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ABSTRACT

An electrical current with high spin polarization is desirable for the performance

of novel spintronics devices, such as magnetic tunnel junction and giant magnetore-

sistance devices. The generation of spin polarized current can be from ferromagnetic

materials or triplet superconductors.

Anomalous Hall effect (AHE) is an effective way to study the properties of mag-

netic structures. The scattering of electrons by the magnetic moments affects the

change of resistance, which can be used to detect the magnetization. In this disserta-

tion, AHE is used to study the perpendicular magnetic anisotropy (PMA) structures,

including Co/Pt and Ta/CoFeB/MgO.

Domain walls exist in all ferromagnetic materials. This dissertation studies the

domain wall movement in the Ta/CoFeB/MgO structure. A single domain is observed

by measuring the anomalous Hall effect. On the other hand, a zero Hall step is

successfully observed in a single layer of magnetic material for the first time, which

can be used to fabricate advanced domain wall spintronics devices.

Besides the normal ferromagnetic material, the generation of spin polarized cur-

rent in superconductor is also important for Spintronics. The electrons in supercon-

ductors form Cooper pairs. In this dissertation, Andreev Reflection Spectroscopy

(ARS) is used to study the spin configuration in Cooper pairs.

Generally, ferromagnetism and superconductivity can not co-exist. In this disser-

tation, the Bi/Ni bilayer structure has been studied with ARS, and the measurement

results show a triplet superconductivity below 4K. The appearance of superconduc-

tivity is believed to be attributed to the Bi-Ni interface, and the triplet Cooper pair

makes it a promising candidate in superconducting spintronics.

Besides, a Bi3Ni single crystal is also studied with ARS. The measurements show

a singlet superconductivity in this material, which further proves the importance of

i



the Bi/Ni interface to achieve triplet superconductivity.

Finally, ARS is also used to study NbSe2 monolayer, a 2D superconductor. The

monolayer is verified by the measurements of critical temperature and critical field,

which are different from the values of multilayer or bulk. Andreev reflection results

show that NbSe2 monolayer is a singlet superconductor and there is no node exist in

the superconducting gap for a in plane magnetic field up to 58 kOe.
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Chapter 1

INTRODUCTION

The discovery of electricity can be dated back to the ancient time. In about 2750

B.C. [1], the ancient Egyptian found that some kind of fish could make people feel

shock. This fish was then known as the ’electric fish’, which could generate electricity

when it felt dangerous. At that time, the Egyptian named the electrical fish ’Thunder

of the Nile’[2]. The description of this electric fish can also be found in the report

from other places, such as the ancient Greek, Roman and so on. Later, in about

600 B.C., people found out that if one used cat’s fur to rub a rod of amber, the rod

could attract light objects, which was due to the generation of the so called ’static

electricity’[3].

Magnetism was also discovered quite early. The first literature record about mag-

netism lies in a 4th-century B.C. book from China. The book described a material

called lodestone, which could attract iron when put close to each other. Later, in the

11th century, a Chinese scientist, Shen Kuo, wrote about the first model of compass

in his then quite famous book, ’Dream Pool Essays’. In his book, he introduced that

when a needle of lodestone was put on a kind of smooth plate, it would point to

the south direction. This idea was then used to make compass, which had greatly

benefited the exploration of the new continent.

For quite a long time, electricity and magnetism remained two separated topics.

Until 19th century, people started to discover the close relation between them.
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1.1 Electromagnetism

Electricity remained a little bit like ’magic’ until the 17 century, when the first

industrial revolution enlarged the usage of electricity in people’s daily life. Since

then, the exploration of electricity and magnetism became quite rapidly. In 1802,

Romangnosi discovered that if a voltaic pile was connected to a electric wire, a com-

pass nearby would be deflected. This was the first observation of the relationship

between man-made electricity and magnetism. Later, in 1820, Hans Christian Orsted

did a similar experiment and this phenomenon started to become widely known.

Encouraged by Orsted’s observation, people started to put a lot of effort on ex-

ploring the relationship between electricity and magnetism. Since then, Ampère’s

Law (1920), Biot-Savart Law (1820), Faraday’s Law of Induction (1831) etc. uncov-

ered the different aspects of the electromagnetism. In 1861, James Clerk Maxwell

unified all the previous discoveries into a series of equations, which were then the

quite famous Maxwell’s Equations. The equations enlightened an amazing picture

of electromagnetism: electricity and magnetism are so closely connected that they

can be induced mutually. Since then, the electromagnetism developed quite fast and

scientists can use them to explain and predict quite a bit of phenomena, including the

propagation of light, electromagnetic waves, in air and in waveguide and so on. These

progresses stimulated the emergent and fast growth of the information technology.

1.2 Electronics

The usage of current charge greatly change people’s life. With current, people

can have reliable light source, control machines to fabricate staffs, use computers to

complete almost all jobs instead of using any paperwork, use internet to stay in touch
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with families and friends. Now it is hard for people to live in a quite ’natural’ place,

without electricity. It is not exaggerate to say that electronics has been integrated

into people’s life. The normal current makes use of the electron charge. Under the

external electrical potential, the electrons in a closed circuit will move continuously,

thus the charge current can be generated.

Besides forming current by the electric field, electrons and the associated electrical

fields can be affected and controlled by an electronic system in a manner consistent

with the intended functions people need. For example, a circuit can be purposely

designed to be an amplifier, or radio signal receiver, with some proper components,

such as capacitors, inductors, diode, transistors etc. The vacuum tubes were one

of the earliest electronic components[4]. The tubes took signals from parlor tricks

and give people radio, television, radar signal and so on. On the other hand, the

discovery of semiconductor vastly expanded the possibility of electronic components

and devices. The behavior of charge carriers, such as electrons and holes, within the

semiconductor materials and related structures, is the fundamental of diodes, transis-

tors and many other modern electronics devices. In April, 1955, IBM introduced the

first calculator which contained only transistor circuits without any vacuum tubes[5].

From then on, the transistors started to dominate the electronics devices. With the

rapid development of nanotechnology, transistors have been fabricated to be smaller

and smaller. In 2017, the number of transistors in one chip can be as high as 18

billions from Qualcomm, which greatly enhance the performance of computers.

1.3 Spintronics

Electronics makes use of the charge of electrons. However, in modern physics,

an electron has not only charge, but also an intrinsic property: spin. Instead of a

real rotational motion, spin is an intrinsic form of angular momentum carried by
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all kinds of elementary particles, such as proton, electron, neutron etc[6]. The first

experimental observation of spin came from two German physicists: Otto Stern and

Walther Gerlach in the year 1922[6]. During the original experimental, a beam of

silver atoms were sent through a non-uniform magnetic field. Showing no magnetic

property in nature, Ag was regarded as a non-magnetic material. Therefore, nothing

should happen when the silver atoms went through the magnetic field. However, the

experimental results surprised everyone: the sliver beam was split into two separated

beams. Therefore, they attributed this phenomenon to an intrinsic property of the

atom - Spin angular momentum. Later theoretical and experimental study showed

that different elemental particles, include electron, had different spin angular momen-

tum. And different from the orbital angular momentum, this spin angular momentum

can be integer or half integer. Particles with integer spin are called Bosons, while the

ones with half integer spin are called Fermions. Statistically, they will follow Boson

distribution and Fermi distribution, respectively. For electrons, the spin will be ~
2
,

making it the most commonly seen fermion.

Since the discovery of spin angular momentum, people have been exploring the

possibilities to make use of it. In electronics, charge of electrons plays a key role. If

spin signal is also considered and made into use, there comes another topic, Spin-

tronics. The spintronics emerged from the discovery of the spin-dependent electron

transport phenomena in magnetic structures, in 1980s. One of the most famous struc-

tures is the thin film giant magnetoresistance (GMR) structure, discovered by Albert

Fert and Peter Grünberg et al in 1988[7, 8]. The huge change of resistance of the

GMR structure under the external magnetic field makes it of great importance in the

data recording industry. For example, the read head of the magnetic hard drives are

now based on the GMR structure. Figure(1.1)[9] illustrate the Co/Cu bilayer based

GMR structure. The structure is deposited on a Si substrate, with a Fe buffer layer
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of about 135 Å. The buffer layer enables a better crystal quality of the above Co/Cu

layers. The bilayer is repeated 40 times for better GMR ratio. The neighboring two

Co layers are separated by a very thin Cu spacer (about 1 Å) so that the exchange

coupling between the two Co layers align the magnetization antiparallel when there

is no external field applied. If a current is sent into the structure, the electrons with

up-spin and down-spin will be scattered in different layers so that the total resistance

is larger. When there is a magnetic field applied to the structure, the magnetization

in all the Co layers will be aligned to the field direction. Thus when the electrons

pass through the structure, only electrons with up-spin or down-spin will be scattered,

resulting in a much smaller resistance.

Besides GMR, another similar structure, magnetic tunnel junction (MTJ), has

been discovered by M. Julliere in 1975[10] and has been extensively studied since

1990s[11–18]. New memory technique, such as magnetoresistive random access mem-

ory (MRAM) is based on this MTJ structures. Compared with the typical memory

(SRAM, DRAM etc.), MRAM is a non-volatile devices that can keep information

even after power is off, because the information is stored by magnetic moment in

each bits, instead of the electrical voltage in the transistors. On the other hand, since

MRAM stores information with magnetic states, instead of using multiple transistors

and capacitors, therefore it possible to greatly shrink the size of each memory bits

and reduce the power consumption. Motivated by these advantages, many companies

started to put investment into this area and have been making progress through all

these years. In 1995, Motorola initiated the development on MRAM and produced

the first-generation 256 kb MRAM in 1998[19]. Two years later, IBM and Infineon

established a joint research program on MRAM development. Through 2003, several

new concepts have been proposed and patented, such as the toggle MRAM[20], spin

torque transfer (STT) etc. And after 2004, more real structures and products be-
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Figure 1.1: (a).Co/Cu GMR structure. (b). Two-current mode of electron scatter-
ings in GMR structure. (c).GMR ratio under room temperature and 4.5K.[9]
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came available. In June 2004, Infineon unveiled a 16-Mbit prototype MRAM, with

180 nm lithographic process. One year later, in June 2005, Honeywell published a

data sheet for a 1-Mbit MRAM with 150 nm lithographic process. in November 2005,

Sony announced the first lab produced STT MRAM, which utilized the spin polar-

ized current going through a MTJ structure to realize data writing. In December

2005, Freescale Semiconductor Inc. demonstrated that MRAM that used magnesium

oxide could out perform the traditional aluminum oxide based MRAM structure, by

reducing the current required to write information. On July 10th, 2006, Freescale

started to sell 4-Mbit MRAM chip[21]. In 2007, MRAM research started to force

on STT MRAM. In November, Toshiba proved the first spin transfer torque in the

perpendicular magnetic anisotropy MTJ devices, which was quite important to fab-

ricate smaller size memory cell. In June 2009, Hitachi and Tohoku University proved

a 32-Mbit STT RAM, making this technique more attractive. And In November,

Everspin shipped its first embedded MRAM samples. In the end of 2012, Everspin

debuted the 64-Mbit spin torque MRAM with a 90 nm process. In April 2016, IBM

and Samsung announced that they could fabricate MRAM device with size of about

11 nm. In August, Everspin began to sell the industry’s first 256Mb STT MRAM

to customers. Recently, several companies start to announce real MRAM product in

2018, including Samsung, Everspin, GlobalFoundries and TSMC.

Motivated by these fantastic progress, I have done several projects related to

spintronics. And in this dissertation, I will discuss those projects and some break-

throughs. This dissertation is organized as follows: In chapter 2, I will introduce

different magnetism, which is the fundamental of spintronics, as well as domain wall

structure, which plays an important role in the magnetization process. In Chapter 3,

I will introduce the basic knowledge of superconductivity, which is quite important

and related to a very fast growing researching area, Superconductivity Spintronics. In
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Chapter 4, I will talk about spin polarization and Andreev reflection, which is the key

concept to study spin configuration in different structures. In the next chapter, I will

focus the experimental equipment I use, including magnetron sputtering, Rutherford

Backscattering (RBS), Andreev Reflection Spectroscopy, Vibrating Sample Magne-

tometer (VSM), and the home-made magnetic transport system. Start from Chapter

5, I will talk about the projects I have done. In Chapter 5, two perpendicular mag-

netic anisotropy (PMA) structures will be discussed. Chapter 7 and 8 will focus two

projects related to superconductivity, including the possible triplet superconductivity,

Bi/Ni bilayer structure, the Bi3Ni alloy and 2 dimensional superconductivity.
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Chapter 2

MAGNETIC STRUCTURES

Magnetism is one of the oldest natural phenomena in human being’s history. In the

old days, people made use of the magnet to make compass, which benefited the devel-

opment of the seafaring. New continents were discovered, international trade began

to bloom. Even in nowadays compasses still play an important role in navigation,

especially when one comes into a ’wild’ place with quite weak satellite signal. Differ-

ent materials have different magnetism. Some of them, such as Ni, Fe, and Co, will

be attracted by magnet, so that they are called Ferromagnet. Some of them, such as

Cu, Al, however, will not react to magnet. All the materials are made of atoms, so it

is important to find out the source of magnetism.

2.1 Sources of Magnetism

In classical theory, magnetism comes from the orbital motion of electrons around

the nucleus. For one electron, assume the radius of the orbit is r, the angular frequency

of the circular motion is ω, then the current due to the circular movement of the

electron will be:

I = − eω

2πr
(2.1)

Since this current forms a closed loop, therefore, it can generate a magnetic mo-

ment, which can be calculated by:

M = −µ0IS = −µ0
eωr

2
(2.2)
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where M is the magnetic moment, S is the area of the closed current, µ0 is the

vacuum permeability, and e is the electron charge.

Consider the angular momentum of the movement, P = mrω, we have

M = −µ0
e

2m
P (2.3)

In quantum theory, the orbits of different electrons are not continuous. The orbit

angular momentum is P = l~, where l is the orbital angular momentum quantum

number. Therefore, the magnetic moment in equation (2.3) can be written as:

M = −µ0
e~
2m

l = µBl (2.4)

where µB is called Bohr magneton. From the above equations, one can see that

one source of magnetism in a single atom is from the circular movement of electrons.

Besides the orbital angular momentum, electrons have another intrinsic angular

momentum, called spin angular momentum. This is another source of magnetic mo-

ment. Compared with orbital angular momentum, the magnetic moment due to spin

can be written as:

Ms = −µ0
e~
2m

s = µBs (2.5)

where s is the spin momentum quantum number.

Consider both orbital and spin angular momentum, one can write the magnetic

moment as:

M = −gµ0
e

2m
P (2.6)

where g is the Lande’s g factor.
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Experimental data shows that for most transition metals, g is close to 2. This

means that in those materials, the magnetic properties are mainly due to spin angular

momentum. For simplification, one can just refer to the spin angular momentum as

spin. The discrepancy is due to the effect of the orbital angular momentum[22].

Besides electrons, nucleus also have spin. Therefore, they can also generate spin

magnetic moment. However, from equation 2.5 one can see that the spin magnetic

moment is inversely proportional to the mass of the particle. Thus, the spin magnetic

momentum from the nucleus is almost negligible since the mass of the nucleus is

usually three orders of magnitude larger than that of an electron. In other words,

the magnetic moment from one single atom mainly comes from the spin magnetic

moment of the electrons. For simplification, one can use spin direction to represent

that of magnetic moment.

2.2 Classification of Magnetism

Single atom can have magnetic moment, due to the arrange of electrons outside

the nucleus. If many atoms gather together and form a bulk material, such as crystal,

the magnetic moment from each atom may be affected by each other. The summation

of all the magnetic moments in a unit volume is called Magnetization. In different

material, the magnetization will behave differently under the external magnetic field,

which can be typically put into five categories: Diamagnetism, Paramagnetism, Fer-

romagnetism, Antiferromagnetism, and Ferrimagnetism.

2.2.1 Diamagnetism and Paramagnetism

Langevin Diamagnetism

In classical theory, diamagnetism comes from the orbital movement of electrons out-

side the nucleus. This orbital movement forms a circular current, which follows the
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classical electromagnetism rules. If an external magnetic field is applied to this cur-

rent, a magnetic moment that is opposite to the original moment, which is generated

by the current, will be induced, as is indicated by the Lenz’s law. Through a simple

mathematic calculation, the susceptibility of the diamagnetism is[23]:

χ =
µ0Nµ

B
= −µ0NZe

2

6m

〈
r2
〉

(2.7)

where N is the number of atoms per unit volume, B is the applied external field,

Z is the number of electrons in one atom, e is the electron charge, m is the mass of

an electron, and r is the radius of the electron, µ0 is the permeability in free space.

From equation (2.7), one can see that the external field will induce a negative effect

on the magnetization, or susceptibility. Thus, this behavior is called diamagnetism.

However, from the view of quantum physics, the orbital motion of electron does

not exist. When a magnetic field is applied to one atom, the effect of it should be

added to the Hamiltonian as[23]:

H =
ie~
2mc

(5 ·A + A · 5) +
e2

2mc2
A2 (2.8)

If the magnetic field is uniform and along the z direction (usually can be regarded

as the electron spin direction), the three components of the vector field A can be

written as:

Ax = −1

2
yB,Ay =

1

2
xB,Az = 0 (2.9)

Therefore, the equation (2.8) becomes[23]:

H =
ie~B
2mc

(x
∂

∂y
− y ∂

∂x
+
e2B2

8mc2
(x2 + y2) (2.10)
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In the right hand side of equation (2.10), the first term represents the energy

contribution coming from the orbital angular momentum. The second term represents

the energy contribution as:

E ′ =
e2B2

12mc2

〈
r2
〉

(2.11)

Therefore, the associated magnetic moment can be written as[23]:

µ = −∂E
′

∂B
=
e2 〈r2〉
6mc2

B (2.12)

which is in agreement with equation (2.7).

Paramagnetism

Just opposite to diamagnetism, materials with paramagnetism will feel positive con-

tribution to the susceptibility when a magnetic field is applied. This positive con-

tribution usually appears in free atoms or ions with partly filled inner shell, such as

transition elements and rare earth ions. It also appears in metals and some com-

pounds with an even number of electrons.

For one atom, the magnetic moment can be written as:

~µ = γ~J = −gµBJ (2.13)

where γ is called the gyromagnetic ratio and ~J is the total angular momentum

(includes both orbital and spin angular momentum). g is the Lande equation, which

can be calculated by the angular quantum number:

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.14)

When a magnetic field is applied to the atom, the energy of it will be changed[22]:
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U = −~µ ·B = mJgµBB (2.15)

where µB is called Bohr magneton.

From equation (2.15), one can notice that the energy of the atom in the external

field is related to the relative direction of magnetic moment and the field. Now

consider a system with N atoms, which contains N1 atoms with spin up and N2

atoms with spin down (N1 +N2 = N). Therefore, one can get the ratios of spin up

and spin down atoms as[22]:

N1

N
=

exp(µB/kBT )

exp(µB/kBT ) + exp(−µB/kBT )
(2.16)

N2

N
=

exp(−µB/kBT )

exp(µB/kBT ) + exp(−µB/kBT )
(2.17)

As a result, the magnetization of N atoms in this field can be written as:

M = (N1 −N2)µ = Nµtanh(
µB

kBT
) (2.18)

Generally, µB/kBT � 1, therefore:

M = Nµ
µB

kBT
(2.19)

which contains a positive susceptibility. This is the so called paramagnetism.

2.2.2 Ferromagnetism

The word ’Ferromagnetism’ is used to describe the strong attraction magnetic

behavior. In some materials, the magnetic moments in atoms tend to align parallel

to each other even when there is no external magnetic field. Pierre Weiss, in 1907,

proposed that there existed a molecular field inside the material, which was formed
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by all the atoms, that would induce the spontaneous magnetization. In the theory,

Weiss assumed that the intensity of the molecular field is proportional to the total

magnetization of the material:

Hm = wM (2.20)

So with an external field, the average magnetization of the material is[23]:

M = Nm

∫ π
0
expm(H+wM)

kT
cosθsinθdθ∫ π

0
expm(H+wM)

kT
sinθdθ

= NmL(α) (2.21)

where L(α) is called Langevin function and α = m(H+wM)
kT

. In other words, the

average magnetization can also be written as[23]:

M =
kT

mw
α− H

w
(2.22)

Unlike diamagnetism, the ferromagnetism will change with temperature. When

the temperature is higher than some certain value, the ferromagnetism is gone. This

critical point is called Curie point, Θf . From equation 2.21, one can get:

∂M

∂α
=
Nm

3
(2.23)

While from equation (2.22), the value should be the same when the temperature

T = Θf . Thus[23]:

∂M

∂α
=

kΘ

mw
(2.24)

Therefore, the Curie temperature can be written as:

Θf =
Nm2w

3k
=

(J + 1)Nm2w

3Jk
(2.25)
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where J is the Brillouin function.

Typically, for iron, Θf = 1063K, m = 2.2mb, N = 8.5× 1028m−3 and J = 1. Put

these values into equation 2.25, one can easily get:

w =
3JkΘf

(J + 1)Nm2
= 3.9× 108 (2.26)

Therefore, the molecular field in iron is:

Hm = wM = 0.85× 109A/m ≈ 1.1× 107Oe (2.27)

From this value, one can notice that the internal molecular field in the material

can be quite large. Remember that usually the magnetic field in a lab is usually a few

Tesla, which is much smaller than the value of the molecular field. Due to this strong

internal field, the magnetic moments of each atom tend to align to one direction, even

without the external field.

