that 

is presented in chapter four includes information about some flexible physiological 

sensors developed.  This is then wrapped up in the conclusion which is presented in 

chapter five.  
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CHAPTER 2 

WIRELESS PULSE OXIMETER WITH A FINGERPRINT SENSOR 

Motivation 

As part of this research in wearable devices, a pulse oximetry wireless device for 

possible clinical medical application was developed.  With this project, the initial 

challenges were making this device unique since there are many commercial off-the-shelf 

options available.  To make this pulse oximeter unique, a fingerprint reading and wireless 

communication functionality was to be integrated to the pulse oximeter that was powered 

by a rechargeable battery.  This would allow medical personnel to identify and/or confirm 

the identity of the wearer of the device while transmitting the vital signs of pulse and 

SpO2 (peripheral capillary oxygen saturation) level.  By being able to transmit a variety 

of information wirelessly would allow the devices to work in a variety of settings from 

combat field aid situation to emergency efforts at a disaster site.  This would allow 

medical personnel the ability to monitor the measurement of the SpO2 level which is 

typically a key parameter in assessing how stable or critical the condition is of someone 

who needs medical attention without the need of setting up a network system at the site.  
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Operation Methodology for a Pulse Oximeter Component 

 

A pulse oximeter is a noncontact device, which can measure pulse and oxygen 

saturation in the blood.  Typically, the sensor consists of two LEDs emitting light: one in 

Red spectrum (RED-650nm) and the other in Infrared (IR-950nm) (Integrated 2014).  

This type of sensor can be placed on a finger or an earlobe, where the skin is not too thick 

so that both light signals can easily penetrate the tissue.  An overview of the operating 

principle for a pulse oximeter sensor is shown above in Figure 3.  Once both light rays 

penetrate through finger, the absorption is measured with a photodiode.  One such pulse 

oximeter device is the Pulse Oximeter and Heart-rate sensor MAX30100 whose product 

package is shown in Figure 4.  The MAX30100 is reflectance type pulse Ox sensor made 

Figure 3. System Block Diagram of the MAX30100 (Integrated 2014) 
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by Maxim Integrated.  This sensor also has the capable of heartbeat detection and 

temperature reading (Integrated 2014). 

 

The SpO2 levels are an estimated percentage of the amount of oxygenated 

hemoglobin compared to the total amount of hemoglobin in the blood (Nokia 2017).  The 

SpO2 value is the oxygenated Hemoglobin level over the total Hemoglobin level. 

𝑆𝑝𝑂2 =
𝐻𝑏𝑂2

𝑇𝑜𝑡𝑎𝑙 𝐻𝑏
 (Strogonovs 2017) 

Depending on the amount of oxygen in the blood, the ratio (R) between the 

absorbed Red light and IR light will be different.  This ratio R is calculated as 

𝑅 =
𝐴𝐶𝑅𝑀𝑆 𝑅𝐸𝐷/𝐷𝐶𝑅𝐸𝐷

𝐴𝐶𝑅𝑀𝑆 𝐼𝑅/𝐷𝐶𝐼𝑅
 (Strogonovs 2017) 

where ACRMS RED correspond to RMS value of the AC signal of the RED light measured 

and 𝐷𝐶𝑅𝐸𝐷correspond to the DC component of the RED light measured.  Similarly, 

𝐴𝐶𝑅𝑀𝑆 𝐼𝑅 corresponds to RMS value of the AC signal of the IR light measured and 𝐷𝐶𝐼𝑅 

corresponds to the DC component of the IR light measured.  It is assumed that DC 

Figure 4. MAX30100 Pin Configuration (Integrated 2014) 
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component is the result of absorption by the body tissue and veins and the AC component 

is the result of the absorption by arteries. 

 

From this ratio, it is possible to calculate oxygen level in blood hemoglobin.  To 

get SpO2 from R, an empirical or a theoretical linear relationship with a slight offset can 

be safely used since the Oxygen Saturation level seldom drops below 80% (Chan and 

Underwood 2005).  This relationship between the Empirical and Theoretical of SpO2 and 

R can be observed in graph shown in Figure 5 above. 

Operation Methodology for a Fingerprint Recognition Reader 

Fingerprint scanner use the sensing element(s) within the sensor to extract and/or 

compare various features of a fingerprint patterns such as fingerprint ridges (arch, loop, 

and whorl) and minutia features of fingerprint ridges (ridge ending, bifurcation, and short 

ridge).  Two minutia fingerprint features are shown below in Figure 6. 

Figure 5. Empirical and Theoretical R to SaO2 (Strogonovs 2017) 
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The way a fingerprint sensors captures a digital image of the fingerprint is divided 

into three main categories which are optical, solid-state, and ultrasonic sensing.  Within 

each of these categories, there are advantages and disadvantages. 

The Frustrated Total Internal Reflection (FTIR), is one of the oldest and most 

used technique for live-scan fingerprint scanning, is which is also part of the optical 

sensing group (Maltoni, et al. 2003).  With FTRI, a figure is placed on top of a glass 

prism which ends up leaving the valleys of the fingerprint’s feature a distance away from 

the glass.  The scanner will illuminate light into one of the other sides of the prism with a 

LED.  This will causes the light to be reflected from the valleys and absorbed at the 

ridges of the fingerprint.  This reflection and absorb of reflected light will result in 

distinguishable light and dark areas.  The light ray pattern will then exit out the other side 

Figure 6. Two of the Minutia Fingerprint Features in a Fingerprint (John 2011) 
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of the prism and be focused onto a CCD or CMOS image sensor (Maltoni, et al. 2003).  

An illustration of this process is shown below in Figure 7.  As a way of reducing the cost 

of these type of FTIR devises, plastic is often used instead of glass for the prisms and 

lenses, and CMOS cameras are mounted instead of more expensive CCDs.  Being the 

largest type of fingerprint sensor means the FTIR type of sense will be easy to acquire at 

a low cost while have numerous documents, examples, and support. 

 

The disadvantage of this technique is fingerprint quality is affected by the 

cleanliness of the fingertip and camera lens, quality of contact between lens and skin, 

erosion of skin surface, and quality of screen, i.e. scratch free, no smudges on screen etc.  

Another disadvantage to FTIR technic of fingerprint sensing is that it cannot be 

miniaturized due to constants of the optical path length between the finger surface the 

prism to the image sensor (Maltoni, et al. 2003). 

Figure 7. Illustration of the Working Principle of Optical FTIR Sensing (Maltoni, et al. 

2003) 
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Solid-state sensors, also known as silicon sensors, consist of an array of pixels, 

each pixel being a tiny sensor itself.  The user directly touches the surface of the silicon 

which eliminates the need for optical components or external CCD/CMOS image sensors.  

Capacitive, thermal, electric field, and piezoelectric are the four main effects that are used 

to convert the physical information into electrical signals (Maltoni, et al. 2003). 

 

A capacitive fingerprint sensor measures is the most common used of the solid 

state methods.  A capacitive sensor is a two-dimensional array of micro-capacitor plates 

embedded in a chip as shown in Figure 8 above.  The finger’s skin itself is the second 

plate and the fingerprint pattern is the micro-capacitor that has a unique identifying 

pattern.  When a finger is placed on the chip, small electrical charges are created between 

the surface of the finger and each of the silicon plates.  The magnitude of these electrical 

charges depends on the distance between the fingerprint surface and the capacitance 

plates.  Thus the capacitance varies across the array of capacitors between the ridges and 

valleys found within a fingerprint to form a digital image of the user’s fingerprint. 

Some of the advantages of the capacitive sensors are the possibility of adjusting 

some electrical parameters to deal with non-ideal skin conditions like wet and dry fingers.  

Figure 8. Illustration of the Working Principle of Capacitive Sensing (Maltoni, et al. 

2003) 
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Also the sensor package size can be made compact.  Disadvantages to this type of 

fingerprint reading is the need for frequently cleaning the surface to prevent the grease 

and dirt from compromising image quality.  Additional two other important things are 

needed to keep the capacitive sensor working.  One is that the sensor most have proper 

protection and grounding to avoid electrostatic discharge that could come from the figure 

tip and damage the sensor.  The second important things is with the protective surface 

coating over the silicon chip.  This protective layer protects the silicon chip from 

chemical substances that are present on the finger and abrasion (Maltoni, et al. 2003). 

Ultrasound sensing is a kind of echography that can be used to capture a 

fingerprint image.  The sensor uses acoustic signals are transmitted towards the fingertip 

and then captures the returning echo signals.  Since this method ends up imaging the 

subsurface of the skin, gloves, dirt, oil and minor injuries do hinder its ability to acquire a 

good image of the fingerprint.  This working principle is shown below in Figure 9.  

Disadvantage to ultrasound sensing is that it is primarily mechanical, expensive, and the 

technology behind it has not matured enough for large-scale production (Maltoni, et al. 

