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ABSTRACT  

Recently, automation, shared use, and electrification are proposed and viewed as the “three 

revolutions” in the future transportation sector to significantly relieve traffic congestion, 

reduce pollutant emissions, and increase transportation system sustainability. Motivated by 

the three revolutions, this research targets on the passenger-focused scheduled 

transportation systems, where (i) the public transit systems provide high-quality 

ridesharing schedules/services and (ii) the upcoming optimal activity planning systems 

offer the best vehicle routing and assignment for household daily scheduled activities.  

The high quality of system observability is the fundamental guarantee for accurately 

predicting and controlling the system. The rich information from the emerging 

heterogeneous data sources is making it possible. This research proposes a modeling 

framework to systemically account for the multi-source sensor information in urban transit 

systems to quantify the estimated state uncertainty. A system of linear equations and 

inequalities is proposed to generate the information space. Also, the observation errors are 

further considered by a least square model. Then, a number of projection functions are 

introduced to match the relation between the unique information space and different system 

states, and its corresponding state estimate uncertainties are further quantified by 

calculating its maximum state range. 

In addition to optimizing daily operations, the continuing advances in information 

technology provide precious individual travel behavior data and trip information for 

operational planning in transit systems. This research also proposes a new alternative 

modeling framework to systemically account for boundedly rational decision rules of 

travelers in a dynamic transit service network with tight capacity constraints. An agent-
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based single-level integer linear formulation is proposed and can be effectively by the 

Lagrangian decomposition. 

The recently emerging trend of self-driving vehicles and information sharing technologies 

starts creating a revolutionary paradigm shift for traveler mobility applications. By 

considering a deterministic traveler decision making framework, this research addresses 

the challenges of how to optimally schedule household members’ daily scheduled activities 

under the complex household-level activity constraints by proposing a set of integer linear 

programming models. Meanwhile, in the microscopic car-following level, the trajectory 

optimization of autonomous vehicles is also studied by proposing a binary integer 

programming model. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation and Problem Definition 

The eternal principle of transportation systems is to serve passengers or freights with a 

timely and reliable journey from origin to destination. The continuous increase of travel 

demand and the mismatching low capability of service supply is resulting in traffic 

congestion, air quality and sustainability issues. Various approaches responding to them 

are being proposed and studied, including active transportation demand management, 

public transportation-oriented development, transportation network expansion plan, and 

intelligent vehicle highway system deployment. In addition, the recently emerging 

advanced sensing, telecommunications and vehicular technologies, are driving a new wave 

of rich information (e.g., GPS and Smartphone trajectory data, connected and autonomous 

vehicles test data, video image processed data and etc.,) and providing a great opportunity 

to completely unveil the inner mechanism of transportation system operations, while 

creating unprecedentedly unclear impacts on human activity‐ travel behavior, system 

operations and planning, and land use. 

The hidden principle of those feasible solutions and possible uncertainties above for system 

performance improvements can be summarized as how to best schedule/allocate the limited 

resources to reach the goal of optimizing pre-oriented performance measures. In other 

words, best serving passenger or goods from origin to destination is still a typical 

scheduling problem in transportation systems. Specifically, the scheduled transportation 

system usually refers to train or bus services that can only be accessed at certain times 
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(according to the timetable) and certain locations (Nuzzolo and Crisalli, 2009). The main 

goal of public transit systems is to provide a reliable scheduled service with high passenger-

carrying capacity and low environmental impacts to satisfy the time-dependent 

characteristics of travel demands. In addition, from the perspective of scheduling, the 

current available transportation management decisions are directly or indirectly making 

schedules for system performance improvements: (1) active travel demand management 

aims to schedule passengers’ departure time; (2) advanced traveler information system tries 

to schedule passengers’ path trajectory; (3) signal control and ramp metering intends to 

schedule the supply services to those incoming vehicles; (4) network construction and 

expansion can be viewed as offering continuous service/schedule on the new roads for 

vehicles. Actually, going back to focus on the origin of travel demand, the daily activities 

generated by each person in each household are generally also scheduled with preferred 

arrival and departure time windows at candidate locations to achieve mandatory or optional 

goals. Further, the upcoming autonomous vehicles and currently developing information 

sharing technologies starts creating a revolutionary paradigm shift in the coming years for 

traveler mobility applications. The optimal schedule of vehicles on household-level 

scheduled activity chains is critical and more valuable than single-demand responsive 

service providing. 

Recently, automation, shared use, and electrification are proposed as the “three revolutions” 

in the future transportation sector to significantly relieve traffic congestion, reduce 

pollutant emissions, and increase transportation system sustainability. Exactly, the 

traditional scheduled public transit system satisfy the three requirements and should be 

enhanced and integrated in future with the flexible autonomous vehicle applications where 
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the shared use of autonomously electric vehicles is also scheduled to perform household 

members’ scheduled activity chain. Of course, it is admitted that there are much flexible 

thinking about the future transportation system, such as, whether autonomous vehicles 

should be owned by person or managed by the agency, how to seamlessly integrate the 

transit systems with autonomous vehicles, whether people are really accepting the 

ridesharing with just a couple of thoroughly strange persons in a space-limited vehicle. 

This research conducted in this dissertation with careful assumptions is just one starting 

point. 

As a short summary, by considering the current and future transportation system 

characteristics, the scheduled transportation system studied in this dissertation is (i) a 

passenger-focused public transit system for the public and (ii) an information-shared and 

rideshared vehicle systems for household members’ scheduled activity performing. 

There is nothing more important than understanding how the real-world transportation 

system works and how to improve it. The rich information from the emerging 

heterogeneous data sources is making it possible, including loop detector data, automatic 

vehicle identification data, GPS and Smartphone semi-continuous trajectory data, outside 

sensing data from moving connected and autonomous vehicles, video image processed data. 

Compared to the previously low response rates from travel surveys for transit data 

collection, the current big data provides more valuable information to better observe time-

varying transit conditions and accordingly propose adaptive travel demand management 

and supply (capacity) control strategies. On the other hand, in face of the overwhelming 

data, the leverage of data on supporting system operational decisions should be 
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meticulously examined, and the increased system observability should be analytically 

quantified to measure the value of different information and proposed daily 

countermeasures. 

In addition to optimizing daily operations, the continuing advances in information 

technology provide precious individual travel behavior data and trip information for 

operational planning in transit systems. Taking the transit service network design problem 

as an application, the individual traveler agents, tight time-varying vehicle capacity 

constraints, and individual traveler’s behavior are systematically addressed for designing 

transit service networks, such as, constructing a new transit line with detailed schedules, 

adding train or bus schedules, or dynamically selecting different types of vehicles. 

The traditional scheduled transportation system above is currently playing a major part in 

shared mobility and will be enhanced rather than weakened in future to improve the 

transportation system efficiency. Meanwhile, the advanced information-sharing 

technologies are making it possible to provide the optimal vehicle routes and activity 

selection choices to each household member to finish his/her scheduled daily activities 

from the household level or from the transportation system level. In addition, with the 

upcoming autonomous vehicles, the micro-level vehicle trajectory planning and the macro-

level vehicle route guidance for shared mobility are also meaningful and will be addressed 

in this dissertation. 

1.2 Objectives and Challenges 

This dissertation aims to improve the scheduled dynamic transportation system 

performance from its daily operations to the medium-term operational planning based on 
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the currently available multi-source sensor data, and further make the best vehicle 

scheduling for performing those scheduled daily activities of each household member with 

the help of the emerging information-shared technologies and upcoming autonomous 

vehicles.  

The specific objectives and challenges for each problem above are explained as follows. 

(1) Observe the urban transit system in terms of flexible system state definitions based on 

the currently available multi-source sensor data. Specifically, the following crucial 

questions are still not clear and need to be deeply explored: (i) how to mathematically 

represent the available multi-source information in a unified way so that different system 

states can be estimated based on the well-developed information representation, (ii) what 

is the exact inner relation between the information and different focused system states, (iii) 

how to quantify the observability or the uncertainty of estimated states on the basis of 

available multi-source information with result consistency, and (iv) how to develop a 

theoretically elegant model and design a correspondingly efficient algorithm to solve the 

model. So finally the system observability quantification can be used for further system 

state prediction and daily optimal operational control. 

(2) Perform operational planning by service network design in dynamic transit systems 

based on the general individual traveler trip information and realistic travel behavior 

assumption analyzed from the multi-source sensor data above. Specifically, the following 

challenging questions need to be carefully addressed: (i) what is the generally realistic 

travel behavior and the stable system condition under tight vehicle capacity constraints, (ii) 

how to model the interaction of individual traveler in the dynamic transit systems, (iii) how 
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to build an elegant mathematical model for this classical and challenging network design 

problem, and (iv) how to design an efficient algorithm to solve the proposed model for 

large-scale networks. 

(3) Schedule and assign the available vehicles to perform the scheduled different daily 

activities of each household member under the complex household activity constraints and 

interactions. Specifically, we aim to study the following scenarios and questions under the 

condition that all available human-driven or autonomous vehicles are owned by households 

rather than the private companies or the government: (i) there is no ridesharing, so each 

household member will drive alone or choose to stay at home; (ii) there is a ridesharing 

among the household members, and the driver is known or the autonomous vehicle will 

always stay with someone rather to serve other households; (iii) how to capture the road 

congestion endogenously formed by those activities’ realization; (iv) how to model those 

complex requirements and solve it efficiently for the large-scale networks; and (v) how to 

plan autonomous vehicles’ trajectories or schedule their each moving step from the micro-

level car-following perspective. Of course, we admit that autonomous vehicles probably 

will be managed by companies or government, and the correspondingly open questions are 

numerous and absolutely worthy in hard future research, such as, how many autonomous 

vehicles and depots are really needed, how to locate those depots, how to protect the 

privacy in the ridesharing, how to build an optimal multi-modal transportation system and 

so on. 
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1.3 Research Overview 

This dissertation first develops a modeling framework in the time-discretized space-time 

networks or space-time-state networks to systematically understand and improve the 

passenger-focused scheduled dynamic transportation system, ranging from the near-term 

system observability, the medium-term operational planning, to the upcoming optimal 

vehicle scheduling and assignment for household-level scheduled activity chain rather than 

single activity responsive transport. Our specific conducted research are explained as 

follows. 

(1) Accurately estimating what the system is happening based on available 

information/observations is the foundation to deeply understand the system working 

mechanism and further optimally control the system. The theoretical relation among sensor 

data, states, and observability (or the uncertainty of state estimates) in urban dynamic 

transit systems is explored. Specifically, (i) the information space is generated by a system 

of linear equations and inequality constraints as the multi-source information 

representation; (ii) The information errors are considered by a least square model to correct 

the directly observed measurements, such as, trip time of grouped passengers from smart 

card, aggregated passenger count from video systems, path choice information from cell 

phone trajectory data; (iii) Different projection functions are proposed and used to map the 

unique information space with our focused different system states (e.g., passenger density 

on the station platform, in the vehicle, or in the transfer corridor) for further state 

uncertainty quantifications; (iv) Our developed models are finally solved as a simplified 

linear programming model by using Frank-Wolfe algorithm and Dantzig-Wolfe 
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decomposition algorithm, which improves the computational efficiency of solving our 

models. 

(2) From the perspective of operational planning, the aim of the transit service network 

design problem is to provide better service to users and to increase operating efficiency. 

Specifically, (i) Focusing on a dynamic transit service network with tight capacity, we 

utilize the property of constant travel times on space-time arcs to formulate the boundedly 

rational travel behavior of each traveler through a set of integer linear inequalities; (ii) By 

exogenously listing a set of viable space-time path alternatives for each agent, we offer a 

single-level 0-1 integer linear programming model to study the complex discrete network 

design problem under a set of quite specific but realistic assumptions. With the aim of 

minimizing the total transit system travel time, this new reformulation avoids the use of 

possible non-convex flow-based models where its link travel time is usually represented 

by a kind of nonlinear functions.  (iii) Although the proposed agent-based and time-

dependent formulation introduces additional dimensions and a large number of binary 

variables, it is further shown that, after dualizing hard constraints (i.e., capacity and rational 

decision constraints), the original problem can be decomposed into two sub-problems. 

These sub-problems have computationally efficient algorithms available on large scale 

networks, namely a time-dependent least cost path problem and a knapsack problem. 

(3) With the upcoming information-sharing and autonomous vehicle technologies, it 

become possible to implement the optimal vehicle schedule and assignment to each 

household member to finish his/her scheduled daily activities with different purposes, 

while creating a large number of uncertainties on travelers’ mobility and the future 
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transportation system pattern. Based on our careful assumptions as a starting point to 

discuss the future potential changes, two special cases are considered and further the road 

congestion incurred by finishing those activities is also embedded in our models.  

Specifically, (i) we consider Case A as a multi-vehicle and multi-person vehicle routing 

problem with mandatory and discretionary activities. (ii) With the given ride-sharing 

options for each household, we model our Case B as a multi-vehicle and multi-person 

ridesharing problem with mandatory and discretionary activities. (iii) These two problems 

are formulated as 0-1 integer linear programming models in a space-time network and a 

space-time-state network, respectively. (iv) The road capacity constraint is considered to 

model the network congestion and resulting activity pattern change. (v) Through dualizing 

the capacity constraints to the objective function by Lagrangian relaxation, our proposed 

model can be further solved through time-dependent state-dependent least cost path-

finding algorithms, which permits the use of fast computational algorithms on large-scale 

high-fidelity transportation networks. (vi) An integer programming models is presented for 

scheduling autonomous vehicles' longitudinal trajectories under the safety requirement and 

various vehicle communication characteristics. 

1.4 Organization of the Dissertation 

As shown in Figure 1-1, this research targets on the passenger-focused scheduled 

transportation system including the public urban transit system and the household vehicle 

scheduling system. For the public transit system, the system observability problem in daily 

operation level and the service network design problem in operational planning level are 

well studied. In addition, the vehicle routing and assignment for household daily scheduled 
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activities in the route level and the trajectory planning of autonomous vehicles in car-

following level are also carefully investigated. Since the system observability is the 

foundation of optimizing any transportation systems rather than just public transit system, 

we put the research on observability quantification at Chapter 5 rather than Chapter 3 to 

summarize the insights of how to use the overwhelming multi-source sensor data in 

transportation systems. However, the seamlessly integrated future multi-modal scheduled 

transportation system is still beyond the scope of this dissertation. The summary of each 

chapter is explained as follows. 

Public urban transit 

system

Household vehicle 

scheduling system  

Passenger-focused scheduled transportation system

Chapter 3

Operational planning: service 

network design

Chapter 4

Vehicle routing and 

assignment for household daily 

scheduled activities

Chapter 4

Trajectory planning of multiple 

autonomous vehicles

Chapter 5

Daily operation: system 

observability quantification

 

Figure 1-1 Study Flowchart of This Dissertation 

Chapter 2 provides a comprehensive review on passenger-focused transportation state 

estimation and system observability, transportation service network design, and vehicle 

routing and assignment for travelers’ scheduled activities.  
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At the operational planning level, Chapter 3 offers a modelling framework for the dynamic 

transit service network design problem to consider individual traveler and his/her realistic 

travel behaviors under oversaturated transit conditions. First, a simple network is used to 

show the final traffic conditions and modeling challenges based on different travel behavior 

assumptions under tight link capacity constraints. Then we propose a single-level integer 

linear programming model to capture the bounded rational travel behavior. The model can 

be further decomposed by Lagrangian relaxation as a time-dependent shortest path problem 

and a knapsack problem, which can be efficiently solved by currently classical algorithms. 

Numerical experiments are also performed to demonstrate our methodology and algorithms. 

Chapter 4 directs to the household-level scheduled activities, which could be optimally 

performed by each individual with the upcoming information-sharing and autonomous 

vehicle technologies. Two special cases, solo driving and ride sharing, are considered by 

making vehicle scheduling and assignment for each household member, and the road 

congestion is further incorporated in the proposed models, which can be efficiently solved 

to obtain a lower bound by Lagrangian relaxation under the rapid development of hardware 

of computers in memory and fast computation speed. In addition, the trajectory planning 

of multiple autonomous vehicles is studied based on Newell’s simplified car-following 

model. 

Chapter 5 first presents a conceptual illustration about the relationship among sensor, 

system states, and system observability in a general transportation network rather than in 

transit systems, and then proposes a modeling framework for our scheduled urban transit 

system to quantify the uncertainty of system state estimate (system observability) based on 
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the different available multi-source sensor data in time-discretized space-time networks. 

The proposed models finally can be transformed as a linear programming problem by 

Frank-Wolfe algorithm and Dantzig-Wolfe decomposition algorithm. Numerical 

experiments are conducted following our proposed methodology and algorithms. 

Finally, Chapter 6 summarizes the research of this dissertation by conclusions and 

contributions, and also discuss the future research directions under consideration. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews several topics relevant to passenger-focused scheduled transportation 

systems. Section 2.1 presents a general overview of observability quantification or 

uncertainty quantification of system state estimates in traffic networks and urban transit 

systems. In traffic systems with heterogamous sensor sources, the Origin-Destination 

matrix estimation problem, the sensor network design problem, and the traffic states (e.g. 

path/link travel time, queuing delay) estimation problem are related with each other. In 

urban transit systems, the smart card data are mainly used to estimate passengers’ trip 

destination in bus transit system and study passengers’ travel behavior or route choice in 

rail transit system. Section 2.2 provides a comprehensive review on traffic and transit 

network design problems, where the travel behavior assumptions, physical resource 

constraints, modeling approach, and algorithms designed for the bi-level programming 

problem are key elements. In Section 2.3, how the household daily scheduled activities can 

be realized is reviewed. Meanwhile, vehicle routing and assignment for single on-demand 

activity request and the emerging new transit service are also discussed.  

2.1 System Observability Quantification in Transportation Systems 

2.1.1 State Estimation and Sensor Network Design in Traffic Systems 

Observability is a concept introduced by Kalman (1959) for linear dynamic systems in 

control theory. It is a measure for how well internal states of a system can be inferred by 

knowledge of its external outputs. In other words, it aims to quantify or measure the 

uncertainty of estimated internal states based on the available external observations under 

a given sensor environment with sampling errors, sensor error and model errors. A 
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comprehensive literature review can be found at the paper (Castillo et al., 2015). As for 

evaluating the estimation uncertainty or accuracy, origin-destination (OD) trip matrix 

estimation is a widely studied classical problem due to its under-determination attribute, 

which means that there is an infinite number of OD trips that can generate link flows 

consistent with the observations. Yang et al. (1991) first introduced the concept of 

Maximum Possible Relative Error (MPRE) to theoretically investigate the estimation 

uncertainty and reliability of the OD estimated trips obtained by the entropy model. Bianco 

et al. (2001) further explored the accuracy of estimated OD matrix bound under different 

sensor location strategies. In addition, Bierlaire (2002) proposed the concept of total 

demand scale as a new measure to examine the quality of estimated OD trip tables from 

link counts, by maximizing/minimizing the total travel demand satisfying all observations. 

In the general transportation observability problems, a number of research (Castillo et al., 

2007; Castillo et al., 2008; Gentili and Mirchandani, 2012;) modeled the problems as a 

system of linear equations and/or inequalities and then determine whether the system or 

one unknown variable is observable or not by analyzing the properties of its coefficient 

matrix. Meanwhile, in the system of linear inequalities, a general bound of unknown 

variables can be derived through the dual cone approach. In general, the observability 

problem more cares about the list of variables to be observed rather than the specific system 

states uncertainty ranges. 

In order to increase the estimation quality, the integration of ubiquitous sensor network 

design and state estimation has received a growing attention in the past few years. Yang 

and Zhou (1998) proposed integer linear programming models and four sensor location 

rules to determine the optimal number and location of point sensors for origin-destination 
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matrix estimation. Based on the trace of the a posteriori covariance matrix produced in a 

Kalman filtering model, Zhou and List (2010) offered an information-theoretic framework 

for locating fixed sensors in the traffic OD demand estimation problem. In addition, based 

on the observability problem definition, the optimal count number and location of active 

sensors (Gentili and Mirchandani, 2005) and counting and scanning sensors (Castillo et al., 

2012) for estimating path/link flows are studied by analyzing a set of linear equations. Hu 

et al. (2009) proposed one “basis link” method to find the smallest subset of links in a 

network to locate sensors so that the traffic flow of all links can be accurately estimated 

under steady-state conditions, so finally the OD information and route choice behavior are 

not necessary. Further, Ng (2012) introduced a new solution approach (‘‘synergistic sensor 

location’’) to avoid possible path enumeration under the assumed steady-state conditions. 

Xu et al. (2016) proposed a robust network sensor design to completely observe link flows 

whiling accounting for the accumulation of observation errors. For other traffic states, link 

travel time estimation errors are selected as the optimization criterion for point sensor 

location problems (Ban et al., 2009; Danczyk and Liu, 2011), and a reliable sensor location 

method is proposed to consider probabilistic sensor failures (Li and Ouyang, 2011). Based 

on a Kalman filtering structure, Xing et al. (2013) developed measurement and uncertainty 

quantification models to explicitly consider several important sources of errors in path 

travel time estimation/prediction. In the real-time traffic conditions, Eisenman et al. (2006) 

conducted a sensitivity analysis of estimation and prediction accuracy under different 

sensor locations and coverage scenarios based on a real-time dynamic simulation system, 

DYNASMART-X. Boylse and Waller (2011) studied the optimal location selection for 

providing the real-time traffic information to drivers with the adaptive travel behavior by 
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proposing heuristic algorithms, and Ban et al. (2011) studied the real-time queue length 

estimation at signalized intersections by focusing on queuing delay patterns and queue 

length changes based on travel times from mobile traffic sensors. 

2.1.2 State Estimation and Smart Card Use in Urban Transit Systems 

In urban transit systems, usually, the automatic fare collection system (AFC) or smart card 

usually records both the time and station for entry and exit for each passenger in rail transit 

systems, but only the boarding time and stop and route number normally can be reported 

in bus transit systems. A comprehensive literature review about smart card data use can be 

found in the papers (Pelletier et al., 2011; Ma et al., 2013). Obviously, the unknown 

destination information greatly increase the state uncertainty of bus transit system. 

Trépanier et al. (2007) estimate the alighting point for each passenger based on the smallest 

distance to the boarding stop of his/her next route from individually continuous riding 

records in smart card. Seaborn et al. (2009) proposed maximum elapsed time thresholds to 

identify transfers for bus-to-underground, underground-to-bus, and bus-to-bus to identify 

and assess multi-modal trips in London. Meanwhile, Munizaga and Palma (2012) estimated 

a multimodal transport OD matrix from smartcard and GPS data whiling consider 

unobserved trips by expansion factors in Santiago, Chile. Yuan et al. (2013) proposed a 

space alignment approach by considering the aligning the monetary space and geospatial 

space with the temporal space to infer each passenger’s trajectory and the results improve 

the detection of uses’ home and work places. Nassir et al. (2015) applied the smart card 

data to detect activity and identify transfers to estimate the true origins and destinations. 

Nunes et al. (2016) further proposed four endogenous spatial validation rules to enhance 
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the accuracy of estimated passenger destination choice. Alsger et al. (2016) evaluated and 

improved existing OD estimation method according to available OD information and 

assessed the previous last destination assumptions in bus transit systems. Under the 

situation that passenger’s boarding stop information is not record in smart cards, Ma et al. 

(2012) developed a Markov chain based Bayesian decision tree algorithm to estimate the 

sequential stops on the bus route and then match those stops with the recorded boarding 

time to infer passengers’ origin. Further, Ma et al. (2015) improved their previous 

algorithms to increase the estimation accuracy and computation efficiency.  

Depending on the available OD travel information from smart card in urban rail transit 

systems, a number of studies focus on the route choices and transfer patterns, which can be 

viewed as different system states necessary for estimation. Kusakabe et al. (2010) focused 

on the passengers’ train choice behavior by assuming that each passenger aims to minimize 

the total waiting time at the departure station, loss time at the arrival station, and the transfer 

frequency. Usually, in the logit discrete choice models the tight side constraints (e.g. strict 

vehicle capacity constraint) are still hard to include. Sun and Xu (2012) estimated the path 

choice based on the observed overall probability density of journey time and the derived 

distribution of individual path travel time from the rail transit smart card. In addition, Zhou 

and Xu (2012) used a matching degree function value to assign the trip to the most likely 

path based on derived boarding plan of path. Remarked that the verification of those 

assigned path flows above has not been soundly performed due to the limit of observed 

data and complicated route choice behaviors, such as passenger’s particular travel 

preference. Kusakabe and Asakura (2014) proposed a data fusion methodology to consider 

both the smart card data and person trip survey data by Bayes probabilistic model to 
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estimate behavioral attributes of trips in the smart card data. Based on passenger OD matrix 

information and vehicle stop time and location data, Zhu et al. (2017a; 2017b) proposed 

probabilistic models to estimate the individual train loads, left behind probabilities, time-

dependent crowding levels at stations and etc., under tight vehicle capacity considerations.  

2.2 Transportation Network Design Problem 

2.2.1 Traffic Network Design Problem 

The discrete traffic network design problem has been traditionally formulated as a bi-level 

programming model, where the upper-level problem decides where and how many links 

should be built, and the lower-level problem aims to predict travelers’ response to changes 

in the network conditions, by assuming certain user behavior rules such as Wardrop or 

Nash user equilibrium. A number of comprehensive reviews on the discrete traffic network 

design problem have been offered by the classical papers by Magnanti and Wong (1984), 

Yang and Bell (1998), as well as a recent study by Farahani et al. (2013). Typical solution 

algorithms in the discrete cases include branch and bound (Leblanc, 1975), support 

functions in bender decomposition (Gao et al., 2005), meta-heuristics (e.g. Xiong and 

Schneider, 1992; Drezner and Wesolowsky, 2003; Poorzahedy and Rouhani, 2007).  

Another active research line for considering user equilibrium (UE) conditions is to 

construct a single-level programming model with constraints corresponding to the UE 

principle. The early work by Bard and Moore (1990) provided a reformulation based on 

the Karush–Kuhn–Tucker (KKT) conditions with a branch and bound solution scheme. 

Recently, Farvaresh and Sepehri (2011) presented a single-level mixed integer linear 

problem (MILP) by representing the UE condition as KKT constraints and linearized those 
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non-linear terms by introducing binary auxiliary variables. In addition, Lou et al. (2009) 

studied a robust network design approach and formulated the problem as a mathematical 

program with complementarity constraints, where a cutting-plane scheme was proposed 

for solving this problem with demand uncertainties. Wang and Lo (2010) recast the lower-

level model by complementarity constraints, and then introduced a set of binary variables 

to transform the “if-then” conditions into an equivalent set of linear constraints, which can 

be further approximated with a MILP framework to search for global optimal solutions. 

Luathep et al. (2011) formulated the user equilibrium condition as a variational inequality 

problem, and also adopted the linear approximation technique to transform the original 

problem as an MILP model, which is solvable based on a cutting constraint method. Wang 

et al. (2013) developed two types of global optimization methods, and one of them involves 

using the system optimal (SO) traffic assignment principle to construct effective lower 

bounds. Recently, Wang et al. (2015) considered both which links should be built and how 

many capacities should be assigned to those built links simultaneously, and then proposed 

a global optimization method incorporating linearization, outer approximation and range 

reduction to solve this problem.  

Those previous studies, based on either bi-level programming or transformed single-level 

models, have made great contributions to a deep understanding and numerical efficient 

algorithm development for different classes of discrete traffic network design problems. 

To the best of our knowledge, still very few studies have completely considered the tight 

transportation capacity and (reasonable and realistic) user equilibrium in the context of bi-

level or single-level network design framework, especially for time-dependent transit 

service networks.  
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2.2.2 Transit Service Network Design Problem 

This research takes particular interests in the dynamic transit service network design, as a 

representative example of discrete transportation service network design in a space-time 

network. There are a wide range of studies on transit network design, represented by 

excellent survey papers such as Guihaire and Hao (2008), Kepaptsoglou and Karlaftis 

(2009), Farahani et al. (2013), and Ibarra-Rojas et al. (2015). Table 2-1 lists a number of 

studies closely related to the problem under consideration in this chapter, with a special 

focus on topics such as travelers’ behavior in terms of deterministic user equilibrium or 

Nash equilibrium, time-dependent travel demand, space-time network representation, and 

general transit assignment problems which is the lower level of the transit service network 

design problem. 

As listed in Table 2-1, in some early studies (Nguyen and Pallottino, 1988; Spiess and 

Florian, 1989; De Cea and Fernandez, 1993; Nuzzolo et al., 2001; Gao et al., 2003), the 

tight capacity constraints are not considered for user equilibrium in transit 

assignment/network design problems; in some succeeding studies, the tight capacity 

constraints are generally addressed in the following two ways: (i) extend or modify existing 

link travel time functions to penalize the generalized cost values when the assigned flow is 

above the capacity (Lam et al., 1999; Nguyen et al., 2001; Cepeda et al., 2006; Szeto and 

Jiang, 2014a), (ii) explicitly consider strict capacity constraints  through an inequality 

where the assigned flow is strictly equal to or less than the given capacity, implemented by 
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Table 2-1 Related Studies on User Equilibrium, Capacity Constraint, or Time-dependent Travel Demand in 

Transit Systems 

Paper Problem type 
User equilibrium vs. System 

Optimal  

Capacity 

constraint 
Demand 

Space-time 

network 
Solution method 

Nguyen and 

Pallottino 

(1988) 

Transit 

assignment 

Strategy-based UE represented 

by variational inequality 
No Static  No 

Shortest hyperpath 

algorithm 

Spiess and 

Florian 

(1989) 

Transit 

assignment 

Strategy-based UE represented 

by one convex cost 

differentiable problem  

No Static  No 

Linear 

approximation 

based algorithm 

De Cea and 
Fernandez 

(1993) 

Transit 
assignment 

Volume-delay function-based 
UE represented by variational 

inequality 

No Static  No 
Diagonalization 
algorithm 

Lam et al. 

(1999) 

Transit 

assignment 
Generalized Stochastic UE 

Modified 

link cost 

function 

Static No 
Lagrangian 

algorithm 

Nguyen et al. 

(2001) 

Transit 

assignment 

Nash equilibrium represented 

by variational inequality 

Modified 

link cost 

function 

Time-

dependent 
No 

Column generation 

scheme 

Nuzzolo et al. 

(2001) 

Transit 

assignment 

Dynamic Stochastic user 

equilibrium 
No 

Responsive 

time-

dependent 

Yes 

Iterative algorithm 

with network 

loading 

Gao et al. 

(2004) 

Transit network 

design 

Volume-delay function-based 

UE represented by variational 

inequality 

No Static  No 

Heuristic algorithm 

based on sensitivity 

analysis 

Poon et al. 
(2004) 

Transit 
assignment 

Dynamic user equilibrium Tight 
Time-
dependent 

No 
Iterative algorithm 
with network 

loading 

Hamdouch et 

al. (2004) 

Transit 

assignment 

Strategy–based UE represented 

by variational inequality 
Tight Static No 

Iterative algorithm 

with network 

loading 

Cepeda et al. 

