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ABSTRACT

VTOL drones were designed and built at the beginning of the 20th century for

military applications due to easy take-off and landing operations. Many companies

like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a

few from them came in to the market. Usually, flight automation starts from first

principles modeling which helps in the controller design and dynamic analysis of the

system.

In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied

and the primary focus is stabilizing and controlling the flight path of the drone in

its hover and horizontal flying modes. The model of the plane is obtained using first

principles modeling and controllers are designed to stabilize the yaw, pitch and roll

rotational motions.

The plane is modeled for its yaw, pitch and roll rotational motions. Subsequently,

the rotational dynamics of the system are linearized about the hover flying mode,

hover to horizontal flying mode, horizontal flying mode, horizontal to hover flying

mode for ease of implementation of linear control design techniques. The controllers

are designed based on anH∞ loop shaping procedure and the results are verified on the

actual nonlinear model for the stability of the closed loop system about hover flying,

hover to horizontal transition flying, horizontal flying, horizontal to hover transition

flying. An experiment is conducted to study the dynamics of the motor by recording

the PWM input to the electronic speed controller as input and the rotational speed of

the motor as output. A theoretical study is also done to study the thrust generated

by the propellers for lift, slipstream velocity analysis, torques acting on the system

for various thrust profiles.
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Chapter 1

INTRODUCTION

1.1 Overview

The VTOL planes came in to existence in the beginning of the 20th century

and Leonardo da Vinci had imagined about them in his writings. Many companies

started building vertical take-off and landing planes during that time owing to their

ease in take-off and landing operations. They are widely used in military, surveying

and geographical mapping applications. Recently, Boeing developed an unmanned

electric VTOL plane which would refuel aircrafts for the US Navy. Other companies

like Uber and Aurora flight sciences are very much interested to do research on the

VTOL drones in their operation for passenger and cargo delivery purposes. The

advantages of VTOL drones is their ability to take off and land from a small amount

of space almost everywhere along with switching between hover and horizontal flying

mode. They are usually small in size and can be operated in a congested environment.

Due to the advancement of power electronics and navigation systems, highly powerful

and efficient motors, and sophisticated inertial measurement units can be installed in

the drones giving more flexibility with respect to weight constraints.

Unfortunately, on the other side, VTOL drones are vulnerable to environmental

factors such as wind and the complexity in the dynamics during switching between the

hovering and horizontal flying mode makes them difficult to operate. So, it is critical

for the control system to stabilize the complex dynamics and as well compensate for

the external disturbances by rejecting them for a stable flight. The control system

must also guarantee robustness with respect to uncertainties in the modeling, drone
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operation and external disturbances.

A good control system is necessary to operate the plane for commercial uses.

While doing a control system design, there are time domain and frequency domain

performance specifications that we need to target. In the time domain performance

measures, we have to achieve good performances in rise time, peak time, overshoot

and settling time parameters. The rise time, peak time for the control system should

be small and the drone should be able to reach its reference input quickly. There

should not be big overshoots causing oscillations and hence destabilizing the closed

loop system. Thinking about it in a real perspective, the drone might destabilize and

result in the loss of property and lives. From the frequency domain perspective, the

bandwidth of the closed loop system should be a large value for a fast response with

good stability margins. The transient performance and the steady state performance

of the closed loop is also important for easy maneuvering and the stability of the

drone. The transient performance is the ability of the drone to reach the reference

input quickly and not exhibiting oscillations. The transient performance is critical

for the drone to reach its reference value quickly during take-off and stabilize in the

presence of external disturbances. The drone must reach its steady state value to

avoid drift because of steady state error.

The usual way of control system design starts from modeling the system based

on its parameters. The model of the system can be obtained from the first principles

theory or by system identification techniques. In our case, since the plane is unstable

in the open loop operation, first principles modeling is a good way to obtain the

model of the system. The non-linear dynamics of the system is to be known to do the

switching between the hover flying and horizontal flying considering the complexity

involved. For this project, the non-linear model of the drone is obtained in the form

of differential equations from first principles theory. By linearizing the non-linear
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equations about hover flying, hover to horizontal transition flying, horizontal flying

and horizontal to hover flying, the controller design technique is simplified with ease

in implementation. The controller formulated will stabilize the drone about hover

and horizontal flying. Since, there is a critical stall velocity associated with the

horizontal flying which creates a turbulent air flow over the wings, the drone must be

operated above that threshold. There are also actuator saturations in control inputs

varying with the speed of rotation of the motors to be taken in to account during

the closed loop implementation of the system. The flight of the drone about hover

flying, horizontal flying, hover to horizontal transition, horizontal to hover transition

is proposed in this thesis for the operation of the drone.

1.2 Literature Review

For the purpose of implementing the flight of the plane, the model of the drone

need to be obtained. The modeling of the drone can be done by a system identification

technique or by a physics based first principles modeling. To do a first principles

modeling, the parameters of the system need to be computed using theorems from

physics. The moment of inertia of the drone need to be computed and it is explained

in [43] by Muliadi et.al. The moment of inertia in a rotational motion is analogous to

mass in a linear motion. The moment of inertia is the resistance of the drone towards

the rotational motion on the application of torque input. Greater the moment of

inertia, greater is the resistance shown by the system towards the torque applied.

With the moment of inertia computed, the center of mass also needs to be deter-

mined which will be the center of rotation. The non-linear equations of motion of the

system are computed as shown in [12] by Peet. The differential equations of motion

govern the yaw, pitch and roll rotations with the torque inputs acting on the system.

The equilibrium points of the system can be computed from the non-linear differential
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equation as shown by Khalil in [8]. This would help in knowing the stable operating

point of the system for a real flight operation. For ease in control implementation,

the non-linear equations of motion can be linearized as shown in [5] by Tsakalis et.al,

[8] by Khalil and in [9] by Mcruer et.al. The linearized matrices in state-space are

converted to transfer functions about hover flying, 6 equidistant operating points in

hover to horizontal flying, horizontal flying and 6 more equidistant operating points

in horizontal to hover flying. The linearized models of the system are used for con-

troller design based on the targeted design objectives in target loop shape, weighting

functions, settling time, peak time, bandwidth etc.

The controller design can be done by different techniques like PID loop shaping

control as shown in [45] by Tsakalis et.al, linear quadratic regulator as shown in [3]

by Zhou et.al, H∞ loop shaping control by Stoorvogel in [6], McFarlane in [10]. Non-

linear control techniques such as the back-stepping control, gain scheduling control,

feedback linearization, sliding mode control can also be designed considering the non-

linearities in the system and guarantee robustness in closed loop control as shown

in [8] by Khalil. A robust H∞ control for a nonlinear system like non-isothermal

CSTR is presented by Sana et.al in [29]. An another application of nonlinear H∞

control for the rotary pendulum is presented in [30] by Rigatos et.al. A non-linear

H∞ controller can be synthesized based on L2 gain and dissipativity concepts which

requires solving of a Hamilton- Jacobi- Isaacs equation is presented in [31] by Garcia

et.al. The non-linear H∞ controller in comparison with the linear version allows for

larger perturbations from the trim condition and delays control degradation and risk

of instability. The stability and the operation of a nonlinear robotic manipulator is

done by the use of model predictive controller and a H∞controller as presented in

[32] by Ullah et.al. An automation technique has also been presented by Rafaila et.al

based on H∞ control technique for the different maneuvers with a vehicle steering
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during the motion of a ground vehicle. A structured H∞ control based on classical

parameters has also been presented by Tapia et.al for the vega launch vehicle in [34].

Selection of weighting functions can be done based on particle swarm optimization

technique for the H∞ controller design to the robust control of brush-less DC motor

is presented in [35] by Vinida et.al. This novel strategy is a very good technique to

reduce the peaks in the sensitivity and complementary sensitivity function which is

directly related to the performance of closed loop reference tracking, disturbance re-

jection, insensitivity to modeling errors and noise. An autonomous VTOL design for

the quad-copter using input to state linearization and fuzzy Takagi Sugeno has been

presented by Chalidia et.al in [36]. Demitri et.al discusses about a technique to de-

termine real time wind speed and direction during the flight of a VTOL tail-sitter by

using on-board sensors like inertial measurement unit(IMU), global positioning sys-

tem(GPS) and a magnetometer. Using the data from these sensors, a kalman filter is

implemented to estimate the wind parameters. The design and control of an indoor

micro quad rotor is discussed by Bouabdallah et.al where the drone is modeled and

controllers are designed to test the flight of the plane in real-time. The development

and experimental verification of a hybrid vertical take-off and landing(VTOL) is pre-

sented by Gu et.al in [13] where the development of the UAV with on-board devices

integration, ground station support and long distance communication is presented.

For the same design, aerodynamic analysis, mechanical design and controller devel-

opment is presented in [13]. When the dynamics of a complex system are coupled

with respect to multiple inputs, then decoupling the system is necessary to imple-

ment single input single output control which is presented by Pappa et.al in [22]. The

decoupling of the binary distillation column with the use of state space de-couplers

is shown in [22] and they are also compared with the conventional decoupler. The

comparison of the state-space decoupler to that of conventional decoupler is also dis-
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cussed in [22]. A sliding mode control can also be done for a nonlinear system and is

implemented with a de-coupler for a multi-variable coupled tank process as presented

in [23] by B.J. Parvati et.al. A dynamic decoupling design for a class of linear multi-

variable system is presented in [25] by Devi et.al. A dynamic state feedback based

decoupler is designed for a MIMO system and the robustness of the closed loop is

tested as presented by Devi et.al in [25]. A dynamic state feedback decoupler which is

the extension of the static feedback decoupler can also be implemented for a multiple

input multiple output system as presented by Devi et.al in [26]. The application of

the decoupler in the chemical industry is presented in [27] by Sundari et.al where a

de-coupler based PI control strategy is implemented for a CSTR and the stabilizing

effect of the controller is shown.