2003).  
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The point-of-departure prototype used the ZFM20 optical fingerprint sensor made 

by Zhiantec Technologies Co, shown above in Figure 10, which performs a series of 

functions like fingerprint enrollment, image processing, fingerprint matching, searching 

and template storage (ZhianTec 2008).  This sensor can store 162 fingerprint templates 

(images) and has a False Acceptance Rate: <0.001% (Security Level 3), and a False 

Reject Rate: <1.0% (Security Level 3) (S. Technology 2010).  Since this sensor works on 

Figure 9. Illustration of the Working Principle of the Ultrasound Sensing Technique 

(Maltoni, et al. 2003) 

Figure 10. ZFM20 Fingerprint Sensor (Adafruit 2012) 
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the optical sensing principle, it requires a clean fingertip and scratch/smudge free screen.  

The sensor has a Digital Signal Processor chip that performs pattern recognition.  When 

matching fingerprints, the users the fingerprint enters the system through optical sensor 

and is then compared with the fingerprints that have been stored in the sensors library.  If 

the sensors is setup for 1:1 matching, system will compare the live fingerprint with 

specified template designated within the ZFM20 module.  If the setup configuration is for 

1:N matching, the system will search the whole fingerprint library looking for a matching 

finger.  In both circumstances, system will return the matching result of either success or 

failure. 

Prototype Design 

The prototype design for the wireless pulse ox with fingerprint devise formed out 

from five key element housed in a ridged case.  These five key elements are a pulse 

oximeter, fingerprint reader/decoder, microprocessor, Bluetooth communication and 

rechargeable power.  In an effort to quickly establish fully functional, point-of-departure 

design, the initial design for the prototype revolved about the fit and used of readily 

available electrical breakout boards/modules.  The fingerprint reader and MAX30100 

Pulse-Oximetry module took care of biometric reading of the user’s finger.  The 

microcontroller and Bluetooth communication was handled by a Bluno Beetle module.  

The battery was simply handled by a rechargeable, 3.7 volt Lithium-Ion with 400 

milliamp hours that would plug into a recharger that was external to the prototype. 
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A three-dimensional design of the Pulse Oximeter’s case was created in 

SOLIDWORKS so that the casing could be 3D printed.  The creation different elements 

of the system were approximated to help with the fit and form of the case in to ensure the 

success of creating a functional prototype.  Figure 11 shows an exploded view of the 

mechanical design and how the different components fit within the case.  The basic 

mechanical drawing have been added to the Appendix A for further possible reviewed.  

Figure 11. Exploded View of the Pulse Oximeter Design That Was Created in 

SolidWorks 
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Figure 12 shows the point-of-departure prototype fully assembled.  The case was 

3D printed and the design house the different components.  From this working prototype 

iteration in design, the potential and insight to future design were easily able to be 

identified.  

Prototype Validation Testing  

To validate that this initial prototype is fully functional, point-of-departure design, 

validating testing was broken into two main parts.  The first part was to validate that the 

fingerprint reader can distinguish the differences between different fingerprints.  The 

second part of the testing was to validate that the pulse oximeter was providing pulse and 

SpO2 reading to the reading that is similar to the results from an established SpO2 

commercial devices.  The testing for the Bluetooth wireless communication was a simple 

pairing of device to Android Smartphone with BLE 4.0 and reading the transmitted 

information from the prototype device. 

Figure 12. Initial Assembled Prototype Design of the Pulse Oximeter Devise 
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The fingerprint validation testing began by enrolling different fingerprints.  Table 

2 shows what identification number was enrolled to which finger.   

Table 2. Enrolled Fingerprint Identification Number to Finger 

After enrolling different fingerprints, the different fingers were placed onto the 

fingerprint reader’s window.  The result from the fingerprint reader module was observed 

in a Serial Print window which and then compared to enrollment to check functionality.  

Show below in Figure 13 and Figure 14 are a couple of those validation readings. 

 

Enrolled ID # Hand Finger 

0 Right Index 

1 Right Middle 

3 Right Little 

4 Left Index 

5 Left Middle 

6 Left Ring 

7 Left Little 

8 Right Ring 
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Figure 13. The Left Index Finger Shown Being Identified by the Fingerprint Reader 
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The ‘confidence’ is a score number which ranges from 0 to 255 that indicates how 

good of a match the fingerprint is, higher is better.  Note that if it matches at all, that 

means the sensor is pretty confident so you do not have to pay attention to the confidence 

number unless it is being used for high security applications. 

The validate process for the functionality for the pulse oximeter was simple done 

by comparing results the prototype results to a commercial devices.  The commercial 

pulse oximeter used for comparing the results is by Contec Medical Systems Company 

and the model number of the device was CMS50DL.  To help minimize the difference in 

Figure 14. The Left Middle Finger Shown Being Identified by the Fingerprint Reader 
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reading of the two pulse oximeters, the reading were taken from two side-by-side figure 

on the same hand.  The prototypes results were similar to the commercial devices.  Some 

of those results has been captured and is shown below in Figure 15.  

 

Recommended Design Improvements 

The recommendation for changes to this point of departure prototype would be 

using different hardware components.  As the electrical system gets more refined, the 

physical overall design needs to evolve to device that is more “familiar feeling” of a 

pulse oximeter device that is currently out on the market. 

Figure 15. Picture of Pulse and SpO2 Validation Testing of the Pulse Oximeter 
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Table 3. Features and Specification for the ZFM1020 Fingerprint Capacitive Sensor 

One hardware change would be to change the fingerprint sensor to a capacitive 

sensing sensor.  This change would be done for two reasons.  One is it would allow for 

the overall size of the final devise to be reduced dramatically by changing from an optical 

sensor to a capacitive sensor.  The second reason is with the capacitive sensor able to 

read wet, dirty, scraped up fingers while not needing to maintain a clean sensing surface.  

One such capacitive sensor fingerprint module is the FPC1020.  In Table 3 above, the 

features and specification for the FPC1020 are given. 

 

Features 

 GROVE Compatible Interface 

 FPC1020 CMOS fingerprint sensor 

 Best in class imaging quality with 256 true grey scale 

values in every pixel 

 Robust protective coating capable of more than 10 

million finger placements 

 Full ESD protection to more than ±30kV 

 200 byte fingerprint template 

 1:N Identification (One-to-Many); 1:1 Verification 

(One-to-One) 

 Auto-learning function (Automatically updating the 

fingerprint features) 

 Security level setting; TTL serial interface 

Specifications 

 Resolutions: 508 DPI 

 Fingerprint store capacity: 100 fingerprints 

 Verification time: < 0.45 sec 

 Identification time: < 0.45 sec 

 False accept rate (FAR): < 0.0001% 

 False reject rate (FRR): < 0.01% 

 Baud rate: 9600, 19200, 38400, 57600, 115200 bps 

 Working current: < 50mA; Standby current: < 10μA 

 Supply voltage: DC 5V; 

Digital I/O voltage: 2.8V ~ 5V DC 

 Operating temperature: - 20℃ ~ 60℃; 

Operating humidity: 20% ~ 80% 
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A second hardware change would be with the wireless communication by adding 

Ultra-Wide Band (UWB) as a secondary method of wireless communication which used 

in wireless networking to achieve high bandwidth connections with low power 

utilization.  UWB can send short signal pulses over a broad spectrum and can operate at 

data rates of 480 Mbps to 1.6 Gbps over a few meters.  UWB radios transmit data by 

generating a radio frequency (RF) energy at specific time intervals over a large 

bandwidth enabling pulse-position or time modulation.  The information can be 

modulated on UWB signals (pulses) by encoding the polarity of the pulse, its amplitude, 

and/or by using orthogonal pulses.  UWB pulses can be sent sporadically at relatively low 

pulse rates to support time or position modulation, but can also be sent at rates up to the 

inverse of the UWB pulse bandwidth.  Pulse-UWB systems have been demonstrated at 

channel pulse rates in excess of 1.3 giga-pulses per second using a continuous stream of 

UWB pulses (Continuous Pulse UWB or C-UWB), supporting forward error correction 

encoded data rates in excess of 675 Mbit/s (Contributors 2003). 

 

One option could be decaWave’s DW1000-UWB module which is shown in 

Figure 16.  This a complete, single-chip CMOS comes with integrated antenna, power 

Figure 16. decaWave's DWM1000 Module (decaWave 2013) 
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management, and clock control simplifies design integration.  It has communications 

range of up to 300 m, with a data communications rate up to 6.8 Mb/s, and 6 frequency 

bands supported with center frequencies from 3.5 GHz to 6.5 GHz (decaWave 2013). 

Another improvement that would benefit further version of this device would to 

incorporate a way to internally recharging the Lithium-Ion battery.  The initial thoughts 

are in favor of inductive charging to provide one less opening to the future device.  

Further development and research will need to be done into how small the transmitting 

coils can be without further increasing the charging time.  The incoming supply voltage 

from the inductive coil or USB port will be feed through the Microchip’s MCP7331 Li-

Ion Charge Management Controller to safely charge the Lithium-Ion battery. 

As part of recommendation for the next version of the pulse-oximeter, and 

schematic (shown in Figure 17 ) and Bill of Material (Table 4) was created. 
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Figure 17. Recommended Reversion Schematic for the Pulse-Oximeter Device 
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Table 4. Bill of Material for Proposed Pulse Oximeter Revision 
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CHAPTER 3 

WIRELESS STRAIN TRANSMITTER 

Motivation 

In this research a multifunctional wireless strain gage data acquisition device was 

developed.  The sponsor presented this project with a concept sketch (shown in Figure 

18) and a list of requirements which were used to formulate the Design Criteria (Table 5).  

