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ABSTRACT 

 

In this dissertation, three complex material systems including a novel class of hyperuniform 

composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are 

investigated, using statistical pattern characterization, stochastic microstructure reconstruction and 

micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review 

is made about these three material systems. In Chapter 2, detailed discussion of the statistical 

morphological descriptors and a stochastic optimization approach for microstructure reconstruction is 

presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex 

heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous 

material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., 

cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study 

the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is 

generated by generalizing the correlation functions and the rigidity tunability of this smart composite is 

discussed. In Chapter 7, a future work plan is presented.  
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1. INTRODUCTION 
 

Complex composite materials consist of two or more materials with different properties that form 

regions large enough to be regarded as continua and which are usually firmly bonded together at the 

interface to give the composite unique properties. Composite materials are key to many performance-

critical structural applications that range from automotive to aerospace transportation because of 

superior mechanical, thermal and other properties, such as light weight, high strength, corrosion 

resistance, etc. Composites also provide design flexibility not only because many of them can be 

molded into complex shapes but also the compositions of such type of materials can also be designed 

for special demand in industry.  One of the key factors that be paid a lot of attention is the microstructure 

which plays a big role in mechanical performance of composites materials. In an effort to improve the 

manufacturability and multifunctionality of composite structures, for example, polymer microcomposites 

and nanocomposties have been developed. They can be characterized by refined microstructure which, 

when properly ordered, can result in increased performance; small quantities of hard inorganic particles 

can control the deformation, failure, heat resistance, and thermal degradation properties of polymers. 

Hence, the improvement of properties of composite materials can be considered from the 

microstructure. In this dissertation, we focus on three materials system and microstructure, 

hyperuniform, extracellular matrix and low-melting-point alloy composite. 

A hyperuniform random heterogeneous material is one in which the local volume fraction 

fluctuations in an observation window decay faster than the reciprocal window volume as the window 

size increases and the infinite-wavelength local volume fraction fluctuations are completely 

suppressed[1][2]. Recent studies show that this new class of materials are endowed with superior 

physical properties such as large isotropic photonic band gaps and optimal transport 

properties[30][31][32]. Here, we employ a stochastic optimization procedure to systematically generate 

realizations of hyperuniform heterogeneous materials with controllable short-range order, which is 

quantified using the two-point correlation function S2(𝑟) associated with the phase of interest[41][42]. 

Specifically, our procedure generalizes the widely-used Yeong-Torquato reconstruction procedure by 
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introducing an additional constraint for hyperuniformity and allowing one to only constrain S2(𝑟) up to a 

certain cut-off distance γ. By systematically increasing the γ value for a given S2(𝑟), one can produce 

a spectrum of hyperuniform heterogeneous materials with varying degrees of short-range order 

compatible of the specified S2(𝑟). Moreover, the mechanical performance including both elastic and 

brittle fracture behaviors of the generated hyperuniform materials is analyzed using a volume-

compensated lattice-particle method[62][63][64][65][66]. For purpose of comparison, the corresponding 

non-hyperuniform materials with the same short-range order are also constructed and their mechanical 

performance is analyzed. We find although the hyperuniform materials are softer than their non-

hyperuniform counterparts, the former generally possesses a significantly higher brittle fracture strength 

than the latter. This superior mechanical behavior is attributed to the lower degree of stress 

concentration in the material resulting from the hyperuniform microstructure, which is crucial to crack 

initiation and propagation. 

Statistical pattern characterization and stochastic microstructure reconstruction can also be 

applied in representation of extracellular matrix. Collective cellular dynamics in the three-dimensional 

extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. 

Both chemical and mechanical signaling support cell–cell communications on a variety of length scales, 

leading to collective migratory behaviors[69][70]. Here we conduct experiments using 3D in vitro tumor 

models and develop a phenomenological model in order to probe the cooperativity of force generation 

in the collective invasion of breast cancer cells. In our model, cell–cell communication is characterized 

by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a 

stochastic reconstruction method to generate realizations of cell colonies with specific contraction 

phase correlation functions and correlation length 𝑎. We find that as 𝑎 increases, the characteristic size 

of regions containing cells with similar contraction phases grows. For small 𝑎  values, the large 

fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-

dependent deformation field in the ECM. For large 𝑎  values, the periodicity of an individual cell 

contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the 

ECM. Through quantitative comparisons of the simulated and experimentally measured deformation 
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fields, we find that the correlation length for collective force generation in the breast cancer discoid in 

geometrically micropatterned ECM (DIGME)[88] system is 𝑎 ≈ 25 µm, which is roughly twice the linear 

size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-

mediated stress propagation in the 3D ECM network in the DIGME system[31][32]. 

Another interesting problem is to effectively quantify the microstructure of smart composite and 

provide useful guidance for material design in order to have a good rigidity turnability[97]. Tunable dry 

adhesion is a crucial mechanism in soft (compliance) gripping. The grasping force, mainly originated 

from the van der Waals’ force between the adhesive composite and the object to be gripped, can be 

controlled by reversibly varying the physical properties (e.g., stiffness) of the composite via external 

stimuli. The maximal grasping force Fmax and its tunability depend on, among other factors, the stress 

distribution on the gripping interface and its fracture dynamics (during detaching), which in turn are 

determined by the composite microstructure. Here, we present a computational framework for the 

modeling and design of a class of binary smart composites containing a porous LMA phase and a 

polymer phase, in order to achieve desirable dynamically tunable dry adhesion. In particular, we employ 

spatial correlation functions to quantify, model and represent the binary composites, from which a wide 

spectrum of realistic virtual 3D composite microstructures can be generated using stochastic 

optimization. VCLP method is then employed to model the dynamic interfacial fracture process to 

compute Fmax for different composite microstructures. We investigate two mechanisms for dry adhesion 

tuning enabled by the composite, including the interface defect tuning (via thermal expansion of the 

LMA phase due to Joule heating) and bulk rigidity tuning (via melting of the LMA phase due to Joule 

heating). We find that for an optimal microstructure among the ones studied here, a 6-fold reduction 

of Fmax can be achieved via interface defect tuning. This tunability is reduced by coating the composite 

interface with an extra layer of polymers in the case of rigidity tunning. Our computational results can 

provide valuable guidance for experimental fabrication of the LMA-polymer composites. 

The generation of realizations of heterogeneous materials with specified but limited 

microstructural information is an intriguing inverse problem of both fundamental and practical 

importance. In this dissertation, a stochastic reconstruction process has been used to realize variety of 
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microstructures based on different statistical information, in which, one starts with a given, arbitrarily 

chosen, initial configuration of random medium and a set of reference functions. The medium can be a 

dispersion of particle-like building blocks or, more generally, a digitized image. The reference statistical 

functions quantitatively store the structure information and describe the desirable statistical 

characteristics of the target structure. The method proceeds to find a realization configuration, in which 

calculated correlations functions best match the reference functions. This is achieved by minimizing the 

sum of squared differences between the calculated and reference functions. Then the microstructure 

of interest can be inversed reconstructed via stochastic optimization techniques, such as the simulated 

annealing method. 

Numerical simulations have been one of the most powerful tools of the solution for solid 

mechanical analysis of materials. In this report, Lattice particle method has been used for elastic and 

fracture properties analysis of these three materials systems mentioned above, hyperuniform and 

extracellular matrix. Lattice particle method, as the discretize approach, treats continuum materials as 

a combination of great number of material points. According to the constitutive relation, the model 

introduced local interaction potential of neighbor material points 𝑈𝑠 and non-local virtual potential 𝑈𝑉 to 

overcome the Poisson ratio problem in conventional discrete approach. In the meanwhile, the model 

enables the random crack initiation and propagation interaction during the tension or compression 

process which is a big issue in continuum based model. 

In the following of this dissertation, the stochastic reconstruction method will be introduced in the 

chapter 2. In chapter 3, the briefly introduction of lattice particle method for mechanical analysis will be 

shown. Then the hyperuniform heterogeneous materials microstructure reconstruction and superior 

mechanical analysis will be discussed in chapter 4. In chapter 5, we provide the introduction of phase 

correlation reconstruction and the analysis of collective cellular dynamics. In the chapter 6, the 

generalized two-point correlation function will be introduced in the representation of LMPA composite 

and tunability of rigidity will be discussed.  At the end of the report, a future work will be shown in 

chapter 7. 
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2. STOCHASTIC RECONSTRUCTION VIA SIMULATED ANNEALING 

 

2.1 Two-point correlation function  

 
Reconstruction of complex heterogeneous material system based on limited microstructural 

information is an interesting inverse problem[1]. An effective reconstruction process enables one to 

extract key information from a microstructure image and generate accurate reconstructed structures 

for subsequent analysis. This method provides people an efficient way to estimate the macroscopic 

properties without destructing the real sample or structure which is very necessary in many relevant 

research or industry area. Another advantage of reconstruction method is a three-dimensional structure 

of the heterogeneous material can be successfully reproduced using information extracted from two-

dimensional slice cut through the material. Such ways are of great value in a wide variety of fields, 

including petroleum engineering, biology and medicine, because in many cases one only has two-

dimensional information such as a micrograph or image.  

Reproducing the heterogeneous material systems based on statistical functions is often referred 

to as a construction problem. In construction approach, researchers can identify the characteristics 

from the correlation function and in particular, people can also determine how much information 

contained in the statistical descriptors. In other words, a successful (re)construction approach not only 

can realize the original structure from lower level information source (ie, from 2D to 3D), but also 

enables one to control the final microstructure under controlling the statistical functions. 

Gaussian random fields (GRF), as a popular (re)construction procedure, successively 

representing the phase and structure of material systems by going through a linear and a nonlinear 

filter to yield the discrete values. The original work of Gaussian random field in statistical topography 

was established by Rice [5, 6]. Then a lot of development and application had been done base on this 

work [7, 8, 9, 10]. In Gaussian random fields, it assumes that the two-phase random medium can be 

completely described by volume fraction and standard two-point correlation function, which is really 

model dependent [11]. 
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Recently, Torquato and coworkers have introduced another stochastic (re)construction technique 

[1, 2, 3, 4]. In this method, one starts with a given, arbitrarily chosen, initial configuration of random 

medium and a set of target functions. The medium can be a dispersion of particle-like building blocks 

or, more generally, a digitized image [1, 2, 3, 4]. The statistical functions describe the desirable 

statistical characteristics of the structure of interest, which can be various correlation functions taken 

either from experiments or theoretical considerations. The method proceeds to find a realization 

(configuration) in which calculated correlation functions best match the target functions. This is 

achieved by minimizing the sum of squared differences between the calculated and target functions via 

stochastic optimization techniques, such as the simulated annealing method. This method is applicable 

to multidimensional and multiphase media, and is highly flexible to include any type and number of 

correlation functions as microstructural information. It is both a generalization and simplification of the 

aforementioned Gaussian-field (re)construction technique. Moreover, it does not depend on any 

particular statistics.  

There are many different types of statistical descriptors that can be chosen as target functions 

as shown in the FIG.1; the most basic one is the aforementioned two-point correlation function S2(r), 

which is obtainable from small-angle X-ray scattering. However, not every hypothetical two-point 

correlation function corresponds to a realizable two-phase medium. Therefore, it is of great fundamental 

and practical importance to determine the necessary conditions that realizable two-point correlation 

functions must possess. Shepp showed that convex combinations and products of two scaled 

autocovariance functions of one-dimensional media (equivalent to two-point correlation functions; see 

definition below) satisfy all known necessary conditions for a realizable scaled autocovariance function. 

More generally, we will see that a hypothetical function obtained by a particular combination of a set of 

realizable scaled autocovariance functions corresponding to d-dimensional media is also realizable. 
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Fig. 2.1 Schematic illustration of the probability interpretation of the correlation functions. The 1- and 2-

point configurations (i.e., one point and line segments) shown represent the events contributing to the 

associated correlation functions. 

The ensuing discussion leading to the definitions of the n-point correlation functions follows 

closely the one given by Torquato. Consider a realization of a two-phase random heterogeneous 

material within d-dimensional Euclidean space ℝ𝑑 . To characterize this binary system, in which each 

phase has volume fraction ∅(𝑖)(𝑥), it is customary to introduce the indicator function 𝐼(𝑖)(𝑥) defined as 

𝐼(𝑖)(𝑥) = {
1,         𝑥 ∈ 𝑉𝑖

0, 𝑥 ∈ �̅�𝑖
      (2.1) 

where 𝑉𝑖 ∈ ℝ𝑑   is the region occupied by phase 𝑖 and 𝑉�̅� ∈ ℝ𝑑 is the region occupied by the other phase. 

The statistical characterization of the spatial variations of the binary system involves the calculation of 

n-point correlation functions: 

𝑆𝑛
(𝑖)(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 〈𝐼(𝑖)(𝑥1)𝐼

(𝑖)(𝑥2)⋯ 𝐼(𝑖)(𝑥𝑛)〉    (2.2) 

where the angular brackets 〈⋯ 〉 denote ensemble averaging over independent realizations of the 

random medium.  

For statistically homogeneous media, the n-point correlation function depends not on the absolute 

positions but on their relative displacements, i.e., 

𝑆𝑛
(𝑖)(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑆𝑛

(𝑖)(𝑥12, ⋯ , 𝑥1𝑛)     (2.3) 

S2(r) 

C2(r) 
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for all n ≥ 1, where 𝑥𝑖𝑗 = 𝑥𝑗 − 𝑥𝑖. Thus, there is no preferred origin in the system, which in Eq. (3) we 

have chosen to be the point 𝑥1. In particular, the one-point correlation function is a constant everywhere, 

namely, the volume fraction ∅𝑖 of phase i, i.e., 

𝑆1
(𝑖) = 〈𝐼(𝑖)(𝑥)〉 =  ∅𝑖     (2.4) 

and it is the probability that a randomly chosen point in the medium belongs to phase i. For statistically 

isotropic media, the n-point correlation function is invariant under rigid-body rotation of the spatial 

coordinates. For 𝑛 ≤  𝑑, this implies that 𝑆𝑛
(𝑖)

 n depends only on the distances 𝑥𝑖𝑗  =  |𝑥𝑖𝑗| (1 ≤  𝑖 <

 𝑗 ≤  𝑛). For 𝑛 ≥  𝑑 +  1, it is generally necessary to retain vector variables because of chirality of the 

medium. 

The two-point correlation function 𝑆2
(𝑖)(𝑥1, 𝑥2) defined as 

𝑆2
(𝑖) = 〈𝐼(𝑖)(𝑥1)𝐼

(𝑖)(𝑥2)〉     (2.5) 

is one of the most important statistical descriptors of random media. It also can be interpreted as the 

probability that two randomly chosen points 𝑥1 and 𝑥2 both lie in phase 𝑖. For statistical homogeneous 

and isotropic media, 𝑆2
(𝑖)

 only depends on scalar distances, i.e., 

𝑆2
(𝑖)(𝑥1, 𝑥2) = 𝑆2

(𝑖)(|𝒓|)    (2.6) 

where 𝑟 =  𝑥12.  

Global information about the surface of the ith phase may be obtained by ensemble averaging the 

gradient of 𝐼𝑖(𝑥).  

 

2.2 Stochastic Optimization  

Generally, consider a given set of correlation functions 𝑓𝑛
𝛼 (𝑟1, 𝑟2, . . . , 𝑟𝑛) of the phase of interest 

that provides partial information on the random medium. The index 𝛼 is used to denote the type of 

correlation functions. Note that the set of 𝑓𝑛
𝛼 should not be confused with the basis function set ℘, the 

former contains correlation functions of different type, i.e., two-point correlation function, lineal-path 

function, two-point cluster function, etc., while the latter contains basis functions through which the 

scaled autocovariance function of the medium of interest can be expressed. The information contained 
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in 𝑓𝑛
𝛼 could be obtained either from experiments or it could represent a hypothetical medium based on 

simple models. In both cases we would like to generate the underlying micro-structure with a specified 

set of correlation functions. In the former case, the formulated inverse problem is frequently referred to 

as a “reconstruction” procedure, and in the latter case as a “construction”. As we have noted earilier, it 

is natural to formulate the construction or reconstruction problem as an optimization problem [1, 2, 3, 

4]. The discrepancies between the statistical properties of the best generated structure and the imposed 

ones is minimized. This can be readily achieved by introducing the “energy” function E defined as a 

sum of squared differences between target correlation functions, which we denote by  𝑓𝑛
�̂� , and those 

calculated from generated structures, i.e., 

 

𝐸 = ∑ ∑ [𝑓𝑛
𝛼(𝑟1,𝑟2, ⋯𝑟𝑛) − 𝑓𝑛

�̂�(𝑟1,𝑟2, ⋯ 𝑟𝑛)]2𝑎𝑟1,𝑟2,⋯𝑟𝑛     (2.7) 

 

Note that for every generated structure (configuration), these is a set of corresponding 𝑓𝑛
𝛼  . If we 

consider every structure (configuration) as a “state” of the system, E can be considered as a function 

of the states. The optimization technique suitable for the problem at hand is the method of simulated 

annealing. It is a popular method for the optimization of large-scale problems, especially those where 

a global minimum is hidden among many local extrema. The concept of finding the lowest energy state 

by simulated annealing is based on a well-known physical fact: If a system is heated to a high 

temperature T and then slowly cooled down to absolute zero, the system equilibrates to its ground 

state. At a given temperature T, the probability of being in a state with energy E is given by the 

Boltzmann distribution P(E) ∼ exp(−E/T). At each annealing step k, the system is allowed to evolve 

long enough to thermalize at T(k). The temperature is then lowered according to a prescribed annealing 

schedule T(k) until the energy of the system approaches it ground state value within an acceptable 

tolerance. It is important to keep the annealing rate slow enough in order to avoid trapping in some 

metastable states. In our problem, the discrete configuration space includes the states of all possible 

pixel allocations. Starting from a given state (current configuration), a new state (new configuration) 

can be obtained by interchanging two arbitrarily selected pixels of different phases. This simple evolving 
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procedure preserves the volume fraction of all involved phases and guarantees ergodicity in the sense 

that each state is accessible from any other state by a finite number of interchange steps. However, in 

the later stage of the procedure, biased and more sophisticated interchange rules, i.e., surface 

optimization, could be used to improve the efficiency. We choose the Metropolis algorithm as the 

acceptance criterion: the acceptance probability P for the pixel interchange is given by 

𝑃(𝐸𝑜𝑙𝑑 − 𝐸𝑛𝑒𝑤) = {
          1,             ∆𝐸 < 0,

exp (−
∆𝐸

𝑇
),   ∆𝐸 ≥ 0,

     (2.8) 

where ∆E = 𝐸𝑜𝑙𝑑 − 𝐸𝑛𝑒𝑤. The temperature T is initially chosen so that the initial acceptance probability 

for a pixel interchange with ∆E ≥ 0 averages approximately 0.5. An inverse logarithmic annealing 

schedule which decreases the temperature according to T(k) ∼ 1/ ln(k) would in principle evolve the 

system to its ground state. However, such a slow annealing schedule is difficult to achieve in practice. 