The molecular field is so large that classical theories can not explain the origin

of it. In the year 1928, Heisenberg proposed that this enormously huge field came

from the interaction in ferromagnetic materials. In quantum physics, electrons are

fermions with spin ~
2
, and the distribution of electrons follow the Pauli exclusion

principle. Consider two atoms, each with a single unpaired electrons, approach each

other. If the spin of the two electrons are antiparallel, they can share the same electron

orbit. In other words, these two electrons can be quite close to each other, which will

increase the Coulomb energy. However, if the two spins are parallel to each other,

they can not stay in the same orbit due to the Pauli exclusion principle. That is to

say that the distance of the two electrons are relatively far away, compared with the

antiparallel case. Thus, the Coulomb energy can be lower. Assume that the distance

between two electrons are about 1 Å, so the Coulomb energy can be estimated as[23]:

Ec =
e2

4πε0r
= 2.1× 10−18J ∼ 1.4× 105K (2.28)
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That is to say, if one wants to change the Coulomb energy by changing the tem-

perature, one has to apply a temperature as high as 140000 K, which is impossible

to realize. This explain why the magnitude of the molecular field is so large.

2.2.3 Antiferromagnetism and Ferrimagnetism

Like ferromagnetism, the spins in antiferromagnetism materials are also follow

some certain alignment when the temperature is below a certain value. The differ-

ence is in ferromagnetism, the spins in the material tend to align parallel, while in

antiferromagnetism material, the two neighboring spins tend to align antiparallel.

The critical temperature below which the spins tend to align antiparallel, is called

Neel temperature. Due to the special alignment of the spins, antiferromagnetism ma-

terials show no spontaneous magnetization and only have a feeble magnetism. The

susceptibility of this kind of materials is usually between 10−5 to 10−2, similar to that

of the paramagnetism.

Materials with antiferromagnetism usually contain at least two elements. The first

antiferromagnetic spin ordering was verified in the material MnO. The Mn ions form

a fcc structure, while the O ions fall in the interstitial sites. Therefore, the direct

interaction between two Mn ions is quite weak. The two spins in two neighboring

Mn ions align antiparallel due to the superexchange interaction between the two Mn

ion and on O ion between them. As is shown in the figure. The Mn2+ ion has five

electrons outside the nucleus, thus one spin is unpaired. the electrons in the O2− atom

is 1s22s22P 6, with six outside electrons in the 2p orbit. The p-orbit stretches towards

the two nearby Mn2+ ions (M1 and M2). Assume that on of the p-electrons in the

O2− ion can transfer to the 3d orbit of the Mn2+ ion. Since the Mn2+ ion already

has five electrons outside, the incoming electron should have a spin antiparallel to the

Mn2+ spin. On the other hand, another electron in the O2− ion must have a spin
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antiparallel to the one that goes to the first Mn2+ ion, due to the Pauli exclusion

principle. In this case, this electron will have exchange interaction with the second

Mn2+ ion, M2, making the two spins in M1 and M2 antiparallel. One thing to notice

is that the superexchange interaction is the strongest when the three ions form an

angle of π, and will become weaker when the angle decreases[22].

Ferrimagnetism has a spin arrangement similar with that of antiferromagnetism.

In antiferromagnetism, the two neighboring spins come from the same element. While

in ferrimagnetism, the two spins in the neighboring places come from different mag-

netic elements, or sometimes different number of atoms. Thus, the antiferromagnetic

spin arrangement will produce spontaneous magnetization in the material. The mech-

anism of ferrimagnetism is also through the superexchange interaction with a third

non magnetic atom.

2.3 Magnetic Domain Walls

2.3.1 Domain Energy

Ferromagnetic materials have spontaneous magnetization, However, if one puts

two pieces of iron together, they will not attract or repel each other. That is to

say, the iron does not show any magnetization, without any external magnetic field.

In the year 1907, Weiss pointed out that the magnetic moments in a ferromagnetic

material are not necessarily point to one direction without external field because the

spontaneous magnetization takes different direction in different domain. This is the

first proposal of domain in ferromagnetism[22, 24].

In 1919, Barkhausen discovered the magnetization process in ferromagnetic mate-

rial is not continuous; instead, this process always happen with many discrete steps.

This is the so called Barkhausen effect. He proved his idea by connecting a speaker on
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Figure 2.1: Top: Five common magnetism and their magnetic moments alignment
with external field; Bottom: M-H curve for the five different magnetism.
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a coil, which was wrapped on a piece of ferromagnetic material. From the speaker, he

could hear the roaring noise like the sound from the seashore when he use a magnet

to magnetize the specimen. This noise is called Barkhausen noise. This is the first

direct proof of discontinuous magnetization process[22, 25].

The first direct observation of magnetic domain structure under a microscope was

made by Bitter in 1931[22]. He put colloidal ferromagnetic particles on the top of a

well polished magnet surface and used a reflecting microscope to observe the position

of those particles. Interestingly, he found that the particles tend to form clusters on

different locations on the magnetic. This is because in the magnet, there exist many

domains and they are separated by domain walls. The ferromagnetic particles will be

attracted by the magnetization in different domains and thus form clusters.

Consider a piece of infinitely long ferromagnetic specimen is put in a magnetic

field, the direction of which is along the long axis of the sample. When the specimen

is fully magnetized, it will have a single domain. If the sample has a finite size,

there will be free magnetic poles at the surface, which will increase the magnetostatic

energy. To reduce this energy, the spin distribution has to be altered so that the free

poles on the surface can decrease. Usually, for a magnetic sample, the total energy

in the specimen have four parts[22]:

U = Umag + Uex + Umc + Ume (2.29)

where Umag is the magnetostatic energy, Uex is the exchange energy, Umc is the

magnetocrystalline energy and Ume is the magnetoelastic energy. To reach a stable

state, the total energy should be minimized.

Consider a ferromagnetic disk with radius r and thickness d, and has been magne-

tized along one direction, as is shown in figure(2.2)[22]. In this case, the magnetostatic

energy is:
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Figure 2.2: Top: Ferromagnetic disk with uniform magnetization; Bottom Ferro-
magnetic disk with circularly magnetization.[22]
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Umag =
1

2µ0

NM2V (2.30)

where V = πr2d is the volume of the magnetic disk, N is the demagnetization

factor. To reduce this energy, the magnetic moments inside the disk will change their

directions. One of the possibility is that they will form a circularly magnetization,

which will enable that there is no free poles on the surface of the sample, so that

Umag = 0. In this case, the angle between two neighboring spins are not zero; instead,

they will have a small angle, which will store a small amount of exchange energy:

wij = −2JSi · Sj (2.31)

where J is called exchange integral and it is positive for ferromagnetism and

negative for antiferromagntism. If the angle between neighboring two spins are quite

small, this energy can be written as:

wij = −2JS2cosϕ ' JS2ϕ2 + const (2.32)

In the material, assume one spin has z nearest neighborhoods. In this case, the

total exchange energy can be written as[22]:

z∑
j+1

wij = −JS2

z∑
j=1

(α
∂2α

∂x2
x2
j + α

∂2α

∂y2
x2
j + α

∂2α

∂z2
z2
j ) (2.33)

In a cubic lattice,
∑z

j=1 x
2
j =

∑z
j=1 y

2
j =

∑z
j=1 z

2
j , therefore, the exchange energy

density can be simplified to:

Eex = −nJS
2

a
(α · ∂

2α

∂x2
+ α · ∂

2α

∂y2
+ α · ∂

2α

∂z2
) (2.34)

In a cylindrical coordinate, this energy density can be written as[22]:
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Eex = A{(∂α
∂r

)2 +
1

r2
(
∂α

∂θ
)2 + (

∂α

∂z
)2} (2.35)

where A = nJS2

a
is called exchange stiffness constant. So the total exchange energy

can be calculated as:

Uex = 2πd

∫ r

0

rEexdr =
2AV

r2
ln(r) (2.36)

From this equation, one can see that the exchange energy density increases as the

radius decreases.

In ferromagnetic crystals, there exist the magnetocrystalline energy, which is dif-

ferent at different crystal direction, based on the direction of the easy axis. When

the crystal anisotropy is large, the spins will tend to align to the easy axis, instead

of forming a circular domain. The domain structures for a disk specimen with cubic

anisotropy and uniaxial axial anisotropy are shown in the figure (2.3)[22]. From the

figure one can see that there exist free magnetic poles at the surface of the sample,

which means there is some magnetostatic energy stored. Neighboring domains are

separated by a wall named domain wall, and the energy stored in the wall is called

domain wall energy.

2.3.2 Domain Walls

As is stated in the previous section, in a ferromagnetic specimen, neighboring

domains are separated by domain walls. The direction of spins in the domain wall

change from the direction of the first domain to the direction of the second domain,

within the domain wall. If the spins in the two domains are complete opposite to

each other, the domain wall is called 180◦ wall. All the other kind of domain walls,

no matter what the real angle between the spins of the two domains is, are called 90◦

wall.
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Figure 2.3: Top Domain structure for cubic anisotropy material; Bottom: Domain
structure for uniaxial anisotropy material.[22]
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Bloch Wall

Bloch wall is one type of 180◦ wall. When two domains are separated by Bloch wall,

the spins in the wall will gradually change from the direction of one domain to the

direction of another domain, with the change of spin out of the plane. Usually, the

energy of the domain wall contains two parts: anisotropy energy and exchange energy.

Consider a Bloch wall in a simple cubic structure (lattice constant is a), with N atom

layers in the wall. So the angle between two spins in the neighboring atom layer is

π/N . So the exchange energy can be calculated by[22]:

γex =
N

a
wij =

JS2π2

a2N
(2.37)

On the other hand, the spins in the domain wall deviate from the easy axis.

Therefore, the anisotropy will raise:

γa = KNa (2.38)

where K is the anisotropy constant and N is the number to atom layers in the

domain wall.

So the total energy that is stored in the domain wall is:

γ = γex + γa =
N

a
wij =

JS2π2

a2N
+KNa (2.39)

To reach a stable state, the energy should be minimized. Therefore, the thickness

of the wall can be calculated by:

δ = Na = π

√
JS2

Ka
(2.40)

For iron, J = 2.16 × 10−21, S = 1, K = 4.2 × 104, a = 0.286nm, therefore, the

domain wall thickness is about δ = 150 lattice constants[22].
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Neel Wall

Neel wall is another kind of 180◦ wall. Unlike the Bloch wall, the spins in Neel wall

will gradually change the direction in plane. In a very thin sample, if two domains

are separated by a Bloch wall, since the spins in the wall will change directions out

of plane, there will be magnetic free poles on the surface of the sample. In bulk

material or very thick sample, this magnetostatic energy, which is caused by the free

poles, may be negligible, compared with other energy. However, in very thin film, the

contribution of this energy can be quite large to the total domain wall energy. Thus,

in these samples, the Bloch walls are not preferred. So Neel pointed out that if the

rotations of spins are in a plane parallel to the thin film the magnetostatic energy

will be much smaller, which is called Neel domain wall. Theoretical calculations show

that the wall energy of Neel wall is[22]:

γ = 4

√
A(Ku +

M2

2µ0

) (2.41)

where M is the magnetization. Usually, the energy stored in Neel wall is higher

than that in the Bloch wall. However, when the sample is very thin, the magnetic

free poles on the surface of the film will increase the magnetostatic energy in the

Bloch wall. On the other hand, the energy of Neel wall will tend to decrease with

the decreasing of the thickness of the film, since the demagnetization factor, N in

equation (2.41) decreases with thickness. Therefore, the Bloch wall is more stable

for thick film, while the Neel wall is more preferable for thinner film. For thin films

with thickness not too thin nor too thick, the energy of Bloch wall and Neel wall are

comparable. In this case, the direction of spins will change discontinuously.
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Figure 2.4: Left: Bloch wall, the spins in the wall change their directions out of
plane; Right: Neel wall, the spins change directions in plane[26]
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2.4 Domain Structures

In ferromagnetic and ferrimagnetic materials, there exist many domains when

they are not fully magnetized. The magnetization of each domain points to different

direction, in order to reduce the total magnetostatic energy. Assume the domains are

stripes, so generally, this energy is proportional to the width of the domain, d. If d

decreases, the negative free poles are more closely to the positive free poles, making

the magnetostatic energy even smaller. However, when the width decreases, more

domain walls will appear in the material, which will store more energy in the wall.

Therefore, at equilibrium the size of the domain wall is determined by minimizing

the summation of domain energy and the wall energy.

Consider a ferromagnetic plate, with thickness l. When the plate is fully magne-

tized, the magnetization if M, so that the total energy stored per unit area is given

by[22]:

ε1 =
M2

2µ0

l (2.42)

When the sample is not fully magnetized, there will be many small domains inside.

Assume all the domains have equal size, with the width = d, and the thickness of

the sample, l, is large enough that the interactions between poles on the top and the

bottom can be negligible. Therefore, the total energy in this case can be calculated

by[22]:

ε2 = 1.08× 105M2
0d (2.43)

where M0 is the magnetization in each domain. On the other hand, the total wall

energy can be written as:
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εw =
γl

d
(2.44)

where γ is the energy per wall. Thus, the total energy is the summation of domain

energy and wall energy:

ε = 1.08× 105M2
0d+

γl

d
(2.45)

To minimize the total energy, the width of each domain has to ba:

d = 3.04× 10−3

√
γl

M
(2.46)

Iron has bcc structure. Assume all the domain walls are along the (100) direction.

So the wall energy is γ100 = 1.6 × 10−3. So the domain width for a iron sample

with thickness 1 cm is about d = 5.6 × 10−6m, and the total energy for this sample

is ε = 5.63J/m2, which is much smaller than that of a iron sample with one single

domain ( ε = 1.8× 104J/m2). This is why when there is no external field applied to

the sample, it tends to form several domains inside[22].

If the thickness is not large enough, the free poles on top and bottom of the sample

will interact with each other, storing extra magnetostatic energy. In this case, there

will be another smaller domain forming on the surface of the sample, which will make

close magnetic loops with the domains inside the sample. In general, the closure do-

mains tend to elongate parallel to the crystal surface if the magnetostriction constant

is positive, and shrink when that factor is negative. On the other hand, the closure

domains have to be compressed into a triangular shape, in order to accommodate the

major domains. An example of well defined domains are shown in figure (2.5)[23].

In previous discussions, all the domains are supposed to be stripes. However, in

some magnetic structures, there exists another kind of domains: bubble domains.
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Figure 2.5: (a): A single domain structure will have large magnetostatic energy. (b):
When there is one domain wall appears in the middle, the magnetostatic energy will
be smaller. (c): When there are more domain walls, the magnetostatic energy will
be even smaller, however, the wall energy will be larger. (d). A closure domain wall
structure will have zero magnetostatic energy and the total energy is minimized.[23]
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This kind of domain often appears when the magnetization direction is out of the

surface plane, namely the sample with perpendicular magnetic anisotropy (PMA).

In PMA structures, there exists magnetic free poles on the surface. So for bubble

domains, the interaction between positive poles and negative poles tend to increase

the radius of the domain. However, when the radius increases, the domain wall area

also increases, which will lead to an increase in the domain wall energy. Therefore,

in order to reach a stable state, a bias field has to be applied[22]:

Hd +Hγ = Hb (2.47)

where Hd is the demagnetization field in the bubble, Hγ is the hypothetical field

created by the pressure from the sample to the domain wall, and Hb is the applied bias

field. When the bias field is applied, the bubble shrinks. One potential application of

bubble domains is to make magnetic memory. The bubble will transfer along a circuit,

patterned on a single crystal plate. The magnetization in the bubble is different from

that of the outside area, which can be detected by measuring the change of resistance,

through the magnetoresistance effect. Thus, a ’0’ or ’1’ can be read when the bubble

is moving. However, there is a special bubbles, whose radius is insensitive to the bias

field, Hb. This is called hard bubble, which is unsuitable to make magnetic memory.

One way to remove the hard bubbles is to deposit a thin layer of soft magnetic layer

on the crystal, or use ion bombardment to process the surface, in order to remove

any complicated spin structures.
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Chapter 3

SUPERCONDUCTIVITY

3.1 Discovery of Superconductivity

The superconductivity phenomenon was discovered by Professor Heike Kamer-

lingh Onnes in 1911, three years after he liquified the helium and reached a temper-

ature about 4.2 K. The first material that was determined to have superconductivity

was mercury (Hg), which was chosen due to the high purity that obtained by repeated

distillation [27].

Besides the zero resistance, superconductivity also has some other interesting be-

haviors. In 1933, Meissner and Ochsenfeld found that superconductors were perfect

diamagnetism, which was the so-called Meissner effect[28]. Magnetic field will be

excluded from entering the superconductor, and, on the other hand, the magnetic

field in normal materials will be expelled from it when the temperature drops below

a certain temperature, called critical temperature, Tc. More interestingly, when the

magnetic field increases, the superconductivity will disappear at some point. This

field is called thermodynamic critical field (Hc). Experimentally, people found that

the critical field will change with temperature with the following equation:

Hc(T ) ≈ Hc(0)[1− T

Tc
]2 (3.1)

From the equation, one can see that when the temperature increases, the critical

field will decrease. In many conventional superconductors, equation(3.1) can well

describe the change of critical with temperature. However, in some materials, there

exist two critical field, Hc1 and Hc2. And there exist a mixed states between the two
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Figure 3.1: Critical field vs. Temperature for type I and II superconductors. (a):
For type I superconductor, there is only 1 critical field. And the superconductor has
two states: normal state and superconducting state. (b): For type II superconductor,
there exist two critical field, Hc1 and Hc2, so that there are three states: normal state,
superconducting state and mixed state.[29]
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fields, as is shown in figure(3.1)[29].

Since the discovery of superconductivity, scientists were trying to explain the

mechanism of this astonishing behavior. And there came many different theories.

3.2 London Equation

In 1935, Fritz London and Heinz London developed the famous London equations.

These equations successfully explained some electrodynamic phenomena of supercon-

ductors, such as the Meissner effect[29].

Since there is no resistance in superconductor, one needs to assume that there are

ns electrons in unit volume. Thus, the super current caused by these electrons can

be written as[29]:

∂js
∂t

= −nsq
v

t
=
nsq

2

m
E (3.2)

where js is the super current density, q is the charge, and v is the velocity of the

electrons under the influence of the applied electric field E. On the other hand, due

to Maxwell’s equation,

∇× E = −∂B

∂t
(3.3)

One can get:

∇× js = −nsq
2

m
B (3.4)

Define a constant, Λ = m
nsq2

and consider that ∇ × B = µ0j, one can find the

following relation:

∇2B =
µ0

Λ
B (3.5)
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Solving equation(3.5), one can get the magnetic flux:

B = B0e
− x
λ (3.6)

where λ = −
√

Λ
µ0

is called the London penetration depth. This indicates that the

magnetic field will decay exponentially in the superconductor, which is the Meissner

effect.

3.3 The Ginzburg-Landau theory

To understand the mechanism of superconductivity, Vitaly Lazarevich Ginzburg

and Lev Landau introduced a complex pseudowavefunction, ψ based on the Landau’s

second-order phase transition theory. This theory was proposed in 1950, known as

Ginzburg-Landau theory (GL theory)[30]. Based on the theory, the local density of

the superconducting electrons would be:

ns = |ψ(x)|2 (3.7)

Assuming that |ψ| and ∇ψ are small, the free energy in the superconductivity

state can be expressed as:

F = Fn + α|ψ|2 +
β

2
|ψ|4 + frac12m∗|(−i~∇− 2eA)ψ|2 +

B2

2µ0

(3.8)

where Fn is the free energy in the normal state, α and β are constants, m∗ is

effective mass, A is the magnetic vector potential and and B is the magnetic flux.

By minimizing the free energy, one gets the Ginzburg-Landau equations:

αψ = β|ψ|2ψ +
1

2m∗
(−i~∇− 2eA)2ψ = 0 (3.9)

35



J =
2e

m
Re{ψ∗(−i~∇− 2eA)ψ} (3.10)

With these equations, two features of superconductivity were treated, (1), non-

linear effects of strong field and (2) the spatial variation of ns. And this theory

successfully explained intermediate state of superconductors, in which both super-

conductivity and normal states exist when the external field H ≈ Hc.

As is shown in the figure, ξ(T ) is the coherence length, which is introduced in the

GL theory:

ξ(T ) =
~√

|2m∗α(T )|
(3.11)

which describes the distance the wavelength ψ(r) does not change when energy

increases.

Together with the penetration depth (λ = −
√

Λ
µ0

), the GL parameter is defined

as

κ =
λ

ξ
(3.12)

which is almost independent of temperature. When κ � 1, the surface energy

associated with the domain wall between the superconductor and normal metal is

positive. This defines the type I superconductor. In this kind of superconductors,

the magnetic flux will sharply increases from zero to a large value when the external

field reach the critical field Hc. While on the other hand, when κ � 1, the surface

energy becomes negative, which defines the type II superconductor. This type II

superconductor was found by Abrikosov in 1957. His results showed that when κ >

1√
2
, there would be an increasing amount of magnetic flux inside the superconductor

when the external field increased to the critical field (which is called Hc1). And the
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superconductivity will disappear if the field keeps increasing to some value (which

is called Hc2).When the field H satisfies Hc1 < H < Hc2, the material is at the

intermediated state. In this state, the magnetic flux can penetrate into some domains,

while be expelled in other places (figure(3.2))[31]. The flux carried in those domains

is:

Φ0 =
hc

2e
(3.13)

3.4 The BCS theory

Both the London theory and GL theory are phenomenological, and neither of them

explained the microscopic mechanism of superconductivity. Until 1957, a theory

based on the research of John Bardeen, Leon Cooper and John Robert Schrieffer

formed the fundamental of the microscopic theory of superconductivity, called the

BCS theory[28].

This BCS theory was inspired by the isotope effect discovered in 1950, by Frohlich.

Experimental results showed that the critical temperature Tc for the isotopes of the

same superconductivity element had the following relation:

Tc ∝M−1/2 (3.14)

Where M is the mass of the atom of isotope. This effect indicated that the mi-

croscopic mechanism of superconductivity would be the interaction between electrons

and lattice vibration.

The BCS theory was based on the assumption that the superconductivity appeared

because the electrons form a special state - Cooper pairs. In classical mechanics, the

electrons will be expelled from each other because of the Coulomb force. However,

in quantum mechanics, when considered the electron - phonon interaction, the force
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Figure 3.2: For type II superconductor, when the magnetic field is larger than Hc1,
some part of the superconductor will be become normal state, and magnetic field can
penetrate through these areas.[31]
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between two electrons could be attractive (figure(3.3)), resulting in a negative poten-

tial.