The goal was to expand existing repertoire of proven, working data acquisition 

technologies into Bluetooth communication and inductive recharging while developing a 

device that can transfer data from the strain gages that are to be monitored.  The end 

result also need to be able to able to transfer small scale production for so desired. 

 

Figure 18. The Presented Proposed Concept Sketch for the Wireless Strain Transmitter 

Project 
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Table 5. Design Criteria for Wireless Strain Transmitter 

Criteria Target Goal Stretch Goal Rationale 

Prototype to be 

Commercial 

Scalable 

No break-out 

modules, with part 

that are readily 

available 

n/a 

Want to have the 

ability to transfer 

project to low 

volume production 

Rechargeable 

Battery 

Direct connection 

to recharge 

Lithium-Ion battery 

Recharging 

Lithium-Ion battery 

using inductive 

power 

The want to power 

the system with 

rechargeable power 

Wireless 

Communication 

Bluetooth 

communication 

Bluetooth 

communication  

with development 

GUI inference 

The want for 

wireless 

communication 

using Bluetooth 

technology  

Easy Transferring 

of Transmitter 

Module 

Transmitter that 

easily attaches to a 

mounted base and 

recharging station. 

That the different 

cases involved are 

ready to transfer to 

production method 

of manufacture (i.e. 

injection 

modeling). 

The device should 

be able to move the 

transmitter around 

to any number of 

location 

Analog Digital 

Convertor 
24 bit ADC 

Microcontroller 

with 24 bit ADC 

Quality of reading 

off the strain gages 

Compact in Size 

Transmitter under 2 

inches square and 

of minimal height. 

Transmitter is 1 ½ 

inches square and 

of height ¾ inches. 

The device should 

easily be mounted 

without having size 

constants due to a 

large device 

Strain Gage 
Able to read two 

strain gages 

Ability to read to 

read over ten strain 

gages 

The device should 

be reading and 

transmitting strain 

gage data 
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Operation Methodology of Bluetooth Communication 

Bluetooth communication is a global standard for wireless technology that allows 

devices to communicate with each other over radio frequencies (RF).  When released in 

July of 1999, Bluetooth meant to be a technology that would replace serial data cables 

cable connection between various devices.  Several of the key feature of Bluetooth 

communication are (Gupta 2013): 

 Ad hoc (a decentralized type of wireless network that does not rely on a 

preexisting infrastructure, such as routers in wired networks or access points in 

wireless networks like Wi-Fi) 

 Small size – easily integrated into smart phones or wearable devices 

 Low power – 1mW to 100mW of output power 

 Short range – typical range of 10 to 100 meters 

 Secure – 128 bit authentication key with configurable encryption key of up to 128 

bits 

 Does not require direct line of sight 

 Can co-exist with other wireless technologies 

 Intended to work anywhere in the world since it uses unlicensed band frequency 

The Bluetooth communication happens between two Bluetooth IC chips which 

transmit and receive information.  The main task of the Bluetooth chips is to transform 

digital signals via radio frequency while hold the key protocol data.  An illustration of 

this basic process is shown in Figure 19.  The nominal radio frequency Bluetooth 

operates at is 2.4 GHz which is a regulatory range of 2400 to 2483.5 MHz.  When the 
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Bluetooth device is scanning to discover other Bluetooth devices, it is hopping across 79 

RF channels that are separated by 1MHz (Gupta 2013). 

 

The processing of pairing to two Bluetooth devices to communicate with each 

other can be simplified into six steps.  The first step is for one of the Bluetooth devices to 

discover the other device.  The second step follows by one of these devices to make an 

inquiry on the location and necessary information to make connect.  The third step is 

involves the discovered device to allow a connection by being “connectable” which could 

involve a password or encryption key.  If the discovered Bluetooth devise is 

“connectable,” the fourth step is to create a connection between the two units which is 

offend called “paging”.  After the connection is made, one of the protocols on the two 

Bluetooth chips while establish which unit will become a ‘Master’ while the other 

becomes the ‘Slave’ for the fifth step.  This connection between the two Bluetooth device 

will remain connected they are disconnect by code or lose of signal which is the sixth 

Figure 19. Illustration of Wireless Communication (T. Instruments n.d.) 
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step in the Bluetooth pairing (Gupta 2013).  Figure 20 shows these six step of 

establishing a Bluetooth connection between two devices. 

 

Operation Methodology of Analog-To-Digital Convertor Component 

For any analog device to be able to communicate with digital devices, an analog-

to-digital convertor (ADC) needs to be used.  Temperature sensors, strain gages, light 

meters, and potentiometer are some of the many different type of analog devices.  These 

sensors need to be connected to a microcontroller which is a digital device.  Some 

Figure 20. The Six Steps Involved With Bluetooth Pairing (Gupta 2013) 
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microcontroller have ADC built into their system.  An ADC convert the analog signal 

into a series of binary numbers.  The process of conversion begins by the ADC receiving 

a sample pulse signal and an analog signal.  With each pulse of sampling signal, the 

analog signal is measured.  The ADC will then send a grouping, or word, of binary 

numbers.  This binary number is a proportional value of the measured analog voltage to 

the analog reference voltage.  To illustrate this ADC process, the basic principal of a 4-bit 

ADC is shown in Figure 21.  The quality of the resolution of the conversion depends on 

the number of bits the digital output signal is changed into.  For high resolution of 

continuous monitoring of an analog signal, an ADC with a high bit value needs to be 

implemented (Scherz and Monk 2013). 

 

 

Figure 21. Basic Working Principal Behind a 4-bit Analog-to-Digital Conversion (Scherz 

and Monk 2013) 
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Operation Methodology of a Strain Gage Component 

The amount of deformation a material experiences due to an applied force is 

called strain (ε) (N. Instruments, Measuring Strain 2016).  The measurement of strain is 

the fractional amount change in length of an object’s body due to a force that has been 

applied to the object as illustrated below in Figure 22.  A strain gage is a commonly used 

device to measure strain by monitoring the changes in voltage caused by changes in 

resistance.  The resistance of a strain gage varies in proportion to the amount of strain in 

the device (N. Instruments, NI AN078 1998). 

   

While there several ways to measure methods of measuring strain, a metallic 

strain gage is the most common strain sensor.  A metallic stain gage consists of metallic 

foil that has a grid pattern cut into it.  A few of these patterns are shown below in Figure 

23.  The way in which the strain interacts with this grid pattern is what causes the change 

in resistance through the strain gage.  The directional pattern in which it is cut will relate 

to the direction and type of strain in which the sensor will measure.  This metallic grid is 

Figure 22. Illustration of Ratio of How Strain is Calculated (N. Instruments, Measuring 

Strain 2016) 
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bonded onto a thin carrier which is attached directly to the object that will be measured.  

An overview of this composition of parts is shown farther down in Figure 24. 

   

 

Strain gages rarely involve measures that are over a few mill-strain which also 

means the resistance change is very small.  A strain gage with a gage factor of 0.1% 

electric resistance will only differ by 0.12 Ω in a 120 Ω gage (N. Instruments, Measuring 

Strain 2016).  For this reason, strain gage reading are passed through some level of 

amplification. 

Figure 23. Three Different Strain Gage Patterns for Different Type of Strain 

Measurements (Measurements 2017) 

(a)  Rectangular                     (b)  Linear                 (c) Shear/Torque 

Figure 24. Basic Illustration of Different Element of a Metallic Strain Gage (N. 

Instruments, Measuring Strain 2016) 
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To measure the change in resistance, the strain gage is incorporated into a Wheatstone 

bridge.  A Wheatstone bridge is the electrical equivalence of two parallel voltage dividers 

that output is the measurement the middle node of the two dividers (N. Instruments, 

Measuring Strain 2016).  There are three different Wheatstone bridge configuration for a 

strain gage sensor to be incorporated into.  One is a Quarter-Bridge which is where one of 

the four resistor are replaced with a strain gage as shown below in Figure 25 (N. 

Instruments, NI AN078 1998).  In this setup, any change of resistance in the strain gage 

will change the output voltage. 

 

The second Wheatstone bridge configuration is a Half-Bridge.  By replacing the 

resistors that are on both sides of the positive voltage output with strain gauges, the 

sensitivity doubles so that the compression and tension force are measured.  Figure 26 

shows how the Half-Bridge circuit looks like and how the strain gage are positioned to 

get the read these two forces. 

Figure 25. Diagram of a Quarter-Bridge Wheatstone Circuit (N. Instruments, NI AN078 

1998) 
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The third Wheatstone bridge configuration for strain gage placement is the Full-

Bridge configuration.  This increases the sensitivity of the reading of both the tension and 

compression forces directions.  Figure 27 show the full Wheatstone bridge is setup. 

 

Reliable measurements from the strain gage requires proper selection and 

implementation for the design of the bridge configuration, signal conditioning, wires, and 

data acquisition components are needed.  If the bridge is connected wrong, resistor values 

Figure 26. Diagram of a Half-Bridge Wheatstone Circuit (N. Instruments, NI AN078 

1998) 

Figure 27. Diagram of the Full-Bridge Wheatstone Circuit (N. Instruments, NI AN078 

1998) 
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are unbalanced, or lack of temperature consideration, the signal from the strain gage(s) 

will be skewed and have limited obtainable accuracy (N. Instruments, NI AN078 1998).  