(2006) 

Transit 

assignment 

Strategy–based UE represented 

by gap function 

Modified 

link cost 

function 

Static No 

Method of 

successive average 

(MSA)  
Hamdouch 

and 

Lawphongpa

nich (2008) 

Transit 

assignment 

Strategy–based Dynamic UE 

represented by variational 

inequality 

Tight 
Time-

dependent 
Yes 

Method of 

successive average 

(MSA) with 

network loading 

Nuzzolo et al. 

(2012) 

Transit 

assignment 

Dynamic Stochastic user 

equilibrium 
Tight 

Responsive 

time-

dependent 

Yes 

Iterative algorithm 

with network 

loading 

Niu and Zhou 

(2013) 

Transit service 
network design 

(Timetable 

optimization) 

System-optimal Tight 
Time-

dependent 
Yes Genetic algorithm 

Hamdouch et 

al. (2014) 

Transit 

assginment 
Strategy–based Stochastic UE Tight 

Time-

dependent 
Yes 

Iterative algorithm 

with network 

loading 

Szeto and 
Jiang (2014a) 

Transit 
assignment 

Approach-based UE 
represented by variational 

inequality 

Modified 
link cost 

function 

Static No 
Extragradient 
method 

Szeto and 

Jiang (2014b) 

Transit network 

design 

System-optimal, Bi-level 

model 
Tight Static No 

Hybrid artificial 

bee colony 

algorithm 

Niu et al. 

(2015) 

Transit service 

network design 

(Timetable 
optimization) 

System-optimal Tight 
Time-

dependent 
Yes 

Optimization 

solvers 

Verbas and 

Mahmassani 

(2015)  

Transit service 

network design 

(Frequency 

allocation) 

Dynamic user equilibrium Tight 

Responsive 

time-

dependent  

No 

Heuristic method 

and simulation via 

bi-level 

programming 

Liu and Zhou 

(2016) 

Transit service 

network design 

Capacitated network 

equilibrium with boundedly 

rational agents  

Tight 
Time-

dependent 
Yes 

Lagrangian 

decomposition 
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simulation-typed network loading for equilibrium condition (Poon et al., 2004; Hamdouch 

et al., 2004; Hamdouch and Lawphongpanich, 2008; Nuzzolo et al., 2012; Hamdouch et 

al., 2014; Verbas and Mahmassani, 2015) or analytically mathematic models for system 

optimum (Niu and Zhou, 2013; Szeto and Jiang, 2014b; Niu et al., 2015). 

Further, to find one equilibrium condition in the schedule-based transit assignment problem 

with tight capacity constraints, most of previous studies adopted an iterative procedure with 

simulation-type network loading, where both the best path finding for dynamic travel 

demand and the network loading for path cost calculation are performed iteration by 

iteration until reaching convergence. Generally, there are three types of approaches to find 

the best paths, (i) the approach by Poon et al. (2004) finds the least-generalized cost path 

by the specific time-dependent optimal path algorithm (Tong and Richardson, 1984); (ii) 

Hamdouch and Lawphongpanich (2008) proposed the optimal strategy (a set of paths with 

least expected travel cost) for different passenger groups by dynamic programming; (iii) 

Nuzzolo et al. (2012) selected a set of paths with assignment probability by a route choice 

model while considering the real-time transit information. In this chapter, the path selection 

mechanism we adopt is based on the boundedly rational travel behavior that the path cost 

of each agent should be within the sum of the agent’s least path cost and indifference band. 

Since non-atomic game and atomic game belong to two different modeling frameworks, in 

order to avoid the confusion with the traditional BRUE with nonatomic players, the agent-

based transit assignment result in this chapter can be treated as a kind of network 

equilibrium with boundedly rational agents. 
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2.2.3 Wardrop’s User Equilibrium and Bounded Rationality Behavior 

A number of questions should be systematically addressed in order to analytically represent 

practically important modeling aspects, such as how to consider tight capacity constraints 

(e.g. vehicle carrying capacity and station spatial capacity) within UE-oriented behavioral 

assumptions. In an early study, Hearn (1980) stated that a real user equilibrium proposed 

by Wardrop may not exist in the traffic assignment problem with tight link capacity 

constraints. Adding the tight link capacity constraint to the Beckmann-McGuire-Winsten 

(BMW) model (Beckmann et al., 1956), Larsson and Patriksson (1995) proposed an 

augmented Lagrangean dual algorithm for a modified BMW model and showed that there 

exists a generalized UE where Lagrangean multipliers of link capacity constraints can be 

treated as link tolls. Further, Larsson and Patriksson (1995), Larsson and Patriksson (1998), 

Nie et al. (2004), and Marcotte et al. (2004) noted that those Lagrangian multipliers in 

generalized user equilibrium is not unique. In order to obtain a specific toll scheme 

(Lagrangian multipliers) for implementation, it usually requires modelers to consider a 

secondary goal (Larsson and Patriksson, 1998), such as, minimizing the total system tolling 

charges, minimizing the maximum toll on any individual arc, or minimizing the number of 

toll booths based on the tolling implementation conditions (Florian and Hearn, 1999). The 

other way to address tight capacity constraints is to use the marginal cost as link toll to 

achieve a generalized user equilibrium so that travelers can choose the routes (the solution) 

of system optimum (Florian and Hearn, 1999). In addition, the classical work by Correa et 

al. (2004) proves that the solution of the modified BMW model belongs to one of Nash 

equilibriums where no travelers can reduce their travel cost by unilaterally changing routes 

in a capacitated network. 
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Typically, once both the tight capacity and self-disutility minimization behavior 

(Wardrop’s first principle) are considered, the problem can be modeled as a generalized 

Nash equilibrium problem (GNEP) (Facchinei and Kanzow, 2010). Each player has one 

disutility function and aims to choose a strategy that minimizes his/her disutility. 

Meanwhile, the player’s strategy also depends on the rival players’ strategies due to limited 

resources. However, it is still challenging to find a widely accepted solution approach to 

this complex problem, and more modeling details are systematically examined in the 

excellent survey paper by Facchinei and Kanzow (2010).  

A theoretically important study by Szeto (2003) points out that dynamic user equilibrium 

(DUE) may not exist when considering the physical queue in dynamic traffic systems. Han 

et al. (2015a) first presented a rigorous continuity result for the path delay operator, which 

is the fundamental importance to the existence of DUE conditions, based on the Lighthill–

Whitham–Richards (LWR) network model capable of capturing physical queues and 

spillback, by assuming that the network supply is bounded away from zero or is within 

desired boundedness. In addition, Han et al. (2015b) proposed a bi-level model for traffic 

network signal control problems where a continuum signal model is employed to ensure 

the existence of DUE in the lower level problem. As a remark, the dynamic user 

equilibrium studied in the last two decades is usually analytically expressed of Nash-like 

equilibrium condition (Han et al., 2015a).  

In order to address the non-existence issue of flow-based dynamic user equilibrium, Szeto 

(2003) developed a tolerance-based dynamic traffic assignment (DTA) model, where the 

tolerance can also be treated as an indifference band, which can be viewed as an extension 



 

25 

 

or adaption from the boundedly rational behavioral model first introduced through the 

seminar work by Mahmassani and Chang (1987). In those metropolitan’s transit system 

under oversaturated conditions, the tight vehicle capacity constraints lead to possible 

discontinuity of path travel time and unfortunately force some travelers fail to board on the 

preferred line, which could result in travelers’ boundedly rational behavior based on their 

day-to-day (possibly stochastic) travel experiences. Meanwhile, many empirical studies 

using GPS trajectory data (e.g., Morikawa et al., 2005; Zhu, 2011) have shown that 

travelers do not always choose the shortest paths in reality 

2.3 Vehicle Routing and Assignment for Household Daily Scheduled Activities 

The activity-based modeling approach has been widely studied in the area of transportation 

planning and operations to better capture various facets of travel behavior and decision 

making. How to recognize complex resource constraints, multi-agent interactions, and 

consistency through trip chains of different individuals is an important concern for accurate 

activity-based modelling and analysis at the household level. The currently most adopted 

approach is to develop a probabilistic micro-simulation-based utility maximization models 

by Bhat et al. (2004), Pendyala et al. (2005), Pribyl and Goulias (2005), Miller and Roorda 

(2003), and Arentze and Timmermans (2004), mainly based on land-use, 

sociodemographic, activity system, and transportation level-of-service attributes.  

Currently, the emerging mobile apps with multi-modal traveler information and personal 

activity schedules enable travelers to intelligently schedule their activities and share their 

trip requests. In addition, transportation network companies such as Uber and Lyft and the 

forthcoming autonomous vehicle system would allow and encourage a fully optimized 
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planning process for mapping household activities and travel requests (to be met by 

personal or shared vehicles) rather than just single on-demand request for optimally 

allocating available vehicle resources and minimizing the household-level or system-level 

total travel cost. Actually, the household activity pattern problem (HAPP) that is first 

systematically formulated by Recker (1995) fully satisfy the requirements above for the 

emerging and upcoming new transportation mobility pattern. The HAPP aims to find the 

optimal path of household members for completing their prescribed activities based on the 

available number of vehicles, scheduled activity participation, and ride-sharing options 

within a long period as the unit of analysis. 

Typically, based on a conventional mixed integer linear programming model for the pickup 

and delivery problem with time windows (PDPTW), many typical cases in HAPP, e.g., 

five cases in a classical paper by Recker (1995), Recker (2001), Recker et al. (2001), and 

Gan and Recker (2008), require a very large number of linear and integer constraints to 

capture the complex rules in real-world household-level activity scheduling progress. 

Recently, several algorithms had been proposed to address more realistic side constraints 

and large-sized examples, to name a few, Chow and Recker (2012) and Kang and Recker 

(2013). In addition, Liao et al. (2013a, 2013b) presented a new set of super-network models 

for various person-level activity scheduling problems, where the multi-dimensional 

network construct contains travel links, state transition links and activity transaction links. 

To formulate HAPP as a mathematically rigorous model, how to fully consider complex 

coupling constraints among three layers, namely household members, vehicles and 

mandatory/optional activities, is extremely challenging, especially for large-scale multi-
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modal transportation network with flexible ride-sharing and household member activity-

coordination options 

To consider the traffic congestion and feedback loops associated with complex trip 

interactions, there are a wide range of studies aiming to combine Activity-based Model 

(ABM) and Dynamic Traffic Assignment (DTA) to better capture the interplay between 

human activity-travel decisions and underlying congested networks with tight road 

capacity constraints, as shown in Figure 2-1. Iteration by iteration, the generated activities 

and time-dependent transportation condition will finally converge to a stable point or 

equilibrium, and then the individual activity-travel pattern will be formed and the DTA 

module will also output how those activities are finished and the resulting time-dependent 

transportation states. 

Synthetic Population Generator

Activity-travel Demand Model 
(utility-maximization v.s. 

simulation-based)

Individual Activity-travel Patterns

Convergence Check

Activity-travel Demand and 
Network Dynamics

Network Loading 
with road capacity 

(analytical v.s. 
simulation-based)

Optimal Path Finding 
and Vehicle 
Switching

Dynamic Traffic Assignment Model

No

Yes

 

Figure 2-1 Existing Framework of Integration between ABM and DTA 
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For example, Lin et al. (2008) proposed a conceptual framework and explored the model 

integration of activity-based model (CEMDAP) and dynamic traffic assignment model 

(VISTA).  Pendyala et al. (2012) further integrated activity-travel demand models 

(OpenAMOS), DTA tools with the long-term land use modeling layer (UrbanSim). To 

further study the impacts of dynamic traffic management strategies and real-time traveler 

information provision, Pendyala et al. (2017) proposed a tightly integrated modeling 

framework for representing activity-travel demand and traffic dynamics in an on-line 

environment. 

Based on mathematical programs of HAPP, Kang et al. (2013) studied the network design 

problem considering the interaction between the household-level activity pattern and 

infrastructure changes. Chow and Djavadian (2015) proposed a new market equilibrium 

model to capture the interaction of traveler activity schedules in a capacitated system with 

a macroscopic flow restriction on a link or node facility. Abdul Aziz and Ukkusuri (2013) 

examined capacitated vehicle routing problems with the time-dependent congestion costs, 

which are determined by a network-wide cell transmission model. In a recent study by Fu 

et al. (2016), the intra-household interactions are considered through Markov decision 

processes and the road congestion effect is reflected by the static travel time function.  

However, facing the upcoming autonomous vehicle (AV) application, it is possible that 

those AVs are owned by some private companies rather than just owned by each household 

assumed in the above, so it will be an important research topic to explore the new household 

activity pattern and the optimal planning for those household daily scheduled activities and 

AVs from some specific depots.  The current research more focus on the vehicle routing 
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problem for individual on-demand travel request with pick-up and delivery services with 

time windows. A recent literature review can be found in the paper (Mahmoudi and Zhou, 

2016) where a space-time-state network representation is able to comprehensively 

enumerate possible vehicles' carrying states at any given time along vehicle space–time 

paths, and further allows a forward dynamic programming solution algorithm to solve the 

single vehicle VRPPDTW problem in large-scale networks by Lagrangian relaxation.  

In addition, the information-sharing technology is also changing the existing transit system. 

One example is the emerging customized bus services for regular commuters in congested 

metropolitan areas. A comprehensive literature review was conducted in the paper (Tong 

et al., 2017) where the paper developed a multi-commodity network flow-based model to 

optimize the utilization of the vehicle capacity while satisfying individual demand requests 

in a space-time network. 

Actually, the research in this dissertation for the current public transit system and 

household-level activity completion optimization is just a beginning. In future, it is more 

possible to build a seamless multimodal scheduled transportation system, in which 

autonomous vehicles provide the optimal services for household scheduled daily 

mandatory and optional activities while connecting with the new public transit services, 

which can be fully observable, controllable and optimized based on more heterogeneous 

sources information.  
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CHAPTER 3 CAPACITATED TRANSIT SERVICE NETWORK DESIGN 

3.1 Introduction 

In general, the transportation network design problem aims to minimize the total 

transportation system disutility by optimizing the location of capacity enhancement 

strategies or various transportation service plans. Specifically, the aim of the transit service 

network design problem is to provide better service to users and to increase operating 

efficiency, involving key decisions such as constructing a new transit line, adding train or 

bus schedules, or dynamically selecting different types of vehicles to meet time-dependent 

transit demand.  

While a large number of existing studies have been devoted to network design problems 

with static origin-destination (OD) demand input, this paper intends to study a class of 

practically important problems for designing discrete transit service networks with (i) 

individual traveler agents (corresponding to time-dependent demand matrices) and (ii) tight 

time-varying capacity constraints in terms of the number of passengers a transit vehicle or 

a station can carry. In addition, our study aims to address a number of theoretically 

challenging questions for realistically capturing and possibly affecting individual traveler’s 

behavior in an oversaturated transit system. Under possibly extremely heavy congested 

conditions in transit systems (e.g. in Beijing and Tokyo), for example, each traveler wants 

to minimize his/her disutility within his/her rational/tolerance bands and preferred arrival 

times, but finally they need to select a close-to-user-optimal path from a limited number of 

capacity-feasible routing options, which could have very different path travel times and 

path-dependent prices.  
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3.2 Conceptual Illustration 

Table 3-1 lists general indices, sets, parameters and variables in optimization models 

appeared in this sub-section.  

Since Wardrop’s user equilibrium may not exist due to strict capacity constraints, the gap 

of route travel time among travelers with same origin, destination, and departure time could 

force travelers to accept an indifference band through day-to-day travel experiences and 

finally form boundedly rational travel behavior (Liu and Zhou, 2016). For each agent, 

his/her perceived travel cost on the selected route is constrained within the respective 

indifference bands given by: 

 𝐶𝑤
𝑎 ≤ 𝜋𝑤 + 𝜀(𝑎), ∀𝑎 (3.1) 

It should be noted that, the traditional flow-based BRUE condition is described by the 

following “if-then” condition: if ℎ𝑤,𝑝 > 0, then 𝐶𝑤,𝑝 ≤ 𝜋𝑤 + 𝜀𝑤 (Lou et al., 2010; Guo 

and Liu, 2011; Di et al., 2013; Di et al., 2014; Han et al., 2015c; Di et al., 2016). In our 

proposed case, for any path selected by one or more agents, the corresponding path flow 

ℎ𝑤,𝑝 is equal to or more than 1. As a result, the path cost should be constrained within the 

predefined bound 𝜋𝑤 + 𝜀𝑤 for an OD pair, or equivalently 𝜋𝑤 + 𝜀(𝑎) which reflects an 

individual’s indifference band.  

For illustrative purposes, one simple network is created that was adapted from the paper 

by Correa et al. (2004), with 4 nodes and 6 links along one OD pair (1,4) shown in Figure 

3-1. The link cost and link capacity are sequentially displayed in parenthesis. The demand 

from node 1 to node 4 has 2 agents. 
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Table 3-1 Indices, Sets, Parameters and Variables 

Indices Definition 

𝑖, 𝑗, 𝑗′ Index of nodes, 𝑖, 𝑗, 𝑗′ ∈ 𝑁 
(𝑖, 𝑗) Index of physical link between two adjacent nodes, (𝑖, 𝑗) ∈ 𝐿 

𝑎 Index of agents, 𝑎 ∈ 𝐴, defined based on each (time-dependent) OD pair 

𝑤 Index of OD pairs, 𝑤 ∈ 𝑊 

𝑝 Index of path set 𝑃𝑤 

𝑘 Index of a path  

𝑜(𝑎) Index of origin node of agent 𝑎 

𝑑(𝑎) Index of destination node of agent 𝑎 

𝑡, 𝑠 Index of time intervals in the space-time network 

Sets  

𝑁 Set of nodes in the physical transportation network  

𝐿 Set of links in the physical transportation network 

𝑊 Set of Origin-Destination (OD) pairs 

𝐴 Set of agents 

𝑃𝑤 Set of paths of OD pair 𝑤 

𝐿𝐶 Set of current links in the physical transportation network 

𝐿𝐵 Set of potential built links in the physical transportation network 

Φ(𝑤(𝑎), 𝑘) Set of links in the 𝑘𝑡ℎ path of OD pair 𝑤(𝑎) of agent 𝑎 

Ω(𝑤(𝑎)) Set of possible paths of OD pair 𝑤(𝑎) of agent 𝑎 

𝑉 Set of  vertices in the space-time network 

𝐸 Set of  edges/arcs in the space-time network 

Parameters  

𝑑𝑤  Travel demand of OD pair w 

𝛿(𝑖,𝑗)
𝑤,𝑝

 Path-link incidence index of route 𝑝 of OD pair 𝑤 on link (i, j) 

𝐶𝑎𝑝𝑖,𝑗 Capacity of link (𝑖, 𝑗) 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝜀(𝑎) The indifference band or tolerance value of agent 𝑎 

𝜀𝑤 The indifference band of OD pair 𝑤 

𝑏𝑖,𝑗 Construction cost of link (𝑖, 𝑗) 

𝐵 Total financial budget 

𝑀 An assumed large value as an auxiliary parameter 

𝐷𝑇𝑎 The departure time of agent 𝑎 

𝐴𝑇𝑎 The assumed arrival time of agent 𝑎 

𝑐𝑖,𝑗,𝑡,𝑠 Travel cost of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝑇 The time horizon in the space-time network 

𝐵𝑇𝑤,𝐷𝑇 Budget time of all agents of OD pair 𝑤 at departure time 𝐷𝑇 

ℎ𝑤,𝑝 Path flow of path p of OD pair 𝑤 

Variables  

𝑐𝑖,𝑗 Travel cost of link (𝑖, 𝑗)  

𝑐𝑖̅,𝑗 Generalized travel cost of link (𝑖, 𝑗) 

𝐶𝑤
𝑎  Path cost of agent 𝑎 which departs from OD pair 𝑤 

𝜋𝑤 The minimal path travel cost of OD pair 𝑤 

𝐶𝑤(𝑎),𝑝 Path cost of path 𝑝 of OD pair 𝑤 of agent 𝑎 

𝑥𝑖,𝑗
𝑎  = 1 if agent 𝑎 is assigned on link (𝑖, 𝑗); = 0 otherwise 

𝑓𝑖,𝑗  Traveler flow on link (𝑖, 𝑗) 

𝑦𝑖,𝑗 = 1 if physical link (𝑖, 𝑗) is decided to be constructed in the physical transportation network; =
0 otherwise 

𝑥𝑖,𝑗,𝑡,𝑠
𝑎  = 1, if Agent 𝑎 is assigned on traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network; = 0 

otherwise 

𝑦𝑖,𝑗,𝑡,𝑠 = 1 if service arc (𝑖, 𝑗, 𝑡, 𝑠) is decided to be operated; = 0 otherwise 
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Figure 3-1 One Simple Illustrative Network Modified from Correa et al. (2004) 

The results are then examined under different traveling behavioral assumptions, including 

(i) generalized UE in the modified BMW model, (ii) system optimal, (iii) self-disutility 

minimization behavior (Wardrop’s first principle), and (iv) CNEBRA for our network 

design problem. 

 (i) The modified BMW model: 

 𝑚𝑖𝑛∑ ∫ 𝑐𝑖,𝑗(𝑢)𝑑𝑢
𝑓𝑖,𝑗
0(𝑖,𝑗)∈𝐿  (3.2) 

Subject to, 

 ∑ ℎ𝑤,𝑝 = 𝑑𝑤, ∀𝑤𝑝∈𝑃𝑤 ∈ 𝑊 (3.3) 

 ∑ ∑ (𝛿(i,j)
𝑤,𝑝 × ℎ𝑤,𝑝) = 𝑓𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐿𝑝∈𝑃𝑤𝑤∈𝑊  (3.4) 

 𝑓𝑖,𝑗 ≤ 𝐶𝑎𝑝𝑖,𝑗, ∀(𝑖, 𝑗) ∈ 𝐿 (3.5) 

 ℎ𝑤,𝑝 ≥ 0, ∀ 𝑝 ∈ 𝑃𝑤, ∀𝑤 ∈ 𝑊 (3.6) 

The formulation is the standard BMW model with adding tight link capacity constraints. 

Eq. (3.3) is the path flow conversation constraint. In Eq. (3.4) the link flow is equal to the 

path flow multiplied by the path-link incidence value. Inequality (3.5) is the tight link 

capacity constraint, and inequality (3.6) defines the path flow as a nonnegative continuous 

variable. As mentioned in Section 2.2.3, the generalized UE (GUE) includes the 

Lagrangean multipliers 𝜇𝑖,𝑗 of link capacity constraints (3.5), and the GUE condition is 
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derived from the KKT conditions shown in Appendix A. The generalized link cost can be 

represented as 

 𝑐𝑖̅,𝑗 = 𝑐𝑖,𝑗 + 𝜇𝑖,𝑗, , ∀(𝑖, 𝑗) ∈ 𝐿 (3.7) 

(ii) System optimal: 

 𝑚𝑖𝑛∑ (𝑐𝑖,𝑗(𝑓𝑖,𝑗) × 𝑓𝑖,𝑗(𝑖,𝑗)∈𝐿 ) (3.8) 

Subject to constraints (3.3)-(3.6). 

(iii) Self-disutility minimization behavior (Wardrop’s first principle): since it is a 

generalized Nash equilibrium problem and the model is difficult to solve, the solution is 

enumerated in this simple example. 

(iv) CNEBRA: the boundedly rational travel behavior has been formulated by inequality 

(1), and all possible solutions are also enumerated. 

Table 3-2 lists comparison results for all cases.  

What we can observe from Table 3-2 is summarized as follows. 

(1) Since the cost of all links is constant, the modified BMW model is the same as the 

system optimal model. In addition, no agent can reduce his/her travel cost by unilaterally 

changing routes, due to link capacity constraints in case 1 and case 2. This means that the 

two solutions belong to Nash equilibriums. 

(2)  In case 3, all travelers are assumed to be inclined to minimize their own disutility when 

selecting routes, which is consistent with Wardrop’s first principle. Interestingly, one can 

identify the Braess paradox when building a new link. By enumeration, (i) if link 3 → 2 is 

not built, one agent will choose path 1 and the other will choose path 2, so the total system 
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cost is 9 (money units); (ii) if link 3 → 2 is built, one agent will choose the new shortest 

path, path 4, and the other has to accept the only one available path, path 3, due to tight 

link capacity constraints, so the total system cost is 10.   

Table 3-2 Comparison Results of Different Cases for the Network Design Problem 

 

(3) If link 3 → 2 is built, different solutions of cases 1, 2 and 3 satisfy the definition of 

Nash equilibrium, but the solution of case 3 is the only result obeying Wardrop’s first 

principle in a capacitated network, that is, representing travelers’ self-disutility 

minimization behavior with strict link capacity constraints. Further discussions along this 

line can be found in the paper by Correa et al.  (2004). It is observed that the shortest path 

(path 4) is not used in cases 1 and 2, even the solution of the two cases meets the Nash 

equilibrium condition. It is consistent with the statement of Larsson and Patriksson (1995) 

about the result of generalized user equilibrium. 
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(4) The gap function we consider is ∑ (𝐶𝑤
𝑎 − 𝜋𝑤𝑎 ) . If link 3 → 2 is built, the gap for the 

first two cases is 3. With a larger gap value of 4, case 3 (applying Wardrop’s first principle) 

does not lead to a smaller gap value in a capacitated network. The reason is that the gap 

function assumes that all travelers should be at the minimum cost paths after assignment 

(Hearn, 1982), but the tight capacity constraints cause some travelers have to accept a 

longer path in the final solution. 

(5) Given the KKT condition (described in Appendix A) in case 1 with link 3 → 2, the 

Lagrange multipliers of links (3,2) and link (1,4) are 0 because the link flow is less than 

its link capacity. For the remaining links, those multipliers are not unique as long as the 

generalized path travel cost of path 1 and path 2 is equal and not more than that of the 

longest path (path 3). To some extent, this behavior is related to the argument of Nie et al. 

(2004) and Marcotte et al. (2004) that it may be questionable to treat those multipliers as 

queuing delays because of the non-uniqueness of the multiplier values.   

(6) Now consider different cases for CNEBRA with specific indifference bands for two 

individuals. In case 4, when the indifference band of two agents is 0, it is not surprising to 

see there is no solution for agents without tolerance. For a particular example where link 

3 → 2 is not built, the specific set of inequalities for boundedly rational behavior can be 

listed as follows:  

For agent 1: C1 ≤ 4 + 0 

For agent 2: C2 ≤ 4 + 0.  
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As shown in Figure.3-1, the path cost of the shortest path (path 1) is 4, but its capacity is 

only 1, so it is impossible for two agents to use one feasible path at the same time. 

(7) In case 5, with the increased indifference band of 1 for the second agent, the feasible 

solution exists for the do-nothing case; but no CNEBRA solution can be found if link 3 →

2 is built. In reality, when facing the change of network conditions, travelers may need to 

change their own indifference band in order to adapt to the new situations. Interested 

readers are referred to a recent paper by Lo (2013), which interprets similar behavior by 

highlighting that bounds on rationality are determined by physiological and environmental 

constraints. However, how to quantify the changing bounds on rationality is still a very 

complex research topic in its own right and beyond the scope of this paper. 

(8) In case 6, (i) if link 3 → 2 is not built, there are two feasible solutions with different 

system cost values of 9 and 11, which can be viewed as the best case vs worst case of 

CNEBRA solutions. (ii) if link 3 → 2 is built, there is only one feasible solution and the 

total cost is 10. As a result, if we consider the best case of CNEBRA as the selected solution 

for the before and after scenarios, it would lead to the Braess paradox. However, the Braess 

paradox can be avoided in this particular case if the worst case of CNEBRA is assumed. 

Therefore, selection of feasible solution(s) of CNEBRA would affect the final network 

design decision, as are also clearly identified by a recent important paper by Lou et al. 

(2010). Additionally, in case 7, there are multiple solutions whether or not link 3 → 2 is 

built, so it is difficult to select a single solution from the before or after solution set to 

support the network design decision.  
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3.3 Modelling on a Discrete Network Design Problem with Boundedly Rational Agents 

In order to clearly illustrate the forthcoming dynamic transit service network design 

problem in Section 3.4, this sub-section will focus on the static case as a starting point. 

Consider a transportation network as a directed graph with 𝑁 as the set of nodes and 𝐿 as 

the set of links. Let 𝑊 denote the set of OD pairs connected by the set of feasible paths, 

𝑃𝑤. Each agent 𝑎 is defined based on its origin 𝑜(𝑎) and destination 𝑑(𝑎) and has its own 

tolerance value 𝜀(𝑎). Each link (𝑖, 𝑗) has its travel cost 𝑐𝑖,𝑗 and capacity 𝐶𝑎𝑝𝑖,𝑗. In order to 

improve the total transportation system efficiency, a total financial budget 𝐵 is planned and 

the construction cost of new line (𝑖, 𝑗) is 𝑏𝑖,𝑗. 

The static discrete transportation network design with bounded-rational agents can be 

formulated as follows:  

Objective function: 

 min∑ ∑ (𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 )(𝑖,𝑗)∈𝐿𝑎  (3.9)  

Subject to: 

Budget constraint: 

 ∑ 𝑏𝑖,𝑗 × 𝑦𝑖,𝑗 ≤ 𝐵, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑏𝑖,𝑗 = 0 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐿𝐶(𝑖,𝑗)∈𝐿  (3.10) 

Capacity constraint: 

 ∑ 𝑥𝑖,𝑗
𝑎

𝑎 ≤ 𝑦𝑖,𝑗 × 𝐶𝑎𝑝𝑖,𝑗, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑦𝑖,𝑗 = 1 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐿𝐶  (3.11) 

Flow balance constraint: 

 ∑ 𝑥𝑖,𝑗
𝑎

𝑖:(𝑖,𝑗)∈𝐿 −∑ 𝑥𝑗,𝑖
𝑎

𝑖:(𝑗,𝑖)∈𝐿 = {
−1 ∀𝑎, 𝑗 = 𝑜(𝑎)

1 ∀𝑎, 𝑗 = 𝑑(𝑎) 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.12)  
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Boundedly rational travel decision rule: 

 ∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 }(𝑖,𝑗)∈𝐿 ≤ 𝜋𝑤(𝑎) + 𝜀(𝑎), ∀𝑎  (3.13) 

Definition of the shortest path: 

 𝜋𝑤(𝑎) = min{𝐶𝑤(𝑎),1, 𝐶𝑤(𝑎),2, … , 𝐶𝑤(𝑎),𝑘}, ∀𝑘 ∈ Ω(𝑤(𝑎)) (3.14) 

Binary variables: 𝑥𝑖,𝑗
𝑎 = {0,1} and 𝑦𝑖,𝑗 = {0,1}  

The objective function of this network design problem is to minimize the total 

transportation system travel cost of all agents. Inequality (3.10) represents the budget 

constraint, where the construction cost of existing links is 0. Inequality (3.11) is the link 

capacity constraint, where 𝑦𝑖,𝑗 = 1 for existing links. Eq. (3.12) is the standard agent-based 

flow balance constraint. Inequality (3.13) and Eq. (3.14) represent boundedly rational 

travel decision rule and the shortest path discussed above, respectively. They can be 

combined into the following set of inequalities (3.15): 

 

{
 
 

 
 ∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗

𝑎 } ≤ 𝐶𝑤(𝑎),1 + 𝜀(𝑎)(𝑖,𝑗)∈𝐿

∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 } ≤ 𝐶𝑤(𝑎),2 + 𝜀(𝑎)(𝑖,𝑗)∈𝐿

…
∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗

𝑎 } ≤ 𝐶𝑤(𝑎),𝑘 + 𝜀(𝑎)(𝑖,𝑗)∈𝐿

, ∀𝑎 (3.15) 

Meanwhile, the path cost of feasible path 𝑘 of OD pair 𝑤𝑎 can be formulated as Eq. (3.16), 

where an auxiliary large value 𝑀 is introduced to represent link cost as 𝑐𝑖,𝑗 + (1 − 𝑦𝑖,𝑗) ×

𝑀. If link (𝑖, 𝑗) is built, its cost is 𝑐𝑖,𝑗; otherwise, its large cost value prevents any agent 

from selecting that link. 