In the normal state, the electrons in the material will obey the Fermi distribution

and form a Fermi sphere. While in superconducting state, electrons inside the Fermi

sphere, namely E < EF , will remain the same as in the normal state. However,

the electrons around the Fermi surface, with opposite momentum and spin, will bind

together and form Cooper pairs.

At T = 0K, all the electrons close to the Fermi surface will form Cooper pairs,

which is called the ground state. To break the Cooper pair, a minimum energy 2∆ is

required, which means there would not be any energy state between the ground state

and 2∆. This is the evidence of the band gap in superconductors. According to BCS

theory, the band gap can be written as:

∆ = 2~ωLe
− 1
N(EF )G (3.15)

where ~ωL is the average energy of the phonons, N(EF ) is the density of state in

the Fermi level, and G is the electron-phonon coupling efficiency. From the equation,

we can see that if N(EF ) and G are larger, the superconducting gap will be larger,

which means it is easier to get superconductivity.

As was mentioned above, the superconductivity will disappear when the temper-

ature increase from 0 K to Tc. This indicates that the band gap will change with

temperature. The BCS theory gives the relation:

∆(T ) = 3.07kBTc

√
1− T

Tc
(3.16)

Figure(3.4)[32] shows the band gap behavior for three different materials. One

can see clearly that the results fit the BCS theory very well.
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Figure 3.3: Two electrons will have attraction force due to the electron-phonon
interaction

40



Figure 3.4: Experimental results of the band gap vs temperature relations for Ni,
Ta and Sn. The experimental data fits very well with the BCS theory.[32]
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The electrons in the Cooper pairs can not be treated as tightly bind pair. The

attractive potential between the electrons in each pair is very weak. In quantum

mechanics, the uncertainty principle points out that the uncertainty of momentum is

∆P ∼ ~
ξ
, where ξ is the spatial range of one Cooper pair, therefore, the uncertainty

of the kinetic energy is:

∆E = ∆(
p2

2m
) =

pF~
mξ

(3.17)

The Cooper pair could form only if ∆E < ∆(0), where ∆(0) is the band gap at

T = 0K. In this case, we have:

ξ ≥ ξ0 =
~pF

∆(0)m
(3.18)

where ξ0 is defined as the BCS coherence length. Numerically, ξ0 sim10−4cm,

which is several order larger than the lattice constant. This indicates that two elec-

trons far away will form a Cooper pair, and different pairs will couple with each

other. When the temperature changes, the electrons distribution will change, which

results in a change of the superconducting band gap. When send a current into a

superconductor, all the Cooper pairs will move to the same direction, with the same

momentum. In this case, there will be no electron scattering, which results in a zero

resistivity. When the current is larger than Ic, the energy will be large enough to

break the Cooper pairs into single electrons. In this case, the electrons will be scat-

tered by the lattice when they are moving inside the material, and they do not have

the same momentum any more. Thus, the superconductivity will disappear. With

BCS theory, more macroscopic phenomena, such as Meissner effect, the specific heat,

can be well understood.
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Chapter 4

SPIN POLARIZATION AND ANDREEV REFLECTION

4.1 Spin Polarization

The spin of electron generates magnetic moment. Since electrons are fermions,

only the electrons that are around the Fermi level can participate in conduction. In

non-magnetic metals, the number of spin-up and spin-down electrons are the same.

Therefore, the net magnet moments is zero. In ferromagnetic metal, however, one

band of spin is majority and the other one is minority, which results in a non.zero

magnetic moment. Therefore, the material shows magnetic property. Generally, spin

polarization is defined as the percentage difference of the density of states (DOS) of

spin-up and spin-down electrons around the Fermi level:

P =
N↑(EF )−N↓(EF )

N↑(EF ) +N↓(EF )
× 100% (4.1)

where the arrows indicate the direction of spin, and EF is the Fermi level. For

non-magnetic metals, the net magnetic moment is zero, meaning that spin up and

spin down electrons are equal. Therefore, the spin polarization is zero. One extreme

is half metal. In half metal, there is only one spin band at the Fermi level, whether

spin-up or spin-down, are available. Thus, the spin polarization is 1. For all the

ferromagnetic materials, one spin band dominates, while there still exists a minority

spin band, so that the spin polarization is between 0 and 1.

The definition of spin polarization in equation(4.1) is just for ideal case or in a

perfect bulk crystal. However, experimentally, the spin polarization is often measured

with the point contact method, in which the interface between the well known material
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and the ’to be measured’ material may have effect on the P value. Generally, the size

of the contact interface will have effect on the P value. For example, if the interface

size is smaller than the electron mean free path, one will get the so called ballistic

spin polarization, which can be calculated as:

Pballistic =
N↑(EF )v↑F −N↓(EF )v↓F
N↑(EF )v↑F −N↓(EF )v↓F

× 100% (4.2)

where v↑F and v↓F are the Fermi velocity for the spin up electrons and spin down

electrons, respectively. On the other hand, when the interface size is large than the

electron mean free path, the electrons will suffer from scattering from the crystal

lattice and the spin polarization can be expressed as [33]:

Pballistic =
N↑(EF )v2

↑F −N↓(EF )v2
↓F

N↑(EF )v2
↑F −N↓(EF )v2

↓F
× 100% (4.3)

When there exists a thin layer of insulator at the interface between the well know

material and the unknown material, the electrons will tunnel into the unknown ma-

terial through the tunneling effect. Thus, the spin polarization may be different, due

to the tunneling matrix [34]:

Pballistic =
N↑(EF )|M↑|2 −N↓(EF )|M↓|2

N↑(EF )|M↑|2 −N↓(EF )|M↓|2
× 100% (4.4)

where M↑ and M↓ are the tunneling matrices.

The performance of spintronics devices, such as GMR structures, MTJ structures

etc, relies heavily on the spin polarization of the ferromagnetic layer [35–43]. For

example, the TMR ratio can be calculated by [10]:

TMR(%) =
P1P2

1− P1P2

(4.5)
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Figure 4.1: Left: For non-magnetic material, the spin polarization is zero. Middle:
For ferromagnet, the spin polarization is between 0 and 1. Right: For half metal, the
spin polarization is 1.
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where P1 and P2 are the spin polarization for the two ferromagnetic layer. From

the equation, one can see that when both materials reach perfect spin polarization

(P = 1), the TMR ratio can reach infinite. Therefore, it is crucial to find a material,

especially metal, with a spin polarization as high as possible. So far, the only material

that has half-metallic properties is the CrO2, which has a spin polarization about

98.6%, measured with Andreev Reflection Spectroscopy (ARS)[44].

4.2 Andreev Reflection

The Andreev Reflection (AR) will happen at the interface between a normal metal

and a superconductor, as is shown in figure(4.2)[45]. The figure shows the energy

vs. momentum relationships. In the normal metal side, Ek = q2

2m
, while in the

superconductor side, the energy will follow the band structure as described in the

BCS model. When an electrical current passes through the interface, part of the

electrons will enter the band gap and form supercurrent. For example, the electron 0

in the figure will incident into the superconductor. It has a positive momentum and

the spin is up (the label is +q+). When 0 enters the superconductor, the momentum

becomes +k. Another electron inside the metal, with opposite momentum, -k, and

opposite spin, will form Cooper pair with it, as indicates by the electrons 2 and 4.

As a result, a hole, with positive charge, negative momentum -q and down spin will

be reflected in to the normal metal side.

To achieve the Andreev Reflection, liquid Helium is used to provide low temper-

ature. 4-point-contact method is used to measure the differential conductance of the

superconductor, as is shown in figure(4.3).

As is shown in the figure, 2 leads are on the tip and the other 2 on the sample. The

leads I+ and I- are used to send current into the sample, while V+ and V- are used

to measure the voltage across the two points. The size of the tip varies, making the
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Figure 4.2: Andreev Reflection happens at the interface between a normal metal
and superconductor. Solid dot: Electrons; Open circle: reflected hole. q and k:
momentum.[45]

47



Figure 4.3: For point contact Andreev Reflection spectroscopy, a non-
superconductor normal is made into a sharp tip, in order that the incident electron
will be in ballistic regime. Two electrodes are on the tip and two electrodes are
connected to the sample. Andreev Reflection will happen at the point contact.
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electron transport into different regimes. When the point contact diameter a is about

1 to 2 Å, it is called quantum regime. In this regime, the conductance quantization

is clearly observed[46]. If the contact size is larger than the de Broglie wavelength

but much smaller than the elastic scattering mean free path, the contact is said to be

in the ballistic regime. In this regime, the electrons will rarely be scattered, which

is a preferred condition for AR experiment. If the diameter a is larger than the

scattering mean free path, the electrons will suffer from scattering when injected into

the superconductor. This is called the thermal regime and the Joule heating will

raise the local temperature of the point contact, which will make the experiment not

stable.

The results of AR experiments can be explained by the BTK model, which was

proposed by G. E. Blonder, M. Tinkham and T. M. Klapwijk in 1981[45]. The model

starts by assuming that there is no applied voltage at the Normal metal (N) and

superconductor (S) interface. In this case, the system is at equilibrium state and all

the quasiparticles (0, 1, 2, 3, 4, 5 in figure(4.2)) are occupied with the same probability

f0(E). And for the hole will be f0(−E). When an electron incident on the interface

from the N side with E > 0, the probability that it transmits through the interface

with the wave vector in the same side of the Fermi surface is C(E) (from 0 to 4);

the probability for the transmission with wave vector in the opposite Fermi surface

is D(E) (from 0 to 2); the probability for the normal reflection is A(E) (from 0 to 5);

the probability for the Andreev reflection is B(E) (from 0 to 6). The conservation of

probability requires:

A(E) +B(E) + C(E) +D(E) = 1 (4.6)

In general, the value of these probabilities depend on the incident angle of the

electron. For simplicity, just consider the one-dimension model. The interface of
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the NS can be considered as a repulsive potential Hδ(x) , which is typical for oxide

barrier in a high-current-tunnel junction. Calculate these four probabilities with the

Bogoliubov equations, the results are shown in the figure(4.4)[45]:

where Z = kFH
2εF

= H
~vF

is the barrier strength, ∆ is the superconductor band gap,

E is the energy of the incident electron, γ2 = [µ2
0 +Z2(µ2

0− v2
0)]2, Ns(E) = 1

µ20−v20
and

µ2
0 = 1− v2

0 = 1
2
[1 +

√
E2−∆2

E2 ].

The results are very obvious under some circumstances. As can be seen, when

Z = 0, A = 1 forE < 0. This means if there is no barrier potential in the interface,

and the energy of the incident electron is lower than the band gap, the electrons

in the normal metals will just form Cooper pairs and enter the superconductor gap

with a probability 1, resulting in a hole reflected back into the normal metal due to

charge conservation. This is why the resistance of the superconductor is zero and the

conductance is doubled when the incident current is very small. When the current

increases, some electrons will couple into Cooper pairs and enter the superconduct-

ing gap, while others with higher energy will do tunneling into the superconductor

side. Those Cooper pairs will generate supercurrent, while those electrons not within

the band gap will behave like normal electrons. In this case, the conductance of the

superconductor will gradually decrease. When the current is larger than the critical

current, all electrons will enter the SC without forming Cooper pairs, being scattered

by the lattice. Thus, the superconductivity disappears (As is shown in figure(4.5) A).

So from the curves we get from ARS, we can know a lot of properties of supercon-

ductors, such as superconducting gap, critical current etc.
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Figure 4.4: The calculation results for the 4 probabilities in the BTK model under
different barrier conditions.[45]
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Figure 4.5: Differential conductance vs. energy in different barrier conditions.[45]

52



Chapter 5

EXPERIMENTAL METHODS

5.1 Magnetron Sputtering

Some materials, such as Fe, Co and Ni, can show magnetic property. When

fabricated in nano scale, the magnetic behavior under external magnetic field could

become more interesting due to the broken of inversion symmetry and the interaction

between the material with the surrounding environment. The prerequisite is to make

nano materials with good quality. Currently, there are several fabrication methods,

such as magneton sputtering, atomic layer deposition (ALD), chemical vapor de-

position (CVD), physical vapor deposition (PVD), sol-gel method, molecular beam

epitaxy (MBE), Metal Organic Chemical Vapor Deposition (MOCVD) etc. Gener-

ally, magnetron sputtering offers a relative fast deposition rate, and good thin film

quality. Therefore, this dissertation work will focus on using magnetron sputtering

method.

Figure(5.1)[47] is a sketch of magneton sputtering. All the sputtering processes

are done in a vacuum chamber with a base pressure about 2× 10−8 torr. The target

is fixed on a power supply, on which there are several magnets. The surface of the

substrate will face the target. When the deposition begins, some Argon (Ar) gas will

be sent into the chamber, which make the pressure increase to about 3 × 10−3 torr.

The power supply will ionize the Ar atom into Ar ion (Ar+). Due to the electric

force, the Ar+ will be accelerated to bombard on the target. As a result of the

momentum and energy exchange, the target atoms will come out and deposit on the

substrate. Those Ar+ will combine with electrons on the target and become Ar atom
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Figure 5.1: Ar atoms will be ionized by the strong electrical field and bombard on
the target, thus transfer its momentum to the target atom. The atom will come out
of the target and deposit on the substrate. The magnets are used to confine the ions
in a certain regime so that the deposition process is effective.[47]
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again. With the process going on, Ar atoms, Ar+, electrons and target atoms will

form a special state on top of the target, which is called ’plasma’. The function of

the magnet under the target is to confine the plasma in a certain area so that the

deposition process can continue. This is the basic working mechanism of magneton

sputtering, especially when the target is made of metal.

However, in some cases, insulator target has to be used, such as Magnesium Oxide

(MgO), Yttrium Iron Garnet (YIG) etc. In those materials, electrons can not move

freely because of the large bandgap of insulators. Therefore, during the deposition

process, Ar+ will keep accumulating on the target. As more and more Ar+ stay on

the target, the electrical potential on the target increases, which will prevent other

Ar+ from bombarding on the target. Therefore, the deposition will gradually stop.

The way to avoid this is to apply a Radio frequency (RF) signal[48], instead of DC

signal, on the target, as is shown in figure(5.2).

The initial deposition is just like the dc sputtering process: a high negative voltage

is applied at the target, which will generate the plasma on top of it to achieve material

deposition. After some very short time interval, the signal is switched, meaning the

voltage on the target is higher than that on the substrate. In this case, the Ar+

accumulated on the target will be neutralized by electrons. Thus, when the signal is

switched again, the electric potential on the target can be reset as the initial condition,

ensuring the continuous deposition process.

Figure(5.3) shows the sputtering system used in this work. A total ten sputtering

guns are installed in the main chamber. The substrate holder and shutter (not shown

in the figure) are controlled by the motion controller, which is connected to the GPIB

interface for remote control. Labview program is used to control the rotation of the

holder than shutter, in order to get the desired layer thickness and combination. The

cryo pump is used to pump the main chamber all the idle time, to maintain a good
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Figure 5.2: When the target is insulator, the magnetron sputtering is different. A
RF power supply has to be used to replace the dc power supply, in order to neutralize
the Ar+ accumulated on the target.
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vacuum inside the chamber. The vacuum in monitored by the ion gauge mounted on

top of the 19-inch rack. The base pressure of the main chamber is around 2×10−8torr,

which is good enough for most sputtering materials. A gate valve is used to separate

the main chamber and the loadlock. The use of loadlock is to prevent the main

chamber from contacting the outside environment directly in order to reduce the

contamination from the ambient and ensure good thin film quality. A turbo pump is

used to pump the loadlock to load and unload the sample. 5 sputtering gun selection

gears are installed on the rack, making it possible to switch the guns freely. 4 DC

power supplies and 1 RF power supply are also mounted on the rack. Therefore,

the sample can contain as many as 5 different layers without stopping the deposition

process. A gas controller is used to control the sputtering gas: Ar, O2 andN2. Usually,

Ar is used for pure metal deposition, with a gas flow of 20 mccm and a deposition

pressure of 6 mtorr. When oxide or nitride is needed, Oxygen or nitrogen will be

sent into the chamber, together with the Ar gas. A water chiller is also installed (not

shown in the figure) in order to cool down the guns during the deposition and protect

the magnets in the guns.

5.2 Rutherford Backscattering

After get a nano thin film, the next step is to calibrate the thickness of it. The

thickness of the films are very important since different thickness will produce different

magnetic properties. For example, very thin Cobalt (Co) and Platinum (Pt) bilayers

will show perpendicular magnetic anisotropy. While if the Cobalt layer is too thick,

this property will disappear due to the stronger in plane magnetic anisotropy of the

Co film. To calibrate the thickness, Rutherford Back Scattering (RBS) is used[49].

RBS was discovered by Lord Ernest Rutherford between 1909 and 1914 with

studying the scattering of alpha particles through metal foils. The results of the
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Figure 5.3: Sputtering system used in this work.
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experiments led to the development of Rutherford model of the atom structure. Fig-

ure(5.4) shows the general process of the backscattering.

When a beam high energy ions bombard on a piece of sample, a small portion of

those ions will undergo a direct collision with a nucleus of the atoms in the sample. As

long as the energy of the ions is not too high, certain nuclear reaction will not happen

and the collision can be regarded as elastic collision. The collision does not involve

direct contact between the ions and the nucleus. The energy loss in this process is

due to the Coulomb force. Therefore, ions at different positions will be backscattered

into different angle. There are several factors that will affect it.

The first factor is kinematics. It is defined by the ratio of the projectile energy

after a collision to the projectile energy before a collision[49]. For scattering at the

sample surface, energy will lose only due to the momentum and energy transfer be-

tween the ions and the sample atoms. If the sample atoms are light, for example,

Carbon, Oxygen, Nitrogen etc, a significant fraction of the incident ions’ energy will

be transferred to those atoms, while for heavy atoms, such as Iron, Nickel etc, the

ions will bounce back with almost the same energy and momentum. Therefore, the

backscattering technique is more useful to detect light elements.

The second factor is the differential scattering cross section. This is related to

the relative number of particles backscattered from sample atoms into a given solid

angle for a given number of incident particle. When the ions incident to the atoms,

the Coulomb force between the ions and the nucleus will make the ions deviate from

its original paths. The differential cross section of the backscattering will be[49]:

dω

dΩ
= (

Z1Z2e
2

4E0

)2 1

(sinθ/2)4
(5.1)

Where Z1 and Z2 are the atomic numbers of the incident ion and target nuclei, E0

is the initial kinetic energy of the ion, θ is the scattering angle between the wave vector
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Figure 5.4: In the process of Rutherford backscattering, the He atoms are first
ionized to be He2+, which will be accelerated to strike on the sample. When the He
ions are approaching the atoms on the sample, the Coulomb force will be stronger so
that the ions will be scattered. Since the nucleus are quite small, only a small part
of ions will be scattered and the other ions will penetrate through the surface and be
scattered by the atoms in deeper layers or even substrate.
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before and after collision. As we can see from the equation, for a given scattering

angle, the differential cross section will be larger when the target atoms are heavier.

As is shown in figure(5.5), the relative generate rate for heavier elements, such as Au,

Nb, is larger than that of lighter elements. This is due to the larger cross section in

the backscattering process.

The third factor is the stopping power. As is mentioned above, only a small

portion of incident ions will undergo backscattering due to the small size of nucleus.

A vast majority portion of ions will undergo glancing collisions with the sample atoms,

and interact with the electrons in the sample. With the ions going deeper into to

the sample, more energy will be lost. Therefore, the backscattering energy for ions

scattered from deeper position will be smaller than that from the surface of the

energy. By doing calculations about this difference, the thickness of the sample can

be calculated.

Those factors listed above provide us a good method to calibrate the sample. By

doing careful calculations and fitting of the experimental data, the thickness of the

sample, the elemental ratios and the elemental concentrations will be known.

5.3 Vibrating Sample Magnetometer

For magnetic materials, one of the most important measurements is to measure the

magnetization. Generally, all the methods can be classified into three categories[22]:

(1). Measurement of the force acting on a magnetized body in a non-uniform field; (2).

Measurement of the magnetic field produced by a magnetized body; (3). Measurement

of the voltage produced in a search coil by electromagnetic induction caused by a

change in the position of state of magnetization of a magnetized body.

Vibrating Sample Magnetometer (VSM) falls into the second category. When

use VSM, the sample S will oscillate vertically in a uniform magnetic field. The
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Figure 5.5: RBS is more accurate for heavier atoms. Due to the momentum and en-
ergy transfer during the scatter process, heavier atoms will results in larger differential
cross section, thus more ions will be scattered.
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magnetization of the sample will generate a magnetic field around it. The vibration

of the sample will result in a change in magnetic flux in the pick-up coil so that a

voltage will be induced due to the Faraday’s Law of induction.

As is shown in the figure(5.6), the sample will be placed in the middle of the

electromagnet gap, which will make it in a uniform magnetic field environment. There

are two signal pickup coils attached to the surface of the magnet. The sample rod is

connected to an oscillator, which will make it undergo sinusoid motion in the vertical

direction. According to the Faraday’s law, the movement of the magnetic material

will change the magnetic flux in the pickup coils, thus induces an electrical signal:

V = −∂Φ

∂t
(5.2)

where Φ is the magnetic flux, V is the induced electrical voltage. If the pickup

coil has a cross section A and windings n, then the equation can be written as;

V = −nA∂B
∂t

(5.3)

When the sample is in a uniform external magnetic field H, it will be magnetized

and the magnetization will reach M. Therefore, the magnetic flux density around the

sample can be calculated by:

B = µ0(H + M) (5.4)

As is mentioned above, the external field H is produced by the electromagnetic

and can be treated as uniform and constant, then the induced voltage can be written

as:

V = −µ0nA
∂M

∂t
(5.5)
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Figure 5.6: In VSM, the sample is vibrating sinusoidally around the center of the
two pick-up coil. The magnetization will generate a magnetic field, which will induce
a change in magnetic flux in the coil. A voltage is induced due to the Faraday’s law
of induction and the magnetization of the sample can be calculated based on the
induced voltage.
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Therefore, the induced signal, which is at the frequency of vibration, is propor-

tional to the magnetization, vibration amplitude and frequency. After the signal is

collected by the pickup coils, it will be buffered, amplified and applied to a special

demodulator. Then it will be synchronously demodulated with respect to the refer-

ence signal derived from a moving capacitor assembly. The resulting signal will only

have relation with the magnetic moment magnitude alone.

