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ABSTRACT

Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gift-

ing of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and risk pool-

ing, agent-based simulations are conducted to explore socially optimal transfer policies

and sharing network structures, kinetic exchange models that utilize tools from the kinetic

theory of gas dynamics are utilized to characterize the wealth distribution of an NBT econ-

omy, and a variant of repeated prisoner’s dilemma is analyzed to determine whether and

why individuals would participate in such a system of reciprocal altruism.

From agent-based simulation and kinetic exchange models, it is found that regressive

NBT wealth redistribution acts as a cutting stock optimization heuristic that most effi-

ciently matches deficits to surpluses to improve short-term survival; however, progressive

redistribution leads to a wealth distribution that is more stable in volatile environments and

therefore is optimal for long-term survival. Homogeneous sharing networks with low vari-

ance in degree are found to be ideal for maintaining community viability as the burden and

benefit of NBTs is equally shared. Also, phrasing NBTs as a survivor’s dilemma reveals

parameter regions where the repeated game becomes equivalent to a stag hunt or harmony

game, and thus where cooperation is evolutionarily stable.
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Chapter 1

INTRODUCTION

1.1 Overview

In Aktipis et al. (2011), the East African Maasai tradition of osotua, practiced among

nomadic herders, is presented. In response to disasters like drought and disease, which

reduce cattle counts and threaten the economic viability of herders, the Maasai establish

binary osotua contracts with one another that promise the gift of cattle from one’s surplus

to meet a partner’s need whenever necessary. There is no record keeping in osotua, so the

decision to gift is purely based on present herd sizes, with no consideration of the history of

transfers. Similar binary welfare or risk-pooling relationships are present among vampire

bats as well, where reciprocal gifts of food are shared to insure against starvation resulting

from unsuccessful foraging [Refs: Wilkinson (1984, 1988); Carter and Wilkinson (2013)].

As risk pools and welfare practices are often centralized, e.g. modern insurance and

government welfare programs, the presence and theoretical implications of decentralized

binary risk pooling and welfare is of great interest. The investigation of Aktipis et al.

(2011) is extended in Hao et al. (2015), where a generalized version of such binary welfare

is defined as being a need-based transfer (NBT), and the impact of network parameters and

limited-information transfer policies is investigated.

NBTs are sensible beyond moral codes and social norms under two assumptions:

1. No fault disasters. NBTs are feasible when needs are not indicative of skill or risk,

but of unbiased disasters which are out of control of the victims. In such cases,

sharing resources without keeping record is more reasonable as losses are considered

random and the risk is shared equally.
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2. High overhead cost. NBTs, as opposed to partial giving or centrally pooling re-

sources, make sense when transfer or organizational costs are high. For example,

with nomadic herders, bringing all cattle to a central location to divide them up would

be much less feasible than having binary transfers, as gathering herds centrally may

cause hardship in transportation, greater competition for shared resources, greater

risk of disease spreading, etc. Similarly, large scale emergencies in modern societies

that disrupt infrastructure often lead to direct need-based transfers without resource

pooling.

The studies of Aktipis et al. (2011) and Hao et al. (2015) utilize agent-based models in

which a number of agents (representing herds) are simulated and experience random dis-

crete events where the herd sizes grow or decay according to some probability. In response

to needs and surpluses being generated by these events, agents redistribute wealth accord-

ing to prescribed rules. Ultimately, many simulations are conducted and average statistics

like mean survival rate of herds is recorded to provide insight into how the various inter-

action rules impact the community viability. In Aktipis et al. (2011), it is found that with

dyads, the osotua form of NBTs results in a greater fraction of the population remaining

viable than with no transfers or when the decision to give and amount given are probabilis-

tic. Hao et al. (2015) find that on small-world Watts-Strogatz networks the survival rate

increases with the population size as well as the mean degree of the transfer network; also,

individuals with higher degree have higher survival rates.

In addition to investigating the socially optimal transfer rules and network structures,

characterizing the wealth distribution of communities that implement NBTs is also of in-

terest. Given the binary nature of the transfers, it is natural to model an NBT economy

using kinetic models. Whereas the Boltzmann equation describes the evolution of the po-

sition and velocity distribution of gas particles by utilizing physical rules for the outcomes

of collisions, kinetic exchange models of markets, in the area of econophysics, liken binary
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collisions to two individuals interacting in a trade and so utilize Boltzmann-like equations

to describe the evolution of the macroscopic wealth distribution given microscopic rules for

binary trades [Refs: Chakrabarti et al. (2013); Pareschi and Toscani (2013)]. In compari-

son to agent-based models, the integro-differential equation (IDE) structure of Boltzmann-

like kinetic equations has greater potential for proving results about wealth distributions.

Though a variety of such results exist in the econophysics literature, the concept of a via-

bility or welfare threshold as well as deterministic transfers based on exact need have not

yet been discussed.

Reciprocal altruism like the reciprocal gift giving of vampire bats and Maasai herders

has long been studied from the game theoretic perspective as well, with much attention be-

ing given to the repeated prisoner’s dilemma framework. Payoffs in the repeated prisoner’s

dilemma literature are often considered as additive contributions to reproductive fitness,

which accumulate over interactions that continue with constant probability [Refs: Trivers

(1971); Axelrod and Hamilton (1981); Boyd (1988); Nowak (2006)] (further background

in repeated prisoner’s dilemma is provided in Section 2.3). However, when considering

survival of communities in volatile environments, payoffs should be in terms of survival

probability as cooperative decisions more directly impact immediate survival rather than

future reproductive fitness. Growth in knowledge of such games remains of value.

1.2 Statement of Problem

Broadly, the goal of this work is to increase knowledge about the mathematics of binary

welfare and risk pooling as implemented in NBTs. Agent-based simulation is used to

explore socially optimal transfer policies and network structures for NBT sharing networks,

kinetic theory is utilized to describe the evolution of NBT community wealth distributions,

and a variant of repeated prisoner’s dilemma is used to determine parameter regions where

such economic cooperation is feasible.
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Using agent-based simulation, Hao et al. (2015) consider two different transfer rules

or policies where those with wealth below threshold are allowed in random order to seek

help from (1) the wealthiest individual of their NBT network or (2) a random member of

their network. The result of this hit-or-miss process is that requests are more likely to

be satisfied by the richest connected member than a randomly chosen one, and so asking

the wealthiest connected member results in higher survival rates. We consider a more

well-informed community (all individual wealths are public knowledge), and expand this

consideration of asking and giving orderings to consider 16 different transfer policies in

an effort to determine which policies result in the highest survival rates. We also consider

that individuals who lose a partner to loss of viability may establish a new connection with

a still viable member of the network, and investigate which reattachment rules result in

increased survival in order to infer about a socially optimal network topology. In addition,

we define a model for a sustainable NBT economy as opposed to the transient economies of

Aktipis et al. (2011) and Hao et al. (2015) where exponential growth or decay of individual

wealths and a death process absent a birth process result in either finite-time community

extinction or unrealistic exponential growth of wealths.

Utilizing kinetic theory, we model NBTs by deriving Boltzmann-like kinetic IDEs that

describe the evolution of the wealth distribution. Results given from the agent-based mod-

els are sought to be confirmed and expanded upon. This analytical IDE structure can be

used to examine collision invariants, consider optimal control, and prove some statements

about the evolution of the wealth distribution.

In such a reciprocal gift giving system as NBT, there may be temptation to cheat, e.g.

by over-reporting needs or under-reporting surplus; thus it is relevant to investigate when

mutual cooperation is feasible. By phrasing a repeated prisoner’s dilemma on survival

rates rather than on additive contributions to reproductive fitness, we seek to understand
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the necessary balance between the cost and benefit of NBTs in order to determine when

such decentralized economic cooperation is possible.

1.3 Results

In Section 3.1.2 we find that in the short-term, having needy individuals request help

from the connected individual whose surplus most closely matches their deficit works as

a cutting-stock optimization heuristic [Ref: Wäscher and Gau (1996)]: closely matching

deficits and surpluses reserves larger surpluses to be available for those who really need

them and is therefore optimal in maintaining viability. In the long-term, asking the wealth-

iest for help results in the most fit wealth distribution for maintaining survival (fewer in-

dividuals with wealth near threshold and less inequality). Also, in Section 3.1.3, we show

that anti-preferential edge reattachments result in a network with low variance in degrees,

which is found to be socially optimal.

In order to create a sustainable economy, in Section 3.2, logistic growth for community

wealth is used, and along with loss of members due to lack of viability, new members are

added by splitting existing individuals whose wealths cross a certain splitting threshold.

In this way, eventually steady state is achieved where the total wealth of the population as

well as the number of individuals in the economy stabilize. Ultimately the average lifespan

of an individual equilibrates and can be used to determine optimal network structure and

transfer schemes.

In Chapter 4 We derive a kinetic equation to describe NBT transfer policies and com-

pare results related to the survival rate and the impact of transfer schemes on the wealth

distribution with those from the agent-based models. We also characterize collision in-

variants and define an optimal iterative scheme for bringing the greatest fraction of the

population above threshold. Too, another model is constructed where a central wealth re-

5



distribution agent is used to facilitate welfare; this is an early step in comparing the wealth

distributions that result from central or binary welfare.

Finally, in Chapter 5, a variant of repeated prisoner’s dilemma is constructed and the

repeated game framework is used to find expected lifespan from survival probabilities in or-

der to determine the cost and benefit parameter regions where cooperation is evolutionarily

stable or can be coordinated to.
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Chapter 2

BACKGROUND

2.1 Agent-based Models of Need-based Transfers

Beginning their collaborative work with Aktipis et al. (2011), the co-directors of the

Human Generosity Project, Athena Aktipis and Lee Cronk examine the question: Did hu-

mans evolve to be generous? This initial study examines a form of risk pooling present

among the Maasai of East Africa called osotua, a specific form of what Hao et al. (2015)

refer to as “need-based transfers”. Dyads of herders whose cattle populations experience

random growth and significant loss with random disasters are modeled in agent-based sim-

ulations to share cattle with each other in response to the threatened viability of their part-

ners caused by disasters. It is assumed that a herder with fewer than 64 cattle can no longer

viably participate in the economy as a herder and would have to sell what remains of their

cattle and pursue a different profession. With this assumption, it is measured how long the

average herder can remain viable using different sharing rules with their partner.

The dyadic osotua asking and giving rules are formalized as:

1. Osotua asking rule: Individuals ask their partner for cattle only if their current hold-

ings are below the viability threshold, 64 cattle.

2. Osotua giving rule: Individuals give what is asked, but not so much as to put their

own cattle holdings below the viability threshold.

Their agent-based model obeys the following schedule:

1. Herds grow: Individual herds increase in size according to a growth rate sampled

from a normal distribution.

7



2. Potential disaster strikes: Disasters occur for individuals as a Poisson process on

average once every 10 years/simulation rounds, and the disaster results in the herd

size decreasing according to a volatility rate, also sampled from a normal distribution.

3. Requests made: Requests are made according to probabilistic or osotua rules. The

osotua rule that was formalized earlier in this section resulted in individuals asking

for help 33% of the time, and asking for 12 cattle on average. The probabilistic

asking rule is defined to have individuals ask for 12 cattle with probability .33.

4. Requests fulfilled: Requests are fulfilled or not according to probabilistic or osotua

rules. Probabilistic giving is defined such that individuals give 29% of what is asked,

which is the average relative size of amount gifted to amount requested using the

osotua asking and giving rules.

5. Check for viable herds: If cattle holdings are below the viability threshold after trans-

fers for two consecutive rounds, the herd is determined to be no longer viable.

It is found that the Maasai practice of osotua results in significantly higher survival rates

than with no exchanges, probabilistic exchanges, or combinations of osotua and probabilis-

tic asking and giving rules.

Hao et al. (2015) consider such risk-pooling policies in greater detail by studying oso-

tua reciprocal gift giving on small-world Watts-Strogatz sharing networks. Watts-Strogatz

networks are undirected networks with N nodes and mean degree K (assumed even) that

are constructed as follows [Ref: Watts and Strogatz (1998)]:

1. Construct a ring lattice with N nodes each connecting to K/2 neighbors on each

side.

8



2. For every node, rewire an edge connecting to that node with probability β and choose

the new end of the edge to connect to another node chosen with uniform probability

from among all nodes that would avoid self-loops and link duplication.

The parameter β is called the rewiring coefficient and for small values of β, small-world

networks are generated with the properties that average path lengths are short and clustering

is high. For β → 1, the graph converges to an Erdös-Rényi random graph [Ref: Erdös and

Rényi (1959)]. It is found that survival in osotua networks increases with the mean degree

of the Watts-Strogatz network and also with the network size when considering complete

graphs; also, an individual’s survival rate increases with their network degree [Ref: Hao

et al. (2015)]. What is significant about these results is that there are diminishing returns,

e.g. the increase in survival rate from N = 5 to N = 7 individuals is considerable, but

the difference in survival between when N = 10 to N = 100 is almost indistinguishable.

This implies that when social cost is incorporated, such that there is a cost to increase the

size and mean degree of the network, this cost will determine an optimal network size and

mean degree.

Since Hao et al. (2015) model sharing in groups larger than dyads, it matters who asks

for help first and who gives it. The order the askers are chosen is random, and two rules for

who is asked are given as follows:

1. Random asking: Individuals make a request to one of their osotua partners with equal

probability. This assumes that individuals do not have information on their partners’

herd sizes.

2. Selective asking: Individuals pick the wealthiest among all their osotua partners to

make a request. This requires that individuals have information on their partners’

herd sizes.
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The osotua giving rule described in Aktipis et al. (2011) is used. As opposed to the dyadic

model, in this network model there are multiple potential sources of aid, but it is decided

that individuals may only ask once (one individual) for cattle. Hence, the result that the

selective asking rule gives higher survival rates intuitively makes sense as the wealthiest

individuals are more likely to be able to fulfill a request than a randomly selected individual.

In both of these studies, agent-based models are used with initial cattle amounts of

70 (either in dyadic sharing pairs or networks) and the fraction of the initial population

remaining viable is observed as herders’ wealths evolve according to random growth and

volatility, and need-based transfers.

2.2 Kinetic Exchange Models

The kinetic theory of rarefied gases uses statistical mechanics to study the macroscopic

behavior of gases that arises from microscopic interactions. In the 19th century, Lud-

wig Boltzmann developed the most famous kinetic model, the Boltzmann equation [Refs:

Boltzmann (1872); Pareschi and Toscani (2013)]. Considering particles of gas as hard

spheres with the same radius that hit each other in elastic (energy-conserving) binary col-

lisions, simple microscopic physical rules govern how the velocities and positions of two

colliding spheres evolve. With assumptions of a fixed domain, the number of particles in-

creasing to infinity and the mass of the molecules (and also radii of the particles) decreasing

to 0 such that their product approaches a finite value, and other assumptions, we can en-

vision a continuum of space filled with particles that do collide [Refs: Cercignani et al.

(2013)].

As tracking the position and velocity of every individual gas particle is impossible, what

is instead modeled is the probability density of particle positions and velocities. Boltz-

mann used statistical independence and molecular chaos to simplify from modeling the

N -particle distribution to modeling just f(x, v, t), the relative density of particles at posi-
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tion x ∈ R3 with velocity v ∈ R3 at time t > 0. This Boltzmann equation reads:

∂f(x, v, t)

∂t
= −v · ∇xf(x, v, t) +Q(f, f)(x, v, t) (2.1)

where the first term on the right describes the change in position of particles that results

from their collision-free motion, and Q is the collisional term, which tracks additions and

losses to the density of particles with position x and velocity v as a result of collisions

[Refs: Cercignani et al. (2013); Pareschi and Toscani (2013)].

About a century after the development of the Boltzmann equation, Angle (1986) con-

structed an economic model that considers random binary interactions of individuals in an

economy that exchange wealth based on an inequality process; this comes close to current

kinetic exchange models, which will be introduced momentarily. Then, in the early 1990s

the term econophysics was coined at a conference in Calcutta [Ref: Stanley et al. (1996)]

as the methods and theories of statistical physicists were explicitly used to study economic

problems [Ref: Pareschi and Toscani (2013)]. Soon Slanina (2004) used a kinetic equation

for an economic model, where instead of gas particles colliding and changing velocity, in-

dividuals in an economy are considered to collide/interact and exchange wealth according

to microscopic binary transfer rules; such models are called kinetic exchange models [Refs:

Chakrabarti et al. (2013); Pareschi and Toscani (2013)]. Rather than using the Boltzmann

equation to describe the time evolution of the distribution of particle positions and veloci-

ties, a spatially homogeneous Boltzmann-like equation is used to describe the evolution of

the distribution of wealth [Refs: Düring et al. (2008); Bisi et al. (2009)].