 𝐶𝑤(𝑎),𝑘 = ∑ {𝑐𝑖,𝑗 + (1 − 𝑦𝑖,𝑗) × 𝑀}(𝑖,𝑗)∈Φ(𝑤𝑎,𝑘)  (3.16) 

Therefore, the boundedly rational travel decision rule can be reformulated as follows: 

∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 }(𝑖,𝑗)∈𝐿 ≤ ∑ {𝑐𝑖,𝑗 + (1 − 𝑦𝑖,𝑗) × 𝑀}(𝑖,𝑗)∈Φ(𝑤𝑎,𝑘) + 𝜀(𝑎), ∀𝑎, ∀𝑘 ∈ Ω(𝑤(𝑎))    (3.17) 
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A simple study case is created for illustrating the transformation above in Figure 3-2. One 

agent (agent 𝑎) departs from origin node 1 to destination 5 with indifference band of 1 time 

unit. Link (3,5) and link (4,5) are potentially built.  

1

2

3

4

5 Path 1:1→2→5

Path 2:1→3→5

Path 3:1→4→5

2
3

1 2

1 3

 

Figure 3-2 Simple Study Case for the Illustration Above 

The boundedly rational travel decision rule can be represented as 

 ∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 } ≤ 𝐶𝑤(𝑎),1 + 𝜀(𝑎) = 5 + 1(𝑖,𝑗)∈𝐿  (3.17.a) 

 ∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 } ≤ 𝐶𝑤(𝑎),2 + 𝜀(𝑎)(𝑖,𝑗)∈𝐿 = 1 + 2 + (1 − 𝑦3,5) × 𝑀 + 1 (3.17.b) 

 ∑ {𝑐𝑖,𝑗 × 𝑥𝑖,𝑗
𝑎 } ≤ 𝐶𝑤(𝑎),3 + 𝜀(𝑎) = 1 +(𝑖,𝑗)∈𝐿 3 + (1 − 𝑦4,5) × 𝑀 + 1 (3.17.c) 

The possible chosen path set of agent 𝑎  is listed in Table 3-3. The different assumed 

network design decisions could lead to different shortest paths for one specific OD pair, so 

the tightest and active constraint of boundedly rational travel decision rule could be 

different, which bounds the feasible path set to each agent.  

Table 3-3 Possible Chosen Path Set of Agent a under Different Network Design 

Decisions 

Network design 

decision 

The least path 

cost 𝜋 

Rational bound 

𝜋 + 𝜀(𝑎) 

The tightest 

constraint of 

boundedly rational 

travel decision rule 

Feasible path set of 

agent 𝑎 

𝑦3,5 = 0, 𝑦4,5 = 0 5 6 Inequality (17.a)  Path 1 

𝑦3,5 = 1, 𝑦4,5 = 0 3 4 Inequality (17.b) Path 2 

𝑦3,5 = 0, 𝑦4,5 = 1 4 5 Inequality (17.c) Path 3 and path 1 

𝑦3,5 = 1, 𝑦4,5 = 1 3 4 Inequality (17.b) Path 2 and path 3 
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As a result, the critical variable 𝜋𝑤 for the boundedly rational travel decision rule does not 

appear in the model and it is implicitly defined through a set of path cost inequalities (3.17). 

This requires to exogenously enumerate a number of paths for the OD pair of each agent, 

including the shortest path in the existing network and those paths that have potential built 

links and are shorter that the shortest path in the existing network.  Typical route set 

generation algorithms can be found in the dissertation by Ramming (2002) for large-scale 

networks. For simplicity, the K-shortest path algorithm (Yen, 1971; Xu, et al., 2012) can 

also be adopted to seek the potential shortest path 𝜋𝑤 for each OD pair. 

In the typical bi-level programming structure, the lower level UE problem only considers 

the links to be built decided from the upper level problem (and existing links). In our 

proposed single-level model, the boundedly rational travel decision rule is represented by 

considering the complete set of all possible paths that embed the decision variable 𝑦𝑖,𝑗 

covering two cases: to be built or not to be built in the final optimal solution. More 

specifically, if  𝑦𝑖,𝑗 = 0 for the link not to be built, the right-hand-side path cost is infinity, 

allowing inequality (3.17) to hold in any case. If 𝑦𝑖,𝑗 = 1 for the link to be built in the final 

solution, (i) capacity inequality (3.11) allows the corresponding link flow to be positive; 

(ii) a feasible path in the final solution will have a  path cost 𝐶𝑤,𝑝  < ∞. Furthermore, if 

there is a feasible solution for all agents’ boundedly rational behavior with  𝜋𝑤 + 𝜀(𝑎) <

∞, then each agent must be able to select a capacity-feasible path 𝑝 from the path set 

Ω(𝑤(𝑎)) satisfying 𝐶𝑤,𝑝  ≤ 𝜋𝑤 + 𝜀(𝑎) < ∞. 

The non-uniqueness of traditional BRUE solutions has been studied or discussed in several 

papers (Lou et al., 2010; Guo and Liu, 2011; Di et al., 2013; Di et al., 2014; Han et al., 
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2015c; Di et al., 2016). More specifically, most researchers focus on the best case (risk-

averse), the worst case (risk-prone), and the neutral case (risk-neutral) for the unique 

solution of BRUE. In this chapter, since the objective function of our proposed single-level 

programming model (presented herein), 𝑚𝑖𝑛𝑦,𝑥(𝑦)𝑓(𝑦, 𝑥), is to minimize the total travel 

time, it indicates that the best case of the CNEBRA solution is assumed as travelers’ 

responses. Usually, 𝑚𝑖𝑛𝑦𝑚𝑖𝑛𝑥(𝑦)𝑓(𝑦, 𝑥) is one representation for the objective function 

of network design problems with the best case of traditional BRUE conditions (Di et al., 

2016) from the bi-level programming perspective. In order to handle a very complex 

relationship between 𝑥 and 𝑦 represented through the lower level optimization problem in 

the bi-level formulation, the most straightforward way to find the optimal solution is to 

enumerate all feasible 𝑦, solve the corresponding lower level model 𝑚𝑖𝑛𝑥(𝑦)𝑓(𝑦, 𝑥), and 

then compare all 𝑚𝑖𝑛𝑥(𝑦)𝑓(𝑦, 𝑥)  to find the minimum of 𝑚𝑖𝑛𝑥(𝑦)𝑓(𝑦, 𝑥) , which is 

𝑚𝑖𝑛𝑦𝑚𝑖𝑛𝑥(𝑦)𝑓(𝑦, 𝑥). It is important to note that, within the same solution space of 𝑥 and 

𝑦, in our proposed single-level programming model, the relation among 𝑦 and 𝑥 has been 

clearly defined in constraints, and the objective function 𝑚𝑖𝑛𝑦,𝑥(𝑦)𝑓(𝑦, 𝑥) can also be 

viewed to find the minimum of 𝑚𝑖𝑛𝑥(𝑦)𝑓(𝑦, 𝑥) based on all possible 𝑦. Therefore, we can 

state that only the best case is considered in our model. In the future, we will conduct 

further studies to examine different assumptions about travelers’ boundedly rational 

decision behavior in our agent-based framework. 

Typically, the discussions on the existence and uniqueness of traditional flow-BRUE are 

built on nonlinear and convex programming techniques, while the proposed CNEBRA 

formulation in this chapter is an integer linear programming model in nature. In many cases, 
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there might be multiple path solutions even for the simplest single OD pair shortest path 

problem in a grid network. Thus, the properties (solution existence and uniqueness) of our 

proposed model will be dependent on one specific integer linear programming model on 

different time-discretized networks, and the further discussions of those solution properties 

are beyond the scope of this paper. 

3.4 Dynamic Discrete Transit Service Network Design with Boundedly Rational Agents 

In order to represent (i) the transit service network based on the given train/bus schedule, 

(ii) transit vehicle capacity, and (iii) transit station/platform storage capacity, we extend 

the physical transit network into a space-time network from the given timetable. Consider 

a physical transit network with a set of nodes (stations) 𝑁 and a set of links 𝐿. Each link 

can be denoted as a directed link (𝑖, 𝑗) from upstream node 𝑖 to downstream node 𝑗, with 

one deterministic scheduled travel time. We then construct a space-time network, where 𝑉 

is the set of vertices and 𝐸 is the set of edges/arcs. Node 𝑖 is extended to a set of vertices 

(𝑖, 𝑡) at each time interval 𝑡 in the study horizon, 𝑡 = 1,2, … , 𝑇. Each agent 𝑎, where 𝑎 ∈

𝐴, is assumed to have a planned departure time 𝐷𝑇𝑎 at origin node 𝑜(𝑎) to its destination 

node 𝑑(𝑎). At each destination node, there is one assumed large arrival time 𝑇 for all 

agents. Meanwhile, set the travel cost of waiting arcs on the destination node as 0 in the 

space-time network to represent the end-to-end trip time. There are two following types of 

arcs.  

(1) Link traveling arcs are extended from a link (𝑖, 𝑗) and each arc traverses from vertex 

(𝑖, 𝑡) to vertex (𝑗, 𝑠) based on the given timetable, where  (s − t) is the scheduled link 
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travel time and should be integer multipliers of one time interval and capacity is defined as 

the transit vehicle capacity. 

(2) Waiting arcs from (𝑖, 𝑡)  to (𝑖, 𝑡 + 1) at any node 𝑖  have waiting time as one time 

interval and capacity is defined as the station/platform storage capacity. The waiting cost 

is set as 0 for the destination stations. 

In addition, to address the common line issue in transit systems that there are multiple same 

schedules (travelling arcs) directly joining two vertexes in the space-time network, we can 

separate one vertex as multiple vertexes, each of which corresponds to one transit schedule. 

That method is similar to the approach used by Poon et al. (2004) and Hamdouch and 

Lawphongpanich (2008). 

In order to find what impacts travelers’ route choice most, one very interesting travel 

survey was performed in the Chicago Metropolitan area in 2010 (Nie et al., 2010), which 

reveals that over 80% of the responders choose travel time as their most important concern 

in their route choice. The remaining factors sorted by importance are reliability, cost, 

comfort and convenience, safety, and emission and energy conversation, respectively. 

Therefore, our first modeling priority regarding the general travel cost is still on travel time, 

including in-vehicle travel time, at-station/stop waiting time and transfer time. Nuzzolo et 

al. (2001) and Nuzzolo et al. (2012) considered a flow-based path travel cost composed of 

travel time (in-vehicle time, waiting time and transfer time), number of transfers, and in-

vehicle discomfort cost. Hamdouch and Lawphongpanich (2008) considered travel time, 

transit fare, penalty for early/late arrival and early departure, and in-vehicle discomfort cost. 

In those papers, discomfort cost is represented by a flow-based link cost function, and all 
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other factors are weighted by different given parameters. With our proposed space-time 

network structure, one can further incorporate various weights of in-vehicle travel time, 

waiting time, and arc-based transit fare as constant costs of different types of arcs. The 

modelling issue related to OD-based dynamic transit fare and penalty for early/late arrival, 

as part of general path cost, will be discussed in sub-sections 3.6.1 and 3.6.3, respectively.  

For illustrative purposes, Figure 3-3(a) depicts a simple transit physical network with three 

nodes and two links. The demand has three agents departing at time 0 from node 1 to node 

3, whose tolerance values/indifference bands are 0, 2, and 2, respectively. The station 

capacity at each node is assumed to be 2. A potential open new line is from node 1 to node 

3. Table 3-4 lists the vehicle capacity parameters and scheduled travel time, corresponding 

to the space-time network presented in Figure 3-3(b). 

Table 3-4 Vehicle Capacity and Its Scheduled Travel Time 

Transit line with its vehicle 
Departure 

Time 

Vehicle 

Capacity 

Schedule Travel Time 

Link 

(1,2) 

Link 

(2,3) 

Link 

(1,3) 

Existing 

Line(1 → 2 →
3) 

Vehicle 1   0 1 1 2 × 

Vehicle 2 2 2 1 2 × 

Potential 

Line(1 → 3) 
Vehicle 3 1 1 × × 3 

In the space-time network, the origin becomes the vertex (1,0) and the destination is the 

vertex (3,5), which is a single origin to single destination problem (one-to-one network). 
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Figure 3-3 Illustration of Physical Transit Network, Corresponding Space-time Network 

and Assignment Results 

Based on the tolerance values of each agent and boundedly rational travel decision rule, 

𝐶𝑤
𝑎 ≤ 𝜋𝑤 + 𝜀(𝑎), the set of inequalities for each agent can be written as: 𝜋𝑤 = 3, ε(1) =

0, ε(2) = 2, ε(3) = 2, so C1 ≤ 3 + 0, C2 ≤ 3 + 2, C3 ≤ 3 + 2. If new transit line (1,3) is 

not built, the single solution satisfying the set of inequalities is shown in Figure 3-3(c). 

Agent 1 will choose path (1,0) → (2,1) → (3,3). Due to the vehicle capacity constraint, 
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both agent 2 and agent 3 have to wait at station 1 for the next available vehicle at time 2, 

so the selected path will be (1,0) → (1,1) → (1,2) → (2,3) → (3,5) with a total system-

wide travel time of 13. After the new transit line is open, the best case solution is that agents 

1 and 3 still choose the previous path and agent 2 will choose path (1,0) → (1,1) →

(3,4) → (3,5), shown in Figure 3-3(d) with the total system-wide travel time as 12. Table 

3-5 provides a more systematic comparison between different scenarios and it should be 

noted that the agent number is only used for representing one traveler. It doesn’t mean that 

agent 1 has the priority to choose a shorter path compared with other agents. 

Table 3-5 Assignment result comparison of scenarios with and without adding new line 

Scenario

s 

Agent ID Agent 1 Agent 2 Agent 3 

Tolerance band 0 2 2 

No new 

line 

Inequality of boundedly 

rational travel decision 

rule 
C1 ≤ 3 + 0 C2 ≤ 3 + 2 C3 ≤ 3 + 2 

Path node sequence 
(1,0)→(2,1) 

→(3,3) 

(1,0)→(1,1) →(1,2) 

→(2,3) →(3,5) 

(1,0)→(1,1) →(1,2) 

→(2,3) →(3,5) 

Total cost 13 

Adding 

new line 

Inequality of boundedly 

rational travel decision 

rule 
C1 ≤ 3 + 0 C2 ≤ 3 + 2 C3 ≤ 3 + 2 

Path node sequence 
(1,0)→(2,1) 

→(3,3) 

(1,0)→(1,1) →(3,4) 

→(3,5) 

(1,0)→(1,1) →(1,2) 

→(2,3) →(3,5) 

Total cost 12 

Prior to introducing the proposed model, the following key assumptions are presented as 

careful response to many potential modeling issues discussed in the aforementioned 

illustrative examples.  

(1) The travel cost of each agent just considers the travel time on travelling arcs and waiting 

arcs on the extended space-time network.  

(2) The time-dependent transit demand is given and deterministic. 
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(3) The tolerance value of each agent is given and does not change with respect to changes 

in the transit service network. 

(4) Regarding the possible multiple solutions of CNEBRA, the best case is chosen as the 

selected solution. 

(5) For simplicity, the first-in-first-out (FIFO) rule is not considered in these dynamic 

transit systems, because the non-FIFO phenomenon still exists under certain conditions. 

For example, when travelers are waiting at a platform for the next desirable transit vehicle, 

it may not actually be the next available vehicle. Also, when travelers transfer to another 

station or board a transit vehicle, it is possible for them not to entirely obey the FIFO rule 

in reality. 

The following presents the objective function and constraints applied in the proposed 

model. 

Objective function: 

 min∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 )(𝑖,𝑗,𝑡,𝑠)∈𝐸𝑎  (3.18)  

Subject to, 

Budget constraint: 

 ∑ 𝑏𝑖,𝑗 × 𝑦𝑖,𝑗 ≤ 𝐵, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑏𝑖,𝑗 = 0 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐿𝐶(𝑖,𝑗)∈𝐿  (3.19) 

Capacity constraint: 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 ≤ 𝑦𝑖,𝑗 × 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑦𝑖,𝑗 = 1 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐿𝐶 (3.20) 

Flow balance constraint: 
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 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−1 ∀𝑎, 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

1 ∀𝑎, 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.21)  

Boundedly rational travel decision rule: 

∑ {𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 }(𝑖,𝑗,𝑡,𝑠)∈𝐸 ≤ ∑ {𝑐𝑖,𝑗,𝑡,𝑠 + (1 − 𝑦𝑖,𝑗) × 𝑀}(𝑖,𝑗,𝑡,𝑠)∈Φ(𝑤𝑎,𝑘) + 𝜀(𝑎), ∀𝑎, ∀𝑘 ∈ Ω(𝑤(𝑎))  (3.22) 

Binary variables: 

 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 = {0,1} (3.23) 

 𝑦𝑖,𝑗 = {0,1} (3.24) 

Similar to the objective function and side constraints of the static case presented in Section 

3.3, this formulation is extended for the dynamic case in the space-time network based on 

the given schedule of existing transit lines and potential built or open service lines. Each 

agent chooses a set of arcs in the space-time network, so the decision variable 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  is a 

binary variable. We need to recognize that once those binary variables on each arc are 

required to be aggregated for flow-based arc/link attributes, such as, for in-vehicle 

discomfort cost function, it will be a challenge to solve this problem. This is because the 

objective function (3.18) becomes a nonlinear function with binary variables. In addition, 

𝑦𝑖,𝑗  in constraints (3.19), (3.20) and (3.24) could also be extended as 𝑦𝑖,𝑗,𝑡,𝑠  when 

considering whether or not to add or close specific service arcs defined by the time-

dependent schedule in the space-time network. In short, after problem decomposition in 

Section 3.5, the unique feature of our agent-based formulation with constant arc costs 

allows us to handle much simpler time-dependent shortest path subproblems, compared to 

general multi-commodity flow-based formulations. 
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3.5 Lagrangian Decomposition Based Solution Procedure 

3.5.1 Problem Decomposition 

Within a commonly used Lagrangian relaxation framework, a set of nonnegative capacity 

constraint multipliers 𝜇𝑖,𝑗,𝑡,𝑠 and tolerance bound constraint multipliers 𝜆𝑘
𝑎 are defined to 

dualize capacity constraints (3.20) and boundedly rational travel decision rule (3.22), 

respectively, onto the objective function (3.18) presented in Section 3.4 to generate lower 

bounds. The objective function is now transformed to 

 min∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 ) + ∑ [𝜇𝑖,𝑗,𝑡,𝑠 × (∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎 − 𝑦𝑖,𝑗 ×𝑎(𝑖,𝑗,𝑡,𝑠)∈𝐸(𝑖,𝑗,𝑡,𝑠)∈𝐸𝑎

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠)] + ∑ ∑ 𝜆𝑘
𝑎 × {∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠

𝑎 ) − ∑ [𝑐𝑖,𝑗,𝑡,𝑠 +(𝑖,𝑗,𝑡,𝑠)∈Φ(𝑤𝑎,𝑘)(𝑖,𝑗,𝑡,𝑠)∈𝐸𝑘𝑎

(1 − 𝑦𝑖,𝑗) × 𝑀] − 𝜀(𝑎)}        (3.25)  

Subject to constraints (3.19), (3.21), (3.23), and (3.24). 

Based on the decision variables 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  and 𝑦𝑖,𝑗 , the dualized problem above can be 

decomposed into two sub-problems 𝑃𝑥 and 𝑃𝑦. 

Subproblem 𝑃𝑥 for finding time-dependent shortest path for each agent: 

 min∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠 + 𝜇𝑖,𝑗,𝑡,𝑠 + ∑ 𝜆𝑎
𝑘

𝑘 × 𝑐𝑖,𝑗,𝑡,𝑠) × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

(𝑖,𝑗,𝑡,𝑠)∈𝐸𝑎   (3.26) 

Subject to (3.21) and (3.23). 

Subproblem 𝑃𝑦 as a binary knapsack problem for service arc selections: 

 max∑ 𝜇𝑖,𝑗,𝑡,𝑠 × 𝑦𝑖,𝑗 × 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 +∑ ∑ 𝜆𝑎
𝑘

𝑘𝑎(𝑖,𝑗,𝑡,𝑠)∈𝐸 × {∑ [𝑐𝑖,𝑗,𝑡,𝑠 +(𝑖,𝑗,𝑡,𝑠)∈Φ(𝑤𝑎,𝑘)

(1 − 𝑦𝑖,𝑗) × 𝑀] + 𝜀(𝑎)}        (3.27) 
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Subject to (3.19) and (3.24). 

3.5.2 Lagrangian Relaxation Based Algorithm Design 

The general procedure of the Lagrangian relaxation-based algorithm is designed as shown 

in Figure 3-4, and one can apply dynamic transit simulation to find upper bound feasible 

solutions based on the network design decisions from the lower bound model (i.e. the 

relaxed problem). 

Relaxed Problem

Step 1: Initialization

Step 3: Slove Py (0-1 

Knapsack problem)

Step 2: Solve Px (time-

dependent least cost path 

problem)

Step 4: Update Lagrangian multipliers:
Capacity constraint multipliers

Tolerance bound constraint multipliers

Terminated?

n = n+1

No

Yes

Stop and output results of different 

iterations
 

Figure 3-4 Flowchart of Solving the Relaxed Problem under Lagrangian Relaxation 

Framework 

The specific procedure is described as follows: 

Step 1: Initialization 

Initialize iteration number 𝑛 = 0; 
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Construct the space-time network based on the given transit physical network and time 

schedule; 

Initialize the set of Lagrangian multipliers 𝜇𝑖,𝑗,𝑡,𝑠 and 𝜆𝑘
𝑎 as positive values. 

Step 2: Solve subproblem 𝑃𝑥 for 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 . 

Step 3: Solve subproblem 𝑃𝑦 for 𝑦𝑖,𝑗. 

Step 4: Update Lagrangian multipliers: 

4.1 Calculate the subgradients:  

Subgradient of capacity constraint: ∇𝜇𝑖,𝑗,𝑡,𝑠 = ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 − 𝑦𝑖,𝑗 × 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠𝑎   

Subgradient of tolerance bound constraint: ∇𝜆𝑘
𝑎 = ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠

𝑎 ) −(𝑖,𝑗,𝑡,𝑠)∈𝐸

∑ [𝑐𝑖,𝑗,𝑡,𝑠 + (1 − 𝑦𝑖,𝑗) × 𝑀](𝑖,𝑗,𝑡,𝑠)∈Φ(𝑤𝑎,𝑘) − 𝜀(𝑎)  

4.2 Update Lagrangian multipliers: 

Multiplier of capacity constraint: 𝜇𝑖,𝑗,𝑡,𝑠
𝑛+1 = max {0, 𝜇𝑖,𝑗,𝑡,𝑠

𝑛 + 𝛼𝑛 × ∇𝜇𝑖,𝑗,𝑡,𝑠}  

Multiplier of tolerance bound constraint: 𝜆𝑘
𝑎(𝑛 + 1) = max {0, 𝜆𝑘

𝑎(𝑛) + 𝛼𝑛 ×

∇𝜆𝑘
𝑎} Where, 𝛼𝑛 is the step size, and 𝛼𝑛 = 1/(𝑛 + 1). 

Step 5: Termination condition test 

If 𝑛 is equal to the predetermined maximum iteration number 𝑁, terminate the algorithm; 

otherwise, 𝑛 = 𝑛 + 1 and go back to Step 2 with updated 𝜇𝑖,𝑗,𝑡,𝑠 and 𝜆𝑘
𝑎 values. 
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At step 2, all arcs have constant travel cost in the space-time network, and the Lagrangian 

multipliers are given as constant values at each iteration. The subproblem 𝑃𝑥 becomes a 

standard time-dependent least cost path problem. At step 3, the arc travel cost, arc capacity, 

Lagrangian multipliers, big 𝑀, and tolerance value of each agent are given and constant. 

The subproblem 𝑃𝑦  becomes a standard 0-1 knapsack problem. Ziliaskopoulos and 

Mahmassani (1993) and Pallottino and Scutellà (1998) provided more details about the 

space-time network construction and time-dependent least cost path finding algorithms, 

which does not require the addition of a dummy node for the corresponding destination 

node in many-origin-to-many-destination networks. For the 0-1 knapsack problem, there 

are several available computationally efficient algorithms based on dynamic programming, 

branch and bound, or the hybridizations of the both (Martello and Toth, 1990).  

3.6 Discussions 

3.6.1 Transit Pricing  

Transit pricing is one important factor affecting final decisions on the transit service 

network design. To consider time-dependent and personalized agent-based or OD based 

(given) pricing parameters, one can extend the space time arc cost 𝑐𝑖,𝑗,𝑡,𝑠 to 𝑐𝑖,𝑗,𝑡,𝑠
𝑎 , and add 

dummy starting arcs to represent OD-specific or agent-specific price for related travel 

distance or/and traveling time periods. That is, for each OD or agent, there is one dummy 

link with a specific cost value. Considering the price or incentive as part of the decision 

variables in the network design problem, different pricing/incentive strategies can be listed 

using different dummy arcs. Then add a restriction that only one of the dummy arc sets for 
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each time-dependent OD pair or agents can be selected for the final strategy to be used in 

the final solution. 

3.6.2 Passenger Inflow Rate Control to Transit Stations 

One approach for addressing the safety concern in a totally oversaturated condition is to 

limit the number of passengers in the station. This practice was implemented in actual 

subway operations during peak hours in Beijing (Xu et al., 2014). To model this inflow 

passenger volume gating strategy, a virtual node needs to be added to the related origin 

node in the physical network. A simple network with two nodes and one link is used to 

illustrate our method as shown in Figure 3-5(a).  
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 (a) physical transit lines (b) corresponding space-time network
 

Figure 3-5 Original and Modified Space-time Networks for Modeling 

There are two vehicles with capacity of 5 and scheduled travel time of 3, departing at time 

1 and 3, respectively. The station/platform capacity of node 1 and 2 is 10. Now assume that 

the permitted inflow rate is 7. The change in the physical network is shown in Figure 3-5(a). 

Link(1’, 1)  is treated as the entry point to the station and its capacity represents the 

permitted passenger inflow rate. The corresponding space-time network is shown in Figure 



 

55 

 

3-5(b). If the number of agents at node 1′ at time 0 is more than 7 at first, some agents will 

need to wait at node 1′ until time 2 to enter the station for the second vehicle. 

3.6.3 Model the Penalty for Early/Late Arrival 

In addition to the indifferent/tolerance value, each traveler may have one specific preferred 

arrival time for his or her trip within the bound. The penalty for early and later arrival had 

been considered in some traffic and transit studies (such as, Zhou et al., 2008; Hamdouch 

and Lawphongpanich, 2008). In this sub-section, the issue is considered through updating 

the space-time network, where each destination node will be correspondingly given a 

virtual node as a super destination. The travelling arcs from the real destination node to the 

virtual node can be viewed as penalty arcs, the cost of which is defined in advance for each 

agent as part of his or her own path travel cost. 

The network without walk arcs in the paper (Hamdouch and Lawphongpanich, 2008) is 

chosen as our illustrative example. Based on the given schedule of three lines, the 

corresponding space-time network is built in Fig. 3-6. Assume that agent 1 departs from 

node 1 to node 4 at time 1 with preferred arrival time of 5 and agent 2 has the same OD 

pair of agent 1 with different departure time and preferred arrival time, which are time 3 

and time 7, respectively. The penalties 𝑐𝑖,𝑗,𝑡,𝑠
𝑎  for the early and late arrival of agent 1 is 

predefined as 𝑐4,4′,4,11
1 = 1, 𝑐4,4′,5,11

1 = 0, 𝑐4,4′,7,11
1 = 4, 𝑐4,4′,9,11

1 = 8 and 𝑐4,4′,10,11
1 = 10. 

Also, the early or late arrival penalties of agent 2 can be defined in advance in the space-

time network. As a result, the arc cost in the space-time network should be represented by 

𝑐𝑖,𝑗,𝑡,𝑠
𝑎  instead of 𝑐𝑖,𝑗,𝑡,𝑠 in the objective function and the boundedly rational travel decision 

rule. Except for those penalty arcs, the remaining arc cost of each agent 𝑐𝑖,𝑗,𝑡,𝑠
𝑎  is still equal 
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to 𝑐𝑖,𝑗,𝑡,𝑠. Also, it is applicable by changing every arc cost if users impose different weights 

or parameters on different types of arcs, such as, in-vehicle travel arcs, waiting and transfer 

arcs, and penalty arcs for early and late arrival. 

1

Travelling arcs

Station

2 3 4 510

2

3

4

8 9 10 1176

4'

Waiting arcs

Penalty arcs

Time
 

Figure 3-6 Modified Space-time Network with Early and Later Arrival Penalty Arcs 

3.6.4 Adding Travel Time Budget to Simplify Path Enumeration on Large-scale Transit 

Networks 

The model proposed in section 3.4.2 requires to enumerate all possible paths for each agent. 

For a large-scale transit network, it will be extremely burdensome to perform the space-

time path enumeration task. For simplification, the acceptable bound for each agent shown 

in inequality (3.22) can be assumed to be a constant travel time budget 𝐵𝑇𝑤,𝐷𝑇
𝑎  based on 

each OD pair at different departure times. In this approach, only a limited number of paths 

satisfying the following constraint are required.   

 ∑ {𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 }(𝑖,𝑗,𝑡,𝑠)∈𝐸 ≤ 𝐵𝑇𝑤,𝐷𝑇

𝑎  (3.28) 
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Usually, the travel time budget can be obtained through a travel survey. A real-world 

survey including travel time budget was performed in Chicago Metropolitan area (Nie et 

al., 2010). The detailed discussion can be found in this review paper (Mokhtarian and Chen, 

2004), which states that individuals’ travel time expenditures do show patterns and are 

strongly related to individual and household characteristics, attributes of activities at the 

destination, and characteristics of residential areas. 