Thus, we will adopt the more popular and faster annealing schedule (𝑘)/𝑇(0)  =  λk , where constant λ 

must be less than but close to one. This may yield suboptimal results, but, for practical purposes, will 

be sufficient. The convergence to an optimum is no longer guaranteed, and the system is likely to freeze 

in one of the local minima if the thermalization and annealing rate are not adequately chosen. The two-

point correlation function of a statistically homogeneous and isotropic medium is the focus of this 

dissertation. In this case, equation reduces to 

𝐸 = ∑ [𝑆2(𝑟𝑖) − 𝑆2̂(𝑟𝑖)]
2

𝑖      (2.9) 

Since for every configuration (structure), the corresponding two-point correlation function needs to be 

computed, the efficiency of the construction or reconstruction is mainly determined by the efficiency of 

the S2-sampling algorithm. Furthermore, the properties of generated configurations (structures), i.e., 

isotropy of the medium, is also affected by the S2-sampling algorithm. One of the most commonly used 

and efficient S2-sampling algorithms is the orthogonal-sampling algorithm introduced by Yeong and 

Torquato [1, 2]. Due to the isotropic nature of the medium, every sampling direction should be 

equivalent. For simplicity, two orthogonal directions (usually the horizontal and vertical directions of a 

square lattice) are chosen and the two-point correlation function is sampled along these directions and 

averaged.  
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Fig. 2.2 Schematic illustration of the simulated annealing reconstruction procedure. The acceptance of 

energy-increasing trial microstructure allows the system to escape from local energy minima and thus, 

increases the probability of convergence to the global minimum. 

 

At each pixel interchange, only the values of S2(r) sampled along the rows and columns that 

contain the interchange pixels are changed. Thus, the complexity of the algorithm is O(N), where N is 

the linear size of the system. However, for certain media with long-range correlations, the generated 

media have microstructures with two orthogonal anisotropic directions due to the biased sampling. 

Modifications of the orthogonal-sampling algorithm to preserve the isotropy of the underlying medium 

have been proposed, such as adding more sampling directions and using more isotropic lattices [3, 4]. 

Cule and Torquato introduced a new isotropy-preserving fast Fourier transform (FFT) algorithm [3]. At 

each pixel interchange step, the two-point correlation function S2(r) containing angle information is 

calculated in momentum space using an efficient FFT algorithm. Since information of all directions is 

considered, the generated media always have the required isotropy structures. However, since the 

complexity of FFT is O(N log2 N), the algorithm is relatively time consuming. We have developed an 

efficient and isotropy-preserving algorithm, namely, the LatticePoint algorithm by considering the black 

pixels as hard “particles” on a particular lattice. The two-point correlation function is then computed in 

a similar way of obtaining the pair correlation function g2(r) for an isotropic point process [1]. At each 

Monte-Carlo step, the randomly selected “particle” (or we can think the black pixel in the binary image, 

the white pixels represent the background) is given a random displacement subjected to the 
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nonoverlapping constraint and the distances between the moved “particle” and all the other “particles” 

need to be recomputed. Thus, the complexity of the algorithm is O(N). Since all directions are effectively 

sampled, constructions based on the angle-averaged S2(r) well preserve isotropy of the media. A 

detailed discussion and applications of the algorithm will be included in the next few chapters and 

provide several illustrative examples generated from this algorithm. 
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3. LATTICE PARTICLE METHOD 

 

3.1 Overview 

Numerical simulation has been one of the most powerful tools of the solutions for solid 

mechanical analysis of materials and has two generally groups: the continuum-based approach and 

the discontinuous approach. Continuum-based model, such as finite element method, extended finite 

element method, and etc., provides a good analysis performance in elasticity and plasticity. However, 

difficulties are often encountered to simulate the crack or fracture problem. This kind of method is based 

on solving the approximate solution of differential equation and the most common problem in 

continuum-based model is the singularity related issues when dealing with discontinuity. Many 

numerical models have been proposed to overcome these problems, such as setting up pre-existed 

crack or remeshing.  But they bring other issues like dramatically increasing the computational cost.  

The problem becomes much more complicated when random cracking occurs in the simulation 

domain and tracking of arbitrary crack initiation and propagation is very difficult in the conventional 

continuum-based simulation framework. Discrete-based approach, represented by a combination of a 

great number of discrete material points, introduce the interaction among a material point itself and all 

its neighbors instead of differential form in continuum model and simulate the underlying physics on the 

level of micro-mechanical rules. The governing law of the dynamics of particles is Newton's equations 

of motion and this basic idea is very similar to the molecular dynamics but with constrain among 

neighbor material points or even further. These equations are usually discretized in time and involve 

calculation of the integral expression, in which the spatial derivatives that require the hypothesis of 

continuity of the material have been replaced. Hence, lattice particle method, which has discontinuous 

formulations of solid, can accurate describe the interaction between particle and are especially suitable 

for the simulation of crack initiation, propagation, and branching, etc.  

Many existing particle-based studies have been proposed for the simulation of dynamic fracture 

of heterogeneous materials, such as rock, concrete, ceramics, and refractory metals [12]. However, the 

only normal springs employed in the conventional particle-based models, which can be treated as the 
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axial constraint between particles, bring the fixed Poisson ratio issue (e.g. 1/3 in 2D and 1/4 in 3D 

cases) for both regular and irregular particle packing [12]. And this intrinsic problem has been overcome 

by the proposed novel Volume-Compensated Particle method (VCPM), which can handle the arbitrary 

Poisson’s ratio effect and the plastic deformation which does not rely on the classical plasticity theories. 

The key idea of this lattice particle model is to introduce two potential descriptors, local pair-wise 

potential 𝑈𝑆, and non-local deformation potential 𝑈𝑉 [12]. In this dissertation, this model proposed by H. 

Chen has been modified for mechanical analysis in our three complex material systems.  

 

3.2 Particle packing types 

Similar to all particle-based simulation methods, particle packing also directly affects the 

formulation and model parameter determination in VCPM [13]. Several possible packing types could 

be employed in the model, e.g., the hexagonal packing and the square packing, and square packing 

has been used in our research because of the simplicity and more efficient computation cost. As shown 

in Fig.3, the microstructure can be imagined as discretized into square packing “particles” and each 

particle is connected to its first nearest neighbors and second nearest neighbors by spring. In classical 

lattice models, square packing (Fig. 1) has been investigated and the restriction on Poisson’s ratio 

exists in these cases (Wang et al., 2009). For the square packing, there is no shear contribution from 

the nearest neighbors.  
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Fig. 3.1 Schematic illustration for 2D particle packing 

By taking the second nearest neighbors into consideration, shear can be introduced into the 

square packing. Once the particle packing is selected, a unit cell that periodically repeating in the 

discrete model is chosen to calculate the potential energy. The strain energy of a unit cell can be 

calculated based on the classical lattice theory, in which the normal vectors of each pair of particles are 

required. A normal vector is the direction vector between a centered particle and its neighboring 

particles.  

 

3.3 Model coefficients  

The key idea of the proposed VCPM is that two potential terms are used to describe the strain energy 

U𝑐𝑒𝑙𝑙 stored in a unit cell: the energy stored in the local pair-wise neighboring springs Us and the energy 

associated with the volume change of a unit cell 𝑈𝑣 . Note that only a half spring is used in each unit 

cell while calculating the strain energy, which avoids overlapping. Mathematically, the above hypothesis 

can be expressed as 

U𝑐𝑒𝑙𝑙 = 𝑈𝑠 + 𝑈𝑣      (3.1) 

The strain energy stored in the springs has a different form from the hexagonal packing since two types 

of spring is adopted in square packing. The strain energy Us s is 

U𝑠
𝑠𝑞𝑢𝑎𝑟𝑒

=
1

2
∑ 𝑘1

𝑠𝑞𝑢𝑎𝑟𝑒
(𝛿𝑙𝑖𝑗)

23
𝐽=0 +

1

2
∑ 𝑘2

𝑠𝑞𝑢𝑎𝑟𝑒
(𝛿𝑙𝑖𝑗)

27
𝐽=4   (3.2) 

where superscript s indicated the square packing, k1
s and k2

s  are the spring stiffness parameters for 

springs connecting a center particle with the nearest and the second nearest neighbors, respectively. 
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The strain energy with the volume change of a unit cell is the same as that of the hexagonal packing, 

except the volume of a unit cell is Vs = 4R2 for square packing. For plane strain case, the strain energy 

of volume change of a unit cell is 

U𝑣
𝑠𝑞𝑢𝑎𝑟𝑒

=
1

2
𝑉𝑠𝑇𝑠(휀𝑣

𝑠)2 = 2𝑅2𝑇𝑠(휀11
2 + 2휀11휀22 + 휀22

2 )   (3.3) 

 

Using the characteristic of elastic material that the strain energy is conservative, the stiffness tensor 

can be obtained in the Voigt form as 

𝐶𝑖𝑗𝑘𝑙 =
1

𝑉𝑠

(𝜕2U𝑐𝑒𝑙𝑙
𝑠𝑞𝑢𝑎𝑟𝑒

)

𝜕 𝑖𝑗𝜕 𝑘𝑙
      (3.4) 

the stiffness matrix for square packing under plane strain assumption is 

 

𝐶 =

[
 
 
 
 
(𝑘1

𝑠+𝑘2
𝑠)

2
+ 𝑇𝑠 𝑘1

𝑠

2
+ 𝑇𝑠 0

𝑘2
𝑠

2
+ 𝑇𝑠 (𝑘1

𝑠+𝑘2
𝑠)

2
+ 𝑇𝑠 0

0 0
𝑘2

𝑠

2 ]
 
 
 
 

    (3.5) 

 

Comparing the components with the stiffness matrix of 2D isotropic homogeneous materials, the 

potential coefficients can be determined uniquely as 

 

𝑘1
𝑠 =

2𝐸

1+𝑣
, 𝑘2

𝑠 =
𝐸

1+𝑣
, 𝑇𝑠 =

𝐸(4𝑣−1)

2(1+𝑣)(1−2𝑣)
              (3.6) 

 

By definition, the volumetric strain of a unit cell in square packing can be approximated as 

휀𝑣
𝑠 =

∆𝑉

𝑉
≈

(√2−1)∑ 𝛿𝑙𝑖𝑗
7
𝐽=0

2𝑅
     (3.7) 

 

Thus, the total strain energy of a unit cell in square packing can be rewritten in terms of the length 

change of a half spring as 

U𝑐𝑒𝑙𝑙
𝑠𝑞𝑢𝑎𝑟𝑒

=
1

2
∑ 𝑘1

𝑠𝑞𝑢𝑎𝑟𝑒
(𝛿𝑙𝑖𝑗)

23
𝐽=0 +

1

2
∑ 𝑘2

𝑠𝑞𝑢𝑎𝑟𝑒
(𝛿𝑙𝑖𝑗)

27
𝐽=4 + (

3−2√2

2
) 𝑇𝑠(∑ 𝛿𝑙𝑖𝑗

7
𝐽=0 )2   (3.8) 
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From equation above, the interaction force within half spring can be obtained as 

𝑓𝑖𝑗 = {
𝑘1

𝑠𝑞𝑢𝑎𝑟𝑒
𝛿𝑙𝑖𝑗 + (

2√2−3

2
) 𝑇𝑠(∑ 𝛿𝑙𝑖𝑗),         𝐽 = 0,1,2,37

𝐽=0

𝑘2
𝑠𝑞𝑢𝑎𝑟𝑒

𝛿𝑙𝑖𝑗 + (
2√2−3

2
) 𝑇𝑠(∑ 𝛿𝑙𝑖𝑗)

7
𝐽=0           𝐽 = 4,5,6,7

   (3.9) 

 

As a short summary, the model parameters under 2D elastic cases have been derived for square 

packing.  The three-dimensional coefficients can be derived in the equivalent way [13]. 
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4. HYPERUNIFORM HETEROGENEOUS MATERIAL 

 

4.1 Introduction 

The concept of hyperuniformity was first introduced by Torquato and Stillinger for many-particle 

systems [1] and was subsequently generalized by Zachary and Torquato to heterogeneous materials 

[2]. Specifically, a hyperuniform point pattern (e.g., a collection of particle centers in a many-body 

system) is one in which the local number density fluctuations grow slower than the volume of an 

observation window as the window size increases, implying that the infinite-wavelength number density 

fluctuations completely vanish. Similarly, a hyperuniform random heterogeneous material is one in 

which the local volume fraction fluctuations in an observation window decay faster than the reciprocal 

window volume as the window size increases and the infinite-wavelength local volume fraction 

fluctuations are 

completely suppressed. 

The property of hyperuniformity has been identified in many physical and biological systems, 

including the density fluctuations in early universe [3], maximally random jammed packing of hard 

particles [4][5][6][7], certain exotic classical ground states of many-particle systems, jammed colloidal 

systems [8][9][10][11][12][13][14][15] , driven non-equilibrium systems, certain quantum ground states, 

avian photoreceptor patterns, organization of adapted immune systems, and amorphous silicon, to 

name but a few. It has been suggested that hyperuniformity can be considered as a new state of matter 

[14], which possesses a hidden order in between of that of a perfect crystal and a totally disordered 

system (e.g., a Poisson distribution of points). In addition, it has been shown that hyperuniform 

heterogeneous materials can be designed to possess superior physical properties including large 

isotropic photonic band gaps and optimized transport properties. Very recently, the notation of 

hyperuniformity has been further generalized to vector fields, anisotropic and inhomogeneous systems. 

In addition, materials with hyperuniform structures have also been successfully fabricated or 

synthesized using different techniques. 

A hyperuniform many-particle system with a specific degree of spatial order can be reconstructed 

using the collective coordinate approach (CCA). Specifically, in CCA an initial random configuration of 
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particles is evolved using stochastic optimization to a final state possessing a prescribed structure factor 

𝑆(𝑘) with the small-wavenumber limit lim
𝑘→0

𝑆(𝑘) = 0 to ensure hyperuniformity. The degree of order in 

the system can be controlled by imposing different forms of 𝑆(𝑘), satisfying the condition lim
𝑘→0

𝑆(𝑘) = 0. 

This approach has recently been generalized to reconstruct hyperuniform heterogeneous materials 

possessing a prescribed spectral density �̂�(𝑘) with lim
𝑘→0

�̂�(𝑘) = 0 . In this case, an initial random 

distribution of pixels representing the phase of interest is evolved using stochastic optimization to a 

final microstructure with the prescribed �̂�(𝑘) . The hyperuniform condition lim
𝑘→0

�̂�(𝑘) = 0  for 

heterogeneous materials is discussed in detail in chapter 4.2. 

In this chapter, we devise an alternative procedure to systematically generate realizations of 

hyperuniform heterogeneous materials with controllable short-range order. Instead of evolving the 

material microstructure to achieve a prescribed spectral density �̂�(𝑘), in our reconstruction the final 

microstructure is required to match a set of prescribed spatial correlation functions (e.g., the two-point 

correlation function 𝑆2 ) for the phase of interest while simultaneously satisfying the hyperuniform 

condition lim
𝑘→0

�̂�(𝑘) = 0. This is achieved by generalizing the Yeong-Torquato reconstruction procedure 

to introduce an additional energy term for the hyperuniform constraint besides the energy terms for the 

prescribed correlation functions. To control the short-range order in the system, we allow one to only 

constrain the prescribed correlation function up to a certain cut-off distance γ in the reconstruction. By 

systematically increasing the γ value, one can produce a spectrum of hyperuniform heterogeneous 

materials with varying degrees of short-range order compatible of the specified correlation function. For 

purpose of comparison, the corresponding non-hyperuniform materials with the same correlation 

function and the constraint cut-off value γ are also generated, which possess a microstructure that are 

statistically indistinguishable from that of the corresponding hyperuniform materials on small length 

scales. 

We also study the mechanical performance of the generated hyperuniform and corresponding 

non-hyperuniform materials, including both elastic and failure behaviors using a volume-compensated 

lattice-particle method. Although the hyperuniform materials are softer than their non-hyperuniform 
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counterparts, i.e., with a smaller Young's modulus, the hyperuniform materials generally possess a 

superior brittle fracture behavior, including both a higher resistance to crack initiation and a larger 

fracture strength. We find this superior mechanical behavior is attributed to the lower degree of stress 

concentration in the material resulting from the hyperuniform microstructure, which is crucial to crack 

initiation and propagation. 

The rest of this chapter is organized as follows: In 4.2, we provide definitions of quantities that 

are relevant to hyperuniform heterogeneous materials. In 4.3, we present the stochastic reconstruction 

procedure for generating hyperuniform heterogeneous materials with varying degrees of short-range 

order. In 4.4 and 4.5, we respectively provide detailed analysis on the structural and mechanical 

properties of the generated hyperuniform materials and their non-hyperuniform counterparts. In 4.6, we 

make concluding remarks. 