Whether kinetic equations are appropriate as economic models has been debated [Ref:

Gallegati et al. (2006)], but as an a posteriori evaluation of such models, properties ob-

served in empirical wealth distribution data have been recovered by kinetic exchange mod-

els of markets [Ref: Chakrabarti et al. (2013)]. It has been found that wealth distributions

in capitalistic economies can be described as having log-normal distribution of wealth
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in the lower majority of the population, with a Pareto tail describing the distribution of

wealth of the top 5-10% richest individuals [Refs: Clementi and Gallegati (2005); Silva

and Yakovenko (2004); Fujiwara et al. (2004)]. With simple assumptions about binary

exchange rules, e.g. saving propensities or risky investments, realistic wealth distributions

are recovered from kinetic exchange models [Ref: Chakrabarti et al. (2013)], and as an

indication of social inequality, the fatness of the Pareto tail is commonly the main output

observation of interest [Refs: Pareschi and Toscani (2013); Düring et al. (2008)].

A Pareto tail refers to a power law distribution for the tail of the wealth distribution,

characterized by a Pareto index α > 0, such that if f(x) is the relative density of individuals

with wealth x, then f is said to have a Pareto tail if f(x) ∼ x−α−1 for x ≥ c, where c is

some constant greater than 1 [Ref: Pareto (1897); Fujiwara et al. (2004)]. The smaller the

index α, the fatter the tail is and the greater the fraction of total wealth in the tail. Hence, a

small Pareto index or a fat tail corresponds to greater inequality in the wealth distribution.

In Düring et al. (2008), a unifying approach to analyzing kinetic models of conservative

economies is introduced, where binary interactions are described as:

v∗ = p1v + q1w, w∗ = q2v + p2w, (2.2)

where v, w are the wealths of the two individuals before collision and v∗, w∗ are the wealths

of the individuals after collision/exchange. The positive weights pi, qi are assumed to have

fixed laws that are independent of time and initial wealths, and generally involve some form

of randomness. Given that f(v, t) is defined as the relative density of agents with wealth v

at time t ≥ 0 (note that for the references mentioned here, f(v, t) = 0 for v < 0), we can

begin to examine how the wealth distribution evolves in time:

f(u, t+ ∆t)− f(u, t) =

〈∫
dv

∫
dwf(v, t)f(w, t)× {[δ(v∗ − u)+

δ(w∗ − u)]− [δ(v − u) + δ(w − u)]}
〉 (2.3)
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where 〈·〉 denotes the average over the random coefficients pi, qi [Refs: Slanina (2004);

Chakrabarti et al. (2013)]. Essentially, we find the change in density at wealth u as the sum

of gains (individuals ending with wealth u after a collision) minus the losses (individuals

who initially had wealth u but have a different wealth after collision). Observing that

the loss terms just become f(u, t) because our assumption about the weights pi, qi being

positive gives that every individual wealth changes in a collision, Equation 2.2 can be

rewritten in the form of a homogeneous Boltzmann equation as:

∂tf(v, t) = −f(v, t) +Q+(f, f)(v, t) (2.4)

where Q+(f, f)(v, t) is used to denote the bilinear collisional gain operator. It can be seen

that the collisional gain operator acts on test functions ϕ(v) as

Q+(f, f)[ϕ] =
1

2

∫ ∞
0

∫ ∞
0

〈ϕ(v∗) + ϕ(w∗)〉f(v)f(w)dvdw, (2.5)

where 〈·〉 denotes the mean with respect to the random coefficients pi, qi [Ref: Düring

et al. (2008)]. For the collision operator to conserve wealth, it must be that 〈p1 + q2〉 =

〈p2 + q1〉 = 1. Some examples of models that fit this framework are the model by Cordier

et al. (2005) and the model by Chatterjee et al. (2004).

Introducing redistribution to these kinetic exchange models, Bisi et al. (2009) imple-

ment a tax to each collision. An example of such a collision tax is

v∗ε = (p1 − ε)v + q1w, w∗ε = p2v + (q2 − ε)w. (2.6)

where constant ε ∈ (0, 1) can be set to satisfy ε ≤ δ < mini=1,2{pi, qi} given that pi, qi are

bounded below by a constant δ. Hence, the amount being taxed from the individual with

wealth v is εv and similarly for the individual with wealth w. This gives that v∗, w∗ are

nonnegative, but wealth conservation is lost such that

〈v∗ε + w∗ε 〉 = (1− ε)(v + w). (2.7)
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This results in the total mean wealth decreasing exponentially in time,

m(t) =

∫
R+

vf(v, t)dv = m(0) exp(−εt). (2.8)

In order to make the model overall wealth conserving, Bisi et al. (2009) use a redistribu-

tion operator that independently increases the mean wealth at the same rate the collision/tax

operator extracts it. They assume this operator to be of the form:

Rε
χ(f)(v, t) = ε

∂

∂v
[(χv − (χ+ 1)m(t))f(v, t)] , (2.9)

where the real parameter χ determines the way in which wealth is distributed. Some chal-

lenges with this type of redistribution are that the redistribution term is complicated, it

is unclear how this could be described at the microscopic level, and it is possible for the

redistribution parameter to actually take further money away (beyond the tax). Still, the

impact of χ can be characterized as follows: (i) for χ > 0, agents of large wealth are taxed

more and wealth is redistributed to poor agents, (ii) for χ = 0 the yield from taxation is

equally distributed, (iii) for χ < −1 the poorest are taxed further and the rich benefit, and

for −1 < χ < 0 the poor and rich benefit at the expense of the middle class. In summary,

the taxation/redistribution kinetic equation is given as:

∂f(v, t)

∂t
= Qε(f, f)(v, t) +Rε

χ(f)(v, t) (2.10)

where here the collisional gain/loss terms are combined into the operator Qε(f, f).

2.3 Repeated Prisoner’s Dilemma and Survivor’s Dilemma

The previously introduced practices of the Maasai herders as well as vampire bats are

examples of reciprocal gift giving. Whether and why individuals would participate is such

an economic system are questions best investigated in the game theoretic framework. In

Chapter 5, we examine when selfish individuals will cooperate in a repeated survivor’s

dilemma, which is a variation of the repeated prisoner’s dilemma.
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Player 2

C D Player 1 C R,R S, T

D T, S P, P

Figure 2.1: Prisoner’s dilemma payoffs using the notation of Rapoport and Chammah
(1965): R is the reward for cooperation, T the temptation to cheat, S the sucker’s payoff,
and P the punishment for mutual defection. To be considered a prisoner’s dilemma, the
payoffs must satisfy T > R > P > S.

Trivers (1971) connects repeated symmetric situations like NBTs with the prisoner’s

dilemma [Refs: Tucker and Straffin Jr (1983); Rapoport and Chammah (1965)], which has

a payoff matrix as described in Figure 2.1. A two-player prisoner’s dilemma is in general

a symmetric game where defecting when an opponent cooperates results in a temptation to

cheat T , mutual cooperation leads each individual to receive a reward R, mutual defection

leads to each individual receiving a punishment P , cooperating while an opponent defects

leads to a sucker’s payoff S, and the payoffs obey the following relation: T > R > P > S.

Because T > R and P > S, no matter what Player 2 chooses, it is always best for Player

1 to defect. Thus, in this symmetric game, the temptation to cheat and fear of being a

sucker lead to mutual defection as opposed to mutual cooperation, which would be socially

optimal.

If such prisoner’s dilemma decisions are made at the timescale of weeks, then over

years these games may be repeated many times, leading to an iterated or repeated pris-

oner’s dilemma as popularized by Axelrod and Hamilton (1981). While Triver’s drowning

man example [Ref: Trivers (1971)] was originally phrased as having cooperation impact

survival probability, much attention has instead been given to treating payoffs as addi-

tive contributions to reproductive fitness, accumulated over interactions that continue with
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a fixed probability, called the “shadow of the future” [Refs: Axelrod et al. (1988); Oye

(1985)]. Symbolically, for constant continued interaction probability w, an individual’s

fitness would be found as:

F =
∞∑
t=1

wt−1Ut = U1 + wU2 + w2U3 + . . . (2.11)

where Ut is the payoff the individual gets on the t-th time the two individuals interact and

play the game.

Yet in the examples of bats and herders, cooperation directly impacts survival probabil-

ity and thus the probability of future interactions w should be a function of player decisions

rather than independent of them; this is especially important when survival events occur on

a shorter timescale than reproduction. In Chapter 5 we develop a model with the following

features: (i) the prisoner’s dilemma is on survival rates with overall fitness defined as ex-

pected lifespan, i.e. a survivor’s dilemma, (ii) there is an infinite horizon, i.e. the game has

an unknown ending time, (iii) we consider survival rates determined by a space of parame-

ters β, b, c, which represent survival in isolation, the benefit of cooperation, and the cost of

cooperation respectively, and (iv) we scale our model from a 2-player game to a 3-player

game.

Axelrod et al. (1988) acknowledge the potential of variation in continued interaction

probability w to affect observed patterns of cooperation. Feldman and Thomas (1987) and

Thomas and Feldman (1988) consider behavior-dependent contexts for RPD where, for

example, one individual determines whether the game will continue based on their strategy

such that if this individual cooperates the game will continue with probability w and if

the player defects they continue to play with probability u. This however lets only one

individual determine whether the game continues, and not as related to survival.

A better model for the vampire bats and Maasai would be what is called a survival

game or survivor’s dilemma [Ref: Garay (2009); Garay and Varga (2011)]. In Eshel and
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Weinshall (1988), rather than encounters determining additive contributions to fitness, the

authors phrase a game such that interaction payoffs are survival probabilities and the overall

goal of the supergame is to maximize expected lifespan. Eshel and Weinshall (1988) con-

sider that the survival rates generated by an encounter have a positive probability of being

of the prisoner’s dilemma type, but also a positive probability of having mutual cooperation

be of immediate self reward. They find that cooperation can be favored at a present dis-

advantage to a player in order to preserve their partner’s survival for a potential benefitial

selfish mutual cooperation in the future; this concept is called partnership [Ref: Eshel and

Shaked (2001)]. We consider an iterated game that is always a prisoner’s dilemma with

survival rates determined by fixed parameters rather than random payoff functions.

The survival game model of Lima (1989) considers that with some probability an in-

dividual can regain a partner when their current partner dies; the author also considers a

known end time for the interactions and generates a table of cooperation proababilities. We

will instead consider that in the course of a single pairing a deceased partner may not be

replaced. Also, we consider a sort of “shadow of the future” model where the end of the

game (signaled by the death of both players) is unknown.

Garay (2009) and Garay and Varga (2011) model a survivor’s dilemma which considers

whether individual’s will cooperate to defend each other against a fixed number of attacks.

Again, we consider an unknown stop to the game or infinite horizon; also, there are some

differences between the threat of a predator and the threat of e.g. startvation for a bat. For

example, a model of Garay and Varga (2011) considers that in an attack, if one individual

defends itself and the other flees, the one who flees survives with probability 1. In con-

trast, the metaphorical mouth of starvation is large enough to not be filled with one prey,

and taking the life of one bat does not prevent starvation from taking the life of another

simultaneously.
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What is of interest in our survival game is whether cooperative strategies can be se-

lected for in a context of repeated survivor’s dilemmas. The iterated prisoner’s dilemma

tournaments of Axelrod and Hamilton (1981) had a surprisingly simple strategy as their

victor: tit-for-tat, which would involve initial cooperation and then mimicking the other

player. Especially for relatively simple species like vampire bats, it is of interest to under-

stand evolutionarily how cooperation could have been selected for with similarly simple

interactive strategies.

While concepts such as Nash equilibria predict the behavior of rational agents, ex-

pecting bats to calculate expected lifespans from survival rates based on environmental

parameters is unreasonable. Instead, it is more logical to assume that bats are genetically

or otherwise coded to either be cooperators or not, and then determine how the prevalence

of both strategies evolve according to reproductive competitiveness. One standard treat-

ment to investigate evolutionary stability of strategies is to model the evolution of strategy

densities using replicator equations [Ref: Nowak (2006); Hofbauer and Sigmund (1998)].

Where xi is the fraction of the population of type i, x = (x1, . . . , xn), fi(x) is the fitness

of strategy i given the densities of all strategies, and φ(x) =
∑n

j=1 xjfj(x) is the average

fitness, the evolution of xi is given by:

ẋi = xi[fi(x)− φ(x)]. (2.12)

Standard tools from systems of ordinary differential equations can then be used to deter-

mine equilibria and stability.
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Chapter 3

SOCIAL OPTIMA OF NEED-BASED TRANSFERS

In this chapter, we define a general structure for transient agent-based models of need-based

transfers (NBTs), and explore socially optimal transfer policies and network topology as

well as develop a quasi-equilibrium agent-based model of NBTs.

NBTs are a form of risk pooling where binary exchanges of some currency occur to en-

sure the economic viability of a community, especially in volatile environments. A specific

form of this has been studied by Aktipis et al. (2011) and Hao et al. (2015) who modeled

the East African Maasai tradition of osotua, which involves nomadic herders gifting cattle

to a member of the tribe with whom they have a special relationship. Here, the assumption

is that any member of an osotua relationship gives the amount of cattle needed by another

member, whenever possible, in order to maintain the receiving member’s economic viabil-

ity. This reciprocal relationship provides a form of insurance, or risk pooling in times of

disaster like drought, flood, famine, or disease.

The studies by Aktipis et al. (2011) and Hao et al. (2015) use transient agent-based

models, and examine the survival rate, or fraction of the initial population remaining viable

at some time. Aktipis et al. (2011) show that the osotua model of need-based transfer,

where requests are fulfilled whenever possible, results in significantly higher survival rates

than with no exchanges or probabilistic exchanges when used with isolated dyads. Hao

et al. (2015) show for small-world Watts-Strogatz networks that survival rates increase

with the size of the population and mean degree of the transfer networks, with individuals

with high degree having higher survival rates than individuals with low degree; because the

improvement in survival obeys a law of diminishing returns, the social cost of increasing

network size and mean degree will determine the optimal network size and degree. Hao
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et al. (2015) also examine two different asking rules: random asking involves a hit-or-miss

request to a random neighbor (connected member of the network), while selective asking

requests help from the richest individual that the asker has an osotua relationship with. It

is found that the selective asking rule results in a higher survival rate, which is intuitively

reasonable as the wealthiest individual is more likely to be able to meet a request than some

other random connection.

The goal of this study is to develop a more general framework for NBT modeling and

investigate social optima. In particular, we (i) examine the impact of informed asking

and giving transfer policies, (ii) seek an optimal network structure, and (iii) develop a

quasi-equilibrium agent-based simulation model that allows us to study the impact of time-

varying policies as well as the influence of changing risk patterns due to climate change

on the stability of an economy that is strongly determined by NBTs. To conduct the first

two investigations, we extend the osotua model from Aktipis et al. (2011) and Hao et al.

(2015) to a transient model with more volatile wealth evolution; this will encourage more

frequent transfers and therefore result in a magnified view of the effects of our various

transfer policies.

We find that need-based transfers that focus on short-term benefits can be compared to

a cutting-stock optimization problem [Ref: Wäscher and Gau (1996)] where finite sizes of

deficits and surpluses are attempted to be matched in a way as to reduce waste and keep

as many individuals viable as possible. In the long-term, the rules for need-based transfers

not only have a direct impact on the survival of an individual, they have a secondary effect

of changing the wealth distribution. Specifically, rules that increase the contributions from

the richest members of the group lead to a fitter wealth distribution (less inequality and

fewer individuals near threshold) which results in higher long-term survival rates. Finally,

we also claim that the socially optimal network structure is one that minimizes variance in

network degrees, e.g. by conducting anti-preferrential network attachment in steady state.
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To develop a quasi-equilibrium simulation platform, we have to balance the birth and

death processes in the current model. Specifically, in order to have stabilization in the vi-

able community population we change the NBT model from an exponential growth model

to logistic growth of the total community wealth, modeling growth limits due to finite envi-

ronmental resources. In addition, a birth process needs to be introduced that compensates

for individuals that have been eliminated from the economy due to loss of viability. We

do this by adding a splitting mechanism, whereby an individual that has high wealth splits

and transfers a part of their wealth to the new ‘birthed’ individual. We are not concerned

with the details of this process yet, but note that there is an opportunity here to connect to

anthropological and economic theory of succession and inheritance rules.