1.3 Thesis Organization

This thesis is organized in seven chapters. In chapter 2, first principles modeling

technique is presented. The methods used to compute the moment of inertia tensor

and the non-linear differential equations of motion are also presented. In chapter

3, the linearized dynamical model of the hover flying mode, transition from hover to

horizontal flying mode, horizontal flying mode and transition from horizontal to hover

flying mode are also presented. Chapter 4 contains the methods for controller design

namely PID loop shaping controller design, linear quadratic regulator and H∞ loop

shaping controller design. Chapter 5 consists of system modeling, controller design

and theoretical results. The VTOL drone studied in the project is explained along

with theoretical results from system modeling, controller design, motor dynamical

model, slipstream velocity analysis, thrust profile analysis and torque analysis. In

chapter 6, the simulation results are presented. The flight simulation of the hover

flying mode, hover to horizontal flying transition mode, horizontal flying mode and
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horizontal to hover flying transition mode are shown. In chapter 7, the conclusion

and the future work of this project are presented.

7



Chapter 2

FIRST PRINCIPLES MODELING

2.1 Introduction

In this chapter, the method used for computing the dynamical model of the system

by first principles model is presented which is elaborated in (28),(12). The discussion

begins by computing the mass moment of inertia tensor of the system. Next, the

non-linear differential equations of motion of the system based on the principle of

conservation of angular momentum is presented. Next, the theory behind computing

the dynamical model of the motor based on theory as well from experiments are

shown. In the later section of the chapter, slipstream velocity generation based on

the speed of rotation of propellers is explained. Next, the thrust force generated by

the propellers is explained. Finally, the control inputs acting on the system which

influence the rotational dynamics of the system are elaborated.

2.2 Moment of Inertia

Mass moment of inertia of a rigid body is a tensor that determines the amount of

torque needed to produce a desired angular acceleration about a particular rotational

axis. The mass moment of inertia in a rotational motion is analogous to mass in

a linear motion. The units of moment of inertia is kgm2 in SI units and pound-

squarefeet in imperial units. The moment of inertia of a point mass is the mass times

the square of the perpendicular distance from the rotation axis. For a rigid composite

system, it is the sum of the moments of inertias of the subsystems. One of the other

definitions is that, the moment of inertia is the second moment of mass with respect
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to distance from an axis r, integrating over the entire mass of the body(Q). For a rigid

body, the moment of inertia about a rotational axis is given by the formula (2.1).

I =

∫
Q

r2dm (2.1)

For rigid bodies that can rotate in 3 dimensional axes, their moments are described by

a symmetric 3 × 3 matrix which is called the moment of inertia tensor. The diagonal

elements of the moment of inertia tensor represent the moments about the x, y and

z axis respectively. The off-diagonal elements represent the moments about the x-y

axis, x-z axis, y-x axis, y-z axis, z-x axis, z-y axis respectively. The moment of inertia

tensor(I) is represented as

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


The diagonal elements of the matrix can be computed using the equation (2.2).

Ixx =

∫
m

(y′2 + z′2)dm

Iyy =

∫
m

(x′2 + z′2)dm (2.2)

Izz =

∫
m

(x′2 + y′2)dm

The off-diagonal elements of the inertia tensor are called the products of inertia

and are given by the equations (2.3), (2.4) and (2.5).

Ixy = Iyx =

∫
m

(x′y′)dm (2.3)

Ixz = Izx =

∫
m

(x′z′)dm (2.4)
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Iyz = Izy =

∫
m

(y′z′)dm (2.5)

It follows from the definition of the products of inertia, that the moment of iner-

tia tensors are always symmetric. For a general three-dimensional body, 3 mutually

orthogonal axes (x, y, z coordinate system) can be determined and the inertia matrix

takes a diagonal form with the products of inertia being zero. We would like to com-

pute the inertia tensor about these axes to formulate a problem statement. When a

rotation is considered about only one of the 3 rotational axes, the angular momentum

vector is parallel to the angular velocity vector. For symmetric bodies, it is easy to

identify which of these axes are the principal axis. However, for a rigid body with an

irregular shape, it is difficult to determine the principal axes of rotation. But, for a

rigid body that is symmetric about a particular axis, then the products of inertia are

zero and the principal axes can be identified. For example, if a body is symmetric

with respect to the plane y′ = 0 then, we will have

Iy′x′ = Ix′y′ = Iy′z′ = Iz′y′ = 0

and y will be a principal axis as shown in figure 2.1. This result can be shown from

the definition of products of inertia.

The integral for, say, Iy′x′ can be decomposed in to two integrals for the two

halves of the body at either side of the plane y = 0. The integrand on one half, y′x′

will be equal in magnitude and opposite in sign to the integrand on the other half

since y′ is changing sign. Therefore, the integrals over the two halves will cancel each

other and the product of inertia Iyx will be zero. Also, if the body is symmetric with

respect to two planes through the center of mass which are orthogonal to the principal

axis, then the cross terms of the inertia tensor are zero (Iyx = Iyz = Izx = 0) and the

inertia tensor is diagonal. For a composite system, the inertia tensor of the individual

components are computed separately and the sum of them is the inertia tensor of the
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Figure 2.1: A Symmetric Rigid Body about the Axis Y’ = 0

system as explained earlier. However, in that case the inertia tensor of the individual

components are generally computed about the axis passing through their own center

of mass. Hence, there arises a scenario to calculate the inertia tensor about the axis

passing through the center of mass of the composite system. The inertia tensor can

be transformed about the axes passing through the center of mass of the system by

the parallel axis theorem. Parallel axis theorem states that the moment of inertia of

a body about an axis parallel to the axis passing through the center of mass is the

sum of the moment of inertia about the axis passing through the center of mass and

the product of the body’s mass with the square of the distance between the two axis.

I = Icm +md2 (2.6)

The parallel axis theorem can be extended to a 3-dimensional rigid body as shown

below. Consider the figure shown below where the inertia tensor is known about x,

y, z axis.

We are interested in finding the inertia tensor about the new axis x, y, z parallel
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Figure 2.2: Moment of Inertia about a Different Rotational Axis

to the x, y, z axis. We can say that,

(Ixx)O =

∫
m

(y2 + z2)dm =

∫
m

((yG + y′)2 + (zG + z′)2)dm (2.7)

(Ixx)O =

∫
m

(y′2 + z′2) + 2yG

∫
m

y′dm+ 2zG

∫
m

z′dm+ (yG
2 + zG

2)

∫
m

dm (2.8)

(Ixx)O = Ixx +m((yG)2 + (zG)2) (2.9)

Since the y and z axis are the coordinates relative to the center of mass and hence the

integrals over their body are zero. This makes the terms
∫
m

y′dm and
∫
m

z′dm equal to

zero. Similarly, we can get the inertia tensor about the y-axis passing through O and

the z-axis passing through O.

(Iyy)O = Iyy +m(x2G + z2G), (Izz)O = Izz +m(x2G + y2G) (2.10)

The non-diagonal terms of the inertia tensor are given by:

(Ixy)O = (Iyx)O = Ixy +mxGyG, (Ixz)O = (Izx)O = Ixz +mxGzG (2.11)
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(Iyz)O = (Izy)O = Iyz +myGzG (2.12)

The center of mass of any object is a critical point in the body about which the entire

mass of the object is assumed to be acting. For a single rigid body, the center of

mass is fixed in relation to the body and has uniform density, then it is located in

the centroid of the body. The center of mass of a two-particle system P1 and P2 with

masses m1 and m2 is given by the formula in (2.13).

R =
(m1r1 +m2r2)

m1 +m2

(2.13)

The center of mass of a body with an axis of symmetry and constant density will

lie on its axis of symmetry. The center of mass of a body can be experimentally

determined by suspending the body from two points and to drop plumb lines from

the suspension points. For a complex shaped body, the body can be divided in to

smaller elementary shaped masses whose center of mass can be determined easily. If

the total mass of the body and the center of mass can be determined for each of the

smaller masses, then the weighted average of the centers is the center of mass of the

body as shown in the equation (2.14).

Cf =
w1c1 + w2c2 + · · ·wncn
w1 + w2 + · · ·wn

(2.14)

The exact co-ordinates of the center of mass of a 3-dimensional rigid body can also

be determined experimentally by supporting the object at three points and measuring

the forces F1, F2, F3 that resist the weight of the object at these 3 points. Let

W = −Wk̂, where k̂ is the unit vector in the vertical direction. Let p1 , p2, p3 be the

position co-ordinates of the support points. Then the co-ordinates of the center of

mass(C) will satisfy the below condition such that the resultant torque is zero. Let τ

be the torque acting on the system. Expressing the torque acting on the system we
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get,

τ = (r1 − C)× F1 + (r2 − C)× F2 + (r3 − C)× F3 = 0

or (2.15)

C × (−Wk̂) = r1 × F1 + r2 × F2 + r3 × F3

.

Simplifying the equation in (2.15), we get equation (2.16) by which the center of

mass can be computed.

C∗ =
k̂

W
× (r1 × F1 + r2 × F2 + r3 × F3) (2.16)

The center of mass lies on the vertical line V which is given by the equation (2.17).

V (t) = C∗ + tk̂ (2.17)

The exact co-ordinates of the center of mass can be determined by performing the

above experiment with the object positioned in a different orientation so that these

forces can be measured for two different horizontal planes through the object. The

intersection of the lines V1 and V2 from both the experiments will be the center of

mass of the body.

2.3 Nonlinear Equations of Motion

There are 3 rotational motions about the fundamental axes namely the roll, pitch

and yaw rotations. Newton’s second law states that the moments/torque acting on a

rigid body is the sum of the components acting separately on the body as shown by

the equation (2.18).

~M =
∑
i

~Mi =
d

dt
~H (2.18)

where

~H = I ~wI (2.19)
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and I is the moment of inertia tensor expressed as

I =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy −Izz


wI is the angular rotation vector of the body defined in the inertial frame and is

expressed below.

wI =


pI

qI

rI


where pI is the angular rotation about the x-axis, qI is the angular rotation about

the y-axis, rI is the angular rotation about the z-axis.