 

4.2 Definitions for hyperuniform heterogeneous materials 

4.2.1 n-Point Correlation Function 

In general, the microstructure of a heterogeneous material can be uniquely determined by 

specifying the indicator functions associated with all of the individual phases of the material [21,22]. 

Without loss of generality, we focus on two-phase materials (binary medium) in this work. We note that 

the generalization of the subsequent discussion to a multiple phase system is straightforward. 

Consider a statistically homogeneous material 𝑀 occupying the region 𝒱 in ℝ𝑑  (𝑑 = 1,2,3)  which 

is partitioned into two disjoint phases: phase 1, a region 𝒱1 of volume fraction ∅1 and phase 2, a region 

𝒱2 of volume fraction ∅2. It is obvious that 𝒱1 ∪ 𝒱2 = 𝒱 and 𝒱1 ∩ 𝒱2 = 0. The indicator function 𝛪(𝑖)(𝑥) of 

phase 𝑖 is given by 

𝐼(𝑖)(𝑥) = {
1,         𝑥 ∈ 𝒱𝑖

0, 𝑥 ∈ 𝒱�̂�
      (4.1) 

for 𝑖 = 1,2 with 𝒱𝑖 ∪ 𝒱�̂� = 𝒱 and 

𝛪(1)(𝑥) + 𝛪(2)(𝑥) = 1      (4.2) 

The n-point correlation function 𝑆𝑛
(𝑖)

 for phase 𝑖 is defined as follows: 
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𝑆𝑛
(𝑖)(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 〈𝐼(𝑖)(𝑥1)𝐼

(𝑖)(𝑥2)⋯ 𝐼(𝑖)(𝑥𝑛)〉    (4.3) 

where the angular brackets 〈⋯ 〉 denote ensemble averaging over independent realizations of the 

random medium.  

The two-point correlation function 𝑆2
(𝑖)

 for phase 𝑖, the focus of this study, is defined by 

𝑆2
(𝑖) = 〈𝐼(𝑖)(𝑥1)𝐼

(𝑖)(𝑥2)〉      (4.4) 

As pointed out in Sec. I, for a statistically homogeneous medium, 𝑆2
(𝑖)

 is a function of the relative 

displacements of point pairs, i.e., 

𝑆2
(𝑖)(𝒙𝟏, 𝒙𝟐) = 𝑆2

(𝑖)(𝒙𝟏 − 𝒙𝟐) = 𝑆2
(𝑖)(|𝒓|)        (4.5) 

where 𝒓 =  𝒙𝟏 − 𝒙𝟐. In the infinite volume limit, if the medium is also ergodic the ensemble average is 

equivalent to the volume average, i.e., 

𝑆2
(𝑖)(𝒓) =  lim

𝑉→∞

1

𝑉
∫ 𝐼(𝑖)(𝒙)𝐼(𝑖)(𝒙 + 𝒓)
𝑉

𝑑𝑥    (4.6) 

If the medium is also statistically isotropic, 𝑆2
(𝑖)

 is a radial function, depending on the separation 

distances of point pairs only, i.e., 

𝑆2
(𝑖)(𝒙𝟏, 𝒙𝟐) = 𝑆2

(𝑖)(|𝒓|) = 𝑆2
(𝑖)(𝑟)     (4.7) 

Interested readers are referred to Ref. [22] for a detailed discussion of 𝑆2
(𝑖)

 and other higher order 𝑆𝑛
(𝑖)

. 

Henceforth, we will drop the superscript 𝑖 in 𝑆2
(𝑖)

 for simplicity. Without further elaboration, 𝑆2 is always 

the two-point correlation function of the phase of interest. 

The two-point correlation function 𝑆2 can be efficiently computed from given digital images of a 

material, in which the microstructure is represented as a 2D (or 3D) array of pixels (or voxels), in which 

value of each pixel indicates the local state (e.g., phases) of that pixel. For a binary system, the array 

is simply a collection of black and white pixels on a regular lattice. The probabilistic interpretation of the 

correlation functions enable us to develop a general sampling method for the reconstruction of 

statistically homogeneous and isotropic digitized textures based on the ``lattice-gas'' formalism, which 

is introduced in Refs [23, 24] and generalized in Ref [25]. In the generalized formalism, pixels with 

different values (occupying the lattice sites) correspond to distinct local states and pixels with the same 

value are considered to be ‘’molecules’’ of the same “gas” species. In the case of 𝑆2, all ‘’molecules’’ 
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are of the same species. We denote the number of lattice-site separation distances of length 𝑟 by 𝑁𝑠(𝑟) 

and the number of molecule-pair separation distances of length 𝑟 by 𝑁𝑝(𝑟). Thus, the fraction of pair 

distances with both ends occupied by the phase of interest, i.e., the two-point correlation function, is 

given by 𝑆2(𝑟) = 𝑁𝑃(𝑟)/𝑁𝑆(𝑟). 

 

4.2.2 Hyperuniformity in heterogeneous materials 

A hyperuniform heterogeneous material has the property that the variance in the volume fraction of the 

phase of interest in an observation window Ω decays more quickly than the reciprocal volume of that 

window [15]. In the case of a spherical observation window, this definition implies that the 

variance 𝜎𝜏
2(𝑅) in the local volume fraction 𝜏(𝑥) decays more quickly than 𝑅−𝑑 in 𝑑 dimensions, where 

𝑅 is the radius of the observation window. 

In particular, the local volume fraction 𝜏(𝑥) of the phase of interest is defined as: 

𝜏𝑖(𝑥; 𝑅) =
1

𝑣(𝑅)
∫ 𝐼(𝑧)𝜔(𝑧 − 𝑥;𝑅)𝑑𝑧     (4.8) 

where 𝑣(𝑅) is the volume of the observation window, 𝜔 is the corresponding indicator function, and 𝐼 

is the indicator function of the phase of interest. Using this definition, the variance 𝜎𝜏
2 in the local volume 

fraction is given by: 

𝜎𝜏
2 =

1

𝑣(𝑅)
∫𝜒(𝒓)𝛼(𝒓; 𝑅)𝑑𝒓      (4.9) 

where 𝜒(𝒓) is the autocovariance function, i.e 𝜒(𝒓) = 𝑆2(𝑟) − 𝜙2, and 𝛼(𝒓; 𝑅) is the scaled intersection 

volume which has the support  [0,2R], the range [0,1], and the following integral representation: 

𝛼(𝑟; 𝑅) = 𝑐(𝑑) ∫ sin𝑑(𝜃)𝑑𝜃
cos−1[

𝑟

2𝑅
]

0
    (4.10) 

where 𝑐(𝑑) is a d-dimensional constant given by 

𝑐(𝑑) =
2Γ(1+

𝑑

2
)

𝜋
1
2Γ[

d+1

2
]

       (4.11) 

The variance in the local volume fraction admits the asymptotic expansion [15]: 

𝜎𝜏
2 =

𝜌

2𝑑𝜙
{𝐴𝜏 (

𝐷

𝑅
)

𝑑

+ 𝐵𝑟 (
𝐷

𝑅
)

𝑑+1

+ 𝑜 [(
𝐷

𝑅
)

𝑑+1

]}     (4.12) 
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Aτ = ∫ 𝜒(𝑟)𝑑𝑟
ℝ𝑑 = lim

||𝑘||→0
�̂�(𝑘)      (4.13) 

Bτ = −
𝑘(𝑑)

𝐷
∫ ||𝑟||𝜒(𝑟)𝑑𝑟
ℝ𝑑 =

1

𝜋𝑣(1)𝐷
∫

�̂�(𝑘)

||𝑘||
𝑑+1ℝ𝑑 𝑑𝑘    (4.14) 

The coefficients Aτ and Bτ in above equation control the asymptotic scaling of the fluctuations in the 

local volume fraction. By definition, a hyperuniform heterogeneous material possesses a local volume 

fraction variance 𝜎𝜏
2 ~ R−(d+1)  as 𝑅 →  +∞, which requires the coefficient Aτ of the leading term in the 

asymptotic expansion vanishes, i.e., 

Aτ = lim
||𝑘||→0

�̂�(𝑘) = 0       (4.15) 

In other words, for a hyperuniform material, its spectral density  �̂� goes to zero in the zero wave-vector 

limit. For statistically homogeneous and isotropic materials, the hyperuniform condition reduces to 

Aτ = lim
||𝑘||→0

�̂�(𝑘) =  ∫ [𝑆2(𝑟) − 𝜙2]Ω𝑑(𝑟)𝑑𝑟 = 0 
𝑟

    (4.16) 

where Ω𝑑(𝑟) is the surface area of a sphere with radius 𝑟 in d dimensions. 

 

4.3 Generating realizations of hyperuniform materials using stochastic optimization 

 

Generating realizations of heterogeneous materials from limited morphological information is a 

topic of great interest [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Our 

procedure for reconstructing hyperuniform heterogeneous materials is developed within the Yeong-

Torquato (YT) stochastic reconstruction framework, in which an initial random microstructure is evolved 

to minimize an energy function that measures the difference between the target correlation functions 

and the corresponding functions of the simulated microstructure. 

In the YT procedure, the reconstruction problem is formulated as an ``energy'' minimization 

problem, with the energy functional 𝐸 defined as follows 

𝐸 = ∑ ∑ [𝑓𝑛
𝛼(𝑟) − 𝑓𝑛

�̂�(𝑟)]2𝑎𝑟      (4.17) 

where 𝑓𝑛
�̂�(𝑟)  is a target correlation function of type 𝛼  and 𝑓𝑛

𝛼(𝑟)  is the corresponding function 

associated with a trial microstructure. The simulated annealing method [43] is usually employed to solve 
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the aforementioned minimization problem. Specifically, starting from an initial trial microstructure (i.e., 

old microstructure) which contains a fixed number of pixels (voxels) for each phase consistent with the 

volume fraction of that phase, two randomly selected pixels (voxels) associated with different phases 

are exchanged to generate a new trial microstructure. Relevant correlation functions are sampled from 

the new trial microstructure and the associated energy is computed, which determines whether the new 

trial microstructure should be accepted or not via the probability: 

𝑝acc = min {exp (−
∆𝐸

𝑇
) , 1}      (4.18) 

where ∆𝐸  is the energy difference between the new and old trial microstructure and 𝑇 is a virtual 

temperature that is chosen to be initially high and slowly decreases according to a cooling schedule. 

An appropriate cooling schedule reduces the chances that the system gets trapped in a shallow local 

energy minimum. In practice, a power law schedule 𝑇(n) = αn𝑇0 is usually employed, where 𝑇0 is the 

initial temperature, 𝑛 is the cooling stage and 𝛼 𝜖 (0,1) is the cooling factor. The simulation is terminated 

when 𝐸  is smaller than a prescribed tolerance (e.g., 10−8 ). Generally, a large number of trial 

microstructures need to be searched to generate a successful reconstruction. Therefore, highly efficient 

sampling methods [23, 24, 25] are used that enable one to rapidly obtain the prescribed correlation 

functions of a new microstructure by updating the corresponding functions associated with the old 

microstructure, instead of completely re-computing the functions. 

Here, we generalize the YT procedure by introducing an additional constraint for hyperuniformity 

and allowing one to constrain the given two-point correlation function only up to a certain cut-off 

distance γ  for controlling the short-range order in the system. Specifically, the ``energy'' for the 

reconstruction now contains two terms, i.e., 

𝐸 = 𝐸1 + 𝐸2       (4.19) 

where E1  and E2  are respectively associated with the target correlation function  𝑆2̂ and the 

hyperuniform constraint, i.e., 

𝐸 =  ∑ [𝑆2(𝑟) − 𝑆2̂(𝑟)]
2𝛾

𝑟=0      (4.20) 

where 𝛾 in [0, L/2) (L is the linear system size) and 

𝐸2 = | ∑ [𝑆2(𝑟) − 𝜙2]Ω𝑑(𝑟)|2
𝐿/2
𝑟=0      (4.21) 
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where Ω𝑑(𝑟) is surface area of a sphere with radius 𝑟 in 𝑑 dimensions. For 𝑑 = 2, the main focus of this 

topic, Ω2(𝑟) = 2𝜋𝑟. 

We note that the ground state of the reconstruction requires E1 = E2 = 0. The summation in 

equation above is the discrete form of the integral, and thus, the condition E2 = 0 also implies Aτ = 0 . 

In addition, we employ periodic boundary condition in the reconstructions and the largest distance in 

S2 is given by half of the linear system size L/2. However, the constraints imposed by E1 = 0 and E2 =

0 are not independent of one another. For example, for an arbitrary given S2, there is no guarantee that 

the hyperuniform condition can be met. Therefore, we will only constrain S2up to the cut-off distance γ 

to require the system possess a certain degree of short-range order specified by the short range values 

of S2 and always require E2 = 0 to ensure hyperuniformity is achieved. 

 

4.4 Microstructure of hyperuniform heterogeneous materials 

 

4.4.1 Correlation functions for controlling short-range order 

Two types of 2-point correlation functions are employed here to control the short-range order of 

the reconstructed hyperuniform materials, i.e., the exponential decay function S2
𝐸𝐷and the hard sphere 

function S2
𝐻𝑆.It is also convenient to introduce the scaled autocovariance function, i.e., 

𝑓(𝑟) = (𝑆2(𝑟) − 𝜙2)/(𝜙(1 − 𝜙))     (4.22) 

where 𝜙 is the volume fraction of the phase of interest. Different from 𝑆2, the scaled autocovariance 

function is independent of the reference phase and phase volume fraction, and characterizes the 

intrinsic spatial correlations in the material system. 

The exponential decay function is given by 

𝑓𝐸𝐷 = exp (−𝑟/𝑎)      (4.23) 

where 𝑎  is a characteristic correlation length of the material and we use a = 10  pixels for the 

subsequent reconstructions. This monotonic decreasing correlation function, as shown in Fig. 4.1, is 

also referred to as the Debye random medium function [23], which corresponds to materials containing 

random clusters of arbitrary sizes and shapes. The hard sphere function 𝑓𝐻𝑆 does not possess an 
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analytical expression. Therefore, we compute 𝑓𝐻𝑆  from an ensemble of 2D hard sphere packings 

sampled from a Monte Carlo simulation of an equilibrium 2D hard sphere fluid [22]. As shown in Fig. 

4,1, 𝑓𝐻𝑆 contains significant oscillations for small distances, indicating the spatial correlations among 

the spheres due to the non-overlapping constraint. The diameter of the sphere, which corresponds to 

the 𝑟  value associated with first minimum of the oscillating function, is D = 10  pixels. For the 

subsequent reconstructions, we will consider two values of volume fraction, 𝜙 = 0.3 and 𝜙 = 0.5 , 

which are respectively below and above the percolation threshold for the corresponding materials. The 

two-point function 𝑆2(𝑟) can be readily obtained from the corresponding 𝑓(𝑟). 

 

Fig. 4.1 Correlation functions employed to control the short-range order in the reconstructed 

hyperuniform materials. Left panel: The exponential decay function 𝑓𝐸𝐷. Right panel: The hard sphere 

function 𝑓𝐻𝑆. 

 

The choice of aforementioned correlation functions is inspired by Refs. [44, 45]. Specifically, 

since the exponential function 𝑓𝐸𝐷(𝑟) is always positive, it is not possible for hyperuniform equation to 

hold for this function (i.e., the integral is always greater than zero for all volume fractions). This implies 

that the short-range order imposed by 𝑓𝐸𝐷(𝑟) will be competing with the global hidden order imposed 

by the hyperuniformity constraint, and hyperuniformity is successively more difficult to achieve as the 
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constraint cut-off distance 𝛾 increases. On the other hand, the oscillating hard sphere function 𝑓𝐻𝑆(𝑟) 

is more compatible with the hyperuniform condition, suggesting that it is easier to 

achieve hyperuniformity in system with such 𝑓𝐻𝑆(𝑟). As we will show in Sec. IV, the reconstructed 

hyperunfiorm materials associated with these two different correlation functions can possess distinct 

properties compared to their non-hyperuniform counterparts. 

 

 

4.4.2 Realizations of hyperuniform materials 

The realizations of hyperuniform materials with a linear size of 300 pixels associated with the 

aforementioned correlation functions 𝑓𝐸𝐷(𝑟)  and 𝑓𝐻𝑆(𝑟)  with increasing constraint distance 𝛾 =

5,10,15,25,50,80,100 and 120 pixels as well as their non-hyperuniform counterparts are generated using 

the generalized stochastic reconstruction procedure described in Sec. III. For all of the reconstructions, 

we require that the final energy E < 10−8. In the case of hyperuniform materials, this implies that the 

hyperuniform constraint E2 < 10−8 and the degree of hyperuniformity is also independently verified by 

directly computing the local volume fraction fluctuations as a function of observation window size. 
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Fig. 4.2 Realizations of the hyperuniform materials (upper panels) and the corresponding non-

hyperuniform materials (middle panels) associated with the exponential decay function 𝑓𝐸𝐷 for different 

constraint cut-off distances γ with φ = 0.3 for the inclusion phase. The associated target and 

reconstructed correlation functions are shown in the lower panels. The constraint distances γ from left 

to right are 15, 25,50 and 100 pixels. 
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Fig. 4.3 Realizations of the hyperuniform materials (upper panels) and the corresponding non-

hyperuniform materials (middle panels) associated with the exponential decay function 𝑓𝐸𝐷 for different 

constraint cut-off distances γ with φ = 0.5 for the inclusion phase. The associated target and 

reconstructed correlation functions are shown in the lower panels. The constraint distances γ from left 

to right are 15, 25,50 and 100 pixels. 