To fix ideas, we characterize a need-based transfer: As implied, there has to be some

apparent need. When focusing on wealths of individuals, we consider a poverty or viability

threshold. Poverty thresholds, like income thresholds for qualifying for welfare are deter-

mined such that in order to have a certain quality of life or to be a participating member

of an economy, an individual must have wealth above a certain level. Among the Maasai,

there is a viability threshold where having less cattle than a certain amount would not allow

an individual to viably survive as a herder, and they would therefore have to sell out and

pursue another profession. Thus, when we consider some viability threshold, we measure

need as the difference between that threshold and an individual’s wealth.

When these needs or deficits occur as the result of major or minor economic disasters

in modern society, insurance companies are commonly used to prevent loss of viability.

Here individuals pay premiums at rates proportional to their risk and are paid to cover their

losses. Through government, many countries provide various forms of welfare, which may

be thought of as individuals collecting their money to insure against those who may be

driven by circumstance to a lesser quality of life. Need-based transfers, in the context in
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which we consider them, are not central collections of fractional amounts, but are com-

pletely binary transfers of entire needs.

An individual may be connected to multiple others in a need-based transfer network,

and if that individual’s wealth falls below threshold, that individual will be gifted the com-

plete amount of their need from one of the other individuals in the network whenever pos-

sible, or receive nothing. Here, “whenever possible” means that an individual will only be

gifted wealth if the entire amount of their need can be met without causing the giver to go

below threshold themself. With these need-based transfers, there is no record keeping, so

if an individual has need every year and another individual is able to help every year, help

will be given. Beyond moral codes and social norms, such a form of risk pooling is sensi-

ble under the assumption of no-fault disasters and high overhead costs; this is discussed in

Section 1.1.

3.1 Transient Wealth Evolution with Need-based Transfers Model

As in Aktipis et al. (2011) and Hao et al. (2015), we begin by considering transient NBT

wealth evolution models. These are transient in that individuals may only lose viability; no

new individuals are born. Thus, if the growth/disaster rates are such that there is a positive

probability of an individual losing viability, eventually all individuals will lose viability.

While such an inevitable extinction model may seem unrealistic, the rate at which the

community approaches extinction, or the fraction of the population remaining viable at any

time are useful indicators of NBT policy decisions.

3.1.1 Model Structure and Observables

The overall structure of a transient NBT simulation model can be described in four

steps:
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1. Initialization. Assign the number of individuals N ∈ N, the length of simulation

T > 0, the number of simulations, the initial wealths for all individuals ~w(0) ∈ RN ,

the viability threshold θ ∈ R, and a network adjacency matrix X(0) ∈ {0, 1}N×N .

2. Growth/decay process. The wealth of individual i grows/decays at rate Ri(t), such

that ŵi(t) = (1 +Ri(t))wi(t) for all 1 ≤ i ≤ N .

3. Wealth transfer process. Using a threshold θ ∈ R, transfers update the wealth ŵi(t)

to the new wealth after transfer, wi(t + 1). Let wi ∈ R be the wealth of individual

i (note that we may consider negative wealth as debt), and Wi be the set of wealths

of individuals it is connected to. If ŵi < θ, then individual i’s wealth after transfers

becomes

wi(t+ 1) =


θ if there exists ŵ in Wi such that ŵ − (θ − ŵi) ≥ θ

ŵi(t) else.

A giver of help loses the wealth that is transfered and individuals that are not part of a

transfer maintain their wealths. Such transfers are conducted until all viable members

with need have had a chance to request help; the order of requests is provided by some

prescribed rule.

4. Viability check. An individual i’s viability at time t+1 is determined to be either non-

viable, vi(t+ 1) = 0, or viable vi(t+ 1) = 1, depending on whether the individual’s

wealth wi(t + 1) is below threshold or not, respectively. The adjacency matrix is

updated to remove all connections to nonviable nodes. Edge reattachments may be

performed to determine X(t+ 1).

Hence, wi(t) is individual i’s wealth at the beginning of a simulation round, ŵi(t) rep-

resents the wealth after the growth/decay step, and wi(t + 1) gives the wealth after all
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transfers have been conducted. To complete one simulation step, the individual’s viability

vi(t+1) is calculated, and its connections are updated. Different transient NBT models are

constructed by changing the rules for steps 2-4.

Volatility model

Initialization N = 100, T = 300, 105 simulations, ~w(0) = {70}N ,

θ = 64, Xij(0) = 1i 6=j .

Growth/decay Ri(t) ∼ N (0, 0.32).

Transfer policy ?← ? (see Table 3.2).

Viability check vi(t+ 1) =


0 if wi(t+ 1) < θ

1 else

Xij(t+1) =


1 if Xij(0) = 1 = vi(t+ 1) = vj(t+ 1)

0 else.

Table 3.1: Description of the volatility model. The initial network is a complete graph.
N (µ, σ2) denotes a normal distribution with mean µ and variance σ2.

We illustrate this structure in Table 3.1, defining what we will call the volatility model.

The model obeys Gibrat’s law [Ref: Mansfield (1962)] in that the multiplicative growth/decay

rates are independent of wealth. We choose the specific threshold value and initial wealths

in order to maintain comparability with the osotua model from Aktipis et al. (2011) and

Hao et al. (2015). However, whereas the osotua model decomposes the growth/decay rate

into a growth rate gi(t) and disaster volatility li(t) with disasters generated as a Poisson

process, the volatility model simplifies this into an annual growth rate that may be bigger

or smaller than 0. Also, the variance in the growth/decay rate in the volatility model is
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chosen to be much larger than what is typical for cattle herders in order to magnify the

effects of the policy decisions.

The main observable for the transient models is the survival rate, i.e. the fraction of the

population remaining viable at any time,

S(t) =
1

N

N∑
i=1

vi(t). (3.1)

S(t) is the cumulative result of death/loss of viability over time. The number of deaths

occurring in a simulation round,

D(t) =
N∑
i=1

(vi(t)− vi(t+ 1)), (3.2)

gives an instantaneous measure of the loss of viability in time.

Wealth inequality will be measured by the Gini coefficient [Ref: Dorfman (1979)] based

on the Lorenz curve. The Lorenz curve y = L(x) describes the fraction y of the total wealth

contained in the fraction x of the total population ordered from poorest to richest. For ex-

ample, the point (0.5, 0.3) means that 30% of the community wealth is contained in the

bottom 50% of the population. Thus, necessarily, L(x) goes through the points (0, 0) and

(1, 1). A homogeneous population where wealth is completely equally distributed has a

Lorenz curve that is a straight line L(x) = x. The Gini coefficient of a wealth distribution

then is defined asG = 1−2B, whereB is the area under the associated Lorenz curve. Thus

for no inequality, i.e. a Lorenz curve that is a straight line, G = 0, while Gini coefficients

near 1 correspond to high inequality.

To measure the vulnerability of a population we define the fraction in need as

FIN(t) =
N∑
i=1

H(θ − ŵi(t))vi(t)
/ N∑

i=1

vi(t), (3.3)

which is the fraction of the viable population that is below threshold before transfers.
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To characterize the effectiveness of a transfer scheme, we consider efficiency to be the

fraction of wealth that was transferred relative to the amount of wealth that was needed and

available:

EFF (t) =

∑
{i:wi(t+1)=θ} vi(t)H(θ − ŵi(t))(θ − ŵi(t))

min
{∑N

i=1 vi(t)H(θ − ŵi(t))(θ − ŵi(t)),
∑N
i=1 vi(t)H(ŵi(t)− θ)(ŵi(t)− θ)

} . (3.4)

3.1.2 Transfer Policies

In Hao et al. (2015), individuals ask for help in random order, and whom they ask is

determined in two different ways: (i) random asking implies that an individual asks for

help from a random osotua member and if that specific osotua member cannot help, the

asker loses viability; (ii) selective asking means that help is sought from the asker’s richest

osotua member. Thus, the random asking is a hit-or-miss procedure that obviously ‘misses’

more often than the selective asking procedure and therefore performs worse.

For our generalized asking rules, we assume that individuals in our communities have

complete and accurate information on the wealths of the other members of their community

and may use that information to different degrees. Among the Massai this is reasonable as

cattle are visible and may be counted. In other situations, public information of wealths

may be available, or communication among sharing networks may provide such informa-

tion. Thus, in our version of random giving, the asker sensibly requests help from an

individual randomly chosen from among only the individuals which are connected to the

asker and are able to fulfill the request. Hence, an asker will receive help if and only if

there exists network member whose surplus is greater than or equal to the asker’s deficit at

the time of request. Note also that individuals with enough surplus may give help multiple

times (to multiple needy individuals) in a single round of transfers.

If multiple individuals need help, not only who is asked, but also the order of the asking

is a relevant aspect of an NBT transfer policy. We consider four different asking and four

different giving orderings as described in Table 3.2.
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Asking order Giving order

Poorest

(P):

The individual with the greatest

need asks for help first, then the

individual with second greatest

need, etc.

Richest

(R):

The individual with greatest

wealth is asked for help.

Least

Poor (LP):

The individual with the least

need asks first, then the individ-

ual with the second least need,

etc.

Least Rich

(LR):

The individual with the small-

est surplus who can meet the re-

quest is asked.

Random

(RA):

The players with need ask in

random order.

Random

(RG):

The asker randomly selects an

individual among those who can

help.

Fixed

(FA):

The asking order is fixed for all

time, e.g. by social status.

Fixed

(FG):

The giving order is fixed.

Table 3.2: Transfer policy descriptions. A policy will thus be defined and refered to as
Asking order← Giving order, for example P ← LR refers to the policy where the Poorest
asking order is used and the Least Rich giving order is used. Once an asker is chosen, a
request is made to the connected individual who matches the giving order rule.

The relevance of the asking order is illustrated by this simple example: Let N =

4, ~̂w(0) = (1, 0, 3, 4), and θ = 2. Here the LP ← R scheme leads to the wealth trans-

fer (1, 0, 3,4) → (2, 0, 3, 3) = ~w(1), as the least poor individual received help from the

richest individual. Since there is no single individual with a surplus of 2 that matches in-

dividual 2’s deficit, individual 2 will lose viability. However, for the LP ← LR scheme,

two exchanges are possible: (1, 0,3, 4)→ (2,0, 2,4)→ (2, 2, 2, 2) = ~w(1). Here all four

individuals remain viable. Note that the choice of the scheme not only impacts viability, it

also impacts the distribution of wealth of the survivors. Saving the extra individual comes

with the increased vulnerability of all four individuals being exactly at threshold.
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All results and figures in this section use the volatility model detailed in Table 3.1.

Figure 3.1 shows the mean survival rates 〈S(t)〉 of extensive simulations of all 16 different

combinations of asking and giving rules, and leads to the following two general statements:

1. In the short-term, survival rates are highest for the← LR giving policies and lowest

for the← R giving policies.

2. In the long-term, survival rates are highest for the← R giving policies and lowest

for the← LR transfer policies.

Attempting to explain these important phenomena, we narrow our policy considerations

to those with random asking order, RA← and first examine the short-term behavior of our

transfer policies. One can prove (see Appendix A) that regardless of the asking order

and initial wealth distribution, for N ≤ 4, SLR(1) ≥ SR(1). Thus, if four individuals

are participating in an NBT relationship together, regardless of their wealth distributions,

to optimize their survival for any given year, they should ask the least rich to give with

priority. However, for N ≥ 5 there do exist initial wealth distributions for which this is not

true anymore (example provided in Appendix A).

It may sound counterintuitive to encourage asking the least rich to give first, but given

the rules governing NBTs in Section 3.1.1, maximizing survival for a single exchange

round is essentially equivalent to a cutting-stock optimization problem where the heuristic

approach of matching the smallest surpluses to deficits first improves efficiency (reduces

unutilized surplus), especially by reserving larger surpluses for individuals with larger

deficits rather than breaking up those larger surpluses so that individuals with large deficits

are left without matches. This is illustrated in Figure 3.2 where in the short-term, while

the wealth distributions are still similar (before transfer policies differences have a cumu-

lative effect), the efficiency of a policy primarily determines survival as can be seen by the

anti-correlated efficiency and deaths data for t < 10.
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Figure 3.1: Mean survival rates for the volatility model with various transfer policies.

More generally, we find that for randomly chosen initial wealth distributions sampled

from uniform, normal, exponential, or power law distributions, there still appears to be a

common trend that 〈SLR(1)〉 > 〈SRG(1)〉 > 〈SR(1)〉, where 〈·〉 represents the average

over multiple simulations (see Appendix A, Fig. A.1 and Fig. A.2). In addition, the gap

in survival rates between different transfer policies increases with the initial population N ,

and mean degree. Naturally, the more NBT partners an individual has, the more significant

the difference in wealth of the least rich, richest, and randomly selected giver and thus the

more differently the transfer policies can behave.
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Figure 3.2: Mean efficiency and number of deaths as functions of time for random asking order
and various giving orders.

However, whereas← LR is found to be optimal and← R the worst for short-term sur-

vival, we observe the exact opposite behavior in the long-term: ← LR results in the lowest

survival rates and ← R results in the highest survival rates. This clearly illustrates that

transfer policies not only have an immediate direct impact on survival but also an apparent

indirect impact. Certainly, redistributing wealth in dramatically different ways results in

varying wealth distributions; some wealth distributions are more secure than others in the

face of disasters. This was hinted at in the simple example in the beginning of this section

with N = 4.

Using the Least Rich giving rule and matching surpluses and deficits as closely as pos-

sible results in not only the recipient coming to threshold, but the giver also ending up

with wealth near threshold. Hence, after every transaction the ← LR rule generates two

agents with wealth near threshold whereas the other policies typically generate only one

agent with wealth near threshold. Hence, as opposed to the progressive← R policy, the re-

gressive← LR policy generates a wealth distribution that has many more individuals with

wealth near threshold and is thus far more susceptible to disasters. Figure 3.3 illustrates
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this, showing the increase of population at risk FIN(t) for the ← LR rule and decrease

for← R after just a few iterations.
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Figure 3.3: Time evolution of mean fraction in need for random asking order and various giving
orders.

Increased economic risk is not only caused by many individuals near threshold, but

also by the vulnerability of the total community wealth. As depicted in Figure 3.4 (a), in

log-log scale the RA ← LR and RA ← RG probability density functions appear linear

for wealths above 80, revealing a power law or Pareto tail [Ref: Chakrabarti et al. (2013)].

However, the smaller negative slope of the RA ← LR scheme shows that the Least Rich

giving order results in a smaller Pareto index and therefore larger portion of very high-

wealth individuals. The wealth distribution corresponding to the RA← R policy is shown

in a log-lin plot in Figure 3.4 (b), fitted to a log-normal distribution. Note that the delta

function at the threshold wealth of 64 is not included in the probability density function

plots.

All transfer policies are community-wealth preserving; however, by leaving a bulk of

the community wealth in the hands of a few very wealthy individuals that are not often

called upon to give, the ← LR policy is proverbially putting all of the community eggs
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Figure 3.4: (a) Log-log plot of wealth probability density functions for the RA ← LR
and RA ← RG policies at t = 20. (b) Log-lin plot of RA ← R probability density
function at t = 20 fitted to a log-normal distribution. lnN (4.35, .272) is used to denote
the probability density function for a log-normal distribution with the associated normal
distribution having mean 4.35 and variance .272.

into a few baskets. Thus, when a very wealthy individual is struck by disaster, the result is

devastating to community wealth, and the large fraction of individuals that are at risk are

left without a source of support. The← R policy, on the other hand, better diversifies com-

munity wealth by producing a more equal wealth distribution. The evolution of inequality

(high Gini coefficient corresponds to high inequality) as well as the wealth distributions

that result from each policy are illustrated in Figure 3.5.

The results of this section are summarized as follows:

1. The← LR policy acts as a cutting-stock optimization heuristic which most efficiently

matches deficits to surpluses; this results in the highest short-term survival rate.

2. The← LR policy leads more individuals having near-threshold wealths, which in-

creases the fraction of the population in need and results in lower long-term survival.
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Figure 3.5: (a) Time evolution of mean Gini coefficients with random asking order and various
giving orders. (b) Wealth probability density functions for RA ← policices at t = 20. Defining
fx(64) the value of the probability density function for the← x giving order at wealth 64, we have
fR(64) = .26, fLR(64) = .56, and fRG(64) = .35. Both figures use post-transfer wealths.