Hence we compute the angular momentum as shown in (2.20).
Hx

Hy

Hz

 =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy −Izz



pI

qI

rI

 (2.20)

If the body-fixed frame is rotating with a rotation vector ~w, then for any vector ~v,

(2.21) holds good.

d~a

dt

∣∣
I

=
d~a

dt

∣∣
B

+ ~w × ~a. (2.21)

Specifically for newton’s second law, we can say that

~M =
d ~H

dt

∣∣
B

+ (~w × ~H) (2.22)

Using the equations in (2.20) and (2.22) we get,
L

M

N

 =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy −Izz



ṗ

q̇

ṙ

+ ~w


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy −Izz



p

q

r

 (2.23)
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Expanding equation (2.23), we get
L

M

N

 =


Ixxṗ −Ixy q̇ −Ixz ṙ

−Ixyṗ Iyy q̇ −Iyz ṙ

−Ixzṗ −Iyz q̇ −Izz ṙ

+ ~w ×


pIxx − qIxy − rIxz

−pIxy + qIyy − rIyz

−pIzx − qIzy + rIzz

 (2.24)

On further simplification of equation (2.24), we get equation (2.25)
L

M

N

 =


Ixxṗ− Ixy q̇ − Ixz ṙ + q(−pIxz − qIyz + rIzz)− r(−pIxy + qIyy − rIyz)

−Ixyṗ+ Iyy q̇ − Iyz ṙ − p(−pIxz − qIyz + rIzz) + r(pIxx − qIxy − rIxz)

−Ixzṗ− Iyz q̇ − Izz ṙ + p(−pIxy + qIyy − rIyz)− q(pIxx − qIxy − rIxz)


(2.25)

Since in our case, the rigid body is symmetric in the xz and xy plane, the products

of inertia tensor are zero and we get the following result.
L

M

N

 =


Ixxṗ− Ixz ṙ − qpIxz + qrIzz − rqIyy

Iyy q̇ + p2Ixz − prIzz + rpIxx − r2Ixz)

−Ixzṗ+ Izz ṙ + pqIyy − qpIxx − qrIxz

 (2.26)

The equations of motion are currently in the body-fixed frame. We know that any two

coordinate systems can be related through a sequence of three rotations namely the

roll, pitch and yaw rotation. The roll (R1(φ)), pitch(R2(θ)) and yaw(R3(ψ)) rotations

are defined by (2.27),(2.28) and (2.29).

R1(φ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (2.27)

R2(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (2.28)
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R3(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.29)

In our case the p, q, r angular rotations about the body frame are to be converted to

euler angular rates about the inertial frame. The angular rotations about the body

frame and the angular rates about the inertial frame can be related by (2.30).

~VBF = R1(φ)R2(θ)R3(ψ) ~VI (2.30)

The composite rotation matrix about the three rotations is defined by (2.31).

R1(φ)R2(θ)R3(ψ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)



cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)



cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.31)

This relation will translate the angular rotation vector in the inertial frame to the

body-fixed frame. The rate of rotation of the euler angles can be found by rotating

the rotation vector to the inertial frame and is shown in (2.32).
p

q

r

 =


1 0 −sin(θ)

0 cos(φ) cos(θ)sin(φ)

0 −sin(θ) cos(θ)cos(φ)

 (2.32)

The acceleration vector of the system can be obtained by taking the derivative of the

angular rate vector and is shown in (2.33).
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ṗ

q̇

ṙ

 =


ψ̈ − cos(θ)θ̇φ̇− sin(θ)φ̈

−sin(ψ)ψ̇θ̇ + cos(ψ)θ̈ + sinθθ̇sinψφ̇− cosθcosψψ̇φ̇− cosθsinψφ̈

−cos(θ̇2)− sinθθ̈ − sinθθ̇cosψφ̇− cosθsinψψ̇φ̇+ cosθcosψφ̈

 (2.33)

The ṗ, q̇, ṙ from the above equations are substituted in (2.26) to get the differential

rotational equations of motion. The rotational equations of motion tell us about the

effect of torque on the rotational dynamics of the system and are shown in (2.34),

(2.35) and (2.36).

L = Ixx

(
ψ̈ − (cosθθ̇φ̇)− (sinθφ̈)

)
+ (Izz − Iyy)

(
(cos(ψ̇)θ̇)− (cos(θ)sin(ψ)φ̇)

)
(

(−sin(θ)θ̇) + (cos(θ)cos(ψ)φ̇)

)
(2.34)

M = Iyy

(
(−sin(ψ)ψ̇θ̇) + (cos(ψ)θ̈) + (sin(θ)θ̇sin(ψ)φ̇)− (cos(θ)cos(ψ)ψ̇φ̇)

−(cos(θ)sin(ψ)φ̈)

)
− (Izz− Ixx)

((
ψ̇− (sin(θ)φ̇)

)(
(−sin(θ)θ̇) + (cos(θ)cos(ψ)φ̇)

))
(2.35)

N = Izz

((
− cos(θ)(θ̇)2

)
−
(
sin(θ)θ̈ − (sin(θ)θ̇cos(ψ)φ̇)

)
−
(
cos(θ)sin(ψ)ψ̇φ̇

)
+(cos(θ)cos(ψ)φ̈)

)
+ (Iyy − Ixx)

((
ψ̇ − (sin(θ)φ̇)

)(
(cos(ψ)θ̇)− (cos(θ)sin(ψ)φ̇)

))
(2.36)

From equations (2.34),(2.35) and (2.36) the variables φ̈, θ̈, ψ̈ can be determined

from the linear equation analysis in MATLAB.

2.4 Motor Dynamics

A brush-less dc motor is a type of dc motor which has a high reliability, high effi-

ciency and a high power to volume ratio. The brush-less dc motors are electronically

commutated i.e the motor phase currents are changed at appropriate times to produce
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the corresponding rotational torque. The BLDC motor is a high performance motor

that is capable of producing large amounts of torque over a vast speed range. There

are two important parts in the BLDC motor namely the stator windings and the rotor

windings. There are two kinds of BLDC motor designs namely the inner and outer

rotor design. In an inner rotor design, the stator windings surround the rotor and are

attached to the motor’s housing. They have the ability to dissipate heat easily and

have a greater torque producing capability. The design also has a lower rotor inertia

compared with the outer rotor design for easy rotation. In an outer rotor design,

the windings are located in the core of the motor and the rotor magnets. The rotor

magnets act as an insulator reducing the rate of heat dissipation from the motor and

hence, they operate at lower duty cycles or at a lower rated current. Thus, they have

the capability only to operate at lower speeds but they provide a low cogging torque.

An electric motor develops torque by alternating the polarity of rotating magnets

attached to the rotor and the stationary magnets on the stator surrounding the rotor.

The magnets in the stator and rotor can be an electro-magnet or a permanent magnet.

Every time, the rotor is rotated by 180 degrees, the position of the north and south

poles are reversed to create torque in one direction to account for the reversal of the

torque.

Equivalence of a Direct Current Motor: A DC Motor can be approximated as a R-L

circuit with voltage applied as input and the emf of the motor as output as shown

in Figure 2.3. Using a voltage loop we can say that, the input voltage(V) applied is

equal to the voltage drop across the coil resistance(R) and the inductor(L) with the

back-emf(E) produced by the motor during rotation.

V = IR + L
dI

dt
+ E (2.34)

. Let us discuss the effect of voltage and torque on speed during the steady state
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Figure 2.3: Equivalence of the Direct Current Motor

behavior. Since the current flow is constant, the rate of change of inductor current is

zero. Since the speed is constant, the torque produced by the motor and the torque

produced by the load will be equal. The torque produced by the motor is given by

(2.35).

T = KTφI (2.35)

where KT represents the torque constant, φ is the total flux and T is the load torque.

V =
T

KTφ
R + E (2.36)

The emf generated by the motor is dependent upon the total flux (φ) of the motor

and the speed of rotation of the motor(n) which is shown in (2.37).

E = KEφn (2.37)

Using this value for E, we get the relation between speed and the input voltage applied

from (2.38).

V =
T

KTφ
R +KEφn (2.38)

The equations discussed until now, represent a linear motor, and we transform them

to an angular motor assuming the flux to be constant at its peak value. By consid-

ering the operation of the motor at maximum flux, the torque constants and electric
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constants of the motor are kt and ke respectively. The linear speed n is replaced with

angular velocity ω. The rotational equations of motion is shown in (2.39).

V =
T

kt
R + keω (2.39)

The angular velocity can be computed as shown in (2.40).

ω = V −
( T

kt
R

ke

)
(2.40)

We observe from the equations of motion that the speed of the motor increases with

increase in applied voltage. For a fixed applied input voltage, the speed of the motor

is inversely affected by the load. The increase in load torque causes reduction in speed

of the motor.

2.5 Slipstream Velocity Profile

The rotation of the propellers generates a stream of air underneath them which

generates the aerodynamic force for the various torques acting on the system. The

slipstream air generated by the propellers depends on the V∞ velocity of the body.

When the body is not in motion, then Vs can be computed with V∞ to be zero based

on the formula shown in (2.41).

Vs =

√
2Tp
ρAp

(2.41)

where Tp is the thrust generated by the propeller, ρ is the density of the medium(air),

Ap is the cross-sectional area of the propeller.

When the body is in motion, V∞ is a numerical value and Vs can be calculated by

the formula given in (2.42),(2.43) and (2.44).

Fnet = Tp − (mg) (2.42)
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where Fnet is the net force acting on the body, Tp is the thrust generated by the

propeller, m is the mass of the drone, g is the acceleration due to gravity.

a =
Fnet
m

(2.43)

where a is the acceleration force acting on the body.

From the linear equations of motion, we know that v = u + (a × t); where v is the

final velocity of the body, u is the initial velocity of the body, t is the duration of the

Fnet force.

The slipstream velocity can now be calculated as shown in (2.44).

Vs =

√
2Tp

ρApV 2
∞ + 1

(2.44)

where Vs is the slipstream velocity, Tp is the thrust, Ap is the cross-sectional area of

the propeller, V∞ is the velocity of the body.

2.6 Thrust Profile

The rotation of the propellers powered by a brush-less dc motor converts the

rotational energy in to thrust force. The thrust generated by the propellers powers

the drone during the vertical and horizontal flight of the drone. When the propellers

are rotating, a pressure difference is produced between the forward and rear surfaces of

the airfoil shaped propeller blades and the fluid (air) in our case is accelerated behind

the propeller. The acceleration behind the propeller leads to an opposite effect in the

propeller according to Newtons third law of motion generating the thrust force. The

thrust generated by the propeller can be computed by the formula in (2.45).