 

Figures 4.2 and 4.3 respectively show the reconstructed microstructures associated with𝑓𝐸𝐷(𝑟)  

at volume fractions 𝜙 = 0.3 and 0.5 for selected 𝛾 values (i.e., 15, 25, 50 and 100 pixels). For all 𝛾 

values, the constraint is satisfied to a high degree for the hyperuniform systems with E2~10−8  ,in 

contrast to the large E2~102 for the non-hyperuniform systems. It can be seen that for both 𝜙 values, 

the reconstructed microstructures contain ``clusters of arbitrary sizes and shapes'', which is a well-

known structural feature of the so called Debye random media [23] associated with the exponential 

decay S2. Also shown are the target and reconstructed correlation functions for different constraint cut-

off distance 𝛾. 
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In the case of 𝜙 = 0.3, it can be clearly seen that for small 𝛾 values (i.e., 15 and 25 pixels), the 

reconstructed correlation functions for both the hyperuniform and non-hyperuniform cases deviate 

significantly from the corresponding target functions. Specifically, the reconstructed S2  values for 𝑟 

immediately beyond 𝛾 are significantly larger than the corresponding values of the target function, 

indicating the existence of clusters with characteristic sizes comparable to such 𝑟  values. For 

intermediate 𝛾  values (e.g., 50 pixels), the reconstructed S2  for the non-hyperuniform case well 

matches the target function even for  𝑟  values beyond the constrained distance. However, for the 

hyperuniform case, the reconstructed S2 starts to exhibit a significant decay immediately beyond 𝛾, 

indicating a strong suppression of the spatial correlations on such length scales. We note that this 

behavior is necessary to achieve the hyperuniformity imposed by the constraint. For large 𝛾 values 

(e.g., 100 pixels), the reconstructed S2 for both the hyperuniform and non-hyperuniform cases match 

the target function well. However, a closer inspection reveals that the hyperuniform S2 still exhibits weak 

yet non-vanishing oscillations beyond the constrained distance. Again, these oscillations are required 

by the hyperuniform constraint. 

The behaviors of the reconstructed systems with 𝜙 = 0.5  for both hyperuniform and non-

hyperuniform cases as 𝛾  increases are very similar to the corresponding systems with 𝜙 = 0.3 . 

However, the relative deviation of the reconstructed functions from the target function for a specific 𝛾 

value is much smaller in systems with 𝜙 = 0.5 and the systems contain almost percolating clusters of 

the inclusion phase. We note that for both 𝜙 = 0.3 and 0.5, the reconstructed hyperuniform systems 

and their non-hyperuniform counterparts are almost visually indistinguishable in a statistical sense. This 

is because by construction these systems possess the same short- and even intermediate-range spatial 

correlations. Yet the two types of systems possess distinctly different structural characteristics on large 

length scales as indicated by the distinct E2 values. 

Figures 4.4 and 4.5 respectively show the reconstructed systems associated with 𝑓𝐻𝑆(𝑟) at 

volume fractions 𝜙 = 0.3  and 0.5 for selected 𝛾  values (i.e., 15, 25, 50 and 100 pixels). In the 

reconstructed hyperuniform systems, the constraint is satisfied to a high degree for all 𝛾 values with 

E2~10−8. Interestingly, the non-hyperuniform systems associated with the hard-sphere function 𝑓𝐻𝑆(𝑟) 
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possess a much smaller E2~10−3compared to that for non-hyperuniform systems associated with the 

exponential function 𝑓𝐸𝐷(𝑟), although this value is still much larger than that for the hyperuniform 

systems. As we discussed in Sec. IV.A, the oscillatory feature of 𝑓𝐻𝑆(𝑟)makes it naturally possess a 

smaller E2. In addition, the target𝑓𝐻𝑆(𝑟) is associated with the equilibrium hard sphere system, which 

is already in a state close to hyperuniformity [17]. 

 

Fig. 4.4 : Realizations of the hyperuniform materials (upper panels) and the corresponding non-

hyperuniform materials (middle panels) associated with the hard sphere function 𝑓𝐻𝑆  for different 

constraint cut-off distances γ with φ = 0.3 for the inclusion phase. The associated target and 

reconstructed correlation functions are shown in the lower panels. The constraint distances γ from left 

to right are 15, 25, 50 and 100 pixels. 
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Fig. 4.5 Realizations of the hyperuniform materials (upper panels) and the corresponding non-

hyperuniform materials (middle panels) associated with the hard sphere function 𝑓𝐻𝑆 for different 

constraint cut-off distances γ with φ = 0.5 for the inclusion phase. The associated target and 

reconstructed correlation functions are shown in the lower panels. The constraint distances γ from left 

to right are 15, 25, 50 and 100 pixels. 

 

For 𝜙 = 0.3, the reconstructed microstructures contain statistically homogeneous dispersions of 

compact clusters (i.e. ``hard particles'') with relatively small aspect ratios. It has been shown that the 

original spherical particles cannot be perfectly reproduced in the reconstructions using S2 alone since 

critical topologically connectedness information of the system is missing. Specifically, the elongated 

particles in the reconstructions correspond to local clustering configurations of non-overlapping spheres 

in the original system. For 𝜙 = 0.5, the strong local spatial correlations manifested as the strong 

oscillations in the target function are realized by the interconnected stripe-like local structures with well-

defined characteristic width λ  that resemble those in a typical Eutectic microstructure. A closer 
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inspection reveals that λ = D, where D is the distance associated with the first local minimum in 𝑓𝐻𝑆(𝑟), 

roughly corresponding to the diameter of the spheres in the original system. 

Different from the systems associated with the exponential decay function, neither the 

reconstructed correlation functions nor the realizations significantly vary as the constraint distance  𝛾 

increases in the current systems for both 𝜙 = 0.3 and 0.5. We note that the oscillations in the hard 

sphere function 𝑓𝐻𝑆(𝑟) stems from the strong short-range correlations in the original hard sphere 

system due to the hard-core repulsion between the particles. A direct manifestation of the hard-core 

repulsion in 𝑓𝐻𝑆(𝑟) is the deep first local minimum (valley) and the first local maximum (peak), which 

respectively corresponds to the size of the hard spheres (i.e., exclusion shell) and the size of the 

nearest neighbor shell. Once these two crucial short-range correlations are set, the remaining 

intermediate-range correlations (i.e., oscillations) are also determined. In our reconstructions, even the 

smallest cut-off distance λ = 15 pixels constrains the correlation function beyond the first valley at 𝑟 ≈

D = 10 pixels. This only leaves very limited room for the system to further adjust the intermediate and 

long range correlations, leading to small deviations of the reconstructed correlation functions from the 

target. For other cut-off values (i.e., γ ≥ 25 pixels), both the first valley and peak are constrained and 

thus, the system has virtually no freedom to adjust the longer range correlations beyond the constrained 

distance. This leads to the good agreement of the reconstructed and target correlation functions for all 

distances beyond the constraint cut-off γ. 

In addition, the reconstructed hyperuniform systems for both volume fractions are visually 

indistinguishable from the corresponding non-hyperuniform systems in a statistical sense. This is again 

because by construction these systems possess the same short- and intermediate-range spatial 

correlations, which are most sensitive to eyeball tests. On the other hand, the large scale structural 

characteristics are more difficult to be picked up via visual inspection. We note that in this case, the 

distinction between the hyperuniform and non-hyperuniform systems on large length scales is less 

dramatic than in the systems associated with the exponential decay function. This also leads to a less 

dramatic difference in the mechanical properties of the hyperuniform and corresponding non-

hyperuniform systems as shown in Sec. V. 
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4.5 Superior mechanical properties of hyperuniform heterogeneous materials 

 

4.5.1 Lattice-particle method for micromechanical analysis 

The elastic and fracture behaviors of the generated hyperuniform heterogeneous materials are 

analyzed using the volume-compensated lattice-particle method (LPM) [46, 47]. In the LPM, the 

continuum is treated as an ordered network of interacting material points (consistent with the 

reconstruction grid), which obeys a cohesive law directly obtained from basic constitutive relationships 

with analytical solutions. The interactions among the material points include both local pair-wise 

potential between two particles Upair  and a multi-body potential among non-local particles UV , i.e.,  

U = Upair + UV. Accordingly, the force field between two neighboring particles only depends on their 

relative displacements (i.e., pair-wise potential), but also includes a contribution from all the neighboring 

particles surrounding them (i.e., non-local multi-body potential). The unique advantage of the LPM 

formulation is that material fracture can be naturally simulated by breaking the bonds between material 

points based on critical bond length or force. The LPM has been successfully applied to study the 

mechanical performance of a variety of heterogeneous material systems [48, 49, 50]. Interested 

readers are referred to Refs. [46, 47] for details of this method. 

 

4.5.2 Elastic behavior 

We now apply the LPM to study the mechanical properties of the reconstructed hyperuniform 

materials. Specifically, we consider the inclusion phase serves as the reinforcement for the matrix, and 

both phases are isotropic. The Young's modulus and Poisson's ratio for the inclusion and matrix phase 

are respectively EI = 100 GPa, μI = 0.33 and EM = 10 GPa, μM = 0.32. We note that the exact values 

of the mechanical properties of individual phases do not affect the conclusions of our study, yet the 

contrast between the Young's moduli of the inclusion and matrix phases does affect the degree of 

contrast between the effective moduli of the hyperuniform and the corresponding non-hyperuniform 

materials. A uniaxial load is applied to the top and bottom boundary of the square representative volume 
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element (RVE) reconstructed in Sec. IV, which leads to an overall axial elastic strain  ϵ = 0.002. The 

remaining two boundaries of the RVE are force free. In the subsequent LPM simulations, we will focus 

on the systems with 𝜙 = 0.3 for which the inclusion phase forms a dispersion of compact clusters and 

particles, in contrast to the nearly percolating morphology of the inclusion phase for the systems with 

𝜙 = 0.5. Thus, we expect to observe more significant contrast between the mechanical behaviors of 

the hyperuniform and non-hyperuniform systems with 𝜙 = 0.3. 

 

Fig. 4.6 Microstructure and corresponding normalized elastic strain energy density distribution 𝛺(𝑥) in 

a hyperuniform material (left panels) associated with the exponential decay function (with γ = 50) and 

its non-hyperuniform counterpart (right panels). 

0 

1 
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Fig. 4.7  Statistics of the strain energy density distribution 𝑓(𝛺) in the hyperuniform system (left) and 

non-hyperuniform system (right). 

 
Figure 4.6 shows an example of the elastic strain energy density distribution Ω(x)  in a 

hyperuniform material associated with the exponential decay function (with γ = 50 ) and its non-

hyperuniform counterpart. Figure 4.7 shows the associated statistics of the strain energy density 

distribution 𝑓(Ω) in both systems. It can be seen that the high strain energy densities usually occur in 

regions with a high degree of clustering of the inclusion phases in both systems. In addition, the 

quantitative statistics indicate that the non-hyperuniform system possesses a significantly larger 

population of high strain energy density values compared to its hyperuniform counterpart, which would 

be due to the distinct large-scale structural characteristics of the two systems. 
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Fig. 4.8 Averaged elastic strain energy density �̅� in the reconstructed materials associated with the 

exponential decay function 𝑓𝐸𝐷(𝑟) (left panel) and the hard sphere function 𝑓𝐻𝑆(𝑟) (right panel) for 

different γ values. 

 

 

Fig. 4.9 Normalized effective Young’s modulus �̅�/𝐸𝑀  of the reconstructed heterogeneous materials 

associated with the exponential decay function𝑓𝐸𝐷(𝑟) (red square) and the hard sphere function 𝑓𝐻𝑆(𝑟) 
(black circle) for different 𝛾 values. 
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Figure 4.8 shows the averaged local strain energy density  Ω̅ defined as 

Ω̅ =
1

V
∫Ω(𝑥)𝑑𝑥      (4.24) 

where V is the volume of the system, for systems associated with both the hard sphere function 𝑓𝐻𝑆(𝑟) 

and the exponential decay function 𝑓𝐸𝐷(𝑟) for different cut-off distances γ. It can be seen that for both 

correlation functions, the non-hyperuniform systems generally possess a larger  Ω̅ compared to the 

corresponding hyperuniform systems, which would mainly due to the excessive number of high Ω states 

in the former. Figure 4.9 shows the normalized effective Young's modulus �̅�/𝐸𝑀 of the reconstructed 

heterogeneous materials, i.e., �̅� = 𝜎/𝜖, where 𝜎 is the average tensile stress in the system and 𝜖 is the 

applied tensile strain. Consistent with the trends in  Ω̅ , we see again that the non-hyperuniform systems 

generally possess a higher  𝐸 ̅ compared to the corresponding hyperuniform systems. A possible 

reason for the observed smaller Ω̅ and 𝐸 ̅ in hyperuniform systems is the higher degree of uniformity in 

the distribution of clusters on large length scales. This would effectively lead to a lower degree of stress 

concentration in such systems and thus, an overall lower elastic energy and smaller modulus.  

It is interesting to note that the contrast between  �̅� of the hyperuniform and non-hyperuniform 

systems associated with the exponential decay function 𝑓𝐸𝐷(𝑟) is significantly stronger than that for 

systems associated with the hard sphere function 𝑓𝐻𝑆(𝑟). As discussed in Sec. IV, due to the nature of 

𝑓𝐻𝑆(𝑟) and the associated original equilibrium hard sphere system that is close to hyperuniformity, the 

structural distinctions between the hyperuniform and non-hyperuniform systems associated with 𝑓𝐻𝑆(𝑟) 

are much smaller on both small and large length scales. This has led to a weaker contrast between Ω̅ 

of the hyperuniform and non-hyperuniform systems and thus, a weaker contrast between �̅�. 

 

4.5.3 Brittle fracture analysis 

We now study the brittle fracture behavior of the reconstructed systems. As briefly discussed in chapter 

4.5.2, in the LPM the continuum is modeled as a regular array of material points interacting with near 

neighbors and thus, fracture is naturally captured via breaking of bonds between the material points. 

The same Young's modulus and Poisson's ratio for the inclusion and matrix phases as in Sec. V.B are 

also used here. In addition, the critical stress for bond breaking is set to be σc = 950  MPa. We note 
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that similar to the elastic analysis, although the exact value of the fracture strength σf depends on the 

choice of σc, the conclusions drawn here are not affected by σc. A uniaxial load is applied to the square 

RVE of the reconstructed materials under the quasi-static loading condition, with a strain rate dϵ/dt =

10−7per loading step and a total of N = 40,000 loading steps are used. After each loading step, the 

stress and strain distributions in the RVE are computed and each bond is checked for possible breaking. 

If the stress in a bond is greater than the critical stress σc, this bond (i.e., the connection between two 

materials points) is removed from the system, which corresponds to the nucleation of a micro-void. This 

will lead to a significant change of the stresss/strain distributions in the next loading step. The reaction 

force F (and the uniaxial tensile stress) is computed at each loading step. The material is consider to 

fail when a abrupt drop is observed in F. The fracture strength is then computed from the maximum 

reaction force, i.e., σf = 𝐹𝑚𝑎𝑥/𝐴 , where 𝐴 is the cross-sectional area of the RVE. 

 

Fig. 4.10 Growing cracks in the reconstructed hyperuniform material (left) and its non-hyperuniform 

counterpart (right) associated with 𝑓𝐸𝐷(𝑟) and γ = 50 pixels generated using LPM simulations. 
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Fig. 4.11Reaction forces as a function of tensile strain 𝜖𝑇 in the two materials shown in Fig. 4.10 under 

quasi-static uniaxial loading condition. 

 

Figure 4.10 shows an example of our brittle fracture simulations of the reconstructed hyperuniform 

material and its non-hyperuniform counterpart associated with 𝑓𝐸𝐷(𝑟)  and 𝛾 = 50  pixels. The 

corresponding reaction forces as a function of tensile strain 𝜖𝑇 is shown in Fig. 4.11, which is overall 

an increasing function of 𝜖𝑇. We note that the small oscillations in the 𝐹 − 𝜖𝑇, which are due to dynamic 

method for solving the LPM equations and will vanish in the limit of zero strain rate, do not affect the 

calculation of the fracture strength. It can be clearly seen in Fig. 4.11 that the hyperuniform material 

possesses a much higher maximal reaction force 𝐹𝑚𝑎𝑥 and thus, a higher fracture strength σf than the 

corresponding non-hyperuniform material. 

The same analysis is applied to all systems with 𝜙 = 0.3 reconstructed in Sec. IV, and the obtained 

fracture strengths of the hyperuniform materials vs. the corresponding non-hyperuniform materials are 

shown in Fig. 4.12. We can see that for the systems associated with the exponential decay function 

𝑓𝐸𝐷(𝑟) , the hyperuniform systems generally possess a higher fracture strength σf  than the 

corresponding non-hyperuniform systems. Specifically, σf of the hyperuniform materials can be larger 
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than that for the corresponding non-hyperuniform materials by as large as 20%. However, for systems 

with the hard sphere function 𝑓𝐻𝑆(𝑟), the hyperuniform systems possess similar and even slightly 

smaller σf  compared to their corresponding non-hyperuniform counterparts. We note that this 

observation is also consistent with the trend observed in the effective Young's modulus, i.e., the 

contrast between the hyperuniform and non-hyperuniform systems associated with the exponential 

decay function is generally larger than that for systems associated with the hard sphere function. This 

again is attributed to the smaller structural distinctions between the hyperuniform and non-hyperuniform 

systems associated with 𝑓𝐻𝑆(𝑟) on both small and large length scales. 

