
Diffusion in Networks: Source Localization, History Reconstruction and Real-Time

Network Robustification

by

Zhen Chen

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2018 by the
Graduate Supervisory Committee:

Lei Ying, Co-Chair
Hanghang Tong, Co-Chair

Jingrui He
Junshan Zhang

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

Diffusion processes in networks can be used to model many real-world processes, such

as the propagation of a rumor on social networks and cascading failures on power

networks. Analysis of diffusion processes in networks can help us answer important

questions such as the role and the importance of each node in the network for spread-

ing the diffusion and how to top or contain a cascading failure in the network. This

dissertation consists of three parts.

In the first part, we study the problem of locating multiple diffusion sources in

networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete

snapshot of the network, we developed a sample-path-based algorithm, named clus-

tering and localization, and proved that for regular trees, the estimators produced by

the proposed algorithm are within a constant distance from the real sources with a

high probability. Then, we considered the case in which only a partial snapshot is

observed and proposed a new algorithm, named Optimal-Jordan-Cover (OJC). The

algorithm first extracts a subgraph using a candidate selection algorithm that selects

source candidates based on the number of observed infected nodes in their neighbor-

hoods. Then, in the extracted subgraph, OJC finds a set of nodes that “cover” all

observed infected nodes with the minimum radius. The set of nodes is called the

Jordan cover, and is regarded as the set of diffusion sources. We proved that OJC

can locate all sources with probability one asymptotically with partial observations

in the Erdős-Rényi (ER) random graph. Multiple experiments on different networks

were done, which show our algorithms outperform others.

In the second part, we tackle the problem of reconstructing the diffusion history

from partial observations. We formulated the diffusion history reconstruction problem

as a maximum a posteriori (MAP) problem and proved the problem is NP hard. Then

we proposed a step-by- step reconstruction algorithm, which can always produce a

i

diffusion history that is consistent with the partial observations. Our experimental

results based on synthetic and real networks show that the algorithm significantly

outperforms some existing methods.

In the third part, we consider the problem of improving the robustness of an

interdependent network by rewiring a small number of links during a cascading attack.

We formulated the problem as a Markov decision process (MDP) problem. While the

problem is NP-hard, we developed an effective and efficient algorithm, REALW IRE,

to robustify the network and to mitigate the damage during the attack. Extensive

experimental results show that our algorithm outperforms other algorithms on most

of the robustness metrics.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Overview. 1

1.2 Summary of Contributions . 4

1.3 Related Work . 8

1.3.1 Diffusion on Networks . 8

1.3.2 Network Robustification . 10

2 MULTIPLE SOURCE DETECTION WITH A COMPLETE SNAPSHOT 12

2.1 Basic Model . 13

2.1.1 SIR Model . 13

2.1.2 Problem Description . 15

2.2 Main Results . 15

2.2.1 Multi-Source Detection on Tree Neworks. 16

2.2.2 Performance Analysis . 19

2.2.3 Heuristic for General Network Topologies 22

2.2.4 Heuristic for Estimating Number of Sources 23

2.3 Performance Evaluation . 24

2.3.1 Tree Networks . 24

2.3.2 General Networks . 26

2.4 Conclusion . 28

3 MULTIPLE SOURCE DETECTION WITH PARTIAL OBSERVATION 30

3.1 Problem Formulation . 32

iii

CHAPTER Page

3.2 Algorithms . 34

3.3 Asymptotic Analysis of OJC. 38

3.3.1 Asymptotic Perfect Detection on the ER Random Graph . . . 38

3.3.2 Impossibility Results . 48

3.4 Performance Evaluation . 48

3.4.1 OJC with Different Thresholds . 51

3.4.2 OJC, AJC and Other Heuristics . 51

3.5 Conclusions . 52

4 DIFFUSION HISTORY RECONSTRUCTION . 53

4.1 Problem Formulation . 55

4.1.1 Diffusion Model . 57

4.1.2 Problem Statement . 57

4.2 A Step-by-Step Reconstruction Algorithm . 60

4.2.1 Single-Step Reconstruction . 63

4.2.2 Feasible Source Combinations . 73

4.3 Performance Evaluation . 76

4.3.1 Performance Evaluation with Synthetic Diffusion Traces 80

4.3.2 Performance Evaluation with the Weibo Dataset 82

4.3.3 Optimality of the Single-Step Reconstruction 83

4.3.4 Efficiency Results . 87

4.4 Conclusion . 88

5 INTERDEPENDENT NETWORK ROBUSTIFICATION: REAL-TIME

REWIRING. 89

5.1 Problem Formulation . 91

iv

CHAPTER Page

5.1.1 Interdependent Networks . 91

5.1.2 Localized Attack Model . 91

5.1.3 Markov Decision Process (MDP) Formulation 93

5.2 A Low-Complexity Algorithm . 96

5.2.1 Challenges - NP-hardness . 96

5.2.2 Proposed Algorithm - REALW IRE . 96

5.2.3 Complexity Analysis . 100

5.3 Performance Evaluation . 100

5.3.1 Performance Measures . 100

5.3.2 Optimality on the Small Networks . 103

5.3.3 General Networks . 104

5.4 Conclusion . 112

6 CONCLUSION . 114

REFERENCES . 116

APPENDIX

A PROOF OF CHAPTER 2. 122

B PROOF OF CHAPTER 3. 142

C PROOF OF CHAPTER 5. 151

v

LIST OF TABLES

Table Page

2.1 Notations . 18

2.2 Diameters for Random Graphs with Different p. 28

2.3 Diameters for the Small-world Networks with Different q. 28

4.1 Notations . 56

4.2 The Average Number of Initial States with or Without Algorithm 4.3

on Power Network with N = 2. 85

4.3 The Average Number of Initial States with or Without Algorithm 4.3

on Power Network with N = 3 . 85

5.1 The Average Number of Rewired Links. 107

vi

LIST OF FIGURES

Figure Page

2.1 An Example of Multi-source Detection. 16

2.2 An Simple Example of Our Algorithm. 19

2.3 The Average Distance from Sources to the Estimators with 25 and 75

Percentile on Tree Networks. 25

2.4 True Detection Rate on Binomial Trees and Regular Trees. 25

2.5 The Average Distance Between Estimators and Original Sources Versus

Edge Probability p. 27

2.6 The Average Distance Between Estimators and Original Sources Versus q. 27

3.1 A Pictorial Example for Theorem 2. 42

3.2 Performance of OJC with Different Threshold Values on the ER Ran-

dom Graph. 49

3.3 The Performance of OJC, AJC, CC and DC on the ER Random Graph

with Different Sample Rates and Threshold Values. 49

3.4 The Performance of OJC, AJC, CC and DC on the Power Grid Network

with Different Sample Rates and Threshold Values. 50

4.1 The Graph Built in the Proof of Theorem 4.1. 58

4.2 The Example of Diffusion Network State Single-step Reconstruction. . . 67

4.3 An Example of Diffusion. 76

4.4 Power Network with a Single Source. 80

4.5 BA Network with a Single Source. 81

4.6 IAS Network with a Single Source. 81

4.7 Power Network with Two Sources. 83

4.8 BA Network with Two Sources. 83

4.9 Power Network p = 0.4 and T = 10. 84

vii

Figure Page

4.10 BA Network with p = 0.1 and T = 10. 84

4.11 Weibo Dataset. 85

4.12 Comparison with Optimal on Zachery’s Karate Club Network with a

Single Source. 86

4.13 Wall-clock Time Versus Infected Network Size. 86

4.14 Power Network with p = 0.4 and T = 10. 87

5.1 An Example of the Localized Attack. 92

5.2 An Example of Our Algorithm. 99

5.3 The Wall-clock Time Vs Network Size for Ba Networks When Attack

Time Duration Is 4. 101

5.4 Florentine Families Network. 104

5.5 The Complexity of the Optimal Algorithm on the Florentine Families

Network. 105

5.6 The BA-BA Network. 108

5.7 The IAS-Air Network. 109

5.8 The IAS-PG Network. 110

5.9 The IAS-Air Network with Backup Links. 111

A.1 An Example of One-time-slot Branching Process Starting from Node 1. 123

A.2 An Example of Tree G, Tree Gs and Tree T1. 124

A.3 The Situation of the Stop of Infection Process. 126

A.4 Different Cases of Distances Between Two Infected Nodes. 129

A.5 The Positions of ζi, ζj, ei and ej When ei and ej Are Associated with

Different Sources, Where d(bi, ζi) = C1 and d(bj, ζj) = C1. 137

C.1 An Example of Ga. 153

viii

Chapter 1

INTRODUCTION

Diffusion processes in networks can be used to model many real-world phenomena

including the spread of an infectious disease, the propagation of a computer virus, the

gradual adoption of a new product, etc. Loosely speaking, the research on diffusion

processes in networks can be categorized into two groups: prospective analysis which

focuses on the structural properties of diffusion processes and networks that lead to

epidemic-type outbreaks and algorithms to minimize or maximize network diffusion,

and retrospective analysis which focuses on network inference such as identifying the

source or underlying network of diffusion.

1.1 Overview

In this dissertation, we first tackle the information source detection problem, which

is to infer the source(s) of an epidemic diffusion process in a network based on some

observations of the diffusion. Possible observed information includes node states (e.g.,

infected or susceptible) and the timestamps at which nodes changed their states. The

solution to this problem has a wide range of applications. In epidemiology, identifying

patient zero helps diagnose the cause and the origin of the disease. For cybersecurity,

tracing the source of malware is an important step in the investigation of a cyber

attack. On online social networks, the trustworthiness of news/information heavily

depends on its source. Given a complete snapshot of the network and motivated by

the sample-path-based estimator proposed in Zhu and Ying (2013), we first present

a clustering and localization algorithm for tree networks, where the number of real

sources is assumed to be known. We then prove that on regular trees, the distances

1

between the estimators given by the algorithm and the real sources are upper bounded

by a constant with a high probability. We further present a heuristic algorithm for

general networks and an algorithm for estimating the number of sources when the

number of sources is unknown. However, when the observation of a complete snapshot

is not possible (each node can only report its state with some probability), we propose

another novel algorithm, named Optimal-Jordan-Cover (OJC), for locating multiple

sources for this case and prove theoretical guarantees on the detection rate for non-tree

networks. We further develop a heuristic based on theK−means, called Approximate-

Jordan-Cover (AJC), to reduce the complexity and generate a similar performance.

Then we go beyond identifying the source of diffusion and study the problem of

reconstructing the entire history of a diffusion process, named as diffusion history

reconstruction, which has been studied only very recently in Sefer and Kingsford

(2014). In large-scale networks, due to the cost and privacy concerns, it is almost

impossible to monitor the entire network and collect the complete diffusion trace,

which makes reconstructing the diffusion history not trivial. For example, when a

computer virus propagates among different computer through the network, we cannot

track the infection of each computer because of the privacy limitation. And when

some fake news goes viral on the Internet, which means thousands of individuals or

websites are involved in the diffusion process, it is difficult to obtain the time when

each individual or website that propagates the news. We assume that the diffusion

process follows the Susceptible-Infected (SI) model, a variant of the popular SIR

model first proposed in Kermack and McKendrick (1927), and a single snapshot of

the network is given, which includes the set of “infected” nodes, and the corresponding

infection time. The nodes with known “infection” time can be thought as monitor

nodes that were placed in the network. Each monitor node can record the time at

which the node is “infected” and report the infection time. We formulate the diffusion

2

history reconstruction problem as a maximum a posteriori (MAP) estimate problem,

and prove that the problem is NP-hard by reducing an arbitrary set cover problem

to a diffusion history reconstruction problem. We propose a greedy and step-by-

step reconstruction algorithm to reconstruct the most likely network state at time

slot τ based on the network state at time slot τ − 1 while guaranteeing the state

is consistent with partial observation, and further develop a greedy algorithm for a

single-step construction.

Finally, we consider the problem of improving the robustness of an interdepen-

dent network under a localized attack. Interdependent networks are widely used to

model and analyze many real-world complex systems, such as the Internet, social

networks, transportation systems, biochemical reactions, etc Albert and Barabási

(2002); Di Muro et al. (2016). Interdependent networks consist of nodes and links

where nodes represent different components of a complex system and links char-

acterize the interaction between the components. Many researchers have studied

interdependent networks to gain insights about features and properties of complex

systems, such as their robustness, stability, connectivity and structure Yuan et al.

(2015); Vespignani (2010); Buldyrev et al. (2010); Gao et al. (2012); Di Muro et al.