3. The ← R policy avoids placing donors near threshold and diversifies community

wealth with more equal distribution; this results in the highest long-term survival

rates.

These observations inform the hypothesis that perhaps a hybrid transfer policy, which asks

from the least rich only in response to rare major disasters and otherwise asks the richest to

give with priority, could seize the benefits unique to each policy while avoiding their flaws.

Such a hybrid policy was tested on the osotua model from Hao et al. (2015). Figure

3.6 shows the survival rates for our original transfer policies as well as the hybrid policy,

which is defined in the following way: Since individual disasters in Hao et al. (2015) were

generated as a Poisson process, occurring once every ten years on average, in an average

year 10% of the community would be struck by a disaster. The hybrid ← H policy uses

the ← R policy in general, and uses the ← LR policy only when 15% or more of the

community are struck by disaster (a rare disaster-dense year). Figure 3.6 shows that the

osotua model also displays the same short- and long-term behavior as with the volatility
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model. Also, the hybrid policy improves upon the ← R policy and results in the highest

long-term survival rates.
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Figure 3.6: Survival rates for random ask policies (including the hybrid policy RA← H)
for the osotua model of Hao et al. (2015). Networks are Watts-Strogatz with size 100, mean
degree 10, and rewiring probability 0.1. Growth/decay rates are Ri(t) = gi(t)di(t), where
the growth term is sampled from a Gaussian distribution gi(t) ∼ N (.034, .02532), and the
disaster term is generated as a Poisson process occurring for each individual once every ten
simulation rounds on average and is sampled from a Gaussian distribution N (.7, .12).

3.1.3 Optimal Network Topology

In order to investigate the optimal NBT network topology, we simulate sharing net-

works which are small-world Watts-Strogatz networks [Ref: Watts and Strogatz (1998)]

and consider an edge reattachment model in which individuals who lose a member of their

network to non-viability decide to reconnect to another viable member of the community

as a response to increased risk. Not only does this have interesting anthropological impli-

cations, but conducting this reattachment in different ways will allow us to create different

degree distributions and therefore study their impact on the survival of the community.

To isolate the impact of the degree distributions from varying mean degree we allow

only
⌊
K

∑N
i=1 vi(t)−

∑
1≤i,j≤N Xij(t)

2

⌋
reattachments at the end of simulation round t, which is
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approximately the number of edges needed to restore the mean degree of the viable network

to its initial value, K. Each individual who loses a neighbor will be allowed to reattach that

edge to another individual with a probability proportional to the number of neighbors they

lost until the prescribed number of edges have been reattached. After all reattachments

have been conducted, the network will have gone from X(t) to X(t+ 1).

Whom the reattaching individuals connect to is determined according to one of the fol-

lowing reattachment rules: (1) random, (2) preferential: connect to the node with highest

degree, (3) anti-preferential: connect to the node with smallest degree, and (4) richest: con-

nect to the node with greatest wealth. In all cases, the reattachment is to the individual that

best satisfies the rule, is viable, and is not already connected to the node who is reattaching.

All results in this section use the volatility model detailed in Table 3.1 but with the fol-

lowing modifications: (i) the initial networks are Watts-Strogatz networks of mean degree

10 and rewiring coefficient 0.1, (ii) only the RA ← RG transfer policy is considered, and

(iii) the edge reattachments just described are used.
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Figure 3.7: (a) Time evolution of mean survival rates for the RA ← RG transfer policy
and various edge reattachment rules. (b) Time evolution of degree standard deviation.

Figure 3.7 illustrates the following observations:
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1. Anti-preferential reattachment leads to networks that have significantly higher sur-

vival rates than networks using preferential attachment.

2. Degree variance is anti-correlated with survival rate.

We find that preferential edge attachment, coupled with relatively low mean degree,

results in two detrimental extremes: isolated nodes and exhausted nodes. With preferential

reattachment, the recipient of a relocated edge is prioritized to be the available candidate

with highest degree. This results in two phenomena: (i) As high degree nodes are prior-

itized as the recipients of relocated edges, a sort of “the rich get richer” situation occurs

and the result is a few individuals with very high degree while the rest of the population

has considerably lower degree. (ii) Because low degree nodes rarely become the recipient

of a relocated edge, their degree continues to decrease as their partners die and few new

connections are made. So, proverbially, not only do the rich get richer, but also the poor

get poorer (in terms of degree).

In the extreme, if the mean degree of the network is low enough, some individuals can

be left with 0 connections as a result of preferential reattachment and thus become what

we call an isolated node. Neither contributing to any NBT relationship nor benefiting from

one, Hao et al. (2015) determine that such isolated nodes have lower survival rates than

nodes with higher degree.

Exhausted nodes are individuals who are frequently asked to give. Because the prefer-

ential reattachment with low mean degree results in a few individuals with very high degree

and many individuals with low degree, the high degree individuals have many connections

who depend on them and do not have many other sources of aid (note that if the mean

degree of the network is high, the higher degree nodes are less strongly depended on by

their lower degree connections). As a result, the high degree nodes are frequently asked

to give and are consequently unable to accumulate much wealth above threshold. This is
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Figure 3.8: Mean wealth of the entire community and mean wealth of exhausted nodes
(here exhausted nodes are considered as individuals of degree at least 20) using the RA←
RG transfer policy and preferential reattachment rule.

illustrated in Figure 3.8, which shows that for preferential reattachment, individuals with

high degree have lower wealth on average than the community as a whole.

The consequence is that often the exhausted nodes are not left with enough surplus to be

an adequate support for the many connections that depend on them. Thus, while the high

degree nodes are very secure, the survival rates of their connections are low on average,

which results in lower mean survival rates for the preferential policy than with the other

reattachment policies as illustrated in Figure 3.7 (a). The presence of nodes with very high

degree and nodes with low degree results in the high degree variance observed in Figure

3.7 (b).

In contrast, the anti-preferential reattachment policy encourages networks to have ho-

mogeneous degree distribution (with low degree variance), avoiding both isolated nodes

and exhausted nodes. Essentially, the anti-preferential policy effectively diversifies risk by

equally distributing the cost and benefit of participating in an NBT relationship throughout

the network. The consequence is higher survival rates for the anti-preferential policy, as

seen in Figure 3.7 (a).
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3.2 Quasi-equilibrium Model

A natural simulation setup, taken e.g. in Aktipis et al. (2011), Hao et al. (2015), and in

Sections 3.1.2 and 3.1.3, is to start with an initial population and observe the survival rate

of the population as a function of time under the influence of different policies. As we have

shown, such transient models are easy to set up and can lead to interesting insights.

However, such models also have fundamental limitations. With exclusively a death

process, either the population stabilizes and individuals live forever with continually in-

creasing herd sizes, or there is finite-time extinction of the entire population. Extinction

cases result in a general trend of survival rates for all policies going from 1 to 0, and thus in

the time window before extinction, differences in survival can be challenging to observe.

Another consequence is that any process that acts on a timescale longer than the mean life-

time of an agent, will encounter very small agent populations when the process becomes

relevant. The only way to deal with this problem using transient models is to start with

a huge initial agent population and hope to still have a statistically meaningful number of

agents at the time the long-term process becomes relevant. There is a similar challenge in

studying non-autonomous natural wealth/cattle evolution processes.

To study long-term and/or time-dependent control actions we need to have a model

that, at least for a deterministic description, has an economic steady state with total wealth

not increasing to infinity nor decaying to zero. To keep the total wealth finite, we assume

limited resources and hence consider logistic growth for the total wealth of the community.

Specifically, we change the mean value µ of the normal distribution that governs the growth

rates to a time-dependent µ(t) that depends linearly on the total community wealth W (t):

µ(t) = µ0 − µ1W (t),

W (t) =

N(t)∑
i=1

wi(t).
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Note that W (t) is the total wealth (e.g. cattle population) in a community of N(t) mem-

bers (cattle herders). Simply, the larger the total cattle population, the greater competition

for resource and thus the average growth rate decreases; inversely, low cattle populations

means less competition for resource and higher growth rates on average.

To prevent the number of herds from going to zero, we balance the loss of individuals

caused by the viability threshold θd with a birth process, generated through a splitting

mechanism. When an individual has wealth above a splitting threshold θb, this individual

splits his/her wealth, and generates another individual. In general, the wealth splitting

process can be governed again by a policy. To keep things simple, we define that the new

individual takes half of the wealth of the individual that was split. Thus in order to generate

viable new individuals, it should be that θb > 2θd. Beyond this constraint, if θb is small

there will be many individuals with small wealths, and if θb is large, there will be fewer

individuals, but larger average wealths. Similar statements can be made for the choice of

θd.

As a proof of concept for the quasi-equilibrium model we repeat the simulations dis-

cussed in Section 3.1.2. In particular, we study the impact of different giving orders with

an RA ← asking policy. In addition we use the different reattachment policies discussed

in Section 3.1.3 to connect the individuals generated by the splitting process.

Our primary measure of social fitness is mean lifespan:

ML(t) =
N(t)

D(t)
(3.5)

is the reciprocal of the probability of dying in simulation round t. Of particular interest is

the mean lifespan of individuals when the model equilibrates, which we approximate by

averaging ML(t) over 100 rounds after equilibrium is achieved:

ML∞ =
1

100

t∗+100∑
t=t∗

ML(t), (3.6)
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Figure 3.9: Mean lifespan of individuals (defined in Equation 3.5) in the quasi-equilibrium
model with random edge attachment.

where t∗ is visually identified as the time at which equilibrium is achieved.

We find that the statements discerned from the transient simulations have parallel ob-

servations for the quasi-equilibrium model: mean lifespans are largest for the← R policy

and smallest for the ← LR policy. Figure 3.9 with random edge attachment is given as

an example of the evolution and stabilization of the mean lifespan in the quasi-equilibrium

model, and data for each combination of transfer policy and attachment rule are collected

in Table 3.3. Mean lifespan in steady state is consistently larger with anti-preferential at-

tachment and smaller with preferential attachment, which is in harmony with the transient

statements for the network reattachment policies.

For the simulations in this section we use N = 100, ~w(0) = {200}N , θd = 100, θb =

300, µ0 = 1, and µ1 = 5×10−5 and fix the variance to sample the growth/decay ratesRi(t)

from the distribution N (µ(t), .252) for all 1 ≤ i ≤ N(t).
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Random Anti-preferential Preferential

attachment attachment attachment

RA← R 206.7 242.7 23.7

RA← LR 87.4 99.6 21.5

RA← RG 117.9 137.5 22.6
Table 3.3: Mean lifespans for each transfer and reattachment method in steady state of the
quasi-equilibrium model, i.e. ML∞, which is defined in Equation 3.6.
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Chapter 4

KINETIC MODELS OF CONSERVATIVE ECONOMIES WITH WELFARE

THRESHOLDS

In this chapter, we utilize the binary nature of NBTs to model the evolution of the

corresponding wealth distribution using Boltzman-like kinetic equations. We develop such

kinetic exchange models of NBTs in order to (i) compare numerical results from the kinetic

model to observations made in the agent-based studies and contribute new observations,

(ii) control for desirable wealth distributions, and (iii) potentially prove some results in the

integro-differential equation framework.

4.1 Kinetic NBT Model

A brief introduction to kinetic exchange models is given in Section 2.2, where the model

of Bisi et al. (2009), with wealth redistribution via a collisional transfer tax and redistribu-

tion operator is discussed. We develop a kinetic model that conducts wealth redistribution

quite differently. Namely, we seek to model NBTs where a fixed welfare threshold deter-

mines the relative surplus or deficit of each individual and binary transfers deterministically

occur to give from one individual’s surplus to cover the other individual’s need whenever

possible. A microscopic description of NBTs with the welfare threshold θ ∈ R and pre-

trade wealths u, v ∈ R is thus the following:

u∗ = u+H(u+ v − 2θ)
[
(θ − u)H(θ − u)− (θ − v)H(θ − v)

]
v∗ = v +H(u+ v − 2θ)

[
(θ − v)H(θ − v)− (θ − u)H(θ − u)

]
. (4.1)

In Equation (4.1), H is the standard Heaviside step function, and as the rule is invariant

under the permutation v ↔ u, v∗ ↔ u∗, it allows for the assumption of statistical inde-

pendence for many identical individuals. Essentially, the rule determines that wealths will
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change only if there is enough total wealth for both individuals to be at or above threshold

after the transfer. Then, if there is enough total wealth for a transfer to occur, and if one

individual has need, the individual with surplus gives from his/her surplus whatever the

deficit of the needy individual is.

If we assume that collisions occur at rate 1 and consider f(w, t) as the relative density

of individuals with wealth w ∈ R at time t ≥ 0, the Boltzmann-like wealth distribution

evolution equation corresponding to the microscopic transfers described in Equation (4.1)

is:

∂tf(w, t) =

∫ θ

−∞

∫ ∞
2θ−u

[
− δ(w − u)− δ(w − v) + δ(w − θ) + δ(w − u− v + θ)

]
× f(v, t)f(u, t) dv du, (4.2)

Note that here wealth is allowed to be negative; this may be understood as individuals

having debt.

Equation (4.2) can be understood as u denoting the wealth of a below-threshold indi-

vidual and v denoting the wealth of a donor (individual with enough surplus to cover the

deficit θ − u and still be above threshold, i.e. v > 2θ − u). Thus, when these individuals

interact, there are density losses (sinks) at their pre-trade wealths u, v and density gains

(sources) at their post-trade wealths, u∗ = θ and v∗ = v − (θ − u).

In Equation (4.2), the interactions occur at rates proportional to the relative densities

of individuals with wealths u and v, i.e. one can think of individuals being selected uni-

formly at random from the wealth distribution and paired. Hence, (4.2) is a model for the

RA ← RG policy where no preference is considered in how below- and above-threshold

individuals are paired. Interactions in this kinetic model are thus naturally more analogous

to colliding gas particles than the organized matchings of policies like P ← LR discussed

in Section 3.1.2.
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Integrating (4.2) with a well-behaved test function φ(w) gives the weak form of the

Boltzmann equation:∫ ∞
−∞

φ(w)∂tf(w, t) dw =

∫ θ

−∞

∫ ∞
2θ−u

[
− φ(u)− φ(v) + φ(θ) + φ(u+ v − θ)

]
× f(v, t)f(u, t) dv du. (4.3)

In particular, we are interested in the evolution of the n-th moments, which are obtained by

integrating (4.2) with φ(w) = (w − θ)n:

Mn(t) :=

∫ ∞
−∞

(w − θ)nf(w, t)dw. (4.4)

These moments are not central moments in that θ is not necessarily the mean wealth; how-

ever, since θ is central in determining the shape of our wealth distributions, it will be ad-

vantageous to examine moments about the threshold θ rather than the mean wealth.

Lemma 1. For f(w, t) satisfying (4.2), the n-th moment of f evolves as follows:

d

dt
Mn(t) =

∫ 0

−∞

∫ ∞
−y

[−yn − xn + 0n + (x+ y)n]f(x+ θ, t)f(y + θ, t)dx dy (4.5)

Proof.

d

dt
Mn(t)

(4.4)
=

d

dt

∫ ∞
−∞

(w − θ)nf(w, t)dw

=

∫ ∞
−∞

(w − θ)n∂tf(w, t)dw

(4.3)
=

∫ θ

−∞

∫ ∞
2θ−u

[
− (u− θ)n − (v − θ)n + (θ − θ)n + (u+ v − 2θ)n

]
f(v, t)f(u, t) dv du

=

∫ θ

−∞

∫ ∞
θ−u

[
− (u− θ)n − xn + 0n + (u+ x− θ)n

]
f(x+ θ, t)f(u, t)dx du

=

∫ 0

−∞

∫ ∞
−y

[
− yn − xn + 0n + (x+ y)n

]
f(x+ θ, t)f(y + θ, t)dx dy

Lemma 2. Let f(w, t) evolve according to Equation (4.2) and have initial condition f(w, 0) =

f0(w), a probability density. Then,
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(i) M0(t) = 1 is constant.

(ii) M1(t) = M1(0) is constant.

(iii) M2(t) is non-increasing.

(iv) M3(t) is non-increasing.

Proof. The following results utilize Equation (4.5):

(i) d
dt
M0(t) =

∫ 0

−∞

∫∞
−y

[
− 1− 1 + 1 + 1

]
f(x+ θ, t)f(y + θ, t)dx dy = 0. Thus M0(t)

is constant and M0(t) = M0(0) = 1 since f0(w) is a probability density.

