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ABSTRACT

The Pearson and likelihood ratio statistics are well-known in goodness-of-fit test-

ing and are commonly used for models applied to multinomial count data. When

data are from a table formed by the cross-classification of a large number of vari-

ables, these goodness-of-fit statistics may have lower power and inaccurate Type I

error rate due to sparseness. Pearson’s statistic can be decomposed into orthogonal

components associated with the marginal distributions of observed variables, and an

omnibus fit statistic can be obtained as a sum of these components. When the statis-

tic is a sum of components for lower-order marginals, it has good performance for

Type I error rate and statistical power even when applied to a sparse table. In this

dissertation, goodness-of-fit statistics using orthogonal components based on second-

third- and fourth-order marginals were examined. If lack-of-fit is present in higher-

order marginals, then a test that incorporates the higher-order marginals may have a

higher power than a test that incorporates only first- and/or second-order marginals.

To this end, two new statistics based on the orthogonal components of Pearson’s

chi-square that incorporate third- and fourth-order marginals were developed, and

the Type I error, empirical power, and asymptotic power under different sparseness

conditions were investigated. Individual orthogonal components as test statistics to

identify lack-of-fit were also studied. The performance of individual orthogonal com-

ponents to other popular lack-of-fit statistics were also compared. When the number

of manifest variables becomes larger than 20, most of the statistics based on marginal

distributions have limitations in terms of computer resources and CPU time. Un-

der this problem, when the number manifest variables is larger than or equal to 20,

the performance of a bootstrap based method to obtain p-values for Pearson-Fisher

statistic, fit to confirmatory dichotomous variable factor analysis model, and the per-

formance of Tollenaar and Mooijaart (2003) statistic were investigated.
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Chapter 1

INTRODUCTION

Statistical modeling often involves finding a model that describes data of interest,

and it is important to test the fit of the model because inferences drawn on poorly

fitting models can be misleading. Since the first appearance by Pearson (1924),

chi-square tests have been a common approach to test goodness of fit related to

multinomial models. For a simple null hypothesis where the random sample comes

from a population with completely specified cumulative distribution function F(x),

the Pearson’s chi-square statistic (χ2
p) has an approximate chi-squared distribution

with T-1 degrees of freedom in large samples, where T is the number of cells. On the

other hand, for a composite null hypothesis where the null distribution depends on a

vector of g unknown parameters βββ = (β1, ........., βg)
T , goodness of fit can be tested

using the Pearson-Fisher (PF) statistic,

X2
PF =

∑
s

z2
s , (1.1)

where

zs =
√
n(πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
,

and where, p̂s is element s of p̂ a vector of multinomial proportions, n is total

sample size, β̂ββ is parameter estimator vector, πs(βββ) is the expected proportion for cell

s and πs(β̂ββ) is the estimated expected proportion for cell s. The PF statistic is widely

used in many areas of applications. Under large sample theory conditions, the PF

statistic has an asymptotic chi-squared distribution with T −g−1 degrees of freedom

where, g is the number of estimated model parameters (Koehler & Larantz, 1980).

1



Thus, a usual assumption for these tests is that expected cell counts become large as

n → ∞. This assumption is not reasonable for analyzing a sparse table. According

to Agresti and Yang (1987) a contingency table said to be sparse when the ratio of

the sample size to the number of cells is relatively small, but sparseness can also be

produced by very skewed cell frequencies in some cases. In presence of sparse data,

these Pearson’s chi-square statistic may not follow the chi-square distribution even

if the sample size is large. There is no universal agreement on what constitutes a

small expected frequency. The most widely used rules of thumb are to consider the

percentage of expected cell frequencies smaller than or equal to 1, 5 or 10 (Agresti and

Yang (1987); Fisher (1941); Lancaster (1969); Agresti (2013)), and the percentage

of observed zero frequencies. However, the first choice would be too insensitive to

expected cell frequencies approaching 0 and the second would not be informative

because the chi-square asymptotic approximation depends heavily on the expected

cells which cannot be controlled for a simulation study.

Over the past years several statistics has been proposed to remedy this issue,

Maydeu-Olivares and Joe (2005), Bartholomew and Leung (2002), Tollenaar and

Mooijaart (2003) and Reiser (1996). Some of these statistics formed on lower-order

marginals have been shown to overcome the deleterious effect of spareness. Another

issue related to Pearson’s chi-square test statistic is that it gives little guidance about

the source of poor fit when the null hypothesis is rejected. Although several studies

have been done to address the spareness issue, fewer studies have been done to find the

source of poor fit related to chi-square goodness-of-fit test when the null hypothesis

is rejected. Liu and Maydeu-Olivares (2014) recently proposed some methods to this

end. Some of the other publications found in the literature related to identifying

lack-of-fit are Cagnone and Mignani (2007), Orlando and Thissen (2000), and Reiser

(1996, 2008).
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I used orthogonal components of Pearson’s chi-square statistic defined on lower-

order marginals of the data table as a remedy to the sparseness problem. To this

end, I studied three problems in my dissertation. The organization of chapters of this

dissertation are as follows.

In Chapter 2 the most commonly used goodness-of-fit statistic, Pearson’s chi-

square, as well as various traditional goodness-of-fit statistics are discussed. Com-

monly used measures of sparseness in large contingency tables are also presented along

with an explanation of the adverse effects of sparseness on goodness-of-fit statistics.

Chapter 2 also provides a description of the decomposition of Pearson’s chi-square

and the focused tests based on chi-square statistic. Thereafter, it will explain statis-

tics based on the marginal proportions. The chapter concludes with a brief review of

a recent lack-of-fit statistic, χ̄2
ij from Liu and Maydeu-Olivares (2014).

Chapter 3 describes the mathematical details of standardized residuals and indi-

vidual orthogonal components of Pearson’s chi-square from Reiser (1996, 2008). It

also presents the mathematical details related to two new statistics that are based on

the orthogonal components of Pearson’s chi-square.

Chapter 4 presents the results related to the first research problem in my disser-

tation. As the first problem, goodness-of-fit statistics using orthogonal components

based on third-order and fourth-order marginals were studied. To this end, two new

statistics based on the orthogonal components of Pearson’s chi-square were developed

and the Type I error, empirical power and asymptotic power of these statistics under

different sparseness conditions were investigated. Performance of these statistics were

also compared to other popular lack-of-fit statistics.

Chapter 5 describes the results related to the second research problem in my dis-

sertation. As the second problem, the Type I error and power of individual orthogonal

components of χ2
[2] as test statistics to identify lack-of-fit were studied. In the context
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of this problem, both empirical and asymptotic power were investigated. The perfor-

mance of individual orthogonal components of χ2
[2] to other test statistics discussed

in Chapter 2 was also compared.

Applications using these new statistics and lack-of-fit diagnostics are given in

Chapter 6. The real-life example presented in chapter 6 is related to the data from

prevalence and incidence of mental disorders in a catchment area study. The epi-

demiologic catchment area program of research was initiated in response to the 1977

report of the president’s commission on mental health. The purpose was to collect

data on the prevalence and incidence of mental disorders and on the use of and need

for services by the mentally ill. Study was conducted by independent research teams

at five universities (Yale, Johns Hopkins, Washington University, Duke University,

and University of California at Los Angeles) in collaboration with National Institute

of Mental Health (NIMH).

Chapter 7 presents results related to the third research problem in my disserta-

tion. As the third problem, the statistics on lower-order marginals were extended to a

large number of manifest variables. When the number of manifest variables becomes

larger than 20, most of the statistics on lower-order marginals have limitations in

terms of computer resources and CPU time. Under this problem, the performance of

a bootstrap based method to obtain p-values for Pearson-Fisher statistic, fit to confir-

matory dichotomous variable factor analysis model and the performance of Tollenaar

and Mooijaart (2003) statistic when the number manifest variables is larger than or

equal to 25 were investigated.

Finally, Chapter 8 includes some concluding remarks with a discussion of limita-

tions, possible improvements, and further work on the proposed methodology.
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Chapter 2

LITERATURE REVIEW

This chapter starts with a brief discussion about traditional goodness-of-fit statis-

tics. Next, one of the most commonly used goodness-of-fit statistics, Pearson’s chi-

square and the directional tests related to it will be discussed. Then, adverse effects of

sparseness on goodness-of-fit statistics will be explained. Thereafter, statistics based

on marginal proportions will be presented.

2.1 Traditional Goodness-of-Fit Statistics

Many goodness-of-fit statistics related to testing a hypothesis about the parame-

ters πππ = (π1, ....., πk) from a multinomial distribution belong to the power divergence

family
{
Iλ, λ ∈ R

}
and can be derived using the following definition,

2nIλ =
2

λ(λ+ 1)

∑
p̂s

{(
p̂s
π̂s

)λ
− 1

}
(2.1)

where p̂s is the observed cell proportions and π̂s is the estimated expected cell

proportions. It can be easily seen that log likelihood ratio statistic (λ = 0, limiting

case), Pearson’s chi-square statistic (λ = 1), Freeman-Tukey statistic (λ = −0.5) and

Neyman modified chi-square (λ = −2) are all special cases of this definition.

Cochran (1952) paper presented a comprehensive summary of the early develop-

ment of Pearson’s chi-square goodness-of-fit statistic. In this paper he also discusses

a variety of competing tests related to goodness-of-fit as well. Amongst these com-
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petitors is the loglikelihood ratio test statistic G2,

G2 = 2
k∑
i=1

Xilog(Xi/nπi) (2.2)

where X = (X1, X2, ..., Xk) is a random vector of frequencies with
∑
Xi = n, the

sum being over i = 1, ..., k, and E(X) = nπππ, where πππ = (π1, π2, ..., πk) is a vector of

probabilities with
∑
πi = 1 the sum being over i = 1, ..., k.

However, when the sample size is small, Pearson’s chi-square statistic approxi-

mates a chi-squared random variable more closely than G2 statistic for various multi-

nomial and contingency table models (Cressie & Read, 1989). Cressie and Read

illustrated this fact by comparing various enumeration and simulation studies by Up-

ton (1978), Larntz (1978), Koehler and Larantz (1980), Lawal (1984), and Agresti

and Yang (1987). The results of Larntz, Upton, and Lawal are of particular interest

because they compare not only Pearson’s chi-square statistic and G2, but also the

Freeman-Tukey statistic T 2,

T 2 =
k∑
i=1

(√
Xi +

√
Xi + 1−

√
4nπi + 4

)2

. (2.3)

This definition is sometimes referred to as the modified Freeman-Tukey statistic

(Lawal & Upton, 1980). Another definition of the Freeman-Tukey statistic can be

obtained by setting λ = −1
2

in equation 2.1:

F 2 = 4
k∑
i=1

(√
Xi −

√
nπi

)2

. (2.4)

Other statistics, which are special cases of the power-divergence family (2.1) can

also be seen in the literature. These include, the modified loglikelihood ratio statistic

or minimum discrimination information statistic (λ = −1) (Read & Cressie, 1988),

GM2 = 2
k∑
i=1

nπilog (nπi/Xi) (2.5)
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and the Neyman-modified statistic (λ = −2) introduced by Neyman (1949)

NM2 =
k∑
i=1

(Xi − nπi)2

Xi

. (2.6)

While these statistics have been recommended by various authors, for example,

Gokhale and Kullback (1978) and Kullback and Keegel (1984), there have been no

small-sample studies which indicate that they might be serious competitors to Pear-

son’s chi-square statistic and G2. The results of Read (1984), Larntz (1978), Lawal

and Upton (1980), Lawal (1984) for T 2, and Hosmane (1987) for F 2 indicate that the

exact distributions of these alternative statistics to Pearson’s chi-square statistic and

G2 are less well approximated by the chi-squared distribution than are those of either

Pearson’s chi-square statistic or G2 (Cressie & Read, 1989).

2.2 Pearson’s Chi-Square Goodness-of-Fit Statistic

For a multi-way contingency table, the traditional Pearson’s chi-square statistic is

obtained by comparing observed frequencies to the expected frequencies under the

null hypothesis. The general equation is given by,

χ2
p =

T∑
s=1

(observed− expected)2

expected
(2.7)

For a simple null hypothesis where the random sample comes from a population with

completely specified cumulative distribution function F(x), the χ2
p statistic has an

approximate chi-square distribution with T-1 degrees of freedom in large samples.

On the other hand, a composite null hypothesis where the null distribution depends

on a vector of g unknown parameters βββ = (β1, ........., βg)
T , requires the Pearson-Fisher

statistic,
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χ2
PF =

∑
s

z2
s , (2.8)

where

zs =
√
n(πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
.

In the case where the πππ(βββ) depend on parameters that need to be estimated, Pearson

argued that using the chi-squared distribution with T-1 degrees of freedom would still

be adequate. However, Fisher (1924) gave the first derivation of the correct degrees of

freedom, T−g−1, (hence Pearson-Fisher statistic) where, g parameters are estimated

efficiently from the data.

2.3 Decomposition of Pearson’s Chi-Square Statistic

Decomposing Pearson’s chi-square statistic into components dates back to Lan-

caster (1969). By decomposing Pearson’s chi-square statistic into components one can

develop directional tests. Some directional tests have proven to reduce the adverse

effects of sparseness and can have higher power against certain alternatives.

A well known and most widely used decomposition of the components may be

associated with T − 1 orthonormal functions {g1, ......, gT−1} on the set {1, ....., T}.

Moreover, these orthonormal functions are perpendicular to the unit function for n

observations given on a set of k indicator variables of the multinomial distribution

(Lancaster, 1969). Then by Parsevaĺs relation,

χ2
p =

T−1∑
j=1

Û(j)

2
(2.9)

Û(j)

2
=

T∑
s=1

gj(xs) (2.10)

8



where xs is the observed value for the sth observation and therefore necessarily in

{1, ......, T}. These have a useful property of breaking the contributions of Pearson’s

chi-square into component pieces that may be associated with T-1 orthogonal direc-

tions corresponding to the basis functions {g1, ....., gT−1}. Note that orthogonality

translates into,

T∑
s=1

gj(xs)gk(xs)π̂s = δik (2.11)

where δik is the Kronecker delta, δik = 1 for i = k, and δik = 0 for i 6= k and

π̂s, s = 1, ...., T , is the estimated cell probability. Usually, the Û(j) are chosen so

that they have interesting individual interpretations. Also, χ2
p =

∑
Û(j)

2
is invariant

for any choice of the set {g1, ......, gT−1}, i.e., these can be orthonormalized indicator

variables, the Walsh functions, the orthogonal polynomials on T points with equal

weights (Lancaster, 1969).

Another interesting approach that involves Chebyshev orthogonal polynomials

were introduce by Rayner and Best (1989). However, these are computed under the

equiprobable situation or ordered response patterns, which is not usually the case

with large multi-way tables. This decomposition usually results in one to four large

components, where the first component reasonably detects shifts in mean, the second

component detects shifts in variance, the sum of the first two components detects

shifts in both mean and variance, etc., which may not be useful for a multi-way

contingency table with a large number of components.

According to the literature, assessing the goodness-of-fit of a hypothesized model

and determining the source of misfit in poorly fitting models using an orthogonal

polynomial decomposition may not be applicable as the number of multinomial cat-

egories increases. Some reasons authors indicate are that the equi-probable cells

assumption might not be appropriate, the cells might not be ordered, and sparseness
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may be present. Another issue is that a large classification table results in many

more components which might not necessarily be ordered large to small. In this

case, selecting components becomes increasingly difficult. Agresti (2013) proposed

an alternative partition of Pearson’s chi-square statistic into independent chi-square

components. This partition is not based on the orthogonal polynomial decompo-

sition. Agresti (2013) gives the necessary conditions for determining sub-tables for

which components are independent chi-square random variables. However, the sum of

the chi-square values for any separate sub-tables do not sum to the overall Pearson’s

chi-square statistic.

There are numerous ways to decompose Pearson’s chi-square statistic into orthog-

onal components. However, a more useful decomposition of the Pearson’s chi-square

statistic for extremely unbalanced non-equiprobable situations and for very sparse

multinomials can be obtained by the decomposition of orthogonal components de-

fined on lower-order marginals. Components based on these lower-order marginals

are most often justified as easily interpretable because they are related to the model

variables and somewhat computationally practical. Mathematical details related to

obtaining these lower-order marginals are given in the Section 2.5.

As mentioned before, decomposing Pearson’s chi-square statistic into components

one can develop directional tests, and these directional tests can be used to reduce

the adverse effects of sparseness. Next section explains the sparseness issue related

to the Pearson’s chi-square, in detail.

2.4 Sparseness

The sparseness issue related to Pearson’s chi-square and G2 statistics is well

known. A sparse table is one where there are many cells with small counts and/or

zeros. How many and how small is relative to the sample size and the table size. The
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large number of cells can be either due to the large number of classification variables,

or small number of variables but with many levels. In this case, even with a moderate

sample size, many cells may not be realized or might have small frequencies. Sparse

data have an adverse effect on goodness-of-fit tests because they may invalidate us-

ing the chi-square distribution as an approximation for the distribution of Pearson’s

chi-square and G2 statistics (Agresti & Yang, 1987).

Cochran (1952) points out that, when all the expectations are small and Pearson’s

chi-square has many degrees of freedom, the distribution of Pearson’s chi-square differs

substantially from the chi-square distribution, and Haldane (1939) shows that the

variance of Pearson’s chi-square departs noticeably from the variance of the normal

approximation to the chi-squared distribution. Koehler and Larantz (1980) examined

the accuracy of the chi-square and normal approximations for Pearson’s chi-square

and G2 statistics via a Monte Carlo study and found that in general the chi-square

approximation for Pearson’s chi-square statistic is appropriate even when the expected

frequencies are as low as 0.25 with T ≥ 3, n ≥ 10 and n2/T ≥ 10. On the other

hand, G2 statistic is not well approximated by a chi-square distribution when n2/T ≥

10. Many suggestions have been given on how to measure sparseness in multi-way

contingency table, but there is no universal definition of sparseness in the literature.

The most widely used rules of thumb are to consider the percentage of expected cell

frequencies smaller than or equal to 1, 5 or 10 (Agresti and Yang (1987); Fisher (1941);

Lancaster (1969); Agresti (2013)), and the percentage of observed zero frequencies.

The first choice would be too insensitive to expected cell frequencies approaching 0 and

the second would not be informative because the chi-square asymptotic approximation

depends heavily on the expected cells which cannot be controlled for a simulation

study. Generally, the ratio n/T is used to measure the amount of spareness present

in a table. This ratio alone is also not informative as models where a single cell has
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a probability near 1 with the rest approaching 0 is more likely to be sparse than an

equiprobability model.

One way to overcome the adverse effects of sparseness is to use limited-information

statistics. A number of authors, Knott and Tzamourani (1997), Reiser (1996),

Reiser (2008), Bartholomew and Tzamourani (1999), Bartholomew and Leung (2002),

Maydeu-Olivares and Joe (2005) and Maydeu-Olivares and Joe (2006), have studied

limited information-statistics as a potential solution for overcoming adverse effects of

sparseness. In limited-information statistics, only the information contained in suit-

able summary statistics of the data, typically the low-order marginals of the contin-

gency table, is used to assess the model. This amounts to pooling cells in a systematic

way so that the resulting statistics have a known asymptotic null distribution. For

instance, focused test in lower-order marginal components of PF statistic is a limited-

information statistic. If a cell has a small expectation, combining cells in this manner

can give a more moderate expectation improving the chi-squared approximation un-

der the null distribution. More about these focused tests will be discussed in Section

2.6.

Another method is to add a small constant to the frequency of every response

pattern. According to Agresti (2013) some algorithms add 0.5 to each cell and this will

have the benefit of bias reduction for a saturated model. However, this may smooth

the data too much and can cause havoc with sampling distribution (Agresti, 2013).

One can also do pooling cells or using resampling methods such as the parametric

bootstrap. However, pooling cells after the model has been fitted often results in

statistics with an unknown sampling distribution, as the procedure is data dependent.

It may also lead to gross loss of information about model misfit and, as is often the

case, no degrees of freedom left for testing. The use of resampling methods such

as the parametric bootstrap to obtain an empirical p-value for Pearson’s chi-square
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statistic and G2 has become increasingly popular given todays computing power.

However, this method is computationally intense since, in order to obtain a stable p-

value several hundred bootstrap re-samples are needed for each model (Bartholomew

& Leung, 2002).

As mentioned before, one way of remedying the problem of sparseness is to con-

sider focused test statistics that are based on only the low-order marginals. Next sec-

tion illustrates the mathematical details related to obtaining lower-order marginals.

Thereafter, the focused tests based on the low-order marginals will be presented.

2.5 Marginal Proportions

A traditional statistic such as Pearson’s chi-square uses joint frequencies to cal-

culate goodness of fit for a model that has been fit to a cross-classified table. These

joint proportions or frequencies can be transformed into marginal proportions and

these marginal proportions can be used to define components of Pearson’s chi-square.

2.5.1 First- and Second-Order Marginals

The relationship between joint proportions and marginals for a multi-way contin-

gency table can be shown by using zeros and 1’s to code the levels of dichotomous

response random variables, Yi, i = 1, 2, . . . , q, where Yi follow the Bernoulli distribu-

tion with parameter Pi . Then, a q-dimensional vector of zeros and 1’s, sometimes

called a response pattern, will indicate a specific cell from the contingency table

formed by the cross-classification of q response variables. For dichotomous response

variables, a response pattern is a sequence of zeros and 1’s with length q. The T = 2q-

dimensional set of response patterns can be generated by varying the levels of the qth

variable most rapidly, the qth − 1 variable next, etc. Define VVV as the T by q matrix

with response patterns as rows.
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For instance when q = 3,

VVV =



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



.

Define, H[1] = V.

Let hsi represent (s, i) element of H[1], that is the element i of the response pat-

tern s, s = 1, 2, . . . , T. Then, under the model πππ = πππ(βββ), the first-order marginal

proportion for variable Yi can be defined as

Pi(βββ) = Prob(Yi = 1|βββ) =
∑
s

hsiπs(βββ) = h′iπππ(βββ),

where h′i is the vector of hsi elements related to the ith response variable. The true

first-order marginal proportion is given by

Pi = Prob(Yi = 1) =
∑
s

hsiπs = h′iπππ .

Under the model, the second-order marginal proportion for variables Yi and Yj can

be defined as

Pij(βββ) = Prob(Yi = 1, Yj = 1|βββ) =
∑
s

hsihsjπs(βββ) = (hi ◦ hj)′πππ(βββ),

where j = 1, 2, . . . , q−1; i = j+ 1, . . . q and hi ◦hj represents the Hadamard product
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of columns hi and hj. Thus, the true second-order marginal proportion is given by

Pij = Prob(Yi = 1, Yj = 1) =
∑
s

hsihsjπs = (hi ◦ hj)′πππ .

2.5.2 Higher-Order Marginals

A general matrix H[t:u] to obtain marginals of any order can be defined using Hadamard

products among the columns of VVV . The symbol H[t:u] , t ≤ u ≤ q, denotes the trans-

formation matrix that would produce marginals from order t up to and including

order u. Furthermore, H[t] ≡ H[t:t] and H≡ H[t:u] . H[1:q] gives a mapping from joint

proportions to the set of (2q − 1) marginal proportions:

PPP = H[1:q]πππ ,

where

PPP = (P1, P2, P3, . . . Pq, P12, P13, . . . Pq−1,q, P1,1,2 . . . Pq−2,q−1,q . . . P1,2,3...q)
′

is the vector of marginal proportions.

For example, when q=3,

H[1:3] =



0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

· · ·

0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

· · ·

0 0 0 0 0 0 0 1



.
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Based on the above definition, second-order marginal proportions for variables Yi and

Yj can also be obtained by,

PPP [2] = H[2]πππ (2.12)

where,

H[2] =



(vvv1 ◦ vvv2)′

(vvv1 ◦ vvv3)′

...

(vvv1 ◦ vvvq)′

(vvv2 ◦ vvv3)′

(vvv2 ◦ vvv4)′

...

(vvv2 ◦ vvvq)′
...

(vvvq−1 ◦ vvvq)′



,

where vvvf represents column f of matrix VVV , and vvvf ◦ vvvg represents the Hadamard

product of columns f and g.

The first column of the H matrix is a zero vector, so H is not full rank. Therefore,

this zero column can be deleted and the first element of πππ vector can be deleted. This

make sense because of the constraint π1 + π2 + ..... + πT = 1. Define, Ḧ[1:q] as the

matrix without the first column. The dimension of the Ḧ[1:q] matrix is T −1 by T −1,

and it is full rank. Then, Ḧ[1:q] gives a one-to-one mapping from joint proportions to

the set of (2q − 1) marginal proportions. A test of fit on marginal proportions from
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order 1 to order q is equivalent to a test of fit on joint proportions because marginal

and joint proportions contain the same information.

2.6 Focused Tests Based on Chi-Square Statistics

As indicated in the previous sections, one way of remedying the problem of

sparseness is to consider focused test statistics that are based on only the low-order

marginals, which are sums of joint frequencies. Generally, the sums are not sparse for

2 ∗ 2 sub-tables. Any statistic formed from a sum of the components, not necessarily

ones based on marginal frequencies, can be considered a focused statistic. Summing

a subset of components to create a focused test statistic could increase the power

against certain alternatives. Focused tests using lower-order marginals can be used in

a wide variety of applications including log-linear models, categorical variable factor

analysis and repeated measures on categorical variables.

Christoffersson (1975) first introduced the idea of using first- and second-order

marginals for a test of fit in dichotomous variable factor analysis. Transforming to

the notation in this study, this statistic can be written as,

χ2
Ch = r̄′H′[1:2](D(p)− pp′)−1H[1:2]r̄ (2.13)

where r̄ = p̂ − πππ(β̄ββ), β̄ββ is the generalized least squares estimator of βββ . χ2
Ch has

an asymptotic chi-square distribution with q ∗ (q + 1)/2 − g degrees of freedom,

where g = number of model parameters to be estimated. The statistic could be

generalized to include higher-order marginals, but even if marginals from first- to

order q were included, this statistic would not be equivalent to the Pearson-Fisher

statistic. Muthén (1978) improved χ2
Ch statistic, but both used observed proportions

for the calculation of covariance matrix and neither presented their test as having

higher power or as a remedy for sparse data.
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Reiser (1996) proposed a focused statistic, χ2
[1:2], using first- and second-order

marginals to test the fit of item response models when there are a large number of

manifest variables and the sample size is small to moderate. Reiser and Lin (1999)

developed a similar focused statistic for testing the fit of latent class models. More

detailed explanations about Reiser (1996) statistic is given in Chapter 3.

2.7 Related Statistics

Bartholomew and Leung (2002) statistic Y is another important statistic that can

be found in literature. Y statistic incorporates second-order marginals only:

Y = (p̂− πππ)′H′[2](D(H[2]πππ)(I−D(H[2]πππ))−1H[2](p̂− πππ). (2.14)

Bartholomew and Leung (2002) gave a chi-square approximation for the distribution

of

Y−a
b

on c degrees of freedom, where a, b and c are functions of the asymptotic moments

of Y :

b = µ3(Y )
4µ2(Y )

, c = µ2(Y )
2b2

, a = µ1(Y )− bc.

This statistic was presented in terms of known π, but in an application, π is

replaced by probabilities estimated from the model under consideration. In the orig-

inal form, the statistic is simpler to calculate because it only requires estimates for

π. However, this statistic does not perform well with the degrees of freedom given

by Bartholomew and Leung. Cai, Maydeu-Olivares, Coffman, and Thissen (2006)

proposed a modified version of the statistic, Y2, using both first- and second-order

marginals, and revised degrees of freedom:
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Y2 = (p̂− πππ)′H′[1:2](D(H[1:2]πππ(β̂̂β̂β))(I−D(H[1:2]πππ(β̂̂β̂β)))−1H[1:2](p̂− πππ) (2.15)

where β̂̂β̂β is the maximum likelihood estimator of βββ . Since calculation of G =

∂πππ(βββ )

∂βββ
is required for determination of the revised degrees of freedom, there is little

computational advantage compared to the statistic χ2
[1:2] introduced by Reiser.

Joe (1993) and Maydeu-Olivares and Joe (2001, 2005, 2006) proposed a class of

chi-square tests for sparse dichotomous and multidimensional data with applications

to the item response model, a form of categorical variable factor analysis. Their

approach is closely related to that of Reiser (1996) but their focused statistic M2

does not correspond to the same decomposition of the χ2
PF . For e = H[1:r]r and

r = p̂− πππ(β̂̂β̂β),

Mr = e′Ĉre (2.16)

where Ĉr = (HT̂H′)−1 − (HT̂H′)−1HĜ(Ĝ′H′(HT̂H′)−1HĜ)−1Ĝ′H′(HT̂H′)−1 and

T̂ = D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′. H is always equal to H[1:r] when applied to the definition

of Mr. The statistic Mr has an asymptotic chi-square distribution with
∑
r

(
q
r

)
− g

degrees of freedom, where g = number of model parameters to be estimated (Reiser,

2008).

Tollenaar and Mooijaart (2003) proposed a statistic,

χ2
red = ne′(H[1:2]T̂H′[1:2])

−1e (2.17)

where,

T̂ = D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′.