Some other important factors with the signal conditioning that need consideration are the 

cleanliness of the input power, amplification of the measurement to increase the signals 

resolution, high-frequency noise filtering, offset nulling, and shut calibration (N. 

Instruments, Measuring Strain 2016). 

Overall System Design 

  

To handle the flexibility in placement of the of the strain gage transmitter module 

and in battery recharging methods, the Wireless Strain Transmitter system was divided to 

three units.  A picture of these units are shown in Figure 28.  They are the Recharging 

Base Unit which is in the upper left portion of the picture, the Transmitter Unit which is 

to the right of the picture with the cover off, and the Mounting Base unit.  Within these 

Figure 28. Overview of the Three Units (Recharging Base, Mounting Base, and 

Transmitter) That Make Up the Complete Wireless Strain Transmitter System 



 

38 

different units, the system was divided further into five layers.  Table 6 is a simplified 

Bill of Material for the Wireless Strain Transmitter project.  The complete Bill of 

Material has been added to the Appendix D. 

Table 6. Simplified Bill of Material for the Wireless Strain Transmitter Project 

Section 

Grouping 
Part Name - Description 

Part 

Quantity 

Total 

Cost 
Manufacturer 

Microcontroller 

Linear Voltage Regulator 

IC Positive Fixed Output, 

3.3V, 800mA, SOT-223 

1 $1.045 Texas Instruments 

Microcontroller 

16MHz Ceramic Resonator 

Built in Capacitor 15pF 

±0.3% -20°C ~ 80°C 

Surface Mount 

1 $0.5 
Murata Electronics North 

America 

Microcontroller 

Atmegea 328P 

IC MCU 8BIT 32KB 

FLASH 32VQFN 

1 $2.07 Texas Instruments 

Battery 

Recharging 

Lithium-Ion Battery 

Rechargeable (Secondary) 

3.7V, 500mAh, Coin, 

35.0mm, Wire leads 

1 $22.23 Illinois Capacitor 

Battery 

Recharging 

4.7µH Shielded Inductor 

1.2A 140 mOhm Max 

Nonstandard 

1 $1.09 
Sumida America 

Components Inc 

Battery 

Recharging 

IC CONTROLLR LI-ION 

4.2V (SOT23-5) 
1 $0.58 Microchip Technology 

HX711 
HX711, SOIC16, 24 bit 

ADC IC 
1 $1.00 Avia Semiconductor 

Bluetooth ANTENNA CHIP 2.4GHZ 1 $0.93 Johanson Technology Inc. 

Bluetooth 

IC RF TxRx + MCU 

Bluetooth  v4.0 2.4GHz 

40-VFQFN Exposed Pad 

1 $5.42 Texas Instruments 

Inductive 

Transmitter 

Wireless Charging Coils 

Tx coil 4.95uH 0.03 ohms 

50x3mm 

1 $7.62 TDK 

Inductive 

Transmitter 

Buck Switching Regulator 

IC Positive Adjustable 

0.79V 1 Output 2A 10-

WFDFN Exposed Pad 

1 $6.93 Linear Technology 

Inductive 

Receiver 

1 Coil, 1 Layer 47µH 

Wireless Charging Coil 

Receiver 460 mOhm 

1 $11.40 Wurth Electronics Inc. 

Inductive 

Receiver 

400mA Wireless 

Synchronous Buck Battery 

Charger, Lithium-

Ion/Polymer, 

3mmX3mmQFN16 

1 $6.910 Linear Technology 
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Section 

Grouping 
Part Name - Description 

Part 

Quantity 

Total 

Cost 
Manufacturer 

Stain Gage 

Connection 

12 Position FFC, FPC 

Connector Contacts, Top 

0.039" (1.00mm) Surface 

Mount, Right Angle 

1 $.85 Amphenol FCI 

Total 131 Different Items 265 $175.02 (blank) 

Three layers are encase in the Transmitter module which would be able to connect 

to either the recharging base or mounting base.  The layer that is located closest to the 

bottom of the transmitter module is for battery recharging.  The battery recharging was 

divided out into a separate layer so that the method could be changed by simply switch 

the board layers between inductive and direct recharging.  The middle layer within the 

transmitter unit is for system processing and communication.  The last layer is for the 

placement of the exterior LED indicator lights. 

To support the Lithium-Ion battery recharging, a recharging unit was needed.  

Within this unit is the system input power control layer.  It is designed to support either 

the inductive or direct recharging method based on the placement of the transmitter 

module on the recharging base unit. 

The remaining unit is the Mounting Unit.  It houses the ADC layer would allow 

the ADC to be close to the strain gage connections and be connected to any transmitter 

unit.  Figure 29 show the Transmitter and Mounting units connected together. 
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Wireless Transmitter Module 

Inductive Receiver for Battery Recharging 

The inductive battery recharging circuit design came from Linear Technology’s 

data sheet and manufacturing application information for their LTC4120 Wireless Power 

Receiver and Battery Charger IC.  The LTC4120 is a constant-current/constant-voltage 

wireless receiver and battery charger that is suitable for charging Lithium-Ion batteries 

(L. Technology, Inductive Battery Recharging 2016). 

After studying the data sheet and manufacturing application information, a schematic was 

created.  This particular schematic for receiving inductive battery recharging can be seen 

on the fourth page of the schematic for whole system in the Appendix C.  In addition to 

the components that supports the LTC4120 IC as shown in Figure 30, there were 

additional components added to provide interconnecting layer connector and power 

control switch to the inductive battery recharging layer.  These connectors are to transfer 

power and information between the layers and units. 

Figure 29. Transmitter Unit Connected on to the Mounting Base and Strain Gages 

Connector Piece 
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Figure 31 and Figure 32 shown the final populated prototype PCB boards and 

how most of the PCB board for this layer is occupied by components.  Figure 31 shows 

how the receiver coil and compression pin connector on the bottom face of the inductive 

receiver layer.  The compression pins connector are to complete the connection between 

the Mounting Base or the Recharging Base unit when the Transmitter Unit is slide into 

position. 

Figure 30. Linear Technology’s Simplified Application Schematic for the LTC4120 (L. 

Technology, Inductive Battery Recharging 2016) 
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Figure 31. Bottom Face of the Assembled PCB for the Receiving Inductive Battery 

Recharging 

Figure 32. Top Face of the Assembled PCB for the Receiving Inductive Battery 

Recharging 
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Direct Power Battery Recharging 

The second option for battery recharging is managed by Microchip Technology’s 

MCP7331 controller IC.  The MCP73831 device is a highly advanced linear charge 

management controller whose small physical size and low number of required external 

components make ideally suited for portable applications as evident in the schematic 

shown in Figure 33.  The MCP73831 employ a constant-current/constant voltage charge 

algorithm with selectable preconditioning and charge termination (M. Technology 2014).  

 

Direct power battery recharging was primarily put on a separate layer of because 

the separate develop of the two Lithium-Ion battery recharging options.  Similar to the 

inductive layer, additional components added to provide interconnecting layer connection 

and power control.  However, the switch for the direct power recharging was changed to 

a double pole/double throw (DPDT) to alternate how power flows in and out of this layer.  

Without this switch, it was possible to have circle charging and discharging due to the 

cross use of pin number one on the compression pin connector.  The resulting, populated 

PCB board for this layer is shown in Figure 34 and Figure 35.  The schematic that was 

Figure 33. Typical Application Schematic for the MCP73831 Found Within the 

Datasheets (M. Technology 2014) 
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created for direct power recharging can be reviewed on the seventh page of the schematic 

for whole system which is in Appendix C. 

 

 

Bluetooth Communication 

For the Bluetooth communication, Texas Instruments’ CC2540 IC (integrated 

circuit) was implemented.  This chip has lot of development support documentation and 

application examples available from Texas Instruments to aid in the development 

Figure 34. Top Face of the Assembled Direct Power Battery Recharging 

Figure 35. Bottom Face of the Assembled Direct Power Battery Recharging 
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process.  It is also the same chip that is used in the different Bluno Bluetooth breakout 

modules.  After comparison of the schematics from Texas Instruments and Bluno Micro 

found the two to be nearly identical, this meant the firmware coding from the Bluno 

breakout modules could be used aid in the startup of this chip.  The Bluno Micro is the 

only module in the Bluno series that is without a built-in microcontroller and power 

regulation. 

Outside the Bluetooth chip, the antenna and impedance matching for RF are two 

design elements that are important to get the Bluetooth communication to work.  Within 

the many Application Note that support the CC2540, there are two that aided in 

implementing a successful design for this project.  One is Application Note AN107 which 

is on how to simplify and reduce the possible of error in design in impedance matching.  

It is about Murata Balun filtering component that was specially designed for use with 

many of Texas Instruments devices to replace nine discrete components (Kervel 2011).  

Figure 36 and Figure 37 shown how a balun component simplifies the impedance 

matching. 

 

Figure 36. Traditional Reference Design with the Nine Discrete Components for 

Impedance Matching (Kervel 2011) 
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The antenna design was guided by Application Note AN058 from Texas 

Instruments.  Among the many PCB antenna design and chip antenna that are in this 

application document, there is the Johanson Technologies ceramic chip antenna. 