(ii) d
dt
M1(t) =

∫ 0

−∞

∫∞
−y

[
− x− y + 0 + (x+ y)

]
f(x+ θ, t)f(y + θ, t)dx dy = 0. Thus,

M1(t) is constant andM1(t) = M1(0) is finite for realistic initial wealth distributions.

(iii)

d

dt
M2(t) =

∫ 0

−∞

∫ ∞
−y

[
− x2 − y2 + 0 + (x+ y)2

]
f(x+ θ, t)f(y + θ, t)dx dy

=

∫ 0

−∞

∫ ∞
−y

2xyf(x+ θ, t)f(y + θ, t)dx dy

≤ 0.

The inequality is a result of f having only non-negative values, and in the last integral

y ≤ 0 and x ≥ −y ≥ 0, so the integrand is non-positive. Hence, M2(t) is non-

increasing.

(iv)

d

dt
M3(t) =

∫ 0

−∞

∫ ∞
−y

[
− x3 − y3 + 0 + (x+ y)3

]
f(x+ θ, t)f(y + θ, t)dx dy

=

∫ 0

−∞

∫ ∞
−y

3xy(x+ y)f(x+ θ, t)f(y + θ, t)dx dy

≤ 0.
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The inequality here is a result of f ≥ 0, y ≤ 0 and x ≥ −y ⇒ (x + y) ≥ 0. Thus,

since d
dt
M3(t) ≤ 0, M3(t) is non-increasing.

The significance of Lemma 2(i) is that f remains a probability density. Lemma 2(ii)

states that the mean wealth is conserved for model (4.2), and in combination with Lemma

2(i) determines that total wealth is also conserved for this model. Lemma 2(iii) finds the

second moment to be non-increasing, which intuitively makes sense as transfers naturally

bring wealths more central, i.e. the distance between two agents’ wealths decreases in a

transfer with all wealths coming closer to θ. d
dt
M3(t) ≤ 0 means that we expect the left tail

to be getting fatter than the right tail. This is also intuitive as individuals to the far left have

very few who can help them though individuals to the far right can help many.

By observing that d
dt
M0(t) = d

dt
M1(t) = 0, we equivalently notice that φ(w) = 1 and

φ(w) = w are collision invariants, i.e. these test functions result in the collisional term on

the right hand side of Equation (4.3) being equal to 0. Actually, linear functions are the

only collision invariants for (4.3).

Lemma 3. The only collision invariants for (4.3) are of the form φ(w) = aw + b, where

a, b ∈ R.

Proof. From Equation (4.3), collision invariants are functions φ such that [−φ(u)−φ(v) +

φ(θ) + φ(u + v − θ)] = 0. Taking the derivative of this expression with respect to u gives

that φ′(u) = φ′(u + v − θ). Since v can vary in the argument of φ′(u + v − θ), it must be

that φ′ is constant and therefore φ is linear: φ(w) = aw + b where a, b ∈ R.

Lemma 4. Steady state, f∞ for Equation (4.2) takes one of the following forms (note that

supp(f) means the support of f ):

(i) No individuals with surplus: supp(f∞) ⊆ (−∞, θ]
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(ii) No individuals with deficit: supp(f∞) ⊆ [θ,∞)

(iii) Individuals with deficit and surplus but no individuals with enough surplus to match

the deficits of below-threshold individuals: max{supp(f∞)} ∈ (θ,∞) and
(
θ −

max{supp(f∞) ∩ (−∞, θ)}
)
>
(

max{supp(f∞)} − θ
)

Proof. Recall Equation (4.2):

∂tf(w, t) =

∫ θ

−∞

∫ ∞
2θ−u

[
− δ(w − u)− δ(w − v) + δ(w − θ) + δ(w − u− v + θ)

]
sss× f(v, t)f(u, t) dv du.

∂tf(w, t) = 0 when the product f(v, t)f(u, t) = 0 for all u ∈ (−∞, θ), v ∈ (2θ − u,∞).

(i) Since f∞(v) = 0 for all v > θ, f∞(v) = 0 for all v such that u ∈ (−∞, θ) and

v ∈ (2θ − u,∞) ⊂ (θ,∞). Hence, the product in the integrand is 0 and so is the

entire right hand side of (4.2).

(ii) Since f∞(u) = 0 for all u < θ, the right hand side of (4.2) is 0.

(iii) For this case, supp(f∞) ∩ (2θ − u,∞) = ∅ for all u ∈ supp(f∞) ∩ (−∞, θ) and so

the integrand of (4.2) is 0.

Any case where there are individuals above threshold and below threshold but (iii) is not

satisfied necessarily has that there exists some open interval about u ∈ supp(f∞)∩(−∞, θ)

such that supp(f∞)∩ (2θ−u,∞) contains an open interval where f(v, t)f(u, t) is nonzero

and so ∂tf(w, t) 6= 0 and steady state has not been reached.

Contextually, Lemma 4(iii) says that if the richest individual’s surplus is less in magni-

tude than the least poor individual’s deficit then no one is eligible for a binary transfer and

thus the wealth distribution ceases to change. Figure 4.1 illustrates simple examples of the

different types of steady state identified in Lemma 4.
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Figure 4.1: Simple examples of the different cases of steady states for Equation (4.2)
mentioned in Lemma 4 where θ = 0; the area under the probability density curve is shaded
for visibility.

Figure 4.2 illustrates the evolution of the wealth distribution and moments according to

Equation (4.2) for a few different initial wealth distributions. We observe steady states of

type (ii) for both the Normal and Gamma initial conditions, and steady state of type (iii)

for the Uniform initial condition. Also, in agreement with Lemma 2, the second and third

moments decrease and then level off as steady state is being reached.

It is apt to comment that while steady state for (4.2) is useful for informing how NBTs

impact the wealth distribution, there is currently no natural wealth evolution process in the

model. In Section 4.4 we will begin to examine natural wealth evolution by considering

wealths to diffuse according to a random walk. Yet, while conceptually we understand that

natural wealth evolution and NBT redistribution occur simultaneously, e.g. vampire bats
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Figure 4.2: (a) A few different initial wealth distributions with M1 = 14 that when evolv-
ing according to Equation (4.2) with θ = 0 reach steady states in (b). The second and third
moment evolutions are shown in (c) and (d) respectively.
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digesting, foraging, and sharing on similar timescales, we are at the moment investigating

just NBT redistribution detached from a natural evolution process.

4.2 Kinetic NBT Policies

As relating to the transfer policies discussed in Section 3.1.2, Equation (4.2) is a model

for the RA ← RG policy where there is no preference or order given to who ask and who

donate. Like gas particles, the kinetic exchange model considers individuals to interact

simply at rates proportional to the product of their probability densities, i.e. uniformly at

random. However, we are still interested in investigating regressive to progressive transfer

policies in the kinetic framework to validate some of the agent-based results and extend our

observations.

We first define an exact-match kinetic NBT. Essentially, we fix not only a recipient

threshold, θ ∈ R, but also a donor threshold, θ + ε0 where ε0 ≥ 0 is not necessarily

small, such that a transfer will occur only if the exchange will cause an individual with

wealth below θ to end with wealth θ and an individual with wealth above θ + ε0 to end

with exactly θ + ε0 as a result of the transfer. Hence, the microscopic description of the

exact-match kinetic NBT model, given θ, ε0, is

v∗ = v + δ(v + w − 2θ − ε0)
[
(θ − v)H(θ − v)− (θ − w)H(θ − w)

]
w∗ = w + δ(v + w − 2θ − ε0)

[
(θ − w)H(θ − w)− (θ − v)H(θ − v)

]
, (4.6)

and the macroscopic kinetic equation is

∂tf(w, t) =

∫ θ

−∞

[
− δ(w − u)− δ(w + u− ε0 − θ) + δ(w − θ) + δ(w − θ − ε0)

]
× f(ε0 + θ − u, t)f(u, t) du. (4.7)
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Lemma 5. Given f(w, t) has initial condition f0(w) = f(w, 0) and evolves according to

Equation (4.7), the steady state is given by:

f∞(w) = f0(w)− [H(θ − w) +H(w − θ − ε0)] min{f0(w), f0(2θ + ε0 − w)}

+ δ(w − θ)
∫ θ

−∞
min{f0(v), f0(2θ + ε0 − v)}dv

+ δ(w − θ − ε0)
∫ ∞
θ+ε0

min{f0(v), f0(2θ + ε0 − v)}dv,

Proof. Since the model restricts transfers to exact symmetric matches across respective re-

cipient donor thresholds, f simply evolves by equally decreasing matching (across respec-

tive thresholds) densities and sending that mass to the thresholds; steady state is reached

when one of the matching densities reaches 0 in the limit.

Figure 4.3 provides an example of how an initial wealth distribution evolves according

to exact match redistribution (4.7), and illustrates the steady state.

Choosing a donor threshold θ + ε0 automatically guarantees that no individuals with

wealth below that threshold will be able to give. Thus, a higher donor threshold (larger

ε0) corresponds to only wealthier individuals being able to give. In this sense, exact-match

transfers with large donor thresholds can be considered as describing more progressive

wealth redistribution than policies with smaller donor thresholds. We utilize this exact

match structure to develop NBT policies that incorporate what we call donor preference.

Fixing a donor threshold θ+ ε0 determines that potential donors will only give if doing

so causes their post transfer wealth to be exactly θ + ε0. What we consider now is that

donors do not have a necessary specific terminal wealth, but instead a varying preference

for a range of post transfer wealths. Thus, we assume the existence of a probability density

function p such that p(ε0)dε is the probability a donor threshold will be selected between

θ + ε0 and θ + ε0 + dε. Hence, the donor preference, or transfer policy is defined by p and
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Figure 4.3: Numerical steady state solution to Equation (4.7) as well as analytical steady
state solution from Lemma 5 with initial condition f0(w) a Normal distribution N (µ =
10, σ2 = 202) and parameters θ = 0, ε0 = 10.

the corresponding wealth evolution equation is

∂tf(w, t) =

∫ ∞
0

p(ε)

∫ θ

−∞

[
− δ(w−u)− δ(w+u− ε− 2θ) + δ(w− θ) + δ(w− θ− ε)

]
× f(ε+ θ − u, t)f(u, t) du dε. (4.8)

Definition 1 (Kinetic policies). For numerical results, we assume some maximal surplus

L > 0 and define a parameterized probability density function pα : [0, L)→ (0,∞) as

pα(ε) =

(
α

eαL − 1

)
eαε.

The policies we will focus on are then defined by their respective α values:

(a) progressive policy: α = 0.05

(b) flat policy: α = 0
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Figure 4.4: Probability densities for probability of choosing donor threshold θ + ε for re-
gressive, flat, and progressive policies with θ = 0 and maximal wealth L = 100. The
equation for these parameterized donor threshold probability distributions is given in Defi-
nition 1.

(c) regressive policy: α = −0.05.

pα for these policies is illustrated in Figure 4.4, where L = 100.

Lemma 6. The flat policy kinetic equation (Equation (4.8), Def. 1) is equivalent to the

random interaction kinetic NBT model (4.2), but with interaction rate 1
L

.

Proof. Assume maximal surplus L > 0, and consider the flat policy p(ε) = 1
L

. We will

show that the right hand side of (4.8) for the flat policy is a constant multiple of the right

hand side of (4.2).

∫ ∞
0

p(ε)

∫ θ

−∞

[
−δ(w−u)−δ(w+u−ε−2θ)+δ(w−θ)+δ(w−θ−ε)

]
f(ε+θ−u, t)f(u, t) du dε

=
1

L

∫ θ

−∞

∫ ∞
0

[
−δ(w−u)−δ(w+u−ε−2θ)+δ(w−θ)+δ(w−θ−ε)

]
f(ε+θ−u, t)f(u, t) dε du

=
1

L

∫ θ

−∞

∫ ∞
2θ−u

[
−δ(w−u)−δ(w−v)+δ(w−θ)+δ(w−u−v+θ)

]
f(v, t)f(u, t) dv du
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Figure 4.5: Flat policy comparison with agent-based simulation. A gamma initial condi-
tion is used for f0(w) and 104 agents are sampled from this distribution as well. Equation
(4.8) is used with α = 0 to find the steady state solution of the Boltzmann-like equation; for
the agents, interactions are randomly generated and transfers are conducted according to
the microscopic description of equation (4.1) until all 104 agents are at or above threshold.

As illustrated in Lemma 6, the flat policy (α = 0) indicates no distinct preference for

donor threshold and thus corresponds to the microscopic description of the random interac-

tion kinetic NBT model of Equation (4.1). Figure 4.5 shows a comparison of the numerical

steady state solution of the flat policy kinetic IDE and the wealth distribution resulting

from agent-based simulation using the microscopic description of equation (4.1); the ini-

tial wealth distribution was chosen to be gamma, which is considered to be qualitatively

realistic for natural wealth distributions [Refs: Angle (1986); Chakrabarti et al. (2013)].

For numerical experiments, θ = 0 is considered and two different initial conditions

are used: (i) gamma distribution and (ii) uniform distribution. Again, the gamma distribu-

tion is chosen as qualitatively representative of naturally observed wealth distributions; the

uniform distribution is chosen because it allows for comparability of effectiveness of each

policy in meeting the needs of below-threshold individuals.

For all results in Figures 4.6 and 4.7, ‘steady state’ is considered to have been reached

at time T such that ||f(w, T ) − f(w, T − ∆t)||2 < 10−5; in the tables, T is rescaled by
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the minimum T value for comparability. ∆t = 1 is used for simulations. Population

below threshold is found as
∫ 0

−∞ f(w, T ) dw for Figure 4.7 and is considered essentially 0

for Figure 4.6. Gini index, a measure of wealth inequality introduced in Section 3.1.1 is

defined in Definition 2; smaller Gini index corresponds to less inequality.

Definition 2 (Gini index). Gini index G for the viable population (individuals with wealth

above threshold) is calculated as G = 1− 2A, where A is the area under the Lorenz curve

(x(r), y(r)). x(r) and y(r) are defined as follows:

x(r) =

∫ r
θ
f(s)ds∫∞

θ
f(s)ds

, y(r) =

∫ r
θ

(s− θ)f(s)ds∫∞
θ

(s− θ)f(s)ds

as r takes values from θ to the maximal wealth.

Observation 1. Recalling that decreasing α corresponds to making the policy more re-

gressive, the following numerical observations are inspired by Figures 4.6 and 4.7: As α

decreases,

(i) The Gini index increases (more inequality)

(ii) The convergence rate increases

(iii) The fraction of the population below threshold at steady state decreases

In Figure 4.6 and Figure 4.7, the steady state distributions of each policy are qualita-

tively, and in terms of inequality, predictable or reinforce the regressive/progressive natures

of the policies. As expected, a more regressive policy (lower α) results in greater inequality

(higher Gini index).

Also, the rate of convergence for the regressive policy is greater than for the progressive

policy. For example, with the Gamma initial condition (Figure 4.6), the progressive policy

took 71 times as long as the regressive policy to reach a state where the change in f was
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Figure 4.6: Steady state distributions and data for parameterized kinetic NBT policies with
initial condition f0(w) ∼ Gamma.

less than 10−5. This is a new observation with respect to the work of Aktipis et al. (2011,

2016) and Hao et al. (2015), but intuitively makes sense as the higher donor thresholds

preferred in the progressive model reduce the number of potential donors, making it harder

for below-threshold individuals to find a donor.

Figure 4.7 echoes an observation made in Section 3.1.2, where regressive transfers were

found to be a sort of cutting-stock optimization heuristic [Ref: Wäscher and Gau (1996)]

for best matching all of the deficits to surpluses. We see that here also the regressive policy

results in more individuals above threshold in steady state than the other policies. Essen-

tially, by allowing individuals with small surplus to give more frequently, the regressive
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policy utilizes small surpluses to cover small needs while reserving larger surpluses for

larger needs.

4.3 Control of NBTs

In the kinetic NBT policy model (4.8), p(ε) may be considered not to be a fixed dis-

tribution of donor thresholds, but rather a time-varying prioritization of donor thresholds,

p(ε, t) that could be considered as a control. As such, we define a few natural optimal

control problems to consider in Definition 3.
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Definition 3 (Control problems). Subject to f(w, t) evolving according to (4.8), initial con-

dition f0(w) = f(w, 0), and the control p(ε, t) a probability, the following are contextually

natural optimal control problems to consider:

(a) Given T > 0, minimize
∫ θ
−∞ f(w, T )dw.

(b) Minimize d
dt

∫ θ
−∞ f(w, t)dw.