 

Fig. 4.12 Fracture strengths of the hyperuniform materials vs. the corresponding non-hyperuniform 

materials associated with the exponential decay function 𝑓𝐸𝐷(𝑟) (red square) and the hard sphere 

function 𝑓𝐻𝑆(𝑟) (black circle). 
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To understand why hyperuniform materials generally possess superior fracture behavior, we 

further examine the mechanisms for the nucleation and growth of the cracks in the reconstructed 

systems. Specifically, due to the larger population of local high strain energy states in the non-

hyperuniform materials, it is expected that a larger number of cracks are nucleated in such systems 

compared to their hyperuniform counterparts at the same loading level. This is evident from Fig. 4.10, 

which shows the distribution of cracks before the overall material failure occurs. It can be seen that the 

hyperuniform material contains a single major crack in the matrix phase, which indicates the failure is 

mainly due to the continuous growth of individual dominant cracks in the system. In contrast, the non-

hyperuniform material contains a large number of smaller cracks, which start to connect to one another 

and form a percolating large crack across the entire system. Therefore, the major failure mechanism in 

the non-hyperuniform materials is the fast growth and percolation of many small cracks, which under 

the same loading condition leads to a lower fracture strength than that of the corresponding 

hyperuniform materials. 

 

4.6 Conclusions and discussions 

In this chapter, we have employed a stochastic optimization procedure to systematically generate 

realizations of hyperuniform heterogeneous materials associated with two distinct two-point correlation 

functions, i.e., the exponential decay function 𝑓𝐸𝐷(𝑟)  and the hard sphere function 𝑓𝐻𝑆(𝑟) , which 

control the short-range order in the reconstructed materials. For purpose of comparison, corresponding 

non-hyperuniform materials possessing the same short-range order have also been reconstructed and 

analyzed. We found that the short-range correlations imposed by the oscillating hard sphere function 

𝑓𝐻𝑆(𝑟) are compatible with the constraint on large-scale local volume fraction fluctuations and thus, 

hyperuniformity is more easily achieved in the systems associated with 𝑓𝐻𝑆(𝑟). On the other hand, the 

monotonic decaying function 𝑓𝐸𝐷(𝑟) is not automatically compatible with the hyperuniform constraint 

and the reconstructed hyperuniform and non-hyperuniform materials associated with this function 

possess distinct structural characteristics on large length scales. 
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In addition, we have investigated the mechanical performance of the reconstructed hyperuniform 

materials and their non-hyperuniform counterparts including both elastic and failure behaviors using 

the LPM simulations. We found that the hyperuniform materials generally possess a smaller Young's 

modulus than their non-hyperuniform counterparts. However, the hyperuniform materials are found to 

be more resistant to brittle fracture, with a significantly higher fracture strength compared to the 

corresponding non-hyperuniform materials. This superior mechanical behavior is attributed to the lower 

degree of stress concentration in the material resulting from the hyperuniform microstructure, which 

results in different failure mechanisms in different systems. Although we have focused on 2D systems, 

we expect that the conclusions drawn here also hold for 3D hyperuniform materials, as the general 

mechanisms for observed mechanical performance do not depend on spatial dimensions. 

Designing heterogeneous materials with superior mechanical properties especially failure resistance is 

a topic of great interest. Our study here suggests a possible avenue to achieving this goal, i.e., by 

imposing hyperuniformity in the system. The realizations of the hyperuniform materials can be easily 

fabricated using 3D printing. It is also interesting to see whether existing materials with a high fracture 

resistance such as certain natural and synthesized composites would possess a nearly hyperuniform 

microstructure. 
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5. COLLECTIVE CELLULAR DYNAMICS IN ECM 

 

5.1 Introduction  

Collective cellular dynamics in three-dimensional extracellular matrix (ECM) plays a central role 

in many physiological processes including morphogenesis, wound healing and particularly tumor 

metastasis[51-53]. These processes, such as the formation of tubular structures during the 

development of branched organs [54], the repair of epithelial wounds [55, 56] and the growth of vessels 

during tumor angiogenesis [57], involve highly orchestrated multicellular dynamics over large spatial 

and temporal scales. Quantitative measurement of these length and time scales provides key 

information that allows us to distinguish individual from emergent multicellular cellular behaviors.  

Coordination between cells requires efficient cell–cell communications in the forms of chemical 

[58], electrical [59] or mechanical signals [60, 61]. The need to overcome physical barriers during 3D 

migration [62] and the excellent force transmission within the ECM [63, 64] strongly suggest a role for 

mechanical cues in orchestrating collective cancer invasion. 

The mechanical interaction between cells involves force generation, propagation and sensation. The 

three steps do not occur in sequence but rather are coupled dynamically to maintain tissue homeostasis 

[65]. In particular, traction force from one cell will remodel the local geometry and elasticity of the ECM 

[66] therefore modulating the force generation of nearby cells [67]. The presence of direct or ECM-

mediated intercellular feedback mechanisms has suggested the notion of collective force generation, 

especially in the context of tumor metastasis [68]. Indeed, it has been observed that tumor organoids 

exert highly organized traction forces [69], while isolated individual cells generate fluctuating forces that 

vary significantly from one cell to another [70].  

To further investigate collective force generation during cancer cell migration, here we present a 

phenomenological model in FIG. 5.1 based on the recently developed tumor diskoid in geometrically 

micropatterned ECM (DIGME) system which is a mechanical-based strategy that allows easy 

engineering of the shape of 3D tissue organoid, the mesoscale ECM heterogeneity, and the fiber 

alignment of collagen-based ECM all at the same time by only setup a dish-like cell-collagen solution 

within three-dimensional ECM [71]. In our model, cell–cell communication is characterized by a single 
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parameter that quantifies the correlation length of cellular migration cycles. Specifically, we consider 

that each tumor cell undergoes a series of periodic contraction cycles from its migration machinery. For 

simplicity, the contraction cycles of all of the cells are considered to possess the same periodicity. Each 

cell is also characterized by a unique contraction phase, which is spatially correlated with that of other 

cells via an inverse exponential function with the correlation length a (i.e. exp(-r/a)). We devise a 

stochastic reconstruction method to generate realizations of contracting cell colonies with specific 

phase correlation functions and correlation length a. The deformation field resulting from collective cell 

contraction with different 𝑎  values is then computed and quantitatively compared with the 

experimentally measured deformation field in the breast cancer DIGME system in order to identify the 

correlation length a for the system.  

 

Fig. 5.1 Preparation and collective migration of a circular DIGME. A Schematics showing the steps of 

forming a DIGME device. B1-B3 Top views of a diskoid in 3D ECM. C1-C3Manually identified 3D cell 

centers and morphological phenotypes corresponding to B1-B3 
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Our study shows that as the correlation length increases from 0 (i.e. the case where the cell 

contractions are completely random), the size of the region of cells with similar contraction phases also 

increases. In the limit a →  ∞, the entire cell colony is completely synchronized and all cells contract 

simultaneously. For small a values, the large fluctuations in individual cell contraction phases smooth 

out the temporal fluctuations in the time-dependent deformation field in the ECM. On the other hand, 

for large a values, the periodicity of individual cell contraction cycles is clearly manifested in the 

temporal variation of the overall deformation field in the ECM. This generic dependence of temporal 

variation of the deformation field on a is utilized to identify the correlation length in DIGME. Through 

quantitative comparisons of the simulation results and experimental data, we find that the correlation 

length for collective force generation in the breast cancer DIGME system is a ≈  25 μm, which is 

roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell 

correlation length is fiber-mediated stress propagation in the 3D ECM network in DIGME [64].  

 

5.2 Methods  

 

5.2.1 Cell culture and 3D patterning  

First, we need to thank A.Alobaidi and B.Sun, etc., for efforts in the experimental part.  High-

concentration type I rat tail collagen (9.95 mg m −l 1 ,Corning) was diluted with Dulbecco’s modified 

Eagle’s medium, phosphate-buffered saline (PBS, 10×) and sodium hydroxide (NaOH, 0.1M) to a 

concentration of 2mgml−1 with pH 7.4. All solutions were held and mixed at  4 °C, prior to the gelation 

process at 37 °C. To create 3D patterned cell disks, we employed the DIGME method described 

previously [71]. Briefly, a stainless-steel cylinder was used to mold a well in the collagen gel. Then high-

density human breast carcinoma cells (MDA-MB-231/GFP, Cell Biolabs) were mixed with neutralized 

collagen solution and used to fill the molded well. The sample was placed in a tissue culture incubator 

at 37 °C with 5% CO2 for 3 h then moved to an on-stage incubator for imaging.  
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5.2.2 Micromechanical model for tumor DIGME  

Here we develop a 2D micromechanical model for the tumor DIGME. Specifically, the ECM is 

modeled as a nonlinear elastic continuum with strain hardening behavior and elastic moduli K =

 150 Pa  (bulk modulus) and μ =  100 Pa  (shear modulus) [72], which has been shown to correctly 

capture the mechanical behavior of ECM. As we will show below, the exact values of the elastic moduli 

do not affect the determination of the cell correlation length in the system. In addition, we note although 

a collagen network generally exhibits viscous behavior we believe it is legitimate to model it as a 

nonlinear elastic medium in the current work. This is because the characteristic periodicity for cellular 

contraction (∼220 min) in our DIGME system is generally much larger than the relaxation time scale 

for the viscous behavior of collagen gels (∼30s).  

The cells, which are embedded in the ECM, are modeled as equal-sized 2D circular disks. Initially, a 

fixed number of non-overlapping disks are randomly placed in a square simulation domain with periodic 

boundary conditions. The disk packing is subsequently densified by repeatedly shrinking the size of the 

simulation domain while randomly displacing the disks via the Monte Carlo method. Once a desirable 

cell packing density has been achieved, a circular region representing the tumor diskoid is ‘cut out’ from 

the resulting packing configuration and embedded in the middle region of the ECM. In our simulations, 

the diskoid contains ∼1000 cells with a covering fraction of ∼0.55, consistent with the experimentally 

measured cell density.  

Once the geometrical model for DIGME has been established, the volume-compensated lattice-particle 

method (VCLP) [49] is employed to study the mechanical behavior of DIGME due to cell contraction. 

In the VCLP, the continuum is treated as an ordered network of interacting material points, which obeys 

a cohesive law directly obtained from basic constitutive relationships with analytical solutions. The 

interactions among the material points include both the local pair-wise potential between two particles 

𝑈𝑝𝑎𝑖𝑟 and the multi-body potential among non-local particles 𝑈𝑉, i.e.𝑈 = 𝑈𝑝𝑎𝑖𝑟 + 𝑈𝑣. Accordingly, the 

force field between two neighboring particles only depends on their relative displacement (i.e. pair-wise 

potential), but it also includes a contribution from all the neighboring particles surrounding them (i.e. 

non-local multi-body potential). The VCLP has been successfully applied to study nonlinear failure 
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properties of heterogeneous materials such as particle-reinforced composites, which possesses a 

similar microstructure to the DIGME.  

In our DIGME model we consider each cell to be perfectly bonded with the ECM, and when a cell 

contracts periodically it pulls the ECM bonded to its perimeter inwardly. This is to mimic the effect of 

the pulling forces generated via the contraction of actin filaments and transmitted to ECM fibers through 

focal adhesion during cell migration. During the initial phase of the invasion (the focus of this chapter) 

most cells possess a rounded morphology and the slightly elongated cells do not appear to show any 

patterns of alignment. Therefore, we believe that isotropic contraction is a good approximation for 

studying collective force generation in our DIGME system. In addition, the contraction process occurs 

much faster than the focal motion of the cells, so that the cell positions are considered stationary for a 

few contraction cycles. We consider the cell contraction to be characterized by a sinusoidal function, 

i.e.  

𝛿(𝑡) = 𝛿0|𝑠𝑖𝑛 (2𝜋𝜔𝑡 + 𝜙)|     (5.1) 

where 𝛿(𝑡) is shrinkage of the cell diameter due to contraction with module 𝛿0 chosen to be 15% of the 

cell diameter, 𝜔 =  1/𝑇 is the individual cell contraction frequency (𝑇 is the corresponding period) and 

φ is the phase for cell contraction with respect to a global reference time. It is important to note that in 

our current model possible fluctuations of the individual cell contraction frequency ω are not explicitly 

considered, i.e. we assume that all cells possess identical ω. In general, there are other possible 

sources for the fluctuations, such as variation of ω among different cells and variation of ω in a single 

cell over time. To quantify the effects of these possible dephasing mechanisms we carry out a 

systematic sensitivity analysis by considering a random variation in the single cell contraction frequency 

across different cells or in a single cell over time. The implications of the analysis are provided in 

Chapter 5.4.  

As we will discuss in the following section, the correlation of φ between different cells quantifies 

the degree of collectivization of cell contraction (migration) in the system. For the subsequent 

micromechanical analysis, the contraction of each cell is applied as a time-dependent displacement 

boundary condition for the ECM; and the fixed zero displacement boundary conditions are applied to 
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the external boundaries of the square simulation domain for the ECM. Due to the symmetry of the tumor 

diskoid, the overall effect of cell migration leads to isotropic growth of the diskoid, which can be 

mimicked in the model by isotropically expanding the circular cell packing region (i.e. re-scaling the 

intercellular distances).  

 

5.2.3 Stochastic phase construction for modeling collective cell contraction  

In our system, the tumor cells in the diskoid can migrate and invade the surrounding ECM. During the 

migration, a cell pulls the collagen fibers via contraction of actin filaments to generate locomotion. In 

our model we consider the collective nature of the cell migration to be manifested as the coordinated 

contraction of cells. As described in section 1, we consider that each tumor cell undergoes a series of 

periodic contraction cycles with the same periodicity. In particular, each cell 𝑖 at position 𝑟𝑖 possesses 

an intrinsic contraction phase 𝜙𝑖(𝑟𝑖)  (see equation (5.1)). The degree of collectivization is then 

quantified via the following contraction phase correlation function:  

𝑆(𝑟) =  〈𝜙𝑖(𝑟𝑖) ∙ 𝜙𝑗(𝑟𝑗) 〉      (5.2) 

where 𝑟 = |𝑟𝑖  − 𝑟𝑗| and ⟨⋅⟩ denotes the ensemble average. Without loss of generality, we use an 

exponential correlation function, i.e.  

𝑆(𝑟) = (𝜙1 − 𝜙2)exp (−𝑟/𝑎) + 𝜙2     (5.3) 

where 𝜙1 =
1

𝜋
∫ 𝜙2𝑑𝜙 = 𝜋2/3

𝜋

0
 and 𝜙2 = (

1

𝜋
∫ 𝜙𝑑𝜙

𝜋

0
)

2

= 𝜋2/4 . The parameter a is the correlation length 

that characterizes the degree of collectivization in the system. For example, for 𝑎 =  0, 𝑆(𝑟) = 𝜋2/4, 

indicating that the contraction (migration) of the cells in the system is completely uncorrelated 

(asynchronized). On the other hand, for 𝑎 →  ∞ , S(r) = 𝜋2/3  , indicating that cell contraction 

(migration) is fully synchronized (i.e. all cells contract simultaneously). The major task of our modeling 

effort is to estimate the 𝑎 value in the DIGME from the experimentally measured ECM displacement 

field profile in order to assess the degree of collectivization in such system.  

Collective cell contraction characterized by the phase correlation function equation (5.3) with a 

specific correlation length a can be realized using inverse reconstruction using stochastic optimization. 

Initially, each cell is assigned a phase φ that is randomly selected from [0, 𝜋]. The phase correlation 
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𝑆(𝑟) is then computed from this initial configuration. We define an ‘energy’ as the squared difference 

between the computed and target correlation function S∗(𝑟), i.e.  

E = ∑ [𝑆(𝑟) − 𝑆∗(𝑟)]2𝑟       (5.4) 

Then simulated annealing is employed to evolve the phase distribution in a tumor diskoid. Specifically, 

at each step the phase 𝜙𝑖 of a randomly selected cell i is varied by a random amount 𝛿𝜙, leading to a 

change in the computed 𝑆(𝑟) and thus an energy change ∆𝐸. This variation of 𝜙𝑖 is accepted with a 

probability 𝑝 =  𝑚𝑖𝑛[1, ( 𝑒𝑥𝑝 − ∆𝐸/𝑇) ]. The parameter T is a fake temperature which is chosen to be 

high initially and gradually decreases during the simulation, in order to improve the convergence of the 

algorithm to the global optimum.  

 

5.3 Results  

 

5.3.1 Experimental results  

In order to study collective cancer invasion and force generation in three dimensions, we have 

previously developed a mechanical-based strategy for micropatterning 3D in vitro tumor models, 

namely DIGME [71]. DIGME allows one to control the micro to mesoscale geometry of the ECM 

surrounding cell aggregates. In this study we take advantage of DIGME to create circular diskoids 

consisting of MDAMB-231 cells, a highly invasive breast cancer cell line. We note that although tumor 

spheroids have been widely used as invasion models in previous studies, the diskoid geometry 

employed here leads to a plane strain deformation of the ECM and allows us to more accurately capture 

the cell contraction-induced deformation field in both experiments and subsequent 2D simulations.  
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Fig. 5.2 The 3D tumor diskoid setup. (A) Schematics of the circular diskoid embedded in 3D 

reconstituted type-I collagen matrix. (B), (C) Top views (upper panels) and side views (lower panels) 

of the tumor diskoid immediately after seeding the cells (B) and after 3 d (C). 
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Fig. 5.3 The velocity field of the collagen matrix driven by the tumor diskoid. (A) The velocity field at 

three different time points indicating pushing, transition and pulling phases of the diskoid force 

generation. (B) The spatial–temporal map of the average radial velocity. 

 

As shown in figure 5.2, a circular diskoid is a cylindrical cell aggregate confined in a 3D collagen 

matrix. The diskoid has a high aspect ratio, with a diameter of approximately 920 μm and thickness of 

150 μm. Within 3 d of seeding the cells, collective invasion only slightly changes the initial shape of the 

diskoid. Over the longer term, the invasion is more pronounced in the radial than the vertical direction 

[71]. The morphological distribution and density evolution of the cells resemble the middle plane of 

tumor spheroids [18].  