The VSM in our lab is Lakeshore 7304. It can measure the magnetization from

5× 10−6emu to 103emu. The noise level is about 55× 10−6emu. On the other hand,

the maximum magnetic field provided by the electromagnet is ±14.5kG, which is

good enough magnetize many magnetic materials that has beed used in the lab to

saturation magnetization.

5.4 Magnetic Transport System

Besides the measurement of magnetization with VSM, the electron transport prop-

erties of the sample is also a key factor for better understanding the material. When

electrons are moving inside a material, the scattering from the atoms will result in

resistance. The resistivity will be affected by many factors, including temperature,

film thickness, crystal quality, magnetization etc. The famous giant magnetoresis-

tance (GMR) effect is the change of resistance in an external field, which has been

described in Chapter 1.

Four-Point Measurement

When measure the resistance, the current is sent into the sample and voltage is mea-

sured. So the resistance can be calculated by R = V/I. However, this measurement

contains many different resistance, including the resistance from the wires, the con-

tact, and the sample, as is shown in figure(5.7(a)). When measure a thin film sample,
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the contact resistance can be large, due to the contact size and quality. Therefore,

the measured resistance may be quite different from the real value.

To solve the problem, a four-point measurement technique is used. In this mea-

surement configuration (figure(5.7(b))), the current is sent into the sample through

the outside two electrodes and voltage is measured through the inside two electrode.

In this case, the current that goes through the sample is the same as the current

goes through the wire. So the reading number from the ammeter is the true current

that is sent into the sample. The voltage is measured in the inner circuit. Generally,

the resistance of the voltmeter is much larger compared with the resistance from the

wires. Therefore, in the inner circuit, the current that goes through the wires can be

negligible. The reading from the voltmeter is almost the true voltage on the sample.

In this way, the resistance of the sample can be measured accurately.

Figure(5.7(c)) illustrates the 4-point measurement setup in the lab. The sample is

mounted in the center of a rotatable electromagnet to get a uniform field in different

directions. The four electrodes are attached to the sample as described above. In this

way, the magnetoresistance of the sample in different field directions can be measured

accurately.

Anomalous Hall Effect Measurement

Hall effect is discovered by Edwin Hall in 1879[28]. When a current is send into a

sample and a magnetic field is applied in the out of plane direction, a voltage can

be measured in the transverse direction. In non magnetic materials, the electrons

will suffer from the Lorentz force from the external field. Therefore, the path of the

electrons will be deflected so that they will accumulate at the edges of the sample,

thus generated a electrical field. The measured voltage can be expressed as:
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Figure 5.7: (a)Illustration of 2-point measurement. The results contains many
components such as wire resistance, contact resistance and sample resistance. (b).
Illustration of 4-point measurement. The result reflect the real resistance of the
sample. (c) Illustration of the 4-point measurement setup used in this dissertation
work.

67



VHall =
IxHz

nte
(5.6)

where Ix means the current is sent in through x direction, Hz means the magnetic

field is applied in the z direction, t is the thickness of the sample, n is the electron

number density and e is the electron charge. The measurement configuration is the

same as in figure(5.7). The only difference is that the two inner voltage electrodes

will be aligned vertical to the two outside current electrodes. The voltage will linearly

change with the external field, as is shown in figure(5.8(b)).

In anomalous Hall effect (AHE), however, the electrons will not only be deflected

by the applied field, but also by the magnetization. Usually, the magnetization will

have much larger effect on the deflection. Thus, AHE is a useful way to study the

magnetic property of the materials. Generally, the AHE signal contains several parts:

VAHE =
IxHz

nte
cosα +

µ0RsIx
t

Mcosθ +
kIx
t
M2sin2θsin2φ (5.7)

where µ0 is the vacuum permeability, Rs is the Hall coefficient, M is the magne-

tization, k is a constant, θ is the angle between magnetization and the out of plane

direction, α is the direction of the field from the out of plane direction, and φ is the

direction of the projection of M in the x-y plane. One can see that the first term is

the normal Hall effect, and the other two terms has relation with the magnetization

and its direction. By analyzing the measured signal, the magnetic property can be

well understood.

5.5 Andreev Reflection Spectroscopy

Andreev Reflection is a powerful way to study superconductivity, as well as the

spin polarization in magnetic materials[35, 50–54]. The equipment to measure An-
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Figure 5.8: (a)Illustration of normal Hall effect. (b). Illustration of Anomalous Hall
effect. (c). In normal Hall effect, the Hall voltage linearly changes with the applied
field. (d). In anomalous Hall effect, the results has relation with not only field, but
also the magnetization.
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dreev Reflection is called Andreev Reflection Spectroscopy (ARS).

5.5.1 ARS Mechanical Setup

Tip Preparation

Andreev Reflection is quite sensitive to the interface between the normal metal and

the superconductor. Generally, the normal metal should be made into a sharp tip

so that the electrons are in the ballistic regime, as is discussed in Chapter 4. In

this work, there are two methods to prepare a proper tip: one is to polish the tip

mechanically. For some tips, such as Nb rod, and Au plate, the material is quite hard.

In order to make a sharp tip, a polishing stone of coarse grade around 1000 is used.

Usually, the polished tip is approximately 10 ∼ 30µm, which is acceptable to make

good point contact.

Some other materials, however, are quite fragile, so that polishing can not ensure

a sharp tip. For those materials, it is convenient to create a very sharp tip with

atomic level size with simply breaking it apart. The fresh edge usually contains a

few atomic layers so that it is perfect for Andreev Reflection measurement. One of

this kind of material is La0.67Sr0.33MnO3 (LSMO), which is a half metal with spin

polarization as high as 80%. Figure(5.9) shows the experimental spin polarization of

LSMO that is used in this dissertation work. It has been measured with a well known

superconductor, Pb. The spin polarization value is decided to be higher than 80%

when the scattering factor, Z, is smaller than 0.2. Therefore to get good Andreev

Reflection measurement, a well prepared tip is of great importance.

Sample Mount Preparation

As is discussed in the previous section, the interface of normal metal and supercon-

ductor in the ARS is as small as a few micron. Thus, during the experiment process,
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Figure 5.9: Top: ARS measurement of LSMO/Pb with different scattering factor
(Z). The open circles represent the raw data and the red curve is the best fit with the
mBTK model. Bottom: Spin polarization of LSMO with different scattering factor.
The red line is served as eye guideline. Larger scattering factor makes the measured
spin polarization value smaller.
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any small perturbation can cause the change of contact, which is highly undesirable.

On the other hand, Andreev usually appears at low temperature, due to the need

of a superconducting state. Therefore, the mounting of the sample is the key for a

successful measurement.

Figure(5.10) shows the sample mounting configuration that is used in this dis-

sertation work. The total rod is about 60 in long. The sample is mounted to the

bottom of the rod, and the four wires on the sample for the 4-point measurement

is connected to the wire connectors on the top of the rod. Therefore, the sample is

far away from any measurement instruments, which can greatly reduce the noise. A

well prepared sharp tip is placed right on top of the sample, without touching the

sample surface before experiment. The tip is connected to a differential screw, the

position of which can be adjusted by rotating the turning rod on top of the rod. Each

full turn of the rod is about 25µm, which makes it convenient to precisely control

the position of the tip. The interface of the sample can be changed by rotating the

turning rod, so that the contact size, as well as the scattering factor and contact

resistance, can be different. Only when the contact size reaches the ballistic regime,

the Andreev reflection curve can be successfully measured. The whole rod is enclosed

into a vacuum jacket. Before experiment, the jacket is pumped to reach a vacuum

level about 10−6torr. After that, pure Helium gas is sent into the jacket to reach a

ambient pressure. The Helium gas is served as an exchange gas for efficient cooling

down of the sample, and also prevent any other gas, such N2, moisture, from entering

the vacuum jacket during or after the experiment, in order to protect the electrical

wires inside.
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5.5.2 ARS Electrical Setup

The Andreev reflection measurement is conducted by measuring the differential

conductance, dI/dV , of the point contact. The electrical setup is shown in fig-

ure(5.11). The current is sent into the sample by the Keithley 6221 current source.

And the voltage is measured by Keithley 2182A nano voltmeter. A Stanford 830 DSP

Lock-in Amplifier is used to send a small sinusoidal current to the tip, in order to

tell if there is any point contact established inside the sample tube. The resistance

shown in the amplifier also indicates the contact resistance. By rotating the turning

rod on top of the sample tube, the resistance will change, which represents a change

in the contact size and scattering factor. All the electric cables are connected to

a home-made switch box, in order to reduce the electrical noise. A Keithley 7001

Switch System is used to switch between different measurement channels. Therefore,

the differential conductance and the temperature in side the sample tube can be mea-

sured simultaneously. A LM-500 Liquid Cryogen Level Monitor is connected to the

liquid Helium dewar in order to monitor the real-time liquid Helium level. The ARS

can only work when the Helium level is larger than 12 inches from the bottom of the

reservoir because of the superconducting magnet located over there. In order to run

the system safely, the magnet has to be submerged into the liquid Helium all the time.

A Cryocon 32B Temperature Controller is used to monitor the temperature inside the

sample tube. However, this value is just as a reference because the measured value is

the temperature of the exchange gas, instead of the real temperature on the sample,

which has to be measured by measuring the resistance of the thermal coupler located

on the back of the sample. A Model 4G Superconducting Magnet Power Supply is

used to control two superconducting electromagnets, one in the vertical direction and

the other one is in the horizontal direction. Usually, the largest field for the vertical
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Figure 5.10: Sample mount configuration of ARS.
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field can be as high as 9T, and the horizontal one can be around 5T. In order to

achieve such high magnetic field, a large current has to be sent to the magnets, which

is the reason that the magnets should be submerged into the liquid Helium all the

time.

5.5.3 ARS Cryogenic Setup

Due to the necessity of a superconducting state in the Andreev reflection measure-

ment, it is important to maintain a low temperature during the measuring process.

ARS uses liquid Helium as cryogen to realize a temperature of about 4.2K, and even

lower temperature can be realized by pumping the system.

A sketch of ARS cryogenic setup is shown in figure(5.12). A 4-layer-jacket struc-

ture makes the low temperature stable and the liquid Helium can be used for a relative

long period. The most outside jacket is a vacuum jacket. Before the initial cool down,

a turbo pump is used to pump this jacket in to a vacuum of 10−7torr. After the pump

procedure, this jacket is well sealed by a valve so that the vacuum can remain for a

long time. This good vacuum layer will protect all the inside cryogen from contacting

the outside environment so that the cryogen will vaporized very slow. Next layer

is a liquid Nitrogen jacket. Before the experiment, this jacket is also pumped to a

good vacuum about 10−5torr to remove all the moisture inside the system, in order

to protect the system from any frozen. This jacket will prevent the liquid Helium

layer to be contacted with room temperature and keep the inside system at a low

temperature, which will save the liquid Helium. Important to mention that the liquid

Nitrogen needs to be refilled every 6 hours due to the vaporization. Next to the liquid

Nitrogen jacket is another vacuum jacket, which is also pumped to a good vacuum of

10−7 initially. This layer will further protect the liquid Helium from contacting on the

relative higher temperature liquid Nitrogen layer, which greatly slows the vaporiza-
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Figure 5.11: ARS electrical setup.
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tion process of the Helium so that the experiment can last longer. The last jacket is a

50 litter liquid Helium reservoir, on the bottom of which installed two superconduct-

ing magnets. In the center of the ARS is the sample tube, which is separated from

the liquid Helium reservoir by a needle valve. After mount the sample on the sample

rod, it is inserted into the ARS sample tube area. Then the needle valve is opened

to allow liquid Helium to enter this space, in order to cool down the sample. The

location of the sample is right in the center of the two magnets so that the amplitude

and direction of the field can be accurately controlled by the operator.
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Figure 5.12: ARS cryogenic setup.
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Chapter 6

SPIN POLARIZED CURRENTS IN PERPENDICULAR MAGNETIC

STRUCTURES

Magnetic materials or structures with magnetization direction perpendicular to

the surface are said to have perpendicular magnetic anisotropy (PMA). PMA materi-

als can be used to fabricate, magnetic recording medium, which is of great importance

in the data storage technique. Compared with the conventional longitudinal record-

ing medium, the higher areal density of perpendicular material enables the higher

capacity. On the other hand, the development of thin film deposition technique fur-

ther improves the storage and reduces the sizes of the devices sizes, which is the key

to integrate more storage in a smaller area. Nowadays, more and more data memory

devices are based on perpendicular magnetic materials, including magnetoresistive

random access memory (MRAM), hard disk drives etc. Therefore, it is of great

importance to study the mechanism and magnetic behaviors of those perpendicular

magnetic structures.

6.1 Motivation

Magnetic recording is the storage of data on a magnetic medium. As of today,

this technology is widely used in the storage of computer data, audio and video

signal. In 1928, Fritz Pfleumer developed the first magnetic tape recorder[55], which

was designed to record analog audio signals. Later, with the rapid development of

computer science, analog recording gradually faded and has been replaced by the

digital recording technology.

For analog recording, the writing head magnetizes the tape with a magnetic field,
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which is produced by a current proportional to the strength of the signal. After the

writing process, the amplitude of the remnant magnetization is proportional to the

applied field, thus the original signal. During the read out process, the read head

reads the magnetic field produced by the magnetized tape, and then reproduces the

original signal. This recording technology was popular in the past 30 years, but

has declined popularity nowadays due to the limited storage space, slow speed and

relatively large size[56].

Instead of creating a magnetization proportional to the signal strength, the digital

recording just requires a bistable state, i.e. ’0’ and ’1’. For some magnetic materi-

als, the sharp switching of magnetization with applied magnetic field provides such

advantage. Generally, digital recording media can be classified into two categories.

Volatile memory provides a temporary storage of data for computing or programming

purposes. However, the data will be lost after the power is shut off. On the other

hand, the non-volatile memory is a media that can store the data for a long time.

Such kind of memory includes floppy disks, hard disk drives (HDDs), flash memory

etc[57].

For magnetic recording media, information is stored in a lot of tiny units, called

bits. Each bit consists of hundreds of single domain magnetic elements, such as nano

particles and grains. The anisotropy of the material decides the switching of the

medium, therefore, the accuracy of the recording. To achieve reliable accuracy, the

recording material should be able to be magnetized with a reasonable field, which

requires the material to have a proper coercivity and saturation field[23]. If the

coercivity and saturation field are too large, the material is hard to be magnetized.

In this case, small magnetic fields, which are produced by relatively weak signals,

can not be recorded and information will be lost. On the other hand, however, if

the coercivity and saturation field are too low, the recording bits are so easy to be
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magnetized that all the noise will be recorded as well.

In spite of the coercivity and saturation field, a large remnant magnetization is

also required4. After the writing process, the information is supposed to be stored and

should be able to be read out for a long time range. If a material has small remnant,

the magnetization of the bit will become much smaller, which can not provide a

magnetic field strong enough to be read out.

To achieve higher storage in a small volume, the bits have to be located on a

circular track in a disk, instead of sitting along a straight line, as the tape does. The

disk needs to be controlled to move at a certain speed, which is slow enough for a

write head to write information in the bits and fast enough for a read head to read

information continuously. Thus the bits must pass the head at a regular clock speed

and they must be arranged with strict spatial periodicity[23].

6.1.1 Longitudinal Magnetic Recording

In conventional longitudinal magnetic recording media (LMR), the easy axis of

each particles in one bit is along the track direction (figure(6.1))[58]. The current

generated by the signal will produce a magnetic field at the write head according to

the Faraday’s Law. For longitudinal medium, the particles in each bit have an easy

axis along the track direction. Therefore, the tangential component of the magnetic

field, which is called fringe field, will magnetize each bit to its easy axis.

After the writing process, the magnetization of each bit will generate a magnetic

field around it (figure(6.2))[23]. For a single bit with thickness δ in the y direction

and w in width, the magnetic field can be calculated with:

Hx(x, y) =
4πMr

π
[arctan(

y + δ/2

x
)− arctan(

y − δ/2
x

)] (6.1)

When y = 0, i.e. at the surface of the bit, the field becomes:

81



Hx(x, 0) =
4π × 2Mr

π
[arctan(

δ

2x
)] ≈ 4πMrδ

πx
(6.2)

Therefore, the strength of the field produced by one bit is proportional to the

product of the remanence (Mr) and the thickness of the recording material. The field

of a single magnetic transition is plotted in figure 3 for y=0 (thin solid line) and

y=0.5 (thin dash line).

In reality, the bits are close to each other. And the boundary between neighboring

two bits is not sharp. The magnetostatic energy at the transition is minimized by a

smearing of transition over a length a long the track direction:

Mx(x) =
2Mr

π
arctan(x/a) (6.3)

This magnetization decreases with the stray field:

Hx(x, y) =
4πMr

π
[arctan(

y + a+ δ/2

x
)− arctan(

y − a− δ/2
x

)− 2arctan(
a

x
)] (6.4)

The field for a = 0.5 and thickness δ = 1 is plotted in figure(6.2) for y = 0 (thick

solid line) and y = 0.5 (thick dash line).

For a disk, there are a lot of bits on a track. In this way, the shape of the stray field

on top of the bits are roughly sinusoidal, and drops off exponentially with distance

above the disk:

Hx ∝ e−kysin(kx) (6.5)

Hy ∝ e−kysin(kx) (6.6)

where k = 2π
λ

and λ is the wavelength of the recorded bits (figure(6.3)). From the

above equations, we can see one the limits of the longitudinal medium. To improve
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Figure 6.1: The bits in the longitudinal medium is magnetized by the fringing field
from the write head. The direction of the magnetization represents the information
being written. The read head is based on a GMR structure, which will sense the
change of the magnetization of each bits, and get ’0’ or ’1’.[58]
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Figure 6.2: Top: The bits with different magnetization will generate different mag-
netic field around themselves. Bottom: Magnetic field on different location around
two neighboring bits with opposite magnetization.[23]
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the storage capacity, the bit density should be higher, which means each bit must be

smaller. From figure(6.3) we can clearly see that smaller bit size means smaller λ,

thus larger k. In this case, the stray field decays more rapidly so that the write and

read processes become harder. On the other hand, theoretical study shows that for

longitudinal recording bits, the demagnetization factor is:

NL =
Mrt

λ
(6.7)

So smaller wavelength also means larger demagnetization factor, which makes the

medium more difficult to be magnetized. To reduce NL, the thickness of the medium

should be reduced. However, decreasing the thickness means decreasing the signal

strength, which makes the medium unfavorable for recording purpose. One way to

break the limit of the longitudinal medium is to use perpendicular recording medium,

the easy axis of which is perpendicular to the medium plane. In this situation, the

demagnetization becomes:

NP =
Mrλ

t
(6.8)

Therefore, the recorded information can be packed with greater density.

6.1.2 Perpendicular Magnetic Recording

Perpendicular magnetic recording (PMR) was first proven advantageous in 1976

by Professor Shun-ichi Iwasaki in Tohoku University in Japan[59]. PMR media break

the thermal limit of the longitudinal media, and allows higher areal density. In 2005,

Toshiba produced the first commercially available PMR disk drive, which had a size

of 1.8 inch and a storage of 80 gigabytes. Later in January 2006, Seagate Technology

began selling its first 2.5-inch hard drive with perpendicular recording technology.

One year later, Hitachi announced the first 1 terabytes hard drive. In 2009, Western
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Figure 6.3: Each magnetized bit produces a magnetic field around it. When consider
all the bits, the field form a sine distribution. The field decays exponentially with the
distance to the surface of the bits.
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Digital announced the first 2.0 terabytes SATA hard drive with PMR. In the figure

6.4 , a sketch of the PMR structure from Hitachi is shown.

The whole structure was deposited on a glass or metal substrate. Two soft

magnetic underlayers was separated by a spacing layer. With a proper thickness

of the spacing layer, the magnetizations in the two neighboring would form anti-

ferromagnetic coupling, which is a reliable reference layer for recording. The seedlay-

ers would provide a special growth direction of crystal in the later process, and the

growth underlayers served as a buffer layer to reduce the lattice match and improve

the crystal quality. The oxide-segregated magnetic layers were the true recording

layer, with a magnetic easy axis perpendicular to the thin film. On top of the record-

ing layer, a thin layer of carbon overcoat was deposited. During the writing and

reading processes, the write head and read head are very close to the disk, usually

tens of nanometer. The overcoat layer would prevent the recording layer from being

damaged when the heads accidentally touch the disk.

For a good recording material, the squareness of the M-H loop is the key factor

to ensure the bistable state for digital recording. The loop squareness can be defined

as[23]:

S =
Mr

Ms

= mr (6.9)

where Mr is the remanence and Ms is the saturation magnetization. However,

this factor can not well describe the squareness because it can not express the change

of magnetization when the field changes direction. A modified squareness factor can

be written as:

S? = 1− Mr

χ0Hc

(6.10)
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Figure 6.4: Perpendicular magnetic recording structure used in Hitachi.[60]
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where Hc is the coercivity of the material and χ0 is the susceptibility. If the S?

is larger, the magnetization switching is sharper, which means better perpendicular

magnetic anisotropy.

The early recording media for digital recording were mostly making use of the

particulate materials1, which the anisotropy mainly came from the shape anisotropy

of the unit particles. With the rapid development of thin film technique, the par-

ticulate media have been replaced by thin film materials, which can greatly reduce

the size of the devices. For thin film media, the required anisotropy comes from the

crystal anisotropy, therefore, the crystal direction is an important factor to consider.