 

To test the Bluetooth design before fully implementation into the transmitter 

module’s design, it was built and tested separately as shown in Figure 38.  The schematic 

for the Bluetooth design can be reviewed on the third page of the schematic for whole 

Figure 37. Modified Reference Design after Implementation of Murata Balum (Kervel 

2011) 

Figure 38. Prototype Breakout Design Testing of the Bluetooth Communication 



 

47 

system which is in Appendix C.  After testing this Bluetooth design, it was fully 

incorporated into the system processing and communication layer of the transmitter 

module.  The Bluetooth design was on the top face of this PCB layer, as shown in Figure 

39, to keep the antenna clear of the many interfering obstacles to the antenna’s 

transmitting performance. 

 

 

Microcontroller 

The overall electrical design revolves around the microcontroller.  The selection 

of the microcontroller will result in establish the systems power requirement and any 

possible additional support that will be needed to meet the project’s criteria.  At first, the 

microcontroller selection for this project focused on five key specifications.  There were a 

Figure 39. Bluetooth Face of the Assembled PCB for the Microcontroller and Bluetooth 

Layer 
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core size of 16-Bits or higher, operation speed of 16 MHz or faster, integrated ADC that 

has a 24-bit resolution, supported I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral 

Interface) communication, and lastly was familiarity with the company’s controller.  

Other key specifications that are normally related to microcontroller selection process, 

like the number of I/O (Input/Output) pins, peripheral features, program memory size, 

and ram speed, were noted but accounted for in the initial selection process.  After review 

with client, the key factors behind the microcontroller was familiar and previous success 

with the microcontroller to eliminate the difficulty of starting up an unfamiliar 

microcontroller in conjunction with the development of the Bluetooth communication.  

This resulted in the selection of using an Atmega 328P microcontroller.  This meant that 

an external ADC would need to be implemented to obtain the 24 bit resolution from the 

strain gage readings and an operating voltage of 3.3 volts.  Figure 40 shows the populated 

bottom face of the system processing and communication layer of the transmitter module.  

On this side of the PCB board, there is the power regulator and inter-board connectors 

along with the microcontroller.  The schematic for the microcontroller design can be 

reviewed on the first page of the schematic for whole system which is in Appendix C. 
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LED Indicators 

To provide feedback about the systems status without connecting and congesting 

the Bluetooth communication signal, exterior indicators are needed.  Surface mounted 

LEDs are small lights that can be used as exterior indicators and does not take up a lots of 

room.  As a flexible and easily way to place these LED indicates close to the top of the 

transmitter module as shown in Figure 41, a small PCB board with LEDs on the top side 

and the remaining circuitry resistors and connector for the jumper cable on the bottom 

side.  The schematic for the LED exterior indicators can be reviewed on the sixth page of 

the schematic for whole system which is in Appendix C. 

Figure 40. Microcontroller Face of the Assembled PCB for the Microcontroller and 

Bluetooth Layer 
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Figure 42 shows the small PCB board with five LEDs on the top side for different 

important overall system status.  One of the LED is used to indicate the systems power 

status.  Another two LEDs are to indicate recharging status of the battery being done 

charging or error with the battery recharging.  The remaining two LEDs are to relay the 

status related to the Bluetooth connection process.  One of the Bluetooth LEDs is indicate 

if the Bluetooth is attempting to establish a connection.  The second Bluetooth LED is to 

indicate when a pairing of Bluetooth devices has be completed. 

Figure 41. LED Indicator Lights Mounted Inside the Transmitter Top Case Piece 
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Mounting Module 

 

The mounting module purpose is to provide a way to physical means of 

attachment for the transmitter module and way to connect to strain gages.  Figure 43 

shows the assembled mounting module.  In this picture, one can see to top configuration 

Figure 42. Top Assembled Face of the Exterior LED Indicators 

Figure 43. The Assembled Mounting Base in the 3D Printed Case 
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of stops and dovetails to position the transmitter module.  Within the middle of the 

dovetail there is the mating compression connector plate which is part of the ADC layer 

of the system.  Figure 44 show how the transmitter module fits atop over the mounting 

base.  

 

Analog-To-Digital Convertor 

The HX711 analog-to-digital chip was selected to handle the external ADC 

requirement for the system.  Besides have a conversion resolution of 24-bit, the HX711 

overall application design is to interface directly with a bridge sensor.  It has a two 

channel input with programmable gain amplification.  There is also an internal power 

supply regulator for the analog sensors and ADC (Semiconductor n.d.).   

The top side of the PCB board only has the mating female compression connector 

which was shown earlier in Figure 43.  The bottom side of the PCB board shown in 

Figure 45 has the HX711 IC along with the supporting discrete components and 

Figure 44. Close Up of the Mounting Base Fitted with the Transmitter Unit in an 

Inductive Recharging Configuration with the Transmitter Top Case Piece Removed 
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connection point to the strain gages.  The schematic for the HX711 design can be 

reviewed on the second page of the schematic for whole system which is in the Appendix 

C. 

 

Strain Gage Connection 

To provide a simple way of connection to strain gages for testing to the system, a 

strain gage connector PBC board was made (Figure 46).  This allowed for a Quarter-

Wheatstone bridge setup of a strain gage and/or connection point for any other strain 

gage setup. 

Figure 45. Bottom Face of the Assembled Mounting Base PCB with the HX711 
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Recharging Base 

 

The recharging base was created to complete to support primarily the inductive 

recharging method.  The secondary reason was to begin a docking station design for the 

direct battery recharging method.  This prototyped recharging station for a single 

Figure 46. Strain Gage Interface PCB Board Where a Strain Gage can be Connected Up 

to the System 

Figure 47. The Assembled Recharging Base Unit for either Inductive Recharging or 

Direct Recharging 
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transmitter module is shown in Figure 47.  Fitted inside the recharging base unit is the 

recharging PCB layer.  The top face of this board, shown in Figure 48, has the 

transmitting inductive coil and the mating female compression connector. 

 

The bottom face of the recharging PCB board has everything else need to take a 

DC power source and send it out to the appropriate recharging method.  When you look 

at this recharging PCB board bottom side shown in Figure 50, it appears to be divided 

into two sections.  Left side of PCB board is the inductive transmitting circuitry.  This is 

“divided” by the trace that runs down the middle to the power indicator LED.  The right 

side is the five volt power regulator circuity to directly power the direct power 

recharging.  The design for the inductive transmitting circuitry came the supporting and 

demo board DC2181A schematic (Figure 49) that Linear Technology has for their 

LT4120 wireless battery recharging.  The schematic for the inductive transmitting design 

Figure 48. Top Face of the Assembled PCB for the Charging Base 
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can be reviewed on the fifth page of the schematic for whole system which is in the 

Appendix C. 

 

Figure 49. Transmitter Demo Schematic from Linear Technology (L. Technology, 

Inductive Demo Manual 2013) 
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Design Validation Testing 

To validate that this design is fully functional and meeting the project’s criteria, 

validation testing was broken into two main types of testing.  The first type of validation 

testing was voltage measurements at different points within the system.  The second type 

of validation testing involved the wireless communication and system’s performance.  

Outside of these two main validation testing types, there were several small test which 

was more done to check how the startup and coding was progressing.  Some of these 

minor tests including flashing an LED after starting up the microcontroller, checking 

continuity at connectors, and reading changing sensed at the strain gage to check the 

HX711 ADC functionality. 

 For the measurement validation testing, pivotal points in the system had the 

voltage check with a multimeter.  This was done to verify that the system was receiving 

Figure 50. Bottom Face of the Assembled PCB for the Charging Base 
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and managing the different voltage in the expected manor.  Table 7 list the points of 

interest that are located throughout the system and the expected resulting measurements.  

Figure 51 and Figure 52 are pictures of two of these points being measured.  Figure 51 

shows the measuring of the inductive received input power.  Figure 52 shows the 

resulting measurement of the battery output. 

Table 7. Table Listing the Critical Points the Voltage Level was Validated and the 

Expected Resulting Voltage Measurement for the Wireless Strain Transmitter Project 

 

Point of Measurement (location) 
Expected DC Voltage 

Measurement 

DC Power Jack Inputed Power Level 

Input power at voltage regulator at Recharging Base 

(pin #3 @ U3) 
≈ Inputed Power Level 

Output power at voltage regulator at Recharging 

Base (pin #2 @ U3) 
5 volts 

Received Inductive power (pin #1 @ J11) ≈ Inputed Power Level 

Battery Recharging via Inductive Power (pin #2 @ 

J12) 
4.2 volts 

Received Direct Power (pin #1 @ J15) 5 volts 

Battery Recharging via  Direct Power (pin #2 @ J16) 4.2 volts 

Battery Output Voltage (pin #2 @ J12 & J16) 3.7 volts 

USB input power (pin #1 @ J4 or pin #2 @D1) 5 volts 

Output power at  system’s voltage regulator (pin #2 

or tab @ U4) 
3.3 volts 
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As previously stated, the second type of validation testing involved the wireless 

communication and system’s performance.  This was completed by pairing the system 

with a smartphone.  After pairing the two devices, the message received on the 

smartphone provide wireless feedback about reading the system had collected or received 

Figure 51. Validation Testing of the Incoming Power for Inductive Battery Recharging 

Figure 52. Validation Testing of the Battery Power for Inductive Battery Recharging 
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instruction which potentially could change the flow through the program.  Since most 

communication with the client involved teleconferences, a video of the working 

prototype was filmed to easily share the results of the project.  It was from this video that 

Figure 53 through Figure 57 were clipped from. 