(2016); Watts and Strogatz (1998); Albert et al. (2000); Albert and Barabási (2002);

Callaway et al. (2000); Albert et al. (1999); Newman (2010); Schneider et al. (2011);

Zeng and Liu (2012). An important topic in this area is to preserve the robustness

of interdependent networks under site or link attacks. This problem is important

to many real-world networks, such as power networks, transportation networks, fuel

distribution networks and communication networks. Many of these networks may

have low tolerance to damages on their structures (e.g. the diameter doubled after

only 5% of the most connected nodes are removed on the scale-free network Albert

et al. (2000)). We focus on the development of algorithms that rewire the links of the

3

interdependent networks in real-time to minimize the impact of the localized attack.

In particular, we assume an interdependent network consists of two subnetworks A

and B, in which the functioning of each node can depend on a set of nodes from the

other layer. We study a localized attack model such that the nodes around attacked

nodes are removed hop by hop inspired by Shao et al. (2015). We formulate the

interdependent network link rewiring problem as a Markov decision process (MDP)

problem, which is NP-hard. Then, we propose a greedy algorithm to rewire the links

during the attack.

1.2 Summary of Contributions

In Chapter 2, we consider the information source detection problem under SIR

model with a complete snapshot observed. We propose an algorithm, named clus-

tering and localization (CL), for tree networks. Then we are able to prove for a

(g+ 1)−regular tree, where g+ 1 is the degree of each node on the tree, with infinite

number of levels, if gq > 1 (q is the infection probability) and the distance between

any two original sources is greater than some constant, the distance between any

estimator and its closest real source is bounded by constant with a high probability.

Based the CL algorithm, we develop an algorithm, called clustering and reverse in-

fection (CRI), for general networks. Multiple experiments are done on tree networks

and general networks, which shows our algorithm outperforms others.

In Chapter 3, we study the information source detection problem under a more

general heterogeneous SIR model, where links have different infection probabilities

and nodes have different recovery probabilities, with a partial observation. We pro-

pose a novel algorithm for locating multiple sources for such a general model and

prove theoretical guarantees on the detection rate for non-tree networks. Firstly,

we introduce the concept of Jordan cover, which is an extension of Jordan center.

4

Loosely speaking, a Jordan cover with size m is a set of m nodes that can reach

all observed infected nodes with the minimum hop-distance. We propose Optimal-

Jordan-Cover (OJC), which consists of two steps: OJC first selects a subset of nodes

as the set of the candidates of the diffusion sources; and then it finds a Jordan cover

in the subgraph induced by the candidate nodes and the observed infected nodes.

We emphasize that only the hop-distance to the observed infected nodes is consid-

ered in computing a Jordan cover. Then we analyze the performance of OJC on the

ER random graph, and establish the following performance guarantees. When the

infection duration is shorter than 2
3

logn
µ
, where µ is the average node degree and n is

the number of nodes in the network, OJC identifies the sources with probability one

asymptotically as n increases. When the infection duration is at least
⌈

logn
log µ+log q

⌉
+ 2

where q is the minimum infection probability, under any source location algorithm,

the detection rate diminishes to zero as n increases under the Susceptible-Infected

(SI) and Independent-Cascade (IC) models, which are special cases of the SIR model.

The computational complexity of OJC is polynomial in n, but exponential in m.

We further propose a heuristic based on the K-Means for approximating the Jordan

cover, named Approximate-Jordan-Cover (AJC), to reduce the complexity. Our sim-

ulations on random graphs and real networks demonstrate that both AJC and OJC

significantly outperform other heuristic algorithms.

In Chapter 4, we investigate the problem of reconstructing the entire history

of a diffusion process, named as diffusion history reconstruction. We assume that

the diffusion process starting from one or mulitple sources follows the Susceptible-

Infected (SI) model, a variant of the popular SIR model first proposed in Kermack

and McKendrick (1927), and a single partial snapshot of the network is given, which

includes the set of “infected” nodes, and the corresponding infection time of a subset of

“infected” nodes. The nodes with known “infection” time can be thought as monitor

5

nodes that were placed in the network. Each monitor node can record the time at

which the node is “infected” and report the infection time. We formulate the diffusion

history reconstruction problem as a maximum a posteriori (MAP) estimate problem,

and prove that the problem is NP-hard by reducing an arbitrary set cover problem to a

diffusion history reconstruction problem. Then we propose a greedy and step-by-step

reconstruction algorithm to reconstruct the most likely network state at time slot τ

based on the network state at time slot τ−1 while guaranteeing the state is consistent

with partial observation, and further develop a greedy algorithm for a single-step

construction. The key idea of the single-step construction algorithm is to convert the

problem to the weighted set cover problem, for which a well-known greedy algorithm

provides a guarantee on the approximation ratio. In this dissertation, we study multi-

source diffusion processes, which include single-source diffusion as a special case. The

problem is more difficult because the number of initial states is proportional to V N
I ,

where VI is the number of infected nodes and N is the number of sources. It is almost

impossible to use the single-source algorithm to reconstruct the diffusion history for

multi-source diffusion processes because of the high complexity. Assuming the number

of sources, N(N ≥ 1), is known, we propose an algorithm to find all possible initial

states of the diffusion to reduce the complexity. It is shown that the initial states

found by our algorithm are always consistent with the partial observation. We prove

that the diffusion history obtained by the step-by-step reconstruction algorithm is

always consistent with the partial observation, and the computational complexity of

the algorithm is O(V N+1
I EI), where VI is the number of infected nodes observed in

the snapshot, EI is the number of edges between the observed infected nodes and N is

the number of sources. We evaluate the performance of the algorithm on the Western

States Power Grid of the United States Watts and Strogatz (1998) and Internet

autonomous systems (IAS) network Leskovec et al. (2005), with simulated diffusion

6

processes following the SI model. We also test our algorithm on the Weibo dataset

(Weibo is a famous Chinese microblogging website). In all scenarios, we observe

significant improvements of the proposed algorithm compared with other heuristic

and existing algorithms.

In Chapter 5, we consider the problem of improving the robustness of an interde-

pendent network under a localized attack. We focus on the development of algorithms

that rewire the links of the interdependent networks in real-time to minimize the im-

pact of the localized attack. In particular, we assume an interdependent network

consists of two subnetworks A and B, in which the functioning of each node can

depend on a set of nodes from the other layer. We study a localized attack model

such that the nodes around attacked nodes are removed hop by hop inspired by Shao

et al. (2015). We formulate the interdependent network link rewiring problem as a

Markov decision process (MDP) problem, and prove that the problem is NP-hard by

reducing the maximum coverage problem to our MDP problem. Then we propose

a greedy algorithm to rewire the links during the attack. The key idea of the algo-

rithm is to maximize the objective of the MDP problem in a greedy manner. We

compare the performance of our algorithm with the exact solution of the MDP prob-

lem on a small network. The results show that the performance is close in terms of

the objective of the MDP problem. And finally, we evaluate the performance of the

algorithm on interdependent networks formed by the real networks including the air

traffic network, the IAS network and the power grid network with simulated localized

attacks. In most cases, when a large fraction of nodes in the networks are attacked,

our algorithm outperforms others.

7

1.3 Related Work

1.3.1 Diffusion on Networks

In this section, we review the related work in diffusion process on networks, which

can be categorized into two parts: prospective analysis and retrospective analysis.

Prospective Analysis. Many research works in diffusion process Bikhchandani

et al. (1992); Goldenberg et al. (2001a); Kempe et al. (2003); Leskovec et al. (2007);

Gruhl et al. (2004); Richardson and Domingos (2002) have been devoted to studying

the so-called epidemic threshold, that is, to determine the condition under which an

epidemic will break out. While earlier works Hethcote (2000) focus on some spe-

cific types of graph structure (e.g., random graphs, power-law graphs, etc), Wang et

al. Wang et al. (2003) and its follow-up paper by Ganesh et al. Ganesh et al. (2005)

found that, for the flu-like SIS model, the epidemic threshold for any arbitrary, real

graph is determined by the leading eigenvalue of the adjacency matrix of the graph.

Prakash et. al. Prakash et al. (2011) further discovered that the leading eigenvalue

(and a model-dependent constant) is the only parameter that determines the epi-

demic threshold for other virus propagation models. On the algorithmic side, Hayashi

et al. Hayashi et al. (2003) derived the extinction conditions under random and tar-

geted immunization for the SHIR model (Susceptible, Hidden, Infectious, Recovered).

Tong et al. Tong et al. (2010) proposed an effective node immunization strategy for

the SIS model by approximately minimizing the leading eigenvalue. Briesemeister

et al. Briesemeister et al. (2003) studied the defending policy in power-law graphs.

Prakash et. al. Prakash et al. (2010); Valler et al. (2011) proposed effective algorithms

to perform node immunization on time-varying graphs.

Retrospective Analysis. Earlier work along this line focuses on identifying the

source of diffusion Zhu and Ying (2015a); Shah and Zaman (2011, 2012); Zhu et al.

8

(2015); Zhu and Ying (2016); Zhu et al. (2017) and inferring the underlying network of

diffusion Gomez Rodriguez et al. (2010); Myers and Leskovec (2010); Abrahao et al.

(2013). An even more challenging problem is to reconstruct the diffusion history,

which has been received sparse attention so far. Paper Sefer and Kingsford (2014)

tried to reconstruct the history by using multiple snapshots of the network at different

time under the discrete time SEIRS model and it proposed an algorithm based on

submodularity with some provable performance guarantee. The information used to

reconstruct the diffusion history in Sefer and Kingsford (2014) is multiple snapshots of

the whole network at different time slots, which can be considered as a time domain

partial information. In contrast, in this paper, we use a single snapshot with the

infection time of partial infected nodes, which is a space domain partial information.

A method of finding the most possible diffusion path by using the infection time

information of all infected nodes is proposed in Gardner et al. (2014), in which the

authors considered the diffusion path as a tree. In Fajardo and Gardner (2013), the

authors tried to estimate the diffusion path and infection time of some nodes by using

the infection time of partial infected nodes. A heuristic algorithm was proposed in

Fajardo and Gardner (2013) based on the integer programming problem formulated

by the authors. Besides the high complexity, the heuristic algorithm in Fajardo and

Gardner (2013) involves iterations between finding the infection path and estimating

infection time, while the convergence is not guaranteed. In Zong et al. (2012), the

authors focused on inferring the diffusion path of the diffusion process based on

the independent cascade model by using partial observations. A heuristic algorithm

derived from minimum Steiner tree was proposed in Zong et al. (2012). Compared

with independent cascade model, the Susceptible-Infected model used in this paper

goes beyond the assumption that each infected node only has one chance to infect its

neighbors. In Rozenshtein et al. (2016), with the assumption that shorter paths of

9

infection are more likely, the authors formulated the problem as a temporal Steiner

tree problem, in which they developed a method to recover the diffusion flow by

finding a temporal Steiner tree with minimum cost. Song et al. (2016) combined the

topic detection with the diffusion path reconstruction for reconstructing the diffusion

path for different topics on Sina Weibo. Sun et al. Sun et al. (2017) proposed a

method called Collaborative Inference Model to infer multiple coexisting diffusion

processes by using sparse observations.

1.3.2 Network Robustification

Robustness of networks has been studied in previous work. A number of papers

investigated the impact of network structure on network robustness Schneider et al.

(2011); Zeng and Liu (2012); Chan et al. (2014). For example, Schneider et al.

Schneider et al. (2011) proposed a metric called node-robustness and developed a

greedy algorithm to switch links to improve the node-robustness. Zeng and Liu Zeng

and Liu (2012) later defined a related metric called link-robustness and proposed

a similar greedy algorithm to improve the link-robustness. Chan et al. Chan et al.

(2014) used the natural connectivity as the robustness metric and proposed algorithms

to modify the network structure to maximize the natural connectivity. Another line

of research is on minimizing or maximzing information diffusion process in networks

Tong et al. (2012); Zhang et al. (2016). Tong et al. Tong et al. (2012) proposed

algorithms to modify the leading eigenvalue by adding or removing edges to limit or

facilitate the information diffusion. Zhang et al. Zhang et al. (2016) proposed to limit

propagation by removing some nodes or edges at a group scale. Chan et al. Chan

et al. (2015) studied the problem of identifying a robust subgraph. There is literature

focusing on the analysis of the critical threshold: a threshold such that when the

fraction of attacked nodes exceeds it, a gaint component does not exist Cohen et al.

10

(2000); Callaway et al. (2000); Yuan et al. (2015); Shao et al. (2015). Cohen et al.

Cohen et al. (2000) used the percolation theory to calculate the critical threshold

of scale-free networks after a random attack. Yuan et al. Yuan et al. (2015) used

theoretical analysis and experimental studies to show the relation between the breadth

of the degree distribution and the critical threshold. The robustness of interdependent

networks has also been studied. Chen et al. Chen et al. (2017) developed a near-

optimal aglorithm to identify the subset of nodes at the control layer, whose failures

would lead to the maximum damage to the target layers. Buldyrev et al. Buldyrev

et al. (2010) proposed a cascading failure model on interdependent networks and

developed a framework on analyzing the critical threshold. There is little work on

preserving the robustness of interdependent networks during the attack. Di Muro

et al. Di Muro et al. (2016) proposed a method to recover a fraction of attacked

nodes during the cascading attacks on interdependent networks to improve network

robustness. When nodes in physical infrastructure networks are attacked, it may not

be recoverable. In this paper, we focus on modifying edges of healthy nodes to limit

cascading attacks and to preserve network robustness.