The Tollenaar and Mooijaart (2003) statistic is a reduced version of χ2
[1:2] statistic

(Reiser, 2008). The difference lies in the covariance matrix T not including the term
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G(A′A)−1G′, where G =
∂πππ(βββ )

∂βββ
and A = D(πππ)−1/2G. As indicated by Tollenaar and

Mooijaart (2003), omitting this term may substantially reduce computations. Since

χ2
[1:2] and χ2

red have different covariance matrices, the degrees of freedom are different.

χ2
red has an asymptotic-square distribution with q ∗ (q + 1)/2− g degrees of freedom,

where g = number of model parameters to be estimated. Note, this is the same

degrees of freedom associated with χ2
Ch and M2.

2.8 Related Lack-of-Fit Diagnostics

According Liu and Maydeu-Olivares (2014) one of the challenges faced when trying

to identify lack-of-fit in models fit to binary cross-classified variables is that some tests

of interest cannot be applied owing to the lack of degrees of freedom. One way to

overcome the problem of the lack of degrees of freedom is to use a large sample z

statistic. Reiser (1996) suggested using bivariate z statistics to assess the source of

misfit in two-way marginal subtables for binary item response data. This dissertation

study will incorporate Reiser’s z statistics. Mathematical details of these statistics are

given in Section 3.1.1. Liu and Maydeu-Olivares, (2013) proposed a similar statistic,

R2,ij to work-around the lack of degrees of freedom that involves a pair of item and

conditions on sum score levels/groups. Drawing on the results of Joe and Maydeu-

Olivares (2010), Liu and Maydeu-Olivares (2013) were able to derive the asymptotic

distribution of R2,ij. Under the null hypothesis of a correctly specified model, this

statistic follows asymptotically a chi-square distribution. However, Liu and Maydeu-

Olivares (2013) and Maydeu-Olivares and Liu (2012) found that statistics M2 and

R2,ij tend to have lower power for detecting lack-of-fit in some models.

Liu and Maydeu-Olivares (2014) proposed a statistic, χ̄2
ij, mean and variance

adjusted chi-square statistic for bi-variate distribution for variables i, j within a large

table. Consider the case where Pearson’s chi-square is applied to a bi-variate subtable,
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χ2
ij = n(pij − π̂̂π̂πij)′D−1

ij (pij − π̂̂π̂πij) (2.18)

where Dij = diag(πij) is a diagonal matrix of the bivariate probabilities.

Then, the mean and variance adjusted chi-square statistic, χ̄2
ij, can be written as,

χ̄2
ij = 2

µ̂1

µ̂2

χ2
ij (2.19)

where the two asymptotic moments (µ1, µ2) can be obtained as below,

µ1 = tr
(
D−1
ij ΣΣΣij

)
(2.20)

µ2 = 2tr
(
D−1
ij ΣΣΣij

)2
(2.21)

where ΣΣΣij is the covariance matrix related to the residuals n(pij − π̂̂π̂π ij), for a pair

of items when maximum likelihood is used to estimate the model parameters.

χ̄2
ij has an approximate reference chi-square distribution with degrees of freedom

a =
2µ̂1

2

µ̂2

. (2.22)

According to Liu and Maydeu-Olivares χ̄2
ij has good Type I error and power

behavior under certain sparseness settings. However, the simulations for χ̄2
ij in Liu

and Maydeu-Olivares (2014) paper were limited to models with zero intercept settings.

With different sparse conditions and models with skewed intercept settings, these

Type I error and power results can have a different behavior. Also, the χ̄2
ij for different

item pairs cannot be directly compared as they are on a different scale (their estimated

df). Only the p-values can be directly compared across item pairs. This is undesirable

in terms of actual applications because researchers have to inspect tables of p-values

with a large number of decimals in order to determine the item pairs with the greatest
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magnitude of misfit. Also, χ̄2
ij requires calculation of G =

∂πππ(βββ )

∂βββ
. Therefore, when

the number of manifest variables large, this statistic become difficult or impossible to

calculate due to computer resource limitations.
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Chapter 3

RESIDUALS, NEW TEST STATISTICS AND ORTHOGONAL COMPONENTS

AS LACK-OF-FIT STATISTICS

This chapter will illustrative the mathematical details of standardized residuals

and orthogonal components of Pearson’s chi-square from Reiser (1996, 2008). It will

also present mathematical details related to two new statistics that are based on the

orthogonal components of Pearson’s chi-square.

3.1 Testing Fit on Marginal Distributions

3.1.1 Adjusted Residuals

Reiser (1996) has shown that the traditional standardized residual may be com-

pletely inadequate for identifying response patterns (i.e. cells) that are poorly fit in

a large cross-classified table and proposed adjusted residuals on marginal tables for

identifying poor fit. Mathematical details about adjusted marginal residuals and how

they will be incorporated for this study will be explained in the following section.

To form residuals for the cells of the multinomial vector of response patterns,

there are several possible approaches, including examining p̂s − πs(β̂̂β̂β) directly, where

p̂s = ns

n
is element s of p̂, the vector of sample proportions, β̂ββ is an estimator for

the parameter matrix, and πs(β̂ββ) is the estimated expected proportion for cell s. For

the multinomial model, it has been traditional to examine standardized residuals

(Cochran, 1954). Let

rs =
p̂s − πs(β̂̂β̂β)

(πs(β̂̂β̂β))
1
2

(5)
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then n
1
2 rs is the standardized residual. n

∑
s r2

s is equal to the Pearson chi-square

goodness-of-fit statistic. Under some circumstances, the set of these residuals may

be useful for finding cells that are not well fit by the model. However, since the

distribution of n
1
2 rs is not necessarily N(0, 1), it is sometimes difficult to assess the

significance of the magnitude of the standardized residual. Therefore, it is useful to

divide the statistic by its standard error:

n
1
2 rs

σ̂s

,

yielding the adjusted residual, which has an approximate N(0,1) distribution in large

samples. The mathematical details below represent the large sample distribution for

n
1
2 r. This result will be used in Section 3.1.2 to explain the large sample distribution

for the marginal residuals.

Consider the vector valued function of p and β:

h(p, βββ) = D(πππ(βββ))−1/2(p− πππ(βββ)),

where πππ(βββ)= vector of multinomial probabilities as a function of β,

and D(πππ(βββ))= diagonal matrix with elements (s, s) equal to πππs(βββ).

The T dimensional vector of residuals, r, is obtained from the function h(p, βββ) when

p takes the value p̂ and βββ takes the value β̂ββ . Based on these settings and assuming

the regularity conditions given by Birch (1964),

n
1
2 r

L−→N(000,ΩΩΩr), (3.1)

where,

L−→ indicates convergence in Law,

ΩΩΩr = III − πππ1/2(πππ ′)1/2 −A(A′A)−1A′,
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A = D(πππ)−1/2 ∂πππ(βββ )

∂vecβββ
, evaluated at the true parameter values,

vec βββ =
(βββ 1

βββ 2

)
with intercepts stacked on top of slopes,

πππ1/2 =vector with elements given by square root of true proportions.

3.1.2 Marginal Residuals

Next, I will define residuals for the marginals. In Section 2.5, I have illustrated how

joint proportions can be transformed into marginal proportions using the H matrix.

The same H matrix, defined in Section 2.5.2 can also be used to create residuals for

marginals.

Define the unstandardized residual us = p̂s − πs(β̂ββ), and denote the vector of

unstandardized residuals as uuu with element us.

Then a vector of simple residuals for marginals of any order can be defined as

eee = H(p̂− πππ(β̂ββ)) = Huuu.

Using unstandardized residuals will simplify the results in subsequent sections. Al-

though these results will be based on unstandardized residuals, the results are valid

for standardized residuals as well.

Extending the results in Section 3.1.1 for marginals:

n
1
2 e

L−→N(000,ΩΩΩe), (3.2)

where,

ΩΩΩe = HΩΩΩuH
′,

ΩΩΩu = D(πππ)− ππππππ ′ −G(A′A)−1G′

and

G =
∂πππ(βββ)

∂vecβββ
,
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The validity of this result for the covariance matrix can be shown by an application

of the multivariate delta method (the method of statistical differentials). It can

be seen from expression 3.2 that the elements of e are linear combinations of the

unstandardized residuals, u = p̂ − πππ(β̂ββ), associated with the multinomial cells. The

covariance matrix of e can be found by starting with the covariance matrix for u,

which closely resembles the matrix following expression 3.1. Define the following

vector valued function of p and πππ(βββ):

h(p, πππ(βββ)) = p− πππ(βββ).

Then u = h(p̂, πππ(β̂ββ)), and by Theorem 14.6-2 of Bishop, Fienberg, and Holland

(1975),

u
L−→N

(
000,

(
∂h

∂p

)
ΣΣΣp̂

(
∂h

∂p′

))
. (3.3)

The use of expression 3.3 requires the partial derivative of h(p,πππ(βββ)) with respect

to p and an expression for ΣΣΣp̂. Proceeding to obtain the necessary expressions,

n
1
2 (p̂− πππ)

L−→N(000,DDD(πππ)− ππππππ ′), (3.4)

by Theorem 14.3.4 in Bishop, Fienberg & Holland, which gives ΣΣΣp̂.

The partial derivative of h(p,πππ(βββ)) with respect to p follows from the chain rule:

∂h

∂p
= III − ∂πππ

∂vecβββ

∂vecβββ(p)

∂p
.

βββ as a function of p is not known explicitly, but the existence of that function can be

established by the Implicit Function Theorem. Using this approach,

∂vecβββ(p)

∂p
= (A′A)−1A′D(πππ)−1/2.

Then, with G = ∂πππ
∂vecβββ

,

∂h

∂p
= III −G(A′A)−1A′D(πππ)−1/2,
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when evaluated at p = πππ, the true value.

Finally, applying these results to expression 3.3 ,

n
1
2 u

L−→N(000,ΩΩΩu),

where

ΩΩΩu=

(
III −G(A′A)−1A′D(πππ)−1/2

)(
DDD(πππ)− ππππππ ′)

)(
D(πππ)−1/2AG′(A′A)−1 − III

)
.

After multiplying, and using A′πππ1/2 =
∑ ∂πππ(βββ)

∂vecβββ
= 0, the expression simplifies as

follows:

ΩΩΩu=D(πππ)− ππππππ ′ −G(A′A)−1G′. (3.5)

Now returning to the residuals on the marginals, which are linear combinations of

the elements in u, results correspond to equation 3.2 follow from expression 3.5 and

result 6a.1(ii) of Rao (1973, pg 383).

Define ΣΣΣe to be the asymptotic covariance matrix of the residuals for marginals,

with estimator Σ̂ΣΣe defined by

Σ̂ΣΣe = n−1H(D(πππ)− ππππππ ′ −G(A′A)−1G′)H′|
πππ=πππ(

ˆβββ ),βββ=
ˆβββ
. (3.6)

nΣ̂̂Σ̂Σe is consistent for ΩΩΩe when the joint table is not sparse. Sparse asymptotic results

from Simonoff (1986) are applicable here. Assuming β̂ββ is a consistent estimator,

β̂ββ = βββ + Op(n
− 1

2 ); if πππ(βββ) has bounded second partial derivatives with respect to βββ ,

sups

∣∣∣πs(β̂ββ)/πs − 1
∣∣∣ = Op(n

− 1
2 ). So, even under sparseness conditions, πs(βββ)

P→ πs,

πππ(β̂ββ)
P→ πππ, nΣ̂ΣΣeee

P−→ΩΩΩeee

Estimated standard errors for the residuals can be obtained by taking square roots

of the diagonal elements of Σ̂ΣΣe.

In the outset of this section it was explained that the the distribution of n
1
2 rs is

not necessarily N(0, 1), and it is useful to divide the standardized residuals by its
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standard error:

n
1
2 rs

σ̂s

,

yielding the adjusted residuals. Extending this idea, define adjusted residual k for

the marginals of order l,

n
1
2 e

(k)
[l]

σ̂
e
(k)
[l]

, (3.7)

where e[l] = H[l]u, k = 1, .....,
(
q
l

)
, l = 1, 2, ...., q and q is the number of manifest

variables.

Similarly, define adjusted residual k for the second-order marginals,

Zij =
n

1
2 e

(k)
[2]

σ̂
e
(k)
[2]

, (3.8)

where e[2] = H[2]u, k = 1, 2, .....,
(
q
2

)
and ij is the item pair correspond to the

adjusted residuals k of the second-order marginal.

The square roots of the diagonal elements of Σ̂ΣΣe can be used as estimated standard

errors for calculating the adjusted residuals for the marginals.

3.1.3 Test Statistics

A traditional composite null hypothesis for a test of fit on a multinomial model

is Ho : πππ = πππ(βββ). Linear combinations of πππ may be tested under the null hypothesis

Ho : Hπππ = Hπππ(βββ). H may specify linear combinations that form marginal proportions

as defined in the Section 2.5.

Reiser(1996, 2008) and Reiser and Lin (1999) proposed statistics for H0 : Hπππ =

Hπππ(βββ) that can be obtained from orthogonal components defined on marginal pro-

portions. These statistics have higher power under some circumstances, and they

usually perform well when applied to sparse frequency tables.
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Consider the linear combination eee = Huuu. If H contains 2q − g − 1 linearly inde-

pendent rows corresponding to marginals from order 1 to q, then define the statistic

χ2
[1:q] = nuuu′H′ΩΩΩ−1

eee Huuu. (3.9)

Here the statistic is evaluated at βββ = β̂ββ , where β̂ββ is now consistent and efficient for

βββ , such as the maximum likelihood estimator, and where ΩΩΩeee = HΩΩΩuuuH
′. (For more

details, refer Section 3.1.2). With the added condition that the rows of H are linearly

independent of the columns of G, i.e., rank(H′
...G) = T + g, χ2

[1:q] can be shown to

be equivalent to χ2
PF . See Reiser (2008). To obtain orthogonal components, define

the upper triangular matrix FFF such that FFF ′ΩΩΩeeeFFF = III . FFF = (CCC ′)−1, where CCC is the

Cholesky factor of ΩΩΩeee. Then writing ΩΩΩeee as CCCCCC ′,

χ2
PF = nuuu′H′(ĈCC

′
)−1ĈCC

′
(ĈCC ĈCC

′
)−1ĈCC(ĈCC)

−1
Huuu

= nuuu′H′F̂FF F̂FF
′
Huuu

where F̂FF and ĈCC are the matrices FFF and CCC evaluated at βββ = β̂ββ .

Premultiplication by (CCC ′)−1 orthonormalizes the matrix H[1:q] relative to the ma-

trix (D(πππ)− ππππππ ′ −G(A′A)−1G′). Let H∗ = FFF ′H[1:q] , then

χ2
PF = nuuu′(Ĥ∗)′Ĥ∗uuu

where Ĥ∗ = H∗(β̂ββ).

Define

γ̂γγ = n
1
2 F̂FF
′
Huuu = n

1
2 Ĥ∗uuu.

Then

χ2
PF = γ̂γγ ′ γ̂γγ =

j=T−g−1∑
j=1

γ̂2
j ,

and the elements γ̂2
j are orthogonal components of χ2

PF . Since Ĥ∗uuu has asymptotic

covariance matrix FFF ′ΩΩΩeeeFFF = IIIT−g−1, the elements γ̂2
j are asymptotically independent
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χ2
1 random variables, assuming consistent estimate for πππ(βββ) and Σe. The asymptotic

approximation may not be valid for components from a sparse higher-order marginal

table.

By summing a subset of these components one can obtain limited-information or

focused statistics. Below are some of the limited-information statistics that were dis-

cussed under the literature review. The statistic on first- and second-order marginals

from Reiser (1996) is

χ2
[1:2] =

j=q(q+1)/2∑
j=1

γ̂2
j ,

and the statistic on second-order marginals from Reiser and Lin (1999) is

χ2
[2] =

j=q(q+1)/2∑
j=q+1

γ̂2
j ,

In general, using the matrix H[t:u] as given above,

χ2
[t:u] =

∑
j

γ̂2
j ,

where the limits on the sum depend on t and u, the order of the selected marginals,

and the statistic can also be expressed as

χ2
[t:u] = eee′Σ̂ΣΣ

−1

eee eee

where Σ̂ΣΣeee = n−1ΩΩΩeee, with ΩΩΩeee evaluated at the maximum likelihood estimates π̂ππ and

β̂ββ . However, depending on matrix H and the fitted model, it may be difficult to

calculate Σ̂ΣΣ
−1

eee accurately due to collinearity. Direct calculation of components by

weighted regression is considerably more stable.

Under the regularity conditions given by Birch (1964), the limiting distribution

of χ2
[t:u] as n → ∞ can be shown to be the χ2-distribution because eee is a linear

combination of the elements of uuu, nΣ̂ΣΣeee
P−→ΩΩΩeee, and eee

L−→MVN(ξξξ,ΣΣΣeee). Chi-square

approximation may not be valid when H includes sparse higher-order marginals.
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The degrees of freedom for χ2
[t:u] are known from theory and are determined by

the rank of ΩΩΩeee, which will be equal to the number of linearly independent rows in H,

assuming rank(H′
...G) = m + g where m is the rank of H, and assuming the model

πππ(βββ) is identified.

Proposed statistics for dissertation research

The statistic, χ2
[2] on second-order marginals from Reiser (1996) may have a higher

power for certain alternative hypotheses because it represents a test that is focused on

the second-order marginals. If lack-of-fit is present in 3rd- or higher-order marginals,

then a test that incorporates these higher-order marginals may have a higher power

than χ2
[2] against H0. On the other hand, if the higher-order marginals (3rd, 4th and

etc.) are sparse, then the asymptotic chi-square approximation may not perform well

for these statistics as it did for χ2
[2]. To further study these issues, I created two new

statistics based on the orthogonal components of Pearson’s chi-square. Mathematical

details related to these statistics are presented below.

Using the definitions in Section 2.5.2 and Section 3.1.3, define the following statistics

for 2q tables:

χ2
[3] =

j=q(q2+5)/6∑
j=q(q+1)/2+1

γ̂2
j ,

and

χ2
[4] =

j=$∑
j=q(q2+5)/6+1

γ̂2
j ,

where,
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$ =
q(q + 1)(q2 − 3q + 14)

24

Result 3.1

χ2
[3] is the component of χ2

PF on third-order marginals given χ2
[1:2]. χ2

[4] is the

component of χ2
PF on fourth-order marginals given χ2

[1:3].

Proof :

Since there are
(
q
1

)
first order marginals, the dimension of H[1] is q by 2q. Similarly,

there are
(
q
2

)
= q ∗ (q− 1)/2 second order marginals,

(
q
3

)
= q ∗ (q− 1) ∗ (q− 2)/6 third

order marginals, and
(
q
4

)
= q∗(q−1)∗(q−2)∗(q−3)/24 fourth order marginals. Thus,

the dimension of H[2] is q∗(q−1)/2 by 2q, the dimension of H[3] is q∗(q−1)∗(q−2)/6

by 2q, and the dimension of H[4] is q ∗ (q − 1) ∗ (q − 2) ∗ (q − 3)/24 by 2q.

Using equation 3.9,

χ2
[1:q] = nuuu′H′ΩΩΩ−1

eee Huuu.

Assume, H = H[1]
...H[2]

...H[3]
... · · ·H[q].

When q=3,

χ2
[1:3] = n(uuu′H′[1]ΩΩΩ

−1
eee H[1]uuu + uuu′H′[2]ΩΩΩ

−1
eee H[2]uuu + uuu′H′[3]ΩΩΩ

−1
eee H[3]uuu),

χ2
[1:3] = χ2

[1] + χ2
[2|3] + χ2

[3|1,2] .

Here the notation [.|.] is used because the orthogonal components calculate sequen-

tially. For a instance, χ2
[3|2] stands for the statistic on third-order marginals given the

second-order components already calculated and χ2
[4|2,3] stands for the statistics on

fourth-order marginals given the second-order components followed by third-order

components already calculated.
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As stated in Section 3.1.3 orthogonal components, γ̂2
j , can be obtained by γ̂γγ ′ γ̂γγ

where, γ̂γγ = n
1
2 Ĥ∗uuu, H∗ = FFF ′H[1:q] and FFF = (CCC ′)−1, where CCC is the Cholesky factor of

ΩΩΩeee. Thus, H∗[1] = FFF ′H[1] will be a q by 2q matrix. Hence, χ2
[1] will have q components.

Similarly, H∗[2] = FFF ′H[2] will be a q ∗ (q− 1)/2 by 2q matrix. Components of χ2
[2] will

start from q + 1 and ends at q + 1 + q ∗ (q − 1)/2 − 1 = q ∗ (q + 1)/2. Analogously,

components of χ2
[3] will start from q ∗ (q+ 1)/2 + 1 and ends at q ∗ (q+ 1)/2 + 1 + q ∗

(q − 1) ∗ (q − 2)/6− 1 = q ∗ (q2 + 5)/6.

Similarly,

χ2
[1:4] = χ2

[1] + χ2
[2|3] + χ2

[3|1,2] + χ2
[4|1,2,3]

Thus, components of χ2
[4] will start from q ∗ (q2 + 5)/6 + 1 and ends at q ∗ (q2 +

5)/6 + 1 + q ∗ (q − 1) ∗ (q − 2) ∗ (q − 3)/24− 1 = q ∗ (q + 1) ∗ (q2 − 3q + 14)/24.

Using those definitions I propose following statistics for my dissertation study:

statistic on second- and third-order marginals :

χ2
[2:3] =

j=q(q2+5)/6∑
j=q+1

γ̂2
j ;

statistic on second-, third- and fourth-order marginals :

χ2
[2:4] =

j=$∑
j=q+1

γ̂2
j .

Recall the Pearson-Fisher statistic for a cross-classified table. This statistic can

be partitioned into block of components where each block represents correspond-

ing marginals.
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Result 3.2

χ2
PF = χ2

[1] + χ2
[2|1] + χ2

[3|1,2] + χ2
[4|1,2,3] + ...+ χ2

[q|1,2,...,q−1]

Proof :

Note, the df of χ2
PF is T − g− 1 where T = 2q for binary variables and g=number

of model parameters. Therefore, the number of orthogonal components on marginals

that can be obtained is equal to T −g−1, and g components will be identically equal

to zero. Assume q ≥ 3. If q = 3 and there are two parameters for each variable

in a cross-classified table then, df = 23 − 2 ∗ 3 − 1 = 1, i.e., only one orthogonal

component is possible. Also, assume g ≥ q, with at least one parameter for each

variable in a cross-classified table. For binary variables, q components of χ2
PF can be

fitted at zero by fixing the components of χ2
[1] at zero. For instance, χ2

[1] would be ≡ 0

for a log-linear independence model. Therefore, for a log-linear independence model,

first q-order marginal components of χ2
PF can be fixed at zero. If g > q, then (g − q)

components at the higher-end will be identically equal to zero, although any (g − q)

components could be fixed at zero.

From Reiser 2008,

χ2
[1:q] = χ2

PF .

Using above equation and substituting it in equation 3.9,

χ2
[1:q] = χ2

PF = nuuu′H′ΩΩΩ−1
eee Huuu,

Note, H = H[1]
...H[2]

...H[3]
... · · ·H[q], thus,

χ2
PF = χ2

[1:q] = nuuu′(H[1]
...H[2]

... · · ·H[q])
′ΩΩΩ−1
eee (H[1]

...H[2]
... · · ·H[q])uuu,

χ2
PF = n(uuu′H′[1]ΩΩΩ

−1
eee H[1]uuu + uuu′H′[2]ΩΩΩ

−1
eee H[2]uuu + · · ·+ uuu′H′[q]ΩΩΩ

−1
eee H[q]uuu).
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then,

χ2
PF = χ2

[1] + χ2
[2|1] + χ2

[3|1,2] + χ2
[4|1,2,3] + ...+ χ2

[q|1,2,...,q−1].

For example, suppose we have q=5 cross-classified variables. Then, the omnibus

statistic can be partitioned into components, such as

χ2
PF = χ2

[1] + χ2
[2|1] + χ2

[3|1,2] + χ2
[4|1,2,3] + χ2

[5|1,2,3,4]

However, depending on g, the number of parameters to be estimated, the number

of components will exceed degrees of freedom before the last highest-order marginal is

encountered. After degrees of freedom are exhausted, additional components become

identically equal to zero. For instance, a simple independence model for q = 5

variables would have 5 parameters with first-order marginals exactly fit, so in that

case,

χ2
PF = χ2

[2] + χ2
[3|2] + χ2

[4|2,3] + χ2
[5|2,3,4].

The model fit to the joint frequencies has 26 degrees of freedom and there would

be 26 non-zero components, 10 for χ2
[2], 10 for χ2

[3], 5 for χ2
[4] and one for χ2

[5]. For some

other models, such as the log-linear Rasch model, some rows of H may be linearly

dependent on columns of G, and each linear dependence will result in a component

identically equal to zero. Calculation of components by using a method such as

the unadjusted Cholesky factor would require eliminating the linear dependencies by

deleting rows from H. The weighted regression method presented in the Section 3.2

does not require eliminating the linear dependencies.

3.2 Weighted Regression

Orthogonal components of χ2
PF can be calculated using a weighted regression. The

weighted regression approach is numerically more stable than the Cholesky factor

35



method. Also, as stated in the previous section the weighted regression method does

not require eliminating linear dependencies in H or H
...G. To calculate the orthogonal

components using a weighted regression, the appropriate weight matrix, Ŵ, for the

regression is given by the 2q by 2q matrix

Ŵ = (I− πππ(β̂̂β̂β)πππ(β̂̂β̂β)
′
− Â(Â′Â)−1Â′) (3.10)

where Â = A evaluated at βββ = β̂ββ , Ĝ = G evaluated at βββ = β̂ββ , and πππ(β̂̂β̂β) is πππ(βββ)

evaluated at MLE. Define the 2q vector z,

zzz = D(πππ(β̂̂β̂β))−1/2(p̂− πππ(β̂̂β̂β)) . (3.11)

Note multiplication by Ŵ can be applied to z, but it produces no effect be-

cause Wzzz = zzz . To adjust the standardization of the residuals premultiply H′[1:q] by

D(πππ(β̂̂β̂β))−1/2. Then define the 2q by T − g − 1 matrix M̂̂M̂M , where,

M̂̂M̂M = ŴD(πππ(β̂̂β̂β))−1/2H′[1:q] . (3.12)

Now fit the ordinary regression of z on the columns of M̂̂M̂M . Orthogonal components

can be obtained as the sequential sum of squares from this regression. The sequen-

tial sum of squares can be obtained by another application of the Cholesky factor,

although the SWEEP operator (Goodnight, 1979) is more stable numerically. Below

is the mathematical details related to obtaining sequential sum of squares using the

Cholesky factor approach.

Since, z is regressed on M̂̂M̂M ,

z′PM̂z = z′M̂̂M̂M (M̂̂M̂M ′M̂̂M̂M )−1M̂̂M̂M ′z (3.13)

where PM̂ = M̂̂M̂M (M̂̂M̂M ′M̂̂M̂M )−1M̂̂M̂M ′.
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Consider the Gaussian factorization of the nonsingular matrix M̂̂M̂M ′M̂̂M̂M with M̂̂M̂M ′M̂̂M̂M =

LDL′, where L is a square nonsingular lower-traingular matrix, and D is a non-

singular diagonal matrix. Let S = LD
1
2 . S is the Cholesky factor of M̂̂M̂M ′M̂̂M̂M , so

M̂̂M̂M ′M̂̂M̂M = SS′.

Now using equation 3.13,

z′PM̂z = z′K̂K̂′z

where K = M̂̂M̂M (S−1)′ is 2q by (T − g − 1). Then,

K̂K̂′ = k̂1k̂
′
1 + k̂2k̂

′
2 + .......+ k̂T−g−1k̂

′
T−g−1.

where k̂j is a column of K̂. Thus, z′K̂ is 1 by (T − g− 1), and the sequential sum

of squares for the regression are

SSR = z′K̂K̂′z = γ̂2
1 + γ̂2

2 + ........+ γ̂2
T−g−1 = γ̂γγ ′ γ̂γγ.

The γ̂2
j are orthogonal components of χ2

PF .

3.3 Asymptotic Power

In this section I will describe the theory for the calculation of asymptotic power

for orthogonal components of χ2
PF .

Consider the situation of testing a hypothesis Ho : πππ = πππ(βββ) against alternative

Ha : πππ 6= πππ(βββ) using the Pearson-Fisher statistic. Suppose we have a sequence of

specific alternatives πππn satisfying
√
n(πππn− πππ(βββ))→ δδδ for some constant matrix δδδ. In

this approach, the best fit of the model to the population gives πππs(βββ) as the probability

for cell s, but the true probability differs from that value by δs/
√
n. Note the model

lack-of-fit goes to zero at the rate n
1
2 as n approaches infinity. With this technique,

Mitra (1958) shows that χ2
PF has a limiting non-central chi-square distribution with
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non-centrality parameter λ, where

λ = δδδ ′Diag[πππ(βββ)]−1δδδ (3.14)

and df = T − g − 1, where T = 2q for binary variables. Using a strategy similar to

Reiser (2008), it can be shown that

λ = δδδ ′H′ΣΣΣ−1
e Hδδδ (3.15)

where,

ΣΣΣe = n−1H(D(πππ)− πππ(βββ)πππ(βββ)′ −G(A′A)−1G′)H′ . (3.16)

Based on the right-hand side of the expression 3.15, it is possible to decompose

the noncentrality parameter into orthogonal components associated with marginals.