 

The system’s performance and communication testing began by switching on the 

power and observing the extrior power indicator as shown in Figure 53.  With the power 

on, a Bluetooth line of communication between a smartphone and the system was 

established as indicated by the pairing LED being on in Figure 54.  Additional, validation 

of the two devices being paired together is change in displayed meassage on the 

smartphone after the letter ‘Y’ was sent out from the smartphone as shown in Figure 55.  

The message changes from request of acknowledgement of pairing which was a way to 

pause the coding to allow the Bluetooth pairing to occur, to instruction of what code to 

send. 

Figure 53. Clipped Image from the Demo Video of the Power Indicator LED Being On 

After System Was Switched On 
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After the system has been made aware of the established Bluetooth connection, 

there is a calibration process the system going through.  Once the user has completed the 

two steps for calibrating the system, weights or forces can be applied to the strain gage 

setup and the system will transmit the amount of force sensed.  Figure 56 show a known 

weight of 1003 grams being applied to the strain gage setup used in this test and Figure 

57 shows the system response to the load.  While the load reading is above the know 

weight, it is well within the ten percent margin (902 to 1103 grams).  This validation 

testing also include change the system to strain reading to dual, only channel ‘B’, and 

back to only channel ‘A.’ 

Figure 54. Clipped Image from the Demo Video of the Pairing Indicator LED the 

Connection Was Established With a Smartphone 
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Figure 55. Clipped Image from the Demo Video of the Initial Response Sent From the 

Transmitter to the Smartphone 
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Figure 56. Clipped Image from the Demo Video of a Known Weight of 1003 Grams 

Being Applied to Full-Bridge Strain Gage Setup on an Aluminum Rod 
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Figure 57. Clipped Image from the Demo Video of the Resulting Transmitted Strain 

Reading of the 1003 Gram Load to the Smartphone 
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CHAPTER 4 

FLEXABLE SENSOR MODULES 

Motivation 

With a wearable sensor, the comfort of the device when worn is an important 

aspect in the wearable device’s design.  Biometric wearable sensors are becoming a 

highly research area.  For that reason, there appeared a Department of Defence need to 

examine sensor circuitry that are built on flexible PCB boards as a means of providing 

comfort to the end user of a wearable biometric device.  By having the wearable device’s 

circuit on a flexible broad, a wearer will experience a significant level of comfort 

compared to a nonconforming rigid device.  For that reason, four point-of-departure 

biometric devices that are on flexible PCB board were developed as proof of concept and 

feasibility.  The four point-of-departure biometric devices that were selected to develop 

on the flexible PCB boards were a pulse-oximeter device, heart rate monitor device, air 

quality devise, and 9 degree of freedom Inertial Measurement Unit (IMU). 

Design 

The design for three of biometric device were taken from open source schematic 

repository to expedite the process of developing these point-of-departure biometric 

devices.  The schematic for the pulse-oximeter device was based on the design presented 

in chapter two.  The heart rate monitor device is from Sparkfun’s breakout board number 

SEN-12650 which can measure the electric actives of the heart to chart 

Electrocardiogram (ECG).  The air quality device is another Sparkfun breakout board 

(number CCS811) which can be used as a gas sensor that senses a wide range of Total 
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Volatile Organic Compounds which can be used to monitor a person’s breathing.  The 

last device, the 9 degree of freedom device, is the multipurpose Inertial Measure Unit 

from Sparkfun (number SEN-14001).  This last device can be programmed to monitor 

motion or used as a pedometer with Lithium-Ion battery charger, micro-SD card socket 

and microcontroller. 

 

For each of these device, a schematic was created separately like the one for the 

Heart Monitoring device shown in Figure 58.  The schematic for all four devices have 

been included in the Appendix F.  After the completion of the schematics, a Bill-of-

Material for this project was created.  Below in Table 8 is a condensed version of the full 

Bill-of-Material which has been included in the Appendix G.  As a way to save on the 

Figure 58. Schematic Created for Heart Monitoring Flex Breakout Device 



 

67 

PCB board fabrication cost, all four designs were combined together on a single flexible 

board which could then be later be cut into separate devices after the board has been 

made.  Figure 59 shows this layout with the heart monitor device in the upper left corner.  

From here, moving clockwise around the board layout, is the nine degree of freedom 

device, pulse-oximeter, and ends at the air quality device. 

 

Figure 59. The Top Layer of the PCB Layout for the Flexible Sensors That Was Created 

In Cadence's Allegro 
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Table 8. Simplified Bill-of-Material for the Flex Sensor Modules Project 

Section Grouping Part Name - Description Part 

Quantity Total Cost Manufacturer 

Air Quality Air Quality Sensor I²C 1 $12.42 ams 

Air Quality 
NTC THERMISTOR 10K 

OHM 3% BEAD 
1 $0.90 Vishay BC Components 

Heart Monitor 

AD8232 IC, ECG Front End 

IC Heart Rate Monitoring, 20-

LFCSP-WQ (4x4) 
1 $3.96 Analog Devices Inc. 

Heart Monitor 
SENSOR CABLE - 

ELECTRODE PADS 
1 $5.00 SparkFun Electronics 

Heart Monitor 
BIOMEDICAL SENSOR 

PAD 
1 $7.95 SparkFun Electronics 

Heart Monitor 

CONN JACK, 3.50mm 

(0.141", 1/8", Mini Plug) - 

Headphone Phone Jack Stereo 

Connector Solder, SMD, R/A 

1 $1.02 CUI Inc. 

Pulse-Oximeter 
IC SENSOR 

OXIMETER/HEARTRATE 
1 $7.03 Maxim Integrated 

Pulse-Oximeter 

Charge Pump Switching 

Regulator IC Positive Fixed 

3.3V 30mA SOT-23-6 

1 $1.28 Texas Instruments  

9 DoF-Razor IMU 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis Sensor 

I²C, SPI Output, 24QFN 

1 $9.32 TDK InvenSense 

9 DoF-Razor IMU 

ARM® Cortex®-M0+ SAM 

D21G Microcontroller IC 32-

Bit 48MHz 256KB (256K x 8) 

FLASH 48-TQFP (7x7) 

1 $3.22 Microchip Technology 

9 DoF-Razor IMU 
IC CONTROLLR LI-ION 

4.2V (SOT23-5) 
1 $0.58 Microchip Technology 

9 DoF-Razor IMU 

8 Position Card Connector 

microSD™ Surface Mount, 

Right Angle Gold-Palladium 

1 $4.28 
TE Connectivity AMP 

Connectors 

9 DoF-Razor IMU 

USB - mini B USB 2.0 OTG 

Receptacle Connector 5 

Position Surface Mount, Right 

Angle 

1 $1.03 Molex, LLC 

Total 60 Different Items 91 $69.40 (blank) 
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The Gerber files for the combined flex sensors PCB board layout was sent out to a 

PCB board manufacture to be made.  The resulting flexible PCB board is shown in Figure 

60.  From here the different sensor modules were separated and populated.  

 

The assembled pulse-oximeter device is shown in Figure 61.  In this picture, it is 

clear to see how small this test device was initial made.  One design change to this layout 

is the pulse oximeter IC sensor is on one side by its self to allow it to be placed next to 

the skin with the other component exposed to be touched. 

Figure 60. The Flexible PCB Board with All Four Sensor On One Board Layout 
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The assembled heart rate monitor device is shown in Figure 62.  In this picture you 

can see that if the headphone stereo phone jack was removed, the biometric sensor device 

could be made even smaller. 

 

The assembled air quality devise is shown in Figure 63. 

Figure 61. Top and Bottom Side of the Pulse-Oximeter Device after Being Populated 

With Its Components 

Figure 62. Top Face of the Heart Rate Monitor Sensor after Being Populated With Its 

Components 
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The assembled nine degree-of-freedom devise is shown in Figure 64.  During the 

assembly of this sensor module, it became even more obvious that assembling a flexible 

PCB boards present some unique challenges.  One such challenge is that as more small 

components are mounted, it becomes increasingly more difficult to hand solder larger 

components.  One also needs to take care in how large components are mounted to the 

PCB broad is need to avoid unnecessary curling of the board.  With these flexible PCB 

boards being so thin, appropriate measures were needed to avoid losing solder connection 

on one side while soldering on the other. 

Figure 63. Top Face of the Air Quality Sensor after Being Populated With Its 

Components 
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Design Validation Testing 

Validation testing for the pulse oximeter was involved running the code through 

the device and checking the resulting output.  Figure 65 show the serial out reading off 

the pulse oximeter device.  The device does get good readings if the finger does not move 

around. 

Figure 64. Top and Bottom Side of the 9-Degrees-Of-Freedom Module after Being 

Populated With Its Components 
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For testing in the heart monitoring device, code that would produce an 

Electrocardiogram chart was implemented.  This code was taken directly from the 

support documentation that Sparkfun’s porvides for their heart monitoring breakout 

sensor module.  Figure 66 shows the results of the heart monitor device working after the 

sensor probes were attached to my body. 