(c) Minimize d
dt

∫ θ
−∞wf(w, t)dw.

Problem (a) set’s an end time for transfers and attempts to choose p(ε, t) throughout that

time interval to minimize the terminal number of individuals below threshold. Problem

(b) seeks at any time t to identify p(ε, t) that reduces the number of individuals below

threshold as quickly as possible. Problem (c) has the goal of reducing the deficit (total

below-threshold wealth) as quickly as possible.

Lemma 7. Let f(w, t) evolve according to (4.8), and consider policies of the form p(ε, t) =

δ(ε− ε0(t)).

• The solution to the control problem of Definition 3 (b) is achieved by

ε0(t) = argminε≥0

{
−
∫ θ

−∞
f(w, t)f(2θ + ε− w, t) dw

}
. (4.9)

• The solution to the control problem of Definition 3 (c) is achieved by

ε0(t) = argminε≥0

{
−
∫ θ

−∞
wf(w, t)f(2θ + ε− w, t) dw

}
. (4.10)

Proof. • For control problem (b),

d

dt

∫ θ

−∞
f(w, t)dw

(4.8)
= −

∫ ∞
0

∫ θ

−∞
p(ε, t)f(w, t)f(2θ + ε− w, t) dw dε

= −
∫ ∞
0

∫ θ

−∞
δ(ε− ε0(t))f(w, t)f(2θ + ε− w, t) dw dε

= −
∫ θ

−∞
f(w, t)f(2θ + ε0(t)− w, t) dw
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• For control problem (c),

d

dt

∫ θ

−∞
wf(w, t)dw

(4.8)
= −

∫ ∞
0

∫ θ

−∞
p(ε, t)wf(w, t)f(2θ + ε− w, t) dw dε

= −
∫ ∞
0

∫ θ

−∞
δ(ε− ε0(t))wf(w, t)f(2θ + ε− w, t) dw dε

= −
∫ θ

−∞
wf(w)f(2θ + ε0(t)− w, t) dw

Figure 4.8 illustrates how the optimal control policy corresponding to Definition 3 (b)

impacts the wealth distribution in comparison to the previously discussed policies. One

may observe that the above-threshold wealth distribution in Figure 4.8 appears to have

approached a uniform distribution. This absolutely makes sense, because the rate at which

successful transfers occur in Equation (4.9) is proportional to the product of the densities of

potential matches. Thus, ensuring the most successful matches means targeting the highest

densities of donors.

This is interesting because in the agent-based studies, transfers were conducted in-

stantly in a single simulation round without any consideration for time limitations of ar-

ranging such matches. The control policy corresponding to (4.9) focuses directly on the

time limitations of below-threshold individuals meeting donors in a random interaction

environment.

4.4 Kinetic NBT with Diffusion

Here, we consider diffusion to model the natural evolution of wealths, that individ-

uals’ wealths increase and decrease by random additive amounts over time. This may

be true of the majority of the population of modern societies [Ref: Silva and Yakovenko

(2004)]. Multiplicative diffusion would model the evolution of wealth for the top 5%, but

adding geometric Brownian motion would not conserve wealth, which is something that
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Figure 4.8: Wealth distributions at t = 200 for various policies. The notation used in the
legend is such that fbp: 0.2918 means that for the progressive policy (p), the fraction of the
population below threshold (fbp) is equal to 0.2918. The initial condition is chosen to be a
Gamma distribution. fbo identifies the optimal policy corresponding to (4.9).

we would like to do. So, let’s now consider the following kinetic model where D > 0 and

Q(f, f)(w, t) is the kinetic NBT interaction operator from the right hand side of Equation

(4.2):

∂tf(w, t) = Q(f, f)(w, t) +D∂2wf(w, t) (4.11)

Lemma 8. Let f evolving according to (4.11) and f0(w) a probability density. With reason-

able assumptions about the end behavior of f , we have the following observations related

to the moments of f :

(i) M0(t) = 1 is constant.

(ii) M1(t) = M1(0) is constant.

(iii) d
dt
M2(t) = S2(f, f)(t) + 2D where S2 is non-positive.
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(iv) d
dt
M3(t) = S3(f, f)(t) + 6D(M1 − θ), where S3 is non-positive.

Proof. From Lemma 2, we already know the moment evolutions corresponding to the in-

teraction operator Q; what remains is to examine the moment evolutions corresponding to

the diffusion term. Well,

∫ ∞
−∞

(w − θ)0∂2wf(w, t)dw = lim
z→∞

[∂wf(z, t)]z−z

= 0∫ ∞
−∞

(w − θ)1∂2wf(w, t)dw =

∫ ∞
−∞

w∂2wf(w, t)dw − θ
∫ ∞
−∞

(w − θ)0∂2wf(w, t)dw

=

∫ ∞
−∞

w∂2wf(w, t)dw − 0

= lim
z→∞

[w∂wf(w, t)− f(w, t)]z−z

= 0∫ ∞
−∞

(w − θ)2∂2wf(w, t)dw =

∫
w2∂2wf − 2θ

∫
w∂2wf + θ2

∫
∂2wf

=

∫
w2∂2wf − 0 + 0

= w2∂wf − 2

∫
w∂wf

= lim
z→∞

[
w2∂wf − 2wf + 2

∫
f

]z
−z

= 0− 0 + 2∫ ∞
−∞

(w − θ)3∂2wf(w, t)dw =

∫
w3∂2wf − 3θ

∫
w2∂2wf + 3θ2

∫
w∂2wf − θ3

∫
∂2wf

=

∫
w3∂2wf − 6θ + 0− 0

= lim
z→∞

[
w2∂wf − 3w2f + 6

∫
wf

]z
−z
− 6θ

= 0− 0 + 6M1 − 6θ,
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where assuming f decays at least quadratically, e.g. f ∝ w−2−α, α > 0, allows for the

limiting behavior terms to equal 0.

Combining this with the proof of Lemma 2 gives

(i) d
dt
M0(t) = 0 + 0, and so M0 = 1 is constant.

(ii) d
dt
M1(t) = 0 + 0, so M1(t) = M1(0) is constant.

(iii) d
dt
M2(t) = S2(f, f)(t) + 2D where S2 is the non-positive expression from Lemma

2(iii).

(iv) d
dt
M3(t) = S3(f, f)(t) + 6D(M1− θ), where S3 is the non-positive expression from

Lemma 2(iv).

Conjecture 1. For the model (4.11),

(a) In Lemma 8 (iii), d
dt
M2(t) eventually approaches a positive constant.

(b) In Lemma 8 (iv), d
dt
M3(t) eventually approaches a negative constant.

(c) A large open set of initial distributions f0(w) are attracted to some manifold. The

attraction happens on a fast timescale and the manifold evolves to a flat manifold on

a diffusive timescale in a non-symmetric way.

Evidence:

(a) From Lemma 8 (iii), we know that d
dt
M2(t) = S2(f, f)(t) + 2D where S2 is non-

positive. From numerical simulation in Figure 4.9 (c), M2(t) appears to become

linear with positive slope. It makes sense that S2(f, f)(t), which gives the reduction
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in variance resulting from matches coming closer to threshold, will approach a neg-

ative constant of lesser magnitude than 2D such that d
dt
M2(t) approaches a positive

constant.

(b) From Lemma 8 (iv), we know that d
dt
M3(t) = S3(f, f)(t)+6D(M1−θ), where S3 is

non-positive. From numerical simulation in Figure 4.9 (d), M3(t) appears to become

linear with negative slope. It makes sense that S3(f, f)(t), which gives the increase

in left skew resulting from individuals diffusing to the left who have difficulty finding

matches, will approach a negative constant of greater magnitude than 6D(M1 − θ)

such that d
dt
M3(t) approaches a negative constant.

(c) From Figure 4.9 (a) and (b), we see that qualitatively different initial conditions con-

verge to the same curve. In simulations this occurs relatively quickly compared to the

very slow decay of that manifold. The asymmetric decay occurs as diffusion pushes

mass to the left that is not matched with a transfer as quickly as mass diffused to the

right. Thus, the tail to the left gets fatter as mass escapes to the left more quickly

than matches can be generated to the right.

63



-100 0 100 200

w

0

0.005

0.01

0.015

0.02

f 0
(w

)
Normal

Gamma

Uniform

(a) f0(w)

-100 0 100 200

w

0

0.005

0.01

0.015

f(
w

,4
0
0
0
)

Normal

Gamma

Uniform

(b) f(w, 4000)

0 5 10 15 20 25

t

0

1000

2000

3000

4000

5000

M
2
(t

)

Normal

Gamma

Uniform

(c) M2(t)

0 5 10 15 20 25

t

-1

0

1

2

M
3
(t

)

10
5

Normal

Gamma

Uniform

(d) M3(t)

Figure 4.9: (a) A few different initial wealth distributions with M1 = 14, that when evolv-
ing according to Equation (4.11) with θ = 0 approach an attractor manifold (b). Note that
three curves are present in (b), but they are overlapping. The second and third moment
evolutions are shown in (c) and (d) respectively.

4.5 Central Redistribution Model

In order to compare NBT redistribution to more conventional central wealth redistri-

bution, we develop a central redistribution model with an ODE that describes the amount

of money in the welfare budget B and a kinetic equation which describes the taxation and

welfare distribution. Here, individuals above threshold pay taxes into the welfare budget

and from that budget, poor individuals’ needs are met.
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Trying to keep the model somewhat general, we say that the tax collector will take

T (f, w) dollars from an individual with wealth w > θ at rate λ1(B, f), and give θ−w to a

person with wealth w < θ at rate λ2(B, f). Again, B is the amount of money in the welfare

budget. We assume that T (f, w) ≤ (w − θ) such that an individual may not be taxed to be

brought below threshold. We then have the following system:

d

dt
B = λ1(B, f)

∫ ∞
θ

T (f, w)f(w)dw − λ2(B, f)

∫ θ

−∞
(θ − w)f(w)dw

∂tf(w) = λ1(B, f)H(w − θ)
(
− f(w) +

∫ ∞
w

δ(w′ − T (f, w′)− w)f(w′)dw′
)

+ δ(w − θ)λ2(B, f)

∫ θ

−∞
f(w′)dw′ −H(θ − w)λ2(B, f)f(w) (4.12)

Lemma 9. For system (4.12), the population and total wealth are conserved.

Proof. Integrating the kinetic equation of (4.12) with respect to w, we observe

d

dt

∫ ∞
−∞

f(w, t)dw =

∫ ∞
−∞

∂tf(w, t)dw

= −λ1
∫ ∞
θ

f(w, t)dw + λ1

∫ ∞
θ

∫ ∞
w

δ(w′ − T (f, w′)− w)f(w′)dw′ dw

+ λ2

∫ θ

−∞
f(w′, t)dw′ − λ2

∫ θ

−∞
f(w)dw

= −λ1
∫ ∞
θ

f(w, t)dw + λ1

∫ ∞
θ

∫ w′

θ

δ(w′ − T (f, w′)− w)f(w′)dw dw′

= −λ1
∫ ∞
θ

f(w, t)dw + λ1

∫ ∞
θ

f(w, t)dw

= 0.
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Hence,
∫∞
−∞ f(w, t)dw is constant, i.e. the total population remains constant in time. For

total wealth to be conserved, we need that d
dt

∫∞
−∞wf(w, t)dw + d

dt
B = 0. Well,

d

dt

∫ ∞
−∞

wf(w, t)dw =

∫ ∞
−∞

w∂tf(w, t)dw

= −λ1
∫ ∞
θ

wf(w, t)dw + λ1

∫ ∞
θ

∫ ∞
w

wδ(w′ − T (f, w′)− w)f(w′)dw′ dw

+ λ2

∫ ∞
−∞

δ(w − θ)w
∫ θ

−∞
f(w′, t)dw′ dw − λ2

∫ θ

−∞
wf(w)dw

= −λ1
∫ ∞
θ

wf(w, t)dw + λ1

∫ ∞
θ

∫ w′

θ

wδ(w′ − T (f, w′)− w)f(w′)dw dw′

+ λ2

∫ θ

−∞
θf(w′)dw′ − λ2

∫ θ

−∞
wf(w)dw

= −λ1
∫ ∞
θ

wf(w, t)dw + λ1

∫ ∞
θ

(w′ − T (f, w′))f(w′)dw′

+ λ2

∫ θ

−∞
(θ − w)f(w)dw

= −λ1(B, f)

∫ ∞
θ

T (f, w)f(w, t)dw + λ2

∫ θ

−∞
(θ − w)f(w)dw

= − d

dt
B

A major difference with this redistribution model as opposed to NBT is that many more

individuals can receive help. Since the tax money is pooled to be given to needy individuals

rather than asked for from a single individual, it is much more likely that the budget will

have enough funds to help an individual far below threshold than it is that any one individual

could meet that need.

Central redistribution example: Flat Tax Model A simple example of choices for

T, λ1, λ2 in (4.12) is the following:

• T (f, w) = rw, r ∈ (0, 1) (a flat tax)
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Figure 4.10: Steady state solutions of (4.12) for the Flat Tax Model with uniform and
gamma initial conditions. The initial budget is B0 = 10, and the size of the budget in
steady state is identified as B∞.

• λ1(B, f) = −
∫ 0

−∞wf(w, t)dw

• λ2(B, f) = B.

Note that these choices are sensible for (4.12) in that they satisfy the following:

• T (f, w) ≤ w, i.e. an individual is not taxed so much as to make their post-tax wealth

below threshold.

• λ1(B, f)→ 0 as
∫ 0

−∞wf(w, t)dw → 0, i.e. taxation is reduced to a stop as the deficit

reduces to 0.

• λ2(B, f) → 0 as B → 0, i.e. the rate at which aid is given to below-threshold

individuals reduces to 0 as funds in the budget reduce to 0.

Figure 4.10 shows the initial condition and steady state solution for the wealth distribution

that results when f and B evolve according to the Flat Tax Model of (4.12).
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Chapter 5

SURVIVOR’S DILEMMA IN VOLATILE ENVIRONMENTS

In this chapter we examine the viability of socioeconomic cooperation with reciprocal

gift giving practices like NBTs from a game theoretic perspective. Because participating in

such a relationship involves a cost (sharing your surplus when another individual has need)

and a benefit (receiving from a partner’s surplus when you are in need), there may be a

temptation to cheat. This may take the form of under-representing surplus in order to not

give support when requested, over-representing need in order to grow one’s surplus, or not

putting effort into maintaining one’s own viability so that a cooperative partner has to bear

the load.

Thus, we consider that an individual has a choice, to cooperate (C) or defect (D), where

cooperation in a risk pool has a benefit b, but also a cost c; cheating in this case would be

when a player defects against a cooperative partner, i.e. they get the benefit of a cooperative

partner, but aren’t contributing anything or incurring any cost.

In volatile environments, especially where decisions to cooperate or not are life-and-

death decisions that occur on a much shorter timescale than reproduction, the benefit and

cost of cooperation should be interpreted as increasing or decreasing survival probability

rather than additively increasing or decreasing some bank account that will later competi-

tively determine reproductive fitness. Thus, as described in Section 2.3, the types of coop-

eration we consider are survivor’s games.

5.1 2-Player Repeated Survivor’s Dilemma

Definition 4 (2-Player Survivor’s Dilemma). Let β ∈ (0, 1), be an individual’s survival

probability per unit time in isolation. Let b ∈ (0, 1 − β) be the contribution to survival
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that a cooperative partner imparts, and c ∈ (0,min{b, β}) be the cost of cooperating

in a reciprocal gift giving risk pool. Then, where C represents the strategy to cooperate

and D represents the strategy to defect, payoffs (as survival probabilities) of the 2-player

Survivor’s Dilemma are as follows:

Player 2

C D Player 1 C wR = β + b− c wS = β − c

D wT = β + b wP = β

.

. (5.1)

In (5.1), only Player 1’s survival probabilities are shown, and in a notation that main-

tains intuitive connection to the “shadow of the future” continued interaction probability w

[Ref: Axelrod et al. (1988)] and the prisoner’s dilemma notation of Rapoport and Chammah

(1965) (R, S, T, P ). Since the game is symmetric, one understands that, for example, if

Player 1 cooperates and Player 2 defects, Player 2’s survival rate is the temptation payoff

wT = β + b.

The following observations about the parameter space and payoffs of (5.1) are impor-

tant:

(i) For the given assumptions about the parameter space, β ∈ (0, 1), b ∈ (0, 1− β), c ∈

(0,min{b, β}), each payoff remains a probability, i.e. a value between 0 and 1.