Tp =
Ctρd

4
pw

2
p

4× 3.142
(2.45)
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where Ct is the static thrust coefficient, ρ is the density of the fluid , dp is the diameter

of the propeller, wp is the rotational speed of the propeller.

The static thrust coefficient is determined based on the geometry of the propeller and

for most of the propellers it is 0.1.

2.7 Control Inputs

The control inputs acting on the system are the yawing torque, pitching torque

and the rolling torque. The yawing torque(τr) is generated by the extension of the

rudders in the same direction. The magnitude of yawing torque acting on the system

depends on the aerodynamic force(Fr), surface area of the rudder control surfaces

(Sr), extension angle of the control surface(θ) and the distance of separation between

the center of mass of the system and the center of mass of the control surface in the

path of the slipstream air.

τr = ~Fr × ~drsinθ (2.46)

where τr is the yawing torque, ~Fr is the aerodynamic force, ~dr is the distance between

the center of mass of the system and the rudder control surface, θ is the extension

angle of the control surface.

The aerodynamic force (Fr) acting on the control surface is given by

~Fr =
ρv2sSr

2
(2.47)

where ~Fr is the aerodynamic force, ρ is the density of the fluid(air), vs is the slipstream

velocity, Sr is the surface area of the rudder in the path of slipstream air flow.

Similarly, the pitching torque(τa) is generated by the extension of the ailerons in

the same direction. The magnitude of pitching torque acting on the system depends on

23



the aerodynamic force(Fr), surface area of the aileron control surface(Sa), extension

angle of the control surface(θ) and the distance of separation between the center of

mass of the system and the center of mass of the control surface in the path of the

slipstream air (da).

τa = ~Fa × ~dasinθ (2.48)

where ~Fa is the aerodynamic force, ~da is the distance between the center of mass of

the system and the center of mass of the control surface, θ is the extension angle of

the control surface.

The aerodynamic force acting on the control surface is given by (2.49).

~Fa =
ρv2sSa

2
(2.49)

where ~Fa is the aerodynamic force, ρ is the density of the fluid(air),vs is the slipstream

velocity, Sa is the surface area of the aileron in the path of slipstream air flow.

The extension of the ailerons in opposite direction from each other generates a

rolling torque(τroll) which rotates the drone about its body. The magnitude of rolling

torque(τroll) acting on the system depends on the aerodynamic force (Froll), surface

area(Sa), extension angle of the control surface(θa) and the distance of separation

between the center of mass of the system and the center of mass of the control surface

in the path of the slipstream air(droll).

τroll = ~Froll × ~drollsin(θa) (2.50)

where ~Froll is the aerodynamic force, ~droll is the distance between the center of mass

of the system and the center of mass of the control surface, θ is the extension angle

of the control surface. The aerodynamic force acting on the control surface is given

by (2.51).

~Froll =
ρv2sSa

2
(2.51)
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where ~Froll is the aerodynamic force, ρ is the density of the fluid (air), vs is the

slipstream velocity, Sa is the surface area of the aileron in the path of slipstream air

flow.
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Chapter 3

LINEARIZATION

3.1 Introduction

In this chapter, the concept of linearization of a non-linear model is elaborated.

The discussion begins by the introduction of linearization of a function and then pro-

ceeds with the application of linearization in systems engineering. The application of

mathematical ideas for the linearization of a nonlinear function is elaborated. Then

the equations of linearization with hover flying as the operating point is explained.

In the later half of the chapter, the linearized equations of motion about the differ-

ent operating points in hover to horizontal transition mode is explained. Then the

emphasis moves towards stating the linearized equations of motion about the hori-

zontal flying mode of the drone. Finally the linearized equations of motion about the

different operating points in horizontal to hover transition mode is discussed.

3.2 Linearization

Linearization is a technique which computes the linear approximation of a function

at a given operating point. Consider a function f(x,y) defined in x ∈ (0,∞), y ∈

(0,∞). The linearization of the function f(x,y) at a point (a,b) is defined as shown

in (3.1).

f(x, y) ≈ f(a, b) +
∂f(x, y)

∂x

∣∣
a,b

(x− a) +
∂f(x, y)

∂y

∣∣
a,b

(y − b) (3.1)

Consider a nonlinear dynamic system in matrix form as shown in (3.2).

˙X(t) = F (x(t), f(t)), x(t0) (3.2)
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where x(t), f(t) and F are respectively the n-dimensional system state space vector,

the r-dimensional input vector, and the n-dimensional vector function. Let us consider

that xn(t) is the nominal system trajectory. On performing a taylor series expansion

of the system, we get

x(t) = xn(t) + ∆x(t) (3.3)

f(t) = fn(t) + ∆f(t) (3.4)

d

dt
xn(t) = F(xn(t), fn(t)) (3.5)

From equations (3.3),(3.4),(3.5) and expanding the right-hand side as a taylor series

we get,

d

dt
xn +

d

dt
∆x = F(xn + ∆x, fn + ∆f) (3.6)

d

dt
xn +

d

dt
∆x = F(xn, fn) +

∂F
∂x

∣∣∣∣xn(t)
fn(t)

∆x+
∂F
∂f

∣∣∣∣xn(t)
fn(t)

∆f + H.O.T (3.7)

Since δx and δf are small values, and these squares are even smaller, the higher order

terms are neglected and we get,

d

dt
∆x(t) =

(
∂F
∂x

)∣∣∣∣xn(t)
fn(t)

∆x(t) +
d

dt
∆x(t) =

(
∂F
∂f

)∣∣∣∣xn(t)
fn(t)

∆f(t) (3.8)

where,

(
∂F
∂x

)∣∣∣∣xn(t)
fn(t)

= A(n×n) =



∂F1

∂x1

∂F1

∂x2
... ... ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
... ... ∂F2

∂xn

...
...

...
...

...

∂Fn

∂x1
∂Fn

∂x2
· · · · · · ∂Fn

∂xn

∣∣∣∣xn(t)

fn(t)

(3.9)

27



(
∂F
∂f

)∣∣∣∣xn(t)
fn(t)

= B(n×r) =



∂F1

∂f1

∂F1

∂f2
... ... ∂F1

∂fr

∂F2

∂f1

∂F2

∂f2
... ... ∂F2

∂fr

...
...

...
...

...

∂Fn

∂f1
∂Fn

∂f2
· · · · · · ∂Fn

∂fr

∣∣∣∣xn(t)

fn(t)

(3.10)

The jacobian matrices in (3.9) and (3.10) are evaluated at nominal points (xn(t) and

fn(t)). The resulting linearized system has the form in (3.11).

d

dt
∆x(t) = A∆x(t) +B∆u(t),∆x(t0) = x(t0)− xn(t0) (3.11)

The output differential equations of the given system can be written as

y(t) = G(x(t), f(t)). The above equation can be linearized by expanding in a taylor

series about nominal points xn(t) and fn(t). This results in (3.12).

yn + ∆y = G(xn, fn) +

(
∂G
∂x

)∣∣xn(t)
fn(t)

∆x+

(
∂G
∂f

)∣∣xn(t)
fn(t)

∆f + H.O.T (3.12)

By neglecting the higher order terms and simplifying the above expression yields

(3.13).

∆y =

(
∂G
∂x

)∣∣xn(t)
fn(t)

∆x+

(
∂G
∂f

)∣∣xn(t)
fn(t)

∆f (3.13)

where,

∆y(t) = C∆x(t) +D∆f(t)

C(p×n) =

(
∂G
∂x

)∣∣xn(t)
fn(t)

=



∂G1
∂x1

∂G1
∂x2

... ... ∂G1
∂xn

∂G2
∂x1

∂G2
∂x2

... ... ∂G2
∂xn

...
... ∂Gi

∂xj

...
...

∂Gn
∂x1

∂Gn
∂x2

· · · · · · ∂Gn
∂xn


∣∣∣∣xn(t)
fn(t)

(3.14)
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D(p×r) =

(
∂G
∂f

)∣∣xn(t)
fn(t)

=



∂G1
∂f1

∂G1
∂f2

... ... ∂G1
∂fn

∂G2
∂f1

∂G2
∂f2

... ... ∂G2
∂fn

...
... ∂Gi

∂fj

...
...

∂Gn
∂f1

∂Gn
∂f2

· · · · · · ∂Gn
∂fn


∣∣∣∣xn(t)
fn(t)

(3.15)

Linearization reduces the complexity of the non-linear system and the linearized ver-

sion behaves exactly the same way as the non-linear one at the linearized operating

point. As we move away from the operating point we would observe the differences be-

tween the linearized and non-linear model. The magnitude in the differences between

the two systems depend on the non-linearities present in the system.

3.3 Linearized Model of the Drone

The linearization technique derived in the previous section can be applied about

a particular operating point of the system. For our plane, we would want to compute

the linearized model about the hover flying mode, different operating points in the

hover to horizontal flying mode, horizontal flying mode and the different operating

points in horizontal to hover flying mode. We choose the number of operating points

in the hover to horizontal transition flight and the horizontal to hover transition

flight depending on the degree of closeness we would like the nonlinear system to

behave with respect to the linear system. The values of the states of the system

namely the yaw angle, yaw angular rate, pitch angle, pitch angular rate, roll angle,

roll angular rate and the inputs namely the yawing torque, pitching torque and the

rolling torque are utilized and the linearized Jacobian matrices can be computed.

From the linearized jacobian matrices, the linearized model can be computed using
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the formula shown in (3.16).

A =



∂f1
∂x1

∂f1
∂x2

... ... ∂f1
∂x6

∂f2
∂x1

∂f2
∂x2

... ... ∂f2
∂x6

...
...

...
...

...

∂f6
∂x1

∂f6
∂x2

· · · · · · ∂f6
∂x6


x=x1o1,x2o1,x3o1,x4o1,x5o1,x6o1

B =



∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

...
...

...