Consider the Cholesky decomposition in Section 2.2 where FFF ′ΩΩΩeeeFFF = III and FFF =

(CCC ′)−1, where CCC is the Cholesky factor of ΩΩΩeee. Using a similar decomposition, let

ζζζ = (F′)Hδδδ = H∗δδδ (3.17)

where F and H∗ are defined as in Section 2.5. Then λ = ζζζ ′ζζζ , and orthogonal com-

ponents of λ are ζ2
j , where ζj is an element of ζζζ . These components can be used to

calculate the power for tests based on marginals of differing order. For example, the

non-centrality parameter for χ2
[2] is given by

q(q+1)/2∑
j=1

ζ2
j (3.18)

As for this case, power of each orthogonal component can be calculated using the

non-central chi-square distribution. The non-centrality parameter of the non-central

chi-square distribution for the jth component is given by ζ2
j .
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Calculation of δδδ:

For the purpose of power calculations under fixed, finite n, cell proportions are gen-

erated from a known model, with parameter vector βββa. These proportions (say,

πππa = πππ(βββa)) are multiplied by a selected initial sample size such as n0 = 1, 000.

Thereafter, the model of the null hypothesis is estimated using the resulting cell fre-

quencies. Let, πππ(βββ∗a) represent the fitted proportions where, βββ∗a are the parameter

estimates that maximize the likelihood function of the model under null hypothesis.

Then, the equation δδδ =
√
n(πππa − πππ(βββ∗a)) can be used to calculate δδδ.

3.4 Categorical Variable Factor Analysis Model

The categorical variable factor analysis model will be used for simulation and

power calculations pertaining to this dissertation. These simulations and power cal-

culations can be extended to any other models fitted to a 2q table, such as certain

log-linear models and repeated measures for categorical variables. The main motiva-

tion behind using the categorical variable factor analysis model is that I can easily

find applications with large number of manifest variables. The next paragraph will

illustrate the mathematical details related to the categorical variable factor analysis

model.

When categorical manifest variables are hypothesized to be associated with a con-

tinuous latent variable, the model is known as categorical variable factor analysis and

sometimes as the Item Response Theory (IRT) model. According to the categorical

factor model, the probability of the response to a manifest variable, sometimes also

referred to as an item, can be given by a logistic response function:

P (Yi = 1 | βββ ′i, X = x) = (1 + exp(−βi0 − βi1x))−1 (3.19)
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where Yi represents the response to item i,

βi0 = intercept parameter for item i

βi1 = slope parameter for item i

βββ ′i = (β0i, β1i)

x = value taken on by latent random variable X .

Since

P (Yi = 0 | βββ ′i, X = x) = 1.0− π(Yi = 1 | βββ ′i, X = x),

it follows that

P (Yi = yi | βββ ′i, x) = P (Yi = 1 | βββ ′i, x)yi [1.0− P (Yi = 1 | βββ ′i, x)]1−yi .

It is assumed that, conditional upon the latent variable, responses to the manifest

variables are independent. Let YYY represent a random vector of responses to the items,

with element Yi, and let y represent a realized value of YYY . Then

P (YYY = y | βββ, x) =

q∏
i=1

π(Yi = 1 | βββ, x)yi [1− π(Yi = 1 | βββ, x)]1−yi (3.20)

where βββ =



β01 β11

β02 β12

β03 β13

...
...

β0q β1q


.

Finally, the probability of response pattern s, say, πs(βββ) is obtained by taking

the expected value of the conditional probability over the distribution of X in the

population, and is sometimes called the marginal probability:

πs(βββ) = P (YYY = ys | βββ) =

∫ ∞
−∞

P (YYY = ys | βββ, x)f(x)dx (3.21)
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where f(x) is the density function of X in the population of respondents.

If UUU represents a T -dimensional multinomial random vector of frequencies associ-

ated with the response patterns, the distribution of UUU is given by

π(UUU = n) = n!
T∏
s=1

[πs(βββ)]

ns!

ns

(3.22)

where n =vector of observed frequencies

ns =element s of n

n =total sample size =
T∑
s=1

ns.
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Chapter 4

RESULTS

I studied three problems related to goodness-of-fit in my dissertation. Firstly, I

studied goodness-of-fit statistics using orthogonal components based on higher-order

marginals, especially third-order and fourth-order marginals. To this end, I devel-

oped two new statistics based on the orthogonal components of Pearson’s chi-square

and studied the Type I error, empirical power and asymptotic power of these statis-

tics under different sparseness conditions. I also compared the performance of these

statistics to χ2
[2], χ

2
red, χ

2
red,[3], χ

2
red,[4] and Mr statistics. Results related to the first

problem are given in Chapter 4. Secondly, I studied the Type I error and power of

individual orthogonal components of χ2
[2] as test statistics to identify lack-of-fit. In

the context of this problem, I studied both empirical and asymptotic power. I also

compared the performance of individual orthogonal components of χ2
[2] to other test

statistics discussed in Chapter 2. Results related to the this problem are presented in

Chapter 5. Applications using these new statistics and lack-of-fit diagnostics are given

in Chapter 6. Thirdly, I extended the statistics on lower-order marginals to a large

number of manifest variables. When the number of manifest variables becomes larger

than 20, most of the statistics on lower-order marginals have limitations in terms of

computer resources and CPU time. Under this problem, I investigated the perfor-

mance of a bootstrap based method to obtain p-values for Pearson-Fisher statistic,

fit to confirmatory dichotomous variable factor analysis model and the performance

of Tollenaar and Mooijaart (2003) statistic when the number manifest variables is

larger than or equal to 25. Results related to this problem are given in Chapter 7.
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4.1 Performance of χ2
[2:3] and χ2

[2:4]

I investigated the performance of χ2
[2] and statistics that incorporate additional

higher-order marginals. If lack-of-fit is present in 3rd- or higher-order marginals,

then a test that incorporates these higher-order marginals may have a higher power

than χ2
[2] against H0. On the other hand, if the higher-order marginals (3rd, 4th

and etc.) are sparse, then the asymptotic chi-square approximation may not perform

well for these statistics as it did for χ2
[2]. I further studied these issues by including

the higher-order components in the test statistic. To this end, I developed two new

statistics based on the orthogonal components of Pearson’s chi-square:

Statistic on second- and third-order marginals :

χ2
[2:3] = χ2

[2] + χ2
[3|2] =

j=q(q2+5)/6∑
j=q+1

γ̂2
j , (4.1)

Statistic on second-, third- and fourth-order marginals :

χ2
[2:4] = χ2

[2] + χ2
[3|2] + χ2

[4|2,3] =

j=$∑
j=q+1

γ̂2
j , (4.2)

where,

χ2
[3|2] =

j=q(q2+5)/6∑
j=q(q+1)/2+1

γ̂2
j ,

and,

χ2
[4|2,3] =

j=$∑
j=q(q2+5)/6+1

γ̂2
j ,

where,

$ =
q(q + 1)(q2 − 3q + 14)

24

Recall, the notation [.|.] is used because the orthogonal components were calcu-

lated sequentially. For instance, χ2
[3|2] stands for the statistic on third-order marginals
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given the second-order components already calculated and χ2
[4|2,3] stands for the statis-

tics on fourth-order marginals given the second-order components followed by third-

order components already calculated. χ2
[3|2] and χ2

[4|2,3] can be expected to have a

lower power than χ2
[2] when lack-of-fit is in two-way associations.

The statistic χ2
[3|2] was calculated on the 2 ∗ 2 ∗ 2 tables and χ2

[4|2,3] was calculated

on the 2∗2∗2∗2 tables. The 2∗2∗2 and 2∗2∗2∗2 tables may be sparse even if the 2∗2

tables are not sparse. Mathematical details related to these statistics can be found

in Section 3.1.3. Also, the H matrix becomes larger with additional higher-order

marginals. For instance, χ2
[2] had

(
15
2

)
= 105 components for 15 manifest variables,

χ2
[3|2] had

(
15
3

)
= 455 components, and χ2

[4|2,3] had
(

15
4

)
= 1365 components. Thus, for

15 manifest variables, the dimension of the H matrix for χ2
[2:3] was 560∗32, 768 and the

dimension of the H matrix for χ2
[2:4] was 1, 925 ∗ 32, 768. Therefore, the computation

required an extra 119.3 Mb to store the H matrix for χ2
[2:3] and 477.1 Mb for χ2

[2:4]

than it did for χ2
[2].

I started the simulation study with second and third-order marginals. I also

compared the performance of these new statistics to statistics presented in the Section

2.6, namely: χ2
red and Mr. Recall for e = H[1:r]r and r = p̂− πππ(β̂̂β̂β),

Mr = e′Ĉre (4.3)

where Ĉr = (HT̂H′)−1 − (HT̂H′)−1HĜ(Ĝ′H′(HT̂H′)−1HĜ)−1Ĝ′H′(HT̂H′)−1and

T̂ = D(πππ(β̂̂β̂β)) − πππ(β̂̂β̂β)πππ(β̂̂β̂β)′. For the Mr statistic, H is equal to H[1:r]. Comparisons

in this study were focused on second-, third- and fourth-order marginals. However,

M2, M3 and M4 statistics, which were used for the comparison also had first-order

marginals by definition.

The Tollenaar and Mooijaart (2003) χ2
red statistic is a reduced version of χ2

[1:2]

statistic. The difference lies in the covariance matrix T that does not include the
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term G(A′A)−1G′. The generalization of χ2
red to third- and fourth- order marginals

is given below:

χ2
red,[3] = ne′3(H[1:3]T̂H′[1:3])

−1e3 (4.4)

where,

T̂ = D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′

and,

χ2
red,[4] = ne′4(H[1:4]T̂H′[1:4])

−1e4 (4.5)

Mr and χ2
red,[r] are often very close in value in an application. They differ by

Ĉr − (H[1:r]T̂H[1:r])
−1 in the covariance matrix of the quadratic form. Note, neither

Mr nor χ2
red are components of χ2

PF .

In this section, I introduce two new statistics, χ2
[2:3] and χ2

[2:4]. Two Monte-Carlo

simulation studies were performed to investigate the performance of these statis-

tics, one with 8 manifest variables and one with 15 manifest variables. The primary

purpose was to investigate the influence, if any, of sparseness in the third- and fourth-

order marginals on the performance of the statistics. The simulation study was re-

peated for n=300, n=500 and n=1000. I also compared the performance of these two

statistics to χ2
red, χ

2
red,[3], χ

2
red,[4], M2, M3, M4, χ2

[1:2] and χ2
[2]. Results are given in the

subsequent paragraphs.

Based on the mathematical details in Chapter 2 and 3, I developed a SAS code

to perform these simulations. A PROC IML macro was used to calculate the test

statistics and orthogonal components. The statistics, χ2
[2:3] and χ2

[2:4] were calcu-

lated by summing the appropriate orthogonal components. The weighted regres-

sion method described in the Section 3.2 was used to obtain the orthogonal com-
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ponents. The Sweep Operator method (Goodnight, 1979) was incorporated into

the weighted regression to obtain the orthogonal components via sequential sums of

squares. The SWEEP operator method is numerically more stable than the Cholesky

factor method. PROC IRT method in SAS can be used for parameter estimation.

However, parameter estimation from PROC IRT method was not stable for small

sample sizes. Mplus (Muthn & Muthn, 2017) parameter estimates were more stable

compared to SAS and therefore, Mplus estimates were used in all the calculations.

4.2 Type I Error Study

Empirical Type I error rates were examined first because a statistic may not be

useful in terms of practical applications if the Type I error rate is not close to the

nominal level. If a statistic does not follow the hypothesized theoretical distribution

due to a condition such as sparseness, then the empirical Type I error rate may not

be close to the nominal level.

Type I error simulations for χ2
[2:3] and χ2

[2:4] started with 8 manifest variables. One

thousand data sets were generated using Monte-Carlo methods related to a one factor

model with factor loadings (0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.2, 0.2). Similarly, to calculate

the Type I error rates for 15 manifest variables, one thousand data sets were generated

using Monte-Carlo methods from a known one factor model with factor loadings (0.1,

0.1, 0.1, 0.9, 0.9, 0.9, 0.2, 0.2, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.2).

Savalei and Rhemtulla (2013) studied the performance of five test statistics ap-

propriate for categorical data, and they have investigated both Type I error rate and

power for different model sizes, sample sizes, numbers of categories, and threshold

distributions. In their study they suggest that different pattern of intercepts may

affect the power and Type I error rate. Liu and Maydeu-Olivares (2014) carried out
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a similar study to check the performance of several fit statistics for item pairs with

known asymptotic distributions under maximum likelihood estimation of the item

parameters. In their study, they suggest to investigate the performance of the test

statistics when intercepts are skewed as a further research.

Therefore, I have used three different intercepts settings for my study. Simulations

were repeated for each of these different intercept settings. Table 4.1 below summa-

rizes this information for eight manifest variables and Table 4.2 below summarizes

this information for 15 manifest variables :

Table 4.1: Proposed Intercepts Values - Eight Variables

Condition Proposed Intercept Values

Symmetric (-2.0, -1.5, -1, -0.5, 0.5, 1, 1.5, 2)

Asymmetric (-2.1, -1.8, -1.5, -1.2, -0.9, -0.6, -0.3, 0)

Zero (0, 0, 0, 0, 0, 0, 0, 0)

Table 4.2: Proposed Intercepts Values - Fifteen Variables

Condition Proposed Intercept Values

Symmetric (-3.5, -3.0, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5)

Asymmetric (-3.5, -3.25, -3, -2.75, -2.5, -2.25, -2, -1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0)

Zero (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

After generating the data, a categorical variable factor analysis model with one

latent factor was estimated for each of these datasets, and empirical Type I error

rates were calculated. I repeated these simulations for n=300, n=500 and n=1000. I

compared the Type I error rates of χ2
[2:3] and χ2

[2:4] statistics to Type I error rates of

χ2
[2], χ

2
red, χ

2
red,[3], χ

2
red,[4] and Mr statistics.

Table 4.3 below summarizes the empirical Type I error results for q = 8 manifest

variables. The Type I error rates outside of the Monte-Carlo error interval 0.05 ±
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√
0.05(0.95)/1000 = (0.0365, 0.0635) are bolded. Type I error rates related to χ2

red,[4],

M4 and χ2
[2:4] were outside the Monte-Carlo error interval for both symmetric and

asymmetric intercept settings. When the sample size was small (e.g. n=300) the

Type I error rates related to χ2
red,[4], M4 and χ2

[2:4] were considerably different from

the nominal value 0.05. However, when the sample size increases, Type I error rates

were improved. When n=1000, almost all the statistics had Type I error rates close

to the nominal value. On the other hand, Type I error rates related to χ2
red,[3], M3

and χ2
[2:3] were close to the nominal value, even for n=300. Similarly, all the Type I

error rates related to χ2
red, M2 and χ2

[2] were within the Monte-Carlo error interval for

all the different intercept settings and sample sizes. This suggests that the 2∗2∗2∗2

tables were sparse when q = 8 but 2 ∗ 2 ∗ 2 and 2 ∗ 2 tables were not sparse. However,

it was interesting to see that the Type I error rates related to all the statistics were

within the Monte-Carlo error interval for the zero intercept model. Thus, counts have

less sparseness among cells when the intercepts are zero compared to asymmetric or

symmetric intercepts.

Table 4.3: Type I Errors Rate of the Test Statistics (TS), q = 8

Symmetric Asymmetric Zero

TS n=300 n=500 n=1000 n=300 n=500 n=1000 n=300 n=500 n=1000

χ2
red 0.052 0.054 0.041 0.056 0.047 0.046 0.037 0.055 0.046

χ2
red,[3] 0.059 0.066 0.048 0.075 0.049 0.044 0.049 0.052 0.053

χ2
red,[4] 0.114 0.095 0.075 0.092 0.073 0.052 0.049 0.044 0.052

M2 0.045 0.053 0.041 0.043 0.047 0.045 0.034 0.055 0.046

M3 0.055 0.064 0.048 0.071 0.048 0.044 0.049 0.052 0.053

M4 0.109 0.093 0.075 0.087 0.072 0.052 0.049 0.043 0.052

χ2
[1:2] 0.047 0.058 0.048 0.055 0.049 0.0365 0.041 0.047 0.045

χ2
[2] 0.041 0.05 0.056 0.044 0.046 0.038 0.047 0.046 0.044

χ2
[2:3] 0.06 0.067 0.057 0.072 0.046 0.048 0.055 0.051 0.054

χ2
[2:4] 0.118 0.095 0.072 0.089 0.072 0.051 0.045 0.046 0.054
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When the number of manifest variables was extended to q = 15, that is 32,768

cells in the cross-classified table, Type I error rates related to χ2
red,[4], M4, χ2

[2:4], χ
2
red,[3],

M3 and χ2
[2:3] were considerably different from the nominal value 0.05 for symmetric

and asymmetric intercept models. However, the Type I error rates related to χ2
red,

M2 and χ2
[2] were within the Monte-Carlo error interval for all the different intercept

settings and sample sizes. This suggests that the 2 ∗ 2 ∗ 2 ∗ 2 and 2 ∗ 2 ∗ 2 tables were

sparse when q = 15 but 2 ∗ 2 tables were not sparse. However, the Type I error rates

related to all the statistics were within the Monte-Carlo error interval for the zero

intercept model. Therefore, the observations seem to be well distributed among cells

when the intercepts are zero compared to asymmetric or symmetric intercepts even

when q = 15.

Table 4.4: Type I Errors Rate of the Test Statistics, q = 15, n=500

Test Statistic Symmetric Asymmetric Zero

χ2
red 0.056 0.054 0.045

χ2
red,[3] 0.13 0.155 0.044

χ2
red,[4] 0.279 0.273 0.053

M2 0.056 0.054 0.045

M3 0.129 0.155 0.043

M4 0.279 0.272 0.052

χ2
[1:2] 0.053 0.06 0.045

χ2
[2] 0.052 0.053 0.048

χ2
[2:3] 0.128 0.157 0.04

χ2
[2:4] 0.278 0.274 0.05

4.3 Power Study

As the next step, I calculated the empirical and asymptotic power of the test

statistics χ2
red, χ

2
red,[3], χ

2
red,[4], M2, M3, M4, χ2

[1:2], χ
2
[2], χ

2
[2:3] and χ2

[2:4] for symmetric,

asymmetric and zero intercept settings. I only used q = 8 manifest variables because
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the Type I error rates related to χ2
red,[3], χ

2
red,[4], M3, M4, χ2

[2:3] and χ2
[2:4] were not

close to the nominal value when q = 15 for both symmetric and asymmetric intercept

settings. However, the Type I error rates related to χ2
red, M2, χ2

[1:2] and χ2
[2] for q = 15

were within the Monte-Carlo error interval. Therefore, I calculated the empirical and

asymptotic power of these statistics for q = 15. Results are given in the subsequent

paragraphs.

To calculate the asymptotic power under 8 manifest variables, cell proportions

were generated from a known two factor model, where loadings for the first factor

were (0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.2, 0.2) and loadings for the second factor were (1,

1, 1, 0, 0, 0, 1, 1). The two latent variables were specified as uncorrelated, each with

variance equal to 1.0. As before, I used three intercept settings. Details related to

these intercept settings are given in Table 4.1.

To calculate the asymptotic power, I used the method described in the Section

3.3. A brief description of the method is as follows. First, I generated the proportions

from a two factor model with above mentioned factor loadings. I used a numerical

integration method called Gauss-Hermite quadrature to generate the proportions us-

ing the model described in 3.4. Since there are two latent variables, say x1 and x2,

equation 3.21 will now become,

πs(βββ) = π(YYY = ys | βββ) =

∫ ∫
π(YYY = ys | βββ, x1, x2)f(x1, x2)dx1dx2 (4.6)
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where βββ =



β01 β11 β12

β02 β12 β22

β03 β13 β23

...
...

β0q β1q β2q


.

Thereafter, these proportions were multiplied by a selected initial sample size n0

to create the true cell frequencies under Ha. Then, the model of the null hypothesis

was fitted to the resulting cell frequencies. Next, non-centrality parameters were

calculated as described in equations 3.17 and 3.18. The non-centrality parameters

for any other sample size, say simply n, can be approximated by using the expression

λ ≈ n
n0
λ0. Once I obtained the non-centrality parameters, I used non-central chi-

square distribution to calculate the asymptotic power for χ2
[2:3] and χ2

[2:4] . Note, the

significance level was set to 0.05.

Simulations for the empirical power were performed with the same parameter

values as in the asymptotic power study. To calculate the empirical power, one

thousand data sets were generated using Monte-Carlo methods related to a two factor

model. Then, a one factor model was fitted for each of these datasets and empirical

power was calculated. In the simulation, the model under H0 is misspecified with a

one factor model. To calculate the empirical power for each statistic, the sum of the

number of cases that exceed the chi-square critical value (at 5% significance level)

under the corresponding degree of freedom of the statistic was divided by the number

of datasets.

This process was repeated for sample sizes 300, 500 and 1000. Empirical and

asymptotic power of χ2
[2:3] and χ2

[2:4] were also compared to the empirical and asymp-

totic power of χ2
red, χ

2
red,[3], χ

2
red,[4], M2, M3, M4, χ2

[1:2] and χ2
[2].
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Table 4.5: Power for Symmetric Intercept Settings

n=300 n=500 n=1000

Test Statistic Empirical Asymptotic Empirical Asymptotic Empirical Asymptotic

χ2
red 0.605 0.66079 0.88 0.91498 0.999 0.99944

χ2
red,[3] 0.318 0.35128 0.595 0.62798 0.951 0.96717

χ2
red,[4] * 0.24251 * 0.44799 * 0.87271

M2 0.604 0.66071 0.88 0.91493 0.999 0.99944

M3 0.317 0.35122 0.595 0.62789 0.951 0.96714

M4 * 0.24321 * 0.44937 * 0.87396

χ2
[1:2] 0.467 0.51813 0.796 0.81697 0.996 0.99596

χ2
[2] 0.531 0.57981 0.838 0.86537 0.996 0.99822

χ2
[2:3] 0.301 0.33193 0.567 0.59953 0.942 0.95824

χ2
[2:4] * 0.23607 * 0.43582 * 0.86219

* Power is contaminated by inaccurate Type I error

Tables 4.5, 4.6 and 4.7 indicate asymptotic and empirical power results for sym-

metric, asymmetric and zero intercept settings, respectively. In the previous para-

graphs, I have illustrated the Type I error rates related to each of these settings.

Some of the Type I error rates were not close to the nominal value due to sparseness.

Power results related to these cases were marked with an asterisk because if the Type

I error rates are inaccurate due to sparseness then the power results do not have much

validity in terms of practical applications.
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Table 4.6: Power for Asymmetric Intercept Settings

n=300 n=500 n=1000

Test Statistic Empirical Asymptotic Empirical Asymptotic Empirical Asymptotic

χ2
red 0.609 0.63631 0.866 0.89984 0.998 0.99909

χ2
red,[3] * 0.3395 0.596 0.60979 0.941 0.96097

χ2
red,[4] * 0.23473 * 0.43266 0.828 0.85811

M2 0.608 0.63565 0.866 0.89941 0.998 0.99908

M3 * 0.33904 0.595 0.60908 0.941 0.96071

M4 * 0.23531 * 0.4338 0.828 0.85924

χ2
[1:2] 0.486 0.49429 0.779 0.79345 0.993 0.99406

χ2
[2] 0.518 0.55492 0.806 0.84508 0.997 0.99726

χ2
[2:3] * 0.32041 0.57 0.58088 0.928 0.95062

χ2
[2:4] * 0.22846 * 0.42063 0.826 0.84

* Power is contaminated by inaccurate Type I error

Table 4.7: Power for Zero Intercept Settings

n=300 n=500 n=1000

Test Statistic Empirical Asymptotic Empirical Asymptotic Empirical Asymptotic

χ2
red 0.698 0.75933 0.942 0.96175 0.999 0.99994

χ2
red,[3] 0.396 0.42969 0.694 0.73579 0.982 0.9903

χ2
red,[4] 0.251 0.29583 0.512 0.54723 0.92 0.94165

M2 0.698 0.75732 0.942 0.96101 0.999 0.99994

M3 0.396 0.42786 0.694 0.73353 0.982 0.99

M4 0.251 0.29545 0.512 0.54657 0.92 0.94132

χ2
[1:2] 0.612 0.61651 0.887 0.89623 0.999 0.99932

χ2
[2] 0.634 0.67971 0.902 0.93016 0.999 0.99975

χ2
[2:3] 0.378 0.40482 0.668 0.70591 0.977 0.98636

χ2
[2:4] 0.243 0.28643 0.511 0.53119 0.913 0.93383

By observing the results in Tables 4.5, 4.6 and 4.7, it is clear that the χ2
[2] had

higher empirical power for all the settings (symmetric, asymmetric and zero) com-
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pared to χ2
[2:3] and χ2

[2:4]. This indicates that when the lack-of-fit is in the second-order

marginals, including third- or fourth-order marginals in the test statistic can dilute

the test. When sample size was small (e.g. n=300) empirical power was somewhat

lower than the asymptotic power. However, when the sample size increased (e.g.

n=1000) empirical power was very close to the asymptotic power. This is related

to how fast the empirical distribution can converge to asymptotic distribution. The

lower empirical power seen in the results for small sample size is related to the em-

pirical distribution not as close to the asymptotic distribution. The zero intercept

model had the highest power. This further validates the fact that the observations

are well distributed among cells in the cross-classified table when the intercepts are

zero compared to asymmetric or symmetric intercept models.

When the sample size was small, M3, M4, χ2
red,[3] and χ2

red,[4] statistics each had a

slightly higher power compared to χ2
[2:3] and χ2

[2:4] statistics. One can argue this might

be due to the fact that χ2
[2:3] and χ2

[2:4] converge to the theoretical distribution slower

than the M3, M4, χ2
red,[3] and χ2

red,[4]. Note, by default M3, M4, χ2
red,[3] and χ2

red,[4] con-

tain first-order marginals whereas χ2
[2:3] and χ2

[2:4] start from second-order marginals.

It is also possible that these first-order marginals may have some contribution to the

higher power of these test statistics.

4.3.1 Three-Way Association Study

For the next study, I used a different model to study the power of χ2
[2:3] and χ2

[3:4]

where there is a higher order effect present in the model. I used a log-linear model

with 3-way interactions. The log-linear version has the advantage that it is convenient

to demonstrate the influence of higher-order interactions that would be found in the

third-order marginals.

As before, I started the simulations with a Type I error study. If a statistic
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does not follow the hypothesized theoretical distribution due to a condition such as

sparseness, then the empirical Type I error rate may not be close to the nominal level.

To calculate the Type I error rates, I generated the data from the following log-linear

model:

log (ms) = λ+ λy1f + λy2g + .....+ λy8m + λy1,y2fg + λy1,y3fh + .....+ λy7,y8lm , (4.7)

where, ms is the expected count for cell s and λ = 0.5, λy11 = λy21 = λy31 = ... =

λy81 = 0.1, λ
yi,yj
11 = λ

yi,yj
00 = −λyi,yj01 = −λyi,yj10 = 0.2 for i, j = 1, 2, .., 8.

A categorical factor model with one latent factor was fitted for the pseudo data

generated from model 4.7 and Type I error rates were calculated. Results are given

in the Table 4.8. The Type I error rates outside of the Monte-Carlo error interval

0.05 ±
√

0.05(0.95)/1000 = (0.0365, 0.0635) are bolded. Results suggest that the

2 ∗ 2 ∗ 2 ∗ 2 tables were sparse, especially when the sample size is small (e.g. n=300).

Table 4.8: Type I Error Results for Three-Way Association Study

n=300 n=500 n=1000

χ2
red 0.036 0.039 0.041

χ2
red,[3] 0.048 0.052 0.058

χ2
red,[4] 0.118 0.097 0.067

M2 0.034 0.037 0.039

M3 0.046 0.051 0.054

M4 0.111 0.091 0.064

χ2
[2] 0.041 0.047 0.052

χ2
[2:3] 0.059 0.062 0.058

χ2
[2:4] 0.114 0.093 0.066

The degrees of freedom for Mr are not clear in this application because the pseudo

data are generated from a model (4.7) where first-order marginals are exactly fit,
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although the first-order may not be exactly fit under the generalized linear latent

variable model. Without adjusting degrees of freedom, Mr produced very low Type I

error rate. Therefore, degrees of freedom for Mr were decreased by eight, because the

simulation has eight manifest variables for which first-order may have been exactly

fit. However, it is not known if this adjustment to the degrees of freedom is correct.

Next, I calculated empirical power using the following log-linear model which contain

a three-way interaction:

log (ms) = λ+ λy1f + λy2g + .....+ λy8m + λy1,y2fg + λy1,y3fh + .....+ λy7,y8lm + λy1,y2,y3fgh , (4.8)

where, ms is the expected count for cell s and λ = 0.5, λy11 = λy21 = λy31 = ... =

λy81 = 0.1, λ
yi,yj
11 = λ

yi,yj
00 = −λyi,yj01 = −λyi,yj10 = 0.2 for i, j = 1, 2, .., 8 and λy1,y2,y3001 =

λy1,y2,y3010 = λy1,y2,y3100 = λy1,y2,y3111 = −λy1,y2,y3000 = −λy1,y2,y3011 = −λy1,y2,y3101 = −λy1,y2,y3110 = 0.7.