11

Chapter 2

MULTIPLE SOURCE DETECTION WITH A COMPLETE SNAPSHOT

Recently, there have been a lot of interests in the problem of detecting information

sources in networks. The solutions to this problem have important applications in

practice, such as identifying the sources of infectious diseases and finding the sources

of leaked confidential information. Shah and Zaman analytically studied this problem

under the SI model and developed the rumor centrality estimator Shah and Zaman

(2010, 2011, 2012). Detecting multiple information sources using the rumor central-

ity estimator has been investigated in Luo and Tay (2012); Luo et al. (2013), and

detecting a single information source with partial observations by using the rumor

centrality estimator has been considered in Karamchandani and Franceschetti (2013).

In Dong et al. (2013), the detection rate of the rumor centrality estimator when a

priori distribution of the source node is given has been evaluated.

Besides the SI model, information source detection under the SIR model, in which

“susceptible” nodes and “recovered” nodes cannot be distinguished, has also been

studied. There are a number of scenarios where it is useful to model “recovered” nodes

and assume “susceptible” nodes and “recovered” nodes are indistinguishable. For

example, in a blog-network, a user may post a rumor and then subsequently remove

the rumor after realizing that it is not the truth. After the post was deleted, from the

data crawled from the web, which has been a common methods to collect online social

network datasets, it is difficult to distinguish whether the user has never posted the

rumor or posted/deleted it. Similarly, classified information may spread in a social

network, but people who spread the information may refuse to admit that they know

the information and have spread it. This scenario again can be modeled as ”recovered”

12

but indistinguishable from “susceptible”. Zhu and Ying developed a sample-path-

based estimator in Zhu and Ying (2013) for detecting a single information source

under the SIR model. They later proved that the sample path estimator remains to

be an effective estimator even with sparse observations Zhu and Ying (2014). The

effectiveness of the sample path estimator for the SI model with partial observations

and for the SIS model have been investigated in Luo and Tay (2013b) and Luo and

Tay (2013a), respectively.

In this chapter, we consider the problem of detecting multiple information sources

under the SIR model. It is not uncommon to have multiple information sources. For

example, confidential information can be leaked from different sources and an infec-

tious disease can start from multiple locations. We study this multi-source detection

problem under the SIR model. Motivated by the sample-path-based estimator pro-

posed in Zhu and Ying (2013), we first present a clustering and localization algorithm

for tree networks, where the number of real sources is assumed to be known. We then

prove that on g-regular trees, the distances between the estimators given by the algo-

rithm and the real sources are upper bounded by a constant with a high probability.

We further present a heuristic algorithm for general networks and an algorithm for

estimating the number of sources when the number of sources is unknown.

2.1 Basic Model

In this section, we introduce the SIR model and the multi-source detection prob-

lem.

2.1.1 SIR Model

The network is defined to be an undirected graph G(V , E), where V is the set of

nodes and E is the set of edges. Each node in graph G may represent a person, a

13

computer or a mobile device. An edge represents a communication channel such that

information can be transmitted from one node to another if there is an edge between

these two nodes.

Define s(t) (i(t), r(t)) to be the fraction of nodes that are susceptible (infected,

recovered) at time t. In the classical SIR model, with the uniform contact assumption

and fully mixed approximation, the dynamic of the SIR system can be expressed by

the following set of differential equations:

ds

dt
= −βsi, di

dt
= βsi− γi, dr

dt
= γi, (2.1)

where β is the infection rate and γ is the recovery rate.

Since the network structure is ignored in those equations, these differential equa-

tions can only be used for a rough approximation of the state of the network. There-

fore, in this chapter, we consider the following multi-source Susceptible-Infected-

Recovered (SIR) model for information diffusion in networks. In the SIR model,

every node has three states: susceptible (S), infected (I) and recovered (R) such that:

• a susceptible node may be infected by his/her infected neighbors,

• an infected node may recover, and

• a recovered node cannot be infected again.

We consider a time slotted system. At the beginning of each time slot, a suscep-

tible node is infected by each of its infected neighbors with probability q, and each

infected node recovers with probability p. Assuming the number of infected neighbors

of a susceptible node is n, the probability the node becomes infected is 1− (1− q)n.

Initially, at t = 0, all nodes are in the susceptible state except a set of source nodes,

denoted by S.

14

2.1.2 Problem Description

The objective of this chapter is to locate the set of sources S given a snapshot of

the network in which we can distinguish infected nodes from other nodes, but cannot

distinguish susceptible nodes and recovered nodes. We say a node is healthy if the

node is in either the susceptible state or recovered state.

Define Xv to be the state of node v in the given snapshot and X = {Xv; v ∈ V},

where

Xv =


1, if v is in the infected state;

0, otherwise.

(2.2)

Denote by VI the set of observed infected nodes in the snapshot. We further assume

the number of sources (S = |S|) is known.

Consider Figure 2.1 as an example. Figure 2.1a is the snapshot at t = 0, in which

there are three information sources, node 1, node 2 and node 3. When we take a

snapshot at some time, the network state may look like Figure 2.1b. Define the set

of nodes to be V and VI = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Since we cannot distinguish

recovered nodes and susceptible nodes, the information we have is

X = {∀i ∈ VI , Xi = 1, and ∀j ∈ V \ VI , Xj = 0}.

Then we need to use X to identify three nodes in the network as our estimators for

the sources.

2.2 Main Results

We summarize the main results in this section and the notations in this chapter

is in Table 2.1.

15

(a) Network state when time t =

0.

(b) Network state when the snap-

shot is taken.

Figure 2.1: An example of multi-source detection.

2.2.1 Multi-Source Detection on Tree Neworks

In this section, we present a multi-source detection algorithm for tree networks,

named clustering and localization (CL). The algorithm is presented in Algorithm 2.1.

In the first step of Algorithm 2.1, we select a pair of infected nodes with the max-

imum distance because most likely these two nodes are associated with two different

information sources, where we say an infected node a is “associated” with source s

if node a is on the information spreading tree starting from node s. The second step

of the algorithm is to select S infected nodes in a greedy fashion to maximize the

pairwise distances of these S nodes. These S infected nodes are likely to be associ-

ated with different sources, and are likely to be the leaf nodes of the corresponding

information spreading trees. The third step divides the set of infected nodes into S

sets according to their distances to the selected S nodes. The purpose is to cluster the

infected nodes according to their associated sources. The fourth step estimates the

maximum distance rmax from a source to any observed infected node associated with

the source, which can be used to approximate the depth of the information spreading

16

Algorithm 2.1 Clustering and Localization (CL)

1: Select two infected nodes e1 and e2 with the maximum distance, i.e.,

d(e1, e2) = max
a,b∈VI

d(a, b),

and let B = {e1, e2}.
2: Let i = |B| and select an infected node ei+1 ∈ VI \ B such that

d(ei+1,B) = max
a∈VI\B

d(a,B),

i.e., selecting an infected node from VI \ B that is furthest away from set B. Here
d(a,B) = minu∈B d(a, u), where d(a, v) is the distance between node a and v on
graph G(V , E). Repeat this step until |B| = min{S, |VI |}.

3: Without loss of generality, assume |B| = S. Partition the set of infected nodes

into S sets: V(s)
I for s = 1, · · · , S. An infected node a is assigned to set V(s)

I if

d(a, es) = min
j=1,··· ,S

d(a, ej).

Ties are broken arbitrarily.

4: For each V(s)
I , compute the infection radius

rs =

⌊
max
a,b∈V(s)

I

d(a, b)

2

⌋
.

Furthermore, compute the maximum infection radius

rmax = max
s=1,...,S

rs.

5: Consider the tree T formed by the set of nodes in B and paths between each two
nodes in B on graph G. For each ei ∈ B, find a node γi on tree T such that
d(ei, γi) = rmax, and add node γi into S̃.

6: S̃ is the set of source estimators.

trees. In the final step, a tree T with nodes in B as the leaf nodes is constructed;

and for each ei ∈ B, we select a node γi ∈ T that is rmax hops away from ei as the

corresponding source estimator. Note that γi is close to the real source associated

with infected node ei when ei is close to a leaf node on the corresponding information

spreading tree and rmax is close to the depth of the tree.

Next, we present an example to illustrate how our algorithm works. Assuming

17

G(V , E) the tree that our detection problem is based on.

VG the set of vertices of G.

VS the set of actual sources.

S |VS|, the number of original sources.

VI
the set of infected nodes when we take the snap-

shot.

d(a, b) the distance between node a and b on tree G.

(a, b)
the path between node a and b, and also it repre-

sents the set of nodes on that path.

ζi (i = 1, ..., S) The actual information sources.

γi (i = 1, ..., S) The estimators we find.

Vγ the set of estimators.

di,j di,j = d(ζi, ζj).

d d = min
1≤i,j≤S

di,j.

Ka
b,c Node satisfies (a, c) ∩ (a, b) = (a,Ka

b,c).

(a, b) ⊂ (c, d) path (a, b) is contained in path (c, d).

a ∈ (c, d) node a is on path (c, d).

d(a,N) N is a set of nodes and min
b∈N

d(a, b)

tIa The time that node a got infected

tRa The time node a recovered

Table 2.1: Notations

18

Figure 2.2: An simple example of our algorithm.

the probability of infection q = 1 and the probability of recovery p = 1, which means

each infected node, right after it is infected, will infect all of its susceptible neighbors

and then become recovered at the end of the time slot. Given a simple tree structure

as in Figure 2.2, we use the dotted lines to represent the paths. There are two

original sources, ζ1 and ζ2. The snapshot includes four infected nodes, v1, v2, u1 and

u2, and we have d(ζ1, v1) = d(ζ1, v2) = t and d(ζ2, u1) = d(ζ2, u2) = t. Under our

algorithm, a pair of infected nodes that are farthest away from each other are selected,

which could be {v1, u1}, {v1, u2}, {v2, u1} and {v2, u2}. Without loss of generality,

assume the two nodes are v1 and u1. Then after step 3, we have V(1)
I = {v1, v2} and

V(2)
I = {u1, u2}. Then, we have the maximum infection radius rmax is exactly equal to

t and the tree T formed by the infected nodes and paths between them is the original

tree G(V , E). Therefore, in step 5, the two estimators, say γ1 and γ2, on tree T that

satisfy d(v1, γ1) = t and d(u1, γ2) = t are the sources ζ1 and ζ2.

2.2.2 Performance Analysis

The following theorem shows that for a g-regular tree, the distance between a

detected source produced by Algorithm 2.1 and its closest real source is bounded by

a constant with a high probability, where the constant is independent of the size of

the infected subnetwork.

19

Theorem 2.1. Consider a (g + 1)-regular tree with infinite number of levels where

g > 2. Assume that gq > 1 and the distance between any two sources is larger than

C for some large enough constant C. Then given any ε > 0, there exists a constant

dε such that the distance between each estimator and its closest real source is upper

bounded by dε with a probability at least 1− ε, where dε is independent of the size of

the infected subnetwork. �

The detailed proof is presented in Section A, which consists of the following key

steps:

1) We define one-time-slot branching process to be an infection spreading tree such

that each infected node on the tree was infected in the immediate next time slot

after the infection of the node’s parent. A one-time-slot branching process is a

subsequence of the infection process where an infected node is included in the

one-time-slot branching process if and only if it was infected at the immediate

next time slot after her parent was infected. Because of that, the radius of

the one-time-slot branching process increases by one in every time step until

it terminates. Then for each source ζi, we define event Aζi which includes two

cases: Case 1: the source has at least (S+ 1) one-time-slot branching processes

survived after time t0. This means there exist (S + 1) survived one-time-slot

branching processes whose roots are nodes that were infected before or at time

slot t0, where a one-time-slot branching process starting from an infected node

is said to survive if it never dies out, which occurs with a non-zero probability.

Case 2, the infection process from the source terminates at time t0. We will

prove that event A =
⋂
i

Aζi occurs with a high probability.

2) The next step is to show that under event A, each estimator produced by

the algorithm is within a constant distance to its closest original source. The

20

analysis includes the following three cases:

(a) Infection processes from all original sources die out at time t0.

(b) At least two sources have survived (S + 1) one-time-slot branching pro-

cesses.

(c) Only one source have survived (S + 1) one-time-slot branching processes

after time t0.