(ii) It is reasonable to consider that participating in a cooperative relationship results in

a greater benefit than cost (b > c) because a life-saving gift from one individual’s

surplus should be worth more to the rescued recipient than the donor who provides

it from their surplus. For the vampire bats it is additionally true that time until star-

vation increases more when an amount of food is added to an empty stomach than
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when that same amount is added to a full stomach [Ref: Wilkinson (1984)]. The

benefits of cooperation among the Maasai have also been illustrated [Refs: Aktipis

et al. (2011); Hao et al. (2015)].

(iii) wT > wR > wP > wS , so the game is indeed of the prisoner’s dilemma type.

(iv) wR > (wT + wS)/2, so this game is eligible to qualify as a repeated prisoner’s

dilemma in the sense that there is not the incentive to take turns receiving the sucker

and temptation payoffs.

Consider that two individual’s continue to repeatedly have interactions of (5.1) at every

unit time interval as long as they live. The result of the first round of the game for a given

player is that either (i) the player dies, (ii) their partner dies and they live in isolation, or (iii)

they both live and the game repeats. Once an individual becomes isolated, their remaining

expected lifespan is:

u∗ :=
∞∑
n=1

βn =
β

1− β
. (5.2)

Definition 5 (2-Player Repeated Survivor’s Dilemma). The extensive form representation

of the 2-Player Repeated Survivor’s Dilemma for all-C and all-D time-invariant strategy

pairings is given by Figure 5.1, which shows survival probabilities and payoffs from Player

1’s perspective. The notation FC|D represents the payoff to a player with strategy all-C

(always cooperate) who is paired with an all-D (always defect) partner. The two-player

supergame payoff matrix is the following:

Player 2

all-C all-D Player 1 all-C FC|C FC|D

all-D FD|C FD|D

. (5.3)
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(1)

(FC|C)

wR

(u∗)

1− wR

wR

all-D vs all-D

(1)

(u∗)

1

wP

all-C vs all-D

(1)

(FC|D)

wT

(u∗)

1− wT

wS

all-D vs all-C

(1)

(FD|C)

wS

(u∗)

1− wS

wT

Figure 5.1: Extensive form representation of 2-Player Repeated Survivor’s Dilemma for
all-C and all-D strategy pairings. Only Player 1’s perspective and utilities are shown (in
parentheses) since the game is symmetric. u∗ is defined in (5.2). The label FC|D identifies
the payoff of the 2-player all-C vs all-D game; this appears at the branch where both indi-
vidual’s have survived (in the all-C vs all-D game) since the expected payoff whenever the
two individuals are alive and resume interacting with those strategies is again FC|D. It is
similar for the other strategy pairings.

Lemma 10. Given the survivor’s dilemma survival rates of (5.11), the supergame utilities

or fitnesses/lifespans of (5.3) are:

FC|C =
wR[1 + (1− wR)u∗]

1− w2
R

(5.4a)

FC|D =
wS[1 + (1− wT )u∗]

1− wSwT
(5.4b)

FD|C =
wT [1 + (1− wS)u∗]

1− wTwS
(5.4c)

FD|D = u∗. (5.4d)

Proof. The fitnesses are found by utilizing the repeated game structure. For example, in the

all-C vs all-D game, the original game will repeat if both players survive, so, with Figure

5.1 as a reference we have the following:

FC|D = wS[(1) + wT (FC|D) + (1− wT )(u∗)].

Solving for FC|D gives (5.4c). For all-D vs all-D,

FD|D = wP [1 + u∗] = β

(
1 +

β

1− β

)
= β

(
1

1− β

)
= u∗
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5.1.1 Nash Equilibria

Interestingly, for different β, b, c parameter regions, the static game of (5.3) takes either

the form of (i) a prisoner’s dilemma, or (ii) a stag hunt.

Definition 6 (Stag Hunt). Originally a story told by Rousseau (1984), the stag hunt involves

deciding whether to maintain hiding positions to eventually kill a deer, or give up your

position in pursuit of a visible hare [Ref: Skyrms (2004)]. If one goes after the hare while

the other waits for a stag, the one who waits will be left with nothing, while the one who

gave away their position will get the hare; if two players coordinate though, they can share

the stag or the hare. The 2-player stag hunt as a static game has the following payoff

matrix:

Player 2

C D Player 1 C a b

D c d

(5.5)

satisfying a > c > d > b [Ref: Skyrms (2004)].

Lemma 11. The pure strategy Nash equilibria for the stag hunt (5.5) are (C, C) and (D,

D), and there is a mixed strategy Nash equilibrium where the probability of cooperating is

given by

p∗ =
d− b

a− c+ d− b
(5.6)

Proof. This is a well known result; see Skyrms (2004).

Corresponding to Definition 6 and Lemma 11, for parameters β, b, c such that the re-

peated survivor’s dilemma supergame is equivalent to a stag hunt, FC|C > FD|C > FD|D >

FC|D, and (all-C, all-C) and (all-D, all-D) are pure strategy Nash equilibria. However, as
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Game Payoff orderings NE strategies, ~p

Prisoner’s Dilemma FD|C > FC|C > FD|D > FC|D (0, 0)

Stag Hunt FC|C > FD|C > FD|D > FC|D (0, 0), (1, 1), (p∗, p∗)

Table 5.1: 2-Player Repeated Survivor’s Dilemma supergame equivalent static games for
different parameter regions. Recall that the payoffs are functions of the parameters B, b, c.
p∗ is given in (5.7).

FC|C > FD|D, coordination would rationally lead to mutual cooperation, or we could ex-

pect that even without communication rational agents would choose to cooperate according

to focal point theory [Ref: Schelling (1980)]. In terms of the expected lifespans of (5.4a) -

(5.4d), the mixed strategy Nash equilibrium for the repeated survivor’s dilemma stag hunt

is where the probability of choosing all-C is given by

p∗ =
FD|D − FC|D

FC|C − FD|C + FD|D − FC|D
. (5.7)

A summary of results related to Nash equilibria of the 2-Player Repeated Survivor’s

Dilemma is given in Table 5.1. Also, for β = 0.2, 0.8, the (c, b) parameter regions where

the supergame is a stag hunt or prisoner’s dilemma are illustrated in Figure 5.2. Finally,

Nash equilibria (expressed as probabilities of choosing all-C) for β = 0.8, c = 0.02, and

b ∈ (0.02, 0.2) are illustrated in Figure 5.3.

Contextually, the significance of Figure 5.2 is that when b is significantly greater than

c, individual’s will cooperate. The temptation to cheat is reduced because cheating in-

creases the probability a cooperative partner will die and therefore no longer be around to

provide the significant benefit. Essentially the long-term benefit of continued cooperation

outweighs the short-term benefit of cheating. This is the concept of partnership [Ref: Eshel

and Shaked (2001)].

73



0 0.1 0.2

c

0

0.4

0.8

b
SH

PD

(a) β = 0.2

0 0.1 0.2

c

0

0.1

0.2

b

SH

PD

(b) β = 0.8

Figure 5.2: Equivalent 2-player static supergame regions depending on parameters for
the 2-player repeated survivor’s game. The region shaded green represents the parameter
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Figure 5.3: For β = 0.2, c = 0.02, and b ∈ (0.02, 0.2), the probability of choosing all-C is
shown. The dashed line appears where the supergame changes from a prisoner’s dilemma
to a stag hunt; the dashed line illustrates the mixed strategy Nash equilibrium, p∗ of (5.7).

5.1.2 Evolutionary Stability

For vampire bats or herders to identify which parameter region they are in and calculate

expected lifespans is unlikely; the evolutionary game theoretic approach is more meaning-

ful for these examples.

Definition 7 (Evolutionary 2-Player Repeated Survivor’s Dilemma). Let x be the fraction

a population that uses strategy all-C, such that (1−x) is the fraction that uses all-D. Then,
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with 2-player repeated survivor’s dilemma payoffs (5.4a)-(5.4d), the evolutionary fitness of

all-C and all-D are respectively given by

fall-C(x) = xFC|C + (1− x)FC|D, fall-D(x) = xFD|C + (1− x)FD|D. (5.8)

Then, where φ(x) = xfall-C(x) + (1 − x)fall-D(x) is the average fitness of the population,

the evolution of strategy densities is given by the replicator equation:

ẋ = x(fall-C(x)− φ(x)). (5.9)

As (5.9) defines a dynamical system, concepts of stability from dynamical systems are

applicable and relevant. However, in game theory, there is an additional stability notion

which defines an evolutionary stable strategy (Def. 8).

Definition 8 (Evolutionary Stable Strategy). An evolutionarily stable strategy (ESS) is a

strategy which, if adopted by a population in a given environment, cannot be invaded by

any other strategy that is initially rare.

How stability in dynamical systems and evolutionarily stable strategies are related can

be read from Sigmund (2011). Henceforth, unless, ESS is explicitly mentioned, one should

understand stability to refer to asymptotic stability of the dynamical system.

Lemma 12. For (5.9), in the stag hunt parameter regions, there is bistability with x = 0

and x = 1 stable equilibria and x∗ =
FD|D−FC|D

FC|C−FD|C+FD|D−FC|D
an unstable equilibrium. In

the prisoner’s dilemma parameter regions, x = 1 is an unstable equilibrium and x = 0 is

stable.

Proof. The dynamics for such a system as (5.9) and (5.3), with 2-player symmetric evolu-

tionary fitnesses, are well known [Ref: Nowak (2006)]. Since FC|C > FD|C and FD|D >

FC|D, all-C (x = 1) and all-D (x = 0) are bistable, and there exists an unstable equilibrium

75



x∗ =
FD|D−FC|D

FC|C−FD|C+FD|D−FC|D
in [0, 1]. If the initial condition x(0) < x∗, the system will

converge to all-D, but if x(0) > x∗, the system will converge to all-C.

In the prisoner’s dilemma region, since FC|C < FD|C and FD|D > FC|D, all-D domi-

nates all-C with x = 0 a stable equilibrium and x = 1 an unstable equilibrium.

Lemma 13. For (5.9), in the stag hunt parameter regions, all-C and all-D are evolutionar-

ily stable strategies (ESS). For the prisoner’s dilemma regions, all-D is an ESS.

Proof. Since we identified the game regions with strict inequalities, the Nash equilibria

we discussed were strict Nash equilibria, which means they are also ESS [Ref: Nowak

(2006)].

Lemmas 12 and 13 tell us that in the stag hunt parameter space, if the initial fraction of

individuals who are all-C is greater than x∗, then the population will become completely

cooperative. Since x∗ is equivalent to p∗ from (5.7), Figure 5.3 allows us to make the rel-

evant observation that for fixed β, c, increasing b reduces the size of the initial fraction of

the population necessary to be all-C in order for all-C to dominate. This intuitively makes

sense that as the benefit of cooperation increases, the value of a cooperative partner in-

creases. Thus, wanting to maintain a cooperative partner’s viability and continued support

by also cooperating with them (partnership) is evolutionarily advantageous as b increases.

5.2 3-Player Repeated Survivor’s Dilemma

As discovered with respect to the Maasai, increasing the degree of the cooperative

network had significant impact on survival [Ref: Hao et al. (2015)]. Food sharing among

vampire bats also occurs in roosts larger than just dyads [Ref: Wilkinson (1984)]. Thus,

naturally, it is of interest to examine the impact of increasing the number of individual’s

participating in the repeated survivor’s dilemma.
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How cooperation evolves when increasing the number of participants is certainly con-

nected to how the individual costs and benefits scale with the group size. In order to main-

tain survival rates as probabilities and not change the parameter space of Definition 4, we

determine survival rates for a given round to be calculated as follows:

w =


β + NC−1

N−1 b− c, if C

β + NC

N−1b, if D,
(5.10)

where N is the size of the group, and NC is the number of cooperators. Reasonably, as

the number of cooperators increases, the size of the benefit imparted increases. In (5.10),

the cost to participate in such a cooperative risk pool is independent of the group size and

number of cooperators.

Definition 9 (3-Player Survivor’s Dilemma). Let β ∈ (0, 1), b ∈ (0, 1−β), c ∈ (0,min{b, β}).

Survival rates for the 3-Player Survivor’s Dilemma are given by:

Total # C

0 1 2 3 Player 1 C · wC|3 = β + b− c wC|2 = β + b
2
− c wC|1 = β − c

D wD|0 = β wD|1 = β + b
2

wD|2 = β + b ·

.

,

(5.11)

where wC|2 represents the survival rate for a cooperator when there are a total of 2 coop-

erators.

Definition 10 (3-Player Repeated Survivor’s Dilemma Supergame). Let N be the number

of living group members. Assume that if the group size reaches 2, the two remaining in-

dividuals coordinate to cooperate when (5.3) is a stag hunt; both defect when (5.3) is a

prisoner’s dilemma. Thus, F (2), an individual’s payoff when N = 2 is determined by the
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parameters β, b, c and is either FC|C or FD|D. Then, assume rational agents choose pure

strategies and calculate expected lifespans via backward induction. Since strategies when

N = 2 are determined by parameters, decisions can be understood to be made only at

the N = 3 level, with time-invariant strategy triples for the 3-Player Repeated Survivor’s

Dilemma Supergame being

~p(3) = (p
(3)
1 , p

(3)
2 , p

(3)
3 ) ∈ {0, 1}3 (5.12)

where p(3)i is the probability Player i will play C whenever N = 3. Payoffs are then

expressed as

Total # all-C

0 1 2 3 Player 1 all − C · FC|3 FC|2 FC|1

all −D FD|0 FD|1 FD|2 ·

. (5.13)

An example extensive form illustration of how the 3-Player repeated game evolves is

given in Figure 5.4.
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~p(3) = (0, 1, 0)

(1)

(FD|1)

wD|1

(F (2))

1− wD|1

wC|1

(F (2))

wD|1

(u∗)

1− wD|1

1− wC|1

wD|1

Figure 5.4: Extensive form representation 3-Player Repeated Survivor’s Dilemma Su-
pergame with strategy triple ~p(3) = (0, 1, 0), i.e. all-D vs all-C vs all-D. Edge labels are
probabilities. Values is parentheses are payoffs if the node is reached: FD|1 is defined in
(5.13), F (2) represents the expected lifespan once the group size reduces to 2, and u∗ is the
expected lifespan once in isolation.

Lemma 14. Payoffs for the 3-Player Repeated Survivor’s Dilemma Supergame are as fol-

lows:

FC|3 =
wC|3[1 + 2wC|3(1− wC|3)F (2) + (1− wC|3)2u∗]

1− w3
C|3

(5.14a)

FC|2 =
wC|2{1 + [wC|2(1− wD|2) + (1− wC|2)wD|2]F (2) + (1− wC|2)(1− wD|2)u∗}

1− w2
C|2wD|2

(5.14b)

FC|1 =
wC|1[1 + 2wD|1(1− wD|1)F (2) + (1− wD|1)2u∗]

1− wC|1w2
D|1

(5.14c)

FD|0 =
wD|0[1 + 2wD|0(1− wD|0)F (2) + (1− wD|0)2u∗]

1− w3
D|0

(5.14d)

FD|1 =
wD|1{1 + [wC|1(1− wD|1) + (1− wC|1)wD|1]F (2) + (1− wC|1)(1− wD|1)u∗}

1− wC|1w2
D|1

(5.14e)

FD|2 =
wD|2[1 + 2wC|2(1− wC|2)F (2) + (1− wC|2)2u∗]

1− wD|2w2
C|2

(5.14f)
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Proof. The payoffs are found in the same way as for the proof of Lemma 10, utilizing the

repeated game structure. For example, with Figure 5.4 as a reference,

FD|1 = wD|1{1+wC|1wD|1FD|1+[wC|1(1−wD|1)+(1−wC|1)wD|1]F (2)+(1−wC|1)(1−wD|1)u∗}.

Then, solving for FD|1 yields (5.14e).

5.2.1 Nash Equilibria

Interestingly, when the survivor’s dilemma is scaled up to 3 players according to Def-

inition 10, not only are there parameter regions where the decisions at the 3-player level

are equivalent to a stag hunt or prisoner’s dilemma; there is additionally a parameter region

where the 3-player supergame is equivalent to a Harmony game, i.e. mutual cooperation is

the only Nash equilibrium. A description of these three static games is given in Table 5.2.

An illustration of the parameter regions where these games occur for β = 0.2, 0.8 is given

in Figure 5.5.