Figure 65. Testing the Pulse-Oximeter Sensor 
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The validation testing for the air quality sensor followed many of the same steps 

that the heart monitor sensor went through.  Sample code for getting CO2 level, room 

temperature, and humidity values was taken directly from the support documentation that 

Sparkfun’s provides for their air quality breakout sensor module.  Figure 67 shows the 

results this code was producing from the air quality IC sensor device. 

Figure 66. Testing the Heart Monitor Device to Evaluate If It Works As an ECG Device 
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The nine degree-of-freedom sensor device was similarly tested and efforts are 

underway to improve the design. 

Recommended Design Improvements 

Since these devices were developed as a point-of-departure on flexible PCB 

boards, there are only a few recommended improvements for these sensors modules.  Due 

Figure 67. Testing the Air-Quality Device 
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to the challenges of implementing the 9 degree-of-freedom sensor on a flexible PCB, one 

recommendation would be to use a more rigid flexible PCB board when component that 

have large footprints, like the micro SD slot or IC packages similar to a TQFP (7 mm x 7 

mm) are to be used.  Another recommendation would be to do medical device 

comparison testing before further implementation of these devices.  The last 

recommendation would be to look what other connector can be used to interface with 

these sensors. 

CHAPTER 5 

CONCLUSION 

In this research, some novel sensors for physiological and environment 

monitoring were developed.  The research began from identifying the requirements, 

understanding the specifications, developing the electrical circuit and schematic and 

finally prototype building and testing.  The wireless pulse ox sensor with fingerprinting 

was conceived from a Department of Defense requirement of rapid assessment and 

screening of combat casualty.  The functional prototype was built and successfully tested.  

The second sensor was developed with rapid reconfiguration capability where the 

sensors can be hot-swapped.  This system can acquire data from variety of sensors but 

strain gages were chosen to demonstrate its applicability for environmental monitoring.  

This system is capable of induction/wireless charging and communicates via Bluetooth 

Low Energy protocol with the host computer.  The user also has an option of capturing 

data via a smart phone app. 
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The third sensor suite comprised of sensors on flexible substrates.  The rigid 

circuits developed previously were transferred on to a flexible conformal PCB.  The 

sensors developed on flexible substrate can potentially be integrated into a garment that 

user can wear from continuous physiological sensor monitoring.  In this effort, pulse-ox 

sensor, air quality sensor and EKG sensor were developed and tested.  The efforts are 

underway to integrate these sensors into a base layer that can potentially be used to 

control “iron-man” type exoskeleton.    
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APPENDIX A 

BASIC MECHANICAL DRAWING FOR WIRELESS PULSE OXIMETER WITH A 

FINGERPRINT SENSOR 
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APPENDIX B 

CODE FOR WIRELESS PULSE OXIMETER WITH A FINGERPRINT SENSOR 
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Arduino code file name: “Fingure-SpO2_Prog1_v1.ino” 

 

/* 

Arduino-MAX30100 oximetry / heart rate integrated sensor library 

Copyright (C) 2016  OXullo Intersecans <x@brainrapers.org> 

 

This program is free software: you can redistribute it and/or modify 

it under the terms of the GNU General Public License as published by 

the Free Software Foundation, either version 3 of the License, or 

(at your option) any later version. 

 

This program is distributed in the hope that it will be useful, 

but WITHOUT ANY WARRANTY; without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

GNU General Public License for more details. 

 

You should have received a copy of the GNU General Public License 

along with this program.  If not, see <http://www.gnu.org/licenses/>. 

*/ 

/***************************************************  

  This is an example sketch for our optical Fingerprint sensor 

 

  Designed specifically to work with the Adafruit BMP085 Breakout  

  ----> http://www.adafruit.com/products/751 

 

  These displays use TTL Serial to communicate, 2 pins are required to  

  interface 

  Adafruit invests time and resources providing this open source code,  

  please support Adafruit and open-source hardware by purchasing  

  products from Adafruit! 

 

  Written by Limor Fried/Ladyada for Adafruit Industries.   

  BSD license, all text above must be included in any redistribution 

 ****************************************************/ 

 

#include <Wire.h> 

#include "MAX30100_PulseOximeter.h" 

#include <Adafruit_Fingerprint.h> 

#include <SoftwareSerial.h> 

 

int getFingerprintIDez(); 

 

// pin #2 is IN from sensor (GREEN wire) 

// pin #3 is OUT from arduino  (WHITE wire) 

SoftwareSerial mySerial(2, 3); 
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Adafruit_Fingerprint finger = Adafruit_Fingerprint(&mySerial); 

 

#define REPORTING_PERIOD_MS     100 

 

// PulseOximeter is the higher level interface to the sensor 

// it offers: 

//  * beat detection reporting 

//  * heart rate calculation 

//  * SpO2 (oxidation level) calculation 

PulseOximeter pox; 

 

uint32_t tsLastReport = 0; 

 

// Callback (registered below) fired when a pulse is detected 

void onBeatDetected() 

{ 

    Serial.println("Beat!"); 

} 

 

void setup() 

{ 

    //Fingure Print setup 

  Serial.println("Adafruit finger detect test"); 

 

  // set the data rate for the sensor serial port 

    finger.begin(57600); 

   

  if (finger.verifyPassword()) { 

    Serial.println("Found fingerprint sensor!"); 

  } else { 

    Serial.println("Did not find fingerprint sensor :("); 

    while (1); 

  } 

  Serial.println("Waiting for valid finger..."); 

   

  // Pulse SpO2 Setup 

  Serial.begin(115200); 

 

    Serial.print("Initializing pulse oximeter.."); 

 

    // Initialize the PulseOximeter instance 

    // Failures are generally due to an improper I2C wiring, missing power supply 

    // or wrong target chip 

    if (!pox.begin()) { 

        Serial.println("FAILED"); 
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        for(;;); 

    } else { 

        Serial.println("SUCCESS"); 

    } 

 

    // The default current for the IR LED is 50mA and it could be changed 

    //   by uncommenting the one of the following line. 

     

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_0MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_4_4MA); 

         pox.setIRLedCurrent(MAX30100_LED_CURR_7_6MA);//Best 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_11MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_14_2MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_17_4MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_20_8MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_24MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_27_1MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_30_6MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_33_8MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_37MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_40_2MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_43_6MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_46_8MA); 

    //     pox.setIRLedCurrent(MAX30100_LED_CURR_50MA); 

 

    // Register a callback for the beat detection 

    pox.setOnBeatDetectedCallback(onBeatDetected); 

} 

 

void loop() 

{ 

    getFingerprintIDez(); 

    // Make sure to call update as fast as possible 

    pox.update(); 

    // Asynchronously dump heart rate and oxidation levels to the serial 

    // For both, a value of 0 means "invalid" 

    if (millis() - tsLastReport > REPORTING_PERIOD_MS) { 

        Serial.print("Heart rate:"); 

        Serial.print(pox.getHeartRate()); 

        Serial.print("bpm / SpO2:"); 

        Serial.print(pox.getSpO2()); 

        Serial.print("% / temp:"); 

        Serial.print(pox.getTemperature()); 

        Serial.println("C"); 
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        tsLastReport = millis(); 

    } 

} 

 

//Different option for the fingure print scan 

uint8_t getFingerprintID() { 

  uint8_t p = finger.getImage(); 

  switch (p) { 

    case FINGERPRINT_OK: 

      Serial.println("Image taken"); 

      break; 

    case FINGERPRINT_NOFINGER: 

      Serial.println("No finger detected"); 

      return p; 

    case FINGERPRINT_PACKETRECIEVEERR: 

      Serial.println("Communication error"); 

      return p; 

    case FINGERPRINT_IMAGEFAIL: 

      Serial.println("Imaging error"); 

      return p; 

    default: 

      Serial.println("Unknown error"); 

      return p; 

  } 

 

  // OK success! 

 

  p = finger.image2Tz(); 

  switch (p) { 

    case FINGERPRINT_OK: 

      Serial.println("Image converted"); 

      break; 

    case FINGERPRINT_IMAGEMESS: 

      Serial.println("Image too messy"); 

      return p; 

    case FINGERPRINT_PACKETRECIEVEERR: 

      Serial.println("Communication error"); 

      return p; 

    case FINGERPRINT_FEATUREFAIL: 

      Serial.println("Could not find fingerprint features"); 

      return p; 

    case FINGERPRINT_INVALIDIMAGE: 

      Serial.println("Could not find fingerprint features"); 

      return p; 

    default: 
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      Serial.println("Unknown error"); 

      return p; 

  } 

   

// OK converted! 

  p = finger.fingerFastSearch(); 

  if (p == FINGERPRINT_OK) { 

    Serial.println("Found a print match!"); 

  } else if (p == FINGERPRINT_PACKETRECIEVEERR) { 

    Serial.println("Communication error"); 

    return p; 

  } else if (p == FINGERPRINT_NOTFOUND) { 

    Serial.println("Did not find a match"); 

    return p; 

  } else { 

    Serial.println("Unknown error"); 

    return p; 

  }    

   

  // found a match! 