In case (a), since infection processes from all original sources die out at time

t0, the maximum distance between a source and its associated infected nodes is

t0. Since any two sources are sufficiently far away from each other, the infected

nodes in each set V(i)
I are associated with the same source. Then in step 4,

rmax ≤ t0, which means the distance between each estimator found in step 5

and its closest original source is no larger than 2t0, which further means the

distance between each estimator and its closest source is bounded by a constant.

For case (b) and case (c), the idea is to study the leaf-nodes of the survived

one-time-slot branching processes. The distance between the leaf-nodes of two

one-time-slot branching processes from the same source is at least 2t−2t0. Note

that each survived source has at least (S+1) one-time-slot branching processes.

For simplicity, assume the nodes in set B after step 2 are the leaf-nodes of one-

time-slot branching processes (This may not be true in general and we will

discuss the general case in the proof). Then after step 3, there are at least two

leaf-nodes of one-time-slot branching processes from the same source in V(i)
I ,

which implies t− t0 ≤ rmax ≤ t. Then the distance between the estimator and

its closest survived source is equal to or smaller than rmax− (t− t0) + t0, which

is smaller than 2t0.

21

We can finally conclude that under eventA, the distance between each estimator

and its closest original source is bounded by a constant, so Theorem 2.1 holds.

2.2.3 Heuristic for General Network Topologies

Locating multiple information sources in general networks is a much more compli-

cated problem. Algorithm 2.1 is not directly applicable to a general network because

after obtaining set B, multiple trees can be constructed with the nodes in B as leaf

nodes. Therefore, we propose the following heuristic algorithm, which use the Jordan

infection center defined by V(s)
I as the estimator associated with es.

Algorithm 2.2 Clustering and Reverse Infection (CRI)

1: Step 1 to 3 of Algorithm 2.1.

2: For V(s)
I , use the reverse infection algorithm in Zhu and Ying (2013) to find a

Jordan infection center for V(s)
I , named γs, and then add γs to S̃. A Jordan

infection center γs for V(s)
I is defined to be

γs ∈ arg min
b∈V

(
max
a∈V(s)

I

d(b, a)

)
.

In Algorithm 2.2, if the distance between any two original sources is sufficiently

large, it is likely that the infected nodes in each set V(s)
I are associated with the

same source. The reverse infection algorithm was proposed in Zhu and Ying (2013)

to localize the source in the single-source SIR model. If the infected nodes in V(s)
I

are associated with the same source, we can expect the reserve infection algorithm

restricted to V(s)
I to output a good estimator. Therefore, in Algorithm 2.2, we use the

reverse infection algorithm in each set V(s)
I to get our estimators.

22

2.2.4 Heuristic for Estimating S

Both Algorithms 2.1 and 2.2 require the knowledge of the number of real sources,

which may be difficult to know in practice. We further propose the following heuristic

for estimating the number of real sources when the number of real sources is unknown.

Algorithm 2.3 An Algorithm for Approximating S

1: Choose a large number S̄. For each k such that 1 ≤ k ≤ S̄, use the steps 1-4 in
Algorithm 2.1 to compute wk = rmax by assuming the number of real sources is
k.

2: Set
S̃ = arg max

k:1≤k≤S̄−2
wk − wk+1 − (wk+1 − wk+2),

and claim S̃ to be the number of real sources.

Assume the information spreading trees never die out. Consider the case where k

is smaller than the number of real sources. Then after the clustering step of Algorithm

2.1, there exists a set V(s)
I which contains infected nodes from at least two different real

sources. In such a set, the maximum distance between two nodes will be significantly

larger than the distance of two infected nodes that are associated with the same

source, assuming the real sources are not close to each other. Then under Algorithm

2.2, we will observe a significant decrease in wk when the value of k changes from

S − 1 to S. Based on this observation, we use k that maximizes

wk − wk+1 − (wk+1 − wk+2)

as the estimator of S.

Theorem 2.1 was established assuming an infinite regular tree network, in which

case, the diameter of the network is infinite and the infection process can never

reach the “edge” of the network. Therefore, if the time when the snapshot is taken

is large enough, we can utilize the survived one-time-slot branching processes to

identify the sources. However, in reality, networks are of finite size, which means the

23

infection processes from different sources may hit the “edge” of the network and get

completely “mixed” when the spreading time is large enough. Therefore, in practice,

the algorithm may not perform well when the infection time is close to the diameter of

the network. In fact, from Table 2.3 and Figure 2.6, the normalized average distance

becomes larger as the decrease of the diameter of the small-world network.

2.3 Performance Evaluation

In this section, we evaluate the performance of our algorithm using simulations.

2.3.1 Tree Networks

In this set of simulations, we assumed the number of real sources is known. We

evaluated Algorithm 2.1 on g-regular trees and binomial random trees, in which the

number of children of each node follows a binomial distribution with number of tri-

als, D′, and success probability β. In this simulation, we choose 4 original sources

randomly and set β = 0.6, the probability of infection, q, is uniformly chosen from

(0, 0.3) and the probability of recovery, p, is uniformly chosen from (0, 0.2).

In Figure 2.3a and 2.3b, we plotted the average distance between real sources

and the estimators versus the degree of the trees. To calculate the distance between

an estimator and its related source, we maintain an estimator list, which contains

all estimators, and a source list, which contains all sources. Then, we select the

(estimator, source) pair with the smallest distance between them among all possible

pairs formed by nodes from these two lists. Then we assign the estimator to the

source in the pair we have selected. Next, we remove the source and the corresponding

estimator from the source list and estimator list. The previous three steps are repeated

until the estimator list or the source list is empty. After that, we can use the distance

between the two nodes in each selected pair to calculate the average distance.

24

Degree
2 4 6 8 10

A
v
e
ra

g
e
 D

is
ta

n
c
e

0

10

20

30

40

50

(a) Binomial random trees.

D
′

2 4 6 8 10

A
v
e
ra

g
e
 D

is
ta

n
c
e

0

5

10

15

20

25

(b) Regular trees.

Figure 2.3: The average distance from sources to the estimators with 25 and 75

percentile on tree networks.

2 4 6 8 10
0

10

20

30

40

50

60

D
′
(Binomial Trees)/Degree(Regular Trees)

D
e

te
c
ti
o

n
 R

a
te

(%
)

Binomial Trees

Regular Trees

Figure 2.4: True detection rate on binomial trees and regular trees.

From Figure 2.3a and Figure 2.3b, we can see that as the degree of the tree

becomes larger, the performance of our algorithm improves. For regular trees, the

average distance is smaller than 3 when the degree is 5 or larger; and for binomial

random trees, the average distance is smaller than 4 when D′ is 5 or larger.

In Figure 2.4, we plotted the detection rate of Algorithm 2.1, which is the fraction

of estimators being real sources. As the degree becomes bigger, detection rates of

both regular trees and binomial trees improves.

25

2.3.2 General Networks

In this set of simulations, we tested the performance of our algorithm on the

Erdős-Rényi (ER) model Rényi and Erdős (1959) and the small-world network model

proposed in Kleinberg (2000). We compared our algorithm with random guessing

and a heuristic algorithm based on k-means clustering. In k-means clustering, the

initial centroids are randomly chosen. During the clustering step of each iteration

in the k-means heuristic, we used distance centrality to select the centroid of each

cluster. We assumed that the number of sources is unknown so we used Algorithm

2.3 to estimate the number of sources.

The ER random graph

The ER random graphs generated in this section contains 2000 nodes with wiring

probability p, i.e., every pair of nodes is connected with probability p. We varied p

to generate graphs with different diameters to test the algorithms. The diameters of

the random graphs with different values of p are listed in Table 2.2. In Figure 2.5,

we used the normalized average distance between the estimator and its associated

original source, which is the average distance divided by the diameter of the network,

to measure the performance. From Figure 2.5a and 2.5b, we can see that both the CRI

algorithm and k-means algorithm performs much better than the random guessing

algorithm, while the CRI algorithm outperforms k-means. As p becomes larger, which

means the number of edges becomes larger, the normalized average distances of all

these algorithms increase, which means these algorithms perform better in sparse

networks than dense networks in terms of the normalized average distance.

26

p ×10
-3

0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

N
o

rm
a
liz

e
d
 A

v
e

ra
g

e
 D

is
ta

n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Guessing
K-means
CRI

(a) The number of original sources is

4.

p ×10
-3

0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

N
o

rm
a
liz

e
d
 A

v
e

ra
g

e
 D

is
ta

n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Guessing
K-means
CRI

(b) The number of original sources is

5.

Figure 2.5: The average distance between estimators and original sources versus

random graph parameter probability p with 25 and 75 percentile.

q
0 0.5 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e

 D
is

ta
n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Guessing
K-means
CRI

(a) The number of original sources is

4.

q
0 0.5 1 1.5 2 2.5 3

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e

 D
is

ta
n
c
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Random Guessing
K-means
CRI

(b) The number of original sources is

5.

Figure 2.6: The average distance between estimators and original sources versus q

with 25 and 75 percentile.

27

p 0.001 0.0015 0.002 0.0025

Diameter 26 17 11 10

Table 2.2: Diameters for random graphs with different p.

q 0 1 2 3

Diameter 98 26 19 15

Table 2.3: Diameters for the small-world networks with different q.

The small-world network

The small-world model proposed in Kleinberg (2000) is based on a two-dimensional

n × n grid, where the nodes are the lattice points. There are three parameters in

this model, p, q, and r. For each node in the grid, it has an edge to every other node

within lattice distance p. Then for each node u, q edges between u and other nodes

are constructed. For example, the ith edge from u has endpoint v with probability

proportional to (d(u, v))−r. When we generated the network, we chose 50 × 50 grid

with p = 1 and r = 3, while q was varied from 0 to 3. The diameters of these

networks used in section are listed in Table 2.3. The results are shown in Figure

2.6a and 2.6b, we can see that the CRI algorithm outperforms k-means algorithm

and random guessing algorithm. As q increases, the normalized average distances

increase under all three algorithms, similar to those in the ER random graphs.

2.4 Conclusion

In this chapter, we studied the multi-source detection problem in the SIR model

with the observation of states of nodes in the network. We provided an algorithm

for tree network to detect multiple information sources when the number of sources

28

is known. And we also proved that with a fairly general condition, each estimator is

within a constant distance to its closest original source for tree networks, which can

guarantee our algorithm. Then we proposed another algorithm for general networks

and a heuristic algorithm to decide the number of sources, which make our CL and

CRI algorithms more general and applicable. The simulation results showed that our

algorithm performs well on multi-source detection problem.

29

Chapter 3

MULTIPLE SOURCE DETECTION WITH PARTIAL OBSERVATION

In this chapter, we consider the information source detection problem in a setting

that generalizes the existing ones at several important directions.

• Multiple sources versus single source: In this chapter, the diffusion can be origi-

nated from multiple nodes simultaneously, instead of from a single source. When

the infection duration is sufficiently short, the infected subnetworks from dif-

ferent sources are disconnected components. In such cases, the single-source

localization algorithms can be applied to each of the infected subnetwork. We,

however, do not make such an assumption, and consider the scenario where the

infected subnetworks may overlap with each other, so the single-source local-

ization algorithms cannot be directly applied.

• A partial snapshot versus a complete snapshot: In this chapter, we assume a

partial snapshot in which each node reports its state with some probability,

which is in contrast to a complete snapshot assumed in the literature where all

nodes’ states are observed. Because of a partial snapshot, the sources may not

report their states and be observed as infected nodes; and the observed infected

nodes may not form a connected component. Both increase the uncertainty and

complexity of the problem. In fact, it turns out to be critical to have a candi-

date selection algorithm to select source candidates from unobserved nodes but

only use observed infected nodes in computing the infection eccentricity. The

selection step yields 27× reduction on the computing time in our simulations

while guaranteeing the same the detection rate, and yields 600× reduction on

30

the computing time with a slight reduction of the detection rate.

• Heterogeneous diffusion versus homogeneous diffusion: Our algorithm applies

to the heterogeneous SIR diffusion model where links have different infection

probabilities and nodes have different recovery probabilities. The asymptotic

guarantees on the detection rate hold for the heterogeneous SIR model.

While some of these extensions have been investigated in the literature individ-

ually, our model includes all three extensions. We propose a novel algorithm for

locating multiple sources for such a general model and prove theoretical guarantees

on the detection rate for non-tree networks. The main results are summarized below.

(1) We introduce the concept of Jordan cover, which is an extension of Jordan

center. Loosely speaking, a Jordan cover with size m is a set of m nodes that

can reach all observed infected nodes with the minimum hop-distance. We

propose Optimal-Jordan-Cover (OJC), which consists of two steps: OJC first

selects a subset of nodes as the set of the candidates of the diffusion sources;

and then it finds a Jordan cover in the subgraph induced by the candidate nodes

and the observed infected nodes. We emphasize that only the hop-distance to

the observed infected nodes is considered in computing a Jordan cover.