To study the power of χ2
[2], χ

2
[2:3] and χ2

[3:4], the one-factor categorical factor model

was fitted for pseudo data generated from model 4.8. All pair-wise associations were

constrained equal in the generating model 4.8 with only one three-way interaction

among variables Y1, Y2 and Y3. Thus, I was expecting a higher power for χ2
[2:3] and

χ2
[2:4] statistics than χ2

[2]. I also compared the performance of these statistics to χ2
red,[3],

χ2
red,[4], M3 and M4 using a simulation. The study was repeated for n=300, 500

and 1000. Table 4.9 indicates the power results related to the three-way association

study. Under the alternative hypothesis, a three-way interaction effect was present

for variables Y1, Y2 and Y3. Since the model of the null hypothesis does not include a

three-way interaction, there is a discrepancy also in the three-way associations.
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Table 4.9: Power Results for Three-Way Association Study

n=300 n=500 n=1000

χ2
red 0.234 0.269 0.390

χ2
red,[3] 0.567 0.928 1

χ2
red,[4] * * 1

M2 0.214 0.264 0.388

M3 0.528 0.914 1

M4 * * 0.999

χ2
[2] 0.194 0.575 0.954

χ2
[2:3] 0.369 0.817 1

χ2
[2:4] * * 0.995

* Power is contaminated by inaccurate Type I error

As can be seen from the results, power of the test based on χ2
[2:3] surpasses the

power of the test based on χ2
[2] when there is a three-way association effect. I re-

peated the above simulation twice with λy1,y2,y3001 = λy1,y2,y3010 = λy1,y2,y3100 = λy1,y2,y3111 =

−λy1,y2,y3000 = −λy1,y2,y3011 = −λy1,y2,y3101 = −λy1,y2,y3110 = 0.5, and λy1,y2,y3001 = λy1,y2,y3010 =

λy1,y2,y3100 = λy1,y2,y3111 = −λy1,y2,y3000 = −λy1,y2,y3011 = −λy1,y2,y3101 = −λy1,y2,y3110 = 0.8. As the

three-way association effect becomes larger, the power of the test based on χ2
[2] rose

only gradually, but the power of test based on the χ2
[2:3] rose rapidly. This suggests

χ2
[2:3] statistic works better when there is a three-way association compared to χ2

[2].

Also, the power of χ2
[2:4] was lower than χ2

[2:3]. This suggest that the lack-of-fit is in

the third-order and adding additional components may dilute the test. However, the

Type I error rate related to χ2
[2:4] was not close to the nominal value 0.05 especially,

when n=300. If Type I error rates are not close to the nominal value then the power

results does not have much validity in terms of practical applications. Therefore, I

replaced those power results with an asterisk mark.

To sum up, a test based on low-order marginals, χ2
[2], has higher power to detect
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lack-of-fit located in the second-order associations when compared with a statistic

that incorporates higher-order marginals such as χ2
[2:3] or the χ2

[2:4]. χ2
[2], however,

would be very insensitive to a lack-of-fit that is present in the third-order marginals.

Other limited-information statistics discussed in this section, χ2
red and M2, suffered

the same lower power in this type of situation. In many applications of latent variable

models in the social sciences, manifest variables are designed to have high bi-variate

association, but sometimes it is possible to have three-way or four-way associations.

In those situations, χ2
[2:3] and χ2

[2:4] may out perform lower-order statistics like χ2
[2]. The

ability to choose between different statistics χ2
[2], χ

2
[2:3] and χ2

[2:4] in different situations

can help to improve the inference and decisions made in real world applications. The

SAS code I developed facilitates this approach and can help to improve the decisions

made in real-word applications.
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Chapter 5

PERFORMANCE OF INDIVIDUAL ORTHOGONAL COMPONENTS OF χ2
[2]

Results from the previous section showed that χ2
[2] may have higher power for

certain alternative hypothesis, especially when the lack-of-fit is in the second-order

marginals. When a model fails to fit adequately, it is important to know where the

model provides a good fit and where it does not. This section will illustrate the

performance of individual orthogonal components of χ2
[2] as test statistics to identify

lack-of-fit.

According to Liu and Maydeu-Olivares (2014) paper, statistics χ̄2
ij (Liu & Maydeu-

Olivares, 2014) and adjusted residuals (Reiser, 1996) has better Type I error rates

and power compared to other test statistics explained in Section 2.6. Therefore, I

included χ̄2
ij and adjusted residuals in my simulation and compared the performance

to individual orthogonal components of χ2
[2].

5.1 Simulation Study Part I: Empirical Type I Error Rates

As before, I calculated Type I error rates first because if the Type I error rates are

too far from the nominal value, then the power results do not have much validity in

terms of practical applications. Table 5.1 below summarizes the Type I error study:
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Table 5.1: Design of Type I Error Study

Model (data generation) categorical variable factor analysis model

with one latent factor

Model (fitted) categorical variable factor analysis model

with one latent factor

Number of observed variables q=8, q=15

Number of samples 1000

Sample size n=300, n=500

As the the above Table indicates, I used two settings for the number of manifest

variables (q). When q = 8 there are 256 cells in the 28 cross-classified table. With

n=500, each cell may have, on average, two observations. When q = 15, there are

32768 cells in the 215 cross-classified table. Even with n=500, each cell may only

have, on average, 0.01 observations. Thus, the sparseness in the cross-classified table

is very severe when q = 15. But, I’m using second-order marginals and 2∗2 sub-table

may not be sparse even when q = 15 even with n=300. Therefore, I was expecting

individual orthogonal components of χ2
[2] to have good Type I error rates when q = 8

and q = 15.

5.1.1 Type I Error Study for Eight Variables

The first simulation included eight manifest variables. One thousand data sets

were generated using Monte-Carlo methods related to a one factor model where β′1 =

(0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 0.2, 0.2). As before, I used three intercept settings. Inter-

cept values for each setting are given in the Table 4.1. Then, a categorical variable

factor analysis model with one latent factor was estimated for each of these datasets,

and empirical Type I error rates of the individual orthogonal components were cal-
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culated. Since each individual orthogonal component is distributed approximately as

chi-square with one degree of freedom, to calculate the empirical Type I error rate

for each component, the sum of the number of cases that exceed the chi-square crit-

ical value (at 5% significance level) with one degree of freedom was divided by the

number of datasets. Similar process was used to calculate the Type I error rates of

the adjusted residual and χ̄2
ij. This simulation was repeated for sample sizes 300 and

500.

Table 5.2 below indicates the empirical Type I error rates for q = 8 manifest

variables for symmetric intercept model. The Type I error rates outside of the Monte-

Carlo error interval 0.05 ±
√

0.05(0.95)/1000 = (0.0365, 0.0635) are bolded. When

n=300, Type I error rates related to orthogonal components (2,4) and (4,5) were

outside the Monte-Carlo error interval. Given that there are twenty eight individual

orthogonal components, it is possible that one or two components may randomly fall

slightly outside the Monte-Carlo error interval. However, six components related to

χ̄2
ij and five components related to adjusted residuals were outside the Monte-Carlo

error interval. This suggests, when n=300, orthogonal components have better Type

I error rates compared to χ̄2
ij and adjusted residuals for q = 8 manifest variables

for symmetric intercept model. When n=500, all most all the components related

to χ̄2
ij, orthogonal components, and adjusted residuals were inside the Monte-Carlo

error interval (0.0365, 0.0635).

Type I error rates for q = 8 manifest variables for asymmetric intercept model

are given in the Table A.1. As for the symmetric intercept model, when n=300,

orthogonal components had better Type I error rates compared to χ̄2
ij and adjusted

residuals. Five components related to χ̄2
ij and five components related to adjusted

residuals were outside the Monte-Carlo error interval. Only one component related

to orthogonal components was outside the Monte-Carlo error interval. Again, given
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that there are twenty eight individual orthogonal components, it is possible that one

or two components may randomly fall slightly outside the Monte-Carlo error interval.

As before, when n=500, all the components related to χ̄2
ij, orthogonal components,

and adjusted residuals were inside the Monte-Carlo error interval (0.0365, 0.0635).

Type I error rates for q = 8 manifest variables for zero intercept model are given

in the Table A.2. All the components related to χ̄2
ij, orthogonal components, and

adjusted residuals were inside the Monte-Carlo error interval (0.0365, 0.0635), even

for n=300. Thus, counts have less sparseness among cells when the intercepts are

zero compared to asymmetric or symmetric intercepts.

As explained in the Chapter 3, each orthogonal component is distributed approxi-

mately as chi-square with one degree of freedom. To check this assumption, chi-square

Q-Q plots were built for the simulation values related to each component. A similar

approach was taken to check the normality assumption of the adjusted residuals. On

the other hand, the χ̄2
ij had different degree of freedom for different item pairs. The

degree of freedom of χ̄2
ij depends on ΣΣΣij where, ΣΣΣij is the covariance matrix related

to the residuals n(pij − π̂̂π̂π ij) for a pair of items (for more information, refer Section

2.8). Thus, one thousand simulation values for a specific item pair would have one

thousand different degrees of freedom. I have used an average value of these degrees

of freedom to calculate the chi-square Q-Q plots for χ̄2
ij.

Note, for q = 8 manifest variables, there are 8*7/2=28 second-order marginals.

Thus, twenty eight Q-Q plots for orthogonal components, twenty eight Q-Q plots for

adjusted residuals and twenty eight Q-Q plots for χ̄2
ij were compared. Since I repeated

this simulation for n=300 and 500, I had 84*2=168 plots. It is impractical to append

all these plots in to this study. Therefore, selected results are shown in the Appendix

(Figures B.1 through B.12). Some of the plots related to the symmetric intercept

model are given below.
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Symmetric Intercept Model

Figure 5.1: Orthogonal Compo-
nents, n=300

Figure 5.2: Orthogonal Compo-
nents, n=500

Figure 5.3: Adjusted Residuals,
n=300

Figure 5.4: Adjusted Residuals,
n=500

Figure 5.5: χ̄2
ij, n=300 Figure 5.6: χ̄2

ij, n=500
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If the distributional assumption is attained, then the points in the Q-Q plot will

approximately lie on the line y = x (straight line assumption). Most of the Q-Q plots

attained this assumption. There were a few Q-Q plots that showed deviations from

the straight line assumption, especially when the sample size was small. Note, these

Q-Q plots are very sensitive to outlier observations. When the sample size is small,

some of the estimated standard errors related to the test statistics can be very small.

This can results in a larger test statistic value. A few of these larger test statistic

values can easily affect the pattern of the Q-Q plot.

Most of the Q-Q plots that deviated from the hypothesized distributions were

related to χ̄2
ij. This might be related to the fact that I’m using the mean value of

the one thousand degrees of freedom of a particular χ̄2
ij to calculate the Q-Q plot for

that particular χ̄2
ij even though each have different degree of freedom (df) under each

simulation value. For example, when n = 300, minimum df was 0.999 and maximum

df was 1.69. I recommend to further study this as a future work.

When the sample size and/or the factor loadings are too small, some of the es-

timated standard errors of the residuals tend to become negative or close to zero.

Thus, out of 1000 simulation only around 750-850 simulations were successful in cal-

culating the residuals. To fix this issue, a shrinkage estimator was incorporated into

estimation of the covariance matrix of the residuals.

A simple version of a shrinkage estimator is constructed as follows. One considers

a convex combination of the empirical estimator X with some suitable chosen target

YYY , e.g., the diagonal matrix. Subsequently, the mixing parameter ∆ is selected to

maximize the expected accuracy of the shrunken estimator. This can be done by

cross-validation, or by using an analytic estimate of the shrinkage intensity. The

resulting regularized estimator, ∆X + (1 − ∆)YYY , can be shown to outperform the

maximum likelihood estimator for small samples.
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Based on this idea, I developed a method for my simulations. First, I extracted

the eigenvalues of the covariance matrix. If some eigenvalues were ≤ 0, it was fixed

using the equation

Σ̂∗R = Diag(eigen) + η ∗ eigenl ∗ I,

where Diag(eigen) is the diagonal matrix with the eigenvalues of the covariance

matrix on the diagonal, eigenl is the largest negative eigenvalue in absolute value,

I is the identity matrix and η was chosen heuristically. The idea here is to make

all the eigenvalues positive without altering too much of the underline structure of

the covariance matrix of the residuals. For instance, if η = 1.00005 and the largest

negative eigenvalue is -0.003 then, 0.00300015 will be added to all the eigenvalues.

After incorporating this method, the number of successful iterations for the above

simulations (using PROC IRT method) increased to 970-1000 out of 1000 simulations.

Mplus parameter estimates did not seems to need this shrinking estimator fix and

were successful in calculating the statistics in all most all the simulations. I used

Mplus parameter estimates for all the calculation in this Chapter. To compare the

performance, I re-ran these simulations with PROC IRT method in SAS. Results

suggest Mplus estimates were more stable in estimating parameters compared to

PROC IRT method.
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Table 5.2: Type I Error Study for Symmetric Intercept Model

n=300 n=500

Pair (i,j) Orthgonal Comp. Std. Residuals χ̄2
ij Orthgonal Comp. Std. Residuals χ̄2

ij

(1,2) 0.037 0.038 0.037 0.041 0.041 0.041

(1,3) 0.058 0.061 0.062 0.059 0.061 0.06

(1,4) 0.046 0.052 0.049 0.05 0.054 0.051

(1,5) 0.041 0.047 0.047 0.043 0.047 0.044

(1,6) 0.043 0.055 0.054 0.038 0.044 0.044

(1,7) 0.048 0.051 0.052 0.054 0.049 0.048

(1,8) 0.051 0.043 0.041 0.044 0.034 0.034

(2,3) 0.051 0.052 0.051 0.049 0.048 0.049

(2,4) 0.029 0.027 0.03 0.038 0.04 0.039

(2,5) 0.048 0.043 0.04 0.037 0.042 0.043

(2,6) 0.046 0.047 0.05 0.056 0.04 0.042

(2,7) 0.05 0.052 0.052 0.045 0.051 0.05

(2,8) 0.045 0.047 0.046 0.052 0.05 0.049

(3,4) 0.045 0.044 0.045 0.051 0.052 0.05

(3,5) 0.042 0.04 0.044 0.045 0.049 0.047

(3,6) 0.046 0.058 0.056 0.044 0.06 0.06

(3,7) 0.046 0.051 0.05 0.041 0.056 0.057

(3,8) 0.057 0.043 0.045 0.051 0.055 0.055

(4,5) 0.075 0.079 0.076 0.063 0.066 0.067

(4,6) 0.047 0.075 0.081 0.05 0.056 0.056

(4,7) 0.044 0.051 0.051 0.049 0.046 0.046

(4,8) 0.052 0.037 0.035 0.054 0.048 0.048

(5,6) 0.062 0.075 0.073 0.046 0.055 0.06

(5,7) 0.037 0.056 0.056 0.05 0.046 0.046

(5,8) 0.051 0.046 0.047 0.054 0.046 0.047

(6,7) 0.06 0.069 0.07 0.05 0.061 0.06

(6,8) 0.044 0.041 0.043 0.054 0.053 0.053

(7,8) 0.056 0.046 0.047 0.048 0.054 0.054
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5.1.2 Type I Error Study for Fifteen Variables

Next, I increased the number of manifest variables to fifteen and carried out the

same calculations and simulations as in the eight variable study. To check the Type I

error rates, one thousand data sets were generated from one factor model and then a

one factor model was fitted. I used a repetition of the slope parameters of one factor

model for eight manifest variables as the slope parameters for the one factor model

with fifteen manifest variables: (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 0.2, 0.2, 0.1, 0.1, 0.1, 1.2,

1.2, 1.2, 0.2). The idea was to make the comparison between an eight variable study

and a fifteen variable study more meaningful.

As in the eight variable study, I used three intercept settings for Type I error

study: symmetric, asymmetric, zero. Intercept values for each setting are given in

the Table 4.2.

Table 5.3 and Table 5.6 below indicate the empirical Type I error rates for in-

dividual orthogonal components of χ2
[2] for q = 15 manifest variables for symmetric

intercept model for n=500 and n=300, respectively. The Type I error rates out-

side of the Monte-Carlo error interval 0.05 ±
√

0.05(0.95)/1000 = (0.0365, 0.0635)

are bolded. When n=300, five components related to orthogonal components were

outside the Monte-Carlo error interval and when n=500, four components related to

orthogonal components were outside the Monte-Carlo error interval. Given that there

are 105 individual orthogonal components, this is a good Type I error performance.

With this many individual orthogonal components, it possible that four or five com-

ponents may randomly fall slightly outside the Monte-Carlo error interval. Table 5.4

and Table 5.7 indicate Type I error rates for adjusted residuals for q = 15 manifest

variables for symmetric intercept model when n=500 and n=300, respectively. Simi-

larly, Table 5.5 and Table 5.8 indicate Type I error rates for χ̄2
ij for q = 15 manifest
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variables for symmetric intercept model when n=500 and n=300, respectively. When

n=500, six components related to adjusted residuals and six components related to

χ̄2
ij were outside the Monte-Carlo error interval. When n=300, eleven components

related to adjusted residuals and fourteen components related to χ̄2
ij were outside the

Monte-Carlo error interval. This suggests that when n=300, orthogonal components

have better Type I error rates compared to χ̄2
ij and adjusted residuals for q = 15

manifest variables for symmetric intercept model. However, when n=500, orthogo-

nal components, χ̄2
ij and adjusted residuals seems to have similar Type I error rates.

Graphical illustration of the same information are given in Figures 5.7 and 5.8.

Type I error rates for q = 15 manifest variables for asymmetric intercept model for

n=300 and n=500 are given in the Appendix in Tables A.4 through A.8. Graphical

illustration of the same information are given in Figures B.13 and B.13. When n=300,

orthogonal components, χ̄2
ij and adjusted residuals had somewhat similar Type I

error rate performance. Eleven components related to orthogonal components, fifteen

components related to χ̄2
ij and fourteen components related to adjusted residuals

were outside the Monte-Carlo error interval. Under symmetric intercept settings,

when n=300, only five components related to orthogonal components were outside

the Monte-Carlo error interval. With asymmetric intercept settings this amount was

increased to eleven. This indicates the 2*2 sub-table may have more sparseness under

asymmetric intercept settings compared to symmetric intercept settings especially

with large number of manifest variables and small sample size. Note, this did not

happened with eight manifest variables (n=300 or n=500) or with fifteen manifest

variables with n=500.
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Table 5.3: Type I Error Study for Orthogonal Components for Symmetric Intercept
Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.052 (3,12) 0.058 (7,9) 0.033

(1,3) 0.039 (3,13) 0.047 (7,10) 0.05

(1,4) 0.042 (3,14) 0.056 (7,11) 0.047

(1,5) 0.046 (3,15) 0.046 (7,12) 0.059

(1,6) 0.052 (4,5) 0.06 (7,13) 0.049

(1,7) 0.052 (4,6) 0.044 (7,14) 0.056

(1,8) 0.045 (4,7) 0.06 (7,15) 0.05

(1,9) 0.05 (4,8) 0.052 (8,9) 0.051

(1,10) 0.039 (4,9) 0.047 (8,10) 0.06

(1,11) 0.035 (4,10) 0.054 (8,11) 0.043

(1,12) 0.039 (4,11) 0.059 (8,12) 0.059

(1,13) 0.057 (4,12) 0.052 (8,13) 0.046

(1,14) 0.051 (4,13) 0.036 (8,14) 0.056

(1,15) 0.045 (4,14) 0.044 (8,15) 0.051

(2,3) 0.039 (4,15) 0.043 (9,10) 0.048

(2,4) 0.046 (5,6) 0.046 (9,11) 0.041

(2,5) 0.06 (5,7) 0.048 (9,12) 0.042

(2,6) 0.061 (5,8) 0.048 (9,13) 0.052

(2,7) 0.048 (5,9) 0.045 (9,14) 0.043

(2,8) 0.049 (5,10) 0.058 (9,15) 0.05

(2,9) 0.042 (5,11) 0.053 (10,11) 0.061

(2,10) 0.043 (5,12) 0.046 (10,12) 0.055

(2,11) 0.053 (5,13) 0.054 (10,13) 0.049

(2,12) 0.061 (5,14) 0.062 (10,14) 0.05

(2,13) 0.051 (5,15) 0.05 (10,15) 0.045

(2,14) 0.039 (6,7) 0.05 (11,12) 0.054

(2,15) 0.055 (6,8) 0.048 (11,13) 0.043

(3,4) 0.039 (6,9) 0.069 (11,14) 0.047

(3,5) 0.051 (6,10) 0.057 (11,15) 0.05

(3,6) 0.056 (6,11) 0.039 (12,13) 0.049

(3,7) 0.04 (6,12) 0.045 (12,14) 0.05

(3,8) 0.055 (6,13) 0.044 (12,15) 0.049

(3,9) 0.042 (6,14) 0.048 (13,14) 0.059

(3,10) 0.057 (6,15) 0.056 (13,15) 0.05

(3,11) 0.05 (7,8) 0.066 (14,15) 0.046
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Table 5.4: Type I Error Study for Adjusted Residuals for Symmetric Intercept
Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.052 (3,12) 0.044 (7,9) 0.039

(1,3) 0.038 (3,13) 0.053 (7,10) 0.045

(1,4) 0.042 (3,14) 0.041 (7,11) 0.052

(1,5) 0.045 (3,15) 0.04 (7,12) 0.061

(1,6) 0.047 (4,5) 0.063 (7,13) 0.043

(1,7) 0.054 (4,6) 0.043 (7,14) 0.065

(1,8) 0.046 (4,7) 0.057 (7,15) 0.045

(1,9) 0.048 (4,8) 0.05 (8,9) 0.051

(1,10) 0.039 (4,9) 0.049 (8,10) 0.056

(1,11) 0.032 (4,10) 0.058 (8,11) 0.037

(1,12) 0.027 (4,11) 0.056 (8,12) 0.051

(1,13) 0.051 (4,12) 0.043 (8,13) 0.043

(1,14) 0.034 (4,13) 0.046 (8,14) 0.046

(1,15) 0.051 (4,14) 0.036 (8,15) 0.048

(2,3) 0.04 (4,15) 0.044 (9,10) 0.05

(2,4) 0.045 (5,6) 0.046 (9,11) 0.043

(2,5) 0.058 (5,7) 0.046 (9,12) 0.048

(2,6) 0.062 (5,8) 0.052 (9,13) 0.045

(2,7) 0.046 (5,9) 0.051 (9,14) 0.05

(2,8) 0.052 (5,10) 0.055 (9,15) 0.034

(2,9) 0.04 (5,11) 0.057 (10,11) 0.061

(2,10) 0.047 (5,12) 0.049 (10,12) 0.051

(2,11) 0.055 (5,13) 0.048 (10,13) 0.056

(2,12) 0.046 (5,14) 0.055 (10,14) 0.055

(2,13) 0.046 (5,15) 0.045 (10,15) 0.047

(2,14) 0.041 (6,7) 0.046 (11,12) 0.045

(2,15) 0.053 (6,8) 0.045 (11,13) 0.05

(3,4) 0.038 (6,9) 0.06 (11,14) 0.058

(3,5) 0.05 (6,10) 0.059 (11,15) 0.042

(3,6) 0.053 (6,11) 0.037 (12,13) 0.044

(3,7) 0.04 (6,12) 0.051 (12,14) 0.039

(3,8) 0.059 (6,13) 0.053 (12,15) 0.046

(3,9) 0.038 (6,14) 0.062 (13,14) 0.048

(3,10) 0.051 (6,15) 0.043 (13,15) 0.046

(3,11) 0.057 (7,8) 0.062 (14,15) 0.038
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Table 5.5: Type I Error Study for χ̄2
ij for Symmetric Intercept Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.054 (3,12) 0.045 (7,9) 0.04

(1,3) 0.039 (3,13) 0.05 (7,10) 0.046

(1,4) 0.04 (3,14) 0.041 (7,11) 0.052

(1,5) 0.046 (3,15) 0.041 (7,12) 0.06

(1,6) 0.047 (4,5) 0.061 (7,13) 0.042

(1,7) 0.053 (4,6) 0.044 (7,14) 0.065

(1,8) 0.046 (4,7) 0.058 (7,15) 0.045

(1,9) 0.049 (4,8) 0.049 (8,9) 0.051

(1,10) 0.04 (4,9) 0.048 (8,10) 0.056

(1,11) 0.032 (4,10) 0.057 (8,11) 0.037

(1,12) 0.029 (4,11) 0.056 (8,12) 0.051

(1,13) 0.051 (4,12) 0.043 (8,13) 0.043

(1,14) 0.036 (4,13) 0.042 (8,14) 0.046

(1,15) 0.051 (4,14) 0.035 (8,15) 0.048

(2,3) 0.04 (4,15) 0.044 (9,10) 0.051

(2,4) 0.042 (5,6) 0.049 (9,11) 0.043

(2,5) 0.058 (5,7) 0.046 (9,12) 0.047

(2,6) 0.061 (5,8) 0.054 (9,13) 0.046

(2,7) 0.047 (5,9) 0.051 (9,14) 0.05

(2,8) 0.051 (5,10) 0.055 (9,15) 0.034

(2,9) 0.04 (5,11) 0.057 (10,11) 0.061

(2,10) 0.046 (5,12) 0.05 (10,12) 0.051

(2,11) 0.056 (5,13) 0.048 (10,13) 0.056

(2,12) 0.045 (5,14) 0.058 (10,14) 0.055

(2,13) 0.044 (5,15) 0.046 (10,15) 0.047

(2,14) 0.042 (6,7) 0.047 (11,12) 0.044

(2,15) 0.053 (6,8) 0.046 (11,13) 0.05

(3,4) 0.037 (6,9) 0.061 (11,14) 0.059

(3,5) 0.049 (6,10) 0.059 (11,15) 0.042

(3,6) 0.053 (6,11) 0.037 (12,13) 0.044

(3,7) 0.04 (6,12) 0.05 (12,14) 0.039

(3,8) 0.059 (6,13) 0.052 (12,15) 0.046

(3,9) 0.038 (6,14) 0.058 (13,14) 0.05

(3,10) 0.05 (6,15) 0.045 (13,15) 0.046

(3,11) 0.057 (7,8) 0.062 (14,15) 0.039
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Table 5.6: Type I Error Study for Orthogonal Components for Symmetric Intercept
Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.049049 (3,12) 0.0550551 (7,9) 0.039039

(1,3) 0.04004 (3,13) 0.04004 (7,10) 0.039039

(1,4) 0.044044 (3,14) 0.046046 (7,11) 0.0630631

(1,5) 0.031031 (3,15) 0.0540541 (7,12) 0.0510511

(1,6) 0.038038 (4,5) 0.0500501 (7,13) 0.049049

(1,7) 0.0520521 (4,6) 0.046046 (7,14) 0.0590591

(1,8) 0.0510511 (4,7) 0.0570571 (7,15) 0.0560561

(1,9) 0.0560561 (4,8) 0.044044 (8,9) 0.044044

(1,10) 0.043043 (4,9) 0.045045 (8,10) 0.0600601

(1,11) 0.033033 (4,10) 0.041041 (8,11) 0.048048

(1,12) 0.045045 (4,11) 0.0550551 (8,12) 0.0580581

(1,13) 0.0500501 (4,12) 0.041041 (8,13) 0.041041

(1,14) 0.0510511 (4,13) 0.048048 (8,14) 0.041041

(1,15) 0.044044 (4,14) 0.047047 (8,15) 0.0570571

(2,3) 0.042042 (4,15) 0.038038 (9,10) 0.0550551

(2,4) 0.042042 (5,6) 0.047047 (9,11) 0.0500501

(2,5) 0.039039 (5,7) 0.0650651 (9,12) 0.0500501

(2,6) 0.0570571 (5,8) 0.037037 (9,13) 0.039039

(2,7) 0.0500501 (5,9) 0.0530531 (9,14) 0.041041

(2,8) 0.0630631 (5,10) 0.049049 (9,15) 0.0590591

(2,9) 0.042042 (5,11) 0.049049 (10,11) 0.044044

(2,10) 0.0530531 (5,12) 0.046046 (10,12) 0.046046

(2,11) 0.048048 (5,13) 0.044044 (10,13) 0.049049

(2,12) 0.045045 (5,14) 0.0510511 (10,14) 0.049049

(2,13) 0.037037 (5,15) 0.0550551 (10,15) 0.046046

(2,14) 0.038038 (6,7) 0.04004 (11,12) 0.0540541

(2,15) 0.0570571 (6,8) 0.047047 (11,13) 0.049049

(3,4) 0.037037 (6,9) 0.048048 (11,14) 0.039039

(3,5) 0.048048 (6,10) 0.0560561 (11,15) 0.045045

(3,6) 0.042042 (6,11) 0.049049 (12,13) 0.043043

(3,7) 0.043043 (6,12) 0.049049 (12,14) 0.0600601

(3,8) 0.0520521 (6,13) 0.0520521 (12,15) 0.0510511

(3,9) 0.032032 (6,14) 0.0500501 (13,14) 0.0520521

(3,10) 0.0550551 (6,15) 0.0560561 (13,15) 0.047047

(3,11) 0.032032 (7,8) 0.0550551 (14,15) 0.038038
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Table 5.7: Type I Error Study for Adjusted Residuals for Symmetric Intercept
Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.0500501 (3,12) 0.0520521 (7,9) 0.042042