In addition, constraint (3.28) can be further modeled as virtual arcs to represent possible 

inaccessibility for this OD pair under congested condition. As a result, inequality (3.28) 

will be eliminated in our model and is simply coded in the space-time network as an 

approximation. The related application can be found at accessibility-based network design 

problem (Tong et al., 2015). Meanwhile, this virtual arc-based network modeling method 

could greatly reduce the computational complexity for large-scale applications, because it 

does not need to consider a set of constraints (constraint 3.28) in the primal problem or a 

set of dualized constraints in the Lagrangian relaxation procedure. 

3.7 Numerical Examples 

This section examines different aspects in a dynamic discrete transit service network design 

problem, where (i) the scheduled travel time is constant and (ii) the capacity on travelling 

arcs and waiting arcs can represent the vehicle capacity and the station/platform capacity, 

respectively. The integer linear programming model and the proposed Lagrangian 

relaxation procedure are demonstrated by the general purpose optimization package 

GAMS (Rosenthal, 2015) in two small transit networks, and further be tested by our time-

dependent shortest path algorithm in C++, by enhancing an open-source mesoscopic 
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dynamic traffic assignment model namely DTALite (Zhou and Taylor, 2014), for large-

scale applications on one workstation with 20 CPU cores (40 threads) with 192GB RAM. 

The related source codes can be downloaded at the website: 

https://www.researchgate.net/publication/295968354_Case_1_Transit_network_design_L

R and 

https://www.researchgate.net/publication/295968184_Case_2_Demand_Level_1_Transit

_network_design_LR 

3.7.1 A Simple Case 

This case examines the simple transit network in section 3.4.1 with an opening cost of 10 

units and a total budget of 15 units for the potential open line. All Lagrangian multipliers 

are initially assumed to be 0.1, and the big 𝑀 = 6 is syffucuebt because the time horizon 

is just 5. In order to not enumerate all possible paths of OD pair (1,3), at first, the shortest 

path is found in the existing space-time network and then all possible paths that contain the 

potential open lines are compared. As a result, 𝑘 = 2  for OD pair (1,3) . Path 1 is 

(1,2,0,1) → (2,3,1,3) → (3,3,3,4) → (3,3,4,5)  and path 2 is (1,1,0,1) → (1,3,1,4) →

(3,3,4,5). 

Based on the procedure of Lagrangian relaxation proposed in section 3.5.2, the objective 

values of 𝑃𝑥, 𝑃𝑦, and the lower bound are obtained and listed in Table 3-6 after 10 iterations. 

Figure 3-7 demonstrates a comparison between the lower bound and the optimal value with 

a final solution gap of 0.83%.  

 

https://www.researchgate.net/publication/295968354_Case_1_Transit_network_design_LR
https://www.researchgate.net/publication/295968354_Case_1_Transit_network_design_LR
https://www.researchgate.net/publication/295968184_Case_2_Demand_Level_1_Transit_network_design_LR
https://www.researchgate.net/publication/295968184_Case_2_Demand_Level_1_Transit_network_design_LR
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Table 3-6 The Objective Values of 𝑃𝑥, 𝑃𝑦, and the Lower Bound during 10 Iterations 

Iterations 1 2 3 4 5 6 7 8 9 10 

𝑃𝑥 12 15.5 18.5 21.93 21.45 22.07 21.95 22.36 22.04 22.35 

𝑃𝑦 7.7 8.9 10.9 10.47 9.72 10.32 10.08 10.51 10.14 10.47 

𝑍𝑙𝑏 4.3 6.6 7.6 11.47 11.73 11.75 11.87 11.85 11.90 11.88 

 

Figure 3-7 Comparison Between the Lower Bound and the Optimal 

3.7.2 Transit Service Network Design Based on the Simplified Sioux-fall Physical 

Network 

The proposed algorithm will be also tested in the following network with four hypothetic 

transit lines, shown in Figure 3-8.  

Table 3-7 lists the existing transit service arcs based on given the timetable of the four 

transit lines. The potential service arcs to be opened and related station storage capacity are 

listed in Table 3-8 and Table 3-9, respectively. All serviced arcs are displayed in the space-

time network shown in Figure 3-9, where the virtual waiting cost at the destination 8 and 

9 is 0. 
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Figure 3-8 Hypothetic Sioux-Fall Transit Network 

3.7.2.1 Different Levels of Time-dependent Transit OD Demand  

The time-dependent OD demand for all OD pairs is listed in Table 3-10. Initially, three 

levels of demand are provided to observe its impact on the final service network design 

result. 

In addition, all vehicles’ capacity is assumed to be 20. For simplicity, the tolerance value 

of all agents is assumed to be same as 15 (min or any time unit). For each demand level, 

three cases are compared: (i) based on the existing transit service network, solved by the 

dynamic transit assignment problem with bounded rational user equilibrium conditions by 

GAMS; (ii) considering with potential new service arcs, optimal solution directly solved 

by GAMS for our proposed model in section 3.4.2; (iii) with potential new service arcs, 

solved using the proposed Lagrangian relaxation method implemented in GAMS. 
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Comparison of the three cases under three demand levels are shown in Figure 3-10(a), (b) 

and (c), respectively. 

Table 3-7 Hypothetic Existing Transit Service Arcs 

Service Arc Start Time End Time Service Arc Start Time End Time 

(1,6) 0 4 (4,8) 16 25 

(6,9) 4 11 (2,3) 15 28 

(1,6) 15 19 (3,4) 28 31 

(6,9) 19 26 (4,8) 31 40 

(1,6) 30 34 (2,3) 30 43 

(6,9) 34 41 (3,4) 43 46 

(1,5) 0 15 (4,8) 46 55 

(5,8) 15 30 (2,7) 0 13 

(1,5) 15 30 (7,9) 13 20 

(5,8) 30 45 (2,7) 15 28 

(1,5) 30 45 (7,9) 28 35 

(5,8) 45 60 (2,7) 30 43 

(2,3) 0 13 (7,9) 43 50 

(3,4) 13 16 
   

Table 3-8 Potential Open Transit Service Arcs 

Service 

Arc 

Start 

Time 

End 

Time 

Service 

Arc 

Start 

Time 

End 

Time 

Service 

Arc 

Start 

Time 

End 

Time 

(6,5) 4 10 (5,4) 10 16 (7,8) 13 18 

(6,5) 19 25 (5,4) 25 31 (7,8) 28 33 

(6,5) 34 40 (5,4) 40 46 (7,8) 43 48 

Table 3-9 Station Storage Capacity 

Station 1 2 3 4 5 6 7 8 9 

storage capacity 40 40 30 30 30 30 30 M M 
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Figure 3-9 The Corresponding Space-time Transit Service Network 

Table 3-10 Time-dependent OD Demand 

OD 
Departure 

Time 1 

Demand 

(agents) Departure 

Time 2 

Demand(agents) Departure 

Time 3 

Demand(agents) 

L1 L2 L3 L1 L2 L3 L1 L2 L3 

1→8 0 10 15 15 15 10 10 10 30 10 10 10 

1→9 0 10 15 20 15 10 10 15 30 10 10 10 

5→8 15 5 10 10 30 5 5 5 45 5 5 5 

2→8 0 10 15 15 15 10 10 10 30 10 10 10 

2→9 0 10 15 20 15 10 10 15 30 10 10 10 

3→8 13 5 10 10 28 5 5 5 43 5 5 5 

Result presented in Figure 3-10 indicates that the total system-wide travel time acquires 

reduced after transit service network optimization and our proposed Lagrangian relaxation 

procedure is able to achieve a quick convergence to the optimal solution.  
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In addition, in order to check the computation efficiency of GAMS solver and the proposed 

Lagrangain relaxation method, two high level OD demand inputs (demand levels 4 and 5) 

are designed and presented in Table 3-11. 

(a) Demand level 1 (b) Demand level 2

(c) Demand level 3

( case i )

( case ii )

( case iii )

 

Figure 3-10 Comparison of the System-wide Travel Time under Three Demand Levels 

Table 3-11 Two High Level Time-dependent OD Demand 

OD 
Departur

e time 1 

Demand(agents) Departure 

time 2 

Demand(agents) Departure 

time 3 

Demand(agents) 

L4 L5 L4 L5 L4 L5 

1→8 0 60 75 15 40 50 30 40 50 

1→9 0 80 100 15 60 75 30 40 50 

5→8 15 40 50 30 20 25 45 20 25 

2→8 0 60 75 15 40 50 30 40 50 

2→9 0 80 100 15 60 75 30 40 50 

3→8 13 40 50 28 20 25 43 20 25 
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The comparison result on computation efficiency under five different levels of OD demand 

is displayed in Figure 3-11 .The total number of agents of demand level 1 to 5 is 150, 180, 

200, 800, and 1000, respectively. It is obvious that the computation CPU time of the GAMS 

solver for optimal solutions is significantly increased under demand level 4 and 5, up to 

more than 40 mins. In comparison, the computation CPU time of the proposed Lagrangian 

relaxation method always remains low for all 5 demand levels considered. Even under 

demand level 5, its computation CPU time is less than 3 mins through 50 iterations, about 

only 6% of that required by the GAMS solver. 

 

Figure 3-11 Comparison on CPU Computation Time under Different Demand Levels 

3.7.2.2. Considering Different Levels of Transit Vehicle Capacity 

In order to perform the sensitivity analysis on the vehicle capacity, demand level 2 is 

adopted as the time-dependent OD demand input. The different vehicle capacities 

considered are 18, 19, 20, 21, and 22, respectively. The optimal system-wide travel time 

under different cases are shown in Figure 3-12. It shows that based on the optimal solutions 

in the network design problem, the transit system efficiency improves with increased 
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capacity of all vehicles. That is rational in that the larger vehicle capacity increase the 

service capacity of the whole network, including the shortest paths among OD pairs. 

 

Figure 3-12 Comparison on System-wide Travel Time under Different Vehicle Capacities 

3.7.2 3. Different Levels of Agents’ Tolerance Value 

The agent’s tolerance value can also influence the final optimal solutions, so this sub-

section examines six scenarios to observe their impacts on the transit service network 

design. Scenario 1 to 4 have the same tolerance value for all agents, which is 7, 8, 9, and 

10, respectively. For scenario 5, different agents could have different specific tolerance 

values as shown in Table 3-12. For example, for OD pair (1→8), there are 5 agents 

departing at time 0 with tolerance value of 0, 5 agents with tolerance value of 5, and 5 

agents with tolerance value of 10.  

For scenario 6, the boundedly rational travel decision rule is ignored to obtain one system 

optimal solution for the transit service network design problem. The system performance 

results directly solved in GAMS are listed in Table 3-13. 
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The results yield the following observations: 

(1) If all agents’ tolerance value is 7, no feasible solution exists, which means that some 

agents will cancel their trips or the tolerance value is not accurate and needs further 

calibration 

Table 3-12 Number of Agents with a Specific Tolerance Value for Scenario 5 

OD 
Departure 

time 1 

Tolerance 

value Departure 

time 2 

Tolerance 

value Departure 

time 3 

Tolerance 

value 

0 5 10 0 5 10 0 5 10 

1→8 0 5 5 5 15 5 0 5 30 5 0 5 

1→9 0 5 5 5 15 5 0 5 30 5 0 5 

5→8 15 5 0 5 30 0 0 5 45 0 0 5 

2→8 0 5 5 5 15 5 0 5 30 5 0 5 

2→9 0 5 5 5 15 5 0 5 30 5 0 5 

3→8 13 5 0 5 28 0 0 5 43 0 0 5 

Table 3-13 System Performance of Different Scenarios 

Scenario No. Tolerance value Total system travel time 

1 7 Infeasible 

2 8 3500 

3 9 3500 

4 10 3325 

5 Specified 3400 

6 System Optimal 3325 

 (2) As the tolerance values of all agents increase, the system cost is closer to the system 

optimal value, because more agents can tolerance a longer path to allow some agents to 

select a shorter path 

(3) When the specific tolerance value of each agent is different, the transit system will have 

a more complicated route choice set.  
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3.7.3 Large-scale Experiments 

In order to demonstrate the computational efficiency of our proposed Lagrangian relaxation 

framework, this sub-section tests our proposed algorithm on two regional transit networks, 

Salt Lake City regional transit network and Phoenix regional transit network, respectively. 

The transit network data are based on the public GTFS (General Transit Feed 

Specification) feed. Through extracting the transit stop information in stops.txt and stop 

sequences of each trip in stop_times.txt, the two transit networks are created and then are 

visualized in Google Earth as shown in Figure 3-13. It can be observed that there are some 

unrealistically long straight transit links in the two networks. The reason is that the 

geographical shape information of each transit line in shapes.txt is not read. We just utilize 

the longitude and latitude coordinates of each stop of each transit line in stops.txt, and then 

one straight link is correspondingly created to connect the two joint stops.  

 

Figure 3-13 Salt Lake City and Phoenix Regional Transit Feed Data Visualized in Google 

Earth, Respectively 

In order to obtain the dynamic transit travel OD demand data, two scenarios are assumed 

for the tests, (i) 10% of regional traffic demands as the transit OD demand input and (ii) 5% 
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of regional traffic demands as the transit OD demand input. The details are listed in Table 

3-14. 

Table 3-14 Transit Travel OD Demand Input of Two Scenarios 

Networks 
Demand time 

period 

Total traffic 

demand 

Transit demand 

(10%) 

Transit demand 

(5%) 

Salt Lake 

City 
15pm-18pm 1.35 million agents 135,000 agents 67,500 agents 

Phoenix all day (24 hours) 10.5 million agents 1.05 million agents 525,000 agents 

In addition, the activity location of each zone in the regional traffic network is matched 

with the nearest transit stop, so the final transit network information is listed in Table 3-15. 

Table 3-15 Transit Network Information 

Transit 

networks 

Number of 

stops 

Number of links connecting two joint 

stops  

at each transit line 

Number of 

zones 

Salt Lake City 6393 7219 2302 

Phoenix 6788 7015 3022 

Based on the simplification method in section 3.6.4 and the Lagrangian relaxation 

framework in Section 3.5, the relaxed problem can be decomposed as two subproblems at 

each iteration: one is time-dependent least cost path problem for each agent, which is the 

most time-consuming part in computation, and the other is the knapsack problem for 

service arc selection. In our proposed algorithm implemented in C++ code, Open Multi-

Processing (OpenMP) is used as the application programming interface (API) for parallel 

computing. The tasks of path finding for each agent on the transit network are assigned 

into different available CPU threads and performed in parallel. The two regional transit 

networks under two different scenarios are tested on our Dell Precision T7610 Workstation 

with 20 CPU cores and 192G RAM. The general CPU computation time of each iteration 

in the Lagrangian relaxation approach are listed in Table 3-16. 
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Table 3-16 CPU Computation Time of One Iteration in the Lagrangian Relaxation 

Approach 

Transit networks Scenario 1: Transit demand (10%) Scenario 2: Transit demand (5%) 

Salt Lake City 2 min 11 seconds 1 min 22 seconds 

Phoenix 12 min 30 seconds 6 min 45 seconds 

The CPU computation time could be affected by the number of optimized agents, the 

number of zones, the optimized time period, the topology of transit networks, the time 

budget value, etc. Looking back upon the study cases solved in GAMS in section 3.7.2, our 

proposed algorithm coded by C++ with the parallel computing method has an obvious 

advantage at computational efficiency. In future, based on the service arc selection 

decisions from the lower bound, the dynamic transit simulation with bounded rational 

agents will be developed for the upper bound. Finally, the gap between the lower bound 

and the upper bound can be used to check the quality of our solutions. 
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CHAPTER 4  

HOSUEHOLD DAILY SCHEDULED ACTIVITIES: DRIVING ALONE AND RIDE 

SHARING 

4.1 Introduction 

Different with Chapter 3 which focus on public scheduled transit systems, this chapter will 

turn to the household daily scheduled activities (Liu et al., 2017). The advanced 

technologies is creating opportunities to optimally plan those household activities for 

reduce the household-level or system-level total travel cost. In this research, available 

vehicles are assumed to be owned by each household. We admit that the upcoming 

autonomous vehicles could be owned by the companies and stayed together at depots, 

which will be our future study. Therefore, the problems we aim to solve is similar with the 

Household Activity Pattern Problem (HAPP) proposed by Recker (1995).  

This chapter will reformulates two special cases of HAPPs as system-optimal multi-

household activity scheduling and then consider the tight road capacity to capture the 

impacts of traffic congestion on activity generation and scheduling. Compared to the 

traditional formulation, the space-time-state network is built to precisely represent and 

translate side constraints in the state dimension, which could eliminate activity time 

window and vehicle selection constraints in the resulting optimization model. Through 

dualizing the capacity constraints to the objective function by Lagrangian relaxation, our 

proposed model can be further solved through time-dependent state-dependent least cost 

path-finding algorithms, which permits the use of fast computational algorithms on large-

scale high-fidelity transportation networks. 
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In addition, in a micro-level care-following perspective, jointly optimizing multi-vehicle 

trajectories is a critical task in the next-generation transportation system with autonomous 

and connected vehicles (Wei et al., 2017). An integer programming model will be 

presented for scheduling longitudinal trajectories, where the goal is to consider both 

system-wide safety and throughput requirements under supports of various communication 

technologies. Finally, a simple study case is conducted to illustrate the optimal trajectory 

control of multiple autonomous vehicles under different communication conditions 

4.2 Problem Statement 

Table 4-1lists the notations used for the household daily scheduled activities problems. 

This research focuses on three particular cases (namely A, B, C) and further extends to one 

more general case D for optimally planning those household daily scheduled activities. The 

general given input includes the population used for activity generation, a physical 

transportation network, a set of different types of activities (mandatory, semi-mandatory, 

optional activities) with specific time windows and utility values, a set of vehicles, as well 

as the activity/vehicle assignment set to each household member. By adapting the classical 

assumption/definition from Recker (1995), we present the following problem statements.  

(1) Case A is a multi-vehicle and multi-person vehicle routing problem with mandatory 

and discretionary activities, which is similar to Case IV in the paper by Recker (1995). (i) 

Members of the household share a set of vehicles; a subset of vehicles may be available for 

use by any member of the household, and the remainder may be reserved for use by certain 

members; (ii) A subset of activities can be performed by any member of the household, 
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and the remaining activities must be performed by certain members; (iii) Certain members 

can have specific mandatory activities or optional activities;  

Table 4-1 Notations Used in the Household Daily Scheduled Activities Problems 

Notations Definition 

𝑁 Set of nodes in the physical network, including necessary virtual nodes 

𝑁𝑣 Set of vehicle nodes for vehicle selection 

𝐿 Set of links in the physical network, including necessary virtual links 

𝑃 Set of household members  

𝑃𝑚 Set of household members who have mandatory activities 

𝑃𝑛 Set of household members who chooses one mandatory activity from multiple 

candidates 

𝑃𝑞 Set of household members who have discretionary activities 

𝑉 Set of available vehicles 

𝐴 Set of activities  

𝐴𝑛(𝑝) Set of household member 𝑝’s candidate activities for one kind of mandatory activity  

𝐴𝑣 Set of mandatory activities of vehicle 𝑣’s driver 

𝑅 Set of  vertices in the space-time/space-time-state network 

𝐸 Set of  edges/arcs in the space-time/space-time-state network 

𝑊 Set of cumulative vehicle activity-performing state 

𝐸(𝑝, 𝑎𝑚) Set of  edges/arcs of household member 𝑝’s mandatory activity 𝑎𝑚 

𝐸(𝑝, 𝑎𝑛) Set of  edges/arcs of household member 𝑝’s candidate activity 𝑎𝑛 for one kind of 

mandatory activity 

𝐸(𝑝, 𝑎𝑞) Set of  edges/arcs of household member 𝑝’s discretionary activity 𝑎𝑞  

𝐸(𝑣, 𝑎𝑚) Set of  edges/arcs of mandatory activity 𝑎𝑚 of vehicle 𝑣’s driver 

𝑖, 𝑗 Index of node set 𝑁 

(𝑖, 𝑗) Index of link set 𝐿 

𝑡, 𝑠 Index of time intervals in the space-time-state network 

𝑤,𝑤′ Index of state in the space-time-state network 

(𝑖, 𝑡) Index of vertex in the space-time network 

(𝑖, 𝑗, 𝑡, 𝑠) Index of edges/arcs in the space-time network 

(𝑖, 𝑡, 𝑤) Index of vertex in the space-time-state network 

(𝑖, 𝑗, 𝑡, 𝑠) Index of edges/arcs in the space-time-state network 

𝑝 Index of household member set 𝑃 

𝑎 Index of activity set 𝐴 

𝑡(𝑖, 𝑗) Travel time of link (𝑖, 𝑗)  
𝑐𝑖,𝑗,𝑡,𝑠
𝑝

 Travel cost of arc (𝑖, 𝑗, 𝑡, 𝑠) of person 𝑝 in the space-time network 

𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣  Travel cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) of vehicle 𝑣 in the space-time-state network 

[𝑎𝑘 , 𝑏𝑘] The time window of event 𝑘, such as, activity starting time window, activity ending 

time window 

𝑇𝐷(𝑝)/𝑇𝐷(𝑣) Earliest departure time of household member 𝑝/ vehicle 𝑣  

𝑂(𝑝)/𝑂(𝑣) Origin node of household member 𝑝/ vehicle 𝑣 

𝐷(𝑝)/𝐷(𝑣) Destination node of household member 𝑝/ vehicle 𝑣 

𝑇 The time horizon in the space-time network/space-time-state network 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of arc (𝑖, 𝑗, 𝑡, 𝑠) 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ Capacity of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 

𝑥𝑖,𝑗,𝑡,𝑠
𝑝

 Binary variable, = 1, if household member 𝑝 visits the traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠) 
in the space-time network; = 0 otherwise 

𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣  Binary variable, = 1, if vehicle 𝑣 visits the traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) in the 

space-time-state network; = 0 otherwise 
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(iv) Some members may perform no activities; some vehicles may not be used.  

(2) Case B is a multi-vehicle and multi-person ridesharing problem with mandatory and 

discretionary activities, which can be treated as a special sub-problem of Case V in the 

paper by Recker (1995). The specific definition is: (i) the ride-sharing pattern that which 

household members will share one vehicle and which one is the driver has been given; (ii) 

A subset of activities can be performed by any member of the household, and the remaining 

activities must be performed by certain members; (iii) Certain members can have specific 

mandatory activities or optional activities. 

(3) Case C is an extension of cases A and B, which considers tight road capacity constraints 

to capture the underlying congestion in physical transportation networks, so that the 

influence of time-dependent link travel time on household activity patterns can be observed. 

As a result, this case is a system optimal multi-household activity scheduling problem 

under time-varying traffic conditions. 

(4) Case D is a dynamic household-level equilibrium problem where each household is 

inclined to choose the optimal activity pattern, which considers vehicle selection, mode 

choice and ride-sharing options simultaneously. As studied in a recent paper by Liu and 

Zhou (2016), when there is no link capacity constraint, each agent (e.g., passenger, vehicle, 

or household) can choose the best/shortest path without affecting each other. Once the 

limited resource constraint is strictly considered, some agents may have to accept a longer 

path in order to finish their own travel and this kind of decision mechanism could invoke 

bounded rationality to those agents.  
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In addition, compared to the existing integration of ABM and DTA, the mathematical 

program oriented modelling framework shown in Figure 4-1 aims to optimize the 

household activity decisions with system optimal goals under household-level activity 

requirements and network capacity constraints. In our future study, Case D will be further 

examined to study possible dynamic household-level equilibriums with household activity 

interactions. 

Synthetic Population Generator

Household Activity Patterns and Network Dynamics

Objective: minimize total system travel cost

Constraints: 
(i) activity satisfaction (mandatory, semi-mandatory, 
optional) 
(ii) vehicle selection and ridesharing pattern
(iii) network capacity

Platform: time-discretized space-time-state networks

Single-level Multi-Household System Optimal Model

Household activity-travel requirements

 

Figure 4-1 Proposed Modelling Framework of Case C 

4.2.1 Network Construction and Conceptual Illustration of Case A 

For illustrative purposes, a hypothetic three-node network shown in Figure 4-2(a) is used 

to explain the problem addressed by Case A. There are two household members (𝑝1 and 
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𝑝2), two available vehicles (𝑣1  and 𝑣2 ), and two activities (𝑎1  and 𝑎2). The available 

vehicle set of household members 𝑝1 and 𝑝2 is {𝑣1, 𝑣2} and {𝑣2}. The available activity 

set of household members 𝑝1  and 𝑝2  is {𝑎1 , 𝑎2} and {𝑎1}, respectively, and the both 

activities belong to the mandatory activity and should be finished finally. 
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Figure 4-2 (a) Physical network; (b) Corresponding modified network 

In order to model those requirements above, the physical network is modified as shown in 

Figure 4-2(b), where the previous home node and activity nodes are split as several nodes. 

The detailed explanations are as follows. First, the home node is extended as six nodes, 

where (i) each household member has his/her dedicated node as his/her origin node, (ii) 

two vehicle nodes are created and one can view the links between household member origin 

node and vehicle nodes as vehicle selection links, while each vehicle node can only be 

visited less than or equal to once by all passengers, and (iii) node D serves as the super 

destination node. Moreover, to follow an activity-on-the-link representation scheme, the 

extended network on the right has now activity starting node 1' and ending node 1'' 

corresponding to the activity node 1 on the left-hand side, and the link between the two 

nodes can be used to represent the required activity time duration. 
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In order to consider passenger-to-vehicle preference, the travel costs on those vehicle 

selection links can be passenger-specific. For example, the travel cost from passenger 𝑝1’s 

origin to the super destination is 0, which indicates that when passenger 𝑝1 stays at home 

as one particular vehicle selection, there is no travel cost. In addition, the travel cost on link 

(𝑝1, 𝑣1) is higher than that on link (𝑝1, 𝑣2), indicating passenger 𝑝1’s higher preferences 

toward vehicle 2 compared to vehicle 1.  

Each activity in HAPP typically has one specific time window, then we assume that the 

beginning time windows for (i) passengers 𝑝1 and 𝑝2 and (ii) activities 𝑎1 and 𝑎2 are [1,3], 

[1,4], [9,10], and [20, 21], respectively, along the total time horizon of 32 time units. 

Furthermore, the waiting cost of each time interval at origin nodes and destination node is 

assumed to be 0, and the waiting at activities nodes has a cost of 1 at each time interval. 

Within a deterministic disutility minimization framework, we assume negative cost values 

on activity links shown in Figure 4-2.  

A standard time-discretized space-time network can be constructed through the procedure 

proposed in the papers (Tong et al., 2015; Li et al., 2015; Liu and Zhou, 2016; Lu et al., 

2016), and the feasible space-time prism can be greatly reduced as illustrated in Figure 4-3. 

As a result, the problem becomes how to find passengers’ trajectory satisfying all time 

windows and activity requirements in the space-time network so as to minimize the total 

travel cost of all household members.  
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Figure 4-3 Feasible Searching Region in the Space-time Network 

As a remark, the (time-dependent) travel time on each travelling arc could be given in 

advance to reflect the congestion due to complex travel route choice interactions in the 

real-world traffic network. However, in the following Case C, we directly consider tight 

link/arc capacity inside the model to compute the resulting congestion effect explicitly. 

When the number of inflow vehicles exceeds the capacity of traveling arc, some vehicles 

have to wait at the waiting arc for available travelling arc capacity at next time interval. 

The detail about how tight capacity constraint is considered in the time-discretized space-

time networks can be found in recent papers by Lu et al. (2016) and Liu and Zhou (2016). 

Their agent-based approach does not use the traditional flow-based nonlinear link/path cost 

function, and the travel cost of each agent is the result of the interaction among different 

agents in space-time networks. 

4.2.2 Network Construction and Conceptual Illustration of Case B 

The most difficult issue in modeling the household-level ridesharing problem is how to 

recognize the complex coordination among different household members, pertaining to the 

following questions such as who is the driver and where/when the driver should drop off 
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and pick up passengers. Considering offline planning applications, our Case B assumes 

that the set of possible ridesharing patterns is pre-specified with the given drop-off and 

pick-up locations with time windows to choose.  

An illustrative example is given in Figure 4-4(a), where there are two household members 

(𝑝1 and 𝑝2), one available vehicle, and three activities (𝑎1, 𝑎2 and 𝑎3). The given ride-

sharing pattern requires that driver 𝑝1 needs to drop off the passenger 𝑝2 to his/her own 

activities within given beginning time windows, and then this driver needs to pick up 𝑝2 

from the activity locations within given activity ending time windows. The driver 𝑝1 could 

accompany passengers to perform their activity, and also can leave to conduct his/her own 

mandatory activities. In this example with a quite busy household activity agenda, the 

driver has to perform the mandatory (deriver as D) activity 𝑎1 while the passenger needs 

to finish the mandatory (passenger as P) activities 𝑎2 and 𝑎3. 
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Figure 4-4 (a) Physical Network; (b) Corresponding Modified Network 

Accordingly, we construct a drop-off node and a pick-up node for each passenger at the 

activity location in Figure 4-4(b). It should be remarked that, in a typical case, one is 
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dropped off and picked up at the same activity location, but our formulation also makes it 

possible that one passenger is dropped off at one activity and then picked up at another 

location if he/she can take other travel modes (walking, transit or taxi) to the (spatially 

different) pick-up location. The starting node and ending node of the passenger activity 

(shown as P activity 3' and 3'') is considered a special drop-off node and pick-up node in 

drivers’ network. 

In addition to using the two dimensions (space and time) to depict vehicles’ travel 

trajectory, this section will introduce one more state dimension to model ride-sharing status. 

More precisely, the state code covers each traveler’s service status, including the driver 

and all passengers. Through adding one more dimension and exogenously listing the 

possible relation of location, time, and vehicle state, a set of hard activity-performing 

constraints for the driver and passengers in each vehicle could be embedded in advance in 

the space-time-state network, which will greatly reduce the set of side constraints and make 

our proposed mathematical model tractable for network flow optimization algorithms. 

To solve the single-vehicle routing problem with pickup and delivery service with time 

windows (VRPPDTW), Psaraftis (1983) proposed a cumulative service state {1,2,3} to 

record the service status of each passenger, where 3 means that the passenger has not been 

picked up, 2 means that the passenger has been picked up but not been delivered, and 1 

means that the passenger has been successfully delivered. In this chapter, we adopt the 

cumulative state representation as {0,1,2}: 0 means that the activity has not been performed, 

1 means that the activity is being performed or the passenger has been dropped off at the 

activity location but not been picked up, and 2 means that the activity has been performed 
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or the passenger has been picked up. While Mahmoudi and Zhou (2016) firstly proposed a 

third dimension as vehicle carrying state to solve the VRPPDTW, our third dimension of 

household-oriented state (with a rich representation of different household members, driver, 

passenger and associated activities) and the process of state transition are systematically 

different with those of  Mahmoudi and Zhou (2016). The general comparison is listed in 

Table 4-2.  