(2) We analyze the performance of OJC on the ER random graph, and establish

the following performance guarantees.

(i) When the infection duration is shorter than 2
3

logn
µ
, where µ is the average

node degree and n is the number of nodes in the network, OJC identifies

the sources with probability one asymptotically as n increases.

(ii) When the infection duration is at least
⌈

logn
log µ+log q

⌉
+ 2 where q is the mini-

mum infection probability, under any source location algorithm, the detec-

31

tion rate diminishes to zero as n increases under the Susceptible-Infected

(SI) and Independent-Cascade (IC) models, which are special cases of the

SIR model.

(3) The computational complexity of OJC is polynomial in n, but exponential in

m. We further propose a heuristic based on the K-Means for approximating the

Jordan cover, named Approximate-Jordan-Cover (AJC). Assuming a constant

number of iterations when using the K-Means, the computational complexity

of AJC is O(nE), where E is the number of edges. Our simulations on random

graphs and real networks demonstrate that both AJC and OJC significantly

outperform other heuristic algorithms.

3.1 Problem Formulation

We assume the network is represented by an undirected graph g. Denote by E(g)

the set of edges and V(g) the set of nodes in graph g. Let n denote the number of

nodes and E denote the number of edges. We further assume a heterogeneous SIR

model for diffusion. In this model, each node has three possible states: susceptible

(S), infected (I) and recovered (R). Time is slotted. At the beginning of each time

slot, each infected node (say node u) attempts to infect its neighbor (say node v)

with probability quv, independently across edges. We call quv the infection probability

of edge (u, v). At the end of each time slot, each infected node (say node u) recovers

with probability ru, independent of other infected nodes. We call ru the recovery

probability. We further assume quv ∈ (0, 1] for all edges (u, v) ∈ E(g) and rv ∈ [0, 1]

for all nodes v ∈ V(g).

Note that the SIR model includes two important special cases. When the recov-

ery probability is zero, the SIR model becomes the Susceptible-Infected (SI) model

32

Bailey (1975), where infected nodes cannot recover. When the recovery probability is

one, the SIR model becomes the Independent Cascade (IC) model Goldenberg et al.

(2001b) by regarding both infected nodes and recovered nodes as active nodes and

regarding the susceptible nodes as inactive nodes.

We assume the epidemic diffusion starts from m sources in the network. In other

words, at time slot 0, m nodes (sources) are in the infected state and all other nodes

are in the susceptible state. Denote by s1, s2, · · · , sm the sources and S the set of

sources, i.e., S = {s1, s2, · · · , sm}. We assume m is a constant independent of n.

Finally, we assume that a partial snapshot of the network state at time slot t is

given, with an unknown observation time t. In the snapshot, each infected or recovered

node reports its state with probability θv ∈ (0, 1), independent of other nodes. If a

node reports its state, we call it an observed node. Denote by I ′ the set of observed

infected and recovered nodes. In this chapter, we call infected nodes and recovered

nodes as “infected nodes” unless explicitly clarified.

Based on I ′, the source localization problem is to find S that solves the following

maximum likelihood (ML) problem

W∗ = argmax
W⊂V(g)

Pr(S =W|I ′).

Even with a single diffusion source, this problem is known to be a difficult prob-

lem Shah and Zaman (2010); Zhu and Ying (2013) on non-tree networks. Therefore,

instead of solving the ML problem above, we are interested in algorithms with asymp-

totic perfect detection, i.e., finding all sources with probability one as the network size

increases. We believe this alternative metric is reasonable because we often need to

solve the problem for large-size networks such as online social networks, and an algo-

rithm with asymptotic perfect detection can detect sources with a high probability

when the network size is large.

33

3.2 Algorithms

Algorithm 3.1: The Candidate Selection Algorithm

Input: I ′, g, Y ;
Output: g− (the candidate subgraph)
Set K to be an empty set.
for v ∈ V(g) do

if |N (v) ∩ I ′| >= Y then
Add v to K, where N (v) is the set of neighbors of node v.

end
end
Set K+ to be K ∪ I ′.
Set g′ to be the graph induced by set K+.
Find all connected components in g′.
if g′ is connected then

Set g− = g′.
else

Randomly select one node in each components of g′. Denote by R the set
of the selected nodes.

Randomly select one node v ∈ R.
for u ∈ R\v do

Compute the shortest path P from v to u.
Set g′ = g′ ∪ P.

end
Set g− = g′

end
return g−,K.

In this section, we present OJC and AJC based on the concept of Jordan cover.

Define the hop-distance between a node v and a node set W to be the minimum

hop-distance between node v and any node in W , i.e.,

d(v,W) , min
u∈W

d(v, u).

We then define the infection eccentricity of node set W to be the maximum hop-

distance from an infected node in I ′ to set W , i.e.,

e(W , I ′) = max
v∈I′

d(v,W). (3.1)

34

We further define m-Jordan-cover (m-JC) to be the set W∗(K, I ′,m) such that

W∗(K, I ′,m) = argmin
W∈{W||W|=m,W⊂K}

e(W , I ′). (3.2)

where I ′ is the set of observed infected nodes that m−JC needs to cover and K is the

candidate set for the sources. Therefore, m-JC is the set of m nodes in K with the

minimum infection eccentricity.

We now introduce the optimal Jordan cover (OJC) algorithm whose asymptotic

detection rate will be analyzed in Section 3.3.1.

The Optimal Jordan Cover (OJC) Algorithm

• Step 1: Candidate Selection: Let Y be a positive integer. The candidate

set K is the set of nodes with more than Y observed infected neighbors. In

addition, define K+ , K∪ I ′. Denote by g− a connected subgraph of g induced

by node set K+. An induced graph is a subset of nodes of a graph with all

edges whose endpoints are both in the node subset. If the induced graph is

not connected, we select a random node in each component, randomly pick one

selected node and add the shortest pathes from this node to all other selected

nodes to form a connected g−. We call Y the selection threshold. The pseudo

code of the candidate selection algorithm for selecting K and g− can be found

in Algorithm 3.1.

• Step 2: Jordan Cover: For any m combination of nodes in K in Step 1, we

compute the infection eccentricity of the node set as defined in (3.1) on subgraph

g−, and select the combination with the minimum infection eccentricity as the

set of sources. Ties are broken by the total distance from the observed infected

to the node set, i.e.,
∑

v∈I′ d(v,W).

With a properly chosen threshold Y, the candidate selection step includes all

sources in K with a high probability and excludes nodes that are more than t + 1

35

hops away from all sources. By limiting the computation on the induced subgraph g−,

the computational complexity is reduced significantly. From simulations, we will see

that it results in 27× reduction of the running time without affecting the detection

rate. The asymptotic detection rate of OJC will be studied in Theorem 3.2. Under

some conditions, OJC identifies all sources with probability one asymptotically.

OJC is a polynomial-time algorithm for given m, but the complexity increases

exponentially inm. To further reduce the complexity, we propose Approximate Jordan

Cover (AJC), which replaces Step 2 of OJC with the K-Means algorithm Hartigan and

Wong (1979). As shown in the simulations, the performance of the AJC algorithm, in

terms of both detection rate and the error distance, is close to OJC with much shorter

running time. The computational complexity of both algorithms are summarized in

the following theorem.

Theorem 3.1. The computational complexity of OJC is

O

(
|I ′|
(
|E(g)|+m

(
|V(g−)|
m

)))
,

and the computational complexity of AJC is

O
(
|I ′|
(
|E(g)|+H|V(g−)|

))
,

where H is the number of iterations used in the K-Means algorithm in AJC.

Proof. We first analyze the complexity of the OJC algorithm. For simplicity, denote

by V = |V(g)| the number of nodes and E = |E(g)| the number of edges.

In the candidate selection stage, each node needs to compute its degree. Therefore,

each edge is counted twice and each node is processed once. The complexity is

O(V + E). Counting the number of the connected components using breadth first

search is of complexity O(V + E). When the induced graph is not connected, the

complexity to compute the shortest paths from one node to all other nodes in an

36

unweighted graph is of complexity O(V + E). As a summary, the complexity of the

candidate selection algorithm is O(V + E).

The resulting subgraph has |V(g−)| nodes and at most E edges. Next, we compute

the complexity of the OJC.

We first compute the distances from nodes in g− to nodes in I ′. Note this is

equivalent to do a breadth-first search from each node in I ′. The complexity of the

BFS is O(|V(g−)|+E). Therefore, the complexity for this step is O(|I ′|(|V(g−)|+E)).

The results are saved in a two dimensions hashtable so that querying the distance

from one observed infected node and another node in graph g− is of complexity O(1).

After the above precomputation, for each set of nodes with size m, we want to ob-

tain its infection eccentricity. For each observed infected node, we query the hash table

to find the minimum distance to the set of nodes with size m. The complexity is O(m).

To compute the infection eccentricity of one set is of complexity O(m|I ′|). In addition,

there are
(|V(g−)|

m

)
possible node sets. Therefore, the complexity is O((m|I ′|)

(|V(g−)|
m

)
)

As a summary, the complexity of the OJC algorithm is

O

(
V + E + |I ′|(|V(g−)|+ E) +m|I ′|

(
|V(g−)|
m

))
=O

(
|I ′|
(
E +m

(
|V(g−)|
m

)))
Next, we analyze the complexity of the AJC algorithm. Note the complexity of

the candidate selection and the precomputation are the same. The complexity of the

Kmeans algorithm is analyzed as follows.

The complexity of the membership assignment phase is O(m|I ′|). For each ob-

served infected node, we only need to query its distance to the preselected m sources

and each query is of complexity O(1) based on the results of the precomputation.

For the center update phase, for each cluster, we need to search all |V(g−)| nodes

to find a center. Therefore, the complexity is |V(g−)||I ′|.

37

As a summary, the complexity of one iteration of the Kmeans algorithm is

O
((
m+ |V(g−)|

)
|I ′|
)

Denote by H the number of iterations, the complexity of the AJC algorithm is

O
(
V + E + |I ′|(|V(g−)|+ E) +N

((
m+ |V(g−)|

)
|I ′|
))

=O
(
|I ′|
(
E +H|V(g−)|

))

3.3 Asymptotic Analysis of OJC

In this section, we present the asymptotic analysis of the detection rate of OJC on

the ER random graph. The results include the conditions that guarantee probability

one detection and the conditions under which it is impossible to detect the source set

with nonzero probability under any source localization algorithm.

3.3.1 Asymptotic Perfect Detection on the ER Random Graph

We first present the positive result that shows that on the ER random graph, OJC

identifies the m sources with probability one asymptotically under some conditions.

Recall that n is the number of nodes in the graph, and m is the number of sources,

which is a constant independent of n. Denote by p the wiring probability of the ER

random graph, which is the probability that there exists a link between two nodes.

Let µ = np, which is the average node degree. Define q , minu,v∈V(g) qu,v, i.e., the

minimum infection probability over all edges and θ , minv∈V(g) θv i.e., the minimum

report probability over all nodes.

Theorem 3.2. OJC identifies all m sources with probability one as n→∞ when the

following conditions hold:

38

(c1): µqθ = Ω (log n) , 1

(c2): lim supn→∞
Y
µqθ

< 1 and lim infn→∞
Y
µqθ

> 0, and

(c3): t = ω(D) and lim supn→∞
t

logn
log µ

< 2
3
.

Proof. In this proof, we will show that one source si ∈ W∗(K, I ′,m) with a high

probability. Then with a union bound, we will show that

S =W∗(K, I ′,m).

with a high probability for sufficiently large n.

Recall that we regard the recovered nodes and infected nodes as ”infected” since

the recovery process is not related to the proof. Without loss of generality, we consider

s1. Throughout the proof, we consider the BFS tree rooted at s1. In particular, the

level of one node means the level of the node on the BFS tree rooted at s1.

We first introduce and recall some necessary notations terms.

For an ER random graph g.

• A node v is said to be on level i if ds1v = i. Denote by Li the set of nodes from

level 0 to level i and li = |Li|.

• Denote by L′i the set of nodes on level i. In addition, l′i is the number of nodes

on level i.

• The descendants of node v in a tree are all the nodes in the subtree rooted at

v. In addition, v is the ancestor of all its descendants.

• The offsprings of a node on level k (say v) are the nodes which are on level k+1

and have edges to v. Denote by Φ(v) the offspring set of v and φ(v) = |Φ(v)|.
1Throughput this chapter, the asymptotic order notation is defined for n→∞.

39

• Denote by p the wiring probability in the ER random graph.

• Denote by n the total number of nodes.

• Denote by µ = np.

• Denote by Bi(n, p) the binomial distribution with n number of trials and each

trial succeeds with probability p.

• Denote by T † the BFS tree rooted at s1.