Perpendicular media are generally deposited on a thin layer of high permeability,

longitudinal material. For writing process, when the head, which has a tip size as

small as one bit, passes each bit, the field will magnetize it. The high permeability

underlayer effectively creates an image pole tip, focusing the flux. To form a complete

magnetic field loop, a return pole, which has a much larger size, should be made. The

focused flux in the underlayer can go back to the return pole, through the recording

layer. The coercivity of the recording layer should be fairly high, and the size of the

return pole should be large enough that when the magnetic flux passes though the

media layer, the magnetization in those bits will not be changed (figure(6.5))[23].

Noise in Perpendicular Media

Compared with particulate media, thin film is more prone to noise. This is because for

a particulate media, each particle is almost completely isolated with each other. And

the larger particle size reduces the effect of noise. However, for a thin film medium,

the grain boundaries are narrow enough so that the adjacent grains tend to couple by

exchange coupling or dipole field. Thus at the boundary of each bit, a zigzag domain

wall will be formed with an amplitude[23]:
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Figure 6.5: In perpendicular recording structure, the pole in the write head can be
much smaller than that of the longitudinal structure. The focused magnetic flux can
switch the magnetization more efficiently, reducing the power consumption.[23]
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Z ∼ M2
s

K1/2
(6.11)

Where Ms is the saturation magnetization and K is the anisotropy coefficient.

From the equation, one way to reduce the noise is to increase the anisotropy. However,

this is not an easy way since the increased anisotropy will make it harder for the write

process. Another method is to increase the bit density, which will increase the signal

to noise ratio (SNR):

SNR ∝ N1/2 (6.12)

6.2 Mechanism of Perpendicular Magnetic Anisotropy

Perpendicular magnetic anisotropy can be found in several materials and struc-

tures. For multilayer structures, Co/Pt, Co/Pd, Co/Ni, CoFe/Pd, CoFe/Pt, Co/Cr/Pt

etc. can all show perpendicular magnetization. On the other hand, some alloys, such

as CoFe, CoPt and CoCr, and some rare earth transition metals (RE-TM), also have

the similar property. For any magnetic materials, the crystalline and stress-induced

anisotropy have effect on the direction of easy axis. If the materials become thin-

ner and thinner, the surface and interface anisotropy dominate the direction of the

magnetization.

Co/Pt bilayer structure is one of the earliest perpendicular magnetic anisotropy

structures people studied. The bulk Cobalt has a hcp structure, which makes the easy

axis of Co along the c direction. For a single layer of Co, however, the magnetization

easy axis is usually in plane, which is determined by the strong shape anisotropy of

the thin film structure. However, when a very thin layer of Co is deposited on top

of a thin layer of Pt, the easy axis will be pulled our of plane. In this structure,
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besides the shape anisotropy of the thin film, other anisotropy also have effect on the

magnetization.

Magnetocrystalline Anisotropy

Magnetic anisotropy is used to describe the internal energy dependence on the di-

rection of the spontaneous magnetization. Generally, magnetic anisotropy terms has

the same symmetry as the crystal structure, which is also called magnetocrystalline

anisotropy. For Cobalt, the easy axis of magnetization is along the c axis, which

makes a uniaxial anisotropy. As the magnetization is pulled away from the easy axis,

the internal magnetic energy will increase with the increasing of the angle θ. Usually,

this energy can be expressed as[23]:

Ea = Ku1sin
2θ +Ku2sin

4θ +Ku3sin
6θ +Ku4sin

6θcos6ϕ (6.13)

where Kui with i = 1, 2, 3... are the anisotropy constant, θ is the angle between the

magnetization M and the easy axis, and ϕ is the azimuthal angle of the magnetization

in the plane perpendicular to the easy axis. If the constants Kui are positive, the

magnetic energy is minimum when the angle θ is zero, which represents easy axis;

otherwise, the energy is maximum at zero angle, indicating the hard axis. Since sinθ

and cosθ are smaller than 1, the first two terms are usually much larger than the rest.

Therefore, for most purposes, it is sufficient to only keep those two terms.

For Cobalt at room temperature, the experimental anisotropy constants are:

Ku1 = 4.3× 105J/m3 and Ju2 = 1.5× 105J/m3 (6.14)

So the Co anisotropy is zero when the magnetization is along the easy axis, and

gradually increase when the magnetization are pulled to other directions.
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Shape Anisotropy

As is mentioned in the previous section, the bulk Co has a hcp structure, which makes

the c axis a preferable direction for spontaneous magnetization. However, for Cobalt

thin film, the situation will be different [61]. When deposited on a crystallized sub-

strate, the Co thin film may form a fcc structure, which has a (111) plane. In this case,

the uniaxial anisotropy does not apply anymore. Instead, for cubic structures, usually

the cubic anisotropy will apply. Therefore, the perpendicular axis is no longer an easy

axis. The cubic anisotropy will make the easy axis along the x, yandz directions, and

for (111) plane, the magnetization will lie in the thin film plane direction.

On the other hand, for thin film Co, another anisotropy, called shape anisotropy,

starts to dominate. The magnetic moment of each atom can be regarded as the

result of the magnetic dipole, which is similar to the electric dipole moment. In this

method, assume there exists magnet poles (positive and negative), and the two poles

with opposite sign will form a dipole, therefore, a moment. For Co thin film, if the

magnetization is out of plane, then there will be free poles on the surface, which

will increase the magnetostatic energy. Even if the whole thin film has many tiny

domains, since in each domain, the magnetic moments are either point up or point

down, therefore the density of magnetic free poles on the surface will not decrease.

Thus, the perpendicular direction is not preferred for spontaneous magnetization.

However, if the magnetization is in plane, there will be no magnetic free poles on

the surface of the thin film. Instead, they only exist at the two ends of the sample.

Since for a thin film, the size of the surface is much larger than that of the two

ends, the magnetic free poles are much fewer in this case, which greatly reduces the

magnetostatic energy, no matter how many domains exists inside the film. Therefore,

the shape anisotropy dominate the magnetization direction of the Co thin film.
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Magnetoelastic Effects

During the process of magnetization, the shape of the specimen of ferromagnetic

materials may change. The external and internal magnetic field will change the

crystal constant slightly, and causes strain. This is called magnetostriction. Even

though the deformation is quite small, it may change the magnetic property of the

material, especially for thin films.

The deformation is often expressed by δl/l, where δl is the change in shape during

magnetization process and l is the original shape or size. Just like the magnetization

can reach a saturation when the external field is large enough, the change of shape also

has a limitation, which is called the saturation magnetoelastic, λ. In a ferromagnetic

material, there exist many domains within which the directions of magnetization

are different. Thus, the crystal lattice will spontaneously deformed in the direction of

domain magnetization. When an external field is applied, the magnetization direction

in each domain will rotate to the direction of the field, and eventually reach saturation

when the field is large enough. In this case, the magnetostriction also researches

saturation. Suppose the total change in the direction of magnetization is e, then the

saturation magnetostriction can be calculated as[23]:

λ =
δl

l
|sat −

δl

l
|dem =

2

3
e (6.15)

The origin of magnetostriction is the interaction between the magnetic moments

from each atom. Suppose the distance of between two magnetic moments is r, which

is variable in the magnetization process, then the interaction energy can be written

as[23]:

w(r, cosϕ) = g(r) + l(r)(cos2ϕ− 1

3
) + q(r)(cos4ϕ− 6

7
cos2ϕ+

3

35
) + ... (6.16)
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where g(r) is the exchange interaction between two moments, which is indepen-

dent of the direction of magnetization. The second term represents the dipole-dipole

interaction, which depends on the magnetization direction and is the principal origin

of magnetostriction. The third term and all other terms are much smaller than the

first two terms so that they are negligible. Therefore, the total interaction energy can

be written as:

w(r, ϕ) = l(r)(α1β1 + α2β2 + α3β3)2 − 1

3
(6.17)

where (α1, α2, α3) represent the direction cosine of the domain magnetization and

(β1, β2, β3) are for that of the bond direction. In a crystalized sample, the defor-

mation of the lattice can be represented by the strain tensor, which can be used to

calculate the bond direction (β1, β2, β3). Therefore, the the energy expressed in equa-

tion (6.17) is related to the lattice strain and the domain magnetization direction,

and can be called magnetoelastic energy. Thus, the origin of magnetostriction is the

magnetoelastic energy induced by the magnetocrystalline anisotropy of the deformed

crystal.

The atoms at surface or interface will have different structure and magnetic prop-

erties with the bulk. The surface magnetism will depend on the atoms local envi-

ronment such as the symmetry, the number of nearest neighbors, and the distance

between the surface atoms and the bulk material.

At surface, the coordination and bonds are reduced which will lead to significant

changes in electronic structure. For example, Ni has 28 electrons outside the nucleus,

which has an arrange of [Ar]3d84s2. At the surface, each Ni atom has 9 nearest neigh-

bors (for (111) surfaces) or 8 nearest neighbors (for (100) surfaces), while the bulk

Ni atoms have 12 nearest neighbors. As the result, calculations show the magnetic

moments at the surface are enhanced. The surface charges that go into the vacuum
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are almost s and p electrons, while d electrons become more localized. This spatial

separation of d electrons and s-p electrons increases the localization d electrons, thus

the magnetic moments.

On the other hand, the atomic planes near the surface usually show a smaller

distance to the bulk than that of the lattice constant. This is due to the lacking of

bond of the surface atoms. At the surface, the compression of s band electrons are

not as strong as in the bulk, resulting in a reduced s electron density, which leads to

less screening effect to the d electrons on the surface. Therefore, the atoms at the

surface experience stronger attraction and reduced repulsion from their neighbors,

which will cause surface relaxation.

Besides surface relaxation, when a thin film is deposited on another material with

different lattice constant, a large lattice mismatch will occur. The mismatch can be

written as:

η =
a1 − a2

(a1 + a2)/2
(6.18)

where a1 and a2 are the lattice constant for the two materials. When a thin film

with thickness d grows on another thin film (or substrate), the elastic energy per unit

area is proportional to η2d
2

. And there exists an critical thickness, dc, above which

the strain energy will exceed the energy cost for the formation of dislocation. Thus,

it is favored to form more dislocations. Calculations show that the critical thickness

varies inversely with the strain. Generally, the average magnetoelastic energy varies

approximately as η(dc
d

)3, which means the thinner the thin film is, the stronger the

anisotropy will be.
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6.3 Co/Pt Bilayer

Co/Pt bilayer structure is one of the earliest multilayer perpendicular magnetic

anisotropy structures people discovered [62, 63]. This bilayer structure has several ap-

plications in industry, including the heat assisted magnetic recording media, magneto-

optical studies, laser induced ultrafast demagnetization dynamics studies [64]. Gener-

ally, this multilayer PMA structure has larger coercivity, making it a good candidate

for fabricating magnetic tunnel junction.

Bulk Co has a hcp crystal, with the lattice constant a = b = 250.71pm and

c = 406.95pm. Pt has a fcc structure with a = b = c = 392.42pm. The large

difference in the lattice constants leads to huge lattice mismatch for this bilayer

structure. This mismatch, which will cause large strain and magnetoelastic energy,

pulls the easy axis of the Co thin film from in plane to out of plane. Besides, the

atomic orbit interaction also has effect on the magnetic behavior. At the interface

between Co and Pt, the strong hybridization will enhance the spin-orbit coupling,

thus enhance the perpendicular magnetic anisotropy [65–68].

6.3.1 Sample Preparation

The Co/Pt bilayer structure is deposited on a Si substrate with a 500 µm thermally

oxidized SiO2 layer, by the DC magnetron sputtering system. The Ar base pressure

is about 2 × 10−8torr under room temperature. To realize good PMA property, a

layer of Pt buffer is deposited first, and then a thin layer of Co, about 4Å. Next, a

thin layer of Pt, about 6Å, is deposited. Now a Co/Pt bilayer structure is formed.

To realize stronger signal, another n periods of Co/Pt bilayers are deposited on top

of the first one. So the whole sample is: Pt(x)[Co(4)Pt(6)]n, where x means that the

thickness of the Pt buffer layer varies, and n is the total period of Co/Pt bilayer.
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First, to find the optimal Pt buffer layer thickness, a Pt wedge is deposited, with

x = 0 to 60Å, and n = 4 is fixed. The Pt buffer layer will optimize the crystallization

of the Co layer. And the Pt (111) plane is help for the Co (hcp) crystal growth so that

the easy axis could be out of plane. If the there is no buffer layer, the thin Co layer

on the substrate will turn to be (111) plane so that the easy axis tends to be in plane.

After the sample is fabricated, it is cut into 6 pieces with the same size. To test if

all the pieces have good PMA, anomalous Hall effect is measured for all pieces. The

sample and the measurements results are shown in figure(6.6). As can be seen from

the results, when the Pt buffer layer is thinner, a sharp switching loop is observed

(piece #1 to #4). This means that in those samples, the easy axis of the Co layers are

out of plane. If one takes a closer loop at the curve, one can see that the coercivity of

the graph is about 360 Oe, which is large enough for the purpose of magnetic memory

fabrication. Usually, the Co/Pt bilayer structures are used in heat-assisted magnetic

recording. A laser (or other small heat source) is used to head the recording bits,

reducing the coercivity and then the information can be written on them. On the

other hand, the good square shape of the loop indicate a large remanence, making it

suitable for permanently store the data. When the magnetic field generated by the

write head magnetizes the recording bit, the magnetization will reach saturation and

the information is written on the bit. After the writing process, the read head moves

to another place, and the large remanence will keep the data, unless it is been written

again. Therefore, large remanence is preferred for data storage.

For sample pieces #5 and #6, the squareness of the loop is not as good as the

previous pieces. The coercivity is smaller, which makes the magnetization easier to be

changed by a small field. This should be avoidable for data storage medium because

smaller coercivity makes the recording bits easier to be switched by external noise.

On the other hand, the smaller remanence is not suitable for data storage since it will
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Figure 6.6: (a). Illustration of the sample with a wedge Pt buffer layer; (b). Illus-
tration of anomalous Hall effect measurements; (c). Results of anomalous Hall effect
measurements for different pieces.
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generate smaller magnetic field for the read head, which will cause read fault. The

reason for the worse PMA may due to the current shunting effect caused by the thick

Pt buffer layer. The conductance of Pt is 0.96×105S/cm, which is comparable to that

of Co (1.72× 105S/cm )[28]. Since the thickness of the buffer layer in pieces #5 and

#6 is more than 10 times thicker than that of Co thin layer, most currents in those

samples may flow through the Pt buffer layer, instead of the Co layer. Therefore, the

magnetization information is lost.

Besides the optimal Pt buffer thickness, another interesting parameter to explore

is the number of Co/Pt bilayer period. To study the period dependence of PMA, a

series of samples with Co/Pt periods n = 4, 8, 12, 16 and 20, respectively, have be

fabricated, with Pt buffer layer is 35Å. After the fabrication, the anomalous Hall

effect measurements have be conducted on each sample, and the results are shown in

figure(6.7).

From the results, one can see that when the number of period is 4, a good sharp

switching is achieved. When the number of period increases, the squareness of the

loops become worse so that the PMA property gradually disappears. When the

number of periods is larger than 12, the remanence start to decrease, making it not

suitable for fabricating data storage medium anymore. One of the reason is that with

the number of periods increasing, the total thickness of Pt layer becomes thicker,

which will draw much current flow inside. As a result, the electrons will suffer from

scattering in the Pt layers and lose the magnetic information. On the other hand,

the Pt thin layer might be magnetized due to the magnetic proximity effect. The

magnetized Pt layer may have a magnetic easy axis in plane, which may affect the

magnetization in the Co layer, through the exchange interaction. Pt is a material

with a Stone criteria close to 1, which makes it easy to be magnetized[22].
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Figure 6.7: Top: Illustration of the sample with a different number of Co/Pt bilayer;
Bottom: Results of anomalous Hall effect measurements on samples with different
Co/Pt periods
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6.3.2 HM/FM/Oxide Structure

Besides Co/Pt bilayer structure, which both layers are metal, nowadays people are

more interested in another structure, namely Heavy Metal (HM)/ Ferromagnet (FM)

/Oxide structure. This kind of structure is a promising candidate to fabricate high

quality magnetic tunnel junction (MTJ). In MTJ structure, electrons tunnel through

a thin layer of insulating barrier from a ferromagnetic layer to another. When the

magnetization of the two ferromagnetic layers are aligned parallel, the resistance is

minimum; while if they aligned antiparallel, the resistance is maximum. This behavior

is first discovered by M. Julliere in 1975[10]

To realize good PMA behavior, Ta and Hf are chosen as the heavy metal, CoFeB

is chosen as the ferromagnetic layer and MgO is chosen as the oxide layer. First

calculation showed that the PMA property is induced by the interaction between

Fe ion in the CoFeB and O ion in the MgO[69, 70]. Some experiment indicated that

during the process of sample deposition, the B atoms may diffuse from the CoFeB layer

to the bottom heavy metal, improving the Fe-O interaction, which will enhance the

PMA[71]. On the other hand, some other studies showed that the interaction between

the heavy metal and the CoFeB may also increase the PMA[72, 73]. Besides, Rashba

effect and Dzyaloshinskii-Moriya interaction have also been extensively studied, in

order to explain the current induced magnetization switching in the CoFeB layer[74–

81]

The sample is fabricated by magnetron sputtering with a base pressure about

2.0 × 10−8torr. A heavy metal layer, Ta, of 20 Å, is sputtered on the thermally

oxidized Si substrate. Next, a layer of CoFeB is grown, followed by a layer of MgO

about 20Å. Then a thin layer of Ta (about 10Å) is deposited on top of MgO for

protection.
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Since the magnetic axis direction is determined by many factors, including the

shape anisotropy, interface anisotropy, Fe-O interaction etc, it is important to find

out the best thickness of CoFeB layer. The first sample fabricated has the structure

Ta(20)/CoFeB(0−10)/MgO(20)/Ta(10), with all the numbers in the units Å. After

deposition, the sample is cut into 9 pieces and anomalous Hall effect is measured for

all the pieces.

From the results in the right of figure(6.8), one can see that when the CoFeB

thickness is less than 4.4Å, the hysteresis loop is not a square, with a very small

coercivity about 5 Oe and smaller remanence. On the other hand, the loop does not

reach saturation when the field increases and thus shows a paramagnetic behavior.

The reason may due to the very thin thickness of the CoFeB layer. When this layer is

very thin, a continuous film may not be formed. In this case, the exchange interaction

between the ferromagnetic atoms may not be strong enough so that the layer would

show superparamagnetism. On the other hand, due to the lack of Fe atoms in the

CoFeB layer, the interfacial Fe-O interaction may not overcome the shape anisotropy

induced by the grain of CoFeB, which would have effect on the PMA. When the

thickness is thicker than 5.5Å, good PMA can be observed from the squareness of

the loop. With the thickness increasing from 5.5Å to 8Å, the PMA remains and the

coercivity increases to maximum at 6.6Å and slightly decreases when the thickness is

about 8Å. Therefore, the best thickness for PMA is about 6.6Å. When the thickness

reaches 8.8Å or higher, the loop squareness becomes worse, which indicates the fading

of PMA property. This reason may be different from the case of very thin CoFeB

layer. When this layer is thick, the thin film shape anisotropy will be stronger, so that

the in plane exchange interaction of each layer may be stronger, which will overcome

the perpendicular anisotropy at the interface between CoFeB and MgO. On the other

hand, the B atom may not be efficiently diffuse to the bottom Ta layer, due to the
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Figure 6.8: (a). Illustration of the sample with a CoFeB wedge; (b).Illustration of
anomalous Hall effect measurement. (c). Results of anomalous Hall effect measure-
ments on samples with different CoFeB thickness
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thick CoFeB layer, which may jeopardize the PMA.

After find out the best thickness for PMA, a detailed Hall measurement is con-

ducted for the sample pieces with the best PMA. As is shown in the figure(6.9), a

current of 0.2 mA is sent into the sample through the two horizontal leads (indicated

by the yellow dots), and voltage is measured through the two leads in the vertical

locations. When the field is in the positive direction (assume from outside the paper

to inside of the paper), and reaches saturation, all the magnetic moments are aligned

with the field direction. The electrons will be deflected to one side of the sample, due

to the external field and the magnetization direction, resulting in a electrical potential

difference between the two sides of the sample. Assume the upside of the sample has a

negative potential and the downside of the sample has a positive potential. When the

magnetic field decreases, the magnetization of the sample holds to the same direction

due to the strong PMA. And when the field starts to go to the negative direction, the

magnetization starts to flip to the opposite direction, resulting in a decreased Hall

voltage, thus a smaller Hall resistance. At some certain field, the Hall voltage will

drop to zero, resulting in a zero Hall resistance shown in the loop, called zero Hall

step. When the field keeps increasing to this direction, the Hall voltage stays at zero

for a small field range, and then starts to change from positive to negative and keeps

increasing in the negative direction. When the field is large enough, all the magnetic

moments are flipped to align with the field, and saturation is achieved again.

One explanation of the zero Hall step is that there exists a slanted domain wall in

the CoFeB layer. When the field is large enough so that the magnetization reaches

saturation, there is no domain wall in the sample. Since in the sample, the CoFeB

is a wedge, so when the field changes from positive to negative direction, the area

with thinner CoFeB flip first. In figure(6.9), the blue area represents the flipped area,

which has a positive potential on the upside of the sample and a negative potential
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Figure 6.9: Left: Illustration of the anomalous Hall measurement. The four yellow
dots represents the Indium leads. The two horizontal ones are the current leads and
the other two vertical ones are for voltage measurements. The + and - sign indicated
the electrical potential of the Hall signal on different locations of the sample. Right:
Results of anomalous Hall effect measurements
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on the downside of the sample, just opposite with the signs in the red area. When

the field keeps increasing in the opposite direction, the slanted domain wall will move

from left side of the sample to the right side of the sample. When the field reaches a

certain value, the domain wall will cross the two voltage leads. The Hall resistance

can be calculated by:

RH =
Bz

nte
+
RsM

t
(6.19)

where Bz is the field in the z direction, n is the electron number density, e is

the electron charge, t is the layer thickness, M is the magnetization and Rs is the

anomalous Hall coefficient. From the above equation, the Hall signal only depends

on the thickness of the CoFeB layer, so that as long as the slanted domain wall is

between the two voltage leads, the Hall voltage is zero so as to the Hall resistance.