Table 4-2 Comparison of Model Building between Mahmoudi and Zhou (2016) and Our 

Case B 

 

Vehicle-oriented state based 

VRPPDTW (Mahmoudi and Zhou, 

2016) 

Household-oriented  state in proposed HAPP 

Case B  

State 

representation  

Vehicle carrying state that 

indicates how many passengers are 

carried subject to its carrying 

capacity. 

Vehicle, designated driver (as a household 

member) multiple passengers, activity-execution 

states 

Multiple 

passenger 

activity task 

Not modelled 
one passenger could conduct multiple mandatory 

and optional activities 

The third 

dimension 

(state) 

0: passenger is not carried by the 

vehicle;  

1: passenger is being carried by the 

vehicle. 

0: the activity of one passenger has not been 

performed; 

1: the activity is being performed or the passenger 

has been dropped off at the activity location but 

not been picked up; 

2: the activity has been performed or the 

passenger has been picked up 

State 

transition 

logic between 

driver and 

passenger 

Not modelled 

one passenger could have several activities, and 

when he/she is dropped off by the driver at one 

activity location, it is impossible for him/her to be 

dropped off at other activity location before 

he/she is picked up at the previous activity 

location 

Since one activity could have 3 different states, if there are 𝑛 activities for all passengers 

in one vehicle, it would require 3𝑛  variables to represent all possible states. The total 

number of states is shown in Table 4-3 depending on the number of activities. However, if 

one passenger has multiple activities, the possible states could be reduced because one 

passenger cannot perform multiple activities simultaneously. Also, the tight time window 
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and transition preference for each activity can greatly reduce the number of possible states 

reasonable within a feasible space-time prism. In addition, the rapid development of 

hardware of computers could provide more memory and faster computation speed to 

address those large number of state search decisions. 

Table 4-3 The Maximum Number of Possible States Corresponds With the Number of 

Activities in One Vehicle 

Number of activities 1 2 3 4 5 6 7 8 

Maximum number of 
possible states 

3 9 27 81 243 729 2187 6561 

We now use the example above to illustrate our cumulative activity-performing state and 

the state transition at different activity locations and times. There are one vehicle with two 

household members and three activities, so the vehicle’s activity-performing state can be 

[𝑎1, 𝑎2, 𝑎3],  or more generically denoted as [_, _, _], where the first slot represents the 

driver’s activity-performing state of activity 𝑎1  and the second slot and the third one 

represent passenger 𝑝2 ’s two activity-performing states of activities 𝑎2  and 𝑎3 , 

respectively.  To reduce the number of states in this combinatorial optimization problem, 

one can also implement the activity-performing requirement as constraints on the activity 

link (1′ → 1")for the driver, so the resulting reduced state vector is [𝑎2, 𝑎3].  

Since activities 𝑎2  and 𝑎3  are mandatory for passenger 𝑝2 , all possible vehicle’s state 

could be [𝑎2 = 0, 𝑎3 = 0] , [1,0] , [2,0] , [0,1] , [0,2] , [2,1] , [1,2] , and [2,2]  by 

enumeration. It is noticed that [𝑎2 = 1, 𝑎3 = 1] is not included because it is impossible 

that passenger 𝑝2 is dropped off at two locations simultaneously. Figure 4-5(a) illustrates 

a graph of possible state transitions for the example above. In addition, if there is the same 
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type of multiple activities, such as, shopping at location 2 vs. at location 3, passenger 2 

may just need to choose one of the two locations, so the resulting possible state transition 

will be that shown in Figure 4-5(b). 
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Figure 4-5 (a) Both Activities Need to Be Performed; (b) Exact One of Two Activities 

Should Be Performed 

There are three types of mutually exclusive multidimensional arcs in the space-time-state 

network: 

Travelling arcs (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′ = 𝑤) with a time-dependent cost on link (𝑖, 𝑗) departing at 

time 𝑡, with the same state 𝑤 as transportation services do not change activity performing 

states.  

Waiting arcs (𝑖, 𝑖, 𝑡, 𝑡 + 1,𝑤,𝑤′) with a unit of waiting costs at location 𝑖 from time 𝑡 to 

time 𝑡 + 1. A special Case is that, the waiting cost should be zero at the super home origin 

and destination nodes.  
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State transition/service arcs (𝑖, 𝑖, 𝑡, 𝑡, 𝑤, 𝑤′) with a utility (i.e. negative travel cost) when 

performing their activities at the drop-off location. As shown in Figure 4-6, at node 𝑖 = 2’, 

time 𝑡 = 6, 7 or 8 within a given time window, we have a number of possible state changes, 

for example,  𝑤 = [0,0]  with a possible transition to 𝑤′ = [1,0] , or 𝑤 = [0,2]  with a 

possible transition to 𝑤′ = [1,2]. As the ending state for 𝑎2 must be 2 so the passenger 2 

will be picked up automatically among any feasible solutions and there is no benefit at 

pick-up nodes to avoid double counting of service utilities.  
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Figure 4-6 Feasible Arcs at Node 2' in a Space-time-state Network 

4.2.3 Conceptual Illustration of Case C 

As an extension of Cases A and B, Case C strictly honors the travelling arc capacity in the 

space-time network and space-time-state network, similar to the consideration in the recent 

papers along this line (Lu et al., 2016; Liu and Zhou, 2016). Compared with the constant 

link free-flow travel time, the underlying time-varying congestion could dramatically 
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affect the passenger/vehicle’s departure time, route choice, mode choice, destination choice, 

and even activity generation.  

Without loss of generality, we adopt a time-invariant network (Liu and Zhou, 2016) shown 

in Figure 4-7 to illustrate the congestion effect for two households with two different 

activities, where household 1 (household 2) has one member who departs from home node 

𝐻1 (𝐻2) to perform activity 𝐴1 (𝐴2) then go back home, respectively.  
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Figure 4-7 A Simple Illustrative Network for Case C 

What can be observed in Table 4-4 is summarized as follows and those observation can 

also be applicable to space-time and space-time-state networks. 

(1) When the link capacity is not taken into account, the vehicles from both households 

choose their own shortest path. The physical path node sequences of households 1 and 2 is 

1 → 3 → 2 → 4 → 2 → 3 → 1 with path travel time of 6. 

(2) When the link capacity is considered, the system optimal objective of Case C could 

make household 1 change its path as  1 → 2 → 4 → 2 → 1 with a larger path cost of 8. 

Meanwhile, household 2 would switch a new path as 1 → 3 → 4 → 3 → 1  with an 

increased cost of 10. 
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Table 4-4 Result Analysis of Different Cases 

Different cases 

Physical path selection 

Remarks 
Path 1

 

Path 2 

 

Path 3

 

Path 4

 
Case A/B: without link 

capacity constraint 
× × × √;   √ Benchmark 

Case C: system optimal 

with link capacity 

constraint 
√ √ × × 

Compared with Case 

A/B, household has 

possible departure time 

change, route choice 

change, and possible 

activity cancel or mode 

choice change due to 

link capacity 

constraints. 

Case D: 

household 

equilibrium 

with link 

capacity 

constraint 

With 

links 

3 ↔ 2 

× × √ √ 

Compared with Case C, 

the total travel time is 

increased. 

Without 

links 

3 ↔ 2 
√ √ × × 

Braess paradox occurs, 

as the system-wide cost 

reduces without the 

link. 

√: One household (vehicle) chooses the corresponding path; ×: No household (vehicle) chooses the corresponding path 

(3) In observation (1), the travel time of household 2 from 1 to 4 is 3, but now it will 

increase to 5 due to link capacity constraint in observation (2). If the passenger of 

household 2 has a strict time window for activity 2, the increased path travel time from 1 

to 4 could make passenger depart earlier to satisfy the time window.  

(4) If the time budget of household 2 from 1 to 4 is less than 5, the passenger would cancel 

activity 2 or may change to an alternative by switching to other possible travel modes. 

(5) If Case D is considered for possible equilibrium conditions, one household could 

choose the previous shortest path and the other has to accept the longer path, 1 → 4 → 1, 

with total travel time of 14. It also could lead to changes in departure time, activity cancel 

or mode choice. In addition, Braess paradox exists in the network above, so blocking links 
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3 → 2  and 2 → 3  definitely could improve the transportation efficiency and further 

influence household activity patterns from the perspective of traffic managers. 

4.3 Mathematical Programming Models 

4.3.1 Space-time Network-based Optimization Model for Case A 

Based on the two-dimension space-time network constructed in section 4.2.2, we formulate 

our mathematical programing model that satisfies all requirements in Case A, which aims 

to optimize vehicle selection, activity-performing selection and route guidance for each 

household member so as to minimize the total household travel cost.  

Model 1: 

Objective function 

  



p Estji

p

stji

p

stji xc
),,,(

,,,,,, )(min  (4.1) 

Subject to 

(1) Flow balance constraint for each person: 
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   (4.2)  

(2) Vehicle selection constraint at vehicle selection node: 

 
 
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, : , , ,

1,p
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p i t i j t s E
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
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(3) Mandatory activity participation for one specific household member: 
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(4) Mandatory activity with multiple candidates for one household member: 
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(5) Discretionary activity for each household member 
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(6) Binary variable: 
( , , , ) {0,1}p

i j t sx   

The objective function is to minimize the total system travel cost of all household members, 

where the travel cost 𝑐𝑖,𝑗,𝑡,𝑠 on each arc has been predefined in the space-time network 

construction stage. Eq. (4.2) is the standard person-based flow balance constraint. Eq. (4.3) 

means that each household member can only choose one vehicle or don’t choose any 

vehicles (a.k.a. staying at home in our example). Eq. (4.4) represents that the activity 

duration arc of each mandatory activity of a specific household member should be visit 

exactly once by that household member. For example, if one household member must go 

to a company for work, one of working arcs must be visited exactly once by the household 

member. Eq. (4.5) ensures that if one household member needs to perform one type of 

activity with multiple candidate locations/time durations, he/she must choose one 

candidate to complete one activity instance among all options. For example, if one 

household member needs to go shopping and there are two candidate shopping malls, 

finally only one shopping mall should be visited exactly once to mark the completion state 
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of the shopping activity. Inequality (4.6) represents the flexibility associated with those 

optional activities, as they could be performed or not, depending on the availability of those 

eligible household members and the required travel cost to reach those locations. In short, 

the proposed model in this section is a 0-1 integer linear programing model, or more 

precisely, a multi-commodity flow optimization problem with a limited set of side 

constraints. This compact formulation enables the use of standard optimization solvers for 

a real-world transportation network. 

Table 4-5 offers a systematic comparison for detailed modelling techniques between our 

proposed model and classical model proposed by Recker (1995), specifically between our 

Case A and Case IV of Recker.  

4.3.2 Space-time-state Network-based Optimization Model for Case B 

Before presenting the model for case B, it should be emphasized that the space-time-state 

network needs be pre-built and satisfies the given time windows of each activity and the 

predefined arc attributes, such as, the location of each node, the travel time or travel cost 

of each arc, and the logically feasible state transition in the three-dimension network.  

More importantly, the slate of passengers’ activity-performing states in the final solution 

for each vehicle exactly depends on the type of different activities, mandatory activity vs. 

discretionary activity. As shown in Figure 4-5(a) in section 4.2.3, when the two activities 

are mandatory for passenger 2, the super starting state at the origin and super ending state 

at the destination are [0,0] and [2,2], respectively.  
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Table 4-5 Comparison between Case IV (Recker, 1995) and Our Case A 

Modelling constraints 
Model R4: Case IV 

(Recker, 1995) 

Model 1 for our 

Case A 
Remarks 

(1) Time representation Continuous Discretized  

(2) Network 

representation 

Abstract physical traffic 

network 

Time-discretized 

space-time 

physical traffic 

network 

 

(3) Objective function 
Eqns (1a)-(1f) with 

multiple goals 

Eqn (1) with travel 

cost only 
 

(4) Coupling constraints 

for vehicle selection of 

household member 

Constraints (40a)-(40b) 

Embedded in the 

modified physical 

network 

 

(5) Vehicle spatial 

connectivity constraints 

Constraints (2), (3), 

(4’), (5’) and (6) 

Constraints (2)-(6) 

in the space-time 

network for 

modelling 

constraints (5)-(9) 

Model 1 needs to build one 

specific activity duration 

link for each activity to 

represent the activity 

process 

(6) Vehicle temporal 

constraints 
Constraints (7)-(10) 

(7) Household spatial 

constraints 
Constraints (26)-(30) 

(8) Household temporal 

constraints 
Constraints (31)-(33) 

(9) Illogical activity 

constraints 

Constraints (21)-(24) 

and (36)-(39) 

(10) Vehicle capacity 

constraints 
Constraints (14)-(17) 

Always satisfied 

(solo driving 

pattern) 

 

(11) Activity time window 

constraints 

Constraints (11)-(13) 

and (34)-(35) 

Embedded in the 

space-time 

network 

Model R4 provides a 

starting time window and 

return-home window for 

each activity, but in Model 

1 each activity only has a 

starting time window and 

does not have the return-

home window. Instead, 

each household member 

has a return-home window 

for his/her arrival at home 

(12) Travel cost/time 

budget constraint 
Constraints (18)-(19) 

Not considered 

but can be easily 

added 

 

(13) Variable definitional 

constraints  

Binary and continuous 

variables 

Binary variables 

only 

Model R4 is a mixed 

integer linear 

programming model. 

Model 1 is a 0-1 integer 

linear programming 

model. 

On the other hand, when only one of two activities needs to be executed in a daily schedule 

in Figure 4-5(b), the final arrival state could be [2,0] or [0,2], with a virtual ending state 

shown in Figure 4-8a). Similarly, if the two activities are optional, the final state could be 
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one of four possible alternatives [0,0], [2,0], [0,2] or [2,2], while the final selection of the 

optimal activity states is highly depending on the vehicle and time resources it consumed 

along the daily activity chain as well as the corresponding objective function in terms of 

benefit and travel costs. 

To satisfy the flow balance constraint for a network flow programming model, we need to 

build a virtual super ending state, as shown in Figure 4-8(b), with connections from those 

possible ending states at the physical destination, e.g., four states in the above example, 

[0,0] , [2,0] , [0,2]  and [2,2] . As a remark, there is no benefit/utility during the state 

transition to the virtual super ending state. This state-transition based modeling paradigm 

could systematically capture the complicated possible interactions between multiple 

household members in a daily scheduling process. 

]0,0[

]0,1[

]0,2[

]1,0[

]2,0[

]1,2[ ]2,1[

]2,2[

Initial departure state 

]2,2[

]0,0[

Activity 2 

(finished)

Activity 3 

(finished)

Activities 2 and 3 (finished)

No activity 

(finished)

Virtual ending  state 

_][_,

_][_,

_][_,

Initial state

Possible final state

Virtual ending state

]0,0[

]0,1[

]0,2[

]1,0[

]2,0[

Initial departure state 

Visual ending state 

]2,2[

Activity 2 

(finished)
Activity 3 

(finished)

a b

 

Figure 4-8 (a) One of Two Activities Is Performed; (b) Two Activities Are Optional 

Based on the prebuilt 3D space-time-state network and given ride-sharing patterns, we now 

present our optimization model that satisfies all requirements in Case B that provides the 
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optimal vehicle route guidance to the driver(s) to enable the scheduling of everyone’s 

activities.  

Model 2: 

Objective function 

  



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Subject to, 

(1) Flow balance constraint for each vehicle: 
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 (4.8)  

(2) Mandatory activity performing constraint for the driver on the activity arcs (including 

ride-sharing): 
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(3) Binary variable:  , , , , , 0,1v

i j t s w wx    

The objective function in Eq. (4.7) aims to minimize the total travel cost of the household, 

including the travel cost of vehicles and the benefit from everyone’s performed activities. 

Eq. (4.8) is the standard vehicle-based flow balance constraint. With the given initial 

departure state [0,0, … ,0] and virtual ending states for each vehicle, the given activity 

requirements of each passenger have been embedded in the space-time-state network. 
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Similar to Eq. (4.4), Eq. (4.9) ensures that the household driver can finish his/her 

mandatory activity with given time windows and time duration, which means that the 

activity duration arc of each mandatory activity should be visit exactly once by the 

driver/vehicle. The decision variable 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣  is a binary variable that indicates whether 

or not the arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) will be chosen in the space-time-activity path of vehicle 𝑣. 

Finally, the model we proposed is also a 0-1 integer linear programing model, which has 

one more dimension compared to Case A but still can be directly solved in GAMS in a 

reasonable-size network.  

In our Case B, the ridesharing pattern is prescribed, so the case can be viewed as a sub-

problem of Case V in the paper (Recker, 1995). In Case V (Recker, 1995), it requires to 

build drop-off and pick-up nodes at each activity location and the set of available vehicles 

is expanded by designating driver seat and passenger seat(s) for each vehicle. The 

corresponding model has six categories of constraints, including vehicle temporal 

constraints, household member temporal constraints, vehicle spatial constraints, household 

member spatial constraints, vehicle capacity and budget constraints, and vehicle and 

household member coupling constraints. In our Case B, we also build drop-off and pick-

up nodes for each activity with specific time windows. Since the ridesharing pattern is 

given a priori and modelled as a pair of drop-off-first then pick-up actions, we do not need 

identify the specific driver seat and passenger seat(s), and the coupling constraints for 

vehicle and household member is automatically coded through the state transition graph or 

explicitly taken as activity-performing constraints in Eq. (4.9). The temporal and spatial 

constraints of vehicle and household member are all embedded in the well-structured 
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space-time-state network where the state transition graph defines the possible activity visit 

sequences of passengers/vehicles.  

It should be reminded that if we treat the start node and the end node of the activity duration 

link for the driver as a drop-off node and pick-up node, respectively, the driver’s activities 

can also be added into the cumulative activity-performing state. As a result, side constraints 

(4.9) can also be embedded in the space-time-state network, and the mathematical model 

above is reduced to be a time-dependent state-dependent least cost path-finding problem, 

which could be efficiently solved by dynamic programming with parallel computing 

technology on large-scale networks. One multi-loop label correcting algorithm is designed 

in Appendix B. 

As a remark, it is also possible to define another state instead of cumulative activity-

performing state to model Case B. Based on the specific requirements in one problem, 

different state definitions could lead to different model formulations (less or more side 

constraints), different network structure and computation complexity. One specific 

example can be found in recent papers by Mahmoudi and Zhou (2016) and Mahmoudi et 

al., (2016) where they applied vehicle carrying state {0,1} and vehicle cumulative service 

state {0,1,2} to solve the VRPPDTWs, respectively, with different model formulation, 

networks, and algorithms. Therefore, our proposed formulation for Cases A and B is not 

the only possible modelling choice, and one should examine the size of state variables and 

nature of complex constraints to reformulate the problem based on the preferred network 

structure and available space and time complexity requirements.  
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4.3.3 Link Capacity Constraints of Case C 

Since Case A considers a solo-driving pattern, one vehicle can only carry one person. In 

the mathematical model of Section 4.3.1, the person-based formulation is equivalent to the 

vehicle-based model. After converting the hourly road capacity into "specific time interval-

based travelling arc capacity in the space-time network, the tight arc capacity constraint 

can be formulated as, 

 Estjicapx stji

p

p

stji  ),,,(,,,,,,,  (4.10) 

To consider the “queue spillback” phenomenon, additional inequality needs be added to 

represent the link storage capacity constraint by using cumulative arrival counts and 

cumulative departure counts on that link. The detailed formulation can be found in the 

paper by Li et al. (2015). 

Similarly, since the mathematical model of Section 4.3.2 is vehicle-based formulation, the 

tight capacity constraint can be formulated as, 

 Ewwstjicapx wwstji

v

v

wwstji  )',,,,,(,',,,,,',,,,,  (4.11) 

Regarding the queue spillback and congestion propagation property from Newell’s 

simplified Kinematic wave model, the specific formulation is similar to the constraints in 

the paper by Li et al. (2015) which doesn’t consider the merge and diverge issues, but with 

one more dimension w. 

As stated at the end of Section 4.3.2, the driver’s activity participation constraint can also 

be embedded in the space-time-state networks so that case B becomes a time-dependent 
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state-dependent least cost path-finding problem. When the road resource capacity 

constraint (4.11) is recognized, there are two research directions to solve our proposed 

system optimal problem for large-scale real-world applications: 

(1) Lagrangian relaxation: the link/arc capacity constraints can be dualized to objective 

function (4.7), so a new time-dependent state-dependent least cost path problem is 

transformed in the Lagrangian relaxation framework to obtain a lower bound. Since the 

optimal sub-gradient in binary integer programming model is hard to be obtained, the gap 

between the lower bound and the optimal solution cannot be well analytically proved. 

Meanwhile, when more side constraints from queue spillback consideration are taken into 

account, dualizing those constraints might not be a suitable approach. 

(2) Queue-based simulation: Since our proposed model is a system optimal problem 

considering complex traffic dynamics, we can apply event-based simulation to solve the 

large-scale problem where (i) the event-based simulation process is consistent with the 

time-discretized space-time-state network, (ii) different travel flow models can be handled, 

and (iii) the marginal cost analysis (Ghali and Smith, 1995) can be used to find the least 

marginal cost path for system optimal solutions. The specific algorithm design can refer to 

the paper by Lu et al (2016), which proposed a simulation framework to solve agent-based 

eco-system optimal traffic assignment in congested networks. 

4.4 Longitude Trajectory Optimization for Autonomous Vehicles 

4.4.1 Problem Statement 

In this research, we only consider autonomous vehicles along a single-lane facility with a 

given communication system. As shown in  
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Figure 4-9(a), there are two segments AB and BC, and each segment has a communication 

system, which provides the reaction time of those autonomous vehicles or backward wave 

speed in those segments. The corresponding time-discretized space-time network is built 

in  

Figure 4-9(b). 
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D

 

Figure 4-9 Illustration of Traffic Network and Its Space-time Network 

At each time stamp along time horizon from 0 to T, one vehicle can travel in one of K (K=4) 

alternative speed values from 0 to its speed limit, which can be represented by travelling 

arcs and waiting arcs. The travel cost of each arc in the space-time network is defined as 

its travel time in advance. At each physical destination node, a corresponding virtual super-

destination node is built at the big time T. The travel cost of arcs from the destination node 

to the virtual super node is 0. To avoid the obstacles such as the time period of traffic red 

signals, we can delete those travelling arcs which go through or depart at the signal red 

time at the signal location in the space-time network. 
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Figure 4-10(a) shows Newell’s simplified car-following model, where the displacement of 

time and space establishes an incompatible area so that both vehicles cannot exist there 

simultaneously. The detail is further drawn in Figure 4-10 (b) when the reaction time and 

minimum spacing are 3-time interval and 3 space interval for the following vehicle, 

respectively. 

The relation between the lead vehicle and the following vehicle is displayed in  

Figure 4-10(c) shows the incompatible area with reduced displacement time from 3-time 

interval to 2-time interval. The set of incompatible points at each vertex can be enumerated 

based on the given reaction time or backward wave speed 𝑤 in each segment with a built 

communication system. In short, our problem aims to optimize all autonomous vehicles’ 

trajectories to minimize the total system travel cost while satisfying Newell’s simplified 

car-following constraints. 

Following 

vehicle n

(a) space and time displacement in Newell s 

car-following model

(b) restricted area between lead 

vehicle and following vehicle

Incompatible area

Position of leading vehicle

Position of following vehicle

Incompatible point

(c) restricted area between lead vehicle and following 

vehicle with reduced displacement time

(j,s) (i,t) (j,s) (i,t)

 

Figure 4-10 Illustration of Restricted Points Based on Newell’s Car-following Model 

4.4.2 Mathematical Programming Formulation 

Table 4-6 lists the notation used in this model. 
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Table 4-6 Notation Used for This Section 

Indices Definition 

𝑖, 𝑗 Index of nodes, 𝑖, 𝑗 ∈ 𝑁 

(𝑖, 𝑗) Index of physical link between two adjacent nodes, (𝑖, 𝑗) ∈ 𝐿 

𝑎 Index of agents/vehicles, 𝑎 ∈ 𝐴 

𝑡, 𝑠 Index of time intervals in the space-time network 

𝑤 Index of communication time of autonomous vehicles 

𝑘 Index of segments with different communication time  

𝑜(𝑎) Index of origin node of agent 𝑎 

𝑑(𝑎) Index of destination node of agent 𝑎 

Sets  

𝑁 Set of nodes in the physical transportation network  

𝐿 Set of links in the physical transportation network 

𝐴 Set of agents 

𝑊 Set of communication time of self-driving cars 

𝑆 Set of segments 

𝑉 Set of  vertices in the space-time network 

𝐸 Set of  edges/arcs in the space-time network 

Parameters  

𝐷𝑇𝑎 The departure time of agent 𝑎 

𝐴𝑇𝑎 The assumed arrival time of agent 𝑎 

𝑐𝑖,𝑗,𝑡,𝑠 Travel cost of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝑇 The time horizon in the space-time network 

𝜑(𝑤,𝑖,𝑗,𝑡,𝑠) 𝜑(𝑤,𝑖,𝑗,𝑡,𝑠) = 1, if the vertex (𝑗, 𝑠) visited by the following vehicle with reaction time 𝑤, 

the vertex (𝑖, 𝑡) cannot be visited by its leading vehicle. 

Variables  

𝜃𝑖,𝑡
𝑎  Binary variable, indicator of vertex (𝑖, 𝑡) visited by agent 𝑎 

𝑥𝑖,𝑗,𝑡,𝑠
𝑎  = 1, if Agent 𝑎 is assigned on traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time 

network; = 0 otherwise 

Integer Programming Model: 

Objective function: 

 min∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠)𝑎  (4.12) 

Subject to, 

Vehicle-based flow balance constraint: 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−1 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

1 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑎  (4.13) 

Indicator of vertex visited by vehicles: 
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 𝜃𝑖,𝑡
𝑎 = ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
(𝑗,𝑠) , ∀(𝑖, 𝑡), ∀𝑎 (4.14) 

Simplified car-following safety constraints: 

 ∑ (𝜑(𝑤,𝑖,𝑗,𝑡,𝑠)(𝑖,𝑡) × 𝜃𝑖,𝑡
𝑎 ) + 𝜃𝑗,𝑠

𝑎+1 ≤ 1, ∀(𝑗, 𝑠) ∈ 𝜑(𝑤,𝑖,𝑗,𝑡,𝑠), ∀𝑎 (4.15) 

Binary variables: 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 = {0,1};  

The objective function in Eq. (4.12) is to minimize the total generalized travel cost of all 

autonomous vehicles under centralized control. Eq. (4.13) is a standard vehicle-based flow 

balance constraint, similar to recent studies by Liu and Zhou (2016) and Lu et al. (2016). 

Eq. (4.14) defines whether or not vehicle 𝑎 visits vertex (𝑖, 𝑡) by 𝜃𝑖,𝑡
𝑎 . Specifically, if 𝜃𝑖,𝑡

𝑎 =

1, vehicle 𝑎 visits vertex (𝑖, 𝑡) and ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

(𝑗,𝑠) = 1, which indicates that only one arc from 

vertex (𝑖, 𝑡) is chosen. Otherwise, 𝜃𝑖,𝑡
𝑎 = 0, and no arcs from vertex (𝑖, 𝑡) will be chosen 

by vehicle 𝑎. Inequality (4.15) represents the safe driving constraints of a pair of lead and 

following vehicles based on Newell’s simplified car-following model.  𝜑(𝑤,𝑖,𝑗,𝑡,𝑠)  is a 

parameter with value of 1 that defines the incompatible relation among vertexes (𝑖, 𝑡) 

visited by the lead vehicle and the vertex (𝑗, 𝑠) visited by the following vehicle under given 

reaction time/backward wave speed 𝑤 at different road segments. As a result, our proposed 

model is a 0-1 integer linear programming model, which could be directly solved by 

standard optimization solvers, such as CPLEX. 

As a remark, traffic boundary condition (closed or semi-open) is an important input for 

autonomous vehicle trajectory control/optimization. Our proposed model can handle not 

only the closed boundary condition in the space-time network but also the semi-open 
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boundary condition through building a virtual super-destination node with the objective of 

travel time, fuel consumption, emissions, etc. 

4.5 Numerical Experiments 

4.5.1 Small-scale Experiment for Case A 

The proposed model for Case A in Section 4.3.1 will be tested in the following network 

shown in Figure 4-11(a), where there are two household members 𝑝1 and 𝑝2, two available 

vehicles 𝑣1 and 𝑣2, and four candidate activities 𝑎1, 𝑎2, 𝑎3 and 𝑎4. Household member 𝑝1 

can choose any one of the two vehicles, and has one mandatory activity 𝑎1 to meet with 

others and one optional activity to swim. Household member 𝑝2 can only choose 𝑣2 and 

will go to one of the two shopping malls. The corresponding modified network is 

constructed in Figure 4-11(b) where nodes 1 and 2 are origin nodes, nodes 3 and 4 are 

vehicle nodes, and node 5 is the final destination node. It is observed from the activity links 

that the time durations and costs for performing activities 1 to 4 are (60, -20), (30, -10), 

(30, -15), and (20, -20), respectively. The specific time windows are listed in Table 4-7. 

The waiting cost at each time interval is 0 at origin and destination nodes and 1 at activity 

nodes. 
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Figure 4-11 (a) Physical Network; (b) Corresponding Modified Network 
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Table 4-7 The Specific Time Window for Each Event 

Location (node) 1 2 5 11 13 15 17 

Time window [1, 3] [1, 3] [1, 130] [15, 18] [15, 18] [18, 20] [86, 90] 

Our proposed 0-1 integer linear programming model for this example is solved in GAMS. 

The related source code can be downloaded at the website: 

https://www.researchgate.net/publication/306459026_Experiment_1_1. Finally, the total 

travel cost of this household is 24. The specific optimal solution is listed in Table 4-8, and 

can be also illustrated in Figure 4-12. 
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Figure 4-12 The Trajectories of Two Household Members 

It is observed that 𝑝1 should not go to activity 4 (swimming) and 𝑝2 does not need to go to 

activity 3 (shopping mall 2) due to the trade-off between the required travel costs and 

corresponding activity benefits. Therefore, if we increase the benefits of activities 3 and 4 

to 17 and 23, respectively, the optimal solution will be that (i) the total cost is 22, (ii) 

household member 𝑝1 will visit activities 1 and 4 sequentially and then go back home, and 

(iii) household member 𝑝2 will visit activity 3 (shopping mall 2) rather than activity 2. 

https://www.researchgate.net/publication/306459026_Experiment_1_1
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Meanwhile, if we assume that the link travel time increases due to tight link capacity 

constraints when more other household activity trips are considered, the activity pattern of 

this household is expected to change again. In short, the final activity selection and route 

guidance are comprehensively evaluated and selected based on the possible time-varying 

travel cost in the physical network, available time windows, and the benefits of performing 

individual available activities. 