  Serial.print("Found ID #"); Serial.print(finger.fingerID);  

  Serial.print(" with confidence of "); Serial.println(finger.confidence);  

} 

 

// returns -1 if failed, otherwise returns ID # 

int getFingerprintIDez() { 

  uint8_t p = finger.getImage(); 

  if (p != FINGERPRINT_OK)  return -1; 

  p = finger.image2Tz(); 

  if (p != FINGERPRINT_OK)  return -1; 

  p = finger.fingerFastSearch(); 

  if (p != FINGERPRINT_OK)  return -1; 

  // found a match! 

  Serial.print("Found ID #"); Serial.print(finger.fingerID);  

  Serial.print(" with confidence of "); Serial.println(finger.confidence); 

  return finger.fingerID;  

}   
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APPENDIX C 

SCHEMATIC FOR THE WIRELESS STRAIN TRANSMITTER 

  



 

93 

 



 

94 

5  



 

95 

 



 

96 

 



 

97 

 



 

98 



 

99 

 

  



 

100 

APPENDIX D 

BILL-OF-MATERIAL FOR THE WIRELESS STRAIN TRANSMITTER 

  



 

101 
 



 

102 

 



 

103 
 



 

104 
 



 

105 



 

106 

 

  



 

107 

APPENDIX E 

CODE FOR THE WIRELESS STRAIN TRANSMITTER 
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Arduino code file name: “ARAMS_w_BT-Main.ino” 

 

#include "HX711.h" 

// HX711.DOUT  - pin #D3 

// HX711.PD_SCK - pin #D2 

HX711 scale; 

int GainA=128; //gain value for Ch A/switch to Ch A (working only with 64 or 128) 

int GainB=32; //ONLY gain value to access CH B 

long int Load_A,Load_B; 

float Calibration_A=21.05; 

float Calibration_B=1.0; 

float KnownWeightA=501; //grams 

float KnownWeightB=501; //grams 

float tempFactor, tempLoad; 

float LowWeightA=100.0; //grams 

float LowWeightB=35.0; //grams 

float LowWeightASq, LowWeightBSq; 

int CHA_On,CHB_On,FilterOn; 

int Wait=1; 

void setup() { 

    Serial.begin(115200); // speed needed for the Bluetooth 

    CHA_On=1; 

    FilterOn=1; 

    while (Wait==1){ 

     Serial.println("Waiting Bluetooth connection,"); 

     Serial.println("Send a 't' when connected"); 

     if(Serial.available()){ 

      char temp = Serial.read(); 

      if (temp=='t'){ 

        Wait=2; 

      } 

     } 

     delay(1000); 

    }   

    scale.begin(3, 2); // parameter "gain" is omitted; the default value 128 is used by the 

library 

    Serial.println(" "); 

    Serial.println("Code that is loaded is 'ARAMS_w_BT-Main v1.4'"); 

    Serial.println("CH A: On"); 

    Serial.println("Ch B: Off"); 

    Serial.println("Low weight reading Filter: On"); 

    LowWeightASq=LowWeightA*LowWeightA; 

    LowWeightBSq=LowWeightB*LowWeightB; 

    Instruction(); 

    Serial.println(" "); 
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    Serial.println("Each load calculation is the average of 20 readings."); 

    Serial.println("There is a delay between displayed strain reading."); 

    Serial.println("This is to make it easy to read results."); 

    Serial.println(" "); 

    Serial.println("Finalizing system initialization"); 

} 

 

void loop() { 

    if (Wait==2){ // to finalizing system initialization 

      Wait=3; 

      Calibration();} 

 

    if (CHA_On==0 && CHB_On==0){ 

      Serial.println("Both HX711 channel are OFF"); 

      Serial.println("If need help with control commands, send 'q'");} 

    if(CHA_On==1){ 

        scale.set_gain(GainA); // Set gain to read Channel A 

        scale.set_scale(Calibration_A); 

        Load_A=scale.get_units(20); 

        if(FilterOn==1){ 

          tempLoad=Load_A*Load_A; 

          if (tempLoad<=LowWeightASq){ 

            Load_A=0;} 

          } 

        Serial.print("Load Value of A (grams): "); 

        Serial.println(Load_A); 

        Serial.print("\t| Last raw ADC reading of A: "); 

        Serial.println(scale.read()); 

      } // End of CHA 

       

   if(CHB_On==1){ 

        scale.set_gain(GainB); // Set gain to read Channel A 

        scale.set_scale(Calibration_B); 

        Load_B=scale.get_units(20); 

        if(FilterOn==1){ 

          tempLoad=Load_B^2; 

          if (tempLoad<=LowWeightBSq){ 

            Load_B=0; 

            } 

          } 

        Serial.print("Load Value of B (grams): "); 

        Serial.println(Load_B); 

        Serial.print("\t| Last raw ADC reading of B: "); 

        Serial.println(scale.read()); 

      } // End of CHB 
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    if(Serial.available()){ 

      char temp = Serial.read(); 

      switch(temp){ 

        case 'A': 

          CHA_On= 1; 

          Serial.println("Channel A turned On."); 

          break; 

        case 'a': 

          CHA_On= 0; 

          Serial.println("Channel A turned Off."); 

          break; 

        case 'B': 

          CHB_On=1; 

          Serial.println("Channel B turned On."); 

          break; 

        case 'b': 

          CHB_On=0; 

          Serial.println("Channel B turned Off."); 

          break; 

        case 'C': 

           Calibration(); 

           break; 

        case'F': 

           FilterOn=1; 

           Serial.println("Filtering of low/miss calculated zero point turned On."); 

           break; 

        case 'f': 

           FilterOn=0; 

           Serial.println("Filtering of low/miss calculated zero point turned Off."); 

           break; 

        case 'q': 

          Instruction(); 

          break;      

        default: 

          Serial.println("Error in command"); 

          Instruction(); 

          break; 

      } //End of character Switch 

   } //End of Serial Available 

   delay(1000); // to slow the printing 

} // End of loop command 

 

void DotDown(){ 

  int w=1; 

  while (w<=10){ 
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    Serial.print("."); 

    delay(1000); 

    w++;} 

} 

 

void CountDown(){ 

  int w=1; 

  int n=20; 

  while (w<=20){ 

    Serial.print(n); 

    Serial.print(", "); 

    delay(1000); 

    w++; 

    n--;} 

} 

 

void Calibration() { 

  Serial.println("Calibrating active HX channel(s)."); 

  if(CHA_On==0 && CHB_On==0){ 

    Serial.println("Need to turn on a HX channel to complete step.");} 

  Serial.println("Remove all weights from scale."); 

  if(CHA_On==1){ 

    scale.set_gain(GainA); // Set gain to read Channel A 

    scale.get_units(); 

    int w=1; 

    while (w<=15){ 

      Serial.print("."); 

      delay(1000); 

      w++;} 

    Serial.println("Resetting"); 

    scale.set_scale(); 

    scale.tare(); 

    Serial.println("Calibrating Channel 'A'.");    

    Serial.print("Place the channel 'A' weight of "); 

    Serial.print(KnownWeightA); 

    Serial.println(" grams on now.(got 20 sec)"); 

    CountDown(); 

    Serial.println(" "); 

    Serial.println("Calculating"); 

    tempFactor=scale.get_units(50); 

    Calibration_A=tempFactor/KnownWeightA; 

    Serial.print("New calibration factor: "); 

    Serial.println(Calibration_A);} 

  if(CHA_On==1 && CHB_On==1){ 

    Serial.println("Remove all weights to calibrate Channel B.");} 
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  if(CHB_On==1){ 

    scale.set_gain(GainB); // Set gain to read Channel A 

    DotDown(); 

    DotDown(); 

    Serial.println("Resetting"); 

    scale.set_scale(); 

    scale.tare(); 

    Serial.println("Calibrating Channel 'B'.");    

    Serial.print("Place the channel 'B' weight of "); 

    Serial.print(KnownWeightB); 

    Serial.print(" grams on now.(got 20 sec)"); 

    CountDown(); 

    Serial.println(" "); 

    Serial.println("Calculating"); 

    tempFactor=scale.get_units(50); 

    Calibration_B=tempFactor/KnownWeightB; 

    Serial.print("New calibration factor: "); 

    Serial.println(Calibration_B);}    

} 

 

void Instruction() { 

  Serial.println(" "); 

  Serial.println("Here is the list of Serial control characters."); 

  Serial.println("Channel A of the HX711"); 

  Serial.println("Turn on with: 'A'"); 

  Serial.println("Turn off with: 'a'"); 

  Serial.println("Channel B of the HX711"); 

  Serial.println("Turn on with: 'B'"); 

  Serial.println("Turn off with: 'b'"); 

  Serial.println("**** Other commands are:  *****"); 

  Serial.println("To calibrate of a load: 'C'"); 

  Serial.println("Turn on Low weight Filtering: 'F'"); 

  Serial.println("Turn off Low weight Filtering: 'f'"); 

  Serial.println("To recall character command list/help: 'q'"); 

  DotDown(); 

} 
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APPENDIX F 

SCHEMATIC FOR THE FLEXIBLE SENSOR MODULES 
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APPENDIX G 

BILL OF MATERIAL FOR THE FLEXIBLE SENSOR MODULES 
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