(1,3) 0.041041 (3,13) 0.048048 (7,10) 0.039039

(1,4) 0.044044 (3,14) 0.031031 (7,11) 0.0600601

(1,5) 0.033033 (3,15) 0.045045 (7,12) 0.0620621

(1,6) 0.046046 (4,5) 0.0530531 (7,13) 0.038038

(1,7) 0.0500501 (4,6) 0.0600601 (7,14) 0.0530531

(1,8) 0.0570571 (4,7) 0.0560561 (7,15) 0.0550551

(1,9) 0.0510511 (4,8) 0.046046 (8,9) 0.048048

(1,10) 0.044044 (4,9) 0.047047 (8,10) 0.0570571

(1,11) 0.034034 (4,10) 0.041041 (8,11) 0.049049

(1,12) 0.042042 (4,11) 0.0600601 (8,12) 0.0570571

(1,13) 0.041041 (4,12) 0.0520521 (8,13) 0.049049

(1,14) 0.037037 (4,13) 0.042042 (8,14) 0.044044

(1,15) 0.044044 (4,14) 0.047047 (8,15) 0.049049

(2,3) 0.042042 (4,15) 0.039039 (9,10) 0.0550551

(2,4) 0.043043 (5,6) 0.038038 (9,11) 0.0500501

(2,5) 0.037037 (5,7) 0.0590591 (9,12) 0.0520521

(2,6) 0.0500501 (5,8) 0.042042 (9,13) 0.038038

(2,7) 0.0500501 (5,9) 0.0520521 (9,14) 0.043043

(2,8) 0.0630631 (5,10) 0.0570571 (9,15) 0.041041

(2,9) 0.04004 (5,11) 0.048048 (10,11) 0.047047

(2,10) 0.0510511 (5,12) 0.047047 (10,12) 0.048048

(2,11) 0.046046 (5,13) 0.043043 (10,13) 0.0560561

(2,12) 0.039039 (5,14) 0.042042 (10,14) 0.041041

(2,13) 0.032032 (5,15) 0.049049 (10,15) 0.033033

(2,14) 0.038038 (6,7) 0.042042 (11,12) 0.0510511

(2,15) 0.0530531 (6,8) 0.044044 (11,13) 0.0570571

(3,4) 0.041041 (6,9) 0.046046 (11,14) 0.0530531

(3,5) 0.043043 (6,10) 0.049049 (11,15) 0.035035

(3,6) 0.046046 (6,11) 0.0520521 (12,13) 0.041041

(3,7) 0.044044 (6,12) 0.0560561 (12,14) 0.0550551

(3,8) 0.046046 (6,13) 0.0680681 (12,15) 0.046046

(3,9) 0.031031 (6,14) 0.045045 (13,14) 0.045045

(3,10) 0.0510511 (6,15) 0.0510511 (13,15) 0.036036

(3,11) 0.035035 (7,8) 0.046046 (14,15) 0.028028
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Table 5.8: Type I Error Study for χ̄2
ij for Symmetric Intercept Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.049 (3,12) 0.048 (7,9) 0.041

(1,3) 0.04 (3,13) 0.049 (7,10) 0.039

(1,4) 0.044 (3,14) 0.029 (7,11) 0.061

(1,5) 0.031 (3,15) 0.045 (7,12) 0.06

(1,6) 0.043 (4,5) 0.055 (7,13) 0.038

(1,7) 0.052 (4,6) 0.059 (7,14) 0.054

(1,8) 0.056 (4,7) 0.054 (7,15) 0.054

(1,9) 0.052 (4,8) 0.047 (8,9) 0.048

(1,10) 0.045 (4,9) 0.048 (8,10) 0.057

(1,11) 0.033 (4,10) 0.042 (8,11) 0.049

(1,12) 0.039 (4,11) 0.059 (8,12) 0.058

(1,13) 0.038 (4,12) 0.051 (8,13) 0.049

(1,14) 0.033 (4,13) 0.039 (8,14) 0.044

(1,15) 0.044 (4,14) 0.047 (8,15) 0.049

(2,3) 0.042 (4,15) 0.038 (9,10) 0.054

(2,4) 0.041 (5,6) 0.041 (9,11) 0.05

(2,5) 0.036 (5,7) 0.058 (9,12) 0.051

(2,6) 0.048 (5,8) 0.042 (9,13) 0.039

(2,7) 0.048 (5,9) 0.049 (9,14) 0.041

(2,8) 0.062 (5,10) 0.057 (9,15) 0.041

(2,9) 0.04 (5,11) 0.048 (10,11) 0.047

(2,10) 0.051 (5,12) 0.048 (10,12) 0.048

(2,11) 0.047 (5,13) 0.039 (10,13) 0.058

(2,12) 0.035 (5,14) 0.046 (10,14) 0.041

(2,13) 0.03 (5,15) 0.05 (10,15) 0.033

(2,14) 0.035 (6,7) 0.045 (11,12) 0.051

(2,15) 0.052 (6,8) 0.045 (11,13) 0.057

(3,4) 0.038 (6,9) 0.047 (11,14) 0.053

(3,5) 0.042 (6,10) 0.051 (11,15) 0.035

(3,6) 0.043 (6,11) 0.052 (12,13) 0.044

(3,7) 0.044 (6,12) 0.054 (12,14) 0.059

(3,8) 0.046 (6,13) 0.07 (12,15) 0.046

(3,9) 0.031 (6,14) 0.044 (13,14) 0.047

(3,10) 0.052 (6,15) 0.052 (13,15) 0.037

(3,11) 0.035 (7,8) 0.046 (14,15) 0.028
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Type I error rates for q = 15 manifest variables for n=300 and n=500 for zero

intercept model are given in Tables A.9 through A.14. Graphical illustration of the

same information are given in Figures 5.9 and 5.10 below. When n=500, two com-

ponents related to adjusted residuals, orthogonal components and χ̄2
ij were outside

the Monte-Carlo error interval. Given that there are 105 second-order marginals, it

is possible one or two will randomly fall slightly outside the Monte-Carlo error in-

terval. However, when n=300, three components related to orthogonal components,

eight components related to adjusted residuals, and seven components related to χ̄2
ij

were outside the Monte-Carlo error interval. This suggests, when n=300, orthogonal

components have better Type I error rates compared to χ̄2
ij and adjusted residuals

for q = 15 manifest variables for zero intercept model.

In this section I presented the simulation results related to Type I error perfor-

mance of individual orthogonal components. I have compared the results to adjusted

residuals and χ̄2
ij. I used two settings for the number of manifest variables: q = 8

and q = 15 and three settings for the intercepts of the model: symmetric, asymmet-

ric and zero. Based on the results it is clear that the orthogonal components have

better performance compared to adjusted residuals and χ̄2
ij when n = 300. However,

when the sample size increases (e.g. n=500), Type I error rate performance were

similar between orthogonal components, adjusted residuals and χ̄2
ij, especially for the

zero intercept setting. However, this was not the case for symmetric and asymmet-

ric intercept cases, especially when the q = 15. Thus, observations seems to be well

distributed among cells when the intercepts are zero compared to asymmetric or sym-

metric intercepts. Overall, individual orthogonal components had better Type I error

rates even when the cross-classified table was very sparse. Next, I compared em-

pirical and asymptotic power of orthogonal components under these different sparse

conditions.
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Figure 5.7: Type I Error Rates for Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Symmetric Intercept Model, q=15, n=500

* Index 1 thought 105 in the x-axis of the above plot is correspond to the variable

pairs (1,2), (1,3),......, (14,15), respectively. Note, there are 15 ∗ 14/2 = 105 variable

pairs.
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Figure 5.8: Type I Error Rates for Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Symmetric Intercept Model, q=15, n=300
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Figure 5.9: Type I Error Rates for Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Zero Intercept Model, q=15, n=500
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Figure 5.10: Type I Error Rates for Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Zero Intercept Model, q=15, n=300

5.2 Simulation Study Part II: Comparison of Empirical Power and Asymptotic

Power of Individual Orthogonal Components of χ2
[2]

As the next approach to study empirical power of the statistics, 1000 data sets were

generated using Monte-Carlo methods related to a two factor (two latent variables)
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model. A one factor model was fitted for each of these datasets and empirical power

was calculated. In the simulation, the model underH0 is misspecified with a one factor

model. Since each orthogonal component is distributed approximately as chi-square

with one degree of freedom, to calculate the empirical power for each component, the

sum of the number of cases that exceed the chi-square critical value (at 5% significance

level) with one degree of freedom was divided by the number of datasets. A similar

process was used to calculate the empirical power of adjusted residual and χ̄2
ij. This

simulation was repeated for sample size 300 and 500.

As shown earlier, the Pearson-Fisher statistic for a composite null hypothesis

can be partitioned into orthogonal components defined on marginal distributions.

When the manifest variables are binary, each of these components, γ2
j , is distributed

approximately as an independent χ2
(1) random variate. These components can be used

as item diagnostics for models fit to binary cross-classified variables when the result

of an omnibus test indicates that a model should be rejected. To investigate this idea

of detecting item mis-fit, higher factor loadings were assigned to item 4, 5 and 6 of

the data generation model. Loadings for the first factor were kept at (0.1, 0.1, 0.1, 1.2

, 1.2 , 1.2 , 0.2 , 0.2) where items 4,5 and 6 have higher factor loadings compared to

other items. Loadings for the second factor were kept at (1, 1, 1, 0, 0, 0, 1, 1). Since

the mis-fit is related to items 4, 5 and 6, it was expected to have higher empirical

power for the components related to these second-order marginals.

As before, I used three intercept settings: symmetric, asymmetric, zero. Table

4.1 and 4.2 summarize these information. Reasons for using these different intercepts

settings were explained in the Section 4.1. The design of power study is as follows:
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Table 5.9: Design of Power Study

Model (data generation) categorical variable factor analysis model

with two latent factors

Model (fitted) categorical variable factor analysis model

with one latent factor

Number of observed variables q=8, q=15

Number of samples 1000

Sample size n=300, n=500

I also compared the empirical power to asymptotic power for individual orthogonal

components of χ2
[2], adjusted residuals and χ̄2

ij. Calculation for the asymptotic power

was performed with the same parameter values as in the empirical power simulation.

To calculate the asymptotic power I used the method described in the Section 3.3.

First, I generated the proportions from two factor categorical factor model with above

mentioned factor loadings. A numerical integration method called Gauss-Hermite

quadrature was used to generate the proportions. Thereafter, these proportions were

multiplied by a selected initial sample size n0 to create the true cell frequencies under

Ha. Then, the model of the null hypothesis was fitted to the resulting cell frequencies.

Next, the non-centrality parameters were calculated as described in equations 3.17

and 3.18. The non-centrality parameters for any other sample size, say simply n,

can be approximated by using the expression λ ≈ n
n0
λ0. Once I obtained the non-

centrality parameters, I used non-central chi-square distribution with one degree of

freedom to calculate the asymptotic power for each orthogonal component of χ2
[2].

The significance level, α was set to 0.05.
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5.2.1 Power Study for Eight Variables

Asymptotic and empirical power comparison for symmetric, zero and asymmetric

intercept models are given in the Tables 5.10, A.15 and A.16, respectively. I have

allocated higher values to items 4, 5, and 6 on a second factor and I’m expecting

higher power for components related to those item pairs. By examining the high-

lighted values in Table 5.10, A.15 and A.16, it is clear that the empirical power of

second order marginal components (4,5), (4,6) and (5,6) are significantly higher com-

pared to other components. Thus, these second order components were successful in

detecting the source of a poorly fit model. This process was repeated for n=300 and

n=500. By the results in these tables, it is clear that the empirical power will increase

with the sample size and the components were more successful in detecting the lack-

of-fit for larger sample sizes. However, when n=300, empirical power results were

somewhat lower compared to asymptotic power results. This indicates when sample

size is smaller empirical distribution may not close to the hypothesized theoretical

distribution. When n=500, empirical power results and asymptotic power results

were fairly close. This indicates when sample size increases the empirical distribu-

tion approaches hypothesized theoretical distribution. Also, zero intercept model had

higher power results compared to models with symmetric and asymmetric intercept

settings, and the empirical power results were more close to asymptotic power results

too. Note, zero intercept model had better Type I error rates compared to models

with symmetric and asymmetric intercept settings. Thus, observations seems to be

well distributed among cells when the intercepts are zero compared to asymmetric or

symmetric intercepts. I think this is the reason behind the better power results under

zero intercept model.
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Table 5.10: Asymptotic and Empirical Power Comparison for Symmetric Intercept
Model

n=300 n=500

Pair (i,j) Orth. Comp. Adj. Res. χ̄2
ij Asym. Power Orth. Comp. Adj. Res. χ̄2

ij Asym. Power

(1,2) 0.1773859 0.189834 0.179 0.0615 0.12651 0.1455823 0.134 0.06924

(1,3) 0.1960581 0.2022822 0.189 0.07908 0.13956 0.1425703 0.134 0.0989

(1,4) 0.0622407 0.0985477 0.091 0.08634 0.069277 0.0933735 0.097 0.1112

(1,5) 0.0954357 0.1151452 0.11 0.09531 0.10944 0.1054217 0.105 0.12641

(1,6) 0.1462656 0.1058091 0.1 0.1035 0.21285 0.1174699 0.116 0.1403

(1,7) 0.0798755 0.1224066 0.119 0.05 0.075301 0.1586345 0.153 0.05

(1,8) 0.0798755 0.1026971 0.088 0.05003 0.086345 0.1716867 0.169 0.05005

(2,3) 0.2417012 0.2251037 0.218 0.12393 0.17169 0.1706827 0.159 0.17493

(2,4) 0.0736515 0.1037344 0.096 0.12207 0.10241 0.1134538 0.116 0.17178

(2,5) 0.0871369 0.1016598 0.096 0.13787 0.15261 0.126506 0.129 0.19847

(2,6) 0.2095436 0.0954357 0.092 0.15344 0.2741 0.1315261 0.13 0.22461

(2,7) 0.0757261 0.159751 0.154 0.05003 0.080321 0.1817269 0.175 0.05005

(2,8) 0.0684647 0.129668 0.127 0.05089 0.089357 0.1726908 0.168 0.05149

(3,4) 0.1026971 0.0985477 0.098 0.2381 0.19478 0.12249 0.131 0.36253

(3,5) 0.1618257 0.1141079 0.111 0.27698 0.21285 0.12249 0.125 0.42264

(3,6) 0.3246888 0.1120332 0.103 0.31787 0.36145 0.1405622 0.143 0.48323

(3,7) 0.1058091 0.1919087 0.19 0.05702 0.10643 0.186747 0.178 0.06173

(3,8) 0.0798755 0.1358921 0.139 0.05032 0.091365 0.189759 0.188 0.05054

(4,5) 0.530083 0.6659751 0.647 0.80393 0.77811 0.8684739 0.855 0.95304

(4,6) 0.530083 0.6317427 0.615 0.82562 0.80924 0.8865462 0.876 0.96246

(4,7) 0.0466805 0.0819502 0.082 0.05087 0.031124 0.0983936 0.105 0.05146

(4,8) 0.0497925 0.0788382 0.074 0.05002 0.044177 0.1174699 0.123 0.05004

(5,6) 0.6732365 0.6410788 0.619 0.91976 0.9508 0.8714859 0.868 0.9914

(5,7) 0.0363071 0.1016598 0.097 0.05 0.03012 0.1024096 0.103 0.05

(5,8) 0.0881743 0.0829876 0.081 0.05026 0.066265 0.1074297 0.115 0.05043

(6,7) 0.0705394 0.0840249 0.08 0.05007 0.057229 0.1004016 0.104 0.05012

(6,8) 0.0684647 0.0829876 0.081 0.05031 0.070281 0.1144578 0.118 0.05052

(7,8) 0.0809129 0.1721992 0.169 0.05019 0.083333 0.1997992 0.198 0.05032

* Asymptotic power was calculated only for the orthogonal components.
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5.2.2 Power Study for Fifteen Variables

Next, I increased the number of manifest variables to fifteen and carried out the

same power calculations as in the eight variable study. I used a repetition of the slope

parameters of two factor model for eight manifest variables as the slope parameters

for the two factor model with fifteen manifest variables. So the factor loadings for

the first factor was set to (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 0.2, 0.2, 0.1, 0.1, 0.1, 1.2, 1.2,

1.2, 0.2) and the factor loadings for the second factor was set to (1, 1, 1, 0, 0, 0, 1, 1,

1, 1, 1, 0, 0, 0, 1). The idea was to make the comparison between an eight variable

study and a fifteen variable study more meaningful.

In the section 5.1.2, Type I error rates related to orthogonal components, adjusted

residual and χ̄2
ij were studied for models with fifteen manifest variables under three

different intercept settings. According to the results, the zero intercept model had

better Type I error rates compared to asymmetric and symmetric intercept settings.

However, a symmetric intercept model is more applicable in a real-world application

rather than a zero intercept model. Therefore, I extended fifteen variable power study

to both symmetric and zero intercept settings.

Asymptotic and empirical power comparison for symmetric and zero intercept

models for q=15 are given in the Tables A.17 and A.18, respectively. Graphical il-

lustration of the same information are given in Figures 5.11 and 5.12 below. I have

allocated higher weights to items 4, 5, 6, 12, 13 and 14 and I’m expecting higher

power for components related to these item pairs. By examining the highlighted

values in Tables A.17 and A.18, it is clear that the empirical power of second order

marginal components (4,5), (4,6), (4,12), (4,13), (4,14), (5,6), (5,12), (5,13), (5,14),

(6,12), (6,13), (6,14), (12,13), (12,14) and (13,14) are significantly higher compared

to other components. Thus, orthogonal components related to second were success-
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ful in detecting item lack-of-fit even when the cross-classified table was very sparse.

Looking at the results in Figures 5.11 and 5.12 it is clear that the Empirical power

results are also close to the asymptotic power results.

Figure 5.11: Power Comparison of Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Symmetric Intercept Model, q=15, n=500

85



Figure 5.12: Power Comparison of Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Zero Intercept Model, q=15, n=500

In this section, second order marginals related to orthogonal components were

examined as lack-of-fit diagnostics. Simulations were based on a two factor model

and were successful in indicating pair of variables for which the model does not fit

well. When the sample size increases, ability to indicate pair of variables for which

the model does not fit well increases significantly. The Asymptotic power results tally
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with empirical power results but the empirical power for orthogonal components was

much closer to the asymptotic power when intercepts are zero compared to symmetric

or asymmetric intercept settings. This shows that when the 2 ∗ 2 tables are balanced

and when there is less bias in parameter estimation, the empirical power is close to

the asymptotic power. Looking at the power results for both q=8 and q=15, there

is very little change in asymptotic power between zero, symmetric and asymmetric

intercept settings. This is because the asymptotic power depends on the slopes and

not the intercepts. However, it seems the empirical power is affected by sparseness

and bias of estimator for intercept and slope.
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Chapter 6

REAL WORLD APPLICATIONS

Proposed limited-information test statistics based on orthogonal components de-

fined on marginal frequencies in this research were applied to two real-life data sets.

The main focus of these applications were to assess how well the proposed statistics

perform with respect to detecting the lack-of-fit when model under the null hypoth-

esis is rejected.

6.1 Application I - Data on Mental Disorder Phobia

The Epidemiologic Catchment Area (ECA) program of research was initiated in

response to the 1977 report of the President’s Commission on Mental Health. The

purpose was to collect data on the prevalence and incidence of mental disorders and

on the use of and need for services by the mentally ill. Independent research teams

at five universities (Yale, Johns Hopkins, Washington University, Duke University,

and University of California at Los Angeles), in collaboration with National Institute

of Mental Health (NIMH), conducted the studies with a core of common questions

and sample characteristics. The ECA study was mainly focused on mental disorders

related to manic episode, major depressive episode, dysthymia, bipolar disorder, alco-

hol abuse or dependence, drug abuse or dependence, schizophrenia, schizophreniform,

obsessive compulsive disorder, phobia, somatization, panic, antisocial personality, and

anorexia nervosa. For this study, eight items related to the mental disorder phobia

were chosen from the ECA to analyze as a real world application. The dataset was

limited to Johns Hopkins (Baltimore, MD) area.

88



The selected items are given below.

1) DIS068A - fear of heights

2) DIS068F - fear of closed places

3) DIS068I - fear of speaking in front of close friends

4) DIS068J - fear of speaking to strangers

5) DIS068K - storms

6) DIS068L - water

7) DIS068M - spiders

8) DIS068N - fear of harmless animals

There were 3316 observations related to these specifications. Each variable has

two categories: ’yes’ or ’no’. Thus, there are 28 = 256 response patterns. However,

as most of the answers are ’no’, 165 response patterns are empty. Furthermore, many

response patterns have a cell count less than five. The detailed cell counts are given

in Table 6.1.

Table 6.1: Number of Response Patterns with Small Frequencies

Cell Count Number of Response Patterns Number of Cases

0 165 0

1 39 39

2 10 20

3 11 33

4 5 20

5 4 20

> 5 22 3184

Total 256 3316
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A categorical variable factor analysis model with one latent factor was fitted to

the data. The statistics χ2
PF , χ2

red, M2, χ2
[2], χ

2
[2:3] and χ2

[2:4] and the p-values are shown

in the Table 6.2 below. All statistics are large and the p-values are almost 0. This

indicates that the one factor model is not a good fit to the data.

Table 6.2: Goodness-of-Fit Tests for ECA Phobia Study

Statistic Value DF P-value

χ2
PF 488.95 239 0

χ2
red 77.12 20 1.20E-08

M2 71.99 20 8.59E-08

χ2
[2] 108.53 28 2.01E-11

χ2
[2:3] 192.9 84 1.51E-10

χ2
[2:4] 304.57 154 5.82E-12

Since most response patterns have a cell count less than five, it is possible that

the overall table is sparse. If the overall table is sparse then χ2
PF may not be valid.

However, 2 ∗ 2 tables may not be sparse. Next, I have used individual orthogonal

components of χ2
[2] as test statistics to identify lack-of-fit.

When the number of variables is large, a very large number of components is

produced, and a multiple decision rule should be used to determine which components

are significantly large relative to the reference chi-square distribution. With a large

number of variables, the traditional Bonferroni method becomes very conservative.

Because the orthogonal components are independent random variates, it is possible

to take advantage of the False Discovery Rate (FDR) procedure for independent tests

(Benjamini & Hochberg, 1995). Under the FDR procedure for independent tests,

consider testing Ho : γ2
j = 0 for m orthogonal components, so testing H1, H2, · · ·Hm

based on the corresponding p-values p1, p2 · · · pm. Let p(1) ≤ p(2) ≤ · · · ≤ p(m), be

90



the ordered p-values, and denote by H(j) the null hypothesis corresponding to p(j).

For this Bonferroni-type procedure with α∗ = the false discovery rate, let k be the

largest j for which

p(j) ≤
j

m
α∗,

and then reject all H(j) for j = 1, 2, · · · , k.

The orthogonal components for second-order marginals are shown in Table 6.3

along with the raw p-values and the adaptive FDR p-values. According to the Table

6.3, components (1,8), (3,4), (3,7), (3,8) and (6,7) related to Catchment Area study

have significant FDR p-values indicating that these pairs of variables have associations

not explain by the one factor. Results related to orthogonal components, adjusted

residual and χ̄2
ij are consistent with each other. Further, variable 3, ’fear of speaking

in front of close friends’ appears in three of these large components and variable

7, ’spiders’ and variable 8, ’fear of harmless animals’ appears in two of these large

components. It is important to further investigate the associations between these

variable-pairs. Since one factor model did not fit well, I recommend to consider other

models such as, a two-factor model or a log-linear model.
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Table 6.3: Orthogonal Components, Adjusted Residuals and χ̄2
ij for ECA Study

Pair (i,j) Orthogonal Component Standardized Residual χ̄2
ij Raw P-value A FDR P-value

(1,2) 1.6376 1.1533 1.2858 0.200655076 0.423424734

(1,3) 1.5041 -1.3505 1.905 0.220041586 0.423424734

(1,4) 3.7028 -2.2899 5.0195 0.054321238 0.176143041

(1,5) 0.277 0.658 0.2935 0.598674299 0.698453349

(1,6) 0.7687 0.6177 0.2562 0.380619518 0.560912974

(1,7) 1.2047 -1.2205 3.8028 0.272384319 0.438190337

(1,8) 11.8253 -3.3281 11.1323 0.000584313 0.008180382

(2,3) 0.0564 -0.5664 0.2788 0.812279126 0.842363538

(2,4) 0.5087 -1.9678 3.5069 0.475702158 0.614440508

(2,5) 0.1727 -0.9056 0.9037 0.677723296 0.731854435

(2,6) 3.6338 -0.1099 0.0376 0.056617406 0.176143041

(2,7) 0.5689 -2.7526 9.1937 0.450696358 0.614440508

(2,8) 0.445 -1.3783 1.7317 0.504718989 0.614440508

(3,4) 32.1095 4.7529 24.2571 1.45723E-08 4.08E-07

(3,5) 1.4606 -2.3876 5.7302 0.226834679 0.423424734

(3,6) 0.0005 -1.5024 2.2625 0.982160245 0.982160245

(3,7) 10.9848 -3.5433 13.5719 0.000918622 0.008573805

(3,8) 10.0776 -1.8442 3.2138 0.001500827 0.010505789

(4,5) 1.8726 -3.2382 10.168 0.171177595 0.399414388

(4,6) 1.2812 -1.5231 2.104 0.257676035 0.438190337

(4,7) 2.706 -2.5367 6.6029 0.099971378 0.279844366

(4,8) 2.5551 -1.7898 2.8238 0.109938858 0.279844366

(5,6) 3.9108 -1.5036 2.7344 0.047976754 0.176143041

(5,7) 0.1706 0.6859 0.5016 0.679579118 0.731854435

(5,8) 4.4371 0.2215 0.1152 0.035165933 0.164107687

(6,7) 9.0146 -2.8555 11.4293 0.002678315 0.014998564

(6,8) 0.4754 -2.1014 4.3357 0.490513349 0.614440508

(7,8) 1.1589 2.3356 6.1359 0.281693788 0.438190337
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6.2 Application II - Data on Mental Depression

To further demonstrate the use of orthogonal components for lack-of-fit diagnosis,

a one-factor model with slope constrained equal was fit to responses given to 20

questions about the psychiatric condition of mental depression.

The responses to the questions were collected as part of the Epidemiological Catch-

ment Area Study (ECA) of 1980-1985. More information about the ECA was given in

the previous section. The Baltimore sample included 3,481 adults sampled from the

Baltimore catchment area. The data used in this example consists of the responses

from 3,187 adults who had complete data records for responses to the 20 questions.

Missing data are assumed to be missing completely at random. The depression symp-

toms included in the survey are shown in Table 6.5. The responses were coded into

two categories: (1) symptom present at a clinical level and (2) symptom not present.

Even with sample size 3,187, the 220 cross-classified table is very sparse with at least

1,045,389 cells that have count equal to zero.

Goodness-of-fit test results are shown in Table 6.4. The results indicate that the

model of one underlying factor does not fit well for the depression symptoms. The

chi-square approximation for the full Pearson statistic should not be considered valid

because of the high degree of sparseness in the data table. The statistic X2
[2], as well

as M2, and X2
red, indicate that the model should be rejected.

The 30 largest orthogonal components for second-order marginals are shown in

Table 6.6 along with the raw p-values and the adaptive FDR p-values. More details

about the FDR procedure is given in the previous section. Applying the FDR method

to the 190 orthogonal components obtained from the example data set yields over

30 null hypotheses Ho : γ2
j = 0 rejected. The largest orthogonal component for

this application is found for the association between variables 3 and 4 which are
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questions about loss of appetite and loss of weight. The second-largest component

is found for the association between variables 4 and 5, and question 5 asks about

gain of weight. The large magnitude of these components indicates that the somatic

symptoms indicate an additional dimension of depression in addition to the affect

dimension. Another large component is found for variables 17 and 18, thought of

suicide and attempted suicide. These two variables have a higher association than

can be explained by a single latent variable. Therefore, I recommend to consider

other models such as, a two-factor model or a log-linear model.

Table 6.4: Goodness-of-Fit Tests for ECA Depression Symptoms

Value DF p-value

X2
PF 1455338.69 1048535.00 .