Table 4-8 The Optimal Solution for Each Household Member 

Household member 𝑝1: 𝑥𝑖,𝑗,𝑡,𝑠
1 = 1 Household member 𝑝2: 𝑥𝑖,𝑗,𝑡,𝑠

2 = 1 

𝑖 𝑗 𝑡 𝑠 𝑖 𝑗 𝑡 𝑠 

1 3 3 4 2 4 1 2 

3 6 4 5 4 6 2 3 

6 7 5 15 6 9 3 15 

7 11 15 16 9 13 15 16 

11 12 16 76 13 14 16 46 

12 7 76 77 14 9 46 47 

7 6 77 87 9 6 47 59 

6 5 87 88 6 5 59 60 

4.5.2 Small-scale Experiment for Case B 

This section will test our proposed model for Case B in Section 4.3.2 based on the network 

shown in Figure 4-13(a), where there are three household members with one driver and 

two passengers. They will share one vehicle to perform their daily activities. The driver 𝑝1 

has one mandatory activity 𝑎1 and needs to drop off and pick up two passengers to conduct 

their activities. Passenger 𝑝2 has one mandatory activity 𝑎2 and one optional activity 𝑎3, 

and passenger 𝑝3 has one mandatory activity 𝑎4. The corresponding modified network is 

plotted in Figure 4-13(b) where the activity of the driver is represented by one specific 

activity link and each activity node of passengers is added with two additional nodes as 

drop-off node and pick-up node.  
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Figure 4-13  (a) Physical Network; (b) Corresponding Modified Network 

Table 4-9 Enumeration of All Possible States  

State 
ID 

State 
representation 

State 
ID 

State 
representation 

State 
ID 

State 
representation 

1 [0, 0, 0] 9 [0, 0, 1] 17 [0, 0, 2] 

2 [1, 0, 0] 10 [1, 0, 1] 18 [1, 0, 2] 

3 [2, 0, 0] 11 [2, 0, 1] 19 [2, 0, 2] 

4 [0, 1, 0] 12 [0, 1, 1] 20 [0, 1, 2] 

5 [0, 2, 0] 13 [0, 2, 1] 21 [0, 2, 2] 

6 [2, 1, 0] 14 [2, 1, 1] 22 [2, 1, 2] 

7 [1, 2, 0] 15 [1, 2, 1] 23 [1, 2, 2] 

8 [2, 2, 0] 16 [2, 2, 1] 24 [2, 2, 2] 

Based on the procedure explained in Section 4.3.2, the state has three slots as [_, _, _], of 

which the first two slots are for activities 2 and 3 of passenger 𝑝2 and the last slot is for 

activity 4 of passenger 𝑝3. We still use cumulative activity-performing state of {0,1,2} as 

before. All possible states that can be generated by algorithms are listed in Table 4-9. 

In addition, as noted in Section 4.2.2, specific time windows can also eliminate those 

impossible transitions. In this example, the time window for each event is listed in Table 

4-10. 
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Table 4-10 The Specific Time Window for Each Event 

Location 

(node 

number) 

Node 1 

(departure) 

Node 1 

(arrival) 

 
Node 

10 

Node  

11 

Node 

12 

Node  

13 

Node  

8 

Node  

9 

Node  

6 

Time 

window 
[1, 3] [1, 170] 

 [15, 

16] 

[114, 

115] 

[28, 

30] 

[127, 

139] 

[127, 

129] 

[137, 

139] 

[41, 

43] 

Based on the time window information, it is impossible that (i) activity 3 happens before 

activity 2, (ii) the drop-off event and pick-up event of activity 4 happens before those of 

activity 2, respectively, and (iii) the drop-off event and pick-up event of activity 3 happens 

before those of activity 4. Therefore, the remaining possible states will be [0, 0, 0], [1, 0, 

0], [1, 0, 1], [2, 0, 1], [2, 0, 2], [2, 1, 1], [2, 1, 2], and [2, 2, 2]. For the convenience of 

implementation in algorithms, we can label each state with one corresponding ID, such as, 

using 1 to 8 to represent the eight states above sequentially. The final possible state 

transition is demonstrated in  

Figure 4-14, where virtual arcs with virtual ending state are also built for developing a 

single-origin-to-single-destination problem. 
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Figure 4-14 The Possible State Transition Graph 
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In short, the possible state transition can be reduced with consideration of time windows 

before constructing a space-time-state network. Meanwhile, it is also feasible and 

straightforward to list all possible state transition without involving time windows and then 

consider the relation among activity locations, time windows, and state transition to 

construct the space-time-state network directly. As a result, those impossible state 

transition can also be eliminated when solving our mathematical model, but the price of 

this method is to require a bigger computer memory to store all possible state transition 

and a more complex space-time-state network. 

In addition, the benefit or negative cost of performing activity for all passengers is assumed 

to occur during the state transition at drop-off nodes, as illustrated in Section 4.2.3. The 

negative travel costs for activities 1,2, 3, and 4 are given as -20, -10, -15, and -15. Based 

on the constructed space-time-state network, our proposed 0-1 integer linear programming 

model for this example is solved in GAMS. The related source code can be downloaded at 

the website: https://www.researchgate.net/publication/306458887_Experiment_2_1. 

Finally, the total travel cost of this household is 40. The specific optimal solution is listed 

in Table 4-11. 

It is observed that passenger 𝑝2 will not perform activity 3 due to the trade-off between the 

required travel costs and corresponding activity benefits. If we increase the benefit of 

activity 3 from 15 to 20, the optimal solution will change to be that (i) the total cost is 37, 

and (ii) activity 3 will be performed by passenger 𝑝2. Moreover, when the link travel time 

is modelled as a time-dependent attribute due to road congestion effect, the final household 

activity pattern is expected to change accordingly. 

https://www.researchgate.net/publication/306458887_Experiment_2_1
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Table 4-11 The Optimal Solution for the Household 

The only vehicle: 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
1 = 1 

𝑖 𝑗 𝑡 𝑠 𝑤 𝑤′ Remarks 𝑖 𝑗 𝑡 𝑠 𝑤 𝑤′ Remarks 

1 4 3 15 1 1 
Depart at home at 

time 3 
7 2 103 104 3 3  

4 10 15 16 1 1  2 4 104 112 3 3  

10 10 16 16 1 2 

State transition 

(passenger 𝑝2 is 

dropped off at 

node 10 for 

activity 2) 

4 4 112 113 3 3  

10 4 16 17 2 2  4 11 113 114 3 3  

4 5 17 27 2 2  1

1 
11 114 114 3 4 

State transition 

(passenger 𝑝2 is 

picked up at node 

11 for activity 2) 

5 12 27 28 2 2  1

1 
4 114 115 4 4  

12 12 28 28 2 3 

State transition 

(passenger 𝑝3 is 

dropped off at 

node 12 for 

activity 4) 

4 5 115 125 4 4  

12 5 28 29 3 3  5 5 125 126 4 4  

5 2 29 39 3 3  5 13 126 127 4 4  

2 2 39 40 3 3  1

3 
13 127 127 4 5 

State transition 

(passenger 𝑝3 is 

picked up at node 

13 for activity 4) 

2 2 40 41 3 3  1

3 
5 127 128 5 5  

2 6 41 42 3 3  5 2 128 138 5 5  

6 6 42 43 3 3  2 1 138 148 5 5 
Arrive at home at 

time 148 

6 7 43 103 3 3 

The driver 𝑝1 

performs activity 

1 

1 1 148 149 5 8 

State transition 

(from final state 

to assumed final 

state, the virtual 

arc cost is 0) 

4.5.3 Medium-scale Experiment Within a Lagrangian Relaxation Framework Using 

Cumulative Activity-performing State 

This section aims to examine the computation efficiency of using cumulative activity-

performing state in a medium-scale transportation network.  We choose a subarea of 
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Phoenix regional network as our study case with 1186 nodes, 3164 links and 387 activity 

locations, shown in Figure 4-15. The given input data for this experiment are listed in Table 

4-12. 

Table 4-12 The Input Data of This Experiment 

age

nt_i

d 

agent

_type 

from_n

ode_id 

to_no

de_id 

departure_

time_start 

departure_ti

me_window 

arrival_ti

me_start 

arrival_tim

e_window 

base_

profit 

opti

onal 

1 0 23 23 30 5 40 5 150 0 

2 0 24 24 10 20 70 10 
133.3

3 
0 

3 0 26 26 40 10 60 5 83.33 0 

4 0 25 25 20 20 80 5 150 0 

5 0 39 39 70 5 90 5 
133.3

3 
0 

6 0 35 35 20 5 110 5 
183.3

3 
0 

7 0 38 38 35 10 120 5 
133.3

3 
1 

Veh 

1 
1 13 13 1 1 120 1   

Veh 

2 
1 13 13 1 1 120 1   

“agent_id” could be activity id or vehicle id. “agent_type” = 1 for vehicles, and 0 means 

activities. Field “from_node_id” and “to_node_id” are the same and define (i) the activity 

performing location or (ii) vehicle’s origin/destination (home). “departure_time_start” 

defines the start time of activity or vehicle departure, and “depature_time_window” is the 

feasible time window duration. “arrival_time_start”, and “arrival_time_window” defines 

the activity/vehicle end time window. “base_profit” is the benefit/utilities of performing 

the corresponding activity. The “optional” flag indicates that if an activity is optional, its 

value is 1, otherwise it is mandatory as 0. As a result, the problem becomes that two 

vehicles at home (node 13) plans to perform 6 mandatory activities and 1optional activity. 
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Figure 4-15 One Subarea of Phoenix Regional Transportation Network 

To solve this problem, we use cumulative activity-performing state {0,1,2} to record the 

activity completion process. It is reminded that the maximum number of possible states 

could be 37  for 7 activities. In order to model the competition for one activity by two 

vehicles simultaneously, we dualize that constraint to our objective function and adopt the 

forward dynamic programming algorithm within a Lagrangin relaxation framework, which 

can refer to the process of solving the VRPPDTW for multiple vehicles by Mahmoudi and 

Zhou (2016). The related C++ source code and data set can be downloaded at the website: 

https://github.com/xzhou99/Agent-Plus/tree/master/HAPP.  Table 4-13 lists the impact of 

different number of activities on the CPU computation time of 5 Lagrangian iterations (for 

distributing different tasks to two vehices) and computer memory usage. In the above case, 

the vehicle/activity preference for household members is not considered. If a pre-specified 

vehicle-to-activity mapping is given, the search space in the space-time-state network 

could be further reduced.   

 

https://github.com/xzhou99/Agent-Plus/tree/master/HAPP
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Table 4-13 CPU Computation Time and Memory Use under Different Number of 

Activities 

# of activities 

Maximum numbers of 

activity performing 

states 

CPU time (seconds) RAM (GB) 

4 81 15.5 0.3 

5 243 38.2 1.3 

6 729 112.3 3.6 

7 2187 337.4 11.3 

 4.5.4 Large-scale Experiment Within a Simulation-based Framework with Simplified 

Activity Representation and Road Capacity Constraints 

This section aims to present the initial test result of the simulation-based approach for 

system optimal dynamic vehicle routing under road capacity constraints. The Salt Lake 

City regional traffic network is selected shown in Figure 4-16 where there are 13,923 nodes, 

26,768 links and 2,302 zones. The total number of simulated vehicles is about 1.35 million 

from 15:00 to18:00. The traffic flow model chooses point queue model, which just 

considers the tight road capacity constraints. The details of implementing spatial queue 

model and Newell’s simplified kinematic wave model by simulation can be found in the 

paper (Zhou and Taylor, 2014). 

This experiment can be treated as a special version of Case A. Each origin zone is 

analogous to one household and those destination zones can be viewed as those mandatory 

activity locations. The process that vehicles depart from origin to destination is like that 

household members complete their mandatory activities with flexible time windows. The 

simulated average trip time index (mean trip simulated travel time/trip free-flow travel time) 

of 100 iterations is depicted in Figure 4-17 and finally shows a convergence pattern.  
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Figure 4-16 Salt Lake City Regional Traffic Network (Lu et al., 2016) 

 

Figure 4-17 Average Trip Time Index of Each Iteration 

A parallel computing technique (Qu and Zhou, 2017) is embedded in the simulation 

process, and the search process for single activity is extremely simple compared to the full 

scale space-time-state search presented in the medium-scale example, so the computational 

time for one iteration is just 1 min 25sec in our workstation with 40 available CPU threads 

and 192G memory. As stated in the paper (Lu et al., 2016), this simulation algorithm still 
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needs further improvements on path marginal travel time calculation and step size 

optimization of each iteration. 

4.5.5 Tests on the Trajectory Control of Multiple Autonomous Vehicles 

The proposed mathematical model in section 4.5.4 is applied in the following tests, where 

autonomous vehicles move along a one-lane roadway with three segments (AB, BC, and 

CD) and total 30 space units (e.g., 2 or 3 meters). Each segment has one specific 

communication facility, which indicates that each vehicle can only have one particular 

reaction time to its leading vehicle. In these tests, the total time horizon is 40 time intervals 

(e.g., 20s or 40 s). Each vehicle is assumed to have four speed values to be selected at each 

time stamp, including 0, 1 space unit, 2 space units, and 3 space units. The minimum 

spacing 𝑑𝑗𝑎𝑚 between two autonomous vehicles is assumed as 2 space units. The reaction 

and operation times 𝑤 of segments AB, BC, and CD are 1 time unit, 2 time units and 3 

time units, respectively. Tests 1 and 2 focus on two autonomous vehicles in order to 

perform the sensitivity of departure time with the impact on system-wide travel times. In 

all tests, all vehicles depart at node/space 1 and should arrival at node 30.  

When departure times of vehicles 1 and 2 are 1 and 4, respectively, the problem is directly 

solved in GAMS based on our proposed mathematical model. Figure 4-18(a) shows the 

optimized vehicles’ trajectories. It is expected that vehicle 1 can always move in speed 

limit as 3 space units at each time interval in this discretized space-time network. However, 

the vehicle reduces its speed at time 8, because if it moves in speed limit, it will reach at 

node/space 31 after 10 time units rather than node 30 as the destination due to the 

discretization property of space-time networks. The red rectangle defines the incompatible 
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zone for the following vehicle (vehicle 2) when its reaction time is 3 time units. As shown 

in Figure 4-18(a), at the beginning, vehicle 1 stays at the incompatible zone of vehicle 2 if 

vehicle 2 has communication time of 3 time units, which indicates that vehicle 2 should 

reduce its speed to ensure there is no conflict with vehicle 1 after node 20 (at segment CD). 

As a result, the total system travel time is 21 where vehicles 1 and 2 have travel time of 10 

and 11, respectively. The shock wave is not obviously found in the result. One possible 

reason is that the solution above is just one of multiple optimal solutions for our system 

optimal problem, so vehicles could reduce or increase its speed at different locations with 

a same minimum system travel time. In other words, once all vehicles can be controlled as 

autonomous vehicles, vehicles can reduce its speed at any locations before the bottleneck 

and then drive with a higher speed to pass the following roadway, and it is possible that 

traditional shock wave happened at bottlenecks will not be obviously observed in future. 

In Test 2, the departure time of vehicle 2 is changed to be 3. Then the final optimization 

result from GAMS is shown in Figure 4-18(b). It can be also observed that vehicle 2 needs 

to reduce its speed to accommodate the high communication time at segment CD. The total 

travel time will increase to 22 instead of 21 in Test 1. 

Further, we consider Test 3 with 5 autonomous vehicles, whose departure times are at 1st, 

3rd, 6th, 9th, and 11en time interval. The optimization result from GAMS (with CPLEX 

solver) shows that vehicle 5 waits and moves with a high speed at segment AB. As 

remarked in Test 2, the optimization result could be one of multiple optimal solutions, so 

vehicle 5 can also drive with medium speeds at segment AB without violating car-

following constraints. The model statistics of three tests, including number of equations, 
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number of variables, optimal objective value, and computation time, are listed in Table 

4-14. 
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Figure 4-18 Optimized Vehicle Trajectories of Tests 1 and 2 in Discretized Space-time 

Grid from Integer Programming Model 
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Table 4-14 Model Statistics of Three Tests with 30 by 40 Space time grid Based on 

GAMS with CPLEX Solver 

 number of 

equations 

number of binary 

variables 

objective 

value 

(time unit) 

computation time 

(second) 

Test 1 (2 

vehicles) 
6,083 8,972 21 1.3 

Test 2 (2 

vehicles) 
6,083 8,972 22 1.4 

Test 3 (5 

vehicles) 
17,006 22,430 65 2.8 
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CHAPTER 5  

OBSERVABILITY QUANTIFICATION OF DYNAMIC URBAN TRANSIT 

SYSTEMS  

5.1 Introduction 

The currently rapid innovations and developments of transportation system intelligence in 

multi-source sensing and information sharing continuously generates huge volumes of 

various data and information for planners and managers to better observe time-varying 

traffic conditions and accordingly propose adaptive travel demand management and supply 

(capacity) control strategies. On the other hand, in face of the overwhelming data, the 

leverage of data on supporting system operational decisions should be carefully examined. 

Three fundamentally key questions are following: (1) Is the big data useful enough? (2) 

Under what goals, one kind of data is more useful that others? (3) How to fuse multi-source 

data to model your interested systems? In this chapter, those questions will be 

systematically addressed from the perspective of state estimation in urban rail transit 

systems. The usefulness of data will be reflected by quantifying the uncertainty of 

correspondingly estimated system states.  

Specifically, the urban transit has been generally acknowledged as a major mode to relieve 

traffic congestion and air pollutions, so it is crucial to improve its service level by reliably 

estimating and predicting network-wide system conditions. In addition, with increasingly 

available data and information from heterogeneous sources in systems, especially in OD 

trip information and vehicle scheduling records, it provides us an opportunity to deeply 
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dissect the inner mechanism of system state uncertainty for better evaluating the current 

operations and optimizing the future strategies. 

5.2 Conceptual Illustration 

Through applying some concepts from game theory and control theory into our problem 

(LaValle, 2012), a state space is defined as the all possible internal system state based on 

the external physical transportation world, and an information space is a place where the 

internal states live when available information is involved. A state is specifically defined 

and can be associated with the available information. As shown in Figure 5-1, the 

information space is formed by the available information, and the states (1-d state and H-

d states) are well connected by different projection functions, which mathematically define 

the states according to the managers’ needs. The bound among all possible states represents 

the state uncertainty under current available information. 

Information/
observations

Information Space: Polyhedron

1-D State

Maximum

Minimum

Uncertainty Bound

Projection function 1

Projection function 2

H-D States

Projection function 1

Projection function 2

x

y
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U
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Figure 5-1 Relation among Information, Information Space, and Flexible States 
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When the information space is generated to be one single point, it is said that the system is 

observable; otherwise, it is unobservable or partially observable. In this chapter, we aim to 

build the connection between the internal states and the external states (observation or 

information) by information space as a bridge or communication channel, and further 

quantify the corresponding uncertainty of states defined by users. How to design sensor 

network design to change information space and further increase the state estimation 

accuracy is out of this paper’s scope. 

For illustrative purpose, Figure 5-2 (a) depicts a simple transportation network with four 

nodes and five links. The link travel time and capacity are also given as physical network 

attributes. Let 𝑥1, 𝑥2 and 𝑥3 represent the path flow on paths 1, 2 and 3. Based on the tight 

capacity constraints, the following relation can be obtained: 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 3, and 

0 ≤ 𝑥3 ≤ 1, which defines the system state space shown as a blue cuboid in Figure 5-2(b). 
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(a) Physical transportation network (b) State space of path flow  

Figure 5-2 An Illustrative Transportation Network and Its State Space 

Suppose the OD information is available through survey that there are four vehicles 

departing from node 1 to node 4. Then, one corresponding constraint will be 𝑥1 + 𝑥2 +

𝑥3 = 4. Figure 5-3(a) displays the information space as the intersection of the red triangle 
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and the blue cuboid based on the available OD information. Two scenarios are designed as 

follows to analyze the relation between system state and information. 
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Figure 5-3 Information Spaces and Its Projected Bound under Different Available 

Information 

Scenario 1: Assume that there is one flow count detector on link (2, 4) and its link count 

is 1. The relation gets updated as follows: 1 + 𝑥2 + 𝑥3 = 4, 0 ≤ 𝑥2 ≤ 3, and 0 ≤ 𝑥3 ≤ 1, 

so the corresponding information space is reduced to be the intersection of the red triangle 

and the green rectangle shown in Figure 5-3(b), which implies that different system states 

can reach one same observation. Actually, this many-to-one mapping is the main source of 

state uncertainty. Of course, the observation/measurement noise is the other source that 

cannot be ignored to address the state uncertainty, which will be studied in Section 5.4. 

From Figure 5-3(a) and Figure 5-3(b), it can observe that the information space is reduced 

when the link count information is provided, which means that the link count information 

is useful and the value of information is the difference of the two information spaces. 

However, if one more loop detector is added on link (1, 2) and its link count is 1 as well, 



 

119 

 

the information space doesn’t change, which indicates that the power of big data is on its 

information’s usefulness rather than its volume size. 

Scenario 2: Suppose that the automatic vehicle identification (AVI) detectors are available 

at nodes 1 and 4. One vehicle’s travel time is observed as 7min. Since only path 3’s travel 

time is 7 and its capacity is just 1, it implies that path flow 𝑥3 = 1. As a result, the relation 

changes as follows: 𝑥1 + 𝑥2 + 1 = 4, 0 ≤ 𝑥1 ≤ 2, and 0 ≤ 𝑥2 ≤ 3. The corresponding 

information space becomes the intersection of the purple rectangle and the red triangle 

displayed in Figure 5-3(c).  

As shown in Figure 5-3, the information spaces are generated as polyhedrons based on 

different available information. A projection function is defined to map the information 

space into one dimension state (total travel time). Actually, the projection functions could 

be different goals interested by the managers based on the real-world needs in 

transportation planning, operation, and controls, such as, the total system travel time, the 

number of vehicles in one area, etc. Finally, we can possibly find one bound as the measure 

of the information space mapped in that dimension. In Fig. 5-3, one projection function is 

defined as 𝑓(𝒙) = 6𝑥1 + 6𝑥2 + 7𝑥3, which means that the total system travel time is the 

analysis goal. Then, different optimization models are solved by maximizing and 

minimizing 𝑓(𝒙) subject to different information spaces.  

As demonstrated in Figure 5-3, there are five feasible integer solution in the information 

space in Fig. 5-3(a), and the bound of total travel time formed by projection is [24,25]. 

When the link count data is added in Fig. 5-3(b), the information space by integer solutions 

is reduced, but the projected bound is still same. It indicates that the new information from 
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link count doesn’t contribute to reduce the uncertainty of this state estimation, even a 

smaller information space is generated. In addition, the point-to-point Bluetooth data (end-

to-end passenger id detector data) in Fig. 5-3(c) makes the projected bound converged to 

be one unique value, which implies that the point-to-point data is more powerful than the 

loop detector for quantifying the uncertainty of system travel time in this case. Therefore, 

evaluating the values of different information should be based on which states you really 

care. One information that seems worthless for your current goal may be much useful for 

other state estimations, and the volume of information space is not the criteria to judge the 

bound of state estimate uncertainty.  

Except for those information from physical sensors above, the previous travel experiences 

or currently published traffic information from transportation agencies could also take 

important roles in quantifying the state uncertainty for managers’ further actions. For 

example, if everyone has a perfect information over the network attributes based on their 

experiences and each one aims to find the best route for his/her trip, which is usually 

entitled Wardrop’s first principle, the information space will be redefined as, 𝑥1 + 𝑥2 =

4, 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 3. Compared with the two scenarios above, the information space 

gets further reduced by this assumed travel behavior. Therefore, one accurate travel 

behavior can also provide much rich information to determine system states, and that is 

why a number of studies focus on travel behavior estimation to better understand the 

system.  

As a remark, the information space concept in game theory and control theory for storing 

the amounts of ambiguity in state also may have a connection with Shannon’s information 
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theory using entropy-based constructs. For example, the entropy-maximization approach 

is usually used to represent the most likely traffic state, a kind of stable equilibrium state, 

for origin-destination travel demand estimation problems. However, in information space 

theory, the system state is unknown and gradually constructed based on available 

information. It is possible that the system state derived from the information space is finally 

same as the equilibrium state based on maximum entropy. 

5.3 Problem Statement 

Table 5-1 lists the general indices, sets, parameters and variables in our proposed models 

appeared in Sections 5.3 and 5.4. 

5.3.1 Space-time Network Construction in Public Transit Systems 

Consider a physical transit network with a set of nodes (stops/stations) 𝑁 and a set of links 

𝐿. Each link can be denoted as a directed link (𝑖, 𝑗) from upstream node 𝑖 to downstream 

node 𝑗. A deterministic transit schedule is supposed to be obtained from Automatic Vehicle 

Location (AVL) data from train tracking systems. We then construct a space-time network, 

where V is the set of vertices and 𝐸 is the set of arcs. Node 𝑖 is extended to a set of vertices 

(𝑖, 𝑡) at each time interval 𝑡 in the study horizon, 𝑡 = 1,2, … , 𝑇, where 𝑇 is the length of 

the optimization horizon. The transit schedule from node 𝑖 to node 𝑗 from time 𝑡 to time 𝑠 

can be represented by a travelling arc (𝑖, 𝑗, 𝑡, 𝑠)  where (𝑠 − 𝑡)  is the exact 

scheduled/running link travel time and should be integer multipliers of one time interval. 

The capacity of travelling arcs can be viewed as the transit vehicle’s carrying capacity. In 

addition, waiting arc is built from (𝑖, 𝑡) to (𝑖, 𝑡 + 1) at node 𝑖 with waiting time of 1 time 

unit and its capacity is defined as the station/platform storage capacity.  
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Table 5-1 Indices, Sets, Parameters and Variables 
Indices Definition 

𝑖, 𝑗 Index of nodes, 𝑖, 𝑗 ∈ 𝑁 

(𝑖, 𝑗) Index of physical link between two adjacent nodes, (𝑖, 𝑗) ∈ 𝐿 

𝑎 Index of passenger group, 𝑎 ∈ 𝐴 

𝑜(𝑎) Index of origin node of group 𝑎 

𝑑(𝑎) Index of destination node of group 𝑎 

𝑡, 𝑠 Index of time intervals in the space-time network 

𝜏 Index of time period for the observed passenger flow  

𝑝 Index of paths, 𝑝 ∈ 𝑃 

𝑟 Index of transit companies 

Sets  

𝑁 Set of nodes in the physical transit network  

𝐿 Set of links in the physical transit network 

𝐴 Set of passenger groups 

𝑉 Set of vertices in the space-time network 

𝐸 Set of edges/arcs in the space-time network 

𝐺 Set of time period for the observed passenger flows 

𝑆𝑝,𝑎 Set of paths 𝑝 of group 𝑎 

𝐺(𝑖, 𝑗, 𝜏) Set of arcs on observed link (𝑖, 𝑗) at time period 𝜏  
Parameters  

𝛽1, 𝛽2 The weights on target passengers’ travel time and observed link/arc flows, 

respectively 

𝜇𝑎 The observed aggregated travel time of group 𝑎 from smart card data 

𝜇𝑖,𝑗,𝜏 The observed aggregated passenger count on link (𝑖, 𝑗) during time period 𝜏 

𝑤𝑝 The travel time of path 𝑝 

𝑐𝑝
𝑟  The earning collected on path 𝑝 of transit company 𝑟 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝐷𝑇𝑎 The departure time of group 𝑎 

𝐴𝑇𝑎 The assumed arrival time of group 𝑎 

𝐷𝑎 The number of passengers in group 𝑎 

𝑐𝑖,𝑗,𝑡,𝑠 Travel cost of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝑇 The time horizon in the space-time network 

𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎

 Path-link incidence index of route 𝑝 of group 𝑎 on arc (𝑖, 𝑗, 𝑡, 𝑠) 

𝑤𝑝 The path travel time of path 𝑝 

Variables  

𝑥𝑖,𝑗,𝑡,𝑠
𝑎  The number of passengers in group 𝑎  is assigned on traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠) in 

the space-time network 

𝜃𝑎, 𝜃𝑖,𝑗,𝜏 Continuous positive deviation variables for group 𝑎’s travel time and link (𝑖, 𝑗) during 

time period 𝜏, respectively 

𝑥𝑎
𝑝
 The number of passengers of group 𝑎 choosing their feasible path 𝑝 

𝜇𝑎
∗  The corrected aggregated travel time of group 𝑎 from smart card data 

𝜇𝑖,𝑗,𝜏
∗  The corrected aggregated passenger count on link (𝑖, 𝑗) during time period 𝜏 

In urban rail transit systems, individual passenger should have a trip record with origin, 

departure time, destination and arrival time from the smart card. However, transit agencies 

may just provide aggregated trip data for groups of passengers. Each group 𝑎 with 𝐷𝑎 

passengers has a departure time 𝐷𝑇𝑎 at origin node 𝑜(𝑎) to its destination node 𝑑(𝑎). At 
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each destination node, there is one assumed large arrival time 𝑇 for all groups so that the 

following proposed model will be one-origin-one destination problem in the space-time 

network. It should be noted that the travel cost of waiting arcs on the destination node is 0, 

which means that once the passengers in a group arrive at the destination, the waiting cost 

to the super-destination (at larger arrival time 𝑇) should be 0. 

About how to address the common line issue in transit systems, it can be referred to the 

papers by Poon et al. (2004), Hamdouch and Lawphongpanich (2008), and Liu and Zhou 

(2016). When addressing the many-origin-to-many-destination networks, dummy node is 

required as the centroid for those destination nodes. More specific details about the 

extended space-time network with dummy nodes can be found in a major early paper by 

Drissi-Kaı̈touni and Hameda-Benchekroun (1992). 

One transfer node can be divided as multiple nodes, depending on how many transit lines 

intersect at this node. One illustrative example is shown in Figure 5-4 (a) where two lines 

intersect at node 2 and make it as a transfer station. Then node 2 is split as node 2′ and 

node 2" and the modified physical network is drawn in Figure 5-4(b). The travel time of 

transfer links could be the actual walking time, and its capacity is the maximum passenger 

throughput at transfer corridors. As a remark, based on the maximum transfer distance 

accepted by passengers, it is possible to connect different stops by transfer link or extended 

to multimodal networks. As a result, the modified physical network can be built in advance 

for the time-extended space-time network construction. Based on the given transit schedule 

and physical transit network, the space-time network is constructed in Figure 5-4(c). 

Further, a transfer process is considered in Figure 5-4(d) where the transfer time is assumed 
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to be 1 time unit. In addition, it is also feasible to consider the uncertainty of walking time 

on transfer links or from station entry to the platform in our proposed space-time network 

framework through constructing more service/travelling arcs with different arc travel times.  
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Figure 5-4 Physical Transit Networks and Correspond Space-time Networks 

Note that the estimated trip time that will be obtained in the later models based on the 

space-time network should be equal to the observed trip time of each group from smart 

card data. However, due to the observation noise/error, the observed trip time needs to be 

estimated to guarantee a feasible solution.  