• Denote by Φ′(v) the set of offsprings of node v on T † and φ′(v) = |Φ′(v)|.

• Denote by gt the subgraph induced by all nodes within t hops from s on the

ER graph. The collision edges are the edges which are not in T † but in gt, i.e.,

e ∈ E(gt)\E(T †).

• A node who is an end node of a collision edge is called a collision node. Denote by

Rk the set of collision edges whose end nodes are within level k and Rk = |Rk|.

• Denote by Zi the set of nodes which are infected at time i.

• Denote by Z̃ ij(v) the set of nodes that are infected at time slot i, on level j,

when s1 is the only infection source in the graph and the descendants of node

v in the BFS tree rooted at s1 and Z̃ ′ij (v) are the observed infected nodes in

Z̃ ij(v). Z̃i
j(v) and Z̃ ′ij (v) are defined as the cardinality respectively.

• Denote by ψ(v) the number of observed infected neighbors of node v.

• Denote by ψ′(v) the number of infected offsprings of node v (the offspring is

defined based on the BFS tree rooted at node s1).

• Denote by ψ′′(v) the number of observed infected offsprings of node v.

40

To prove s1 ∈ W∗(K, I ′,m), we need to show that any set W such that s1 6∈ W

has a infection eccentricity larger than t on g−. We need the following asymptotic

high probability events.

• Offsprings of each node. Consider the BFS tree rooted at source s1. Define

E1 = {∀v ∈ Lt+D, φ′(v) ∈ ((1− δ)µ, (1 + δ)µ)}.

E1, when occurs, provides upper and lower bounds for the number of offsprings

of each node in Lt+D.

• Total number collision edges. Consider the BFS tree rooted at source s1.

We define event E2 when the following upper bound on the collision edges holds

Rj


= 0 if 0 < j ≤ bm−c,

≤ 8µ if bm−c < j < dm+e,

≤ 4[(1+δ)µ]2j+1

n
if dm+e ≤ j ≤ logn

(1+α) log µ
.

wherem+ = logn
2 log[(1+δ)µ]

andm− = logn−2 log µ−log 8
2 log[(1+δ)µ]

. E2 provides the upper bounds

for collision edges at different levels. Note that a subgraph with diameter ≤ m−

is a tree with high probability since there is no collision edges.

• Detailed collision edges in level > D + t. Define E3 to be the event that

∀v ∈ L′D+t+1, ψ(v) < (1− δ)3µqθ.

• Infected nodes. Define

E4 = {∀v ∈ ∪t−1
i=0Zi, ψ′(v) > (1− δ)2µq.}

and

E5 = {∀v ∈ ∪t−1
i=0Zi, ψ′′(v) > (1− δ)3µqθ.}

41

Figure 3.1: A pictorial example for Theorem 2.

• Infected nodes from source s1. Define

E6 = {Z̃1
1 ≥ (1− δ)2µq} ∩ {∀v ∈ Z̃1

1 , Z̃
′t
t (v) ≥ [(1− δ)2µq]t−1(1− δ)θ}

To prove these event happens with a high probability, we have

Pr(E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6)

≥Pr(E1)(1− Pr(Ē2|E1)− Pr(Ē3|E1)− Pr(Ē6|E1))− Pr(Ē4 ∪ Ē5)

= Pr(E1)(1− Pr(Ē2|E1)− Pr(Ē3|E1)− Pr(Ē6|E1))− (1− Pr(E4 ∩ E5))

≥1− ε,

for sufficiently large n. Based on Lemma B.1, B.2, B.4 and B.5, we have events E1,

E2, E3, E4, E5, E6 happen with a high probability as n is large enough. The proofs

can be found in the Appendices.

We summarize the important properties of the OJC algorithm based on the above

asymptotic events.

(a) Let Y = (1− δ)3µqθ. In Step 1 of the OJC algorithm, we have K ⊂ Lt+D, i.e.,

all nodes on the subgraph g− are within level t + D of the BFS tree rooted at

source s1. Based on E3, all nodes on level t+D + 1 have less than Y observed

42

infected neighbors. In addition, all nodes one level l > t+D+1 have no infected

neighbors since all the infected nodes are within level t+D.

(b) Based on event E5, all nodes which are infected at or before time t − 1 have

at least Y observed infected neighbors. Therefore, we have ∪t−1
i=0Zi ⊂ K which

implies I ⊂ K+ and g− is a connected graph.

Therefore, g− is a connected graph which contains all the infected nodes and is re-

stricted up to level t+D based on E3 and E5.

Next we will show that s1 ∈ W∗ by contradiction. Note, we have e(S, I ′) = t.

Therefore, e(W∗, I ′) ≤ t. We will show that e(W , I ′) > t for any set of nodes W

where |W| = m, s1 6∈ W . Note, all the infection eccentricity are considered based on

the subgraph g−. Specifically, we will show that no nodes in g− other than source s1

can reach all nodes which are infected by source s1 within t time slot based on events

E1, E2, E3, E4, E5 and E6.

Consider the BFS tree rooted at source s1. We discuss the proof in two cases.

(a) When t+D ≤ bm−c, according to the event E2, the t+D hops from s1 is a tree

because there is not collision edges. When event E6 occur, there are at least

(1−δ)2µq infected nodes at level 1 and ∀v ∈ Z1
1 , Z

′′t
t (v) ≥ [(1−δ)2µq]t−1(1−δ)θ

which means there exists at least one observed infected node on level t for each

subtree rooted at level 1. Consider a set W where s1 6∈ W . There exists a node

u ∈ Z̃1
1 such that W ∩ V(T−s1u) 6= ∅ where T−s1u is the tree rooted at node u

without the branch of node s1 (the subtree on level 1). Therefore, for one node

w ∈ Z̃ ′tt (u), we have d(w,W) > t. Hence for any set W with size m that does

not contain s1, e(W , I ′) > t. Therefore, we have s1 ∈ W∗ when t+D ≤ bm−c.

Figure 3.1 shows a pictorial example when m = 3. The red nodes are the nodes

in set W . The existence of node u is guaranteed since m nodes are insufficient

43

to cover all level 1 branches of the BFS tree rooted in s1. The red areas are the t

hop neighborhood of nodes w1, w2 and w3. In this case, the t+D neighborhood

of node s1 is a tree. Therefore, any set W does not contain s1 can not reach

the yellow area Z̃ ′′tt (u) within t hops as shown in the figure.

(b) Consider the case when t+D > bm−c. Again, based on event E6, there exists a

node u ∈ Z̃1
1 such thatW∩V(T−s1u) 6= ∅. The distance between a node in Z ′tt (u)

and setW on the BFS tree is larger than t. Therefore, ifW is a Jordan infection

cover, the shortest paths between Z ′tt (u) and set W must contain at least one

collision nodes. In the rest of the proof, we will show that the number of collision

nodes is insufficient to provides the “shortcuts” to all observed infected nodes.

Define H to be the total number of nodes each of which has the shortest path

to W within t hops and containing at least one collision node. If H < Z̃ ′tt (u), there

exists a node w ∈ Z tt (u) such that d(w,W) > t. Therefore, W can not be the Jordan

infection cover and the theorem is proved.

In the rest of the proof, we will show that H < Z̃ ′tt (u). We first have the lower

bound on Z̃ ′tt (u) according to E6,

Z̃ ′tt (u) ≥ [(1− δ)2µq]t−1(1− δ)θ (3.3)

For each node wi in W , define Hi to be the total number of nodes each of which has

the shortest path to wi within t hops and containing at least one collision node. The

upper bound of Hi can be obtained based on Lemma 6 in Zhu and Ying (2015b).

Hi ≤ c[(1 + δ)µ]
3
4

(t+D)+ 1
2 + c[(1 + δ)µ](

5
4
−α

2
)(t+D)+2,

and we have

H ≤
m∑
i=2

Hi ≤ mc[(1 + δ)µ]
3
4

(t+D)+ 1
2 +mc[(1 + δ)µ](

5
4
−α

2
)(t+D)+2,

44

Since 1
2
< α < 1, we have α = 1

2
+ α′ where 0 < α′ < 1

2
is a constant, we have

H

Z̃ ′tt (u)
≤ mc[(1 + δ)µ]

3
4

(t+D)+ 1
2

[(1− δ)2µq]t−1(1− δ)θ
+
mc[(1 + δ)µ](

5
4
−α

2
)(t+D)+2

[(1− δ)2µq]t−1(1− δ)θ
(3.4)

=
mc

µ

(
(1 + δ)

3
4

+(3D
4

+ 1
2) 1

t

[(1− δ)2q]1−
1
t (1− δ)θµ

1
4
−(3D

4
+ 5

2) 1
t

)t

(3.5)

+
mc

µ

 (1 + δ)
1−α

′
2

+
[(

1−α
′
2

)
D+2

]
1
t

[(1− δ)2q]1−
1
t (1− δ)θµ

α′
2
−(4+(1−α′

2)D) 1
t

t

(3.6)

Since t >> D, we have

t ≥ min

{
3D + 2,

(
2

α′
− 1

)
D +

4

α′
,

(
4

α′
− 2

)
D +

16

α′

}
Therefore, Inequality (3.6) becomes

H

Z̃ ′tt (u)
≤ 2mc

µ

(
(1 + δ)

[(1− δ)2q]µ
α′
4

)t

.

Since µ > 1
Cqθ

log n and δ, q, α′ are constants, we have

(1 + δ)

[(1− δ)2q]µ
α′
4

< 1

when

n > exp

(
1

2

(
(1 + δ)

(1− δ)2q

) 4
α′
)
.

Therefore, we have

H

Z̃ ′tt (u)
≤ 2mc

µ
≤ ε′,

where ε′ ∈ (0, 1) is a constant and the inequality holds for sufficiently large n. There

are at least (1 − ε′)Z̃ ′tt (u) nodes which cannot be reached from W with t hops on

g−. Hence we have e(I ′,W) > t. Therefore, we proved that s1 ∈ W∗ with a high

probability when n is sufficiently large, i.e., we have

Pr(s1 ∈ W∗) ≥ 1− ε

m

45

since m is a constant. Then, by applying the union bound, we have, for sufficiently

large n,

Pr(si ∈ W∗, ∀i = 1, · · · ,m) ≥ 1− ε

Note, we have |W∗| = m. Therefore, we have

Pr(S =W∗) ≥ 1− ε

Hence, the Jordan infection cover equals the actual source set with a high probability.

We now briefly explain the conditions. Recall that µ is the average node degree,

q is the lower bound on the infection probability and θ is the lower bound on the

reporting probability, so µqθ is a lower bound on the average number of observed

infected neighbors of a node that was infected before time slot t. Therefore, condition

(c1) requires that this lower bound is Ω(log n), and condition (c2) requires that the

threshold used in the candidate selection algorithm is a constant fraction of the aver-

age number of observed infected neighors. Applying the Chernoff bound, conditions

(c1) and (c2) together yield the following conclusions:

(i) any node who was infected before or at time slot t − 1 (hence, including the

sources) will be selected into the candidate set with a high probability,

(ii) any node that is t+D+ 1 hops away from the set of sources will not have Y or

more observed infected neighbors with a high probability, and

(iii) any node that is more than t+D+ 1 hops away from the set of sources will not

have any observed infected neighbors.

Based the above facts, with a high probability, the candidate set includes all nodes

who were infected at t− 1 or earlier, and any node in g− is at most t+D hops away

from all sources.

46

Condition (c3) is on the infection duration. We first restrict t = ω(D) so that

the infection subgraphs starting from different sources are likely to overlap and form

a connected component. This is a more interesting regime than the one in which

infection subgraphs are disconnected from each other. lim supn→∞
t

logn
log µ

< 2
3

is a

critical condition. The intuition why it is required is explained below. Figure 3.1

provides a pictorial explanation of the proof. The picture illustrates the breadth-

first-search (BFS) tree T † rooted at source s1 with height t + D, where s1 is one of

the m sources. The nodes in orange are the observed infected nodes whose infection

was originated from s1. The blue nodes are unobserved nodes. A node is said to

be on level i of the BFS if its hop-distance to s1 is i. Assume m = 3 and consider

a set of three nodes who are within t + D hops from s1 but not includes s1 (e.g.,

W = {w1, w2, w3} in Figure 3.1). Suppose the infection eccentricity of W is ≤ t.

Since s1 has a sufficient number of neighbors according to the definition of µ, with a

high probability, there exists a subtree of T † starting from an offspring of s1, which

does not include any node in W . Assume u is the root of such a subtree in Figure

3.1. The yellow area in Figure 3.1 includes the level-t observed infected nodes on

subtree T−s1u . Any path from w1, w2 or w3 to the yellow area, formed by edges on T †,

must have hop-distance larger than t. Therefore, if the infection eccentricity of W is

at least t, there must exist a path from W to each of the nodes in the yellow area

with hop-distance ≤ t, and such a path must include at least one edge which is not in

T † (we call these edges collision edges). In the detailed analysis, we will prove that

with a high probability, the number of nodes within t hops from W via the collision

edges is order-wise smaller than the number of nodes in the yellow area when (c3)

holds. Therefore, the Jordan cover has to include s1. The same argument applies to

other sources.