When the field keeps increasing, the domain wall will remain between the two leads.

Thus the Hall signal will be zero in this range. However, when the field becomes

larger, eventually the slanted domain wall will pass both the voltage leads, one can

start to observe the anomalous Hall effect again. And when the field is large enough,

all the magnetization will flip, reaching saturation. Thus, the potential in the upside

becomes positive and downside becomes negative.

To further confirm the slanted domain wall behavior, the anisotropic magnetore-

sistance (AMR) is measured on the same piece of sample. Current is still sent with

the two horizontal leads, labeled by I+ and I- in figure(6.10). Voltage is measured

through leads pair 1 & 2 and 3 & 4. When the voltage is measured through 1 &

2, assume the initial voltage is negative when the magnetization reaches saturation.

Therefore, the voltage difference is zero between the two leads. When the field is

applied in the opposite direction, the slanted domain wall begins to appear from the

left side of the sample (where the CoFeB is thinner). At some certain field, the do-
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main wall will pass the lead 1, so that the voltage at 1 is positive and voltage at 2 is

negative. The difference, V1 − V2, gives a positive value, thus result in a peak in the

measured curve (indicated by the red peak in the purple dashed box). With the field

continuing increasing in this direction, the slanted domain wall will keep moving. If

the domain wall passes through both 1 and 2, the voltage at both location becomes

positive, giving a zero signal again.

When the signal is measured through leads 3 and 4, it is slightly different. Initially,

the case is similar with the previous measurements, with both leads carrying a positive

voltage and a zero voltage difference. When the slanted domain wall appears due to

the application of opposite field, it passes lead 3 ahead of 4, making the voltage at 3

a negative value. So V3− V4 is a negative value, which gives a dip in the black curve.

When the slanted domain wall pass though both leads, the voltage at those locations

become negative, resulting in a horizontal line in the result. More importantly, the

peak in the red curve and the dip in the black curve (in the purple dashed box)

appears at different location. This does confirm that this behavior is due to the

slanted domain wall because the wall will pass the voltage leads at different side of

the sample under different magnetic field. When the field is scanned in the opposite

direction, it results in a dip in the red curve and the peak in the black curve. Again,

the peak and dip appear at different location, which further confirms the existence of

the slanted domain wall inside the CoFeB layer.

Moreover, the slanted domain wall has a thickness dependence. The results in

figure6.8 show that when the thickness of CoFeB is too thin or too thick, the PMA

is not as good as that in the samples with CoFeB thickness around 7 Å. So when

detailed anomalous Hall effect are measured for those samples, the slanted domain

wall behavior is not as obvious as that in the ones showing good PMA. From the

illustration in figure(6.11), one can see that when the CoFeB layer is thin (#4), the
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Figure 6.10: Left: Illustration of the AMR measurement. The two yellow dots
labeled by I+ and I- represents the current leads, and the four labeled by 1, 2, 3
and 4 represent the voltage leads. The voltage signal is measured by the potential
difference between leads 1 & 2 and 3 & 4. Right: Results of anomalous Hall effect
measurements
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squareness of the loop is not good and the coercivity is small. So the zero Hall step is

not clear. For samples #6 and #7, the loop shows clear PMA property, and the step in

the middle of the loop is quite obvious. And when CoFeB becomes even thicker (#8),

the PMA property gradually fades and thus the step vanishes. One possible reason

for this thickness dependence is that the domain walls in the good PMA samples are

much thinner than that in the non PMA samples. When the domain wall is thin, it

is easier for the two voltage leads to fall into two different domains simultaneously

when the domain wall is moving by scanning the external field. When the domain

wall is thicker, the two voltage leads will fall into a single domain, resulting in just a

normal hysteresis loop without any zero Hall step. Even though they can be in two

domains, due to the thickness of the domain wall, this split may only last within a

small range of magnetic field, which will cause a quite indistinct step in the loop.

This slanted domain wall behavior can be used to fabricate new domain wall based

spintronics devices. One of the outstanding property of it is the possible infinite MR

ratio. The magnetoresistance (MR) ratio is calculated by:

MR(%) =
Rs −R0

R0

(6.20)

whereRs represents the resistance at saturation andR0 represents the resistance at

the zero Hall step. From the previous data, R0 = 0 when the slanted domain wall lies

in between the two voltage leads, making the MR ratio infinite. More importantly,

the zero Hall step exists in a range of magnetic field, which makes it possible to

fabricate any devices that requires very high MR ratio.

Besides, this structure also indicates the single domain behavior in the CoFeB

layer. The movement of domain wall is controlled by apply external field, and can be

monitored by measuring the Hall resistance. This makes it possible to integrate this

structure in the domain wall spintronics logical devices.
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Figure 6.11: The number in the legend represents the thickness of the CoFeB layer.
For the #4, #5 and #8curve, the magnetization is not quite perpendicular, which
barely shows any zero Hall step in the loop. And very clear step can be observed for
#6 and #7 samples, in which very good PMA can be achieved.
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In conclusion, perpendicular magnetic anisotropy is successfully achieved in the

sample Ta/CoFeB/MgO. Results show that the PMA is quite sensitive to the thick-

ness of the CoFeB. Besides, detailed anomalous Hall effect measurements show that

there exists a zero Hall step in the middle of the hysteresis loop, which results from the

slanted domain wall movement inside the CoFeB layer. And this zero Hall step has

a thickness dependence of the CoFeB layer, which may caused by the wall thickness

differences in the PMA sample and non PMA sample.
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Chapter 7

TRIPLET SUPERCONDUCTIVITY

7.1 Motivation

Since the discovery of superconductivity in 1911, much effort has been put in this

area to find more superconductors. Superconductivity has been detected in many

materials when the temperature is sufficient low. Usually, the highest critical tem-

perature (Tc) for metals in the periodic table is usually about a few Kevin, while

some material can only show superconductivity under high pressure. For example, Si

will become superconductor when the pressure is about 15GPa and Tc = 8.2K[82].

To put the superconductor materials in applications, a higher Tc is preferred. During

the last few decades, much effort has been put in searching for high Tc supercon-

ductor (HTS). In 1986, J. Georg Bednorz and K. Alex Muller, at IBM, discovered

superconductivity in a new ceramics materials, which awarded them with the 1987

Nobel Physics Prize[83]. The proposed material was a barium doped compound of

Lanthanum and copper oxide, which had a Tc = 35K. Currently, the SC with highest

Tc is the mercury barium calcium copper oxide (HgBa2Ca2Cu3O8), with Tc about

133K[84].

Besides Tc, the spin in the SC has also attracted a lot of attention, especially

after the proposal of BCS theory. The spin configuration in one Cooper pair is

of great interest. According to quantum theory, two electrons can not occupy the

same quantum state since they are Fermions. Therefore, the total wave function for

the Cooper pair should be antisymmetry: if the spatial symmetry is odd, the spin

symmetry should be even; if the spatial symmetry is even, the spin symmetry should
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be odd. As a consequence, superconductivity can be classified into two categories:

spin-singlet and spin-triplet.

Up to today, almost all the superconductors are s-wave SC with an isotropic su-

perconducting gap[29]. All the high Tc cuprates are d-wave SCs with an anisotropic

gap structure with nodes and knobs, due to an intriguing and still unknown pairing

mechanism[85]. The Fe pnictide SCs, which were suspected to be d-wave SCs, were

proved to be s-wave[86], even though the two spins follows an unconventional spm pair-

ing. The p-wave SCs were predicted in the BCS theory in 1950s[29]. However, little

experimental confirmation have been made about that category[87–89]. Currently,

only the superfluid He3 is proved to have triplet spin pairing[90–92]. The searching

for solid states p-wave pairing is still one of the most challenging research topics.

Over the years, there have been several SCs that were predicted or suspected to be

triplet, including the heavy fermion such as UPt3[93–97], some SC without inversion

symmetry[98, 99], ferromagnetic proximity effect induced triplet spin pairing[100],

and Fe-SC[101] etc. Experimentally, triplet SC exhibit similar properties as those

of singlet SC, such as sudden drop of resistance, Meissner effect and so on. There-

fore, distinguishing triplet SC from singlet SC is a tough job and requires specific

technique. One of these few complex experiments is the nuclear magnetic resonance

(NMR) Knight shift[102] and phase sensitive methods with sophisticated data analysis

method[103]. So far, the strongest triplet SC candidate may be the layered perovskite

Sr2RuO4[87–89]. However, this material has a quite low Tc, which is below 1K. On

the other hand, the fabrication of high quality superconducting thin film also prevents

people from getting solid experimental confirmation of the spin pairing configuration.

Triplet SCs can offer insight for understanding unconventional superconductivity

and new applications in quantum computing[104, 105]. Additionally, the supercurrent

in triplet SC can be a super spin polarized current, which carries spin angular mo-
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mentum without causing Joule heating, so that it can greatly benefit the development

of new spintronics devices[104]. Therefore, it is of great importance to experimentally

confirm the existence of triplet SC.

7.2 Singlet and Triplet Superconductivity

As is discussed in Chapter 3, the two electrons in one Cooper pair have a weak

attraction through the electron-phonon interaction. In quantum theory, suppose the

two electrons interact with each other through the potential V (r1−r2), which is inde-

pendent of the spins and other electrons below the Fermi level, then the Schrodinger

equation can be written as[106]:

− ~2

2m
(∇2

1 +∇2
2)ψ(r1 − r2) + V (r1 − r2)ψ(r1 − r2) = (4+

~2k2
F

m
)ψ(r1 − r2) (7.1)

where 4 is the energy difference between the Cooper pair and two independent

electrons.

Consider the center of mass of the two electron, R = r1+r2
2

, and the relative motion

of the two electron is r = r1 − r2, then equation can be written as[106]:

− ~2

m

∂2ψ(r)

∂r2
+ V (r)ψ(r) = (4+

~2k2
F

m
)ψ(r) (7.2)

In momentum space, the wave function can be calculated by[106]:

g(k) =

∫
d3re−ik·rψ(r) (7.3)

Therefore, the wave function in the momentum space is:

~2

m
k2g(k) +

∫
d3k

′

8π3
V (k− k

′
)g(k

′
) = (4+

~2k2
F

m
)g(k) (7.4)
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On the other hand, the interaction between the two electrons in the momentum

space can be calculated by:

V (k− k
′
) =

∫
d3re−i(k−k

′
)rV (r) (7.5)

The wave vector, k, also depends on the direction:

V (k− k
′
) =

∞∑
l=0

Vl(k, k
′
)

l∑
m=−l

Ylm(k̂Y ∗ml(k̂
′
)) (7.6)

where Ylm(k̂) are the spherical harmonics, l is the orbital angular momentum and

m is the z-projection of l.

The weak attraction between the two electrons in the Cooper pair is supposed to

happen in a thin layer on the Fermi surface, with a thickness about εl � εF =
~2k2F
2m

.

Therefore, the potential becomes[106]:

Vl(k, k
′
) =


−Vl, for εF < ~2k2

2m
, ~

2K
′2

2m
< εF + εl

0, outside the interval(εF , εF + εl)

(7.7)

Solve the Schrodinger equation, one can find:

4l = 2εle
− 2
N0Vl (7.8)

where N0 = mkF
2π2~2 is the density of states at the Fermi level for one spin projection.

This equation means that the weak interaction between the two electrons induces a

bound state with an energy related to the orbital angular momentum.

Besides, the superconducting states in the momentum space is:

gl(k) =
l∑

m=−l

alm(k)Ylm(k̂) (7.9)
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For a given angular momentum l with different coefficient alm(k), the critical

temperature is the same. On the other hand, the orbital wavefunction, g(k), is even

when the values of l are even and odd for odd l:

gl(k) = (−1)lgl(k) (7.10)

The spin wavefunction can be expressed with χ12, with the subscription represent-

ing the spin component of the two electrons. Therefore, according to Pauli’s exclusion

principle, the total wavefunction should be antisymmetry:

gl(k)χ21 = −gl(k)χ12 (7.11)

Use | ↑> to represent spin up electron and | ↓> for spin down electron. If,

in one Cooper pair, the two electrons have antiparallel spin, the total spin angular

momentum, S = 0. Therefore, the wave function corresponds to one spin projection:

Sz =
1√
2

(| ↑↓> −| ↓↑>) (7.12)

The superconductors with this kind of spin configuration are called singlet super-

conductors.

On the other hand, the spin may occupies triplet states (S=1). In this case, there

are in total three spin projection on the quantization axis, namely:

Sz =


1, | ↑↑>

0, 1√
2
(| ↑↓> +| ↓↑>)

−1, | ↓↓>

(7.13)

In this case, the superconductors are called triplet superconductors.
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Generally, the total orbital angular momentum number, L, can be any integer.

When L = 1, 3, 5..., the superconductors are triplet, and corresponding to p-wave,

f-wave etc. When L = 0, 2, 4..., the superconductors are singlet called s-wave, d-wave

etc.

For p-wave SC, the two spins can be aligned parallel, which is similar to ferromag-

netism. However, usually, superconductivity and ferromagnetism are not compatible.

Superconductors have Meissner effect, which expel all the magnetic flux out of them

when the applied field is below critical field. Therefore, the discovery of p-wave su-

perconductivity is difficulty. On the other hand, even if there exists any triplet SC,

it is quite difficult to distinguish them from singlet SC, experimentally, because the

detection of spin pairing configuration in SC is not a trivial task.

7.3 Andreev Reflection for Different Superconductivity

To distinguish triplet SC from singlet, Andreev Reflection Spectroscopy (ARS)

is used. As was discussed in Chapter 4, ARS is a powerful method to study both

SC and magnetic materials. The results of ARS measurements are based on the

superconducting band structure and the non-SC metal used.

Figure(7.1) shows the difference between the triplet and singlet SC when measured

with ARS. For singlet SC, the two electrons in the Cooper have to be aligned antipar-

allel. Therefore, when a non-magnetic normal metal is used to make point contact on

the SC, and one electron is sent into the metal, this electron will couple with another

electron, form a Cooper pair, and go into the SC. Therefore, one electro is sent in and

two electrons are detected so that the differential conductance will be doubled, com-

pared with the value outside the superconductor gap. However, if the non-magnetic

metal is replaced by a half metal, the result is quite different. In half metal, there is

only one spin band available. Therefore, when an electron is sent into the half metal,

118



Figure 7.1: A: Andreev Reflection measurements for triplet and singlet SC with non
magnetic normal metal. B: Andreev Reflection measurements for triplet and singlet
SC with half metal. C & D: AR results for singlet and triplet SC, respectively. Dash
line: Measurements with non magnetic normal metal; Red solid line: measurements
with half metal.
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this electron can not find a another electron with opposite spin. Thus, no Cooper

pair can be formed and the differential conductance will drop to zero. However, it is

quite different for triplet SC. When a non-magnetic normal metal is used to make a

point contact on the triplet SC, and one electron is sent into the metal, this electron

can find another electro and form a Cooper pair. So the differential conductance will

double. On the other hand, when a half metal is used to make point contact, since

the two electrons in one Cooper can have parallel spin, thus, a coming electron still

can find another electron with proper spin, either parallel or antiparallel, and go into

the SC side. As a consequence, the differential conductance still will double. This is

the crucial difference between singlet and triplet SC when conducting the Andreev

Reflection measurement. By observing the changing in differential conductance, one

can easily distinguish triplet SC from singlet SC.

7.4 p-wave Candidate: Bi/Ni Bilayer

Bi is a non-superconducting semi metal in its thermodynamically stable rhom-

bohedra structure, which is shown in figure(7.2(a)). On the other hand, Ni is a

ferromagnetic material, which is non superconducting. However, after a 3 nm Ni

is deposited on 20 nm Bi, a superconductivity behavior can be observed when the

temperature is below 4K (inset of figure(7.2(a))). In this structure, Ni still remains

ferromagnetism at room temperature (figure(7.2(b))). The incompatibility of ferro-

magnetism and SC indicating that this is the most dramatic nucleation of SC, with

a non superconducting material become superconductor when covered by a layer of

ferromagnet.

The crystal structure of the sample can be detected by RHEED and cross section

scanning transmission electron microscopy (STEM). The bilayer structure is deposited

on a MgO(001) substrate. A 3 nm Ni(001) layer is first epitaxially deposited on the
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substrate at room temperature, and then the system is cooled down to 110K, with

a 20 nm rhombohedra Bi(110) layer deposited on top afterwords. Figure(7.2(c))

shows the results of RHEED and STEM measurement, which reveals a high quality

sharp interface. On the other hand, the appearance of superconductivity does not

depend on the growth sequence. As comparison, when a 20 nm Bi layer is deposited

on the MgO substrate first, and then a 3 nm Ni layer is deposited on top of the

Bi, superconductivity can still be observed, as is shown in figure(??(d)). Again,

this superconductivity does not affect the magnetism of Ni under room temperature

(7.2(e)). However, the combination of the bilayer structure is of great importance.

The orange dots in figure(7.2(e)) shows that when a layer of 20 nm Bi is deposited on

a thin layer of Cu, there is no superconductivity. However, when the Bi/Ni bilayer is

deposited on top of a Cu thin layer, the superconductivity comes back[107].

More interestingly, the superconductivity of the bilayer structure heavily depends

on the thickness of both Bi and Ni layer. For a fixed thickness of Bi, e.g., 20 nm, a Ni

layer with increasing thickness always decimates superconductivity. For tNi = 2nm,

Tc is about 4 K but reduced to 2 K for tNi=4nm. This is due to the stronger exchange

field from a thicker Ni layer. Remarkably, increasing the thickness of the Bi layer

can restore the decimated superconductivity and Tc recovers back to about 4 K.

Further increasing the Ni layer proceeds to reduce Tc. As a result, there are numerous

thickness ranges to explore the unusual and indeed unprecedented superconductivity

in epitaxial Bi/Ni, and above all, the observation of p-wave superconductivity.

To further study the superconductivity in epitaxial Bi/Ni, the critical field for the

structure Bi(15nm)/Ni(2nm) is measured, for both perpendicular (figure(7.4(A)))

and parallel (figure(7.4(B))) to the film plane. To describe the field dependence, we

identify from each resistance vs. temperature curve three characteristics tempera-

tures of onset (0.95RN), mid-point (0.5RN) and zero-resistance (0.05RN), where RN
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Figure 7.2: A: Single layer of rhombohedra Bi is non-superconducting. Single Ni
is non superconducting neither. B: Ni(3nm)/Bi(20nm) shows magnetic property at
300K (MOKE). C: RHEED and cross-section SEM shows good layered structure.
D: Bi(20nm)/Ni(3nm) shows superconductivity under 4K. E: Bi(20nm)/Ni(3nm)
shows magnetic property at room temperature. F: R-T curves for Bi/Cu/MgO and
Bi/Ni/Cu/MgO structures.[107]
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Figure 7.3: (a) and (d): For a fixed Bi layer of 15 nm, the superconductivity appears
when Ni layer is thin. When Ni is thicker than 4 nm, the superconductivity is gone.
(b) and (e): When Ni is a fixed layer of 4 nm, there is no superconductivity when Bi
layer is thin, and appears when Bi layer is thicker than 25 nm. (c) and (f): Thickness
dependence of superconductivity on both Bi and Ni layer.[107]
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is the normal state resistance. For increasing magnetic fields, the three character-

istics temperatures shift to lower values as shown in figure(7.4(C)), which display

the temperature dependence of the upper critical fields in the two directions. For

the perpendicular field (open symbols), which has a lower upper critical field, the

temperature dependence is essentially linear down to 2.0 K. Fitting the results to

the Werthamer-Helfand-Hohenberg (WHH) formula of H⊥C2(0) = 0.69
dH⊥

C2

dTc
|Tc [108],

the upper critical field at T = 0 K from the zero-resistance data (indicated by the

empty blue triangle) is about 1.9 T. For the in-plane field (solid symbols), the up-

per critical field can be well described by H
‖
C2(T ) = H

‖
C2(0)(1 − T/Tc)

α , but the

fitted exponent α is about 2/3, quite different from 1/2 as found in other quasi-2D

superconductors[109, 110]. This is illustrated in the onset data (solid purple triangles)

in figure(7.4(C)), where α = 2/3 (solid purple curve) clearly gives a best fit to the

results than that with α = 1/2 (dashed purple line). We note in figure(7.4(C)) that

the upper critical fields of both directions extrapolated to T = 0 K are substantially

above the Pauli limit of BPauli = 1.83Tc = 7.1T [111, 112], which has been used

for the indication of unconventional including p-wave superconductivity[88]. How-

ever, conclusive p-wave pairing requires spin injection with energies within the gap.

Finally, as expected for quasi-2D superconductors[110, 113], the ratio H
‖
C2/H

⊥
C2 of

epitaxial Bi/Ni diverges when the temperature approaches Tc as shown in the inset

of figure(7.4(C))[107].

To further study the spin pairing in the Cooper pair of Bi/Ni structure, Andreev

Reflection Spectroscopy with Au and LSMO tips have been used. As is discussed

above, the increasing or decreasing of differential conductance in AR measurements

corresponds to the different spin pairing configuration in the Cooper pair. Figure

(7.5(A)) shows the AR measurements for a s-wave superconductor, Pb. For s-wave

SC, the superconducting gap is isotropic. The two spins in one Cooper is antiparallel.
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Figure 7.4: Superconducting transition of Bi(15nm)/Ni(2nm)/MgO in (A) perpen-
dicular and (B) in-plane magnetic field. (C) Temperature dependence of upper critical
fields Hc for perpendicular (open symbols) and in plane (solid symbols). The solid

curves are fittings using H
‖
C2(T ) = H

‖
C2(0)(1− T/Tc)α with α = 2/3 and the dashed

curve with α = 1/2. The divergent nature of the ratio on approaching Tc is shown
in the inset (D) Dependence on superconducting transition temperature Tc on Ni
thickness for different Bi thicknesses. The lines are guides to the eyes.
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Therefore, when a non-magnetic metal, Au, is used to make contact on Pb, the

measured differential conductance increases. The ARS results shown in figure(7.1)

are for ideal one-dimensional contacts for P = 0 and 1 at T = 0 K. Real contacts

usually encounter interfacial scattering and 3D interface, which distorts the ARS

results and requires more detailed analyses to extract the gap value. Therefore, it

is common to get a double-peak spectrum for a s-wave SC with isotropic gap in AR

measurement. On the other hand, when a half metal, LSMO, is used to do the AR

measurement, the differential conductance drops, which is also typical for the s-wave

superconductor. Another example is for YBCO, a singlet d-wave SC. Generally, a d-

wave SC has a four-leaf like gap structure, with nodes and knobs at different location

of the gap. The AR results show a peak in the Au-YBCO contact and a dip in the

LSMO-YBCO contact, and the single peak of the Andreev bound state results from

the nodes in the gap. The solid curves are fitted results using formalism that has

been developed [114, 115] and the extracted gap values from Au and LSMO of the

same SC are essentially the same. These results show that a highly spin-polarized

current can indeed suppress the Andreev conductance. The ARS using both Au and

LSMO tips provide unequivocal identification of single SCs, s-wave or d-wave.