In order to probe the effects of the mechanical forces generated by the cells, we embedded 1 µm 

red fluorescent particles in the collagen matrix so that the GFP-labeled cells and the matrix deformation 

could be monitored at the same time. In particular, we recorded images at the middle plane of the 

diskoid where such deformation is most significant. For each experiment, we imaged continuously for 

3 d at 5 min intervals, employing particle image velocimetry (PIV) to obtain the velocity field of the ECM 

by comparing images taken 5h apart.  
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We find that there are three distinct phases in collective force generation (figure 5.2(A)). 

Immediately following seeding into the diskoid mold, the tumor diskoid pushes the matrix outward. This 

is due to the initial spreading of the cells and because the cells are closely packed in the diskoid. The 

pushing phase is followed by a period of almost zero velocity, after which the diskoid starts to generate 

a contractive force that pulls the matrix radially inward.  

To better visualize the three different phases, we have calculated the average radial velocity 

⟨𝑣𝑟⟩(𝑡 , 𝑟) over the angle 2π, as shown in figure 5.2(B). The spatial–temporal map shows that the matrix 

velocity field decays at a larger distance, and that the initial stable pushing force is gradually replaced 

by a fluctuating pulling force generated by the diskoid.  

With the time-dependent velocity field highlighting three different phases in the collective force 

generation of the cells, we have also computed the strain field in order to further elucidate the stress 

distribution in the ECM. In particular, we obtain the infinitesimal strain tensor  (𝑡, 𝒓) , which is a 2 × 2 

matrix that varies in space and time. Equivalently, the strain tensor can be characterized by its two 

orthogonal principal directions— eigenvectors 𝑣1(𝑡, 𝒓) and 𝑣2(𝑡, 𝒓) and the corresponding eigenvalues 

𝜆1(𝑡, 𝒓) and 𝜆2(𝑡, 𝒓) .  
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Fig. 5.4 The strain field of the collagen matrix driven by the tumor diskoid. (A) The strain field at three 

different time points indicating pushing, transition and pulling phases of the diskoid force generation. 

The lines represent the two orthogonal directions at each location, and their colors represent the 

corresponding eigenvalues. (B) The spatial–temporal profile of the strain tensor. Top: the spatial–

temporal map of the trace of the strain tensor obtained by circularly averaging the trace of the strain 

field at fixed distance from the center of the diskoid at a given time. Bottom: the spatial–temporal map 

of the principal directions of the strain tensor with respect to the radial direction obtained by circularly 

averaging 𝑆 = < 𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑠𝜃2 > os at fixed distance from the center of the diskoid at a given time. 

Here 𝜃1 and 𝜃2 are the angles between the radial direction and the two principal axes of the strain 

tensor. The quantity |𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑠𝜃2| reaches a maximum of 1 if one of the principal axes is in the radial 

direction, and reaches a minimum of 0 if both principal axes form angles of  45° with respect to the 

radial direction. For both top and bottom panels ⟨⋅⟩ indicates circular average. 
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As shown in figure 5.4(A), in the pushing phase the two principal directions are strongly aligned 

with the radial and tangential directions. The matrix is compressed radially, and extended in the 

tangential direction. On the other hand, during the pulling phase the strain decomposition has much 

larger fluctuations, but overall the matrix is extended in the radial direction and compressed in the 

tangential direction. To further illustrate the quantitative variations of the strain field, we have calculated 

the angular averaged trace of the strain field ⟨𝑇𝑟(𝜖)⟩(𝑡, 𝒓) = ⟨𝜆1(𝑡, 𝒓) + 𝜆2(𝑡, 𝒓)⟩|𝒓|=𝑟  at fixed radial 

distances from the center of the diskoid. As shown in figure 5.3(B), near the boundary of the tumor 

diskoid the ECM is expanded during the pushing phase and compressed during the pulling phase. The 

angular averaged trace of the strain field decays rapidly away from the diskoid center. Also consistent 

with the velocity field, we find that in regions where significant strain is observed, the principal axis of 

the strain tensor aligns with the radial direction. To further decipher the patterns in the spatial–temporal 

evolution of the deformation field in figure 5.3(B), we perform a Fourier analysis which clearly shows 

periodicity in the temporal domain.  

After characterizing the collective traction field of a tumor diskoid, we take advantage of 

computational modeling to address the central question of the report: to what extent do the cells 

coordinately apply traction force to the extracellular matrix.  

 

5.3.2 Simulation results  

In this section, we present our simulation results including the reconstruction of contraction phase 

distributions with specific correlations in the tumor diskoid as well as the subsequent micromechanical 

analysis. Figure 5.5 shows the distribution of the contraction phase in tumor cell aggregates (modeled 

as packings of non-overlapping congruent circles) associated with different phase correlation length a 

obtained via the stochastic reconstruction method described in section 2.3. In the figure, red indicates 

large φ values (∼π) and blue indicates small φ values (∼0). Figure 5.5 shows the scaled target and 

reconstructed phase correlation functions (see equation (5.3)), i.e.  

𝑓(𝑟) = = (𝑆(𝑟) − 𝜙2)/(𝜙1 − 𝜙2)  = 𝑒𝑥𝑝 (−𝑟/𝑎)    (5.4) 
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associated with different correlation lengths 𝑎 . The final squared error (i.e. the energy; see 

equation(5.4)) between the target and reconstruction is smaller than 10−6 for all cases. It can be seen 

from figure 5.5 that the reconstructed correlation functions are virtually identical to the corresponding 

target functions.  

 

 

Fig. 5.5 Simulated contraction phase distributions of closely packed tumor cells (with a covering fraction 

∼0.55). Cells are modeled as non-overlapping congruent circles. The color of each circle (blue to red) 

linearly scales with the contraction phase (0 to π). A stochastic reconstruction method is employed to 

realize configurations of varying phase correlation length a. 

It can be clearly seen in figure 5.5 that as the correlation length 𝑎 increases, the regions with 

similar colors are growing in size, i.e. regions in which the cells possess similar φ values. This indicates 

that regions containing collectively contracting cells are also growing, which is consistent with the 

imposed stronger spatial correlations. In addition, as the correlation length increases, the distribution 

of the φ values also shifts from a uniform distribution (as in the case of a = 0 m) to a bimodal distribution 

(i.e. for a = 50 µm). The reconstructed cell packings with specific phase correlations are then 

mechanically coupled with a continuum ECM model to study collective force generation in circular 

diskoid tumor invasion.  

 

𝛑 

0 
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Fig. 5.6 Scaled phase correlation functions equation (5.4) associated with different correlation lengths 

a. The reconstructed functions (solid symbols) are virtually identical to the corresponding target 

functions (solid lines). 

 

 

Fig. 5.7 Spatial maps showing the magnitude of the radial displacement from simulated tumor diskoids. 

One typical snapshot is shown for each phase correlation length. The color scheme linearly scales with 

the radial displacement magnitude (0 to 1) normalized with respect to the peak displacement value. 

 

We now investigate the deformation of the ECM surrounding the tumor diskoid due to collective 

cell contraction. In particular, each cell is allowed to contract and deform the ECM according to equation 
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with its specific phase φi with respect to a global reference time t0 = 0. The contraction of the cells 

imposes time-dependent displacement boundary conditions at the cell–ECM interfaces, while the outer 

surface of the ECM is considered to be fixed (i.e. with zero displacement). The VCLP method is 

subsequently employed to solve the displacement field in the ECM with the aforementioned boundary 

conditions.  

Figure 5.7 shows snapshots of the displacement field, i.e. the distribution of the magnitude of the 

radial component of the local displacement vector, for different phase correlation lengths. It can be 

clearly seen that as the correlation length increases, the magnitude of displacement at fixed distance r 

from the center of the tumor diskoid increases. This is due to the larger pulling forces generated by 

more collective cell contraction (i.e. with larger phase correlations). In addition, the displacement fields 

for all cases are almost circularly symmetric, which is due to the isotropy of the tumor diskoid.  

Figure 5.8 shows the temporal evolution of the circularly averaged trace of the strain tensor field 

⟨𝑇𝑟(𝜖)⟩(𝑡, 𝒓) = ⟨𝜆1(𝑡, 𝒓) + 𝜆2(𝑡, 𝒓)⟩|𝒓|=𝑟 normalized with respect to⟨𝑇𝑟(𝜖)⟩𝑚𝑎𝑥 in the system for different 

phase correlation lengths, where𝜆1 and 𝜆2 are the eigenvalues of the local strain tensor. The quantity 

⟨𝑇𝑟(𝜖)⟩ characterizes the local volumetric deformation (i.e. the volume strain) of the ECM due to the 

contraction of cells in the tumor diskoid, which results in a state of bi-axial tension in the ECM. 

Consistent with the experimental observation, the principal axis of the local strain tensor is aligned with 

the radial direction.  
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Fig. 5.8 Temporal evolution of the circularly averaged trace of the strain tensor field 

⟨𝑇𝑟(𝜖)⟩(𝑡, 𝒓)/⟨𝑇𝑟(𝜖)⟩𝑚𝑎𝑥  normalized with respect to the peak value ⟨𝑇𝑟(𝜖)⟩𝑚𝑎𝑥  for different phase 

correlation length values. 

 

In addition, we note that increasing the correlation length, i.e. the degree of collectivization in cell 

contraction (force generation), also directly affects the temporal evolution of the circularly averaged 

volume strain profile. Specifically, for the totally uncorrelated case (i.e. with a = 0 indicating a random 

distribution of the contraction phase among the cells), the random fluctuations in the contraction phase 

distribution significantly smooth out the temporal variation in the strain profile. For example, the 

maximum fluctuation of the strain field at the same location but different time points is about 50% and 

the deformation of ECM never vanishes. On the other hand, for the fully synchronized case (i.e. with 
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𝑎 →  ∞, indicating the ideal case that all cells contract simultaneously), a significant temporal variation 

of the volume strain profile that is consistent with the cell contraction period can be identified. It can be 

clearly seen that the deformation field in ECM almost completely vanishes at t ≈ 250n min (where n = 

… 1, 2, 3, ) and reaches peak values at 𝑡 ≈  125 +  250𝑛 min (where n = … 0, 1, 2, ). For intermediate 

correlations (i.e. intermediate a values), as the correlation length increases, the temporal variation in 

the strain profile is more significant. We note that this intrinsic dependence of the temporal variation of 

the deformation field on the spatial correlation length a is sensitive to neither the individual cell 

contraction magnitude nor the exact values of ECM mechanical properties, and thus this property is 

sufficiently robust to be utilized to identify the correlation length in DIGME.  

 

5.3.3 Probing the collectivization in DIGME  

We now utilize the correlation length-specific timedependency feature of the volume strain profile 

to identify the correlation length, i.e. to quantify the degree of collectivization in force generation from 

the experimental data for the DIGME system. We first note that the experimentally obtained volume 

strain profile contains a bi-axial compression state during the initial stage of tumor diskoid evolution, 

which is mainly due to the volumetric expansion of the entire tumor cell colony when seeded in the 

ECM. Since this strain state is not associated with the forces generated via cell contraction during 

collective migration, we exclude this part when comparing with our simulation results.  

For quantitative comparison of the experimental and simulation results, we first normalize the volume 

strain profile with respect to the corresponding peak value and the large-distance asymptotic value, i.e. 

⟨𝑇𝑟(𝜖)⟩∗(𝑡, 𝒓) =
⟨𝑇𝑟(𝜖)⟩(𝑡,𝒓)−⟨𝑇𝑟(𝜖)⟩(𝑡,𝒓→ ∞)

⟨𝑇𝑟(𝜖)⟩𝑚𝑎𝑥
    (5.5) 

For each a value, we shift the phase Φ and re-scale the time with factor γ for the entire volume strain 

profile to minimize the squared error between the simulated and smoothed experimental data, i.e.  

𝐸 = 𝑚𝑖𝑛 [∑ |⟨𝑇𝑟(𝜖)⟩𝑠𝑖𝑚
∗ (𝛾𝑡 + 𝛷, 𝑟|𝑎) − ⟨𝑇𝑟(𝜖)⟩𝑒𝑥𝑝

∗ (𝑡, 𝑟)|
2

𝑟,𝑡 ]   (5.6) 

Then the a value associated with the smallest E will be identified, and considered as the phase 

correlation length for the experimental DIGME system.  



61 
 

 

Fig. 5.9 normalized square error E between the simulated and experimental strain profiles as a function 

of correlation length a. 

 

Figure 5.9 shows the normalized square error E as a function of correlation length a.  The 

normalized square error effectively measures the averaged relative difference of the volumetric strain 

in the ECM obtained from experiments and simulations. The solid symbols show the calculated E 

values (5 realizations were used for each a) and the solid line is the corresponding nonlinear fitting 

result (using a cubic polynomial). Through the aforementioned analysis, we find that the strain profile 

associated with a correlation length a ≈ 25µm minimizes the squared error (see equation above) 

among all a values examined. In our model, the cell size (i.e. the diameter of the circles) is set to be 

10 µm. Thus, the identified correlation length corresponds to the size of about two to three cells. We 

note that our analysis mainly emphasizes the intrinsic dependence of the temporal variation of the 

deformation field (e.g. strain profile) on the correlation length, instead of trying to match the exact 

values of the simulated and experimental deformation fields. Therefore, the obtained correlation 

length is not affected by the different reference states that are used to define the strain field in the 

simulation and experiment (e.g. a global stress/strain free state for the simulation and local reference 

states taken every 5h for the experiment). It is also important to note that the scaling parameter γ in 

equation is related to the individual cell contraction frequency, i.e. 𝛾 =  2𝜋𝜔 = 2𝜋/𝑇. The obtained 𝛾 
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value that minimizes the error corresponds to T = ≈ 1/ω 220 min. We also verify our estimated 

individual cell oscillation periodicity (∼220min) by comparing the experimental value (∼230 ± 30 min) 

obtained by observing individual cells randomly dispersed in an ECM with lower cell density. 

However, it is important to note the oscillation periodicity could also depend on the cellular 

microenvironment, which could lead to the observed discrepancy.  

 

             
Fig. 5.10 Direct comparison of the Fourier transform of experimentally measured spatial-temporal 

profile of the deformation field (left) and the simulation results (right) for a = 25 μm. Results for angularly 

averaged local deformation at 300 µm, 400 µm and 500 µm away from the center of the cell aggregate 

are shown.  

 

In figure 5.10, the plot shows a direct comparison of the Fourier transform of experimentally 

measured spatial-temporal profile of the deformation field and the simulation results. It can be clearly 

seen that both the experimental and simulation data show clear periodicity, indicated by the significant 

peaks associated with a narrow range of k values. In addition, as the distance from the aggregation 

center increases, the magnitude of the peak decreases, indicating the periodicity gets weaker as one 

moves away from the center. We note that the peaks in both experimental and simulation data 

correspond to roughly the same values of k, verifying that the obtained correlation length a ≈ 25 μm 

leads to good agreement of simulation and experimental results. However, the magnitude of the peaks 
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in the simulation data is significantly larger than that in the corresponding experimental data. This 

implies that the periodicity of the simulation data is stronger, possible due to the fact that we have used 

a uniform cell contraction periodicity (frequency) while in the actual DIGME system the individual cell 

contraction periodicity may fluctuate among different cells. The effects of these possible fluctuations on 

the overall spatial-temporal evolution of the deformation field are discussed in the previous section on 

sensitivity analysis. 

 

 

5.4 Discussion and conclusions  

In this chapter we have presented a phenomenological model to probe coordinated force 

generation during collective migration of breast cancer cells. In our model, cell–cell communication is 

characterized by a single parameter that quantifies the correlation length of cellular migration cycles, 

without explicitly considering the detailed mechanisms of the communication. Realizations of 

contracting cell colonies with different correlation lengths are generated using a stochastic 

reconstruction method. We find that the time-dependent ECM strain profile possesses an intrinsic 

dependence on the cell correlation length a. This feature is subsequently utilized to identify the 

correlation length in experiments on cancer diskoid invasion, which leads to a ≈ 25 µm. This 

intermediate correlation length is roughly twice the linear size of the cells in the system. Interestingly, 

such intermediate correlation lengths have also been observed for 2D cell monolayers where the cells 

are either communicating chemically through gap junctions or mechanically through direct contacts.  

It is not surprising that an intermediate correlation length arises from our analysis. The tumor 

diskoid possesses a fairly high cellular density. Thus, it can be expected that the biochemcial and 

biomechanical mechanisms giving rise to long-range cell–cell communications might be suppressed by 

the strong nearest-neighbor screening effects. In 3D collective cell migration, one of the possible 

mechanisms for coordinating collective force generation is collagen fibermediated stress transmission. 

In particular, it has been shown recently that the actomyosin-generated contraction force of a migrating 

cell can propagate to the ECM fibers via focal adhesion sites, leading to a heterogeneous quasi-long-
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range stress network in the ECM [64]. This implies that the local stress state near a particular cell may 

result from the pulling of a distant cell, which in turn biases focal adhesion formation for the current cell 

and its migratory behavior. We expect this mechanism to be important in the tumor diskoid system 

where cells are embedded in a 3D, albeit thin, block of ECM. Another important mechanism for 

collective force generation involves the mechanosensitivity of individual cells. For example, it was 

shown in that cells can adjust their contractile forces according to the forces they experience from other 

cells, which in turn could lead to collective contraction of the entire colony.  

An important question is whether the identified correlation length is intrinsic to breast cancer cells 

or is dependent on the specific system. Based on the aforementioned analysis, we believe the near-

neighbor screening effects could play an important role in the densely packed DIGME system and 

effectively reduce the correlation length among cells. In a more spreadout cell configuration with a much 

lower cellular density we expect to observe a longer correlation length for the tumor cells. Nonetheless, 

this also illustrates the importance of the heterogeneous microenvironment in determining collective 

tumor cell behavior.  