47

3.3.2 Impossibility Results

Theorem 5 in Zhu and Ying (2016) presents the conditions under which it is

impossible to identify the single source under the IC diffusion on the ER random

graph, which is a special case of the model in this chapter. Assuming SI or IC model,

based on Lemma 1 in Zhu and Ying (2016), we have that with a high probability, all

nodes of the ER graph become infected when the infection duration is at least

tu ,

⌈
log n

log µ+ log q

⌉
+ 2.

When this occurs, it is impossible to detect the sources since the nodes are indiffer-

entiable.

Theorem 3.3. Assume the multi-source diffusion follows the IC or SI model. If

24 log n < qµ <<
√
n and q is a constant independent of n, then

lim
n→∞

Pr(I = V(g)) = 1

when the observation time t ≥ tu. In other words, the entire network is infected

after tu with a high probability. In such a case, the probability of finding the sources

diminishes to zero as n→∞.

3.4 Performance Evaluation

In this section, we evaluated the performance of our algorithms via simulations.

The performance metrics used in this chapter include:

• Error distance: The error distance is defined to be

min
P∈permutation(S′)

m∑
i=1

d(si, pi)

m
,

where s1, s2, . . . , sm are the real sources, S ′ is the set of detected sources and

P = (p1, p2, ..., pm) is a permutation of S ′.

48

0 1 2 3 4 5
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r

d
is

ta
n
ce

(a) Error distance

0 1 2 3 4 5
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

ct
io

n
 r

a
te

(b) Detection rate

0 1 2 3 4 5
Threshold

0

500

1000

1500

W
a
ll-

cl
o
ck

 t
im

e

(c) Wall-clock time

Figure 3.2: Performance of OJC with different threshold values on the ER random

graph.

(0.6,2)(0.7,3)(0.8,3)(0.9,4) (1,4)
(Sample rate, threshold)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
rr

o
r
d
is
ta

n
ce

OJC

AJC

CC

DC

(0.6,2)(0.7,3)(0.8,3)(0.9,4) (1,4)
(Sample rate, threshold)

0.6

0.7

0.8

0.9

1.0

1.1

D
e
te

ct
io

n
 r

a
te

(a) Source number: 2, in-

fection size: 100 ∼ 300.

(0.6,2)(0.7,3)(0.8,3)(0.9,4)(1.0,4)
(Sample rate, threshold)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r

d
is

ta
n
ce

(0.6,2)(0.7,3)(0.8,3)(0.9,4)(1.0,4)
(Sample rate, threshold)

0.6

0.7

0.8

0.9

1.0

1.1

D
e
te

ct
io

n
 r

a
te

(b) Source number: 3, in-

fection size: 200 ∼ 400.

(0.6,2)(0.7,3)(0.8,3)(0.9,4)(1.0,4)
(Sample rate, threshold)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r

d
is

ta
n
ce

(0.6,2)(0.7,3)(0.8,3)(0.9,4)(1.0,4)
(Sample rate, threshold)

0.6

0.7

0.8

0.9

1.0

1.1

D
e
te

ct
io

n
 r

a
te

(c) Source number: 4, in-

fection size: 300 ∼ 500.

Figure 3.3: The performance of OJC, AJC, CC and DC on the ER random graph

with different sample rates and threshold values.

49

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)
(Sample rate, threshold)

0

2

4

6

8

10

12

E
rr
o
r
d
is
ta
n
ce

OJC

AJC

CC

DC

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)
(Sample rate, threshold)

0.00

0.05

0.10

0.15

0.20

D
e
te

ct
io

n
 r

a
te

(a) Source number: 2, in-

fection size: 100 ∼ 300.

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)
(Sample rate, threshold)

0

1

2

3

4

5

6

7

8

9

E
rr

o
r

d
is

ta
n
ce

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)
(Sample rate, threshold)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
e
te

ct
io

n
 r

a
te

(b) Source number: 3, in-

fection size: 200 ∼ 400.

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)
(Sample rate, threshold)

0

1

2

3

4

5

6

7

8

9

E
rr

o
r

d
is

ta
n
ce

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)
(Sample rate, threshold)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
e
te

ct
io

n
 r

a
te

(c) Source number: 4, in-

fection size: 300 ∼ 500.

Figure 3.4: The performance of OJC, AJC, CC and DC on the power grid network

with different sample rates and threshold values.

• Detection rate: The detection rate is defined as

|S ∩ S ′|
m

.

We compared our algorithms with two heuristic algorithms (DC and CC) based on

K-Means, which have been used for comparison in Luo et al. (2014). The algorithms

proposed in Luo et al. (2014) and Chen et al. (2014) are the same as AJC without

candidate selection. In both DC and CC, the initial centroids are randomly chosen.

During the clustering step of each iteration in K-Means, we selected distance centroid

of each cluster in DC and selected closeness centroid in CC, where distance centroid

is defined as arg minv∈C
∑

u∈C∩I′ d(v, u), where C is the set of nodes in the cluster.

Closeness centroid is defined as arg maxv∈C
∑

u∈C∩I′,u6=v
1

d(u,v)
. The following experi-

ments were conducted on an server with 8 Intel Xeon X3450 CPUs and 16G RAM

with Linux 64 bit system. All algorithms were implemented with Python 2.7.

50

3.4.1 OJC with Different Thresholds

In Figure 3.2, we evaluated OJC on the ER random graph. In the experiments, we

generated an ER random graph with 5, 000 nodes and wiring probability 0.002. We

used the homogeneous SI model for diffusion with infection probability 0.8. In this

experiment, we limited the infection network size to be 100 ∼ 300 and the number of

sources to be 2 due to the computational complexity of the OJC algorithm. Figure

3.2 shows the performance of OJC with different thresholds. From the results, the

detection rate is close to one and the error distance is close to zero under OJC with

threshold 0 or 1. However, the running time is 1,817 seconds versus 68 seconds. So

the candidate selection algorithm with threshold one results in 27× reduction of the

running time. When the threshold increases 2, the running time reduces to 3 seconds,

which is a 600× reduction of the running time. Both the detection rate and the error

distance became slightly worse in this case. The detection rate in this case is 0.961

and the error distance is 0.056.

3.4.2 OJC, AJC and Other Heuristics

We further evaluated the performance of OJC and AJC on both the power grid

network Watts and Strogatz (1998) and ER random graph (size: 5000, wiring proba-

bility: 0.002) and compared them with DC and CC heuristics. We used the homoge-

neous SI model with infection probability 0.8 to generate the diffusion sequences. For

AJC/CC/DC, for each diffusion sequence, we repeated the algorithm 100 times from

different initial conditions and chose the source set with the smallest the smallest-

infection-eccentricity/largest-closeness-centrality/smallest-distance-centrality. In Fig-

ure 3.3 and 3.4, the x−axis represents the combinations of sample rate and threshold.

On the ER random graph, we increased the threshold as the sample rate increased to

51

control the running time. For the power-grid network, since the average node degree is

only 2, we set threshold equal to 2 for experiments for all sample rates. As we can see

from the figures that when fixing the threshold, the performance of all algorithms (in

terms of both error distance and detection rate) improves as the sample rate increases

because we had more information about the diffusion. From Figure 3.3 and 3.4, we

can also see that AJC outperforms DC and CC, and has similar performance with

OJC. Note that with four sources, OJC became very slow on both the ER random

graph and the power grid network because its complexity increases exponentially in

the number of sources. So for the cases with four sources, we only simulated AJC.

3.5 Conclusions

In this chapter, we studied the problem of detecting multiple diffusion sources

under the heterogeneous SIR model with incomplete observations. We defined a

concept called Jordan cover and developed the OJC algorithm based on that. Our

theoretical analysis showed that OJC finds the set of sources in the ER random

graph with probability one asymptotically under mild conditions. To the best of our

knowledge, this is the first theoretic performance guarantee for multiple information

sources detection in non-tree networks. Since the computational complexity of OJC

is polynomial in n but exponential in m, we proposed a heuristic algorithm — the

AJC algorithm. Our simulation results showed that OJC and AJC algorithms have

similar performance and both significantly outperform existing algorithms.

52

Chapter 4

DIFFUSION HISTORY RECONSTRUCTION

In this chapter, we go beyond identifying the source of diffusion and study the prob-

lem of reconstructing the entire history of a diffusion process, named as diffusion

history reconstruction, which has been studied only very recently Sefer and Kingsford

(2014). In large-scale networks, due to the cost and privacy concerns, it is almost im-

possible to monitor the entire network and collect the complete diffusion trace, which

makes reconstructing the diffusion history not trivial. For example, when a computer

virus propagates among different computer through the network, we cannot track the

infection of each computer because of the privacy limitation. And when some fake

news goes viral on the Internet, which means thousands of individuals or websites

are involved in the diffusion process, it is difficult to obtain the time when each in-

dividual or website that propagates the news. We assume that the diffusion process

starting from one or mulitple sources follows the Susceptible-Infected (SI) model, a

variant of the popular SIR model first proposed in Kermack and McKendrick (1927),

and a single partial snapshot of the network is given, which includes the set of “in-

fected” nodes, and the corresponding infection time of a subset of “infected” nodes.

The nodes with known “infection” time can be thought as monitor nodes that were

placed in the network. Each monitor node can record the time at which the node is

“infected” and report the infection time. The main contributions of this chapter are

summarized below.

• We formulate the diffusion history reconstruction problem as a maximum a

posteriori (MAP) estimate problem, and prove that the problem is NP-hard by

53

reducing an arbitrary set cover problem to a diffusion history reconstruction

problem.

• We propose a greedy and step-by-step reconstruction algorithm to reconstruct

the most likely network state at time slot τ based on the network state at time

slot τ − 1 while guaranteeing the state is consistent with partial observation,

and further develop a greedy algorithm for a single-step construction. The key

idea of the single-step construction algorithm is to convert the problem to the

weighted set cover problem, for which a well-known greedy algorithm provides

a guarantee on the approximation ratio.

• The problem of reconstructing the diffusion history for single-source diffusion

processes has been studied in Chen et al. (2015). In this chapter, we studied

multi-source diffusion processes, which include single-source diffusion as a spe-

cial case. The problem is more difficult because the number of initial states

is proportional to V N
I , where VI is the number of infected nodes and N is the

number of sources. It is almost impossible to use the single-source algorithm to

reconstruct the diffusion history for multi-source diffusion processes because of

the high complexity. Assuming the number of sources, N(N ≥ 1), is known, we

propose an algorithm to find all possible initial states of the diffusion to reduce

the complexity. It is shown that the initial states found by our algorithm are

always consistent with the partial observation.

• We prove that the diffusion history obtained by the step-by-step reconstruction

algorithm is always consistent with the partial observation, and the computa-

tional complexity of the algorithm is O(V N+1
I EI), where VI is the number of

infected nodes observed in the snapshot, EI is the number of edges between the

observed infected nodes and N is the number of sources.

54

• We evaluate the performance of the algorithm on the Western States Power

Grid of the United States Watts and Strogatz (1998) and Internet autonomous

systems (IAS) network Leskovec et al. (2005), with simulated diffusion processes

following the SI model. We also test our algorithm on the Weibo dataset (Weibo

is a famous Chinese microblogging website). In all scenarios, we observe signif-

icant improvements of the proposed algorithm compared with other heuristic

and existing algorithms.

4.1 Problem Formulation

In this section, we define the diffusion history reconstruction problem. We assume

the diffusion process starting from a set of sources in the network denoted by G(V , E),

where V is the set of nodes and E is the set of directed edges. Node u can infect node

v if there is an edge u→ v. Node u is called an incoming neighbor of node v, and node

v is called an outgoing neighbor of node u. We further assume the number of sources,

N, is known to us, the diffusion process starts from time slot 0, and a snapshot of the

network is taken at time slot T. The snapshot includes the state of every node in the

network at time T, as well as the infection time of a subset of infected nodes. The

goal is to infer the complete diffusion history from the partial observation.

In this chapter, we use the capital letter for constants (e.g, T), calligraphic fonts

for sets (e.g., E), and bold upper-case for matrices or vectors (e.g., X). We use Xt

to represent the tth column of matrix X. For each set, we use its associated capital

letter for the cardinality of the set (e.g., V = |V|). A graph is defined by its node

set and edge set, e.g., a graph G with node set V and edge set E can be written as

G(V , E). We use tilde to represent the matrix, set or vector to be reconstructed (e.g.,

X̃). The key notation used throughout the chapter is summarized in Table 4.1.