5.3.2 Information Space Generation Based on Multi-source Sensor Data 

As mentioned before, information spaces arise as a communication channel to connect the 

external physical world and the internal system states. The external physical world is 

sensed by heterogeneous sensors in terms of different observations or information, which 
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finally forms a corresponding information space. Meanwhile, the internal system states are 

reflected in the information space based on the specific state definitions. 

In addition to the physical transit lines and schedules, the possible observations in the urban 

transit systems are summarized in Table 5-2. 

Table 5-2 Available Trip Information in Urban Transit Systems 

Bus transit system Rail transit system 

(1) origin, boarding time, destination, 

alighting time for each person in individual 

bus 

(1) origin, entry time, destination, exit time 

for each person or aggregated for each 

passenger group in transit network 

(2) origin, and boarding time for each person 

in individual bus 

(2) origin and boarding time for each person 

or aggregated for each passenger group in 

transit network 

(3) historical time-dependent OD information 

for transit networks 
 

In bus transit systems, (1) when the origin, boarding time, destination, alighting time for 

each person in individual bus are available from smart card data, the state in vehicle can 

always be observed and the transit assignment problem disappears, but those accurate trip 

information provides great values for the operational transit planning. (2) If only the origin, 

and boarding time can be recorded, algorithms are needed to estimate the individual 

destination. Since the transit schedule or transit vehicle trajectory can be obtained, once the 

destination is estimated as the nearest stop to the boarding stop of traveler’s next route 

based on the continuous riding records, the corresponding alighting time is also available. 

However, if travelers just have a single transit trip, it is still difficult to estimate the 

destination, which causes a large uncertainty for state estimation. (3) If the market 

penetration rate of smart card is very low or the goal is for operational transit planning, the 

historical time-dependent OD information has to be used to perform transit network 
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assignment with assumed travel behaviors (Szeto and Jiang, 2014a; Jiang and Szeto, 2016; 

Cats et al., 2016; Liu and Zhou, 2016; Codina et al., 2017), which could create a larger 

uncertainty in the system and needs to be carefully calibrated and validated by real-world 

survey and observations. 

In rail transit systems, (1) the origin, entry time, destination, exit time usually are available 

for each passenger or group, but the path/vehicle/transfer selection in the network level still 

has a large uncertainty. (2) When the destination and exit time to stations are not recorded, 

the uncertainty will be increased more in the network level. 

In addition, with the development of sense technologies, more available sensor information 

can be used in the transit systems. 

(1) Video data processed to gain the aggregated passenger flow at key points during 

different time periods, such as, transfer corridors, the entry and exit of stations, or the 

stop/platforms. 

(2) Cellphone/GPS based point-to-point trajectory data. A general path choice ratio bound 

when the penetration/sample rate of cell phone used as sensors is big enough. The 

granularity of the trajectory points is highly depended on the cell tower locations. Also, 

Bluetooth data can provide a point-to-point travel time and general path choice ratio. 

(3) General travel behavior data (e.g. preference) through survey. It can provide the path 

choice of some specific passengers, so the path choice uncertainty of all passengers can be 

reduced, to some extent. 
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Taking the network in subsection 5.3.1 as an example, the possible observations are 

illustrated in Figure 5-5 (a) and (b) for fixed sensors and mobile sensors, respectively. 
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Figure 5-5 Observations from Multi-source Sensors 

The specific modeling on generating information space based on those available sensor 

data is developed as follows. 

Assumption: the first-in-first-out (FIFO) rule is not incorporated in our proposed space-

time network, so it may happen that some passengers wait for a longer time than the 

passengers ahead, or some passengers alight and then aboard for the next available vehicle 

in a same route. However, the available trip time data could greatly reduce the possibility 

of those unrealistic results. Also, in our model, we can define the waiting cost for each 

passenger or group at those stops/stations which are not their transfer nodes as an infinity 

in the space-time network to avoid those unrealistic behaviors. Actually, passengers still 

have the non-FIFO behavior under certain conditions. For example, passengers are waiting 

at a platform for their next desirable transit vehicle, it may not actually be the next available 
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vehicle. Therefore, it needs more exogenous priority rules to accurate model the passenger 

loading process. However, as mentioned before, once more available information can be 

obtained, it is possible to directly and completely observe the system, so those assumed 

priority rules and traveler behaviors may become unnecessary.  

Taking the rail transit system as our modeling object, the formulation is proposed in the 

following. 

(i) According to the physical network, transit schedule, and dynamic OD information from 

smart card data, the standard flow balance constraint can be given as 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−𝐷𝑎 ∀𝑎, 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

𝐷𝑎 ∀𝑎, 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1) 

(ii) Strict vehicle and station platform capacity constraint 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴 (5.2) 

(iii) As stated in subsection 5.3.1, the estimated trip time of each group in the model 

should be consistent with the observation (average trip time of each group) from smart 

card.  

 ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) = 𝐷𝑎 × 𝜇𝑎, ∀ 𝑎 (5.3) 

(iv) Estimated aggregated passenger flow count on link (𝑖, 𝑗) during time period 𝜏 is 

expected to be the observation from video data or counting by people. 

 ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑡∈𝜏𝑎 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏) (5.4) 

(v) Non-negative arc flow variables 
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 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 ≥ 0 (5.5) 

Note that if a passenger is viewed as a group of passengers and 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  is a binary variable, 

the above modelling is still available, and agent-based trajectory data can provide more 

point-to-point travel time information rather than just path choice. The above presents an 

arc-based formulation for constructing the information space. Also, a path-based 

formulation can be offered in the following based on the feasible path enumeration.  

(i) Flow balance constraint: 

 ∑ 𝑥𝑎
𝑝

𝑝 = 𝐷𝑎, ∀𝑎  (5.6) 

(ii) Capacity constraint: 

 ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎 × 𝑥𝑎

𝑝) ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴(𝑝,𝑎)∈𝑆(𝑝,𝑎)  (5.7) 

(iii) Trip time constraint: 

 ∑ 𝑥𝑎
𝑝

𝑝 ∗ 𝑤𝑝 = 𝐷𝑎 × 𝜇𝑎, ∀𝑎  (5.8) 

(iv) Aggregated passenger flow count constraint: 

 ∑ ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎 × 𝑥𝑎

𝑝)𝑡∈𝜏𝑎 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏) (5.9) 

(v) Non-negative path flow: 

 𝑥𝑎
𝑝 ≥ 0 (5.10) 

Given the time-expanded space-time network constructed in subsection 5.3.1, the general 

feasible path set for a passenger group with specific OD pair and a departure time can be 
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generated by a forward label correcting algorithm from the vertex (origin and departure 

time) to its destination node based on the observed trip time of that group as a prism. 

As a discussion, when considering the bus transit systems, the smart card data usually only 

have the origin and departure time information without passengers’ destination and arrival 

time information. To model this condition that dynamic OD trips are unknown, 𝐷𝑎 will be 

a variable in equation (1) and the summation of 𝐷𝑎 with same origin and departure time 

should be equal to the recorded total trip production at this origin and departure time from 

smart card data. If the structure of each OD pair with departure time is given based on the 

historical OD information, the number of unknown OD variables will be greatly reduced.  

5.4 Uncertainty Quantification of State Estimates under Heterogeneous Data Sources 

The system state uncertainty mainly arises from two sources: one is the measurement error 

due to the noise and disturbance in sensing systems, and the other is lack of useful 

information, which results in the many-to-one mapping between the many possible system 

states and one partial observation. This section will address the measurement error issues 

and further quantify the uncertainty of state estimates. 

5.4.1 The Sensor Measurement Estimation Problem 

The analyses on small card data (Trépanier et al., 2007; Barry et al., 2009) show that the 

data must be thoroughly validated and corrected prior to the practical use. Therefore, it 

might happen that no feasible solution exists when the observed data are directly used in 

built models. Actually, the infeasibility of solutions may arise from the obvious error of 

observations or the missed details of the built models. Assuming that the proposed models 
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are accurate, a good observation should be feasible in the models, but it doesn't mean that 

the observations don’t have any errors anymore, which can be viewed as hidden errors. In 

addition, even each observation is tested in the model and can provide feasible solutions, 

but it is still possible to have infeasible solutions when different observations are 

considered simultaneously, because the inconsistency among different kinds of sensors 

may still exist. Hence, this situation leads to the measurement estimation problem, which 

aims to obtain estimates as close as possible to the corresponding measurements under real-

world physical constraints. There are different approaches to clean and verify those 

measurements in advance. The approach adopted is the generalized least squares. Based on 

the proposed constraints in subsection 5.3.2, a nonlinear estimation model is presented as 

follows. 

Min 𝛽1∑ (∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎)

2
𝑎 + 𝛽2∑ (∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 − 𝜇𝑖,𝑗,𝜏)(𝑖,𝑗,𝜏)

2
 

(5.11) 

Subject to constraints (5.1), (5.2) and (5.5). 

The objective function is to minimize the weighted total deviations between the estimated 

and observed data, where 𝛽1  and 𝛽2  are the weights reflecting different degrees of 

confidence on observations. Those weights can be viewed as the inverses of the variances 

of the heterogeneous sources of measurements adopted by Lu et al. (2013). 

Another technique used to measure the deviation is to quantify the absolute difference as 

least absolute deviations (LAD). The corresponding objective function will change to be 

Min 𝛽1∑ |∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎|𝑎 + 𝛽2∑ |∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 − 𝜇𝑖,𝑗,𝜏|(𝑖,𝑗,𝜏)  (5.12) 
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The analysis on the attributes of the methods of least squares and least absolute deviation 

can be found in the paper by Gorard (2005) and Koenker and Hallock (2001). Specifically, 

least absolute deviation treats all observation equally, but least squares gives more 

emphasis to large residuals by squaring the residuals, which could be a better choice when 

dealing with outliers in which estimated values are far from real-world sensor observations. 

Note that the least absolute deviations can be solved by linear programming through 

transforming the model. For example, the new model based on formula (5.12) will be 

minimizing 𝛽1∑ 𝜃𝑎𝑎 + 𝛽2∑ 𝜃𝑖,𝑗,𝜏(𝑖,𝑗,𝜏)  while adding new constraints −𝜃𝑎 ≤

∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎 ≤ 𝜃𝑎 , −𝜃𝑖,𝑗,𝜏 ≤ ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 − 𝜇𝑖,𝑗,𝜏 ≤ 𝜃𝑖,𝑗,𝜏 , and 

𝜃𝑎 ≥ 0, 𝜃𝑖,𝑗,𝜏 ≥ 0. 

5.4.2 Projection Function-based State Estimate Uncertainty Quantification 

The estimated measurements ensure to form an information space as a bounded or 

unbounded polyhedron. In this section, different projection functions will be chosen as the 

mapping between the feasible information space and specific system states. The states we 

will model are introduced in Table 5-3 and illustrated in Figure 5-6. 

The state uncertainty quantification is modeled in detail as follows. 

Projection function 1 for state 1: the number of passengers on one specific arc (𝑖, 𝑗, 𝑡, 𝑠) 

(station platform, vehicle, transfer corridor) in the space-time network is represented as 

∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 , so the arc flow/density uncertainty can be quantified by maximizing and 

minimizing ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 , subject to constraints (5.1) to (5.5) where 𝜇𝑎 and 𝜇𝑖,𝑗,𝜏 are replaced 

by the estimated measurements 𝜇𝑎
∗  and 𝜇𝑖,𝑗,𝜏

∗ . 
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Table 5-3 The Focused States and Its Motivations 

Focused states Motivations 

(1) passenger density on station platform, vehicle, 

transfer corridors 

(i) identify possible dangerous spots for safety; 

(ii) make decisions on vehicle updates and 

timetable changes 

(2) the number of passengers taking one specific 

line segment 

(i) assign the ticket fare to each company based on 

the service they provide; 

(ii) evaluate the current liquidation policy and 

quantify the unreasonable income bound for each 

company 

(3) the path flow range of each OD pair (i) compare or verify the traditional logit route 

choice model for better understanding travel 

behavior 

(4) network-level time-dependent passenger density 

states on serval key stations/vehicles 

(i) distribute the network-level transit condition; 

(ii) evaluate network-level control 

2

3

Time

Station

2 3 4 5 6 7 810

1

2'

State 1: passenger 

density/count

State 2: the number 

of passengers taking 

one specific line 
State 3: the path 

flow range of 

each OD pair 

State 4: network-level 

passenger density/count 

states on serval key 

stations/vehicles at 

different time periods

 

Figure 5-6 States illustration in a space-time network 

Projection function 2 for state 2: the earnings that one transit company 𝑟 can obtain is 

represented as ∑ ∑ (𝑥𝑎
𝑝

𝑝𝑎 × 𝑐𝑝
𝑟), where 𝑐𝑝

𝑟 is the income of using the segment in company 

𝑟’s operation area of path 𝑝. It can be calculated as a parameter in advance based on the 
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ticket price and segment and path distance. Therefore, the earning bound is estimated by 

maximizing and minimizing∑ ∑ (𝑥𝑎
𝑝

𝑝𝑎 × 𝑐𝑝
𝑟) subject to constraints (5.6) to (5.10) where 

𝜇𝑎 and 𝜇𝑖,𝑗,𝜏 are replaced by the estimated measurements 𝜇𝑎
∗  and 𝜇𝑖,𝑗,𝜏

∗ . 

Projection function 3 for state 3: the flow rate on path 𝑝 is ∑ 𝑥𝑎
𝑝

𝑎 , so the uncertainty 

bound of path flow is measured by maximizing and minimizing ∑ 𝑥𝑎
𝑝

𝑎 , subject to 

constraints (5.6) to (5.10) where 𝜇𝑎 and 𝜇𝑖,𝑗,𝜏 are replaced by the estimated measurements 

𝜇𝑎
∗  and 𝜇𝑖,𝑗,𝜏

∗ . 

Projection function 4 for state 4: the passenger flow (density) states on key station 

platforms at one time index (e.g., at 7:30am) will be a high-dimensional vector 

{𝒒(𝒊, 𝒕)} where 𝑖 is one of key stations. For one specific station 𝑖, 𝑞(𝑖, 𝑡) = ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎  is the 

number of passengers at station 𝑖 at time 𝑡. Since the state is not one dimension anymore, 

the concept of the Maximal Possible Relative Error (MPRE) first introduced by Yang et al. 

(1991) is adopted to quantify the state uncertainty of high-dimensional variables. As shown 

in Figure 5-7(a), the state solution (vector {𝒙𝒊,𝒋,𝒕,𝒔
𝒂 }) based on different projection functions 

for one-dimensional state above is one feasible solution in the information space, so each 

solution (vector {𝒙𝒊,𝒋,𝒕,𝒔
𝒂 }) can be mapped to high-dimensional states to generate new state 

points (vector 𝒒(𝒊, 𝒕))illustrated in Figure 5-7(b), which are used as sample points to 

approximately obtain the MPRE. Specifically, we need to calculate the average relative 

error between any two points, and find the maximal one as the MPRE. 

For example, the average relative error between point 1 and point 2 is calculated as follows 

(Yang et al., 1991), where 𝒒𝟏(𝒊, 𝒕) and 𝒒𝟐(𝒊, 𝒕) are a m-dimensional vector recording 𝑚 
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stations’ passenger flow at time 𝑡. The relative deviation is 𝜆(1,2,𝑖,𝑡) =
𝑞1(𝑖,𝑡)−𝑞2(𝑖,𝑡) 

𝑞1(𝑖,𝑡)
 and the 

average relative deviation 𝐴𝑉(𝜆(1,2,𝑡)) = √
𝜙(𝜆(1,2,𝑡))

𝑚
, where𝜙(𝜆(1,2,𝑡)) = ∑ 𝜆(1,2,𝑖,𝑡)

2𝑚
𝑖=1 and 

𝜆(1,2,𝑡) = {𝜆(1,2,1,𝑡), 𝜆(1,2,2,𝑡), … , 𝜆(1,2,𝑚,𝑡)} . In addition, Yang et al. (1991) defined the 

concept of Estimation Reliability as a measure about the state uncertainty; that is, 𝑅𝑒 =

1

1+𝐴𝑉(𝜆)
, which shows that when the 𝐴𝑉(𝜆) is 0, the reliability of the estimated state is 1. In 

contrast, when 𝐴𝑉(𝜆) tends to infinity, there is almost no reliability guarantee. The result 

is just based on some sample points, so it is an approximation approach. 

Information Space

1-D State 1

1-D State 2

Maximum

Minimum

Maximum

Minimum

Projection function 1

Maximum

Minimum

1-D State 3

Maximum

Minimum

1-D State 4

Projection function 2
Projection function 3

Projection function 4

Projection function 

Information Space High-dimensional States

Point 1

Point 2

(a) the mapping of 1-D state’s boundary to information space (b) the mapping of sample points in information space to H-d states
 

Figure 5-7 Relation of Information Space and Different Types of States 

In addition, we can also assume that any one of the points in the high-dimensional states is 

the estimated one, and then adopt the method of finding one feasible state which could 

have a MPRE as the upper bound of our state estimate uncertainty. The problem can be 

formulated as a quadratic programming model (Yang et al., 1991). Note that the above is 

also an approximation since the estimated state is selected from sample points. 
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5.4.3 Discussion on the Real-time State Uncertainty Quantification 

The uncertainty of real-time system state increases the difficulty of real-time state 

prediction and optimal control. Compared with the offline state estimation in this chapter, 

the challenges in the real-time condition include that (1) the real-time rail transit OD travel 

information is not available and (2) the state transition along the time is highly required.  

(1) Real-time OD demand estimation: Based on day-to-day historical and accurate dynamic 

OD demands in urban rail transit systems, we can classify 𝑘representatives 𝑂𝐷𝑜,𝑑,𝜏
𝑘 for each 

OD pair at different time periods, so the estimated real-time OD demand is 𝑂𝐷𝑜,𝑑,𝜏 =

∑ (𝑤𝑘 × 𝑂𝐷𝑜,𝑑,𝜏
𝑘 )𝑘  where 𝑤𝑘  is a binary variable, which indicates that only one OD 

candidate 𝑘 will be chosen. As a result, the dynamic OD travel demand’s spatial structure 

can be well captured, compared with those OD estimation models which mainly optimize 

one departure time profile for all or one-class static total OD trips.  In addition, the real-

time trip generation at each station/origin with departure time is available from the smart 

card data, so ∑ 𝑂𝐷𝑜,𝑑,𝜏 = 𝑂𝐷𝑜,𝜏
𝑜𝑏𝑠

𝑑  provides more information to generate the real-time 

information space. 

(2) Real-time state transition: the rolling horizon approach has been widely chosen for real-

time transportation operations and control (Peeta and Mahmassani, 1995; Zhou and 

Mahmassani, 2007; Meng and Zhou, 2011). Under this mechanism, when focusing on one 

time period, it needs a look-back period and a look-ahead period, because the generated 

passengers from the look-back period could still in the transit network during our focused 

time period, and in the look-ahead period we can assume that all passengers can arrive at 

their destination for our network modeling. Along the planning time horizon, once some 
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trips are finished at our focused time period, their true OD information can be obtained in 

real time, so the corresponding estimated OD trips can be replaced by the real ones, which 

can also reduce the information space for our state uncertainty estimation. 

Similar to the offline modelling, the states can be flexibly defined based on the managers’ 

analysis goals. The min/max models on one-dimensional state and the MPRE for multi-

dimensional states are also available for quantifying the real-time state uncertainty, which 

provides a fundamental input for the measure of future real-time prediction and optimal 

control. 

5.5 Solution Algorithms 

The models proposed in Section 5.4 generally include: 

M1: a linearly constrained quadratic measurement estimation model considering the 

squared difference between estimate and measurement. Objective function (5.11), subject 

to constraints (5.1), (5.2) and (5.5).  

M2: a linear measurement estimation model considering the absolute difference between 

estimate and measurement. Objective function (5.12), subject to constraints (5.1), (5.2) and 

(5.5). 

As discussed in subsection 5.4.1, we prefer choosing M1 for the measurement estimation 

problem due to its senstivity to the large difference between estimates and observations. 

M3: linear programming models based on projection functions 1-3. Objective functions: 

passenger flow, company’s earning collected from ticket fare, path flow of one OD pair; 
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Constraints: arc-based formulation (5.1)-(5.5) or path-based formulation (5.6)-(5.10) with 

estimated measurements rather than the original observed. 

M4: a quadratic programming model for finding the MPRE based on selected one of 

sample points. Objective function is to minimize 𝜙(𝜆𝑡) of one given sample point and the 

unknown point in the high-dimensional states, subject to constraints (5.1)-(5.5) with 

estimated measurements. 

Therefore, this paper will address two kinds of models. One’s objective function is 

nonlinear (quadratic), and the other’s is linear. The both models has similar side constraints; 

that is, one flow balance constraint and other linear side constraints, such as, capacity 

constraints, observation constraints.  

5.5.1 Frank-wolfe Algorithm for Nonlinear Programming Models 

The Frank-Wolfe algorithm is used to solve the optimization problem where the objective 

function is convex differentiable real-valued function and the feasible region of side 

constraints is compact convex (Frank and Wofle, 1956). Therefore, M1 and M4 can be well 

solved under the framework of the Frank-Wolfe algorithm. For simplicity, M1 is 

represented as follows, 

Objective function: 

Min 𝑓(𝑥) = 𝛽1∑ (∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) − 𝐷𝑎 × 𝜇𝑎)

2
𝑎 + 𝛽2∑ (∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎
𝑡∈𝜏𝑎 −(𝑖,𝑗,𝜏)

𝜇𝑖,𝑗,𝜏)
2
 

Subject to, flow-balance constrains: 𝐴𝑋 = 𝐵, capacity constraints: 𝐶𝑋 ≤ 𝐷, and 𝑥 ≥ 0. 
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The algorithm procedure is described as follows. 

Step 1: initialization: 𝑘 = 0, and find one feasible solution as 𝒙0; 

Step 2: Based on the first-order Taylor approximation of 𝑓(𝑥) around𝑥𝑘, minimizing the 

linear approximation: min 𝒔𝒌
𝑇∇𝑓(𝑥𝑘), and 𝒔𝒌 is subject to all constraints. 

Step 3: Find 𝛾 that minimizes 𝑓(𝑥𝑘 + 𝛾(𝑠𝑘 − 𝑥𝑘)), subject to 0 ≤ 𝑘 ≤ 1. 

Step 4: Update: 𝑥𝑘+1 = 𝑥𝑘 + 𝛾(𝑠𝑘 − 𝑥𝑘). If |𝑥𝑘+1 − 𝑥𝑘| ≤ ∆ or 𝑘 = 𝐾, stop. Otherwise, 

𝑘 = 𝑘 + 1 and go to step 2. 

Specifically, at step 2, ∇𝑓(𝑥𝑘) = 𝛽1∑ ∑ [2 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠)𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 (𝑘)] +

𝛽2∑ [∑ ∑ (2 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑡∈𝜏𝑎 (𝑘))](𝑖,𝑗,𝜏)  is constant, so 𝒔𝒌
𝑇∇𝑓(𝑥𝑘) = 𝛽1∑ ∑ [2 ×(𝑖,𝑗,𝑡,𝑠)𝑎

𝑐𝑖,𝑗,𝑡,𝑠 × 𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 (𝑘) × 𝑠𝑖,𝑗,𝑡,𝑠

𝑎 (𝑘)] + 𝛽2∑ [∑ ∑ (2 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑡∈𝜏𝑎 (𝑘) × 𝑠𝑖,𝑗,𝑡,𝑠
𝑎 (𝑘))](𝑖,𝑗,𝜏) . 

Finally, the model proposed in step 2 is a linear programming model with the flow-balance 

constraint. 

In addition, at step 1, for finding one feasible solution, we can define a simple linear 

objective function, so the model will be a linear programming model with the flow balance 

constraint.  Also, M3 is this kind of linear programs, which will be solved by the Dantzig-

Wolfe algorithm due to the special block structure of the flow balance constraint in next 

subsection. 

5.5.2 Dantzig-Wolfe Decomposition for Linear Programming Models 

The Dantzig–Wolfe decomposition is originally proposed by Dantzig and Wolfe (1960) 

for solving linear programming problems with special structure. A general primal linear 
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program can be represented as: min 𝑐𝑇𝒙 , subject to, 𝐴𝒙 ≤ 𝒃 , 𝐷𝒙 ≤ 𝒅 , and 𝒙 ≥ 0 . 

According to Minkowski-Weyl's Theorem, given the convex set 𝑋 = {𝑥 ∈ ℝ𝑛|𝐴𝑥 ≤ 𝑏} 

where 𝐴𝑥 ≤ 𝑏 is a special block, 𝑋 can be represented by the extreme points and extreme 

rays of 𝑋: 𝑋 = {𝑥 = ∑ 𝜆𝑖𝑥
𝑖 + ∑ 𝜇𝑖𝑦

𝑗| ∑ 𝜆𝑖 = 1,𝑖𝑗𝑖 𝜆𝑖 ≥ 0, 𝜇𝑗 ≥ 0}. When 𝑋 is a bounded 

polyhedron, 𝑋  can be represented by the extreme points, 𝑋 = {𝑥 = ∑ 𝜆𝑖𝑥
𝑖| ∑ 𝜆𝑖 =𝑖𝑖

1 , 𝜆𝑖 ≥ 0}. 

Substituting the expression above to the original model leads to the following Master 

Problem: min ∑ 𝑐𝑇𝜆𝑖𝒙
𝑖

𝑖 , subject to, ∑ 𝐷𝜆𝑖𝒙
𝑖

𝑖 ≤ 𝒅, ∑ 𝜆𝑖 = 1𝑖  and 𝜆𝑖 ≥ 0. Suppose that a 

subset of extreme points 𝑃 is available. The Restricted Master Problem (RMP) can be 

obtained: min ∑ 𝑐𝑇𝜆𝑖𝒙
𝑖

𝑖∈𝑃 , subject to, ∑ 𝐷𝜆𝑖𝒙
𝑖

𝑖∈𝑃 ≤ 𝒅 , ∑ 𝜆𝑖 = 1𝑖∈𝑃  and 𝜆𝑖∈𝑃 ≥ 0 . 

Assume that 𝜆∗ and (𝜋, 𝜇) is the optimal and dual solutions to the RMP, respectively. The 

reduced cost is defined as 𝛾(𝒙) = 𝑐𝑇𝒙 − 𝜋𝑇𝐴𝒙 − 𝜇. Solve the subproblem: min 𝑐𝑇𝒙 −

𝜋𝑇𝐴𝒙 − 𝜇, subject to 𝐴𝒙 ≤ 𝑏 and 𝒙 ≥ 0. If the reduced cost is non-negative, the solution 

is optimal; otherwise, the solution can be viewed as a new extreme point and added to the 

RMP until the reduced cost is non-negative. 

The flow-balance constraint in network flow models (Larsson and Patriksson, 1992; 

Larrson et al., 2004; Desrosiers and Lubbecke, 2005;) can be viewed as a special block 

solved by classical shortest path algorithms, so the Dantzig–Wolfe decomposition will be 

adopted for our proposed linear programs. Specifically, the flow on a particular path (or 

path flow for a passenger group 𝑎) can represent one extreme point. A path flow uniquely 

corresponds its path, so a particular path implicitly indicates a specific extreme point. This 

enables us to express the arc flow of group 𝑎 on arc (𝑖, 𝑗, 𝑡, 𝑠) as 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 = ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)

𝑝(ℎ),𝑎
×ℎ
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𝑥𝑎
𝑝(ℎ)

× 𝜆(𝑎,ℎ)) , where 𝑥𝑎
𝑝(ℎ)

= 𝐷𝑎  for each generated extreme point ℎ , and 

∑ 𝜆(𝑎,ℎ) = 1ℎ𝜖𝐻(𝑎) . Since variable 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  is continuous rather discrete, it should be a 

continuous combination of extreme points and 𝜆(ℎ,𝑎) ≥ 0 according to Minkowski-Weyl's 

Theorem. On the other hand, the link flow vector of each group 𝒙𝑖,𝑗,𝑡,𝑠
𝑎  can also be seen as 

one extreme point, as it is the result of one specific path flow vector. In addition, for the 

maximum problem, we can transform it as a minimum problem by changing the positive 

arc costs to be negative.  

The detailed formulation for our models by the Dantzig-Wolfe decomposition will not 

presented due the limited space in this chapter. However, the general procedure of the 

algorithm is described as follows: 

Step 1: initialization. Find one feasible passenger flow on the shortest paths as extreme 

points. 

Step 2: Solve the restricted master problem to obtain the duals of side constraints. 

Step 3: Solve each sub-problem to calculate its reduced cost as a time-dependent shortest 

path problem. If its reduced cost is negative, add the solution of the sub-problem to the 

restricted master problem at step 2. When the reduced costs of all sub-problems are non-

negative, the optimal solution is achieved. 

In the initialization step, in order to find one feasible solution from the shortest path 

problem as initial extreme points, we can introduce artificial variables for those coupling 

constraints and solve the problem by the Dantzig-Wolfe decomposition again (Kalvelagen, 

2003). For example, the coupling side constraint is ∑ 𝐷𝑖,𝑗𝑥𝑖 ≤ 𝑑𝑖𝑗 , so we can add artificial 
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variable 𝑦𝑖 ≥ 0  to have ∑ 𝐷𝑖,𝑗𝑥𝑖 − 𝑦𝑖 ≤ 𝑑𝑖𝑗 , and minimize ∑ 𝑦𝑖𝑖  as a master problem. 

Based on the Dantzig-Wolfe decomposition algorithm, when the ∑ 𝑦𝑖𝑖  is equal to 0 or less 

than 0.0001, we can conclude that one feasible solution for our primal problem is obtained 

and can be used for step 2.  

5.6 Experiments 

This section will demonstrate the proposed models and algorithms in Sections 5.4 and 5.5 

which are implemented in a general purpose optimization package GAMS. The 

experiments are performed in the following transit network shown in Fig. 5-8(a), where 7 

urban rail lines exist in the transit systems. In order to model the passenger count 

observation at transfer corridors, specific transfer links are built as shown in Fig. 5-8(b). 
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Figure 5-8 Hypothetic Urban Rail Transit Network 

5.6.1 Given Multi-source Sensor Data 

(1) Table 5-4 lists the existing transit service arcs based on given the timetable of the seven 

transit lines, and the corresponding space-time network is constructed in Figure 5-9.  
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Table 5-4 Hypothetic Transit Service Arcs List 

Service Arc Start Time End Time Service Arc Start Time End Time 

(1,7) 0 3 (1,7) 3 6 

(7,4) 3 4 (7,4) 6 7 

(4,6) 4 6 (4,6) 7 9 

(1,6) 0 8 (1,6) 3 11 

(2,7) 0 3 (2,7) 3 6 

(2,5) 0 4 (2,5) 3 7 

(5,6) 4 7 (5,6) 7 10 

(3,8) 0 3 (3,8) 3 6 

(8,5) 3 4 (8,5) 6 7 

(3,6) 0 8 (3,6) 3 11 

 

(2) The origin, destination, departure time and aggregated trip time of each passenger group 

are listed in Table 5-5, and each group represents 100 passenger in this test.  