X2
red 1302.85 170 < 0.0001

M2 1293.25 170 < 0.0001

X2
[2] 1337.66 190 < 0.0001
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Table 6.5: ECA Depression Symptoms

Item Description Marginal Frequency Percent

1 Two weeks dysphoria in lifetime 939 26.98

2 Two years or more of dysphoria 217 6.23

3 Lost appetite for two weeks 295 8.47

4 Loss of weight 332 9.54

5 Gain weight 485 13.93

6 Insomnia for two weeks 525 15.08

7 Sleep too much 228 6.55

8 Felt tired for two weeks 445 12.78

9 Moved slowly for two weeks 165 4.74

10 Moving all the time, two weeks 194 5.57

11 Lost interest in sex, two weeks 224 6.43

12 Felt worthless, two weeks 257 7.38

13 Trouble concentrating, two weeks 279 8.01

14 Slow thinking, two weeks 244 7.01

15 Thought of death, two weeks 729 20.94

16 Want to die, two weeks 230 6.61

17 Thought suicide, two weeks 266 7.64

18 Attempt suicide 115 3.30

19 Headaches 343 9.85

20 Crying spells 529 15.20
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Table 6.6: Largest Second-Order Components for ECA Depression Symptoms

Obs Var 1 Var 2 Component Raw A FDR

P-value P-value

1 18 17 171.083 < 2.4425E-15 < 2.4425E-15

2 17 16 106.425 < 2.4425E-15 < 2.4425E-15

3 4 3 62.686 2.4425E-15 9.6885E-14

4 14 13 52.814 3.666E-13 1.0906E-11

5 16 15 44.876 2.0991E-11 4.9959E-10

6 9 8 41.931 9.4541E-11 .000000002

7 20 14 36.121 .000000002 .000000028

8 20 17 36.108 .000000002 .000000028

9 20 9 32.463 .000000012 .000000161

10 20 13 27.873 .000000130 .000001541

11 18 14 27.657 .000000145 .000001567

12 8 7 27.036 .000000200 .000001981

13 18 13 24.959 .000000586 .000005362

14 15 1 23.773 .000001084 .000009213

15 20 11 22.512 .000002088 .000016568

16 18 11 21.690 .000003204 .000023832

17 16 12 19.125 .000012242 .000085695

18 18 8 17.638 .000026726 .000176687

19 17 9 15.934 .000065582 .000410748

20 17 13 14.632 .000130704 .000777690

21 18 4 14.053 .000177766 .001007339

22 15 9 12.945 .000320822 .001735358

23 20 10 12.736 .000358723 .001856000

24 16 1 12.105 .000502862 .002493359

25 17 15 11.644 .000643941 .003065159

26 2 1 11.544 .000679808 .003111429

27 20 8 10.872 .000976232 .004302653

28 12 1 10.720 .001059659 .004503551

29 18 9 10.617 .001120497 .004597902

30 17 8 10.310 .001322970 .005246824
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Chapter 7

GOODNESS-OF-FIT STATISTICS WHEN THE NUMBER OF VARIABLES IS

LARGE

7.1 Feasibility of χ2
red Statistic When the Number of Manifest Variables is Large

Some popular limited-information statistics have been discussed in Section 2.6.

However, when the manifest variables exceed 20, most of these statistics will become

difficult or impossible to calculate due to computer resource limitations. Among these

statistics, calculation of χ2
Ch is fairly straightforward since the covariance matrix, Σr̄ =

D(p)− pp′ can be calculated from the observed counts or proportions. Simulations

reported by Reiser and VandenBerg (1994) show that chi-square approximation for

the distribution of χ2
Ch is valid only up to 8 to 10 variables for typical sample sizes.

For larger number of variables the data table becomes very sparse and then Σ̂r̄ =

D(p̂) − p̂p̂′ is not a consistent estimator for the covariance matrix. On the other

hand, χ2
[t:u] tends to perform well under commonly encountered sparse situations,

and has been calculated for up to 20 variables. However, calculating χ2
[t:u] requires

calculation of G =
∂πππ(βββ )

∂βββ
which requires 2 ∗ 2q+1 integrals, where q is the number

of manifest variables to be evaluated by numerical quadrature for the factor analysis

model. Using SAS PROC IML, these calculations can be accomplished in random

access memory for 20 manifest variables if 6 to 8 GB of RAM are available, for

G,H,A, πππ(βββ) and p̂̂p̂p, in approximately 4 minutes of CPU time (Reiser, 2012). If

the calculations are done using virtual memory, reading and writing to disk, then

processing time for 20 variables is on the order of 30 hours. With 25 manifest variables,

these calculations can take up to 64 GB of RAM. On the other hand, Tollenaar
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and Mooijaart (2003) statistic, stated in Section 2.6 does not require calculation of

G =
∂πππ(βββ )

∂βββ
. The Tollenaar and Mooijaart (2003) statistic

χ2
red = ne′(H[1:2]T̂H′[1:2])

−1e (7.1)

where,

T̂ = D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′

is a reduced version of χ2
[1:2] statistic. It is a statistic for simple null hypothesis

but with adjusted degrees of freedom for estimated parameters. The difference lies in

the covariance matrix T̂, which does not include the term G(Â′Â)−1G′ in the χ2
red

statistic. This term represents variance due to estimating model parameters βββ . As

indicated by Tollenaar and Mooijaart (2003), omitting this term may substantially

reduce computations. For instance, if the categorical factor model is fitted to 20

manifest variables, it requires 8∗220∗40 bytes or 0.335 GB to store just the G matrix in

SAS. With 25 variables, this amount will increase to 8∗225∗50 bytes or approximately

13.4 GB. Note that the categorical factor model contains both intercept and slope

parameters, thus, it requires to take derivatives with respect to both intercept and

slope. Hence, the G matrix will have 2q rows if fitting one factor model. The memory

requirement when both the A matrix and G matrix are in memory is approximately

2*13.4 = 26.8 GB for 25 manifest variables. After calculation of the term (A′A)−1,

the A matrix can be be discarded from the memory, which will save around 13.4 GB.

While χ2
red does not require the term G(A′A)−1G′, it still requires the H[1:2]

matrix, which becomes very large with a large number of manifest variables. For

instance, with 20 manifest variables, it requires 8 ∗ 220 ∗ 210 bytes or approximately

1.76 GB to store H[1:2] matrix. With 25 manifest variables this amount will increase

up to 87.24 GB. This is a huge memory requirement for just one matrix, even with
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modern computer standards. One way to remedy this problem is to replace matrix

operations with loops over vectors that consists of the rows of H. Another technique

that maybe useful for calculating the entire H matrix is sparse matrix operations.

There are two aspects to sparse matrix techniques, namely, sparse matrix storage

and sparse matrix computations. Typically, computer programs represent an M by

N matrix in a dense form as an array of size M by N , making row-wise and column-

wise arithmetic operations particularly efficient to compute. However, if many of

these M by N numbers are zeros, then correspondingly many of these operations are

unnecessary or trivial. Sparse matrix techniques exploit this fact by representing a

matrix not as a complete array, but as a set of nonzero elements and their location

(row and column) within the matrix. This will be ideal for my study since not

only observed proportions are sparse but also the H matrix is sparse. By combining

these techniques I have created a program to calculate the χ2
red statistic that can be

used for a larger number of manifest variables. This program will not store the H[1:2]

matrix but rather generate the rows of H[1:2] matrix at each element of (H[1:2]T̂H′[1:2]).

Therefore, to calculate the term (H[1:2]T̂H′[1:2]) of the χ2
red statistic, this program only

need to store two columns of V matrix to generate the second-order marginal H(2,i)

and another two columns of V matrix to generate the second-order marginal H(2,j),

where j ≥ i and i,j=1,...,q*(q-1)/2. Note, it also need to store the fitted proportions

πππ(β̂̂β̂β) and the vectors H(2,i) and H(2,j). Hence, by using this method for 25 manifest

variables, it will only require 7 ∗ 225 bytes or approximately 0.2348 GB to generate

the elements of (H[1:2]T̂H′[1:2]). This is huge memory saving compared to the 87.24

GB that is required to store just the H[1:2] matrix for 25 manifest variables, but there

will be a very large increase in number of loops. A brief description of the steps of

this program are given as follows:

1. For each l and m create two corresponding columns of the V matrix, l = 1, ..., q
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and m = l + 1, ..., q.

2. Do a element-wise multiplication of those two columns to obtain the second-

order H(2,i).

3. Use an embedded loop and create column l and n of the V matrix, where n ≥ m.

4. Do a element-wise multiplication of the two columns in Step 3 to obtain second-

order marginal H(2,j), where j ≥ i and i,j=1,...,q*(q-1)/2.

5. Then, use the equation

Σvecp =
∑
i,j

((H(2,i) ◦ πππ(β̂̂β̂β) ◦H(2,j))−H′(2,i) ∗ πππ(β̂̂β̂β) ∗ πππ(β̂̂β̂β)′ ∗H(2,j))

to generate the pth element of the Σvec where, Σvec is the covariance matrix

(H[1:2]T̂H′[1:2]) in vector form.

6. Use another loop over rows of H to obtain the vector e using the equation

eee = H[1:2](p̂ − πππ(β̂ββ)), where p̂ is the observed proportions. As in the Step 1

and 2, the loop is used to reduce the memory requirement of the H[1:2] matrix.

Calculation of the rows of the H[1:2] matrix is similar to Step 1 and 2. For each

element, rows of H[1:2] will be multiplied by the vector (p̂− πππ(β̂ββ)) to create the

rth element of the vector e, r = 1, ..., q ∗ (q − 1)/2.

7. Use SQRVECH function in SAS to transform Σvec into a symmetric square

matrix, say Σ̂χ2
red

.

8. Finally, use the equation χ2
red = ne′(H[1:2]T̂H′[1:2])

−1e = ne′(Σ̂χ2
red

)−1e to calcu-

late the χ2
red statistic.

The table below shows results for given observed and fitted probabilities for cal-

culating χ2
red in SAS using this method. Note, these results are for only one pseudo

data set.

100



Table 7.1: Time and Memory Requirements for χ2
red

No. of variables Real time User CPU time System CPU time Memory

15 variables 8.32 sec. 6.81 sec. 1.51 sec. 0.0037 GB

20 variables 13 min 3 sec 10 min 28 sec 2 min 35 sec 0.0996 GB

25 variables 19 min 21 sec 14 min 5 sec 5 min 16 sec 3.15 GB

Next, a Monte-Carlo simulation study was performed to test the performance of

χ2
red for 25 manifest variables. Due to the time limitations only Type I error study

was performed. Empirical power study is recommended as a future work.

The design of Type I error study is as follows:

Model (data generation) categorical variable factor analysis model

with one latent factor

Model (fitted) categorical variable factor analysis model

with one latent factor

Number of observed variables q=25

Number of simulation samples 500

Sample size n=500

For the Monte-Carlo simulation study, data was generated from one factor model.

For the slope parameters of the model, pattern (.1, .1, .1, 2.4, 2.4, 2.4, .2, .2) was re-

peated. Intercepts of the model were kept at zero. Result related to the simulation

is given in the table below.

Table 7.2: Type I Error Results

No. varaibles Type I error rates

25 var 0.066
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When q = 25, there are 33,554,432 cells in the 225 cross-classified table. With

n=500, each cell may only have, on average, 0.00001 observations. Thus, the sparse-

ness in the cross-classified table is very severe when q = 25. But, I’m using second-

order marginals and 2 ∗ 2 sub-table may not be sparse even when q = 25 with n=500.

Therefore, I was expecting χ2
red to have good Type I error rates even when q = 25.

According to the results in the Table 7.2, the empirical Type I error rates are

within the Monte-Carlo error interval 0.05 ± 1.96 ∗
√

0.05 ∗ 0.95/500. Thus, the

χ2
red has good performance for Type I error rate even when the number of manifest

variables are as large as 25.

Due to time limitations, I only extended the simulations up to q = 25. But, I

would expect χ2
red to have good Type I error rates even when q = 50. As a future

work, I recommend extending the simulations for q = 30, q = 40 and q = 50.

7.2 Bootstrap Method

This section will introduce a bootstrap method to obtain p-values for Pearson-

Fisher statistic, fit to confirmatory dichotomous variable factor analysis model when

the number of manifest variables is large.

When there are 25 manifest variables, the cross-classified table has 225, or 33,554,432

cells. If the sample size for testing the fit of a model is a few hundred observations,

then the data table will be sparse and many cells will have counts of zero or 1. As

discussed in the previous sections, when the data are sparse, the asymptotic chi-square

approximation for the distribution of the Pearson and likelihood ratio statistics may

not be valid. Extensive simulations have also shown that p-values obtained from the

chi-square distribution for a test of the categorical factor analysis model on a sample

of size 1000 start to become unreliable at about 6 to 8 manifest variables, depending

on the skew of distribution of the frequencies (Reiser and VandenBerg, 1994).
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Not only sparseness, but also computer resources become an issue when the num-

ber of manifest variables exceeds 20. There are limits on individual objects statistical

software can store. For example, having 30 manifest variables would require approx-

imately 8 ∗ 30 ∗ 230 bytes or 257.6 GB to store the H matrix in R or SAS assuming

double precision storage. If the interest is to store only observed probabilities and

fitted probabilities, with 30 manifest variables it will only require approximately 16

GB. Due to these reasons most of the simulations found in the literature are limited

to 20 manifest variables. But, in an application such as educational testing, the num-

ber of manifest variables could be 50 or more, and with 50 manifest variables, it will

require 8 ∗ 250 bytes or 9,007,199.25 GB to store the fitted probabilities.

I introduce the following method using the omnibus χ2
PF statistic to overcome

these issues. Calculation of the Pearson statistic itself does not necessarily encounter

memory limits for large number of manifest variables because the contribution of

each cell can be calculated individually and cumulated. Processing requirements

of χ2
PF are not a concern for 30 or more variables because calculation of πππs(β̂̂β̂β) is

required only for the cells where ns > 0, and even with a large number of manifest

variables, the number of cells where ns > 0 can be no more than the sample size.

The contribution for the cells with ns = 0 is equal to n
∑

s I(ns = 0)πs(β̂̂β̂β) and can

be obtain by subtraction since,

∑
s

I(ns > 0)πs(β̂̂β̂β) +
∑
s

I(ns = 0)πs(β̂̂β̂β) = 1 (7.2)

where, I is the indicator function. Calculation of χ2
[2], for example, requires much

more storage. Since computational requirements may not present a barrier, obtaining

p-values for χ2
PF by using the parametric bootstrap may be feasible even for a very

large number of variables. The theory of the parametric bootstrap is quite similar to

that of the nonparametric bootstrap, the only difference is that instead of simulating
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bootstrap samples that are independent and identically distributed (iid) from the

empirical distribution (the nonparametric estimate of the distribution of the data)

the parametric bootstrap procedure simulates bootstrap samples that are iid from

the estimated parametric model.

The method that is introduce here will require only the observed patterns and

hence less memory requirement. A brief description of the steps of this method are

given as follows:

1. Assume πππ(β̂̂β̂β) is true. The model πππ(β̂ββ) could be any categorical variable model.

2. Treat the fitted proportions πππs(β̂ββ) under the model as population proportions.

3. Draw random samples from the multinomial distribution with these fitted pro-

portions as parameters of the distribution.

4. For each sample, estimate the categorical variable model used in Step 1. For a

instance, if the categorical variable model with one factor was used in Step 1 to

get πππ(β̂ββ) then, categorical variable model with one factor will be estimated for

each sample from Step 3.

5. If ns > 0, use multivariate Gaussian quadrature to obtain the expected propor-

tions and calculate χ2
PFns>0

.

6. If ns = 0, use the equation 7.2 to obtain χ2
PFns=0

.

7. Sum χ2
PFns=0

and χ2
PFns>0

to obtain χ2
PF .

8. Repeat step 5,6 and 7 for each sample.

9. Obtain p-value by calculating the proportion of χ2
PF values from bootstrap

samples that are greater than the χ2
PF value from the original sample.
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In order to evaluate the performance of this method, Type I error study was per-

formed. Note, the χ2
PF is an omnibus test that gives little guidance of the source of

poor fit and can be outperformed by focused or directional tests of lower-order.

The design of Type I error study is as follows:

Model (data generation) categorical variable factor analysis model

with one latent factor

Model (fitted) categorical variable factor analysis model

with one latent factor

Number of observed variables q=8, q=15, q=18, q=20

Number of simulation samples 1000

Sample size n=500

Number of bootstrap samples 500

Monte-Carlo simulation studies were performed with the information described in

the Table above. One thousand datasets were generated from the one factor model.

For the slope parameters of the one factor model, the pattern (.1, .1, .1, 2.4, 2.4, 2.4, .2, .2)

was repeated. Intercepts of the model were kept at zero. After generating the data,

a one factor model was estimated for each of these datasets. To calculate the p-value

correspond to the χ2
PF for each dataset, five hundred bootstrap samples were obtained

using the steps 1-9 above. The p-value for each dataset was obtained by calculat-

ing the proportion of χ2
PF values from bootstrap samples that are greater than the

χ2
PF value from the original sample. This process was repeated for all one thousand

datasets. The type I error rate was obtained by dividing the number of datasets that

had p-value less than 0.05 by 1,000. Results related to 8, 15, and 20 variables are

given in the Table 7.3 below. The ’Mplus(MonteCarlo)’ column in the Table 7.3 cor-

responds to the Type I error rates calculated using the theoretical distribution. Note,
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the one thousand datasets mentioned above was generated using Mplus. For each of

these datasets, χ2
PF and the corresponding p-value under the theoretical distribution

was calculated using Mplus. Then, the type I error rate based on the theoretical

distribution was obtained by dividing the number of datasets that had p-value less

than 0.05 by 1,000.

Table 7.3: Type I Error Rates Comparison for χ2
PF

No. varaibles Bootstrap Method Mplus(MonteCarlo)

8 var 0.046 0.042

15 var 0.044 0.161

20 var 0.342 0.380

Table 7.4: Time Requirements for the Bootstrap Method

No. varaibles Time (in sec)

8 var 29

15 var 68

20 var 360

* No. of bootstrap samples = 500

According to the results in the Table 7.3, for moderately large number of manifest

variables, the bootstrap method performed well in terms of Type I error rates. When

the number of manifest variables exceeds 20, the Type I error rates started to inflate.

However, I believe the Type I error rates can be improved by increasing the number

of bootstrap samples. Due to the time limitations I had to restrict my simulations to

500 bootstrap samples.

In this chapter, I have investigated two methods to check the feasibility of goodness-

of-fit statistics when the number of manifest variables is large. Firstly, I have inves-

tigated performance of the Tollenaar and Mooijaart (2003) χ2
red statistics when the

number manifest variables is large. Results indicate χ2
red has good performance for

106



Type I error rate even when the number of manifest variables is as large as 25. One

of the other goals was to create memory and time efficient program to calculate

goodness-of-fit statistics for large number of variables. The program that I have cre-

ated improved the memory requirement. The largest amount of RAM the program

consumed during the calculation of the Tollenaar and Mooijaart (2003) statistics was

3.15 GB for 25 variables. However, the number of loops this program require, and

thus the computer time increased rapidly with q. For instance, 15 manifest variables

would require 105 ∗ (106/2) = 5, 565 loops to calculate components of the matrix

(H[1:2]T̂H′[1:2]) and 15 ∗ (14/2) = 105 loops to calculate the e vector. Similarly, 20

manifest variables would require 20 ∗ (19/2) + 190 ∗ (191/2) = 18, 335 loops and 25

manifest variables would require 25 ∗ (24/2) + 300 ∗ (301/2) = 45, 450 loops. Note,

heavy mathematical calculations also happening inside each of these loops. Therefore,

the drawback of the this method is the large number of loops and cpu time.

Secondly, performance of a bootstrap based method to obtain p-values for Pearson-

Fisher statistic was investigated. For moderately large number of manifest variables,

the bootstrap method performed well in terms of Type I error rates. When the

number of manifest variables exceeds 20, the Type I error rates started to inflate.

This might be due to the small number of bootstrap samples used in the simulation

study. Therefore, as a future work, I suggest to increase the number of bootstrap

samples to 2,000 or more. The main issue that I encountered with the bootstrap

method is it requires 2q expected probabilities to generate the bootstrap samples.

When the number of manifest variables increases this may cause computer resource

limitations.
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Chapter 8

DISCUSSION

The goodness-of-fit test is one of the most common tests in statistics. If the data

table contains cell counts that are small, common test statistics such as Pearson’s chi-

square and likelihood ratio may not follow the usual theoretical distribution. Over

the past years several statistics has been proposed to remedy this issue. Some of these

statistics formed on lower-order marginal have been shown to overcome the deleterious

effect of spareness. I used orthogonal components of Pearson’s chi-square statistic

defined on lower-order marginals of the data table as a remedy to this sparseness

problem. To this end, I studied three problems in my dissertation. As my first

problem, I studied goodness-of-fit components using second-order, third-order and

fourth-order marginals. I developed two new statistics, χ2
[2:3] and χ2

[2:4], and studied

the Type I error, empirical power and asymptotic power of these statistics under

different sparseness conditions. I also compared the performance of these statistics

to χ2
[2], χ

2
red, χ

2
red,[3], χ

2
red,[4] and Mr statistics. When the sample size was small (e.g.

n=300) the Type I error rates related to χ2
red,[4], M4 and χ2

[2:4] were considerably

different from the nominal value 0.05. However, when the sample size increases,

Type I error rates were improved. When n=1000, almost all the statistics had Type I

error rates close to the nominal value. On the other hand, Type I error rates related

to χ2
red,[3], M3 and χ2

[2:3] were close to the nominal value, even for n=300. Similarly, all

the Type I error rates related to χ2
red, M2 and χ2

[2] were within the Monte-Carlo error

interval for all the different intercept settings and sample sizes. This suggests that the

2∗2∗2∗2 tables were sparse when q = 8 but 2∗2∗2 and 2∗2 tables were not sparse.

When the number of manifest variables was extended to q = 15, Type I error rates
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related to χ2
red,[4], M4, χ2

[2:4], χ
2
red,[3], M3 and χ2

[2:3] were considerably different from

the nominal value 0.05 for symmetric and asymmetric intercept models. However,

the Type I error rates related to χ2
red, M2 and χ2

[2] were within the Monte-Carlo error

interval for all the different intercept settings and sample sizes. This suggests that

the 2 ∗ 2 ∗ 2 ∗ 2 and 2 ∗ 2 ∗ 2 tables were sparse when q = 15 but 2 ∗ 2 tables were not

sparse. However, it was interesting to see that the Type I error rates related to all

the statistics were within the Monte-Carlo error interval for the zero intercept model

for both q = 8 and q = 15. Thus, the observations seem to be well distributed among

cells when the intercepts are zero compared to asymmetric or symmetric intercepts

even when q = 15. This might also be related to bias in the parameter estimates.

Based on the power results it is clear that a test based on second-order marginals,

χ2
[2] has higher power to detect lack-of-fit located in the second-order associations

when compared to a statistic that incorporates higher-order marginals such as χ2
[2:3]

or the χ2
[2:4]. The χ2

[2] statistic, however, would be insensitive to a lack-of-fit that

is present in the third-order marginals. When I used a log-linear model with 3-way

interactions, power of the test based on χ2
[2:3] surpassed the power of the test based on

χ2
[2]. As the three-way association effect becomes larger, the power of the test based

on χ2
[2] rose only gradually, but the power of test based on the χ2

[2:3] rose rapidly.

This suggests that χ2
[2:3] statistic has better performance when there is a three-way

association compared to χ2
[2]. Also, the power of χ2

[2:4] was lower than χ2
[2:3]. This

suggests that when the lack-of-fit is in the third-order, adding additional components

may dilute the test. When the three-way associations were present in the model,

χ2
red,[3], χ

2
red,[4], M3 and M4 had somewhat of a lower power compared to χ2

[2:3]. The

χ2
[2:3] statistic seems to outperform the other statistics in this situation.
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In many applications of latent variable models in the social sciences, manifest

variables are designed to have high bi-variate association, but sometimes it is possible

to have three- or four-way associations. If lack-of-fit for the model is in third- or

fourth-order components, χ2
[2:3] and χ2

[2:4] may have higher power than a lower-order

statistics like χ2
[2]. However, it is not possible to know the location of the lack-of-fit in

advance. To protect against the possibility of failing to detect a departure from the

null hypothesis H0 : πππ = πππ(βββ) in higher-order marginals one can examine the residual

χ2
PF − χ2

[2]. Since χ2
[2] is a component of χ2

PF , a large residual relative to the df may

indicate the need of inclusion of higher-order marginals in the test statistic. This can

be carried out in a sequential manner by starting with χ2
[2] then χ2

[3|2], χ
2
[4|3,2] until

you reach the statistic that includes marginals up to qth order which is χ2
PF . Note,

beyond χ2
[2:3] the sub-tables can be sparse, especially when the sample size is small

(e.g. n=300). If that is the case, then a method like bootstrap would be needed to

find p-value. The α level for the tests would need to be adjusted for multiple testing.

The ability to choose between different statistics χ2
[2], χ

2
[2:3] and χ2

[2:4] in various

situations can help to improve the inference and decisions made in real world appli-

cations. The SAS code I developed facilitates this approach and can help to improve

the decisions made in real world applications.

As indicated before, manifest variables are designed to have high bi-variate asso-

ciations in many applications of latent variable models in the social sciences. In these

situations, χ2
[2] may feature higher power for a certain alternative hypothesis espe-

cially, when the lack-of-fit is in the second-order marginals. When a model fails to fit

adequately, it is important to know where the model provides a good fit and where

it does not. Thus, as my second problem, I checked the performance of individual

orthogonal components of χ2
[2] as statistics to identify lack-of-fit. In the context of this
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problem, I studied both empirical and asymptotic power. I also compared the perfor-

mance of individual orthogonal components of χ2
[2] to other test statistics discussed

in Chapter 2 and 3: adjusted residuals and χ̄2
ij. I used two settings for the number of

manifest variables: q = 8 and q = 15 and three settings for the intercepts of the model:

symmetric, asymmetric and zero. Based on the results it is clear that the orthogonal

components exhibit better Type I error performance compared to adjusted residuals

and χ̄2
ij when n = 300. However, when the sample size increases (e.g. n = 500),

Type I error rate performance was similar between orthogonal components, adjusted

residuals and χ̄2
ij, especially for the zero intercept setting. However, this was not the

case for symmetric and asymmetric intercept cases, especially when the q = 15. It

seems counts have less sparseness among cells when the intercepts are zero compared

to asymmetric or symmetric intercepts. However, this might also be related to bias

in the parameter estimates. Overall, individual orthogonal components had better

Type I error rates than adjusted residuals and χ̄2
ij even when the cross-classified table

was very sparse.

Note, each orthogonal component is distributed in large samples approximately

as chi-square with one degree of freedom (df). To check this assumption, chi-square

Q-Q plots were built for the simulation values related to each component. A similar

approach was taken to check the normality assumption of the adjusted residuals.

On the other hand, the χ̄2
ij featured a different df for different item pairs. The

df of χ̄2
ij depends on ΣΣΣij where, ΣΣΣij is the covariance matrix related to the residuals

n(pij− π̂̂π̂π ij) for a pair of items. Thus, an average value of these df was used to calculate

the chi-square Q-Q plots for χ̄2
ij. Most of the Q-Q plots attained the distributional

assumption. There were a few Q-Q plots that showed deviations from the straight

line assumption, especially when the sample size was small. Note, these Q-Q plots

are very sensitive to outlier observations. When the sample size is small, some of the
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estimated standard errors related to the test statistics can be very small. This can

result in a larger test statistic value. A few of these larger test statistic values can

easily affect the pattern of the Q-Q plot.

Most of the Q-Q plots that deviated from the hypothesized distributions were

related to χ̄2
ij. This might be related to the fact that I am using the mean value of

the one thousand df of a particular χ̄2
ij to calculate the Q-Q plot for that particular

χ̄2
ij even though each have a different df under each simulation value. I recommend a

further study of this as a future work.

As shown earlier, the Pearson-Fisher statistic for a composite null hypothesis can

be partitioned into T−g−1 orthogonal components defined on marginal distributions.

When the manifest variables are binary, each of these components, γ̂2
j , is distributed

approximately as an independent χ2
(1) random variate in large sample. These compo-

nents can be used as item diagnostics for model fitting when the result of an omnibus

test indicates that a model should be rejected. Thus, the second order marginals re-

lated to orthogonal components were examined as lack-of-fit diagnostics. Simulations

were based on a categorical factor model for a two latent variable model. To calculate

the empirical power, the model under the null hypothesis was misspecified with one

factor model. Empirical power was also compared to the asymptotic power. Based

on the results, orthogonal components were successful in indicating a pair of variables

for which the model does not fit well. When the sample size increases, the ability to

indicate a pair of variables for which the model does not fit well increases significantly.

The χ̄2
ij and the adjusted residual had some what higher power for some variable pairs

compared to orthogonal components when n = 300. For example, When q = 8 and

n = 300 the empirical power related to item pairs (4,5) and (4,6) were higher for

the χ̄2
ij and the adjusted residuals compared to orthogonal components. However,

the empirical power related to item (5,6) was higher for orthogonal components com-
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pared to χ̄2
ij and adjusted residual. Note, orthogonal components had better Type

I error rates even when the cross-classified table was very sparse compared to χ̄2
ij

and adjusted residual. In addition, the χ̄2
ij for different item pairs cannot be directly

compared as they are on a different scale (their estimated df). Only the p-values can

be directly compared across item pairs. This is undesirable in terms of actual appli-

cations because researchers have to inspect tables of p-values with a large number of

decimals in order to determine the item pairs with the greatest magnitude of misfit.

The asymptotic power results tally with the empirical power results for the zero

intercept condition. However, when the intercepts move away from zero, and the

sample size is small, there were some discrepancies between asymptotic and empirical

power. Looking at the power results for both q = 8 and q = 15, there is very

little change in asymptotic power between zero, symmetric and asymmetric intercept

settings. However, the empirical power can differ sometimes by a substantial amount.

This is because the empirical power is affected by sparseness and bias of estimator

for intercept and slope. This was also evident in the Type I error study.