∂f6
∂u1

∂f6
∂u2

∂f6
∂u3


u=u1o1,u2o1,u3o1

C =


∂g1
∂x1

∂g1
∂x2

... ... ∂g1
∂x6

∂g2
∂x1

∂g2
∂x2

... ... ∂g2
∂x6

∂g3
∂x1

∂g3
∂x2

· · · · · · ∂g3
∂x6


x=x1o1,x2o1,x3o1,x4o1,x5o1,x6o1

D =


∂g1
∂u1

∂g1
∂u2

∂g1
∂u3

∂g2
∂u1

∂g2
∂u2

∂g2
∂u3

∂g3
∂u1

∂g3
∂u2

∂g3
∂u3


u=u1o1,u2o1,u3o1

Tf = C(sI − A−1)B +D (3.16)
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Chapter 4

CONTROLLER DESIGN

4.1 Introduction

In this chapter, we study about the controller design techniques from [6], [10],

[44]. The infinity norm of signals and systems is explained at the beginning. Then

the PID loop shaping controller design is discussed where the Kp, Ki, Kd parameters

are optimized to match the selected target loop. Then the linear quadratic regulator

design is explained which solves the matrix riccati equations to arrive at a controller

guaranteeing robustness properties. Finally, the H∞ loop shaping control technique

is explained where the loop shapes for the sensitivity, complementary sensitivity are

selected and the algorithm generates an optimal design minimizing the H∞ norm of

the desired function.

Infinity Norm of Signals and Systems :

For a signal x(t), the infinity norm is given by:

||x(t)||∞ = sup ||x(t)|| (4.1)

For a system defined by a transfer function G(s), the H∞ norm of a stable system is

||G||∞ = max
w
|G(jw)| (4.2)

The infinity norm of a system can also be said as the peak of the Bode magnitude

plot of the system. For a multi-variable system, the SISO gain |G(jw)| at a given

frequency should be generalized to the multi-variable case. For an n × m transfer

function matrix G(s), the method to achieve this is to introduce the maximum gain

31



of G(jw) at the frequency w. For this reason, we introduce the euclidean norm ||v||

of a complex- valued vector v = [v1 · · · vm] ∈ Cm which is given by,

||v|| = (|v1|2 + · · · |vm|2)1/2 (4.3)

The peak magnitude of G at the frequency w is given by the formula in (4.4).

||G(jw)|| = max
v

{
G(jw)v

||v||
: v 6= 0, v ∈ Cm

}
(4.4)

||G(jw)|| = max
v

{
||G(jw)v|| : ||v|| = 1, v ∈ Cm

}
(4.5)

The matrix norm ||G(jw)|| is equal to the maximum singular value σ(G(jw)) of the

matrix G(jw). Hence the H∞ norm can be expressed as shown in (4.6).

||G||∞ = supw(G(jw)) (4.6)

4.2 PID Loop Shaping Control Design

In this chapter, the controller design technique by the PID loop shaping tuning

technique is presented. PID control technique is the simplest way of control system

design to stabilize and automate any system. The PID controller has the propor-

tional, integral and the derivative component in its structure. The proportional term

produces an output value proportional to the current error value. The proportional

term contributes Kpe(t) to the controller output. The integral term contributes an

action proportional to the magnitude of the error and the duration of the error. The

integral term contributes Ki

∫ t
0
e(τ)dτ to the controller output. The derivative term

contributes an output that is proportional to the slope of the error over time and it

contributes Kd
de(t)
dt

.
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The derivative action predicts system behavior improving settling time and the

stability of the system. An ideal derivative action is not causal and so an additional

low pass filtering for the derivative term is required to have a bi-proper transfer

function. The tuning of a control loop can be done by multiple techniques namely

ziegler- nichols tuning, cohen-coon method and the relay method. Although the

controller tuning can be performed based on the methods shown above, an optimal

method to tune the PID controller is by a method namely PID tuning by frequency

loop shaping which is explained in [46]. In this technique, the controller parameters

are adjusted for the plant (P) that makes the open loop gain PC close to the loop

shape L obtained from LQR, in the sense of minimizing the H∞ norm. The equation

of a PID control law is shown in (4.7).

u(t) = C(s)[r(t)− y(t)] =

[
kp +

ki
s

+
kds

τs+ 1

]
[r(t)− y(t)] (4.7)

The controller can be written in terms of a bi-proper transfer function as shown in

(4.8).

C(s) = k1s
2 + k2s+

k3
s(τs+ 1)

(4.8)

where k1 = kd + kpτ, k2 = kiτ + kp, k3 = ki.

The controller tuning can be performed based on the parameters k1, k2, k3 and hence

the parameters kp, ki, kd can be computed. The PID control optimization is easy to

work and we can formulate a convex optimization problem to choose the controller

parameters k1, k2, k3 which minimizes the following norm.

min
k1,k2,k3

||W1(GCk1,k2,k3 − L)||∞ (4.9)
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The Weighting function (W1) is selected as shown in (4.10)

||W1(jw)|| ≥
∣∣∣∣ 1

1 + L(jw)

∣∣∣∣,∀w (4.10)

The above equation satisfies the robust stability criterion as indicated by the small

gain theorem which is stated in (4.11).

||S0∆||∞ =

∣∣∣∣ 1

1 + L
(GC − L)

∣∣∣∣
∞
≤ 1 (4.11)

The equation (4.11) states the small gain theorem statement for the divisive uncer-

tainty. The target loop for the open loop optimization is chosen based on the stability

condition of the plant. For a plant having unstable poles, the target loop selection

would generally provide a better guess in the sense of stability. For a plant with

stable poles and not having any slow poles, the target loop can be chosen as L = λ
s
.

And, for a stable plant having slow poles, the target loop is chosen as L = λ(s+a)
s(s+ε)

.

Since the PID controller has limited degrees of freedom, it is necessary to augment

the controller with low pass filters to provide adequate roll off at high frequencies for

noise attenuation.

4.3 LQR Control Design

Linear quadratic regulator is a quadratic optimization method subject to a dy-

namic system constraint producing a full state feedback control system design with

desired stability and robustness. A cost function is minimized to generate a desired

control output. Consider a system of the form shown in (4.12).

Ẋ = Ax+Bu, x(0) = x0 (4.12)

An optimization problem is formulated that has a state feedback control law u = -kx

which drives the initial condition to zero. Consider the quadratic cost function shown
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Figure 4.1: Block Diagram of Standard H∞ Control Loop

in (4.13).

J =

∫ ∞
0

[xT (t)Qx(t) + uTT (t)Ru(t)]dt (4.13)

By applying the algorithms from (4.12) and (4.13), and minimizing the cost function,

the control law can be formulated as:

u = −Kx = R−1BTP× (4.14)

where P is the solution to the control algebraic riccati equation.

ATP + PA− PBR−1BTP +Q = 0 (4.15)

The system is guaranteed to be robust and stable if Q and R are positive definite.

4.4 H∞ Loop Shaping Control Design

H∞ control technique is a method in which design specifications are given in the

sense of H∞ norm of the system guaranteeing robustness and sensitivity reduction.

Consider the standard H∞ system block diagram as shown in Figure 4.1.

35



Figure 4.2: Closed Loop Feedback Control System

The objective of the H∞ design technique is to make the H∞ norm of the closed

loop transfer function Twz smaller than a chosen performance metric γ >0. The ex-

ogenous signals (w) include reference commands to the control system, disturbances

acting on the system and sensor noise. The signal u represents the control signals

or manipulated variables. The regulated signals (z) include tracking errors, actua-

tor/ control outputs and signal estimation errors. The measured signals (y) include

measurements or signals that are directly available to the controller K. The measured

signals include the plant state variables, measurable plant outputs, measurable con-

trol signals and measurable exogenous signals. There are two kinds of H∞ control

techniques namely optimal H∞ control and standard H∞ control. In optimal H∞ con-

trol, the problem is defined to minimize the H∞ norm of the system and in standard

H∞ control, the H∞ norm of the system is made under a certain level. A controller

K is obtained from the technique that internally stabilizes the system G such that

the H∞ norm of the closed loop system transfer function matrix Twz is minimized.

min
K
||Twz||H∞ (4.16)

The system in the Figure (4.2) can be transformed to the standard H∞ control

loop. The inputs to the plant are the reference signal(w) and the control output
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signal(u). The outputs of the system are the error signal (z) and the plant output

(y). The relation between (w, z) and (u, y) is given by (4.17).u
y

 =

P11(s) P12(s)

P21(s) P22(s)


w
z

 (4.17)

Now the system can be partitioned as

P =

A B

C D


On further partitioning the system for two inputs and two outputs, we get P as

A B1 B2

C1 D11 D12

C2 D12 D22


From this partition, we can express the system in state space as shown in (4.18).

ẋ = Ax+B1w +B2z

y1 = C1x+D11w +D12z (4.18)

y2 = C2X +D12w +D22u22

When the system Twz is linear time invariant, we can express Twz as :

Twz = P11(s) + P12(s)[I −K(s)P22(s)]
−1K(s)P21(s) (4.19)

There can also be a special case where the internal stability of the system is guar-

anteed, and the system is stabilizable and observable, then there exists a minimal

entropy controller which is also called the central controller is shown in (4.20).

K∞ =

A∞ −Z∞L∞

F∞ 0

 (4.20)
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where,

A∞ = A+ γ−2B1B
T
1 X +B2F∞ + Z∞L∞C2 (4.21)

F∞ = −BT
2 X (4.22)

L∞ = −Y CT
2 (4.23)

Z∞ = (I − γ−2Y X)−1 (4.24)

and X ≥ 0 is the solution to the control algebraic riccati equation in equation (4.25).

ATX +XA+X(γ−2B1B
T
1 −B2B

T
2 )X + CT

1 C1 = 0, X ≥ 0 (4.25)

Y ≥ 0 is the solution to the filter algebraic riccati equation in (4.26).

Y AT + AY + Y (γ−2C1C
T
1 − C2C

T
2 )X +B1B

T
1 = 0 (4.26)

There is also a technique called weighted H∞ mixed sensitivity design where the

weighting functions are specified for sensitivity, complementary sensitivity, control

sensitivity to shape the frequency responses of the corresponding functions. In this

design, we define weighting functions to formulate an H∞ suboptimal control problem

to address the desired performance measures of the system.

Figure 4.3 shows a weighting w1 on the signal y, a weighting function w2 on the

controls u, and a weighting w3 on the plant outputs. From the figure, we observe

that the regulated signals Z = [z1 z2 z3] are related to the exogenous signals w as

follows:

Z1 = W1z1, Z2 = W2z2, Z3 = W3z3. From this, we can say that the closed loop

transfer function matrix (Twz) from w to z is given by (4.27).