(3) The vehicle capacity of each line is assumed in  

Group 

No 

OD 

Pair 

Departure 

Time 

Average Trip 

Time 

Group 

No 

OD 

Pair 

Departure 

Time 

Average Trip 

Time 

1 1 → 6 0 6 15 1 → 6 3 7.5 

2 1 → 6 0 7 16 1 → 6 3 7 

3 1 → 6 0 8 17 1 → 6 3 8 

4 1 → 6 0 6.5 18 2 → 6 3 6 

5 2 → 6 0 7 19 2 → 6 3 7 

6 2 → 6 0 7.5 20 2 → 6 3 6.5 

7 2 → 6 0 6.5 21 2 → 6 3 7.5 

8 2 → 6 0 6 22 2 → 6 3 8 

9 3 → 6 0 7 23 2 → 6 3 6.8 

10 3 → 6 0 7.5 24 3 → 6 3 7 

11 3 → 6 0 8 25 3 → 6 3 7.5 

12 1 → 6 3 6 26 3 → 6 3 7.4 

13 1 → 6 3 7 27 3 → 6 3 7.8 

14 1 → 6 3 6.5 28 3 → 6 3 8 

 

Table 5-6, where it can be observed that the capacity of rail transit vehicles could have its 

adjustment at different time periods by increasing or decreasing the number of train units.  
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(4) The passenger count data from video processed data at transfer corridor (7,4)  is 

available; that is, 450 and 810 passengers are observed at time points 3 and 6. 

5.6.2 Focused States for Estimation Uncertainty Quantification 

The states we focused in this experiment are listed as follows. 

State 1: passenger count (congestion) in transfer corridor (8,5) at time points 3 and 6. 

State 2: the passenger flow departing at node 2 and time 0 to use line 1. 

State 3: the earning collected in the ticket for company line 1 on its first vehicle. 

State 4: the system-wide passenger count (congestion) on the running vehicles at time point 

5. 

1

2

7
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5

8

3

10 32 54 76 98 1110

Station

Time
 

Figure 5-9 The Corresponding Space-time Transit Service Network 

Table 5-5 Trip Attributes of Each Passenger Group 
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Group 

No 

OD 

Pair 

Departure 

Time 

Average Trip 

Time 

Group 

No 

OD 

Pair 

Departure 

Time 

Average Trip 

Time 

1 1 → 6 0 6 15 1 → 6 3 7.5 

2 1 → 6 0 7 16 1 → 6 3 7 

3 1 → 6 0 8 17 1 → 6 3 8 

4 1 → 6 0 6.5 18 2 → 6 3 6 

5 2 → 6 0 7 19 2 → 6 3 7 

6 2 → 6 0 7.5 20 2 → 6 3 6.5 

7 2 → 6 0 6.5 21 2 → 6 3 7.5 

8 2 → 6 0 6 22 2 → 6 3 8 

9 3 → 6 0 7 23 2 → 6 3 6.8 

10 3 → 6 0 7.5 24 3 → 6 3 7 

11 3 → 6 0 8 25 3 → 6 3 7.5 

12 1 → 6 3 6 26 3 → 6 3 7.4 

13 1 → 6 3 7 27 3 → 6 3 7.8 

14 1 → 6 3 6.5 28 3 → 6 3 8 

 

Table 5-6 Vehicle Capacity of Transit Lines 
Line No L1 L2 L3 L4 L5 L6 L7 

Capacity of vehicles departing at 

time 0 

300 300 600 200 400 300 200 

Capacity of vehicles departing at 

time 3 

400 400 800 300 600 400 300 

 

5.6.3 Scenario Design 

As a short summary, based on the available supply and demand data, we aim to (i) estimate 

the measurements in case there is no feasible solution due to the possible existence of 

measurement errors in step 1, and (ii) quantify the uncertainty of our focused states in step 

2. Five scenarios are designed to demonstrate the value of information based on our 

proposed models. 

Scenario 1 (S1: base case): it is assumed that the origin, destination, and departure time 

of each passenger group is given, and no other information is available. 

Scenario 2 (S2: base case + count): based on scenario 1, the passenger count data from 

video processed data at transfer corridor (7, 4) is available. 
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Scenario 3 (S3: base case + end-to-end travel time): based on scenario 2, the averaged 

group trip time from smart card is available. 

Scenario 4 (S4: base case + end-to-end travel time + count): based on scenario 1, both 

the passenger count data and average group trip time data are available. 

Scenario 5 (S5: ground truth): since the observed data could have its measurement errors, 

we assume that a ground truth can be obtained and will be compared with other scenarios. 

The ground truth is assumed as the system conditions based on maximizing state 1 at time 

point 3 in scenario 3. 

5.6.4 Result Analysis 

It needs two steps to obtain the final results. In step 1, the measurement estimation is 

performed to best estimate the observation and avoid to have infeasible solutions in step 2. 

Then, in step 2, we compute the uncertainty range of states 1-3 by maximizing and 

minimizing the state goals, and state 4 is addressed based on the solutions from the previous 

three states as a sample-based approximation. Before analyzing different state results in 

different scenarios, it is important to clearly illustrate the conditions under which those 

results are obtained from our proposed models.  

(1) In scenario 1, there is no available sensor data, so the measurement estimation is not 

necessary.  

(2) In scenario 2, the measurement estimation is performed for the passenger count data at 

transfer corridor (7, 4). The total squared errors in objective function (5.11) in step 1 is not 

equal to 0, which indicates that there will be no feasible solution if the observed 
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measurement is directly used to step 2. The estimated passenger counts at transfer corridor 

(7, 4) at time points 3 and 6 is 450 and 800, respectively, compared with the observed 

values of 450 and 810. The total absolute error for the observed passenger count is 10.  

(3) In scenario 3, when step 1 is conducted using the observed average trip time, the total 

error is also not equal to 0. The estimated average group trip time for each group is shown 

in Table 5-7. The total absolute error for the average group trip time is 2.58. 

(4) In scenario 4, in step 1, there are two different sensor data, so it will require weights on 

different measurements. As discussed by Lu et al. (2013), the weights should reflect the 

degrees of confidence on different observed data and can be represented by the inverses of 

the variances of the distinct sources of measurements. Therefore, the weights on aggregated 

average trip time and passenger count are calculated as 2.36 and 0.31, respectively. Finally, 

the total absolute errors for observed average group trip time and passenger count are 3.83 

and 273, which are greater than the absolute errors in scenario 1 and scenario 2, 

respectively. It shows that the inconsistency among multi-source data makes the model to 

find a balance among those observation. 

(5) In scenario 5, the estimated group trip time in step 1 is used as the input to maximize 

the passenger count in transfer corridor (88,55) at time points 3, and the corresponding 

system condition is assumed as the ground truth in this dynamic transit system. 

Figure 5-10 shows that the estimated maximum and minimal flow rates on each focused 

arc under different scenarios. As the increase of available information, the uncertainty 

range of passenger flows on transfer corridor (8, 5) is reduced. Meanwhile, both scenarios 
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3 and 4 can assert that their estimated state uncertainty is 0 and the state is completely 

observable. However, the different estimated unique states on arc (8,5,6,7) seem conflicted. 

Table 5-7 The Observed and Estimated Average Group Trip Time for Each Passenger 

Group 

Passenger 

group 

No 

Observed 

values 

Estimated values in 

scenario 3 

Passenger 

group 

No 

Observed 

values 

Estimated values in 

scenario 3 

1 6 6 15 7.5 7.5 

2 7 7 16 7 7 

3 8 8 17 8 8 

4 6.5 6.5 18 6 6 

5 7 7 19 7 6.9 

6 7.5 7 20 6.5 6.4 

7 6.5 6.5 21 7.5 7 

8 6 6 22 8 7 

9 7 7 23 6.8 6.7 

10 7.5 7.5 24 7 7.08 

11 8 8 25 7.5 7.57 

12 6 6 26 7.4 7.47 

13 7 7 27 7.8 7.87 

14 6.5 6.5 28 8 8 
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Figure 5-10 The Estimated Flow Uncertainty Range on Each Focused Arc 

Specifically, in scenario 3, the observed trip time is corrected due to its measurement error 

and finally the estimated states on transfer corridor (8, 5) is consistent with the states in the 

ground truth. Note that the estimated states may not be totally consistent with the ground 

truth, even though the observed data is same as the corresponding data in ground truth, 

because the observation is only a part reflection of the whole system condition. It is also 
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possible that the corrected measurement is not consistent with that in this ground truth if 

other measurement correction approaches are used in reality in step 1. 

In addition, in scenario 4, the inconsistency of observed link count data and observed trip 

time data makes the corrected measurement different with the corresponding data in the 

ground truth, so the final estimated unique state in step 2 is not the real-world condition 

anymore. Therefore, in reality, when the transportation system state is estimated by 

different sensor data, the data quality and assigned weight on each data source in step 1 is 

important and should be clearly stated. In other words, one bad observation could decrease 

the accuracy of those final estimated states when it is incorporated in the estimation models. 

Also, different weights on each data source could make the estimated state different and 

unrealistic. 

Focusing on the passenger flow departing at node 2 and time 0 to use line 1, it is actually 

the path flow of path (2,0) →(5,4)→ (6,7). The path flow uncertainty is shown in Figure 

5-11. The uncertainty range is similar to the arc flow above. The estimated unique state in 

scenario 4 is not consistent with the state value in ground truth. In addition, if line 1 is 

managed by one company and the other lines are managed by other different company, it 

needs to assign the fare to each company based on their service. However, the number of 

passengers using one specific line is uncertain in the transit system, so based on our 

proposed method, we can quantify the uncertainty and estimate the general fare earning for 

each company rather than just using just some simple rules for fare clearing (Gao et al., 

2011; Zhou, 2014). One simple rule is to calculate the shortest path and then assume that 

passengers will choose the shortest path as their selected lines.  
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Figure 5-11 Estimated Flow Uncertainty Range on the Focused Path 

In each scenario, we maximize and minimize the passenger flow on arc (8,5,3,4), arc 

(8,5,6,7), and path of line 1 as 6 cases, respectively, so six feasible solutions of 𝑥𝑥, 𝑥, 𝑥,𝑥
𝑥  can be 

obtained as sample points to estimate our defined system-level state uncertainty. For state 

4, the system-wide passenger count (congestion) on the running vehicles at time point 5 

could be represented by the passenger flow on arcs (1,6,3,11), (1,6,0,8), (1,7,3,6), (2,5,3,7), 

(2,7,3,6), (3,6,3,11), (3,6,0,8), (3,8,3,6), (4,6,4,6), and (5,6,4,7), which are listed in Table 

5-8 for scenario 1.  

Table 5-8 Estimated Passenger Flows on Arcs under Six Objectives in Scenario 1 

Arc(i,j,t,s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

(1,6,3,11) 300 300 300 300 200 200 

(1,6,0,8) 200 200 200 200 100 100 

(1,7,3,6) 300 300 300 300 400 400 

(2,5,3,7) 400 400 200 400 200 200 

(2,7,3,6) 200 200 400 200 400 400 

(3,6,3,11) 300 300 100 300 100 100 

(3,6,0,8) 0 200 200 200 0 200 

(3,8,3,6) 200 200 400 200 400 400 

(4,6,4,6) 500 300 300 300 600 400 

(5,6,4,7) 400 400 400 400 400 400 
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Based on the definitions of Maximal Possible Relative Error (MPRE) and Estimation 

Reliability (Re), the values of MPRE and Re are 16.38 and 5.753%, respectively. As shown 

in Table 5-8, the possible flow on arc (3,6,0,8) is from 0 to 200, which creates a huge 

uncertainty and makes the estimation reliability extremely low. One possible reason is that 

our proposed models don’t assume any travel behavior, so all solutions are based on the 

physical constraints and available sensor observations. 

In scenario 2, with passenger count information, the estimated results of 6 cases for the 

system-level state are shown in Table 5-9. The corresponding values of MPRE and Re are 

0.267 and 78.93%, respectively. It shows that the estimation reliability gets significantly 

improved when passenger counts from one key location (transfer corridor) are available, 

which could avoid a large uncertainty range occurred in scenario 1. Also, scenarios 3 and 

4 are performed and their values of MPRE and Re are 0 and 100%, respectively, but it is 

still emphasized that the MRPR and Re should be clearly explained with its 

correspondingly different measurement estimation errors (assigned weights) and adopted 

approach.  

Table 5-9 The Estimated Passenger Flows on Arcs under Six Objectives in Scenario 2 

Arc(i,j,t,s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

(1,6,3,11) 200 200 300 300 200 200 

(1,6,0,8) 200 100 200 200 200 100 

(1,7,3,6) 400 400 300 300 400 400 

(2,5,3,7) 200 200 200 400 200 200 

(2,7,3,6) 400 400 400 200 400 400 

(3,6,3,11) 300 300 100 300 100 100 

(3,6,0,8) 50 200 200 200 50 150 

(3,8,3,6) 200 200 400 200 400 400 

(4,6,4,6) 450 450 300 300 450 450 

(5,6,4,7) 400 350 400 400 400 400 
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5.6.5 Results from Frank-Wolfe Algorithm and Dantzig-Wolfe Decomposition 

In this section, we implement Frank-Wolfe algorithm in step 1 and Dantzig-Wolfe 

decomposition algorithm in step 2 in GAMS. The case of minimizing the passenger flow 

on arc(8,5,3,4) in scenario 4 is treated as an example to analyze the performance of those 

algorithms.  

In section 5.6.4, the case is solved by the solver MINOS in GAMS directly. In step 1, the 

solved model is a non-linear programming model, and the minimal total generalized least 

square error in objective function is 5.968. When the model is solved by Frank-Wolfe 

algorithm as a linear programming model, the result shown in Figure 5-12 finally converge 

to 7.069 after 20 iterations. The gap is probably caused by the optimal step size, which is 

found as a constant value at each iteration rather than a constant value vector for each 

variable. Hence, it could make the final solution converge to a local optimal solution. 

 

Figure 5-12 Objective Function Values under Different Solving Approaches 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Objective function value 

F-W algorithm NLP slover



 

153 

 

Table 5-10 Generated Extreme Points and Optimal Weights in Dantzig-wolfe Decomposition 

Passenger 

Group 

No 

Extreme points 

(path node sequence 

(𝑖𝑖, 𝑡𝑡)) 

Optimal 

weights on 

extreme 

points 

Passenger 

Group 

No 

Extreme points (path node 

sequence (𝑖𝑖, 𝑡𝑡)) 

Optimal 

weights on 

extreme 

points 

1 

(1,0)→(6,8); 0.06 

15 

(1,3)→(7,6) →(4,7) → (6,9); 0.30 

(1,0)→(7,3) →(4,4) 

→ (6,6); 
0.94 (1,3)→(6,11); 0.70 

2 

(1,0)→(6,8); 0.54 

16 

(1,3)→(7,6) →(4,7) → (6,9); 0.51 

(1,0)→(7,3) →(4,4) 

→ (6,6); 
0.46 (1,3)→(6,11); 0.49 

3 

(1,0)→(6,8); 0.93 

17 

(1,3)→(7,6) →(4,7) → (6,9); 0.07 

(1,0)→(7,3) →(4,4) 

→ (6,6); 
0.07 (1,3)→(6,11); 0.93 

4 

(1,0)→(6,8); 0.29 

18 

(2,3)→(7,6) →(4,7) → (6,9); 1 

(1,0)→(7,3) →(4,4) 

→ (6,6); 
0.71 (2,3)→(5,7) →(6,10); 0 

5 

(2,0)→(5,4) →(6,7); 0.93 

19 

(2,3)→(7,6) →(4,7) → (6,9); 0.15 

(2,0)→(7,3) →(4,4) 

→ (6,6); 
0.07 (2,3)→(5,7) →(6,10); 0.85 

6 

(2,0)→(5,4) →(6,7); 0.93 

20 

(2,3)→(7,6) →(4,7) → (6,9); 0.62 

(2,0)→(7,3) →(4,4) 

→ (6,6); 
0.07 (2,3)→(5,7) →(6,10); 0.38 

7 

(2,0)→(5,4) →(6,7); 0.58 

21 

(2,3)→(7,6) →(4,7) → (6,9); 0 

(2,0)→(7,3) →(4,4) 

→ (6,6); 
0.42 (2,3)→(5,7) →(6,10); 1 

8 

(2,0)→(5,4) →(6,7); 0.13 

22 

(2,3)→(7,6) →(4,7) → (6,9); 0 

(2,0)→(7,3) →(4,4) 

→ (6,6); 
0.87 (2,3)→(5,7) →(6,10); 1 

9 

(3,0)→(6,8); 0.08 

23 

(2,3)→(7,6) →(4,7) → (6,9); 0.36 

(3,0)→(8,3) →(5,4) 

→ (6,7); 
0.92 (2,3)→(5,7) →(6,10); 0.64 

10 

(3,0)→(6,8); 0.56 

24 

(3,3)→(6,11); 0.09 

(3,0)→(8,3) →(5,4) 

→ (6,7); 
0.44 (3,3)→(8,6) →(5,7) →(6,10); 0.91 

11 

(3,0)→(6,8); 0.93 

25 

(3,3)→(6,11); 0.55 

(3,0)→(8,3) →(5,4) 

→ (6,7); 
0.07 (3,3)→(8,6) →(5,7) →(6,10); 0.45 

12 

(1,3)→(7,6) →(4,7) 

→ (6,9); 
0.94 

26 
(3,3)→(6,11); 0.45 

(1,3)→(6,11); 0.06 (3,3)→(8,6) →(5,7) →(6,10); 0.55 

13 

(1,3)→(7,6) →(4,7) 

→ (6,9); 
0.50 

27 
(3,3)→(6,11); 0.85 

(1,3)→(6,11); 0.50 (3,3)→(8,6) →(5,7) →(6,10); 0.15 

14 

(1,3)→(7,6) →(4,7) 

→ (6,9); 
0.76 

28 
(3,3)→(6,11); 0.93 

(1,3)→(6,11); 0.24 (3,3)→(8,6) →(5,7) →(6,10); 0.07 
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In step 2, when the linear programming is directly solved by CPLEX, the objective function 

(minimal passenger flow on arc (8,5,3,4)) is 150. When Dantzig-Wolfe decomposition is 

applied to generate extreme points for time-dependent OD pairs, the minimal passenger 

flow is 142.5 based on the estimated measurements by Frank-Wolfe algorithm rather than 

by the NLP solver. The generated extreme points (feasible paths) and the correspondingly 

optimal weights are listed in Table 5-10. However, if the estimated measurements in step 

1 are directly obtained from the NLP solver, the final minimal passenger count on arc 

(8,5,3,4) from Dantzig-Wolfe algorithm is 150 as well. 

5.6.6 Experiment on a Large-scale Transit Network  

In order to address the computational challenges in large-scale networks, we will propose 

an approximation-based approach, which provides a k-shortest path set as extreme points 

for each passenger group (in each OD pair with time-dependent departure time) in advance 

rather than using Dantzig-Wolfe decomposition to generate extreme point iteration by 

iteration. In this section, the public Google Transit Feed Specification (GTFS) data from 

Alexandria Transit Company in 2015 is used as our tested large-scale transit network 

(https://transitfeeds.com/p/alexandria-transit-company). As shown in Figure 5-13, it has 12 

routes, 1638 trips (866 trips on weekdays, 423 trips on Saturdays, 261 trips on Sundays, 

and 88 trips on the Christmas day), and 629 stops. 

In this experiment, the trips on weekdays are only considered as the provided schedule. 

Then, 32,029 vertexes and 713,650 arcs are generated in the corresponding space-time 

network for one whole weekday. The arcs include vehicle running arcs, passengers’ 

walking arcs from origin to transit stops and from transit stops to destination, transfer arcs, 

https://transitfeeds.com/p/alexandria-transit-company
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and waiting arcs. The space-time arc generation rules contain that (i) the trip (path) travel 

time is less than 120min; (ii) the maximum number of transfer times is 3; (iii) the maximum 

transfer/walking time is 30min; (iv) the maximum transfer/walking distance is 0.5mile. 

 

Figure 5-13 Alexandria Transit Network Read from GTFS, in Virginia, USA 

In order to obtain the time-dependent transit demand, we map the traffic analysis zones in 

the city of Alexandria to the transit network as the activity locations. As a result, 42 OD 

pairs are matched. Plus, the time period of 7:00am to 9:00am is divided by 15 time intervals, 

so the time-dependent OD demand is defined by each 5 mins. Finally, 1484 time-dependent 

OD pairs are obtained based on the arc generation rules above.  
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In addition, as an approximation for those extreme points in Dantzig-Wolfe decomposition 

for each time-dependent OD pair, we generate 3-shortest paths using our developed k-

shortest path algorithm. Finally, 4452 paths will be generated with 7,868 arcs in the space-

time network. The general process for each time-dependent OD pair is shown as follows.  

(i) Based on the origin vertex (origin node and departure time) in the space-time network, 

the label correcting algorithm can be used to generate a shortest path tree from origin vertex 

to all possible vertexes selected on the basis of the space-time arc generation rules. 

(ii) According to the destination physical location, we can find a number of candidate 

vertexes (stop id and stop time in schedule) connecting the destination node by walking 

arcs. Then we can add the label costs of those candidate vertexes and its corresponding 

walking arc costs to the destination, so the destination will have a number of vertexes 

(destination node and arrival time) with different label cost. 

(iii) Sort those label costs of the destination node and select k least-cost destination vertexes 

and back trace to the origin vertex. Finally, the k-shortest path set will be generated for one 

time-dependent OD pair. 

For simplicity, we assume that all transit vehicle capacity is 35 and the walking, waiting 

and transfer arc capacity is 9999. Also, the time-dependent demand of each OD pair is 

assumed to be 1, which means that one passenger will arrive every 5 mins for each OD 

pair. The observed passenger trip time is assumed and generated as a random value between 

the minimal and the maximal path costs of 3-shorest paths. Focusing on the uncertainties 

of passenger flow state on transfer links from stop 370 to stop 553 and from stop 447 to 

stop 290 based on the 3-hour transit demand, our models are solved by CPLEX in GAMS 
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as a linear programming problem on the workstation with Intel(R) Xeon(R) CPU E5-2680 

v2 @ 2.8GHz processors. For each model, there are 10,837 equations and 4,452 variables, 

and the computation time is around 19 seconds. The results are shown in Figure 5-14. 

 

Figure 5-14 Uncertainties of Passenger Flow Count on Two Transfer Links 
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusions 

This dissertation aims to study the passenger-focused scheduled transportation systems, 

including public transit systems and upcoming optimal planning systems of household 

daily scheduled activities, from the increased observability due more available multi-

source sensor data, to the operational planning-level service network design, finally to the 

more efficiently shared mobility. 

In the operational planning level, Chapter 3 reveals how the tight capacity constraints can 

invoke bounded rationality travel behavior and how to consider them in dynamic 

capacitated transit serviced network design. Finally, a single-level integer linear 

programming model is proposed and can be further decomposed as two sub-problems by 

Lagrangian decomposition, namely, a time-dependent least cost path problem and a 0-1 

knapsack problem, for improve the computation efficiency. The numerical experiments 

demonstrate the impacts of different transit demand levels, agent’s tolerance 

value/indifference band, and transit vehicle capacity on the final service network decisions. 

In addition, the transportation network design problem is usually modeled as a bi-level 

programming problem. The proposed framework from modelling to algorithm design is 

also helpful to problems requiring the similar bi-level programming structure, such as, 

dynamic tolling design problem, signal optimization problem, and dynamic OD demand 

matrix estimation problem. 

Motivated by the recently emerging trend of self-driving vehicles and information sharing 

technologies, the household activity pattern problems are examined in Chapter 4. By 
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embedding a set of hard constraints into a well-structured (space-time and space-time-state) 

network structure, we reformulate two difficult cases using a person-based or vehicle-based 

network flow programming model with very few side constraints, which could be directly 

solved by some standard optimization solvers, or directly further solved by time-dependent 

state-dependent shortest path algorithms. Meanwhile, the tight road capacity is highly 

considered for capturing the underlying congestion effect for the cases above. The 

numerical experiments demonstrate the proposed methodology and analyze the impacts of 

different activity benefits on the final vehicle routing and household member activity 

selection.  

Going back to transportation system observability quantification, the developments 

presented in Chapter 5 provide insights on the relationship among multi-source information, 

information space, state estimation, and estimation uncertainty quantification by taking the 

urban rail transit systems as the analysis object. The information space and information 

errors are highly respected for state estimation, and project functions-based approaches are 

presented to quantify the uncertainty of different states under same information space. It 

should be emphasized that the final estimated states and the uncertainty of state estimates 

need to be provided with the correspondingly specific total measurement estimation errors 

due to the different hard observed errors from heterogeneous data sources. Further, the 

proposed models can explain that the value of information highly relies on its aimed 

specific estimated states and sensor location rather than just its high volume. It provides 

the analysis base for how to better use available information for different state estimates 

and how to design the sensor network for future estimate improvement.  
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6.2 Future Research 

Passenger-focused scheduled transportation system aims to serve passengers by shared 

rides, accurate schedules, and optimal activity completion planning, which are still 

challenges in theory and need to be further studied. 

Specifically, the uncertainty quantification of state estimation is just the first step for better 

observing and controlling the system. The following questions are currently under my 

considerations for future research: (1) what is the balance among the uncertainty of 

different system states, the minimally needed information, and the required accuracy of 

future controls? (2) What is the balance of the sensor data cost, value of information and 

its computational efficiency in proposed models and algorithms? (3) How to integrate the 

heterogeneous sensor network design with the real-time system control? (4) How to 

visualize the real-time uncertainty of different system states in a straightforward way for 

the public. 

For better designing transit service networks, it needs to (1) calibrate the boundedly rational 

behavior by taking additional data collection efforts, (2) consider the limited number of 

transfers accepted by each passenger, (3) address the responsive travel demand issue under 

different transit system performances, and (4) consider the future most likely seamless 

multimodal scheduled transportation system with autonomous vehicle applications. In 

order to implement more deployable service network design systems, it also needs to 

incorporate realistic transit route/mode/departure choice models, e.g., by specifically 

taking into account of parking availability (Ruan et al., 2016), stochastic transfer activities 

(Yang et al., 2016), and uncertain time-dependent passenger demand (Yin et al., 2016). 
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To optimally complete those household scheduled activities, our research needs to further 

consider vehicle selection (mode choice) and ride-sharing simultaneously so that an 

optimal travel pattern, such as driving alone or ride-sharing, can be found for each 

household. More importantly, when available vehicles are automated and may or may not 

belong to each household, it needs research to find out how to find the optimally solution 

for household level scheduled activities rather than single travel requests. Finally, it is also 

extremely crucial to accurately design and efficiently operate the future scheduled and 

shared multimodal transportation system with public transit and flexible autonomous 

vehicles. 
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APPENDIX A 

KKT CONDITION OF THE MODIFIED BMW MODEL 
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 ∑ (𝑐𝑖,𝑗 + 𝛿(i,j)
𝑤,𝑝

× 𝜇𝑖,𝑗) ≥ 𝜋𝑤(𝑖,𝑗)∈𝐿 , ∀ 𝑝 ∈ 𝑃𝑤 , ∀(𝑖, 𝑗) ∈ 𝐿 (A.1) 

 𝜇𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐿 (A.2) 

 ∑ ℎ𝑤,𝑝 = 𝑑𝑤, ∀𝑤𝑝∈𝑃𝑤 ∈ 𝑊 (A.3) 

 ℎ𝑤,𝑝 ≥ 0, ∀ 𝑝 ∈ 𝑃𝑤, ∀𝑤 ∈ 𝑊 (A.4) 

 ∑ ∑ (𝛿(i,j)
𝑤,𝑝 × ℎ𝑤,𝑝) ≤ 𝐶𝑎𝑝𝑖,𝑗, ∀(𝑖, 𝑗) ∈ 𝐿𝑝∈𝑃𝑤𝑤∈𝑊  (A.5) 

 ℎ𝑤,𝑝 (𝑐𝑖,𝑗 + 𝛿(i,j)
𝑤,𝑝 × 𝜇𝑖,𝑗 − 𝜋𝑤) = 0, ∀ 𝑝 ∈ 𝑃𝑤, ∀𝑤 ∈ 𝑊,∀(𝑖, 𝑗) ∈ 𝐿 (A.6) 

 𝜇𝑖,𝑗 (𝐶𝑎𝑝𝑖,𝑗 − ∑ ∑ (𝛿(i,j)
𝑤,𝑝 × ℎ𝑤,𝑝)𝑝∈𝑃𝑤𝑤∈𝑊 ) = 0, ∀(𝑖, 𝑗) ∈ 𝐿 (A.7) 
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APPENDIX B 

MULTI-LOOP LABEL-CORRECTING ALGORITHM 
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𝐿𝑖,𝑡,𝑤(𝑣) ∶=  0 // label cost at vertex (𝑖, 𝑡, 𝑤) for vehicle 𝑣 

𝐿𝑗,𝑠,𝑤′(𝑣) ∶=  +∞; for each vertex (𝑗, 𝑠, 𝑤′) ∈ 𝑅 − {(𝑖, 𝑡, 𝑤)} // label cost at vertex 

(𝑗, 𝑠, 𝑤′) for vehicle 𝑣 

node pred of vertex (. , . , . , . ) ∶=  −1;  

time pred of vertex (. , . , . , . ) ∶=  −1; 

state pred of vertex (. , . , . , . ) ∶=  −1; 

𝐿𝐼𝑆𝑇:= {(𝑖, 𝑡, 𝑤)}; 

While 𝐿𝐼𝑆𝑇 ≠ ∅ do 

for each time 𝑡 ∈ [0, 𝑇] do // adding time window of each activity can further reduce 

the searching region 

begin 

for each state 𝑤 do // the number of states can be reduced by the activity sequence 

for each passenger 

begin 

for each link (𝑖, 𝑗) do // 

begin 

derive downstream state 𝑤’ based on the feasible state transition  

derive arrival time 𝑠 = 𝑡 + 𝑇𝑇𝑖,𝑗,𝑡,; 
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if (𝐿𝑖,𝑡,𝑤(𝑣)  + 𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′(𝑣)  < 𝐿𝑗,𝑠,𝑤′(𝑣)) 

begin 

𝐿𝑗,𝑠,𝑤′ ∶=  𝐿𝑖,𝑡,𝑠(𝑣𝑢)  +  𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′(𝑣) ; // label update 

node pred of vertex (𝑣, 𝑗, 𝑠, 𝑤′) ∶= 𝑖;  

time pred of vertex (𝑣, 𝑗, 𝑠, 𝑤′) ∶= 𝑡;  

state pred of vertex (𝑣, 𝑗, 𝑠, 𝑤′) ∶= 𝑤; 

if vertex (𝑗, 𝑠, 𝑤′) ∉ 𝐿𝐼𝑆𝑇 then add vertex (𝑗, 𝑠, 𝑤′) to 𝐿𝐼𝑆𝑇 

end; 

end; // for each link 

end; // for each state 

end; // for each time 