Different software packages use different methods for parameter estimation and

optimization. Sometimes, the same software may have different options. For example,

the default optimization technique in PROC IRT to obtain maximum likelihood esti-

mates is dual quasi-Newton optimization. But, it also allows you to select other opti-

mization methods like EM optimization, Newton-Raphson optimization with ridging

and conjugate-gradient optimization. These different methods can have different ef-

fects on parameter estimation and hence, the goodness-of-fit statistics based on those

estimations. For instance, I used PROC IRT with dual quasi-Newton optimization

for my initial simulations. But, the parameter estimates were not stable for small

sample size and/or factor loadings. When I used the EM optimization in PROC IRT,

parameter estimates were more stable. Mplus parameter estimates were more stable
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compared to PROC IRT estimates. Hence, I used Mplus parameter estimates for

all my calculations. As a future work, I recommend comparing the performance of

orthogonal components under these different parameter estimation methods.

As my third problem, I extended the statistics on lower-order marginals to a

larger number of manifest variables. When the number of manifest variables exceeds

20, most of the statistics on lower-order marginals have limitations in terms of com-

puter resources and CPU time. Under this problem, I investigated the performance

of a bootstrap based method to obtain p-values for Pearson-Fisher statistic, fit to

confirmatory dichotomous variable factor analysis model and the performance of Tol-

lenaar and Mooijaart (2003) statistic when the number manifest variables is larger

than or equal to 25.

Results indicate χ2
red has good performance for Type I error rate even when the

number of manifest variables is as large as 25. One of the other goals of this research

was to create memory and time efficient program to calculate goodness-of-fit statis-

tics for large number of variables. The program that I have created improved the

memory requirement. The largest amount of RAM the program consumed during

the calculation of the Tollenaar and Mooijaart (2003) statistics was 3.15 GB for 25

manifest variables. However, the number of loops this program require thus the com-

puter time increased rapidly with q. For instance, 15 manifest variables would require

105∗ (106/2) = 5, 565 loops to calculate components of the matrix (H[1:2]T̂H′[1:2]) and

15 ∗ (14/2) = 105 loops to calculate the e vector. Similarly, 20 manifest variables

would require 20 ∗ (19/2) + 190 ∗ (191/2) = 18, 335 loops and 25 manifest variables

would require 25 ∗ (24/2) + 300 ∗ (301/2) = 45, 450 loops. Therefore, the drawback of

this method is the large number of loops and CPU time.

Performance of a bootstrap based method to obtain p-values for Pearson-Fisher
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statistic was also investigated when the number of manifest variables is large. For

a moderately large number of manifest variables, the bootstrap method performed

well in terms of Type I error rates. When the number of manifest variables exceeds

20, the Type I error rates started to inflate. This might be due to the small number

of bootstrap samples used in the simulations study. Therefore, as a future work, I

suggest increasing the number of bootstrap samples to 2000 or more. The main issue

that I encountered with the bootstrap method is it requires 2q expected probabilities

to generate the bootstrap samples. When the number of manifest variables increases

this may cause computer resource limitations.
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Table A.1: Type I Error Study for Asymmetric Intercept Model
n=300 n=500

Pair (i,j) Orthgonal Comp. Std. Residuals χ̄2
ij Orthgonal Comp. Std. Residuals χ̄2

ij

(1,2) 0.039 0.042 0.041 0.037 0.038 0.037
(1,3) 0.041 0.045 0.043 0.04 0.04 0.04
(1,4) 0.052 0.055 0.058 0.055 0.054 0.05
(1,5) 0.04 0.057 0.052 0.04 0.049 0.047
(1,6) 0.041 0.053 0.051 0.053 0.059 0.057
(1,7) 0.039 0.046 0.046 0.041 0.054 0.053
(1,8) 0.062 0.053 0.051 0.064 0.059 0.059
(2,3) 0.057 0.06 0.059 0.057 0.058 0.058
(2,4) 0.049 0.059 0.052 0.056 0.055 0.051
(2,5) 0.046 0.063 0.055 0.054 0.055 0.056
(2,6) 0.038 0.054 0.048 0.049 0.061 0.061
(2,7) 0.047 0.043 0.043 0.045 0.034 0.032
(2,8) 0.046 0.045 0.043 0.058 0.05 0.049
(3,4) 0.044 0.059 0.058 0.043 0.042 0.043
(3,5) 0.06 0.047 0.044 0.054 0.044 0.041
(3,6) 0.051 0.059 0.058 0.049 0.05 0.05
(3,7) 0.049 0.04 0.039 0.042 0.042 0.042
(3,8) 0.046 0.043 0.043 0.042 0.042 0.043
(4,5) 0.046 0.087 0.087 0.059 0.056 0.061
(4,6) 0.061 0.072 0.074 0.046 0.062 0.062
(4,7) 0.055 0.067 0.066 0.039 0.053 0.053
(4,8) 0.05 0.066 0.068 0.037 0.04 0.04
(5,6) 0.063 0.07 0.072 0.057 0.056 0.056
(5,7) 0.042 0.055 0.054 0.041 0.046 0.048
(5,8) 0.062 0.057 0.056 0.049 0.04 0.039
(6,7) 0.038 0.045 0.048 0.054 0.052 0.052
(6,8) 0.055 0.046 0.044 0.061 0.04 0.039
(7,8) 0.066 0.06 0.061 0.047 0.055 0.055
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Table A.2: Type I Error Study for Zero Intercept Model
n=300 n=500

Pair (i,j) Orthgonal Comp. Std. Residuals χ̄2
ij Orthgonal Comp. Std. Residuals χ̄2

ij

(1,2) 0.053 0.053 0.053 0.043 0.042 0.043
(1,3) 0.058 0.057 0.056 0.055 0.054 0.054
(1,4) 0.042 0.043 0.043 0.055 0.056 0.057
(1,5) 0.057 0.052 0.054 0.057 0.053 0.053
(1,6) 0.054 0.051 0.053 0.05 0.06 0.06
(1,7) 0.045 0.045 0.045 0.047 0.047 0.047
(1,8) 0.043 0.051 0.052 0.06 0.04 0.04
(2,3) 0.06 0.059 0.058 0.053 0.052 0.052
(2,4) 0.045 0.044 0.046 0.045 0.045 0.044
(2,5) 0.055 0.055 0.055 0.053 0.053 0.056
(2,6) 0.055 0.05 0.048 0.045 0.056 0.056
(2,7) 0.04 0.044 0.046 0.036 0.044 0.043
(2,8) 0.042 0.051 0.051 0.056 0.05 0.049
(3,4) 0.047 0.052 0.052 0.053 0.051 0.053
(3,5) 0.051 0.038 0.039 0.058 0.044 0.045
(3,6) 0.063 0.058 0.057 0.058 0.056 0.059
(3,7) 0.045 0.051 0.051 0.045 0.048 0.048
(3,8) 0.047 0.054 0.054 0.048 0.054 0.054
(4,5) 0.047 0.052 0.055 0.043 0.047 0.05
(4,6) 0.059 0.06 0.057 0.048 0.06 0.059
(4,7) 0.042 0.036 0.037 0.052 0.054 0.054
(4,8) 0.061 0.049 0.05 0.044 0.054 0.055
(5,6) 0.05 0.059 0.06 0.058 0.06 0.054
(5,7) 0.043 0.046 0.049 0.04 0.035 0.036
(5,8) 0.054 0.049 0.049 0.056 0.051 0.051
(6,7) 0.052 0.042 0.043 0.058 0.042 0.042
(6,8) 0.043 0.052 0.051 0.05 0.039 0.04
(7,8) 0.05 0.043 0.043 0.045 0.056 0.056
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Table A.3: Type I Error Study for Orthogonal Components for Asymmetric Inter-
cept Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.055 (3,12) 0.055 (7,9) 0.051
(1,3) 0.045 (3,13) 0.047 (7,10) 0.047
(1,4) 0.052 (3,14) 0.046 (7,11) 0.045
(1,5) 0.053 (3,15) 0.052 (7,12) 0.053
(1,6) 0.06 (4,5) 0.056 (7,13) 0.057
(1,7) 0.046 (4,6) 0.043 (7,14) 0.046
(1,8) 0.048 (4,7) 0.046 (7,15) 0.046
(1,9) 0.044 (4,8) 0.043 (8,9) 0.042
(1,10) 0.046 (4,9) 0.049 (8,10) 0.047
(1,11) 0.046 (4,10) 0.044 (8,11) 0.045
(1,12) 0.063 (4,11) 0.063 (8,12) 0.065
(1,13) 0.048 (4,12) 0.056 (8,13) 0.055
(1,14) 0.04 (4,13) 0.045 (8,14) 0.048
(1,15) 0.047 (4,14) 0.053 (8,15) 0.048
(2,3) 0.056 (4,15) 0.057 (9,10) 0.055
(2,4) 0.052 (5,6) 0.051 (9,11) 0.052
(2,5) 0.051 (5,7) 0.051 (9,12) 0.052
(2,6) 0.055 (5,8) 0.055 (9,13) 0.055
(2,7) 0.05 (5,9) 0.053 (9,14) 0.048
(2,8) 0.049 (5,10) 0.046 (9,15) 0.047
(2,9) 0.05 (5,11) 0.049 (10,11) 0.049
(2,10) 0.036 (5,12) 0.038 (10,12) 0.036
(2,11) 0.046 (5,13) 0.049 (10,13) 0.05
(2,12) 0.051 (5,14) 0.044 (10,14) 0.044
(2,13) 0.045 (5,15) 0.056 (10,15) 0.056
(2,14) 0.059 (6,7) 0.061 (11,12) 0.061
(2,15) 0.054 (6,8) 0.045 (11,13) 0.044
(3,4) 0.034 (6,9) 0.041 (11,14) 0.042
(3,5) 0.049 (6,10) 0.054 (11,15) 0.053
(3,6) 0.06 (6,11) 0.058 (12,13) 0.057
(3,7) 0.04 (6,12) 0.051 (12,14) 0.052
(3,8) 0.038 (6,13) 0.044 (12,15) 0.044
(3,9) 0.038 (6,14) 0.044 (13,14) 0.045
(3,10) 0.052 (6,15) 0.051 (13,15) 0.049
(3,11) 0.055 (7,8) 0.053 (14,15) 0.052
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Table A.4: Type I Error Study for Adjusted Residuals for Asymmetric Intercept
Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.052 (3,12) 0.055 (7,9) 0.053
(1,3) 0.047 (3,13) 0.047 (7,10) 0.047
(1,4) 0.036 (3,14) 0.038 (7,11) 0.035
(1,5) 0.04 (3,15) 0.037 (7,12) 0.037
(1,6) 0.045 (4,5) 0.044 (7,13) 0.043
(1,7) 0.043 (4,6) 0.045 (7,14) 0.045
(1,8) 0.04 (4,7) 0.04 (7,15) 0.04
(1,9) 0.034 (4,8) 0.034 (8,9) 0.034
(1,10) 0.041 (4,9) 0.043 (8,10) 0.043
(1,11) 0.042 (4,10) 0.041 (8,11) 0.042
(1,12) 0.056 (4,11) 0.057 (8,12) 0.058
(1,13) 0.065 (4,12) 0.058 (8,13) 0.06
(1,14) 0.051 (4,13) 0.048 (8,14) 0.047
(1,15) 0.044 (4,14) 0.045 (8,15) 0.042
(2,3) 0.038 (4,15) 0.038 (9,10) 0.039
(2,4) 0.035 (5,6) 0.035 (9,11) 0.036
(2,5) 0.037 (5,7) 0.039 (9,12) 0.04
(2,6) 0.059 (5,8) 0.056 (9,13) 0.053
(2,7) 0.04 (5,9) 0.041 (9,14) 0.04
(2,8) 0.042 (5,10) 0.043 (9,15) 0.041
(2,9) 0.039 (5,11) 0.039 (10,11) 0.039
(2,10) 0.056 (5,12) 0.057 (10,12) 0.056
(2,11) 0.05 (5,13) 0.05 (10,13) 0.048
(2,12) 0.046 (5,14) 0.043 (10,14) 0.045
(2,13) 0.048 (5,15) 0.05 (10,15) 0.047
(2,14) 0.053 (6,7) 0.06 (11,12) 0.059
(2,15) 0.036 (6,8) 0.048 (11,13) 0.05
(3,4) 0.039 (6,9) 0.038 (11,14) 0.038
(3,5) 0.045 (6,10) 0.047 (11,15) 0.044
(3,6) 0.06 (6,11) 0.061 (12,13) 0.06
(3,7) 0.045 (6,12) 0.042 (12,14) 0.043
(3,8) 0.042 (6,13) 0.044 (12,15) 0.044
(3,9) 0.048 (6,14) 0.048 (13,14) 0.047
(3,10) 0.062 (6,15) 0.059 (13,15) 0.06
(3,11) 0.042 (7,8) 0.042 (14,15) 0.042
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Table A.5: Type I Error Study for χ̄2
ij for Asymmetric Intercept Model, q=15,

n=500
Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.053 (3,12) 0.051 (7,9) 0.05
(1,3) 0.047 (3,13) 0.047 (7,10) 0.05
(1,4) 0.035 (3,14) 0.045 (7,11) 0.052
(1,5) 0.036 (3,15) 0.053 (7,12) 0.04
(1,6) 0.043 (4,5) 0.057 (7,13) 0.043
(1,7) 0.045 (4,6) 0.046 (7,14) 0.045
(1,8) 0.04 (4,7) 0.046 (7,15) 0.046
(1,9) 0.034 (4,8) 0.042 (8,9) 0.059
(1,10) 0.043 (4,9) 0.047 (8,10) 0.039
(1,11) 0.042 (4,10) 0.045 (8,11) 0.058
(1,12) 0.058 (4,11) 0.064 (8,12) 0.053
(1,13) 0.06 (4,12) 0.055 (8,13) 0.05
(1,14) 0.047 (4,13) 0.048 (8,14) 0.055
(1,15) 0.042 (4,14) 0.048 (8,15) 0.062
(2,3) 0.039 (4,15) 0.055 (9,10) 0.06
(2,4) 0.036 (5,6) 0.052 (9,11) 0.059
(2,5) 0.04 (5,7) 0.052 (9,12) 0.044
(2,6) 0.053 (5,8) 0.055 (9,13) 0.055
(2,7) 0.04 (5,9) 0.048 (9,14) 0.057
(2,8) 0.041 (5,10) 0.047 (9,15) 0.053
(2,9) 0.039 (5,11) 0.049 (10,11) 0.059
(2,10) 0.056 (5,12) 0.036 (10,12) 0.055
(2,11) 0.048 (5,13) 0.05 (10,13) 0.056
(2,12) 0.045 (5,14) 0.044 (10,14) 0.055
(2,13) 0.047 (5,15) 0.056 (10,15) 0.05
(2,14) 0.059 (6,7) 0.061 (11,12) 0.053
(2,15) 0.05 (6,8) 0.044 (11,13) 0.052
(3,4) 0.038 (6,9) 0.042 (11,14) 0.045
(3,5) 0.044 (6,10) 0.053 (11,15) 0.059
(3,6) 0.06 (6,11) 0.057 (12,13) 0.05
(3,7) 0.043 (6,12) 0.052 (12,14) 0.04
(3,8) 0.044 (6,13) 0.044 (12,15) 0.039
(3,9) 0.047 (6,14) 0.045 (13,14) 0.055
(3,10) 0.06 (6,15) 0.049 (13,15) 0.061
(3,11) 0.042 (7,8) 0.052 (14,15) 0.049
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Table A.6: Type I Error Study for Orthogonal Components for Asymmetric Inter-
cept Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.054 (3,12) 0.055 (7,9) 0.038
(1,3) 0.05 (3,13) 0.05 (7,10) 0.055
(1,4) 0.035 (3,14) 0.047 (7,11) 0.043
(1,5) 0.047 (3,15) 0.045 (7,12) 0.03
(1,6) 0.037 (4,5) 0.045 (7,13) 0.049
(1,7) 0.042 (4,6) 0.047 (7,14) 0.048
(1,8) 0.034 (4,7) 0.05 (7,15) 0.064
(1,9) 0.041 (4,8) 0.041 (8,9) 0.041
(1,10) 0.035 (4,9) 0.051 (8,10) 0.034
(1,11) 0.043 (4,10) 0.049 (8,11) 0.055
(1,12) 0.057 (4,11) 0.05 (8,12) 0.054
(1,13) 0.057 (4,12) 0.056 (8,13) 0.056
(1,14) 0.052 (4,13) 0.044 (8,14) 0.046
(1,15) 0.051 (4,14) 0.05 (8,15) 0.052
(2,3) 0.05 (4,15) 0.053 (9,10) 0.058
(2,4) 0.029 (5,6) 0.042 (9,11) 0.051
(2,5) 0.034 (5,7) 0.054 (9,12) 0.044
(2,6) 0.038 (5,8) 0.057 (9,13) 0.048
(2,7) 0.036 (5,9) 0.045 (9,14) 0.063
(2,8) 0.042 (5,10) 0.052 (9,15) 0.046
(2,9) 0.043 (5,11) 0.039 (10,11) 0.052
(2,10) 0.047 (5,12) 0.038 (10,12) 0.038
(2,11) 0.036 (5,13) 0.058 (10,13) 0.058
(2,12) 0.056 (5,14) 0.05 (10,14) 0.052
(2,13) 0.054 (5,15) 0.057 (10,15) 0.058
(2,14) 0.052 (6,7) 0.057 (11,12) 0.062
(2,15) 0.039 (6,8) 0.059 (11,13) 0.05
(3,4) 0.041 (6,9) 0.037 (11,14) 0.053
(3,5) 0.036 (6,10) 0.056 (11,15) 0.045
(3,6) 0.05 (6,11) 0.038 (12,13) 0.055
(3,7) 0.034 (6,12) 0.053 (12,14) 0.05
(3,8) 0.04 (6,13) 0.057 (12,15) 0.052
(3,9) 0.036 (6,14) 0.038 (13,14) 0.052
(3,10) 0.048 (6,15) 0.053 (13,15) 0.053
(3,11) 0.043 (7,8) 0.047 (14,15) 0.049
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Table A.7: Type I Error Study for Adjusted Residuals for Asymmetric Intercept
Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.055 (3,12) 0.05 (7,9) 0.036
(1,3) 0.051 (3,13) 0.055 (7,10) 0.058
(1,4) 0.035 (3,14) 0.042 (7,11) 0.037
(1,5) 0.045 (3,15) 0.048 (7,12) 0.044
(1,6) 0.035 (4,5) 0.045 (7,13) 0.048
(1,7) 0.045 (4,6) 0.051 (7,14) 0.059
(1,8) 0.034 (4,7) 0.054 (7,15) 0.056
(1,9) 0.04 (4,8) 0.043 (8,9) 0.045
(1,10) 0.032 (4,9) 0.053 (8,10) 0.036
(1,11) 0.042 (4,10) 0.048 (8,11) 0.06
(1,12) 0.048 (4,11) 0.048 (8,12) 0.059
(1,13) 0.054 (4,12) 0.059 (8,13) 0.059
(1,14) 0.04 (4,13) 0.056 (8,14) 0.043
(1,15) 0.056 (4,14) 0.043 (8,15) 0.053
(2,3) 0.05 (4,15) 0.067 (9,10) 0.057
(2,4) 0.029 (5,6) 0.046 (9,11) 0.051
(2,5) 0.036 (5,7) 0.057 (9,12) 0.037
(2,6) 0.038 (5,8) 0.057 (9,13) 0.044
(2,7) 0.034 (5,9) 0.046 (9,14) 0.054
(2,8) 0.042 (5,10) 0.051 (9,15) 0.054
(2,9) 0.041 (5,11) 0.042 (10,11) 0.056
(2,10) 0.048 (5,12) 0.044 (10,12) 0.048
(2,11) 0.04 (5,13) 0.045 (10,13) 0.056
(2,12) 0.055 (5,14) 0.06 (10,14) 0.053
(2,13) 0.05 (5,15) 0.047 (10,15) 0.059
(2,14) 0.048 (6,7) 0.057 (11,12) 0.058
(2,15) 0.038 (6,8) 0.058 (11,13) 0.045
(3,4) 0.038 (6,9) 0.033 (11,14) 0.059
(3,5) 0.037 (6,10) 0.05 (11,15) 0.055
(3,6) 0.054 (6,11) 0.04 (12,13) 0.062
(3,7) 0.035 (6,12) 0.058 (12,14) 0.038
(3,8) 0.039 (6,13) 0.054 (12,15) 0.043
(3,9) 0.035 (6,14) 0.044 (13,14) 0.052
(3,10) 0.047 (6,15) 0.04 (13,15) 0.067
(3,11) 0.042 (7,8) 0.043 (14,15) 0.056
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Table A.8: Type I Error Study for χ̄2
ij for Asymmetric Intercept Model, q=15,

n=300
Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.

(1,2) 0.053 (3,12) 0.052 (7,9) 0.036
(1,3) 0.05 (3,13) 0.054 (7,10) 0.057
(1,4) 0.034 (3,14) 0.044 (7,11) 0.037
(1,5) 0.038 (3,15) 0.049 (7,12) 0.047
(1,6) 0.033 (4,5) 0.049 (7,13) 0.046
(1,7) 0.045 (4,6) 0.05 (7,14) 0.061
(1,8) 0.034 (4,7) 0.056 (7,15) 0.056
(1,9) 0.04 (4,8) 0.044 (8,9) 0.044
(1,10) 0.032 (4,9) 0.052 (8,10) 0.036
(1,11) 0.043 (4,10) 0.046 (8,11) 0.061
(1,12) 0.052 (4,11) 0.049 (8,12) 0.059
(1,13) 0.054 (4,12) 0.055 (8,13) 0.06
(1,14) 0.044 (4,13) 0.051 (8,14) 0.043
(1,15) 0.057 (4,14) 0.045 (8,15) 0.053
(2,3) 0.051 (4,15) 0.066 (9,10) 0.057
(2,4) 0.029 (5,6) 0.047 (9,11) 0.051
(2,5) 0.035 (5,7) 0.055 (9,12) 0.044
(2,6) 0.036 (5,8) 0.055 (9,13) 0.046
(2,7) 0.035 (5,9) 0.046 (9,14) 0.055
(2,8) 0.042 (5,10) 0.053 (9,15) 0.054
(2,9) 0.041 (5,11) 0.042 (10,11) 0.056
(2,10) 0.049 (5,12) 0.038 (10,12) 0.046
(2,11) 0.039 (5,13) 0.047 (10,13) 0.058
(2,12) 0.055 (5,14) 0.057 (10,14) 0.054
(2,13) 0.052 (5,15) 0.047 (10,15) 0.059
(2,14) 0.053 (6,7) 0.056 (11,12) 0.058
(2,15) 0.038 (6,8) 0.06 (11,13) 0.046
(3,4) 0.037 (6,9) 0.034 (11,14) 0.054
(3,5) 0.038 (6,10) 0.051 (11,15) 0.055
(3,6) 0.054 (6,11) 0.041 (12,13) 0.063
(3,7) 0.035 (6,12) 0.06 (12,14) 0.043
(3,8) 0.04 (6,13) 0.057 (12,15) 0.043
(3,9) 0.034 (6,14) 0.045 (13,14) 0.056
(3,10) 0.047 (6,15) 0.041 (13,15) 0.067
(3,11) 0.043 (7,8) 0.042 (14,15) 0.057
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Table A.9: Type I Error Study for Orthogonal Components for Zero Intercept Model,
q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.048 (3,12) 0.054 (7,9) 0.052
(1,3) 0.041 (3,13) 0.049 (7,10) 0.046
(1,4) 0.044 (3,14) 0.056 (7,11) 0.05
(1,5) 0.044 (3,15) 0.052 (7,12) 0.052
(1,6) 0.063 (4,5) 0.063 (7,13) 0.048
(1,7) 0.05 (4,6) 0.045 (7,14) 0.056
(1,8) 0.045 (4,7) 0.047 (7,15) 0.054
(1,9) 0.059 (4,8) 0.04 (8,9) 0.054
(1,10) 0.051 (4,9) 0.05 (8,10) 0.054
(1,11) 0.047 (4,10) 0.043 (8,11) 0.052
(1,12) 0.054 (4,11) 0.046 (8,12) 0.063
(1,13) 0.049 (4,12) 0.051 (8,13) 0.059
(1,14) 0.06 (4,13) 0.061 (8,14) 0.051
(1,15) 0.047 (4,14) 0.051 (8,15) 0.05
(2,3) 0.046 (4,15) 0.063 (9,10) 0.054
(2,4) 0.033 (5,6) 0.047 (9,11) 0.044
(2,5) 0.046 (5,7) 0.037 (9,12) 0.039
(2,6) 0.053 (5,8) 0.053 (9,13) 0.063
(2,7) 0.042 (5,9) 0.037 (9,14) 0.05
(2,8) 0.042 (5,10) 0.063 (9,15) 0.046
(2,9) 0.046 (5,11) 0.061 (10,11) 0.062
(2,10) 0.05 (5,12) 0.052 (10,12) 0.039
(2,11) 0.051 (5,13) 0.048 (10,13) 0.05
(2,12) 0.044 (5,14) 0.058 (10,14) 0.053
(2,13) 0.045 (5,15) 0.049 (10,15) 0.053
(2,14) 0.055 (6,7) 0.046 (11,12) 0.051
(2,15) 0.048 (6,8) 0.047 (11,13) 0.049
(3,4) 0.043 (6,9) 0.059 (11,14) 0.057
(3,5) 0.052 (6,10) 0.057 (11,15) 0.066
(3,6) 0.054 (6,11) 0.063 (12,13) 0.04
(3,7) 0.058 (6,12) 0.042 (12,14) 0.055
(3,8) 0.037 (6,13) 0.044 (12,15) 0.053
(3,9) 0.05 (6,14) 0.037 (13,14) 0.052
(3,10) 0.055 (6,15) 0.045 (13,15) 0.048
(3,11) 0.039 (7,8) 0.05 (14,15) 0.059
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Table A.10: Type I Error Study for Adjusted Residuals for Zero Intercept Model,
q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.048 (3,12) 0.043 (7,9) 0.055
(1,3) 0.041 (3,13) 0.043 (7,10) 0.049
(1,4) 0.045 (3,14) 0.048 (7,11) 0.049
(1,5) 0.039 (3,15) 0.056 (7,12) 0.048
(1,6) 0.064 (4,5) 0.063 (7,13) 0.05
(1,7) 0.051 (4,6) 0.039 (7,14) 0.056
(1,8) 0.046 (4,7) 0.051 (7,15) 0.044
(1,9) 0.06 (4,8) 0.041 (8,9) 0.055
(1,10) 0.054 (4,9) 0.053 (8,10) 0.048
(1,11) 0.052 (4,10) 0.043 (8,11) 0.055
(1,12) 0.052 (4,11) 0.049 (8,12) 0.053
(1,13) 0.043 (4,12) 0.058 (8,13) 0.051
(1,14) 0.033 (4,13) 0.058 (8,14) 0.06
(1,15) 0.054 (4,14) 0.047 (8,15) 0.051
(2,3) 0.046 (4,15) 0.055 (9,10) 0.055
(2,4) 0.033 (5,6) 0.042 (9,11) 0.045
(2,5) 0.049 (5,7) 0.042 (9,12) 0.048
(2,6) 0.047 (5,8) 0.047 (9,13) 0.062
(2,7) 0.042 (5,9) 0.04 (9,14) 0.054
(2,8) 0.042 (5,10) 0.06 (9,15) 0.052
(2,9) 0.044 (5,11) 0.062 (10,11) 0.056
(2,10) 0.051 (5,12) 0.053 (10,12) 0.042
(2,11) 0.049 (5,13) 0.047 (10,13) 0.047
(2,12) 0.039 (5,14) 0.047 (10,14) 0.044
(2,13) 0.041 (5,15) 0.043 (10,15) 0.07
(2,14) 0.043 (6,7) 0.047 (11,12) 0.05
(2,15) 0.059 (6,8) 0.054 (11,13) 0.04
(3,4) 0.043 (6,9) 0.06 (11,14) 0.052
(3,5) 0.056 (6,10) 0.054 (11,15) 0.059
(3,6) 0.053 (6,11) 0.063 (12,13) 0.049
(3,7) 0.056 (6,12) 0.045 (12,14) 0.044
(3,8) 0.039 (6,13) 0.048 (12,15) 0.05
(3,9) 0.053 (6,14) 0.046 (13,14) 0.058
(3,10) 0.058 (6,15) 0.042 (13,15) 0.042
(3,11) 0.043 (7,8) 0.052 (14,15) 0.041
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Table A.11: Type I Error Study for χ̄2
ij for Zero Intercept Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.048 (3,12) 0.044 (7,9) 0.055
(1,3) 0.041 (3,13) 0.042 (7,10) 0.049
(1,4) 0.045 (3,14) 0.049 (7,11) 0.047
(1,5) 0.039 (3,15) 0.056 (7,12) 0.048
(1,6) 0.064 (4,5) 0.063 (7,13) 0.05
(1,7) 0.052 (4,6) 0.047 (7,14) 0.055
(1,8) 0.046 (4,7) 0.054 (7,15) 0.045
(1,9) 0.059 (4,8) 0.042 (8,9) 0.055
(1,10) 0.054 (4,9) 0.054 (8,10) 0.048
(1,11) 0.052 (4,10) 0.044 (8,11) 0.055
(1,12) 0.055 (4,11) 0.047 (8,12) 0.055
(1,13) 0.043 (4,12) 0.059 (8,13) 0.05
(1,14) 0.03 (4,13) 0.061 (8,14) 0.06
(1,15) 0.055 (4,14) 0.049 (8,15) 0.052
(2,3) 0.046 (4,15) 0.057 (9,10) 0.054
(2,4) 0.033 (5,6) 0.046 (9,11) 0.045
(2,5) 0.048 (5,7) 0.042 (9,12) 0.049
(2,6) 0.047 (5,8) 0.05 (9,13) 0.062
(2,7) 0.041 (5,9) 0.041 (9,14) 0.058
(2,8) 0.042 (5,10) 0.061 (9,15) 0.053
(2,9) 0.044 (5,11) 0.059 (10,11) 0.056
(2,10) 0.05 (5,12) 0.052 (10,12) 0.039
(2,11) 0.05 (5,13) 0.047 (10,13) 0.044
(2,12) 0.042 (5,14) 0.046 (10,14) 0.047
(2,13) 0.039 (5,15) 0.047 (10,15) 0.07
(2,14) 0.045 (6,7) 0.05 (11,12) 0.052
(2,15) 0.059 (6,8) 0.054 (11,13) 0.039
(3,4) 0.043 (6,9) 0.058 (11,14) 0.055
(3,5) 0.057 (6,10) 0.052 (11,15) 0.058
(3,6) 0.052 (6,11) 0.064 (12,13) 0.055
(3,7) 0.056 (6,12) 0.044 (12,14) 0.043
(3,8) 0.039 (6,13) 0.048 (12,15) 0.05
(3,9) 0.053 (6,14) 0.047 (13,14) 0.054
(3,10) 0.058 (6,15) 0.043 (13,15) 0.039
(3,11) 0.044 (7,8) 0.052 (14,15) 0.046
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Table A.12: Type I Error Study for Orthogonal Components for Zero Intercept
Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.041 (3,12) 0.048 (7,9) 0.045
(1,3) 0.044 (3,13) 0.052 (7,10) 0.05
(1,4) 0.045 (3,14) 0.039 (7,11) 0.045
(1,5) 0.056 (3,15) 0.045 (7,12) 0.052
(1,6) 0.051 (4,5) 0.05 (7,13) 0.051
(1,7) 0.053 (4,6) 0.046 (7,14) 0.047
(1,8) 0.052 (4,7) 0.044 (7,15) 0.053
(1,9) 0.055 (4,8) 0.055 (8,9) 0.044
(1,10) 0.039 (4,9) 0.052 (8,10) 0.048
(1,11) 0.047 (4,10) 0.05 (8,11) 0.055
(1,12) 0.048 (4,11) 0.049 (8,12) 0.06
(1,13) 0.039 (4,12) 0.054 (8,13) 0.045
(1,14) 0.056 (4,13) 0.052 (8,14) 0.051
(1,15) 0.044 (4,14) 0.051 (8,15) 0.049
(2,3) 0.061 (4,15) 0.066 (9,10) 0.064
(2,4) 0.047 (5,6) 0.042 (9,11) 0.046
(2,5) 0.058 (5,7) 0.04 (9,12) 0.064
(2,6) 0.054 (5,8) 0.04 (9,13) 0.051
(2,7) 0.054 (5,9) 0.049 (9,14) 0.041
(2,8) 0.041 (5,10) 0.051 (9,15) 0.058
(2,9) 0.048 (5,11) 0.059 (10,11) 0.052
(2,10) 0.049 (5,12) 0.044 (10,12) 0.043
(2,11) 0.058 (5,13) 0.042 (10,13) 0.048
(2,12) 0.048 (5,14) 0.047 (10,14) 0.059
(2,13) 0.037 (5,15) 0.049 (10,15) 0.054
(2,14) 0.062 (6,7) 0.041 (11,12) 0.049
(2,15) 0.037 (6,8) 0.053 (11,13) 0.045
(3,4) 0.059 (6,9) 0.049 (11,14) 0.048
(3,5) 0.047 (6,10) 0.044 (11,15) 0.057
(3,6) 0.046 (6,11) 0.066 (12,13) 0.054
(3,7) 0.05 (6,12) 0.046 (12,14) 0.049
(3,8) 0.044 (6,13) 0.042 (12,15) 0.053
(3,9) 0.042 (6,14) 0.051 (13,14) 0.05
(3,10) 0.046 (6,15) 0.056 (13,15) 0.051
(3,11) 0.049 (7,8) 0.046 (14,15) 0.067
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Table A.13: Type I Error Study for Adjusted Residuals for Zero Intercept Model,
q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.041 (3,12) 0.048 (7,9) 0.039
(1,3) 0.044 (3,13) 0.043 (7,10) 0.054
(1,4) 0.047 (3,14) 0.051 (7,11) 0.046
(1,5) 0.056 (3,15) 0.036 (7,12) 0.054
(1,6) 0.053 (4,5) 0.05 (7,13) 0.057
(1,7) 0.05 (4,6) 0.05 (7,14) 0.037
(1,8) 0.048 (4,7) 0.044 (7,15) 0.053
(1,9) 0.058 (4,8) 0.055 (8,9) 0.047
(1,10) 0.041 (4,9) 0.054 (8,10) 0.046
(1,11) 0.054 (4,10) 0.05 (8,11) 0.052
(1,12) 0.049 (4,11) 0.048 (8,12) 0.07
(1,13) 0.052 (4,12) 0.05 (8,13) 0.049
(1,14) 0.047 (4,13) 0.056 (8,14) 0.053
(1,15) 0.046 (4,14) 0.05 (8,15) 0.055
(2,3) 0.06 (4,15) 0.056 (9,10) 0.065
(2,4) 0.049 (5,6) 0.036 (9,11) 0.046
(2,5) 0.066 (5,7) 0.04 (9,12) 0.056
(2,6) 0.058 (5,8) 0.041 (9,13) 0.053
(2,7) 0.054 (5,9) 0.055 (9,14) 0.048
(2,8) 0.036 (5,10) 0.047 (9,15) 0.05
(2,9) 0.048 (5,11) 0.055 (10,11) 0.054
(2,10) 0.049 (5,12) 0.05 (10,12) 0.048
(2,11) 0.063 (5,13) 0.05 (10,13) 0.061
(2,12) 0.045 (5,14) 0.041 (10,14) 0.049
(2,13) 0.042 (5,15) 0.05 (10,15) 0.056
(2,14) 0.056 (6,7) 0.041 (11,12) 0.063
(2,15) 0.062 (6,8) 0.051 (11,13) 0.042
(3,4) 0.061 (6,9) 0.051 (11,14) 0.059
(3,5) 0.051 (6,10) 0.048 (11,15) 0.067
(3,6) 0.038 (6,11) 0.07 (12,13) 0.056
(3,7) 0.052 (6,12) 0.046 (12,14) 0.042
(3,8) 0.049 (6,13) 0.052 (12,15) 0.049
(3,9) 0.044 (6,14) 0.035 (13,14) 0.06
(3,10) 0.046 (6,15) 0.053 (13,15) 0.054
(3,11) 0.05 (7,8) 0.043 (14,15) 0.054
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Table A.14: Type I Error Study for χ̄2
ij for Zero Intercept Model, q=15, n=300

Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp. Pair (i,j) Orthgonal Comp.
(1,2) 0.041 (3,12) 0.045 (7,9) 0.039
(1,3) 0.044 (3,13) 0.046 (7,10) 0.055
(1,4) 0.047 (3,14) 0.05 (7,11) 0.046
(1,5) 0.056 (3,15) 0.035 (7,12) 0.052
(1,6) 0.054 (4,5) 0.048 (7,13) 0.056
(1,7) 0.049 (4,6) 0.05 (7,14) 0.039
(1,8) 0.048 (4,7) 0.043 (7,15) 0.052
(1,9) 0.058 (4,8) 0.054 (8,9) 0.047
(1,10) 0.041 (4,9) 0.053 (8,10) 0.047
(1,11) 0.053 (4,10) 0.053 (8,11) 0.052
(1,12) 0.048 (4,11) 0.048 (8,12) 0.07
(1,13) 0.053 (4,12) 0.051 (8,13) 0.047
(1,14) 0.046 (4,13) 0.062 (8,14) 0.053
(1,15) 0.047 (4,14) 0.051 (8,15) 0.054
(2,3) 0.06 (4,15) 0.056 (9,10) 0.065
(2,4) 0.046 (5,6) 0.04 (9,11) 0.045
(2,5) 0.067 (5,7) 0.038 (9,12) 0.057
(2,6) 0.057 (5,8) 0.039 (9,13) 0.053
(2,7) 0.054 (5,9) 0.053 (9,14) 0.047
(2,8) 0.036 (5,10) 0.046 (9,15) 0.05
(2,9) 0.048 (5,11) 0.055 (10,11) 0.054
(2,10) 0.05 (5,12) 0.05 (10,12) 0.052
(2,11) 0.063 (5,13) 0.054 (10,13) 0.064
(2,12) 0.044 (5,14) 0.041 (10,14) 0.049
(2,13) 0.041 (5,15) 0.05 (10,15) 0.056
(2,14) 0.056 (6,7) 0.041 (11,12) 0.062
(2,15) 0.061 (6,8) 0.049 (11,13) 0.042
(3,4) 0.062 (6,9) 0.05 (11,14) 0.059
(3,5) 0.051 (6,10) 0.051 (11,15) 0.066
(3,6) 0.037 (6,11) 0.071 (12,13) 0.06
(3,7) 0.052 (6,12) 0.049 (12,14) 0.042
(3,8) 0.049 (6,13) 0.054 (12,15) 0.051
(3,9) 0.044 (6,14) 0.037 (13,14) 0.059
(3,10) 0.045 (6,15) 0.053 (13,15) 0.052
(3,11) 0.05 (7,8) 0.042 (14,15) 0.056
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Table A.15: Asymptotic and Empirical Power Comparison for Zero Intercept Model
n=300 n=500

Pair (i,j) Orth. Comp. Adj. Res. χ̄2
ij Asym. Power Orth. Comp. Adj. Res. χ̄2

ij Asym. Power
(1,2) 0.1332665 0.1412826 0.141 0.05393 0.108 0.108 0.106 0.05657
(1,3) 0.1482966 0.1533066 0.155 0.05727 0.132 0.12 0.12 0.06215
(1,4) 0.0801603 0.1082164 0.114 0.08297 0.096 0.119 0.12 0.10549
(1,5) 0.0981964 0.1042084 0.108 0.08496 0.132 0.154 0.15 0.10886
(1,6) 0.1813627 0.1042084 0.105 0.08713 0.163 0.122 0.122 0.11254
(1,7) 0.0691383 0.1342685 0.134 0.05 0.049 0.106 0.101 0.05
(1,8) 0.0851703 0.1232465 0.129 0.05001 0.059 0.096 0.095 0.05002
(2,3) 0.1603206 0.1533066 0.152 0.06543 0.126 0.108 0.107 0.07585
(2,4) 0.0971944 0.1072144 0.112 0.10329 0.151 0.14 0.141 0.13995
(2,5) 0.1072144 0.0831663 0.089 0.10693 0.154 0.118 0.117 0.14613
(2,6) 0.2154309 0.1002004 0.099 0.11096 0.215 0.14 0.139 0.15297
(2,7) 0.0711423 0.1472946 0.144 0.05 0.06 0.104 0.103 0.05
(2,8) 0.0841683 0.1392786 0.141 0.05 0.078 0.105 0.103 0.05
(3,4) 0.1543086 0.1142285 0.113 0.15727 0.23 0.138 0.141 0.23102
(3,5) 0.1853707 0.1192385 0.119 0.16609 0.254 0.142 0.139 0.24571
(3,6) 0.2885772 0.1182365 0.122 0.17602 0.352 0.143 0.15 0.26217
(3,7) 0.1052104 0.1432866 0.14 0.05 0.1 0.111 0.109 0.05
(3,8) 0.0591182 0.1332665 0.131 0.05001 0.06 0.103 0.107 0.05002
(4,5) 0.761523 0.8456914 0.843 0.93157 0.927 0.956 0.957 0.99363
(4,6) 0.7985972 0.8637275 0.864 0.9441 0.94 0.963 0.964 0.99564
(4,7) 0.0390782 0.0651303 0.065 0.05 0.043 0.096 0.098 0.05
(4,8) 0.0480962 0.0861723 0.086 0.05007 0.045 0.074 0.08 0.05011
(5,6) 0.8897796 0.8547094 0.851 0.95534 0.982 0.957 0.957 0.99714
(5,7) 0.0450902 0.0801603 0.081 0.05 0.035 0.079 0.081 0.05
(5,8) 0.0470942 0.0941884 0.093 0.05002 0.04 0.086 0.086 0.05004
(6,7) 0.0561122 0.0741483 0.078 0.05001 0.053 0.084 0.082 0.05001
(6,8) 0.0561122 0.0811623 0.079 0.05002 0.046 0.093 0.093 0.05003
(7,8) 0.0651303 0.1412826 0.139 0.05001 0.062 0.112 0.117 0.05001

* Asymptotic power was calculated only for the orthogonal components.
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Table A.16: Asymptotic and Empirical Power Comparison for Asymmetric Intercept
Model

n=300 n=500
Pair (i,j) Orth. Comp. Adj. Res. χ̄2

ij Asym. Power Orth. Comp. Adj. Res. χ̄2
ij Asym. Power

(1,2) 0.1183673 0.1336735 0.121 0.05388 0.197 0.197 0.198 0.05648
(1,3) 0.1081633 0.122449 0.112 0.05741 0.241 0.228 0.226 0.06238
(1,4) 0.0744898 0.1142857 0.104 0.08196 0.079 0.119 0.117 0.10378
(1,5) 0.0795918 0.0938776 0.092 0.0859 0.096 0.12 0.12 0.11045
(1,6) 0.1632653 0.1061224 0.101 0.09008 0.212 0.105 0.106 0.11754
(1,7) 0.0653061 0.1397959 0.128 0.05001 0.065 0.152 0.156 0.05002
(1,8) 0.0857143 0.1255102 0.115 0.05019 0.092 0.12 0.118 0.05032
(2,3) 0.1306122 0.15 0.138 0.06359 0.281 0.242 0.242 0.07276
(2,4) 0.094898 0.1142857 0.108 0.10114 0.127 0.151 0.152 0.1363
(2,5) 0.0867347 0.0969388 0.092 0.10792 0.13 0.133 0.131 0.1478
(2,6) 0.1867347 0.1020408 0.1 0.11529 0.293 0.108 0.108 0.1603
(2,7) 0.0785714 0.1459184 0.133 0.05001 0.056 0.178 0.178 0.05001
(2,8) 0.0785714 0.1530612 0.143 0.05 0.072 0.135 0.135 0.05
(3,4) 0.1204082 0.1173469 0.119 0.14761 0.198 0.15 0.152 0.21484
(3,5) 0.1479592 0.1122449 0.11 0.1618 0.21 0.131 0.133 0.23858
(3,6) 0.2826531 0.1153061 0.122 0.17762 0.453 0.131 0.132 0.26481
(3,7) 0.105102 0.172449 0.163 0.05007 0.093 0.213 0.213 0.05011
(3,8) 0.0795918 0.1530612 0.147 0.05001 0.067 0.175 0.172 0.05002
(4,5) 0.6173469 0.7510204 0.737 0.85718 0.697 0.8 0.798 0.97434
(4,6) 0.6826531 0.772449 0.753 0.89549 0.718 0.781 0.777 0.98582
(4,7) 0.0336735 0.1091837 0.11 0.05002 0.037 0.094 0.095 0.05003
(4,8) 0.0510204 0.1030612 0.104 0.05063 0.051 0.088 0.088 0.05105
(5,6) 0.8081633 0.7704082 0.76 0.93651 0.864 0.782 0.781 0.99447
(5,7) 0.0336735 0.0928571 0.096 0.05 0.034 0.101 0.099 0.05001
(5,8) 0.0632653 0.1142857 0.116 0.05059 0.074 0.084 0.082 0.05098
(6,7) 0.0581633 0.1040816 0.102 0.05014 0.066 0.103 0.103 0.05024
(6,8) 0.0632653 0.1142857 0.116 0.05042 0.065 0.089 0.088 0.05071
(7,8) 0.0714286 0.1897959 0.179 0.05008 0.052 0.181 0.181 0.05014

* Asymptotic power was calculated only for the orthogonal components.

Table A.17: Asymptotic and Empirical Power Comparison for
Symmetric Intercept Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Residuals χ̄2
ij Asymptotic power

(1,2) 0.067 0.069 0.066 0.05092
(1,3) 0.069 0.07 0.069 0.05149
(1,4) 0.05 0.052 0.051 0.0639
(1,5) 0.07 0.069 0.069 0.0664
(1,6) 0.076 0.07 0.071 0.06859
(1,7) 0.058 0.067 0.069 0.05007
(1,8) 0.055 0.065 0.067 0.05013
(1,9) 0.062 0.067 0.065 0.05167
(1,10) 0.071 0.068 0.064 0.05357
(1,11) 0.074 0.049 0.05 0.06118
(1,12) 0.062 0.075 0.074 0.05537
(1,13) 0.055 0.073 0.075 0.05632
(1,14) 0.069 0.067 0.067 0.0567
(1,15) 0.046 0.049 0.049 0.05055
(2,3) 0.071 0.071 0.072 0.0523
(2,4) 0.062 0.065 0.065 0.07208
(2,5) 0.074 0.067 0.067 0.07616
(2,6) 0.085 0.076 0.074 0.07975
(2,7) 0.062 0.079 0.08 0.05007
(2,8) 0.057 0.076 0.071 0.05014
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(2,9) 0.059 0.072 0.073 0.05244
(2,10) 0.077 0.061 0.061 0.05564
(2,11) 0.086 0.046 0.049 0.07294
(2,12) 0.052 0.074 0.074 0.05524
(2,13) 0.069 0.09 0.091 0.05782
(2,14) 0.07 0.069 0.07 0.06115
(2,15) 0.055 0.041 0.04 0.05003
(3,4) 0.085 0.078 0.081 0.08574
(3,5) 0.106 0.098 0.1 0.09222
(3,6) 0.12 0.091 0.092 0.09788
(3,7) 0.067 0.073 0.073 0.0501
(3,8) 0.071 0.072 0.077 0.05018
(3,9) 0.084 0.084 0.082 0.05373
(3,10) 0.099 0.08 0.08 0.05848
(3,11) 0.1 0.065 0.068 0.08477
(3,12) 0.071 0.096 0.095 0.05886
(3,13) 0.063 0.087 0.085 0.06291
(3,14) 0.067 0.085 0.084 0.06803
(3,15) 0.047 0.032 0.033 0.05014
(4,5) 0.826 0.855 0.855 0.94927
(4,6) 0.893 0.896 0.898 0.96507
(4,7) 0.06 0.113 0.114 0.05197
(4,8) 0.073 0.111 0.11 0.05362
(4,9) 0.113 0.142 0.138 0.10065
(4,10) 0.198 0.119 0.122 0.17675
(4,11) 0.408 0.101 0.101 0.57638
(4,12) 0.335 0.628 0.627 0.33529
(4,13) 0.305 0.494 0.494 0.3553
(4,14) 0.272 0.295 0.298 0.3734
(4,15) 0.058 0.053 0.056 0.05029
(5,6) 0.933 0.923 0.922 0.98636
(5,7) 0.072 0.115 0.114 0.05312
(5,8) 0.074 0.117 0.119 0.05567
(5,9) 0.16 0.162 0.164 0.11923
(5,10) 0.243 0.132 0.13 0.22204
(5,11) 0.52 0.12 0.12 0.70376
(5,12) 0.448 0.763 0.761 0.43548
(5,13) 0.417 0.634 0.633 0.46222
(5,14) 0.373 0.438 0.439 0.4841
(5,15) 0.032 0.073 0.073 0.05009
(6,7) 0.072 0.117 0.117 0.05465
(6,8) 0.105 0.11 0.109 0.05837
(6,9) 0.175 0.153 0.153 0.1405
(6,10) 0.298 0.155 0.153 0.27253
(6,11) 0.604 0.124 0.125 0.80744
(6,12) 0.502 0.808 0.808 0.54024
(6,13) 0.514 0.703 0.703 0.57369
(6,14) 0.523 0.572 0.571 0.59835
(6,15) 0.042 0.072 0.074 0.05003
(7,8) 0.082 0.114 0.115 0.05003
(7,9) 0.094 0.123 0.127 0.05028
(7,10) 0.108 0.121 0.12 0.05051
(7,11) 0.101 0.111 0.11 0.05184
(7,12) 0.05 0.102 0.103 0.05015
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(7,13) 0.043 0.082 0.08 0.05088
(7,14) 0.055 0.087 0.088 0.05209
(7,15) 0.054 0.053 0.055 0.05003
(8,9) 0.114 0.131 0.133 0.05064
(8,10) 0.1 0.123 0.125 0.05097
(8,11) 0.116 0.118 0.119 0.05313
(8,12) 0.053 0.104 0.104 0.05026
(8,13) 0.046 0.088 0.088 0.05153
(8,14) 0.068 0.083 0.083 0.05358
(8,15) 0.068 0.058 0.056 0.05
(9,10) 0.161 0.131 0.131 0.07128
(9,11) 0.202 0.132 0.131 0.0907
(9,12) 0.052 0.139 0.136 0.06431
(9,13) 0.071 0.128 0.127 0.07482
(9,14) 0.104 0.1 0.101 0.08631
(9,15) 0.056 0.084 0.083 0.05002
(10,11) 0.417 0.123 0.121 0.4527
(10,12) 0.075 0.129 0.13 0.07479
(10,13) 0.105 0.117 0.118 0.0931
(10,14) 0.153 0.094 0.094 0.11431
(10,15) 0.063 0.07 0.07 0.05015
(11,12) 0.217 0.122 0.121 0.29387
(11,13) 0.354 0.086 0.088 0.58302
(11,14) 0.575 0.1 0.101 0.96215
(11,15) 0.145 0.061 0.063 0.07986
(12,13) 0.301 0.75 0.751 0.05106
(12,14) 0.27 0.648 0.649 0.05189
(12,15) 0.048 0.048 0.048 0.06174
(13,14) 0.292 0.607 0.607 0.10883
(13,15) 0.046 0.061 0.061 0.05007
(14,15) 0.046 0.029 0.029 0.05024

* Asymptotic power was calculated only for the orthogonal components.

Table A.18: Asymptotic and Empirical Power Comparison for Zero
Intercept Model, q=15, n=500

Pair (i,j) Orthgonal Comp. Residuals χ̄2
ij Asymptotic power

(1,2) 0.11 0.108 0.109 0.05836
(1,3) 0.136 0.128 0.129 0.06075
(1,4) 0.183 0.199 0.2 0.15852
(1,5) 0.21 0.219 0.222 0.16164
(1,6) 0.201 0.189 0.19 0.16489
(1,7) 0.086 0.094 0.094 0.0506
(1,8) 0.085 0.085 0.086 0.05087
(1,9) 0.111 0.114 0.114 0.05743
(1,10) 0.144 0.119 0.123 0.06321
(1,11) 0.177 0.115 0.112 0.08004
(1,12) 0.119 0.187 0.189 0.14041
(1,13) 0.185 0.229 0.228 0.15335
(1,14) 0.214 0.193 0.191 0.16924
(1,15) 0.061 0.088 0.086 0.0508
(2,3) 0.133 0.111 0.11 0.06457
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(2,4) 0.195 0.184 0.185 0.1873
(2,5) 0.207 0.18 0.179 0.19152
(2,6) 0.259 0.211 0.214 0.19594
(2,7) 0.082 0.088 0.086 0.05079
(2,8) 0.089 0.093 0.094 0.05118
(2,9) 0.108 0.1 0.096 0.06022
(2,10) 0.142 0.115 0.11 0.0691
(2,11) 0.192 0.112 0.111 0.09859
(2,12) 0.136 0.201 0.199 0.157
(2,13) 0.196 0.206 0.208 0.17666
(2,14) 0.245 0.19 0.191 0.20215
(2,15) 0.072 0.096 0.097 0.05026
(3,4) 0.258 0.202 0.204 0.23072
(3,5) 0.289 0.205 0.199 0.23628
(3,6) 0.282 0.192 0.192 0.24209
(3,7) 0.103 0.1 0.102 0.05097
(3,8) 0.105 0.105 0.104 0.05145
(3,9) 0.125 0.106 0.105 0.06362
(3,10) 0.171 0.123 0.127 0.0755
(3,11) 0.252 0.111 0.11 0.11509
(3,12) 0.168 0.2 0.198 0.19042
(3,13) 0.197 0.189 0.186 0.21653
(3,14) 0.3 0.204 0.205 0.25034
(3,15) 0.057 0.098 0.092 0.05038
(4,5) 0.941 0.968 0.967 0.99356
(4,6) 0.944 0.966 0.966 0.99471
(4,7) 0.093 0.118 0.117 0.07807
(4,8) 0.131 0.123 0.124 0.09225
(4,9) 0.26 0.2 0.203 0.23007
(4,10) 0.405 0.209 0.209 0.38159
(4,11) 0.647 0.231 0.234 0.74274
(4,12) 0.869 0.96 0.959 0.97181
(4,13) 0.904 0.966 0.968 0.98755
(4,14) 0.952 0.965 0.965 0.99587
(4,15) 0.047 0.139 0.14 0.05008
(5,6) 0.95 0.963 0.963 0.9957
(5,7) 0.121 0.122 0.126 0.07896
(5,8) 0.157 0.133 0.134 0.09359
(5,9) 0.286 0.216 0.219 0.23648
(5,10) 0.457 0.219 0.224 0.39259
(5,11) 0.678 0.211 0.214 0.75716
(5,12) 0.864 0.967 0.967 0.97549
(5,13) 0.91 0.964 0.964 0.98952
(5,14) 0.961 0.957 0.957 0.99667
(5,15) 0.05 0.136 0.138 0.05
(6,7) 0.141 0.137 0.137 0.07983
(6,8) 0.157 0.117 0.117 0.09491
(6,9) 0.304 0.201 0.205 0.24304
(6,10) 0.462 0.224 0.224 0.40376
(6,11) 0.667 0.201 0.203 0.77122
(6,12) 0.875 0.957 0.958 0.97887
(6,13) 0.918 0.964 0.963 0.99127
(6,14) 0.965 0.96 0.961 0.99735
(6,15) 0.052 0.137 0.136 0.05004
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(7,8) 0.079 0.101 0.094 0.05004
(7,9) 0.084 0.091 0.092 0.05051
(7,10) 0.096 0.103 0.103 0.05095
(7,11) 0.1 0.099 0.102 0.05238
(7,12) 0.049 0.115 0.115 0.05482
(7,13) 0.071 0.12 0.121 0.05572
(7,14) 0.092 0.131 0.129 0.05691
(7,15) 0.068 0.078 0.075 0.05003
(8,9) 0.095 0.094 0.096 0.05084
(8,10) 0.102 0.111 0.113 0.05154
(8,11) 0.114 0.084 0.082 0.05383
(8,12) 0.053 0.11 0.113 0.05727
(8,13) 0.073 0.122 0.121 0.05871
(8,14) 0.133 0.125 0.129 0.06063
(8,15) 0.074 0.091 0.092 0.05003
(9,10) 0.155 0.106 0.107 0.0659
(9,11) 0.207 0.106 0.104 0.08874
(9,12) 0.103 0.196 0.199 0.1146
(9,13) 0.153 0.201 0.203 0.1291
(9,14) 0.22 0.2 0.2 0.14909
(9,15) 0.062 0.106 0.108 0.05005
(10,11) 0.401 0.103 0.104 0.20518
(10,12) 0.161 0.206 0.214 0.15524
(10,13) 0.206 0.182 0.183 0.19258
(10,14) 0.349 0.207 0.212 0.25319
(10,15) 0.068 0.095 0.095 0.05046
(11,12) 0.464 0.228 0.229 0.57338
(11,13) 0.677 0.212 0.213 0.88042
(11,14) 0.864 0.185 0.186 0.99997
(11,15) 0.301 0.096 0.099 0.52262
(12,13) 0.434 0.953 0.954 0.17059
(12,14) 0.457 0.967 0.966 0.32178
(12,15) 0.081 0.13 0.131 0.17264
(13,14) 0.654 0.952 0.952 0.82486
(13,15) 0.043 0.132 0.13 0.0501
(14,15) 0.048 0.144 0.146 0.05014

* Asymptotic power was calculated only for the orthogonal components.
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APPENDIX B

FIGURES
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Zero Intercept Model

Figure B.1: Orthogonal Components,
n=300

Figure B.2: Orthogonal Components,
n=500

Figure B.3: Adjusted Residuals, n=300 Figure B.4: Adjusted Residuals, n=500

Figure B.5: χ̄2
ij, n=300 Figure B.6: χ̄2

ij, n=500
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Asymmetric Intercept Model

Figure B.7: Orthogonal Compo-
nents, n=300

Figure B.8: Orthogonal Compo-
nents, n=500

Figure B.9: Adjusted Residuals,
n=300

Figure B.10: Adjusted Residu-
als, n=500

Figure B.11: χ̄2
ij, n=300 Figure B.12: χ̄2

ij, n=500
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Figure B.13: Type I Error Rates for Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Asymmetric Intercept Model, q=15, n=500
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Figure B.14: Type I Error Rates for Orthogonal Components, Adjusted Residuals
and χ̄2

ij, Asymmetric Intercept Model, q=15, n=300
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