Twz =


W1S

W2KS

W3T

 (4.27)
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Figure 4.3: Weighted H∞ Mixed Sensitivity Design

Since, Twz has the various sensitivity transfer function matrices, the problem is called

as weighted H∞ mixed sensitivity problem. The objective of this design is to minimize

the transfer function Twz ≤ γ. We also discuss about the selection of weighting

functions for the different sensitivities. While designing the weighting function for

the sensitivity, we would like to have ||W1S||∞ < γ. From this, it follows that

σmax[S(jw)] ≤ W−1
1 γ. From this, we select the sensitivity weighting function W1 on

the sensitivity S as:

W1 =

[
k1(s+ z1)

s+ p1

]
(4.28)

where k1 >0, z1 ≥ p1 ≥ 0 .

The parameter k1 is chosen to be a large value. The parameter p1 is typically selected

to be small. These selections make the sensitivity function heavily penalized at low

frequencies. The above selection of weighting function W1 results in (4.29).

σmax[S(jw)] ≤ |W1(jw)−1|γ (4.29)

Similarly, we can select the control weighting W2 on KS as,
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W2 =

[
k2(s+ z2)

s+ p2

]
(4.30)

where k2, p2, z2 ≥ 0 are chosen so that the resulting KS is not too large. The above se-

lection of W2 results in σmax[K(jw)S(jw)] ≤ |W2(jw)−1|γ and KS lies below |W−1
2 γ|.

We can select the output weighting W3 on T as follows:

W3 =

[
k3(s+ z3)

s+ p3

]
, (4.31)

with k3 > 0, p3 > z3 > 0 .

Such a weighting would penalize T more heavily at higher frequencies. Such a selec-

tion for W3 results in W3σmax[T (jw)] ≤ |W3(jw)−1|γ and T lies below T ≤ |W−1
3 |γ.

When choosing the weighting functions for desired properties, there must be good

separation between low and high frequency specifications. The low frequency (com-

mand following and disturbance attenuation) specifications on the sensitivity function

should be sufficiently separated in frequency range from high frequency (robustness

and noise attenuation) specifications imposed on KS and on the complementary sen-

sitivity T. When the low frequency and high frequency specifications overlap, then

we would have a problem with the H∞ suboptimal design and care must be taken to

avoid this overlap.

4.5 Experiment Design

In this section, the experimental design to obtain the dynamical model of the

motor is discussed. The brush-less DC motor with its contra-rotating propellers is

mounted on a wooden plank. An experimental setup with the IR transmitter and IR

receiver setup is placed on a setup in such a way that the propeller passes through

the path of IR light and blocks the receiver from receiving the infrared light. The

IR transmitter and IR receiver setup is placed on a wooden support beam. The IR
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transmitter is connected in forward bias with a forward resistance(Rf ). While setting

up the experiment, precautions must be taken to ensure that the IR light from the

transmitter has direct incidence on the receiver. The IR receiver is connected in series

with a load resistor of 10 kΩ and the analog output voltage is measured across the

load resistor. The analog output voltage across the resistor is given to an ADC pin

of the arduino due micro-controller sampled at 2 Khz. The data from the ADC pin

is serially transmitted and recorded on a computer.
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Chapter 5

SYSTEM DESIGN AND THEORETICAL RESULTS

5.1 Introduction

In this chapter, the VTOL drone we studied in this project is described. Then

the results of system modeling by first principles technique is presented. Also, the

linearized model of the system about hovering mode, hover to horizontal transition fly-

ing, horizontal flying mode, horizontal to hover flying mode are presented. Next, the

controller design by H∞ loop shaping technique is presented. Then, the experimental

setup and results for determining the dynamical model of the motor are presented.

Then, the results of the slipstream velocity analysis for different speeds of rotation

of the motor is presented. Next, the thrust profile for different speeds of rotation of

the motor is presented. Finally, the torque acting on the system for a yawing action,

pitching action and rolling action for varying speeds of rotation are presented.

5.2 Description of VTOL Drone

The three view drawing of the VTOL drone is shown in Figure 5.1. Figure 5.2

provides a 3D graph of the VTOL drone. The VTOL drone has a cuboidal body

shape made of styrofoam in its central location. To this body, wings are attached on

its four faces. The wings with larger surface area has the aileron control surfaces on

its bottom edge. The wings with smaller surface area has the rudder control surfaces

on its bottom edge. The thrust force for take-off is generated by a brush-less dc

motor to which the contra-rotating propellers are attached. The wing configuration

of the plane is similar to the Lockheed XFV-1. The yaw and pitch rotations are
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controlled by the rudder control surfaces and aileron control surfaces respectively.

The roll rotation can be controlled by either of the aileron control surfaces or the

rudder control surfaces. For the purpose of horizontal flying, the wing surface which

houses the ailerons are designed in the shape of an airfoil to provide lift.

Figure 5.1: 3D Graph of the VTOL Drone

5.3 System Modeling

The modeling of the VTOL drone is done based on first principles modeling. First,

the mass distribution of the VTOL drone is analyzed based on the different materials

used for building the drone. The center of mass is computed and is determined

to be 15.5414 inches from the bottom face of the central cuboid. The moment of

inertia tensor of the drone is computed based on adding the moments of inertia of

the individual components about the center of mass. For many of the components,

the moment of inertia is determined about their own center of mass and then is

transformed about the drone’s center of mass. The moment of inertia tensor(I) of the

drone is computed about the principal x, y, z axis passing through the center of mass
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Figure 5.2: Three View Drawing of the VTOL Drone

and is determined to be:

I =


0.2174 0 0

0 0.0578 0

0 0 0.1312


The parameters of the drone are utilized in the differential equations of motion to get

the non-linear dynamics of the plane about the hovering mode and horizontal flying

mode. For representing the system in state-space, the state variables of the system

are x1(yaw angle), x2 (yaw angular rate), x3 (pitch angle), x4 (pitch angular rate),

x5 (roll angle) and x6(roll angular rate). The control inputs are u1(yawing torque),

u2(pitching torque), u3(rolling torque), and with the outputs being y1(yaw angle),

y2(pitch angle), y3(roll angle) .

The non-linear equations of motion are linearized about the hover operating mode

(x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, u1 = 0, u2 = 0, u3 = 0) to get the
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linearized equations of motion about the hovering mode which is shown in (5.1).

G =


0 0 4.6

s2

0 17.3
s2

0

7.622
s2

0 0

 (5.1)

Similarly, the differential equations of motion are linearized about horizontal flying

mode (x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, u1 = 0, u2 = 0, u3 = 0) to get the

linearized equations of motion which is shown in (5.2).

G =


7.622
s2

0 0

0 17.27
s2

0

0 0 4.598
s2

 (5.2)

The torques acting on the plane for a yawing action, pitching action and rolling

action are modeled according to the distance between the center of mass of the control

surface and the center of mass of the drone. The measurements are made for the

rudder and aileron control surfaces. The aerodynamic force acting on the control

surface and the displacement of the control surface can be modeled to compute the

exact torque acting on the system for a yawing action and pitching action.

5.4 Controller Design

The controllers are designed based on H∞ loop shaping technique. The controller

is implemented as an inner-outer loop for the regulation of angular rate and angle

dynamics. The inner loop controller regulates the angular rate dynamics and the

outer loop controller regulates the angle dynamics. The weighting functions for the

sensitivity and the complementary sensitivity of the angular rate dynamics are chosen

as shown in (5.3). The controllers stabilizing the dynamics of the system in hover

mode are shown in (5.5)-(5.10).
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W1 =
1.5(s+ 0.1)

(s+ 10)

(5.3)

W2 =
0.15(s+ 100)

(s+ 10)

The weighting functions for the sensitivity and the complementary sensitivity of the

angle dynamics are chosen as shown in (5.4).

W1 =
1.5(s+ 0.1)

(s+ 5)

(5.4)

W2 =
0.15(s+ 50)

(s+ 5)

The bode plots of the weighting functions of the sensitivity and complementary sen-

sitivity function are shown in Figure 5.3(a), Figure 5.3(b) for the inner and outer

loop respectively. The inner and outer loop controllers for the yaw, pitch and roll

dynamics are shown in (5.5)-(5.10).

Controller (Yaw Angular Rate) :

C1 =
67.46s2 + 8.108e4s+ 393

s3 + 276.2s2 + 3.172e4s+ 2838
(5.5)

Controller (Yaw Angle) :

Co1 =
4.755s2 + 9744s− 9.509e−14

s3 + 23.61s2 + 2312s+ 322.4
(5.6)

Controller (Pitch Angular Rate) :

C2 =
3054s+ 5.265e5

s2 + 206.3s+ 4.746e5
(5.7)
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(a) S and T Weighting Functions of the Inner Loop

(b) S and T Weighting Functions of the Outer Loop

Figure 5.3: Bode Plots of the S and T Weighting Functions
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Figure 5.4: Bode Plot of Yaw Controller

Controller (Pitch Angle) :

Co2 =
4.841s2 + 1.441e4s+ 1.86e−12

s3 + 32.55s2 + 3311s+ 401.2
(5.8)

Controller (Roll Angular Rate) :

C3 =
4.689s2 + 3804s+ 1.236e−12

s3 + 41.04s2 + 1454s+ 153.7
(5.9)

Controller (Roll Angle) :

Co3 =
225s2 + 3.518e5s+ 4514

s3 + 130s2 + 2.529e5s+ 2.689e4
(5.10)

The Bode plots of the controllers for the yaw, pitch and roll dynamics are shown in

Figure (5.4),(5.5) and (5.6).

The controllers designed for the hover mode will work for the horizontal flying
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Figure 5.5: Bode Plot of Pitch Controller

Figure 5.6: Bode Plot of Roll Controller
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mode except for the fact that, the rotation about the principal x-axis becomes the

roll rotation, and the rotation about the principal z-axis becomes the pitch rotation.

The controllers stabilizing the dynamics of the system in the horizontal mode are

shown in (5.11)- (5.16).