However, the AR results show a completely different behavior for the Bi/Ni bi-

layer. Figure (7.5(C)) shows the AR results when the Au and LSMO are used to

make contacts on the top of Bi(110) surface of the Bi(20nm)/Ni(2nm) bilayer. Most

remarkably, the ARS using both Au and LSMO are very similar, much larger than

1, as shown in figure (7.5(C)). This indicates that the Bi/Ni cannot sense the spin-

polarized current, a defining property of a triplet SC as shown in figure (7.2). To

further reveal the nature of the superconductivity in Bi/Ni, some more contacts with

various contact resistances on the top of the sample have been measured, as shown

in figure (7.6). When the Au tip is contacting on the top surface (figure (7.6(A)),
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Figure 7.5: (A) Andreev spectra of an s-wave superconductor Pb using Au and
LSMO tips. (B) Andreev spectra of a d-wave superconductor YBCO using Au and
LSMO tips. (C) Andreev spectra of a p-wave superconductor of Bi/Ni using Au and
LSMO tips.
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1st row), all the AR spectra with contact resistance from a few Ω to 1700 Ω show

the single peak, as shown in the second row of figure (7.6(A)). Importantly, the AR

spectra with a LSMO tip also show the single peak from a few Ω to over 1000 Ω, as

shown in figure (7.6(A)) 3rd row. This is distinctively different from the AR spectrum

of a singlet (s-wave or d-wave) SC in figure (7.5), where the AR peak is suppressed by

a spin-polarized current. Taken together, the defining evidences of ARS of Au-Bi/Ni

and LSMO-Bi/Ni can only be triplet superconductivity.

The measured conductance ( dI
dV

) in Au-Bi/Ni and LSMO-Bi/Ni for all tempera-

tures are shown in the 3D plots in figure (7.6). The peak structure in both Au-Bi/Ni

and LSMO-Bi/Ni varies systematically and disappears at Tc, showing that it is en-

tirely due to superconductivity. At T < Tc, the measured dI
dV

at bias voltage outside

the superconducting gap is roughly constant and it is the normal state conductance

( dI
dV

)normal. As shown in figure (7.6(A)), in both Au-Bi/Ni and LSMO-Bi/Ni, the

value of (dI/dV) normal is finite at T = 0 K and approximately unchanged until Tc is

approached and then reduces sharply. Concurrently, the peak intensity in Au-Bi/Ni

steadily reduces with increasing temperature and vanishes at Tc as shown in figure

(7.6(A)). We note similar results of the peak intensity have also been observed in

LSMO-Bi/Ni, except that the intensity is not monotonically decreasing, but showing

some unusual changes at around 2 K, perhaps related to the superconducting domain

structures in the Bi/Ni. These extensive ARS results using both Au and LSMO tips

show the peak structure can only be associated with the superconducting state at

T < Tc. Large differential conductance features for both Au and LSMO tips are the

telltale signatures of triplet superconductivity.

Most often ARS is administered on the large top surface of the specimen as in all

the cases described thus far. The epitaxial Bi/Ni samples have been cut along different

crystal directions thus offering the opportunities to perform ARS measurements on
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Figure 7.6: (A) Andreev spectra of Au and LSMO contacts on the top surface of
Bi/Ni: using Au tip with various contact resistance from a few Ω to 1700 Ω (2nd
row left), and temperature dependence of Andreev spectra of one contact using Au
tip (2nd row right), Andreev spectra of contacts on the top surface of Bi/Ni using
LSMO tip with various contact resistance from 15 Ω to over 1000 Ω, (3rd row left),
temperature dependence of Andreev spectrum of a contact using LSMO tip (3rd row
right), (B) Andreev spectra of contacts on one side of Bi/Ni: representative Andreev
spectra using Au tip, (2nd row) and LSMO (3rd row) tips; (C) Andreev spectra of
contacts on the other side of Bi/Ni: representative Andreev spectrum using Au (2nd
row) and LSMO (3rd row) tips.
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the side surfaces. Au or LSMO is cut into sharp blades in order to make cross-contacts

on the sides of the sample, as schematically shown on the top of figure (7.6(B)) and

figure (7.6(C)). Since the Bi/Ni sample is only a few tens of nanometers on the

insulating substrate MgO, it is exceedingly difficult to create point contact of a few

nanometers for ballistic spin injection. Several contacts were successfully made and

double-peak AR spectra have been observed for both Au and LSMO on the one side,

shown in figure (7.6(B)), and singlet AR spectra on the adjacent side shown in figure

(7.6(C)). These are distinctively different from all the AR spectra taken on the top

surface as shown in figure (7.6(A)) that always shows a single peak. Importantly,

both of the AR spectra, for Au and for LSMO, are similar, regardless of it is double

or single peak. Thus these contacts made on the sides of the specimen reaffirm that

Bi/Ni is a triplet SC.

Referring to the top of figure (7.5(A)), the p-wave gap structure has nodes. When

the contact is right at the knob of the gap structure, the AR shows a double-peak

structure while it shows single peaks of Andreev bound states when contact is in

the node direction. These distinct features have indeed been observed for AR along

the three different directions as shown in figure (7.6(A,B and C)). These results,

albeit those with side-contacts are more challenging, conclusively show that Bi/Ni is

a p-wave triplet superconductor.

While the mechanism of the superconductivity in Bi/Ni is likely to be a complex

one and under further studies, it should be related to the unique properties of the

epitaxial Bi and Ni layer where Bi is a semimetal known to have very long mean free

path up to cm in bulk Bi[116] and Ni is ferromagnetic. The Bi/Ni bilayer breaks the

inversion symmetry and the critical field exceeds the Pauli limit, suggestive of the

triplet nature of superconductivity. Our ARS results with a normal and especially

half-metallic current unequivocally indicate a p-wave gap symmetry in the Bi/Ni
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system. As shown in figure (7.4(D)), superconductivity in epitaxial Bi/Ni occurs in

multiple thickness ranges, strongly suggesting that the unconventional superconduc-

tivity originates at the Bi/Ni interface. The unusual thickness dependence in Bi/Ni

also rules out simple suggestions of superconducting fcc Bi[117, 118] or Bi-Ni alloys

at the interface, not to mention that our RHEED measurements during growth show

no such evidences at all. It would be very interesting to explore the evolution of the

superconducting properties and especially the pairing symmetry as one systematically

varies the thicknesses of the two constituent metals. The search for triplet supercon-

ductors has been ongoing for more than two decades, but only in bulk materials, such

as Sr2RuO4. It is shown in this work that quasi two-dimensional thin films of suitable

combination of materials may be more amenable for triplet superconductivity.

7.5 Singlet Superconductivity: Bi3Ni Compound

In the previous section, the Bi/Ni bilayer structure is proved to be a candidate for

p-wave SC using the Andreev Reflection spectroscopy. The interface between the Bi

and Ni thin film layer may have great effect on the coexistence of superconductivity

and ferromagnetism. Since only in the triplet SC, the two spins in one Cooper pair can

be parallel, therefore, ferromagnetism can only coexist with triplet superconductivity,

where the supercurrent carries spin angular momentum, similar as that of a spin-

polarized current in a ferromagnet.

Since the bilayer structure shows possible p-wave superconductivity, the next ques-

tion comes to mind is that: is it possible to realize superconductivity, especially triplet

superconductivity, in Bi-Ni compound? Coexistence of ferromagnetism and supercon-

ductivity has been observed in Bi3Ni nanostructures[119, 120]. But later experiments

did not find ferromagnetism in Bi3Ni single crystals[121]. In this work, ARS with

an unpolarized current has been utilized to determine the gap value, structure and T
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dependence of intermetallic SC Bi3Ni. Furthermore, a highly spin-polarized current

injected from La2/3Sr1/3MnO3, (LSMO) has been used to determine spin states. The

spin states of the polycrystalline Bi3Ni sample is antiparallel, the same as that of

a singlet SC. The critical field of the sample is about 150 Oe, observed in ARS in a

small magnetic field. The point contact shows a negative magnetoresistance (MR)

for unpolarized current but a positive MR for a spin-polarized current, demonstrating

the distinctive difference of AR for unpolarized and polarized current of a singlet SC.

The gap value 2∆/kBT , symmetry and its T dependence, combined with the spin

states show that the bulk Bi3Ni is a BCS singlet superconductor.

The Bi3Ni sample is cut into a tip, then enclosed into a vacuum jacket along with

a polished Au surface with 99.999% purity or a single crystal LSMO surface. The

sample tube is pumped to 10−7 Torr then filled with 0.1 Torr of Helium gas. The

samples are then cooled down to 4.2 K using liquid helium. Lower temperature is

achieved by pumping the sample tube. At desired temperature, a point contact is

established by approaching the tip to the surface via a differential screw mechanism.

The differential conductance dI/dV and resistance V/I are measured simultaneously

using a lock-in method. For a new contact, the Bi3Ni tip is cut again to obtain a

new tip.

First a point contact is established on nonmagnetic Au using the Bi3Ni tip. A

current from Au is unpolarized, the conductance within the gap ∆ should be doubled

for an ideal interface, regardless of the singlet or triplet nature of the Bi3Ni sample.

But a real interface often has interfacial scattering Z which causes a dip at V = 0.

Some representative Andreev spectra are shown in figure(7.7(a-e)). The open circles

are the experimental data and the solid circles are the best fit to the modified BTK

model. In the fitting, only ∆ and Z are varied while T is set as experimental value and

P is 0. The data can be well described by the model and the parameters of the best
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fit are listed as inset. The conductance rises up to 1.9, very close to an ideal interface

with a small Z factor of 0.15, as shown in figure(7.7(a)). For increasing Z factor,

the conductance decreases and there is a zero-biased dip appears at large Z factor,

as shown in figure(7.7(e)). The ARS spectra are very different for different Z factor,

nevertheless the determined ∆ values are very similar. It has been measured over

10 spectra using several Bi3Ni tips and all the determined gap values are similar.

The average gap value is 0.62 ± 0.01meV , as shown in figure(7.7(f)). The ratio

2∆
kBT

= 3.51, is very close to the BCS s-wave ratio. Since each contact may reach a

different crystalline surface of the Bi3Ni sample, the similar gap value of all contacts

indicate an isotropic gap for the Bi3Ni sample.

After the determination of the gap value and its symmetry using Au with an

unpolarized current, next we utilize a highly spin-polarized current to determine the

spin states of the Cooper pairs in Bi3Ni. The polarized current is injected from

LSMO, which has a spin polarization of 80% determined by singlet SC Pb[122, 123].

Consider an ideal interface, the conductance at zero-bias voltage G(0) = 2(1-P) =

0.4. Assuming 100 incident electrons, there are 90 spin-up and 10 spin-down electrons.

For a singlet SC, 20 electrons have AR: 10 spin-up and 10 spin-down electrons. Each

electron with AR reflects a hole, consequently, conductance is 0.4 at zero bias. For a

triplet SC, every electron can have AR if it is a mixed of the three spin states, and

hence the G(0) = 2. If there is only Sz = 1 spin state, then 90 electrons can have

AR, G(0) = 1.8. Similarly, G(0)=0.2 for Sz = −1 spin state. Therefore, with any

combination of the Sz = 0 and Sz = 1 spin states, the AR spectrum from LSMO will

be very different and thus the spin state can be determined.

Some representative ARS spectra from Bi3Ni/LSMO contact are shown in fig-

ure(7.8(a-e)). The open circle are the experimental data and the solid curves are

the best fit to the modified BTK model. All the spectra can be well-described by
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Figure 7.7: (a-e) Representative Andreev spectra of Bi3Ni/Au contacts with various
interfacial scattering Z factor (Open circles are the experimental data while the solid
curves are the best fit to the modified BTK model), and (f) gap values from different
contacts.
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the modified BTK model and the parameters of the best fit are listed as inset. In

analysis, the gap is fixed as 0.62 meV determined above and T is set as experimental

values. Only P, Z and rE are varied. The extra resistance rE is utilized to incorporate

the effect of the large resistivity of LSMO, and previously it has been discussed in

details. The spectra are very different from that of Bi3Ni/Au contacts in figure(7.7):

The conductance at zero bias is much lower than 1 due to the suppression of AR

by spin polarization. Indeed, the obtained P value is about 80% at small Z factor,

as shown in figure(7.8(a)). For increasing Z factor, the shoulder peaks increase, as

shown in figure(7.8(e)). The P values obtained from different contacts are plotted

in figure(7.8(f)). For increasing Z, the P value decreases due to spin-flipping scat-

tering. The intrinsic spin polarization of LSMO, P = 0.812 ± 0.019, is obtained by

extrapolating Z to 0. The P = 0.81 is the same as that obtained using a singlet SC,

suggesting that all spin states in the Bi3Ni sample is antiparallel, the same as that

of a singlet SC.

The critical field of Bi3Ni is small, about 150 Oe[124–129] and this can also be

observed in ARS. As shown in figure(7.9), the ARS spectrum of a Bi3Ni/Au point

contact can be well described by the modified BTK model. In this analysis, only T

is fixed as experimental value but P, ∆, and Z are varied. The obtained P is zero

for gold. Then we apply a magnetic field (H) and measure the magnetoresistance

(MR) at small bias of 0.1 mV. As shown in figure(7.9(b)), it shows a negative MR.

At H < 150Oe, the resistance is smaller, and it jumps to a higher value when the

Bi3Ni sample becomes normal. When the Bi3Ni sample is superconducting, AR

occurs thus conductance is doubled or resistance is reduced by half. One notes that

the resistance of the whole Bi3Ni sample is only about 0.1Ω at room temperature.

So the change of the resistance of about 1Ω is mainly due to the disappearance of AR

at H > 150Oe.
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Figure 7.8: (a-e) Representative Andreev spectra of Bi3Ni/LSMO contacts with
various interfacial scattering Z factor (Open circles are the experimental data while
the sloid curves are the best fit to the modified BTK model), and (f) spin polarization
P as a function of Z factor.
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For spin-polarized current, however, the MR is completely different. As shown in

figure(7.9(c)), the ARS spectrum of a Bi3Ni/LSMO contact can be well described by

the modified BTK model when all the parameter except T are varied in the analysis.

The obtained gap value and P values are consistent with the value in figure(7.7) and

figure(7.8). The MR at bias V = 0.1 mV is positive, completely different from that

observed using the Au contact in figure(7.9(b)). The change of the resistance at H

= 150 Oe is about 80Ω, much large than the sample resistance of 0.1Ω. This MR

is due to the suppression of AR from the highly spin-polarized current. If it is a

true half metal of 100%, the resistance at zero bias would be infinite because of the

suppression of AR. In the case of LSMO, the P value is about 80%, but still, the

change of resistance is very significant. These results again show that the spin states

in the Bi3Ni sample must be antiparallel.

Next, the temperature (T) dependent of the gap (∆). As shown in figure(7.10(a)),

one AR spectrum is measured from 1.47 K to 4.5K with about 0.2 K of increase for

each curve. For increasing T, the AR spectrum decreases and the peak disappears

exactly at the Tc of Bi3Ni at 4.1K. One notes that first it is the Hallmark double AR

peaks disappear, and the AR spectrum becomes a big single peak, then the single

peak starts to decrease, as clearly shown by the 2D graph in figure(7.10(b)), which

is the same data of the 3D graph in figure(7.10(a)). We analyze the AR spectrum at

each T. For the spectrum at 1.47 K, we varied the ∆ and Z, and set T = 1.47 and P

= 0. For higher T, since the Z factor of the same contact is not expected to change

during the total change of T less than 3 K, we fix the Z factor as 0.21, only vary

the ∆ value in analysis of each T. The obtained ∆ values at different T is plotted

in figure(7.11(b)), along with a BCS theory (dashed curve). One can see that most

of the data are very close to the BCS model except a few points near the transition

temperature, which may be due to the pressure on the point contact.
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Figure 7.9: (a) Andreev spectrum of one Bi3Ni/Au contact and (b) its magnetore-
sistance at V 0, Andreev spectrum of one Bi3Ni/LSMO contact and (d) its magne-
toresistance at V 0 (open circles are the experimental data and solid curves are the
best fit to the modified BTK model with fitting parameters listed inset)
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Figure 7.10: (a) 3D plot and (b) 2D plot
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Superconductor Bi3Ni has been studied before. While it has been found that

ferromagnetism and superconductivity can coexist in Bi3Ni nanostructures, ferro-

magnetism has not been found in bulk single crystals[119, 120, 130–132]. In this

work, the gap value and symmetry, spin states and T dependence of the gap all

demonstrate that the bulk Bi3Ni sample is a singlet BCS SC. However, this cannot

rule out the possibility that triplet superconductivity exists in Bi3Ni nanostructures.

Indeed, studies have shown that while ferromagnetism is absent in the bulk Bi3Ni

single crystal there is ferromagnetism fluctuations at the surface. In the Bi/Ni bilayers

or nanostructures, the effect of interface/surface is maximized. Tunneling experiment

has shown that the current is spin polarized[133]and recent experiment using ARS has

shown that Bi/Ni is indeed triplet[107, 134]. Nevertheless, whenever ferromagnetism

or triplet superconductivity shows in Bi3Ni, the critical field of the structure is much

larger 150 Oe, the critical field of bulk Bi3Ni. Recently it has shown that the su-

perconductivity in 2D materials depends crucially on interface or substrate[135–138].

While a bulk ferromagnetic SC is elusive, our results indicate that the future triplet

SC maybe be engineered using hybrid structures, where ferromagnetism can impact

superconductivity.

In summary, Andreev reflection spectroscopy with unpolarized and highly spin-

polarized currents has been utilized to study intermetallic alloy superconductorBi3Ni.

The magnetoresistance at zero-bias voltage of unpolarized and spin-polarized cur-

rent shows that Andreev reflection occurs for unpolarized current but is suppressed

by a spin-polarized current. The gap is isotropic with a value of 0.62 meV and

2/kBTc = 3.51. The spin state is antiparallel, the same as that of a singlet super-

conductor. The temperature dependence of the gap displays a BCS-like behavior.

The gap value, isotropic symmetry, and its temperature dependence, along with its

antiparallel spin state conclusively demonstrate that the bulk Bi3Ni sample is a BCS
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Figure 7.11: (a) Representative Andreev spectra (open circles) and the best fit
(solid curves) at different temperatures, and (b) gap values obtained from the best
fit at different temperatures from 1.47 K to 4.5 K with Z = 0.271.
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s-wave superconductor.
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Chapter 8

2-DIMENTIONAL SUPERCONDUCTIVITY

8.1 Motivation

Superconductivity arises from the formation of Cooper pairs at low temperature.

In bulk material, the electrons gradually coupled into pairs with proper spin, due

to the weak attractive electron-phonon interaction. In thin films, due to the lack

of electrons, it becomes harder and harder to form Cooper pairs, so as to induce

superconductivity. One extreme is when the thickness of the thin film is thinner than

the coherent length of the Cooper pair, the order phase will be destroyed. Historically,

due to the symmetry coherence breaking nature of the 2D material, the Mermin-

Wager theory prohibits the existence of the 2D superconducting phase[139, 140]. On

the other hand, the 2D materials are even not expected to be metals, but insulators,

due to the electron localization[141]. Thus, two dimensional (2D) superconductivity

seems impossible to realize.

2D material in low temperature can have Berezinskii-Kosterlitz-Thouless (BKT)

transition, which is a phase transition from the bound vortex-antivortex pairs to

unpaired vortices and antivortices at a certain temperature. This transition is based

on a 2D XY model, which is a vector spin model. In this model, the vortices are

topologically stable. The energy of a single vortex is κln(R
a

), where κ is systematic

parameter determined by the vortex system. R and a are the system size and the

radius of the vortex core, respectively. Therefore, the number of vortex in a 2D system

can be calculated by (R
a

)2. So the Helmholtz free energy is:
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F = E − TS = (κ− 2kBT )ln(
R

a
) (8.1)

where kB is the Boltzmann’s constant. When F < 0, the system will favor the

formation of a vortex. So the critical temperature above which the vortex can form

is determined by:

Tc =
κ

2kB
(8.2)

This BKT model is compatible with the Mermin-Wager theory, and allows the

formation of quasi long range correlation of the order parameter[142, 143]. On the

other hand, the BKT transition also causes a zero resistance state, which can be

retained for a infinitesimally small external perturbation and the Meissner effect can

also be well defined[143–145]. Experimental and theoretical studies show that for

2D materials, the superconductor-insulator (S-I) transition always happens when the

sheet resistance of the sample is in the same order of the quantum resistance of the

Cooper pairs, namely, RQ = h
4e2

= 6.45kΩ[146]. In the BKT transition, the sheet

resistance induced by the vortex-antivortex pair can be calculated by[143]:

Rsheet ≈ exp[−(
Tc0 − T
T − TBKT

)1/2] (8.3)

where TBKT is the temperature above which the BKT transition can happen.

Because there is no free vortex when T < TBKT , it is possible to realize zero resistance

in this case.