Finally, we note that in our model we have assumed that all cells possess the same contraction 

periodicity (or equivalently frequency) and we ignored any possible fluctuations in these quantities. As 

shown in the supporting information, increasing fluctuations in the contraction periodicity or frequency 

of individual cells will result in less coherent cell contraction and force generation, which would further 

smooth out the temporal variation in the deformation field. This in turn would result in an effectively 

smaller correlation length in the tumor diskoid. This analysis suggests that ignoring the possible 

fluctuations in individual cell contraction frequency and periodicity would lead to an underestimate of 

the correlation length in the system. Therefore, the obtained a = 25 µm from the current study should 

be considered as a lower bound on the correlation length in a rigorous sense. In addition, the possible 

plastic behavior of the collagen network is also not explicitly considered in our current model. The plastic 

behavior of the ECM due to the permanent remodeling of the collagen network by cellular forces will 

result in accumulated plastic strain in the ECM. However, we expect that the temporal variation of the 

overall strain profile still strongly depends on the contraction correlation length, which can be utilized to 
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determine the correlation length. We will investigate these issues in future work using a similar 

procedure to that introduced here. 
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6. LOW-MELTING-POINT ALLOY (LMA)/ POLYMER COMPOSITES FOR DYNAMICAL DRY 
ADHESION TUNING IN SOFT GRIPPING 

 

6.1 Introduction 
 

Applications of rapid and reversible change in mechanical rigidity are common in nature. 

Examples range from muscle-powered motor tasks and sexual reproduction, to spontaneous change 

in shape for predator evasion[101]. Organisms typically perform rigidity tuning with striated muscle 

tissue or hydrostatic skeletons. In echinoderms, such as the sea cucumber, mechanical rigidity can 

also be controlled with catch connective tissue, which is composed of a network of relatively 

inextensible collagenous fibers in a soft protoglycemic gel. These natural composites and structures 

are lightweight and require ~0.1-1 s to change their tensile rigidity by 1-2 orders of magnitude. Such 

properties are essential in order for an organism to perform mechanical work, support heavy loads, and 

control internal stress distributions while still preserving their mechanical versatility. 

Rigidity tuning is also important in engineered systems, such as robotics where control of 

actuation and mechanical response is often of paramount importance. There has been growing interest 

and activity in ‘soft’ robotics composed almost entirely of soft matters such as elastomers, gels, fluids 

and colloidal suspensions[182]. These soft machines exhibit similar elastic and rheological properties 

to biological systems. This leads to engineered systems and machines with significantly different 

properties and applications than systems composed of highly stiff materials such as metals, hard 

plastics and silicon. Many soft robotic systems seek to exploit rigidity tuning for unique function similar 

to the examples from nature mentioned above. Specifically, multifunctional composite materials as one 

of the soft robotic systems in application, especially those with tunable stiffness, have broad 

applications in biomimetic and soft robotics for manufacturing, healthcare, and aerospace industries 

[101][102].  

Some common engineering materials used to control stiffness make use of smart fluids or shape 

memory materials. Smart fluids, such as magnetorheological (MR) or electrorheological (ER) fluids, 

rely on stimulus-induced ordering of nano or micrometer-sized particles to change their viscosity. In 

order to use this effect to create controllable stiffness materials, smart fluids must be encapsulated to 
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allow the application of mechanical loads without loss of fluid. When confined, the MR- or ERfluids can 

be used to change the mechanical properties of the supporting material. However, these materials can 

suffer from high mechanical losses, and in fact, one of their main applications is in tunable dampers. 

Furthermore, the particles can settle out of solution over time and lose functionality[102]. 

Shape memory materials, such as shape memory polymer (SMP) and shape memory alloy 

(SMA), are able to change stiffness through stimulus-induced changes in molecular structure. SMPs 

have been produced that can change states by exposure to chemical or photo stimuli. 12 However, the 

majority of shape memory materials operate through temperature changes, where the material softens 

as it heats up, undergoing a large change in stiffness once a critical temperature is reached. SMPs can 

have a large relative stiffness change and a wide range of possible rest stiffness but must be applied 

indirectly through the use of external heaters. SMPs can be mixed with electrically conducting particles 

to remove the need for a separate heater, but the addition of particles decreases the range of stiffness 

and loss some functionality[106].  

Conductive propylene-based elastomer (cPBE), as another tunable composite, can rapidly and 

reversibly changes its mechanical rigidity when powered with electrical current. When powered with 

electrical current, the cPBE heats up and softens when the temperature exceeds a critical softening 

point. With certain supplied electrical power, the effective elastic modulus of the composite reversibly 

changes between 1.5 and 37 MPa. This approximately corresponds to the difference in rigidity between 

human cartilage and skin. A central feature of the composite is the resistance of the embedded cPBE 

to fracture. While LMPA and carbon-filled thermoplastics or waxes can also be directly heated with 

electrical current, they are susceptible to brittle failure when in their rigid state and this can prevent 

initial activation. While such materials may be appropriate for reversibly changing flexural rigidity [101], 

they cannot be used in applications that require changes in tensile rigidity.  

In addition, other current generations of multifunctional composite materials often suffer from 

slow actuation, low robustness, poor reversibility, or sometimes a combination of these, which can be 

attributed to the nonsystematic, trial-and-error approaches for the development of such composites 

[103][104][105][106]. 
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Hence, a controllable stiffness material based on the combination of a conductive, phase-

change-material (low-melting-point alloy (LMPA/LMA)), and a soft, stretchable encapsulation layer 

(poly(dimethylsiloxane) (PDMS)) has been introduced and studied in this chapter to resolve those 

limitations. Compared to previous elastomer-based multifunctional materials, such as Conductive 

Propylene Based Elastomers (CPBEs) [101], the use of LMA as the conducting phase increases the 

electrical conductivity of the composite, and allows for drastic rigidity change when LMA is melted 

quickly under Joule heating, while the encapsulating PDMS allows the microstructure to maintain its 

pre-molten shape in order to preserve its intended electrical and mechanical properties. The LMPA 

also reduces the density of the composite, reduces the overall stiffness of the composite, and most 

importantly, makes possible the dynamical tuning of the thermal expansion of the overall composite 

before and after the melting of the LMA phase. This new feature might hold the key to achieve very 

high on/off ratio soft dry adhesives, which has ample applications in compliant gripping of delicate 

objects.    

In this chapter, we investigate the structure-property relationships and provide systematically 

simulation analysis for a novel class of binary-phase conductive composites with optimized properties 

including tunable stiffness and thermal expansion for soft robotics applications. To realize this new 

concept of soft multifunctional composites, we propose to integrate computational material modeling 

and optimization seamlessly with advanced manufacturing and experimental characterization. 

Specifically, our procedure generalized the widely-used Yeong-Torquato reconstruction procedure by 

including a damped oscillation exponential two-point correlation function, i.e., 𝑆2(𝑟) = exp(−𝑟/

𝑎) cos (𝑤𝑟), for quantitatively represent the LMA composite microstructure.  By systematically tuning 

the characteristic correlation length, 𝑎, and the spatial correlations within the inclusion phase, 𝑤, one 

can produce a spectrum of three-dimensional binary-phase composite with various morphology. Also 

for the purpose of quantify the phase variation, thermal expansion behavior has been modeled 

dynamically without considering specific thermos-mechanical coupling since the study more focus on 

the crack distribution effect instead of evolution of the exactly process of the Joule heating. 
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We also study the mechanical performance of the generated binary-phase composite 

microstructure including both elastic and failure behaviors using a volume-compensated lattice-particle 

method. By comparing the composite sample with different gripped materials, we find although the 

stress distribution on the interface is more balanced if the gripped sample is harder, the stress 

concentration still locates on the intersection of the harder LMPA and the bottom gripped sample. In 

addition, we find the composite without any phase changed has significant differences on the rigidity 

than its counterpart, the pre-existed crack microstructure induced by thermal expansion, up to 6 times.  

The rest of the chapter is organized as follows: In 6.2, we provide definitions of correlation 

functions, the quantities that are relevant to microstructure reconstruction and method we are using for 

mechanical analysis. In 6.3, we present the stochastic reconstruction procedure for generating LMPA 

composite and respectively provide detailed analysis on the structural and mechanical properties of the 

generated materials. In Sec.6.4, we make concluding remarks. 

 

6.2 Simulation Methods 

6.2.1 Microstructure quantification via spatial correlation functions  

In general, the microstructure of a heterogeneous material can be determined by specifying the 

indicator functions associated with all of the individual phases of the material [3]. Without loss of 

generality, we focus on two-phase materials (binary medium) in this work. The generalization of the 

subsequent discussion to a multiple-phase system is straightforward.  

Consider a two-phase heterogeneous material with volume V in either two- or three-dimensional 

space. This material contains two disjoint phase regions: phase 1 with a total volume 𝑉1 and volume 

fraction 𝜑1 , and phase 2 with a total volume 𝑉2 and volume fraction 𝜑2. Based on the nature of the two-

phase material, it is clear that 𝑉1 ∪ 𝑉2 = 𝑉 and 𝑉1 ∩ 𝑉2 = 0.  In the following discussions, we consider 

phase 1 as our phase of interest, and the indicator function 𝐼(1)(𝑥) of phase 1 is given by  

                                                         𝐼(1)(𝑥) = {
1, 𝑥 ∈ 𝑉1

0, 𝑥 ∈ 𝑉2
                                                            (6.1) 

The indicator function 𝐼(2)(𝑥) for phase 2 can be defined in a similar fashion, and it is obvious that 
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                                                         𝐼(1)(𝑥) + 𝐼(2)(𝑥) = 1                                                          (6.2) 

The n-point correlation function (or n-point probability function) 𝑆𝑛
(1)

 for phase 1 is then defined 

as: 

                                    𝑆𝑛
(1)(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) = ⟨𝐼(1)(𝒙𝟏)𝐼

(1)(𝒙𝟐)… 𝐼(1)(𝒙𝒏)⟩                               (6.3) 

where the angular brackets “⟨… ⟩” denote ensemble averaging over independent realizations of 

the random material. The two-point correlation (probability) function 𝑆2
(1)

 can be directly derived from 

Eq. (3), i.e., 

                                                    𝑆2
(1)(𝒙𝟏, 𝒙𝟐) = ⟨𝐼(1)(𝒙𝟏)𝐼

(1)(𝒙𝟐)⟩                                            (6.4) 

If the material system is statistically homogeneous, i.e., the joint probability distributions 

describing the random microstructure are invariant under a translation (shift) of the space origin, 𝑆2
(1)

 is 

a function of the relative displacements, i.e.,  

                                              𝑆2
(1)(𝒙𝟏, 𝒙𝟐) = 𝑆2

(1)(𝒙𝟏 − 𝒙𝟐) = 𝑆2
(1)(𝒓)                                       (6.5) 

where 𝒓 = 𝒙𝟐 − 𝒙𝟏. If the material system is further statistically isotropic, i.e., the joint probability 

distributions for the microstructure are invariant under rigid-body rotation of the spatial coordinates, 

𝑆2
(1)

  becomes a radial function, depending only on the scalar separation distances, 

                                                     𝑆2
(1)(𝒙𝟏, 𝒙𝟐) = 𝑆2

(1)(|𝒓|) = 𝑆2
(1)(𝑟)                                         (6.6) 

 

In the ensuing discussions, we will drop the superscript denoting the phase index in 𝑆2
(1)

for 

simplicity. Without further elaboration, 𝑆2  always denotes the two-point correlation function for the 

phase of interest. Based on its definition, we can easily obtain the limiting values of 𝑆2, i.e., 

lim
𝑟→0

𝑆2(𝑟) =  𝜑1 and  lim
𝑟→∞

𝑆2(𝑟) =  𝜑1
2                                       (6.7) 

Eq. (6.7) can also be derived from the probability interpretation of 𝑆2, i.e., the probability of two 

random chosen points separate by distance r, both falling into the phase of interest. In general, the n-
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point correlation function 𝑆𝑛 provides the probability that a randomly selected n-point configuration with 

all of the points falling into the phase of interest.  

 

Fig. 6.1 Schematic illustration of the probability interpretation of the correlation functions employed in 

this work. The line segments (two-point configurations) and triangles (three point configurations) 

illustrate the events that contribute to the corresponding correlation functions. 

 

6.2.2 Stochastic 3D microstructure reconstruction  

In this section, we will introduce the general simulated annealing reconstruction procedure 

originally developed by Yeong and Torquato[39][40]. In the original YT framework, the reconstruction 

problem is formulated as an “energy” minimization problem, in which the energy 𝐸 is defined as the 

sum of the squared difference between a set of target correlation functions 𝑓∗(𝑟) computed from the 

microstructure of interest and the corresponding functions 𝑓(𝑟)  computed from an intermediate 

microstructure, i.e., 

𝐸 = ∑ [𝑓(𝑟) − 𝑓∗(𝑟)]2∞
𝑟=0       (6.8) 

The energy minimization problem is then solved using the simulated annealing method [54]. 

Specifically, starting from a random initial trial microstructure which contains a fixed number of voxel 

for each phase, the positions of two randomly selected voxels with different phases are switched, which 

results in a new trial microstructure. The tomographic radiographs and the correlation functions for the 
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old and new trial microstructures are computed to obtain the associated energy 𝐸𝑜𝑙𝑑  and 𝐸𝑛𝑒𝑤. The 

probability that the new trial microstructure will be accepted to replace the old trial microstructure is 

given by, 

𝑃𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 {1, exp (
𝐸𝑜𝑙𝑑

𝑇
) exp (

𝐸𝑛𝑒𝑤

𝑇
)⁄ }                              (6.9) 

where 𝑇 is an effective temperature used to control the acceptance rate for energy-increasing 

trial microstructures. In the beginning of the simulated annealing process, the parameter 𝑇 is chosen 

to be relatively high in order to achieve an acceptance probability of approximately 0.5. Then 𝑇 is 

gradually reduced according to a prescribed cooling schedule as the simulation proceeds in order to 

allow the energy to converge to a very small value if not zero. In the current work, we choose an 

exponential cooling schedule, i.e., 𝑇(𝑡) 𝑇0⁄ = 𝛾𝑡, where 0.95 <  < 0.99. As 𝑇 gradually decreases, the 

acceptance probability for energy-increasing trail microstructure will also decrease. Eventually the 

energy converges to a (local) energy minimum, which is associated with microstructure that is very 

close to the actual material structure. In practice, the global energy minimum is extremely difficult to 

reach, and we claim the reconstruction is successfully accomplished if the energy 𝐸 drops below a 

prescribed tolerance value (e.g., 10-6).  

During the reconstruction process, after a new trial microstructure is generated, the energy E 

given in Eq. (21) needs to be computed to determine whether the new microstructure should be 

accepted or not based on the probability (18). In a typical reconstruction, a large number of trial 

microstructures (e.g., several millions) will be generated and thus, it is crucial that E can be computed 

efficiently for the procedure to be computational feasible. We have developed highly efficient algorithms 

to compute  𝐸1 and 𝐸2, by re-using the information stored for the old trial microstructure [33]. The basic 

idea is based on the fact that the new and old trial microstructures only differ from one another by a 

pair of switched pixels. The majority of the two-point statistics and attenuated intensity in the 

tomographic radiographs are not affected by such pixel swapping. Therefore, there is no need to re-

compute these data from the new microstructure from scratch, and only the affected values should be 

identified and updated in order to compute the energy of the new microstructure using Eqs. (19)-(21). 

The detailed procedures for updating various correlation functions and simulated projections after a 
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pixel swapping are respectively discussed in detail in Refs. [46] and [33], which will not be repeated 

here. 

 

6.2.3 Volume-compensated lattice-particle (VCLP) method for dynamic fracture simulations  

VCLP with first two nearest neighbor square packing is also used in the LMPA/polymer composite 

system. The key idea of the proposed VCLP as aforementioned is that two potential terms are used to 

describe the strain energy U𝑐𝑒𝑙𝑙 stored in a unit cell: the energy stored in the local pair-wise neighboring 

springs Us and the energy associated with the volume change of a unit cell 𝑈𝑣 [62][63][64][65]. Note 

that only a half spring is used in each unit cell while calculating the strain energy, which avoids 

overlapping. Mathematically, the above hypothesis can be expressed as 

U𝑐𝑒𝑙𝑙 = 𝑈𝑠 + 𝑈𝑣      (6.10) 

The strain energy stored in the springs has a different form from the hexagonal packing since 

two types of spring is adopted in square packing. The strain energy Us is 

U𝑠
𝑠𝑞𝑢𝑎𝑟𝑒

=
1

2
∑ 𝑘1

𝑠𝑞𝑢𝑎𝑟𝑒
(𝛿𝑙𝑖𝑗)

23
𝐽=0 +

1

2
∑ 𝑘2

𝑠𝑞𝑢𝑎𝑟𝑒
(𝛿𝑙𝑖𝑗)

27
𝐽=4   (6.11) 

 

where superscript s indicated the square packing, k1
s and k2

s  are the spring stiffness parameters 

for springs connecting a center particle with the nearest and the second nearest neighbors, 

respectively. For plane strain case, the strain energy of volume change of a unit cell is 

U𝑣
𝑠𝑞𝑢𝑎𝑟𝑒

=
1

2
𝑉𝑠𝑇𝑠(휀𝑣

𝑠)2 = 2𝑅2𝑇𝑠(휀11
2 + 2휀11휀22 + 휀22

2 )  (6.12) 

 

Comparing the components with the stiffness matrix of 2D isotropic homogeneous materials, the 

potential coefficients can be determined uniquely as 

𝑘1
𝑠 =

2𝐸

1+𝑣
, 𝑘2

𝑠 =
𝐸

1+𝑣
, 𝑇𝑠 =

𝐸(4𝑣−1)

2(1+𝑣)(1−2𝑣)
    (6.13) 

 

Thus, the interaction force within half spring can be obtained as 
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𝑓𝑖𝑗 = {
𝑘1

𝑠𝑞𝑢𝑎𝑟𝑒
𝛿𝑙𝑖𝑗 + (

2√2−3

2
) 𝑇𝑠(∑ 𝛿𝑙𝑖𝑗),         𝐽 = 0,1,2,37

𝐽=0

𝑘2
𝑠𝑞𝑢𝑎𝑟𝑒

𝛿𝑙𝑖𝑗 + (
2√2−3

2
) 𝑇𝑠(∑ 𝛿𝑙𝑖𝑗)

7
𝐽=0           𝐽 = 4,5,6,7

   (6.14) 

 

As a short summary, the model parameters under 2D elastic cases have been derived for square 

packing.  The three-dimensional coefficients can be derived in the equivalent way. 