Controller (Yaw Angular Rate) :

C1 =
4.689s2 + 3804s+ 1.236e−12

s3 + 41.04s2 + 1454s+ 153.7
(5.11)

Controller (Yaw Angle) :

Co1 =
225s2 + 3.518e5s+ 4514

s3 + 130s2 + 2.529e5s+ 2.689e4
(5.12)

Controller (Pitch Angular Rate) :

C2 =
3054s+ 5.265e5

s2 + 206.3s+ 4.746e5
(5.13)

Controller (Pitch Angle) :

Co2 =
4.841s2 + 1.441e4s+ 1.86e−12

s3 + 32.55s2 + 3311s+ 401.2
(5.14)

Controller (Roll Angular Rate) :

C3 =
67.46s2 + 8.108e4s+ 393

s3 + 276.2s2 + 3.172e4s+ 2838
(5.15)

Controller (Roll Angle) :

Co3 =
4.755s2 + 9744s− 9.509e−14

s3 + 23.61s2 + 2312s+ 322.4
(5.16)

The sensitivity and complementary sensitivity bounds of the closed loop system are

satisfied for the hover and horizontal mode operating point. The bode plots of the sen-
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Figure 5.7: Sensitivity Plot of Yaw Dynamics

sitivity and complementary sensitivity functions of the yaw, pitch and roll dynamics

are shown in Figure (5.7)-(5.12).

5.5 Motor Dynamical Model

In this section, the dynamical model of the brush-less dc motor is obtained. As

shown in section 4.5, the experimental setup is utilized to compute the motor dynami-

cal model. The motor is operated at different inputs to the electronic speed controller

which controls the speed of the motor. The data from the IR transmitter-receiver is

collected for speed analysis as well to analyze the noise in the measurement. The fast

fourier transform of the sensor data is analyzed to determine the noise frequency as-

sociated with the sensor measurement and the results are shown in Figure 5.13. After

analyzing the spectrum of the noise, a second order low pass filter is designed with

a cut-off frequency of 0.1 Hz, 0.01 dB tolerance in peak-peak ripple, 80 dB stopband
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Figure 5.8: Complementary Sensitivity Plot of Yaw Dynamics

Figure 5.9: Sensitivity Plot of Pitch Dynamics

52



Figure 5.10: Complementary Sensitivity Plot of Pitch Dynamics

Figure 5.11: Sensitivity Plot of Roll Dynamics
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Figure 5.12: Complementary Sensitivity Plot of Roll Dynamics

attenuation and the magnitude plot of the filter is shown in Figure 5.14. The sensor

data is filtered and is used for data analysis. Based on the filtered data, the speed of

rotation of the motor is determined and the results are plotted in Figure 5.15.

5.6 Slipstream Velocity Analysis

In this section, the velocity of slipstream of air is analyzed for different speeds of

rotation of the brush-less dc motor. The slipstream velocity increases at a small rate

during lower speeds of rotation from 3000 to 5000 rpm. Then, the slipstream velocity

increases at a greater rate from 6000 rpm to 8000 rpm. And after a rotational speed

of 8000 rpm, the slipstream velocity has the maximum rate of increase and reaches

close to 160 m/sec for a speed of 12000 rpm. The major range of operation of the

brush-less dc motor for our application is between 6000 rpm to 10000 rpm and we put

a greater emphasis between this operating range. The graph between the slipstream
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Figure 5.13: Fast Fourier Transform of Noise in Infrared Sensor Measurement

Figure 5.14: Bode Plot of Low Pass Filter
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Figure 5.15: Pulse Width Modulated Input Vs Motor Speed

velocity and the speed of rotation of the propellers is shown in Figure 5.16.

5.7 Thrust Profile Analysis

The thrust profile of the drone is analyzed in this section. For the different speeds

of rotation of the propeller, the thrust generated by the brush-less dc motor is analyzed

for the operation of the drone. The thrust generated reaches close to 20 Newtons for

a rotational speed of 6000 rpm. Then it increases in a parabolic rate reaching 80

Newtons for a rotational speed of 12000 rpm. Our emphasis is on an operating range

from 6000 to 10000 rpm for which we have the thrust profile clearly available from

Figure 5.17.
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Figure 5.16: Slipstream Velocity Characteristics

Figure 5.17: Thrust Profile Characteristics
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5.8 Torque Profile Analysis

The torque profile of the rudder input and aileron input is analyzed in this section.

The characteristics of torque are analyzed for three different speeds of rotation of the

brush-less dc motor in 6000 rpm, 8000 rpm and 10000 rpm. Let us discuss the

yawing torque acting on the system on the extension of rudder control surfaces. The

yawing torque increases by a constant rate(kr1) for a rotational speed of 6000 rpm to a

steady increase in flap angle of the control surfaces and reaches 0.5 N-m for a complete

extension of the rudders in either direction. For a rotational speed of 8000 rpm, the

profile increases by a constant rate (kr2) to a steady increase in flap angle where kr2

>kr1 and it reaches a yawing torque of 1.9 N-m for the complete extension. When

the brush-less dc motor is operated at a rotational speed of 10000 rpm, the yawing

torque profile increases by a rate (kr3) to the steady increase in flap angle where kr3

>kr2 >kr1 and reaches a peak of 7.2 N-m. The yawing torque profile for the extension

of control surfaces is shown in Figure 5.18. From the pwm input vs torque output

analysis for a rudder input, the reverse mapping of the torque input vs pwm output

can also be obtained. This relation for a torque input on the rudder control surface

is shown in Figure 5.18a. This analysis helps in precise application of torque input

by means of a pulse-width modulated signal input to the servos actuating the control

surface deflection.

Let us discuss the pitching torque acting on the system due to the deflection of the

aileron control surfaces. The pitching torque increases by a constant rate (ka1) to a

steady increase in flap angle of the aileron control surfaces for the operation of the

brush-less dc motor at a speed of 6000 rpm. The pitching torque reaches a peak value

of 0.5 N-m to the complete flap extension. When the motor is operated at a speed of

8000 rpm, the pitching torque steadily increases by a constant rate (ka2) where
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ka2 >ka1 to a steady increase in flap angle of the aileron control surface and reaches a

peak value of 1.9 N-m to a complete flap extension in either direction. While operating

the motor at a speed of 10000 rpm the pitching torque increases by a constant rate

(ka3) where ka3 >ka2 >ka1 and reaches a peak value of 7.4 N-m to a complete flap

extension of the aileron control surface. The pitching torque profile for the extension

of control surfaces is shown in Figure 5.19. This relation for a torque input on the

aileron control surface is shown in Figure 5.19a .
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(a)Pwm Input Vs Torque Characteristics (b) Torque Vs Pwm Input Characteristics

Figure 5.18: Characteristics of Rudder Control Surface

(a)Pwm Input vs Torque Characteristics (b) Torque vs Pwm Input Characteristics

Figure 5.19: Characteristics of Aileron Control Surface
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Chapter 6

SIMULATION RESULTS

6.1 Hover Flying Mode

The hover flying of the VTOL drone is simulated in SIMULINK in this section.

The controllers designed for the linearized model of the drone about hover flying are

tested on the non-linear dynamical model of the drone. The drone is operated at

a rotational speed of 9000 rpm. An unit step reference command is tracked by the

closed loop yaw control system, closed loop pitch control system and the closed loop

roll control system. The step response plots of the angular rate dynamics (yaw, pitch,

roll) and the angle dynamics(yaw, pitch, roll) are shown in Figure 6.1.

The reference tracking of the closed loop yaw control system with step changes in

reference angle input is shown in Figure 6.2. The reference tracking of the closed loop

pitch control system with step changes in angle reference input is shown in Figure 6.3.

The reference tracking of the roll control system with step changes in angle reference

input is shown in Figure 6.4.

6.2 Hover to Horizontal Flying Transition Mode

The hover to horizontal transition flight of the VTOL drone is simulated in

SIMULINK in this section. The controllers designed for the linearized model of the

drone about hover flying is tested on the non-linear dynamical model of the drone.

The drone is operated at a rotational speed of 9000 rpm from the hover position until

the pitch down angle of 38 degrees. Then the motor is operated at a rotational speed

of 8500 rpm from the pitch down angle of 38 degrees until 68 degrees of pitch down
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.1: Hover Mode - Closed Loop Reference Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.2: Hover Mode - Yaw Reference Input Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.3: Hover Mode - Pitch Reference Input Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.4: Hover Mode - Roll Reference Input Tracking
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position. From the pitch down angle of 68 degrees until the horizontal flying position,

the drone is operated at a rotational speed of 8000 rpm. An angle reference command

of zero degrees is tracked by the closed loop yaw control system and the closed loop

roll control system. A step change in pitch angle reference input from 0 degrees to

-90 degrees is tracked by the closed loop pitch control system. The trajectories of

the yaw angle, yaw angular rate, pitch angle, pitch angular rate, roll angle and the

roll angular rate of the system are shown in Figure 6.5. The horizontal velocity of

the drone during the transition flight from the hover to horizontal flying mode is

shown in Figure 6.6. There can be a possibility of not achieving the minimum hori-

zontal velocity called the stall velocity during the transition from hover to horizontal

flight for a stable flight. During these situations, horizontal velocity can be gained

by pitching down the drone from the horizontal flight and then getting the nose back

up once the desired velocity is attained. The simulation of this maneuver is shown in

Figure 6.7. For the purpose of payload delivery, we would require more thrust during

hover take-off and in horizontal flight. In these cases, we should operate the drone

at higher speeds to generate more thrust. To carry a payload of 0.5 kg, the drone

would require operation at a speed of 9500 rpm in hover flight. During the hover to

horizontal transition flight, the drone is maintained at 9500 rpm until the pitch down

angle of 38 degrees. From the pitch down angle of 38 degrees until the pitch down

angle of 68 degrees, the propellers are rotated at a speed of 9000 rpm. Then from the

pitch down angle of 68 degrees until the horizontal flight, the drone is operated at a

speed of 8500 rpm. The simulation results are shown in Figure 6.8. The horizontal

velocity of the drone during the transition flight from hover to horizontal flying mode

is shown in Figure 6.9. The pitching down maneuver during the horizontal flight for

this set of speeds to gain horizontal velocity is shown in Figure 6.10.