Experimentally, the development of ultrahigh vacuum (UHV) technique has greatly

benefited the studies on the ultrathin 2D superconductors, such as molecular beam

epitaxy (MBE), pulsed layer deposition (PLD) etc. These technologies allow atomic

scale materials to be fabricated. On the other hand, more accurate measurement
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method, such as scanning tunneling microscopy (STM), make it possible to charac-

terize the materials in unprecedented details. First experiments on superconducting

ultrathin film is a Pb film on a clean Si(111)- (7 × 7) surface, which was prepared

by MBE technique[147]. Another example is La2−xSrxCuO4, which is a representa-

tive cuprate high Tc superconductor, shows superconductivity at one unit cell (UC)

thickness[148]. Furthermore, the interface between two perovskite oxide insulators,

LaAlO3 and SrT iO3, shows 2D superconductivity[149]. A recent breakthrough is the

field induced 2D superconductivity in some certain insulators, such as SrT iO3 and

ZrNCl, which is realized by the the highly doped field-effect transistors (FET) with

an electric-double-layer (EDL) gate[150–152]. On the other hand, with the rapid rais-

ing of study on atomic sheets, such as graphene and transition-metal dichalcogenide

monolayers, the searching for superconductivity in the related structures attracts a

lot of efforts[153, 154]. One of the most surprising findings is the superconductivity

in the 1 UC thick FeSe layer epitaxially grown on a SrT iO3 substrate, which has a

Tc about 40 to 100K, increasing remarkably from the bulk FeSe (about 8K)[155, 156].

This huge increase in critical temperature suggests a possible way to achieve high Tc

superconductivity.

The effect for low dimensionality is the increasing in the fluctuation of the sys-

tem. Generally, a 2D superconductor often exhibits a decrease in conductivity. ON

the other hand, in a 2D system, the conduction electron can also be localized own-

ing to the presence of disorder, which is known as Anderson localization[157]. This

localization results in a insulating state, and an S-I transition is expected as the

disorder of the system increases. The transition is driven by the suppression of am-

plitude of the superconducting order parameter, Ψ, or the enhanced fluctuation of

the superconducting phase, which will lead to a quantum phase transition at zero

temperature[146, 158, 159]. In figure(8.1)[160], the superconductivity in the Bi thin
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film is shown. When the thickness of the Bi thin film is between 4.36 Å to 72.27

Å, superconductivity can be observed with the observation of a sharp decrease in

the electrical resistance. When the thickness of the Bi film is thinner than the lower

value, the system will have more disorder and more defects. And the order parameter

has high fluctuations due to the lack of coupling. On the other hand, the conduction

electrons can be localized due to the disorder, which is incompatible with the super-

conductivity state. Therefore, a superconductor-insulator transition will happen so

that the resistance greatly increased with the decreasing of the temperature. In this

case, 2D superconductivity is quite sensitive to the thickness of the thin film.

For ultrathin metal films, the conduction electrons are quantized in the out of

plane direction to form quantum well states (QWS). In this direction, the movement

of electrons are confined only in the space of the thin film, which can be expressed as

the Bohr-Sommerfeld quantization rule[161]:

4πd

λ(E)
+ Φ(E) = 2nπ (8.4)

where d is the thickness of the superconducting thin film, λ(E) is the electron

wavelength when the energy is E, Φ is the total phase shift at the boundaries, and

n is an integer. The formation of QWS induces an oscillation of electron density of

states at the Fermi level, which causes an oscillation of the critical temperature. The

first successful observation of the oscillation is in a Pb films on Si(110) thin film[162].

When consider atomically uniform thickness thin film, the critical temperature

has a strong dependence on the thickness[149, 163, 164]:

Tc(d) = Tc0(1− dc
d

) (8.5)

where Tc0 is the critical temperature when the thickness of the film is infinite (bulk
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Figure 8.1: Disorder induced S-I transition of Bi films. When the thickness of Bi
is thicker than a critical thickness (4.36 Å), it can show superconductivity. However,
when the thickness is thinner than this value, the disorder in the system will induce
the S-I transition, which makes the superconductivity disappear.[160]
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limit), dc is the critical thickness for the disappear of superconductivity. From the

equation one can see that the critical temperature decreases with the decreasing of the

thickness. And when the thickness large, Tc approximates to the critical temperature

of the bulk material. This behavior can be explained by the changing of free energy

in the GL theory by introducing a surface energy term, as well as other possibilities

such as the surface roughness and/or disorder[165].

Besides temperature, external magnetic field can also greatly affect the supercon-

ductivity. When in plane field is applied, there exists no orbital pair-breaking effect.

This is because the thickness is quite thin, usually a few atomic layer, so that the

movement of electrons in the out of plane direction is very limited. Therefore, the in

plane upper critical field, Hc2 can be calculated by[29]:

µ0Hc2‖ =
∆(0)√

2µB
(8.6)

where ∆(0) is the superconductor gap at zero temperature and µB is Bohr mag-

neton. When the field is not in plane, but has an angle θ with the in plane direction,

there will be an component out of plane. The out of plane field will break the Cooper

pair, because of the Zeeman energy induced by the field. For the spin along the

field direction, the Zeeman energy will be −µ ·B, while for the spin opposite to the

field direction, the Zeeman energy will be µ ·B. The energy difference will break the

Cooper pair and the spin with higher energy will flip, which is known as Pauli param-

agnetism. Generally, for a quasi-2D superconductor with weakly coupled conducting

layers, there is an angular dependence of the upper critical field Hc2(θ). In the 3D

anisotropic GL model, this anisotropy can be expressed as[29]:

(
Hc2(θ)cosθ

Hc2(0◦)
)2 + (

Hc2(θ)sinθ

Hc2(90◦)
)2 = 1 (8.7)

This equation can be applied to fairly thicker thin films, i.e., the coherence length
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is larger than the interlayer distance. On the other hand, when the film is thin so

that the coherence length is much smaller than the penetration depth, one has to use

the 2D Tinkham model[166] which can be expressed as:

(
Hc2(θ)cosθ

Hc2(0◦)
)2 + (

Hc2(θ)sinθ

Hc2(90◦)
) = 1 (8.8)

This 2D Tinkham model will exhibit a cusp-like shape, which can be observed in

some systems with strong field anisotropy[167].

8.2 FeSe

The tetragonal phase α− FeSe is one of the high critical temperature supercon-

ductor which exhibits superconductivity below 8K at ambient pressure and 37K under

a pressure about 8.9GP[168, 169]. FeSe is under intense study due to its unusual phys-

ical properties[170]. The atomic layers in bulk FeSe are weakly bounded via van der

Waals interaction. However, for 1 unit cell FeSe layers epitaxially grown on a SrT iO3

substrate, the superconductivity behavior is quite different from the bulk material.

Experimental results showed the critical temperature is between 23.5K to 109K, de-

pending on the experimental environment[143, 155], and a superconductor gap about

20meV[171]. This is quite different from the FeSe grown on bilayer graphene[172].

In the latter case, superconductivity can not be detected when the temperature is

above 2.2K and the Tc decreases with the decreasing of the FeSe thickness, which is

similar to the behavior of Pb layer, suggesting the similar mechanism. In the previ-

ous discussion, Pb thin film is grown on a Si substrate so that there is no interaction

between the Pb atoms with the Si atoms in the structures. By contrast, the greatly

increased Tc in the FeSe− SrT iO3 structure indicates a strong interaction between

the FeSe atomic layer with the substrate.

As is shown in equation(8.5), critical temperature decreases for decreasing thin
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film thickness. In the FeSe grown on SrT iO3 substrate, the high Tc may come from

the strain between the two materials, which will enhance the electron-phonon cou-

pling, polaronic effects and carrier doping from the interface[155]. Additionally, the

high Tc may also comes from the arise of optical phonon modes at the interface and

the spin density wave (SDW) in the FeSe layer[173, 174]. And more experimental

and theoretical studies are still needed to clarify the real mechanism of the unique

behavior.

8.3 NbSe2

In 2004, a atomic layer of graphene was successfully exfoliated from a piece of

graphite to fabricate FET devices[175], which shined light on a new way to study

atomic level materials. Afterwords, half-integer quantum Hall effect was discovered

on graphene at low temperature[176, 177], which stimulated heavily research studies

on this fancy material, including graphene related superconductivity. Even though su-

perconductivity has not been observed on pure graphene, it has already been observed

on graphite intercalations compound with alkaline or alkaline-earth metal layers,

such as KC8(Tc = 0.14K)[178], CaC6(Tc = 11.5K)[179] and Y bC6(Tc = 6.5K)[180].

The metal materials is the key to achieve superconductivity in the structures since

they donate electrons into the π∗ bands of graphite and modify the electron-phonon

interaction[143]. Recently, superconductivity was also discovered on metal doped

graphene layers, such as K-doped graphene in dimethoxyethane solution[181], Li-

intercalcated few layer graphene[182]. And more research has been conducted to

explore new intercalated or chemically doped graphene materials.

The mechanical exfoliation of graphene from bulk graphite has greatly motivated

the study of atomic layers using the same method, including the atomic sheets of tran-

sition metal dichalcogenides, such as MoS2 and NbSe2. The layers of transition metal
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dichalcogenides are only weakly bounded by the van der Waals force[143], making the

mechanical exfoliation an easy way to achieve single atomic layer of these materials.

Bulk NbSe2 is a well studied type II SC with anisotropic multiband superconductor.

The critical temperature at zero field is reported to be around 7K [183–188]. NbSe2

atomic layer was first studied in 1972[189]. Electron transport data indicate the SC

transition at a few UC thickness, with a critical temperature varies from 2K to about

5K[189]. However, loss of superconductivity was also detected[190], due to exposure

to air, which has been solved by preparing the sample in an inert gas environment

and well protect the sample with a graphene or BN atomic sheet[191].

NbSe2 monolayer is of half UC thickness and lack in plane inversion symmetry,

which can result in spin valley locking[192, 193]. Recent experiment shows a critical

temperature for monolayer NbSe2 about 3K[154], and the estimated upper critical

field at zero K can be as high as 35T, which is about 6 times larger than the Pauli

paramagnetic limit. The large upper critical field indicates that the NbSe2 is an Ising

superconductor, in which the Cooper pairs are aligned in the out of plane direction

due to the spin valley locking. The SC can be destroyed by a small out of plane field

of 0.175T[194]. At higher field, the presence of the Bose metal phase was indicated,

in which uncondensed Cooper pairs and vortices are responsible for the non zero

resistance[143, 195].

The Ising pairing in NbSe2 is supposed to be induced by the Ising spin-orbital

coupling (SOC), which prevents the electrons from being aligned with the in-plane

field[192, 193]. Due to the strong Ising SOC, Ising superconductors could be used

to engineer Majorana fermions[196–198]. Besides, theoretical study shows that there

may exist nodes in the NbSe2 superconductor gap, which are connected by the Ma-

jorana flat band[199]. Those Majorana flat bands are related with the zero energy

Majorana fermion edge modes, which will induce the spin polarized Cooper pairs.
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To study the spin pairing configuration in NbSe2 monolayer, especially to verify

if there exists spin polarized Cooper pairs (triplet spin pairing), Andreev Reflec-

tion Spectroscopy (ARS) is used. To get high quality NbSe2 monolayer, a material,

NbBiSe3, is fabricated, with a monolayer of NbSe2 sandwiched between two insu-

lating layer of BiSe. As is discussed above, the air exposure will greatly affect the

superconductivity of NbSe2, so that the two insulating BiSe layer can well protect

it. On the other hand, the BiSe layers are also serves as an effective spacer, which

can reduce the interaction between two NbSe2 monolayers, ensuring a real isolated

monolayer. To make a stable point contact on the NbSe2 monolayer for ARS mea-

surement, the sample is cleaved so that a fresh sharp monolayer can be suspended in

the air for measurement. And a piece of Au or LSMO is made into a sharp wedge to

make a atomic level point contact, as is shown in figure(8.2).

8.4 Results and Discussions

After the contact is made, it is important to verify that the contact is made on

a monolayer NbSe2. For bulk NbSe2, the Tc is about 7K, and the Tc gradually

decreases as the thickness of the thin film decreases. According to other experiments,

the bilayer NbSe2 has a critical temperature 5.4K, and the monolayer NbSe2 has a

critical temperature about 3K[154, 200–202]. The obvious difference between the Tc

of different number of layers of NbSe2 makes it possible to verify how many layers are

actually contacted in the ARS measurement by measuring the critical temperature

for the contacts with different contact resistance. The different contact resistance can

represent different number of atomic layers, because for more layers being contacted,

the electrons can be transported into more superconducting layers, which will result

in smaller resistance. As is shown in the left of figure(8.3), different contacts show

different critical temperature. The y-axis represents the contact resistance and the x-
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Figure 8.2: NbSe2 monolayer is achieved by cleave the edge of NbBiSe3, which has
an alternating NbSe2 and insulating BiSe. Au or LSMO is made into sharp wedge to
make a atomic level point contact on the NbSe2 monolayer for ARS measurement
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axis is the temperature. From the figure it is clear to see that if the contact resistance

(RC) is larger, the Tc is smaller. After normalization, the Tc is easier to be observed.

On the right side of figure(8.3), one can see that for the red curves, the Tc is about 3K,

which is corresponding to the contact on a monolayer NbSe2; and for the blue curves,

the Tc varies from 5K to 6K, therefore the contacts are actually made on bilayer,

trilayer or even bulk NbSe2. The broadening of the R-T curve at thinner thickness

can be attributed to the enhanced thermal fluctuations in 2 dimension[29, 203], where

the thickness is thinner than the out of plane coherence length of 2.7nm[184].

To further confirm the monolayer contact, the critical field is measured for the

contacts with different contact resistance. Due to the Ising pairing in the NbSe2

superconductor, the in plane critical is reported to be larger than 35T[154]. There-

fore, an in plane critical field measurement is hard to distinguish monolayer from

multilayers or bulk, under the limitation of the maximum magnetic field can be re-

alized in the lab. However, the our of plane critical field is reported to be much

smaller than the in plane critical field and also varies with the number of NbSe2 lay-

ers. As is reported in other work[154], the out of plane critical field for a monolayer

NbSe2 is about 1T, while the value for bilayer, trilayer and bulk is approximately

10T, which is so different from that of the monolayer that it is possible to use the

out of plane critical field value to distinguish the number of superconducting layers.

In this measurement, a sharp Au wedge is used for more stable contact under the

external field. In figure(8.4), (a) and (b) shows the critical temperature and critical

field measurement for the same contact, respectively. This contact has a fairly larger

contact resistance, with a Tc = 3K, which is corresponding to the monolayer. When

an out of plane magnetic field is applied, the resistance drops sharply when the field

is close to zero, which is due to the superconductivity of the NbSe2 layer. When the

field increases to about 1T, the resistance greatly increases and almost become flat
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Figure 8.3: The critical temperature is quite different for different contact resistance.
Top: Raw data. Tc increases with the decreasing of contact resistance. Bottom:
normalized data. For larger contact resistance, the Tc is about 3K, which indicates
monolayer. For smaller contact resistance, the Tc varies from 5 to 6K, which is the
values for multilayers or bulk.
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when the field is larger than 1T. This behavior is corresponding to the disappearance

of superconductivity and the experimental critical field is about 1T, which further

confirms that this contact is on a monolayer of NbSe2. (c) and (d) show the result

for the similar measurements on a contact with smaller contact resistance. In (c), the

critical temperature can be decided from the sharp increase in the resistance, which

is about 5K so that the contact may be made on multilayer, according to the previous

discussion. When a out of plane field is applied, the resistance drops sharply when

the field is around 0, but increases slowly with the increasing of the field. When the

field is about 5T, the tail in the curve (d) still not totally flat, indicating that the

critical field for this contact must be larger than 5T, which, again, further confirms

that this contact is on multilayer NbSe2.

After determine the contacts of monolayer NbSe2, Andreev Reflection is measured

with a Au/NbSe2 contact. In figure(8.5), the black open circles represent the mea-

surement without magnetic field. From the result, one can see that when the bias

voltage is larger (smaller) than 2 (-2) mV, the normalized differential conductance is

1, which is because the energy of the electrons gained from the bias voltage is higher

than the superconductor gap value, 2∆, so that the electrons enter the superconduc-

tor without forming Cooper pairs, and suffer from normal scattering from the crystal

lattice of the material. On the other hand, however, when the bias voltage is between

-2 and +2 mV, the differential conductance shows a clear peak, which is correspond-

ing to the formation of Cooper. The maximum value of the peak is about 1.4, which

is smaller than the theoretical value, 2. This is due to the scattering of electrons at

the interface between Au and NbSe2. When a in plane magnetic field about 5.8T is

applied to the same contact for the same measurement (shown as red open circles),

one can clearly see that the Andreev reflection results are almost identical with the

ones without magnetic field. This is because the in plane critical is supposed to be
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Figure 8.4: (a) A Au/NbSe2 contact with larger contact resistance and a Tc about
3K. (b). Out of plane critical for the contact in (a) is around 1T, indicating a
monolayer contact. (c).A Au/NbSe2 contact with larger contact resistance and a
Tc about 5K. (b). Out of plane critical for the contact in (a) is larger than 10T,
indicating a multilayer contact.
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larger than 35T, so that a 5.8T field have almost no effect on the existence of the

superconductivity. Again, this is also consistent with the monolayer critical field.

To further study the spin pairing in the Cooper, a LSMO sharp wedge is used to

replace the Au wedge. LSMO is a highly spin polarized material. If the NbSe2 has

single spin pairing, the differential conductance should decreases within the super-

conductor gap. By contrast, if the material has a triplet spin pairing, the differential

conductance should increase in the gap, similar with the case of a Au contact. Fig-

ure(8.6) shows the results. On the left is a 3-D figure which shows the differential

conductance measurement under different external in-plane field. One can clearly see

that for all the measurements with the field ranging from zero to 5.8T, the differen-

tial conductance shows a decrease within a small bias voltage (superconductor gap).

This clear dip shows that there is no nodes in the superconducting gap. If there

exists node in the gap, the Cooper pair will be spin polarized so that the two spins

in one Cooper pair can be parallel. If a piece of half metal (LSMO) is used, Cooper

pair can be formed so that the differential conductance should increase. However,

for this material, there is no peak observed for all the contacts, even under a field as

high as 5.8T. This indicate that the NbSe2 is a singlet superconductor so that the

two spins in one Cooper pair has to be antiparallel. Thus, when a piece of LSMO is

used to make contact, no Cooper pair can be formed at the interface between the two

materials and a dip will appear.

The curve on the left of figure(8.6) is a representative curve of the LSMO/NbSe2

contact. The blue open circles are the raw data under zero magnetic field and the blue

open square are the ones under 5.8T in-plane field. The red line is the best fit of the

data using the mBTK model. The fitting parameters shows the relative properties

of the two materials: the spin polarization (P) value is about 0.794 (79.4%), which

is consistent with the P value for LSMO. The superconductor gap for the NbSe2 is
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Figure 8.5: Andreev reflection measurement of a Au/NbSe2 contact. A peak is
clearly observed under zero field and under 5.8T in plane field, which is typical for
Ising pairing.
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Figure 8.6: Andreev reflection measurement of a LSMO/NbSe2 contact. Top: 3-
D curves for Andreev reflection measurements under different field. All the curves
show dips, indicating singlet superconductivity. Bottom: A representative curve of
Andreev reflection measurement under zero field and 5.8T in plane field. The blue
open circles and squares are the raw data for the measurements under zero field and
5.8T field, respectively. The red solid line is the best fit using the mBTK model. The
fitting parameters are listed inside the figure.
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about 2∆ = 0.898meV , and the scattering factor is about Z=0.253.

At last, a out of plane field is applied to the same LSMO/NbSe2 contact. Since

this superconductor has a quite small out of plane critical field, the Andreev reflection

curve will disappear very quick with the increasing of the field. Figure(8.7) shows

the results for this contact. The red solid dots are the raw data for zero field and the

blue open squares represent the data when the field is about 3T. One can clearly see

a dip when the field is zero. The minimum of the dip is about 0.83, larger than the

ideal value, 0. This is because the spin polarization of LSMO is about 80%, which

is much smaller than that of a ideal half metal (P=100%). Therefore, when Andreev

reflection is measured, the minority spin band in the LSMO is not zero so that there

are always some Cooper pair can be formed. On the other hand, the scattering factor

may also have effect on the value of differential conductance value. When the field is

about 3T, the Andreev reflection spectrum almost disappears, which is corresponding

to the disappearance of superconductivity of NbSe2. The out of plane critical field

in this case is larger than that in the previous measurement (figure(8.4)), which is

because the LSMO may contact on a few other atomic layers so that the critical field

increases a little bit. Besides, LSMO has highly spin polarization, which will generate

a magnetic field around it and affect the critical field of the superconductor.

As a conclusion, Andreev Reflection Spectroscopy is used to study a monolayer of

NbSe2. Due to the huge difference on critical temperature and out of plane critical

field between monolayer and multilayer NbSe2, it is convenient to use these values

to decide whether the point contact is made on a monolayer or not. The Au/NbSe2

contact shows a increase in the differential conductance, which is typical for any

superconductor. According to the experimental data, the in plane critical field must

be larger than 5.8T, which is consistent with the Ising pairing of the Cooper pair.

The LSMO/NbSe2 contact shows a decrease in the differential conductance, which
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Figure 8.7: Andreev reflection measurement of a LSMO/NbSe2 contact with out-
of-plane field. Red solid dots: raw data for measurement under 0 field; Blue open
squares: raw data for measurement with 3T out-of-plane field. Andreev reflection dip
appears when there is no magnetic field and disappears when the field is about 3T.
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is corresponding to a singlet superconductor, for a magnetic field up to 5.8T. This

results indicate that there is no node in the superconducting gap of the NbSe2 under

this field. Since the critical temperature for this monolayer is about 3K, so that the

Pauli limit for it is about 1.84Tc = 5.52T . The in plane field applied in the lab is

about 5.8T, which is close to the Pauli limit. This may be the reason that the node

can not be observed under this field. If the field can be larger (at least 6 times larger

than that of the Pauli limit), the node may appear in the superconductor gap so that

spin polarized Cooper might be observed.
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