Utilizing Figure 5.5, we make the following observations:

(i) The harmony region appears for β = 0.2, but not β = 0.8. Clearly it is harder for

an individual to survive in isolation when β = 0.2 than when β = 0.8. What the

condition of the harmony game, FC|1 > FD|0, implies is that it is better to be the

sole cooperator, i.e. cheated on by the other two players than to essentially have all

Game Payoff orderings Pure NE strategies, ~p(3)

Prisoner’s Dilemma FD|2 > FC|3 & FD|0 > FC|1 (0, 0, 0)

Stag Hunt FC|3 > FD|1 & FD|0 > FC|1 (0, 0, 0) & (1, 1, 1)

Harmony FC|3 > FD|2 & FC|1 > FD|0 (1, 1, 1)

Table 5.2: 3-Player Repeated Survivor’s Dilemma supergame equivalent static games for
different parameter regions.
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(b) β = 0.8

Figure 5.5: Parameter regions for β = 0.2, 0.8 and corresponding equivalent static 3-player
games for the 3-Player Repeated Survivor’s Dilemma when all three players are still viable.
The region shaded dark blue corresponds to a Harmony game (H), the region shaded green
corresponds to a Stag Hunt (SH), the light blue region corresponds to a Prisoner’s Dilemma
(PD), and the white region is outside of the parameter space. The decision boundary for
the 2-player game is shown using a dashed line; when the number of players reduces to 2,
above this line is where the game corresponds to SH and below it corresponds to PD.

players be in isolation. This is possible in the harmony region possibly because the

value of cooperation in such a volatile environment makes it worth the risk to save

another individual, with the certainty of cooperating with them when the number of

living players becomes 2. It makes sense for this region to not appear in the β = 0.8

case as cooperation becomes less precious when survival in isolation is much greater.

(ii) The 2-player SH/PD boundary (dashed line of Figure 5.5) is below the SH/PD bound-

ary for the 3-player round. This is certainly reflective of how we chose to scale the

benefit and cost of cooperation when increasing the number of players in Equation

(5.10). For our choice of scaling, a single cooperative partner is of greater value (b)

when there are only 2 active players, than when there are three active players ( b
2
). It

is thus reasonable that for a given β, b, c, it might be more advantageous to defect at

the 3-player level but coordinate to cooperate in a stag hunt at the 2-player level.
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Chapter 6

CONCLUSIONS

In this study, Need-based Transfers (NBTs), a characterization of the economic coop-

eration of communities like the Maasai of East Africa and vampire bats, are studied using

agent-based simulation, kinetic theory, and game theory. NBTs utilize binary wealth redis-

tribution as a form of welfare or viability risk pooling, and being that transfers are binary

rather than centralized like conventional insurance and government welfare, understanding

the mathematics of such an economic system is valuable.

With agent-based simulations, we identify that in response to a volatile environment

generating a set of surpluses and a set of deficits in a community, how requests for aid

and donations are prioritized has significant impact on the survival of NBT communities.

This impact is manifested in the short-term and long-term. In the short-term, the giving

policy that prioritizes the least rich individuals’ donations (← LR) is found to be similar

to a cutting-stock optimal heuristic that results in greatest efficiency and highest short-term

survival rates while the progressive policy which prioritizes the donations of the richest

individuals (← R) is least efficient and results in the lowest short-term survival rates. In

the long-term, the← LR policy generates many at-risk individuals whose loss of viability

leads to lower survival rates while the ← R policy best diversifies wealth, leading to a

more risk-averse wealth distribution and higher long-term survival rates. Recognizing the

advantages and disadvantages of regressive and progressive binary wealth redistribution in

NBTs, we define a hybrid policy which uses the ← LR policy only in response to rare

global disasters when efficiency is vital, and then uses the ← R policy otherwise. This

policy leads to a long-term survival rate that outperforms the previous optimal policy of

← R.
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In addition to examining redistribution policies, network topologies are examined as

well. Permitting individuals, who lose an NBT partner, to reconnect to the sharing network

by connecting to either the highest degree node or lowest degree node results in sharing

networks with high variance or low variance respectively. We find that high variance and

relatively low mean network degree results in a detrimental phenomenon called exhausted

nodes, where high degree individuals are depended upon greatly by those connected to

them, but because of the large number of requests they receive, they are perpetually close

to threshold and often unable to aid their many dependents. Thus, the preferential edge

reattachment policy results in high degree variance, which leads to exhausted nodes and

decreased community survival. On the other hand, anti-preferential reattachment leads to

low degree variance which results in a diversification of risk, with more equally shared

burden and support of NBT relationships; this results in improved community survival.

As NBTs consist of binary wealth redistribution, it is natural to consider modeling the

evolution of an NBT economy using kinetic exchange models of markets. Moreover, there

are multiple advantages of kinetic PDE models over agent-based simulation. In particular,

the analytical structure of PDEs allows for proving some results, and even if results are still

numerical, the computation time with the PDE model is tremendously reduced compared

to the agent-based simulations. Also, the concept of the evolution of the wealth distribution

is better captured in the kinetic framework.

We develop such a kinetic model in Chapter 4 and prove some results related to the

moments of the wealth distribution, namely that absent a natural wealth evolution process,

the second and third moments are non-increasing while the zero-th and first moments are

constant. We also incorporate regressive to progressive policies into the kinetic NBT model

and observe that as a policy becomes more regressive, (i) the wealth inequality increases,

(ii) the rate of successful transfers increases, and (iii) the fraction of the population below

threshold at steady state decreases. A time-varying control policy, which seeks to maximize
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the rate of successful transfers is also identified and essentially performs by targeting the

greatest densities of donors (not necessarily the richest); this leads to a uniform distribution

of surpluses. Finally, natural wealth redistribution is modeled using diffusion, and we find

that for this model the second and third moments eventually become linear with positive and

negative slopes respectively; also, a large set of initial wealth distributions are attracted to

some manifold an a fast timescale and then diffuse on a slow timescale in a non-symmetric

way. These results contribute to the understanding of how NBTs impact the community

wealth distribution.

Reciprocal gift giving or reciprocal altruism has frequently been studied using game

theory, with particular attention being given to the repeated prisoner’s dilemma framework.

Recognizing that the motivational examples of the Maasai and vampire bats feature coop-

eration that more directly impacts survival than reproductive fitness, we define repeated

survivor’s dilemma games to determine when such a cooperative system as NBT is viable.

We find that with 2 players, cooperation can be coordinated to and equivalently evolutionar-

ily selected for when the benefit of cooperation is high enough and the cost of cooperation

is low enough. Agents forgo the short-term benefit of cheating on a cooperative partner

in order to preserve their partner’s viability and sustain long-term benefits of cooperation;

this is partnership. As a third player is introduced, we find that certain parameters lead to a

Harmony game where mutual cooperation is the only Nash equilibrium.

In summary, we utilize agent-based simulation, kinetic theory, and game theory to an-

alyze a cooperative economic system called NBT, which features binary wealth redistribu-

tion as a form of welfare. We identify socially optimal wealth redistribution policies and

network topologies, characterize the evolution of the community wealth distribution, and

determine what the relative cost and benefit of cooperation must be in order for such a

reciprocal gift giving economic policy to be viable.
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6.1 Future Work

6.1.1 Agent-based Model Extensions

Quasi-equilibrium NBT model. In Section 3.2, it is addressed that transient agent-based

simulations are essentially extinction or wealth blow-up models because of the exponen-

tial growth/decay of wealths and a death process absent a birth process. Thus, a quasi-

equilibrium model is developed that features logistic growth of wealth, e.g. cattle popula-

tion limited by resources, and a splitting process where an account or herd may separate

into two. This allows for an examination of a stable NBT economy.

While some intuitive observations about the quasi-equilibrium model are made and

numerical results are discussed, tools and perspectives from stochastic processes [Ref:

Lanchier (2017)] should be used to analyze the behavior of the model. With some sim-

plifying assumptions about the model, we should be able to utilize the mathematics of birth

and death processes to determine if the process is recurrent and if there exists a unique

stationary distribution, and also calculate the probability of survival. Similarly, we should

investigate time to extinction within the logistic growth aspect of the quasi-equilibrium

model. This will help to understand how the basic model behaves as well as potentially

allow for an analytical determination of how of parameters and policies impact survival.

Connection of NBTs to field work and broader application. The Human Generosity

Project currently has multiple field studies examining risk pooling implementations that

fit the NBT framework. We think that our theoretical analysis could help guide these an-

thropological and sociological field studies. For instance, it might be investigated which

transfer policies are actually used in osotua and perhaps there could be a connection of our

theoretical work to data. Also, empirical study of the Maasai or another institution of NBTs
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might confirm our optimal network topology findings and determine if the osotua networks

naturally evolved to encourage low variance in their degrees.

It is certainly of great interest to discover where else the need-based transfer frame-

work applies. Perhaps large businesses with many locations have the incentive to keep

their stores stocked and may replenish low stock in a certain store by transferring it from

another nearby store rather than ordering and shipping from some central location which

may require significantly more time. As NBT risk pooling networks are logical in settings

of no-fault disasters with high overhead costs, finding implementations beyond nomadic

pastoralists or low-density populations in volatile ecologies should be possible and mean-

ingful.

Modifications of transient NBT models. There are many more questions that may be

investigated within the transient model setup. For example, Aktipis et al. (2016) find mem-

oryless NBTs to be more socially optimal than record keeping, i.e. determining whether

to give donations based on balancing an account results in lower survival rates than giving

donations whenever one is able. Based on the results of Hao et al. (2015) where increasing

the size and density of sharing networks improves survival, it makes sense that reducing

the number of sharing relationships (whether because of unbalanced accounts or whatever

reason) will reduce community survival. However, it should also be intuitively true that

if there are different skill levels within a community that using record keeping in order to

eliminate weaker partners should be more advantageous than continuing to ask the commu-

nity to support accounts which continually lose community resources and put more skillful

individuals at risk. We have developed a simple model that incorporates skill level into an

account-keeping versus NBT simulation, which has shown that account keeping can im-

prove survival when different skill levels are present, but this study should be conducted

more thoroughly.
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For the transient NBT models considered in this paper, we require that donations come

from a single source, and we justify this by transfer cost considerations as well by the fear

of partial gifts being wasted when a recipient still remains below threshold and potentially

loses viability. This restriction of donations to being from only a single individual should

be relaxed. Likely, allowing multiple donors to give partial gifts will lead to an even more

regressive policy than considered in Section 3.1.2, but with similar results, e.g. greater

short-term efficiency but a more unstable wealth distribution that leads to worse long-term

survival. However, this should be carefully illustrated and explained to see if the single-

donor restriction is unnecessary in revealing the general regressive-progressive short- and

long-term observations that have been made in Chapter 3.

6.1.2 Kinetic NBTs

Control for Gini. In Section 4.3, we introduced a control policy that minimized the in-

stantaneous rate of change of the fraction of individuals below threshold. Rather than max-

imizing the rate at which needs are met, other control goals have meaning in the context of

NBTs. In particular, as we observed from the agent-based study that not only the efficiency

of transfers but also the resulting fitness of the wealth distribution is important, another

control goal to consider would be to prioritize transfers in order to achieve an optimal

wealth distribution shape or Gini coefficient. In this dissertation, we use an analytically

complicated definition for calculating the Gini index, which measures wealth inequality.

However, in Eliazar and Sokolov (2010), we find a more analytically simple expression of

the Gini index, which will help in phrasing the optimal control problem.

Attractor manifold. In Section 4.4, a conjecture was made regarding an attractor man-

ifold when diffusion is included in the kinetic NBT model. By considering the system of

moment evolution equations, we would like to show fast convergence in the variance per-
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haps via a Gronwall inequality. Then, we would like to investigate how the rate of change

of the third moment varies for distributions of different shape, e.g. fat tail to left versus

right. This further analysis should be done to defend the conjecture related to the attractor

manifold and explain what is observed numerically.

Compare central redistribution to NBT. In Section 4.5, we developed a central redis-

tribution kinetic model to better describe conventional welfare. A thorough comparison of

NBT versus central wealth redistribution should be conducted where the advantages and

disadvantages of each are examined. For example, central redistribution enables meeting

the needs of very poor individuals who, if only allowed to be brought above by a single

donor, would remain below threshold. However, perhaps organizational costs should be

included in the central redistribution model. Also, in many societies, when central or gov-

ernment help becomes inefficient enough, people resort to or rely on binary local sources of

aid; a model that pairs central and NBT redistribution and illuminates how the two policies

interact would be interesting.

6.1.3 Survivor’s Dilemma

Evolutionary 3-player stability analysis. The 3-player survivor’s dilemma of Section

5.2 reveals that when backwards induction is done and individual’s are assumed to coor-

dinate at the 2 player level, then a harmony parameter region appears. A perhaps more

natural approach for the evolutionary perspective would be that individuals have a strategy

for when there are three players and a strategy for when there are two players, e.g. all-D

when 3 players and all-C when 2 players. This results in four different overall strategies

whose density evolutions can be studied. A preliminary study of pure strategy local sta-

bility has been done, but it remains of interest to further investigate if there are interesting

dynamics that occur.
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Survivor’s dilemma review. The repeated survivor’s dilemma is not as popular as the

repeated prisoner’s dilemma, but there are a number of papers that consider this model.

A nice review paper developing a general definition of the repeated survivor’s dilemma as

well as summarizing the findings of existing studies would be a useful contribution to the

game theory literature.
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APPENDIX A

IMPACT OF NETWORK PARAMETERS ON TRANSFER POLICY EFFICIENCY
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Figure A.1: Mean survival rates after one time step as a function of initial population for all-to-all
connected networks. Results are shown forRA← transfer policies and initial wealths sampled from
uniform, normal, exponential, and power law distributions. 95% confidence intervals are shown at
data points.

It was mentioned in Section 3.1.2 that for complete graphs, the gap in transfer policy
performance increases with the initial population size N , reflecting the fact that the wealth-
based policies can behave more differently if individuals have more choices of wealths
to seek exchanges from. Figure A.1 shows 〈S(1)〉 for 1000 simulations of RA ← transfer
policies and various initial wealth distributions ~̂w(0) as a function ofN . IfN is fixed but the
initial mean degree K is allowed to vary, this also impacts the performace gap of transfer
policies. Note that for the following results in Figures A.1 - A.2 that the probability density
function for the power law is f(x) = [x ln(400)]−1, 1 < x < 400 such that all distributions
have a mean of approximately 64.
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Figure A.2: Mean survival rates after one time step as a function of initial network mean degree
for fixed initial population of N = 100. Results are shown for RA ← transfer policies and initial
wealths sampled from uniform, normal, exponential, and power law distributions. 95% confidence
intervals are shown at data points.
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APPENDIX B

IDEA OF PROOF FOR SLR(1) ≥ SR(1) FOR N ≤ 4
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Regardless of the initial wealth distribution, for a given asking order and N ≤ 4, in
every case either SLR(1) = SR(1) or SLR(1) > SR(1). Cases N = 1, 2, 3 are trivial and
for N = 4, when either only one individual has surplus or only one individual has a deficit,
it is easy to see that both policies result in equal survival rate. When two individuals have
deficit and two have surplus, we consider without loss of generality the deficits to satisfy
0 < d1 ≤ d2 and the surpluses to satisfy 0 < s1 ≤ s2. For the equalities and when
s2 ≥ d1 + d2 it is clear that the survival rates are equal for both policies. So then, we
consider potential surpluses of interest as s1 = c1d1 + c2d2 + p1 and s2 = c3d1 + c4d2 + p2
where p1, p2 < d1 and ~c = (c1, c2, c3, c4) ∈ {0, 1}4. That leaves 16 cases to consider, but
the vast majority are easily eliminated and of the remaining few to consider it becomes
apparent that only the case where ~c = (1, 0, 0, 1) results in a different survival rate with
SLR(1) = 1 > 3/4 = SR(1) when the individual with the smaller deficit is helped first.

When N ≥ 5, it is no longer true that for a fixed asking order SLR(1) ≥ SR(1) regard-
less of the initial wealth distribution. Figure B.1 gives an example initial wealth distribution
that results in SLR(1) < SR(1) for θ = 64 and a randomly generated asking order.

RA← LR
59 64 64
78 73 73
50 → 50 → 64
81 81 67
52 52 52

RA← R
59 64 64 64
78 78 64 64
50 → 50 → 64 → 64
81 76 76 64
52 52 52 64

Figure B.1: RA ← LR and RA ← R transfers for N = 5 and randomly generated asking order
(the asker is highlighted in red).
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