The drone is operated at a speed of 10000 rpm in hover mode to handle a payload
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.5: Hover to Horizontal Transition(Speeds of 9000, 8500, 8000 Rpm)
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Figure 6.6: Horizontal Velocity During the Transition of the Drone from Hover to

Horizontal Flying(Speeds of 9000, 8500, 8000 Rpm)

of 1kg.During the hover to horizontal transition flight, the plane is maintained at

that speed until the pitch down angle of 38 degrees. From the pitch down angle of 38

degrees until the pitch down angle of 68 degrees, the drone is operated at 9500 rpm.

From the pitch down angle of 68 degrees, until the horizontal flight, the propellers

of the drone are rotated at a speed of 9000 rpm. The simulation results are shown

in Figure 6.11. The horizontal velocity of the drone during the transition flight from

hover to horizontal flying mode is shown in Figure 6.12. The pitching down maneuver

for this set of speeds in operating the drone is shown in Figure 6.13.

6.3 Horizontal Flying Mode

The horizontal flight of the VTOL drone is simulated in SIMULINK in this section.

The controllers designed for the linearized model of the drone about horizontal flying

is tested on the non-linear dynamical model of the drone. The drone is operated

at a rotational speed of 8000 rpm to generate adequate lift from the air flow over

the airfoil shape of the wing. An unit step reference angle command is tracked by

the closed loop yaw control system, closed loop pitch control system, closed loop roll
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.7: Horizontal Flight - Pitching down Maneuver for a Stable Horizontal

Flight(Speeds of 9000, 8500, 8000 Rpm)
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.8: Hover to Horizontal Flight(Speeds of 9500, 9000, 8500 Rpm)
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Figure 6.9: Horizontal Velocity During the Transition of the Drone from Hover to

Horizontal Flying(Speeds of 9500, 9000, 8500 Rpm)

control system and the simulation results are shown in Figure 6.14. The reference

tracking of the yaw control system with step changes in reference angle input is shown

in Figure 6.15. The reference tracking of the pitch control system with step changes

in reference angle input is shown in Figure 6.16. The reference tracking of the roll

control system with step changes in reference angle input is shown in Figure 6.17.

6.4 Horizontal to Hover Flying Transition Mode

The horizontal to hover flying transition of the VTOL drone is simulated in

SIMULINK in this section. The controllers designed for the linearized model of

the drone about horizontal flying is tested on the non-linear dynamical model of the

drone. The drone is operated at a rotational speed of 8000 rpm from the horizontal

position until the pitch up angle of 38 degrees. Then the motor is rotated at a speed

of 8500 rpm from the pitch up angle of 38 degrees until the pitch up position of 68

degrees. From the pitch up angle of 68 degrees until the hover flying position, the

drone is operated at a rotational speed of 9000 rpm. A reference angle input of zero

degrees is tracked by the closed loop yaw control system and closed loop roll control
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.10: Horizontal Flight - Pitching down Maneuver for a Stable Horizontal

Flight(Speeds of 9500, 9000, 8500 Rpm)
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.11: Hover to Horizontal Flight(Speeds of 10000, 9500, 9000 Rpm)
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Figure 6.12: Horizontal Velocity During the Transition of the Drone from Hover to

Horizontal Flying(Speeds of 10000, 9500, 9000 Rpm)

system. A step reference change from 0 degrees to 90 degrees of pitch angle is tracked

by the pitch control system. The simulation results are shown in Figure 6.18. To

carry a payload of 0.5 kg, the drone is operated at a speed of 8500 rpm during the

horizontal flight. During the horizontal to hover transition flight, it is maintained

at 8500 rpm until the pitch up angle of 38 degrees. From the pitch up angle of 38

degrees until the pitch up angle of 68 degrees, the propellers are rotated at a speed

of 9000 rpm. Then from the pitch up angle of 68 degrees until the hover flight, the

drone is operated at a speed of 9500 rpm. The simulation results are shown in Figure

6.19. To carry a payload of 1 kg, the drone is operated at a speed of 9000 rpm during

the horizontal flight. During the horizontal to hover transition flight, the drone is

maintained at 9000 rpm until the pitch up angle of 38 degrees. From the pitch up

angle of 38 degrees until the pitch up angle of 68 degrees, the propellers are rotated

at a speed of 9500 rpm. Then from the pitch up angle of 68 degrees until the hover

flight, the drone is operated at a speed of 10000 rpm. The simulation results are

shown in Figure 6.20.
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.13: Horizontal Flight - Pitching down Maneuver for a Stable Horizontal

Flight
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.14: Horizontal Mode - Closed Loop Reference Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.15: Horizontal Mode - Yaw Reference Input Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.16: Horizontal Mode - Pitch Reference Input Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.17: Horizontal Mode - Roll Reference Input Tracking
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.18: Horizontal to Hover Flight(Speeds of 8000, 8500, 9000 Rpm)
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.19: Horizontal to Hover Flight(Speeds of 8500, 9000, 9500 Rpm)
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(a) Yaw Dynamics (b) Pitch Dynamics

(c) Roll Dynamics (d) Control Inputs

Figure 6.20: Horizontal to Hover Flight(Speeds of 9000, 9500, 10000 Rpm)
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion of Current Work

The motive of this project is to obtain a first principles model for the rotational

dynamics- yaw, pitch, roll with inputs to the system being yawing torque, pitching

torque, rolling torque and the outputs being yaw angle, pitch angle and roll angle

respectively. The first principles model of the system completely reveals the behavior

of the system along with its nonlinearities to help in implementing the hover to

horizontal transition flight and the horizontal to hover transition flight. The nonlinear

model of the drone is linearized about hover flying, horizontal flying for controller

design through linear control design methodologies.

The linearized model of the drone about the corresponding operating points are

utilized for controller design through a H∞ loop shaping technique. A mixed sensitiv-

ity approach is used in controller design to define loop shapes for the sensitivity and

the complementary sensitivity functions by defining weighting functions. The peak

values of the sensitivity and complementary sensitivity functions are limited by the

bounds specified for the weighting functions.

The hover flight of the drone is simulated with the control formulations and the

yaw, pitch, roll reference angle inputs are tracked. Similarly, the hover to horizontal

transition flight is simulated with changes in the rotational speeds of the motor and

the yaw, pitch, roll dynamics are stabilized. The drone is operated at a higher velocity

during the horizontal flight to have smooth air flow over its wings in-order to prevent

the condition of stalling. At the same velocity, the horizontal flight of the drone
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is simulated and the yaw, pitch, roll reference angle commands are tracked. Then,

the horizontal to hover flight is simulated with the pitch angle changing from zero

degrees to the hover flight position of 90 degrees and the yaw, pitch, roll dynamics

are stabilized.

The theoretical analysis of different parameters of the drone are done to aid with

the hardware implementation of the drone in real-time. The dynamical model of the

brush-less dc motor is obtained by performing an experiment with an IR measurement

setup to count the number of rotations per unit time. The thrust generated by the

contra-rotating propellers are analyzed for different operational speeds of the brush-

less dc motor. The rotation of the brush-less dc motor also generates a flow of

slipstream underneath the cross-sectional area of the propellers which contributes the

aerodynamic force for torque action during the yaw, pitch and roll rotation. The

slipstream air velocity is analyzed for different speeds of operation of the brush-

less dc motor. The torque acting on the system by the extension of the aileron

control surfaces, rudder control surfaces are analyzed for different speeds of rotation

of the contra-rotating propellers. With the above analysis, the torque to PWM input

relation to aid in the precise deflection of control surfaces for a corresponding torque

input from the control system is modeled.

Last, but not the least the experiment could be implemented with more confidence

in the models with data obtained from the drone after initial implementation of the

controllers. This would help in designing more accurate controllers to automate the

flight of the drone.

7.2 Future Work

There is some amount of work to be done on this project. First, to obtain a pre-

cise model of the drone the aerodynamic analysis of the wings of the drone must be

84



done. The wing structure must be modeled in a computer automated drawing tool

so that the airfoil analysis can be done by placing the wing design in a wind tunnel

simulation environment. The velocity of slipstream that we would be experiencing

during the flight of the drone is realized in the wind tunnel testing simulation, and

the lift, drag force acting on the wing can be measured precisely to augment with the

first principles model. This would result in a precise model of the drone with greater

confidence in controller design stabilizing the physical system. The flight of the drone

from hover to horizontal flight need to be implemented in hardware which would be

successful with model augmentation from the airfoil analysis. With the new model,

the linearized model could be obtained about different operating points during the

hover to horizontal flight transition and gain scheduling technique could be incorpo-

rated to precisely control the system. Similarly, the horizontal flying model could

be refined and the horizontal flight need to be implemented with the drone. The

model of the drone about horizontal to hover flight of the drone should be obtained

about different operating points during the transition and gain scheduling control

should be implemented. Currently, we have a problem with wind disturbances affect-

ing the flight of the drone. A wind estimation technique need to be incorporated to

sense the wind and the controller must be capable of rejecting the wind disturbances.

An automated landing of the drone should also be implemented for a safe landing.

This project is to develop a first principles model to capture the nonlinearities in the

dynamics of the drone and design controllers to stabilize the flight of the drone in

hover flying, horizontal flying, hover to horizontal transition and horizontal to hover

transition flight. We developed first principles model based on the physical model

of the plane and its mass distribution. However, to precisely model the dynamics,

experiments need to be conducted to obtain the aerodynamics of wings having the

symmetric aileron control surfaces. The airfoil of the wing need to be modeled in a
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computer design tool to perform wind tunnel testing of the airfoil for varying speeds

of airflow over the wings for different speeds of rotation of the motor.

For the model obtained through first principles technique, we designed H∞ loop

shaped controllers guaranteeing robustness in the closed loop system performance and

limiting the peaks of the sensitivity and complementary sensitivity functions for good

low frequency command following, output disturbance and noise attenuation. The

model of the drone need to be verified by implementing the controllers in real-time

and if required, the model of the drone need to be refined. The flight of the plane

need to be tested in hardware for the hover to horizontal transition, horizontal flying,

horizontal to hover transition and analyze how the system behaves with respect to

the simulated results. During the horizontal flying, smooth airflow over the wings

must be ensured for a stable flight.
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