In the fracture model, the failure behavior of materials is governed by a spring-based critical 

stretch criterion. The crack initiation and propagation are the natural outcome of the spring breakage. 

No additional external criteria are required. The failure parameter is defined as  

𝑠𝑗
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝛼𝑗 ∙ 𝑅      (6.15) 

Where 𝑠𝑗
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and 𝛼𝑗 is the critical stretch and failure parameter for the 𝑗th spring, respectively. 

𝑅 is the particle radius. 

The spring connected each pair of particle can be treated as permanently broken whenever the 

stretch length of the bond is longer than the criterion. However, within the effective length, there’s no 

any plastic constrain here but only elastic properties. 

 

 

6.3 Microstructure reconstruction and simulation Results  

6.3.1 Composite microstructure modeling and reconstruction  

LMA-polymer composites consist of nanoscale LMA particles and the polymer. In order to 

quantitatively describe the material structure in the mesoscale, coarse-grained binary microstructure 

representation of the multi-phase composite has been generated. In the microstructure, since all the 

nano-particles are too small to be captured in the reconstruction length scale, the continued inclusion 

with a volume fraction of 30%, a set of effective mechanical, thermal properties and matrix phase in 

Fig.6.1 would be sufficient to present the porous LMA (air bubbles) and polymer (with voids), 

respectively. 

Four types of 2-point correlation functions shown in the Fig.6.2 are employed here to control the 

LMA-polymer composites material microstructure.  
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Fig. 6.2 The microstructure model of LMA/polymer composite 

 
The damped oscillation exponential function is given by 

𝑆2 = exp (−
𝑟

𝑎
) cos (𝑤𝑟)    (6.15) 

Where 𝑎  is a characteristic correlation length of the material and 𝑤  determines the spatial 

correlations within the inclusion phase. Here we fix  𝑎 = 20𝜇𝑚  and consider various correlation 

parameter 𝑤. Three dimensional virtual microstructures associated with the obtained correlations are 

then generated using stochastic reconstruction technique(Fig.6.3) 

 

Fig. 6.3 Four damped oscillation exponential function with different spatial correlations 𝑤 of LMA 

 
Four different parameters of 𝑤 have been chosen as 0, 0.05, 0.1 and 0.2 in this study to generate 

various microstructure of the composites. As shown in the two-point correlation function plot, the small 
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cluster will be more easily to distinguish when the parameter w is getting larger. Since the correlation 

function describe the probability to find the phase of interest under certain pixel distance, the sharper 

valley in the function will provide a more separable phase structure. A better idea can be delivered from 

the figure of top view of the three-dimensional reconstruction result.  

 

 

Fig. 6.4 The top view of 3D microstructure reconstruction results with four different spatial correlations 
of LMA 

 

6.3.2 Tuning maximal pulling force via heat-softening of LMA  

A Representative Volume Element (RVE) containing the virtual composite material, a 

homogeneous gripped sample and their interface are constructed, which mimics the situation where 

the composite, the low-melting-point alloy (LMA) and polymer, is used in a gripper to hold the sample 

by dry adhesion (Fig.6.5).  
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Fig. 6.5 The side view of the soft griping system with different spatial correlation w including 

LMA/polymer composite on the top and homogeneous gripped sample on the bottom (upper panel), 

and the top view of the LMA/polymer composite (lower panel) 

 

Uniaxial tensile force has been applied to obtain the elastic strain field (example on figure 6.6) 

and maximal pulling forces Fmax associated with different composite microstructures as well by using 

VCLP method. Specifically, when a pulling force is applied, the composite-glass interface tends to 

fracture in a brittle fashion, mainly determined by the initial stress concentration distribution on the 

surface, which in turns depends on the composite microstructure.  

   

𝑤 = 0 𝑤 = 0.2 𝑤 = 0.1 𝑤 = 0.05 
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Fig. 6.6 The Representative Volume Element system for the interface of composite and material to be 

gripped (left) and the example of normalized strain field on the interface 

 
At this stage, four different properties of gripped materials have been used for interface study in 

which the elastic modulus varies from 1MPa (PDMS) to 1GPa (thermoplastic) as shown in the Fig.6.7. 

The elastic properties of the gripped material can affect the stress distribution on the interface. The 

softer bottom gripped sample, the more relatively uniform stress distribution but still concentrate on the 

interface between LMA and the bottom sample obviously. When tensile test is applied, the bond failure 

on the surface tends to occur from the high stress concentration on the edge. Also, the PDMS polymer 

in matrix has also been used as gripped material for simplicity in next simulation comparison and the 

elastic modulus of polymer, LMA and the gripped material are 1MPa, 2GPa, 1MPa and Poisson ratio 

0.3, 0.49, 0.3, respectively. However, the interface bond between bottom gripped sample and the top 

composites is much weaker because of the small dry adhesion which comes from van der Waals’ force. 

As aforementioned, bond strength is depending on the critical strength and the elastic modulus in which 

the failure parameter a in Eqa.6.14 is 0.1% and elastic modulus is 1MPa. 

 

Fig. 6.7 Displacement field on the interface for the gripped sample with different elastic modulus 

(1e6,1e7,1e8 and 1E9 from the left to right plot, respectively) 

 
Next, an isotropic volumetric eigen strain δ has been applied (0.01% to 0.03%) to the inclusion 

(LMA/void) phase, to mimic the thermal expansion of the LMA due to Joule heating, which affects the 

stress distribution on the interface and induces crack nucleation. In the crack initiation part, only the 

thermal expansion dynamically behavior of the LMA had been simulated instead of thermos-mechanical 
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coupling since the study more focus on the tensile force sensitivity about the crack distribution. Hence, 

all the surface of the inclusion phase tries to expand along the normal direction on the edge dynamically 

until the certain eigen strain has been achieved as show in the figure 6.8.  

 

Fig. 6.8 Illustration of thermal expansion model. The inclusion LMA phase (orange) will expand along 

the normal direction of surface during heating and cracks initiation occurs during extrusion process 

 

During the thermal expansion process, cracks are generated step by step. As the result, few different 

crack initiation patterns are obtained. Although any magnitude eigen strain applied will lead to an 

unbalance strain/stress field, small strain of the inclusion phase is not able to have enough extrusion 

force to its neighbors for cracks initiation. Therefore, final structure of the interface between soft robotic 

system and gripped sample including perfect interface and crack interface is show in the figure 6.9.  

 

 

Fig. 6.9 The crack initiation patterns under thermal expansion process. The interface between 

LMA/polymer composite and gripped sample of crack nucleation from the left to the right corresponds 

to the eigen strain less than 0.01%, equals 0.018% and 0.025%, respectively   
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Fig. 6.10 The dynamic surface fracture evolution for three crack nucleation patterns. The light blue, 

deep blue and red represents the LMA phase, polymer phase and cracks, respectively 

 

Few different patterns of the crack initiation based on the applied eigen strain have been used 

for further tensile test. As we discussed in chapter 4.5.3, the LPM the continuum is modeled as a regular 

array of material points interacting with near neighbors and thus, fracture is naturally captured via 

breaking of bonds between the material points. The critical stress for bond breaking is set to be σc =

30  MPa according to the data in experiments. We note that similar to the elastic analysis, although the 

exact value of the fracture strength σf depends on the choice of σc, the conclusions drawn here are not 

affected by σc. A uniaxial load is applied to the square RVE of the reconstructed materials under the 

quasi-static loading condition, with a strain rate dϵ/dt = 10−7per loading step and up to N = 40,000 

loading steps are used. After each loading step, the stress and strain distributions in the RVE are 

computed and each bond is checked for possible breaking. If the stress in a bond is greater than the 

critical stress σc, this bond (i.e., the connection between two materials points) is removed from the 

Perfect 

Crack on 
inclusion phase 

Crack on 
matrix phase 

Time  
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system, which corresponds to the nucleation of a micro-void. This will lead to a significant change of 

the stress/strain distributions in the next loading step. The reaction force F (and the uniaxial tensile 

stress) is computed at each loading step. The material is considered to fail when an abrupt drop is 

observed in F. The fracture strength is then computed from the maximum reaction force, i.e., σf =

𝐹𝑚𝑎𝑥/𝐴 , where 𝐴 is the cross-sectional area of the RVE. 

 In order to identify the maximal pulling force ratio, two structures of largest eigen strain and the 

strain-free are mainly discussed. The strain-free structure has a perfect dry adhesion interface without 

any pre-existed crack and the largest applied strain leads to bonds failure of all the interface between 

inclusion and the gripped sample. Fig.6.10 shows us the dynamic evolution of the crack propagation in 

these three interface structures with different crack distribution. In addition, one of the extreme case in 

which all the bonds of the interface between matrix and the gripped sample are failed has also been 

investigated so that we can have a better understanding of the tunability of the pulling force depending 

on the microstructure and pre-existed crack distribution. The pulling force curves of the three 

aforementioned crack induced structure have been shown on the Fig.6.11 .  

 

Fig. 6.11 Reaction force as a function of tensile strain 휀𝑇 in three crack initiation patterns 

 
Obviously, the strain-free one has the largest pulling force since all of the interfaces are perfect 

and higher external force is needed to break the dry adhesion. However, the largest strain structure 
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performs plasticity-like behavior with 1.5 times less pulling force. The interesting point is there’s no any 

pre-designed plasticity in the model. The reason is all of the bonds are broken on the interface between 

hard inclusion phase and gripped sample and the only connected soft matrix portion can balance the 

stress concentration. At the meantime, the soft matrix is able to absorb more input force by elongating 

their bond length which is easier for the soft phase rather than the hard inclusion. Hence, longer bonds 

length on the force applied surface particle will provide higher reaction force that shown in the plot. On 

the contrary, if all the bonds are failed on the soft matrix interface, then connected hard inclusion will 

take more stress concentration and break easier, which we can find clearly that the pulling force 6 times 

less than the strain-free structure. Therefore, the pre-existed crack distribution induced by the thermal 

expansion of the low-melting alloy affects the pulling force significantly and exhibits the huge tunability 

potential of this kind of composite material.       

 

6.3.3 Effects of composite microstructure with coating 

Encapsulating PDMS with various thickness coating on the interface which allows the material to 

maintain its pre-molten shape has also been studied based on the generated composite microstructure 

as shown in the Fig. 6.12. The range of encapsulating layers is from 0.2 to 0.6 mm and the inclusion 

PDMS varies from harder to softer through electric current heating. In Fig.6.12, the top panel shows us 

the effect of the thickness of buffer layer before the LMPA getting melted. When the elastic stretch is 

applied, the stress concentrates at the PDMS area which is similar to aforementioned result but reflects 

on the buffer interface instead of LMPA intersection. In addition, the strain concentration is getting more 

blur and relatively uniform if more layers are coated on the interface, which means the PDMS coating 

can provide a strain balancing functionality and decrease the strain strength occurred on the interface.  
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Fig. 6.12 Schematic illustration of the PDMS coating sample. On the left side view of 3D microstructure, 

orange region is the thin coating of PDMS on the interface between soft robotic composite (upper part) 

and gripped sample (lower part). 3D view is shown on the right 

 

Fig. 6.13 Strain field on interface of PDMS coated sample with different coated layers and elastic 

modulus of the inclusion LMPA phase. The plots from left to the right is showing the result with the 

coated layer from 0.2 to 0.6 mm, and top panel shows the hard inclusion and lower panel shows 

composite with melted inclusion. 

 
The lower panel shows the same agreement when more layers are adding. However, the strain 

distribution has significantly change when the LMPA is getting melted. Once the rigidity of LMPA is 

getting lower, all the PDMS on the interface would take the stress applied from the external source and 

Before melting 
 

After melting 
 

Coated Layer thickness 
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balance them since PDMS is much softer than the normal LMPA. Therefore, the magnitude of the strain 

on the buffer layer is much less up to 1.5 times. 

 

Fig. 6.14 Reaction force as a function of tensile strain 휀𝑇 in different coating and inclusion structures. 

The left one shows the force response of the structure with coating in relatively low electric current in 

which the LMA inclusion is still solid and the structure with coating and molten LMA is shown on the 

right.  

Uniaxial tensile test is applied in both scenarios including solid LMA and molten LMA with 

different coating layers. Within the same state of the LMA inclusion phase, more number of coating 

layers lead to higher fracture strength which has the same agreement on the discussion above since 

the thicker coating layer is a contributing factor in balancing the strain. By comparing the fracture 

strength of two different states of inclusion phase, we can easily find out the molten LMA structure 

possess lower fracture pulling force. In addition, the pulling force ratio of two different states of LMA for 

2, 4 and 6 coating layers are 1.43, 1.47 and 1.58, respectively, which means the thinner coating layer 

could have larger range of tunable rigidity.     
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6.4 Conclusions and Discussion 

In this chapter, we have employed a stochastic optimization procedure to systematically generate 

realizations of three-phase composites here consist of a soft elastomer matrix, typically 

polydimethylsiloxane (PDMS), a Low Melting-point Alloys (LMAs) component, and gripped sample as 

the third component, whose structure controlled by different correlation length of correlation functions. 

For the purpose of pulling force sensitivity study depending on different electrical current induced LMA 

heating and expansion, different eigen strain crack patterns have also been generated and analyzed. 

We found that the damped oscillation correlation function can control the morphology and clustering 

size of the inclusion phase which affects the stress distribution and concentration on the interface 

between composite and gripped material. Also, the softer elastic properties of gripped material provide 

more balanced stress distribution than the harder one. However, if the inclusion phase is the relatively 

harder phase in the composite material, then the stress on the interface between the inclusion and 

gripped sample would always be the higher stress area which is the higher potential location for crack 

initiation and propagation.   

In addition, we have investigated the mechanical performance of the reconstructed composite 

material and their crack induced structure including both the elastic and failure behaviors using the 

VCLP simulations. From the dynamic pattern of the crack propagation, we can easier to identify the 

crack growing mechanism which will initiation on the edge no matter for the strain-free structure without 

any pre-existed crack or for the highest eigen strain structure. However, the highest eigen strain 

structures are found to be easier failed with 1.5 times less fracture strength. The most interesting part 

is this structure has plastic behavior in the tensile simulation without any pre-designated plasticity. The 

harder inclusion phase can be expected as a scaffold in the composite and if their bonds connected on 

the interface all failed, then all the input force will be directly balanced by the softer matrix which absorb 

the energy by elongating their bond length. Eventually, the longer bond length on the edge surface of 

the composite provides higher pulling force under the same displacement boundary condition. On the 

other hands, the bond length is similar on the particles of interface between the composite and the 

gripped sample since the softer matrix balance the stress concentration. Therefore, the plasticity-like 
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behavior induced. While the most force sensitive structure is the one whose bond between matrix and 

gripped sample is all failed. Since this crack distribution pattern avoid any stress balance factors and 

all the stress concentration locates on the inclusion interface which result in the fracture strength is 6 

times less than the strain-free structure.  

The other mechanism is the melted LMPA when high electric current is applied. Another thin film 

of PDMS is coated on the interface to encapsulate the liquidized inclusion. As the results, the thicker 

coating layer would decrease the stress/strain concentration magnitude and balance the distribution at 

the same time. Hence, the fracture pulling force would be relatively small if the coating layer is thicker 

and this provide us an option for tuning rough range of the soft gripper for specific applications. 

However, we still recommend the thinner layers since it could provide larger range of rigidity tuning 

which will be more efficient in real application. 

 We emphasize our conclusion that the microstructure and pre-existed crack distribution pattern 

significantly affect the pulling force sensitivity and the most difference can be achieved up to 6 times 

based on our studies. Generally, it can be expected a carefully designed crack pattern can certainly be 

made much flexible and tunable in pulling force ratio.       
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7. FUTURE WORK 

From the aforementioned result, we found there’s a huge potential for the material design to 

achieve more flexible tuning in soft griping system. We have studied two different mechanisms including 

the thermal expansion crack affect during the Joule heating and the PDMS coating for high temperature 

scenario.   

 

Fig. 7.1 designed crack initiation pattern 

 

While, there’s not only these two factors that can provide tunable rigidity. We have further 

designed few simple crack pattern and studied the effect of the pulling force ratio as shown in the figure 

7.1. All the red regions represent the crack area and all the bonds connected to the gripped sample are 

broken. The designed pattern is feasible in sample fabrication by controlling the fabrication process or 

applying post-processing, for example, the laser oblation.  
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Fig. 7.2 Reaction force as a function of tensile strain 휀𝑇 5 different designed circular crack patterns 

 

As the preliminary result shows, more uniform distributed crack initiation leads to a lower fracture 

strength which is used for lighter object. On the contrary, the structure in which all the crack aggregate 

together as cluster would be hard to fracture and is better for afford heavy sample. As shown in the 

figure 7.2, the simple nucleation patterns provide us up to 4 times pulling force differences without any 

other parameter changes. 

Hence, the next step of this project is we can design more different patterns by using stochastic 

reconstruction and generate a spectrum of the structure-property relations. Furthermore, we would like 

to use deep learning techniques to study this relations and inverse design the microstructure by input 

a demand property value. 
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