55

Symbol Definition & Description

G(V , E) a graph G with vertex set V and edge set E .

T the time when the snapshot of the network is taken

I
infected nodes vector, which describes the infected

nodes at time T

T
infection timing vector, which saves the observed

infection time of nodes

X the diffusion history matrix

X̃ the reconstructed diffusion history matrix

Xt (0 ≤

t ≤ T)
the network state vector at time t

X̃t (0 ≤

t ≤ T)
the reconstructed network state vector at time t

Xv,t

a binary variable, which is equal to 1 when node v

is in the infected state at time t, otherwise, it is 0

puv infection probability of edge (u, v)

S̃t (0 ≤

t ≤ T)

the set of susceptible nodes on G(V , E) which has

infected incoming neighbors according to Xt

Ĩn the set of infected nodes in X̃n

I the set of infected nodes in the snapshot at time T

Nv
the set of incoming neighbors of node v in network

G(V , E)

Table 4.1: Notations

56

4.1.1 Diffusion Model

We assume the diffusion process follows the discrete-time Susceptible-Infected (SI)

model. Each node in the network has two states: susceptible (S) and infected (I).

In each time slot, every susceptible node, v, can be infected by each of its infected

incoming neighbors, u, with probability puv. Once the susceptible node gets infected,

it will stay at the infected state forever. The diffusion starts at time t = 0 from a set

of initially infected nodes, which are the sources of diffusion.

4.1.2 Problem Statement

Given a network G(V , E), we assume the observation we have for reconstructing

the diffusion history is a pair (T, I), such that I, named infected nodes vector, is a

V -dimensional vector such that Iv = 1 if node v is infected and Iv = 0 otherwise;

and T, named infection timing vector, is also a V - dimensional vector such that Tv is

infection time of node v if node v’s infection time is observed and Tv = −1 otherwise.

Let I denote the set of infected nodes. Define a V × T matrix X to be the diffusion

history such that

Xv,t =


1 Node v is in the infected state at time t,

0 Node v is susceptible at time t.

(4.1)

Note that X defines the entire history of the diffusion process and under the SI model,

Xv,t = 1 if Xv,τ = 1 for τ < t.

We can use the column vector Xt of diffusion history X to represent the network

state at time t. Then the diffusion history matrix X can be written as

X = (X0,X1, . . . ,XT).

The diffusion history reconstruction problem can be defined as follows:

57

Figure 4.1: The graph built in the proof of Theorem 4.1.

Diffusion History Reconstruction Problem

Input: The underlying network for the diffusion, G(V , E), the time when the snapshot

is taken, T, the infected nodes vector I and the infection timing vector T.

Output: A diffusion history X̃ such that

X̃ = argmax
X

Pr(X|I,T). (4.2)

�

In order to find the X̃, the exclusive search needs to calculate Pr(X|I,T) for all

possible diffusion history X, which increases exponentially as the number of infected

nodes increases. The problem is NP-hard and the proof is presented in the appendix.

Theorem 4.1. The diffusion history reconstruction problem defined in (4.2) is NP-

hard.

Proof. By reduction from the set cover problem. In the set cover, we are given a set

of M elements U = {u1, u2, . . . , uM} and a set S = {S1,S2, . . . ,SN} of N sets whose

union equals to set U . The set cover problem is to identify the smallest subset of S

whose union equals to the universe. We consider each element in set U or set S as a

vertex on a graph and think there exists an directed edge from Sj (0 ≤ j ≤ N) to ui

58

(0 ≤ j ≤ M) if ui ∈ Sj. Then for each Sj ∈ S, we add a node cj to the graph and

create a directed edge from Sj to cj. After that, we add a node s to the graph and

create a directed edge from s to Sj for each Sj ∈ S. An example of the graph we built

is provided in Figure 4.1. We assume there is a diffusion process based on the graph

in Figure 4.1 and SI model. Assume the infection probability on each edge (s,Sj)

(0 ≤ j ≤ N) is p1, the infection probability on each edge between Sj (0 ≤ j ≤ N) and

ui (0 ≤ i ≤M) is 1, and the infection probability on each edge (Sj, cj) (0 ≤ j ≤ N) is

p2 (p2 > p1). The snapshot was taken at time T = 3 and all nodes are in the infected

state at time 3. We observed that the infection time of node ui (0 ≤ i ≤ M) is 2,

the infection time of node cj (0 ≤ j ≤ N) is 3, and the infection time of node s is

0. Thus, we have known the observation (I,T). To determine the diffusion history,

we need to decide when node Sj (0 ≤ j ≤ N) is infected. We try to find a diffusion

history by solving (4.2). Since cj (0 ≤ j ≤ N) is infected at time 3, node Sj can only

be infected at time 1 or 2. If Sj is infected at time 1, the probability brought by path

s→ Sj → cj is

p1(1− p2)p2.

Otherwise, the the probability brought by path s→ Sj → cj is

p1(1− p1)p2.

Since p2 > p1, we have

p1(1− p2)p2 < p1(1− p1)p2,

which means node Sj prefers to be infected at time 2. However, since ui (0 ≤ i ≤M)

is infected at time 2, for each ui, there must exist a node Sk infected at time 1 such

that ui ∈ Sk, which means ui can be infected at time 2. Therefore, the problem

described in (4.2) can be converted to a set cover problem of finding the smallest

subset S ′ of S to cover U . Then we may think the nodes in S ′ are infected at time 1,

59

while others in S are infected at time 2. Since

Pr(X|I,T) ∝ Pr(X) Pr(I,T|X) (4.3)

and the value of Pr(I,T|X) can only be 1 or 0, this reconstructed diffusion history X̃

has the maximum probability Pr(X̃) while X̃ is consistent with (I,T), Pr(I,T|X) = 1.

Thus, the set cover problem can be reduced to a special case of our diffusion history

reconstruction problem, which means the diffusion history reconstruction problem is

NP-hard.

4.2 A Step-by-Step Reconstruction Algorithm

Since the diffusion history reconstruction problem defined in (4.2) is difficult to

solve, we propose a heuristic algorithm with polynomial complexity in this section.

According to Bayes’ theorem, we have

Pr(X|I,T) =
Pr(X, I,T)

Pr(I,T)

∝ Pr(X, I,T)

= Pr(X) Pr(I,T|X)

(4.4)

When the diffusion history X is known, the infection time of nodes and the set of

infected nodes are fixed. Thus, in (4.4), the value of Pr(I,T|X) is either 0 or 1 :

Pr(I,T|X) =


1 X is consistent with (I,T),

0 X is inconsistent with (I,T).

(4.5)

where we say that the diffusion history X is consistent with observation (I,T) if the

following two conditions hold:

H1 Xv,T = 1 when node v is an infected node according to I and Xv,T = 0 otherwise,

and

60

H2 Xv,t = 1 for t ≥ Tv if Tv 6= −1.

We further define the network state at time τ (Xτ) to be consistent with (I,T)

if the following conditions hold:

S1 If Iv = 0, then Xv,τ = 0. In other words, node v should be in the susceptible

state if it is in the susceptible state at time T.

S2 If Iv = 1 and 0 ≤ Tv ≤ τ, then Xv,τ = 1. In other words, node v should be in

the infected state at time τ if it was infected at or before time slot τ.

S3 If Iv = 1 and Tv > τ, then Xv,τ = 0, and one of the following two conditions

must hold

c1 There exists node u with Tu > τ and

d(u, v) ≤ Tv − Tu.

c2 There exists node u with Xu,τ = 1 and

d(u, v) ≤ Tv − τ.

Here d(u, v) is defined to be the length of the shortest Infection-Time-Free path

(or ITF-path) between node u and node v, where an ITF-path is a path that

includes only infected nodes such that Xw,τ = 0 except the two end nodes. The

condition (c1) means node u, who was infected at time slot Tu, can infect node

v via an ITF-path at Tv. The condition (c2) means node u, who has already

been infected at time slot τ, can infect node v via an ITF-path at Tv.

S4 If Iv = 1 and Tv = −1, then either Xv,τ = 1, or Xv,τ = 0 and one of the following

two conditions must hold

61

c1 There exists node u with Tu > τ and

d(u, v) ≤ T − Tu.

c2 There exists node u with Xu,τ = 1 and

d(u, v) ≤ T − τ.

Here the condition (c1) means node u, who was infected at time slot Tu, can

infected node v via an ITF-path before or at time T. The condition (c2) means

node u, who has already been infected at time slot τ, can infect node v via an

ITF-path before or at time T.

According to the discussion above, the problem of

max
X

Pr(X|I,T)

is equivalent to

max
X

Pr(X)

subject to: X is consistent with (I,T).

(4.6)

Since X0,X1, . . . ,XT form a Markov chain under the SI model, we have

Pr(X) = Pr(X0,X1, . . . ,XT)

= Pr(X0) Pr(X1|X0) . . .Pr(XT |XT−1)

= Pr(X0)
T∏
τ=1

Pr(Xτ |Xτ−1).

Now to solve (4.6), our greedy approach is to recursively solve the following single-

step reconstruction problem with a given Xτ−1

max
Xτ

Pr(Xτ |Xτ−1)

subject to: Xτ is consistent with (I,T).

(4.7)

62

The first step of this greedy algorithm needs input X0, i.e., the identify of the sources.

Define 1(F) to be a V -dimensional vector, where F ⊂ V , such that 1
(F)
v = 1 for v ∈ F

and 1
(F)
m = 0 for m 6∈ F . The algorithm will set X̃

(F)
0 = 1(F) for each set of possible

sources F and then calculates X̃
(F)
τ by recursively solving (4.7) (again with a greedy

algorithm which will be presented in the next subsection). Then the diffusion history

is set to be the most likely X̃(F). The pseudo code is presented in Algorithm 4.1.

Algorithm 4.1: The Step-by-Step Reconstruction Algorithm (SSR)

for each possible set of sources, i.e., F ⊂ Vs do

Set X̃
(F)
0 = 1(F);

for 1 ≤ τ ≤ T do

Set X̃
(F)
τ to be solution of problem (4.7) with Xτ−1 = X̃

(F)
τ−1.

Set γF =
∏

1≤τ≤T Pr
(

X̃
(F)

τ

∣∣∣ X̃(F)

τ−1

)
.

Set F∗ ∈ arg maxF∈V∫ γF .

return X̃(F∗)

Note that Vs is defined to be the set of feasible source combinations with each

element represents a set of sources that can generate the observation. Vs, can be

determined by Algorithm 4.3, which is introduced later.

4.2.1 Single-Step Reconstruction

We now focus on solving (4.7) when X̃τ−1 is given. In the following discussion,

we assume X̃τ−1 is given. Note that node v can become an infected node at time

τ if Iv = 1, X̃v,τ−1 = 0 and it has at least an infected incoming neighbor at time

τ − 1. Denote by S̃τ−1 the set of susceptible nodes with infected incoming neighbors

according to X̃τ−1, Nv the set of incoming neighbors of node v, and Ĩτ−1 the set of

infected nodes at time τ − 1. For each node v ∈ S̃τ−1, the probability that v is not

63

infected by its incoming infected neighbors at time τ is

∏
u∈Nv∩Ĩτ−1

(1− puv).

Furthermore, the objective in (4.7) can be written as

Pr(Xτ |X̃τ−1) =
∏
v∈S̃τ−1

(
1−

∏
u∈Nv∩Ĩτ−1

(1− puv)
)Xv,τ

︸ ︷︷ ︸
(a)(∏

u∈Nv∩Ĩτ−1

(1− puv)
)1−Xv,τ

︸ ︷︷ ︸
(b)

,

(4.8)

where term (a) is the probability that v gets infected at time τ while term (b) rep-

resents the probability that v stays susceptible at time τ. The log-likelihood can be

written as

log Pr(Xτ |X̃τ−1)

=
∑

v∈S̃τ−1

(
Xv,τ log

(
1−

∏
u∈Nv∩Ĩτ−1

(1− puv)
)

+ (1−Xv,τ) log
∏

u∈Nv∩Ĩτ−1

(1− puv)
)

=
∑

v∈S̃τ−1

Xv,τ log
1−

∏
u∈Nv∩Ĩτ−1

(1− puv)∏
u∈Nv∩Ĩτ−1

(1− puv)

+ log
∏

u∈Nv∩Ĩτ−1

(1− puv)

=
∑

v∈S̃τ−1

ατvXv,τ + βτv ,

(4.9)

where

ατv = log
1−

∏
u∈Nv∩Ĩτ−1

(1− puv)∏
u∈Nv∩Ĩτ−1

(1− puv)
(4.10)

and

βτv = log
∏

u∈Nv∩Ĩτ−1

(1− puv)

64

are two constants whose values depend only on X̃τ−1. Therefore, optimization problem

described in (4.7) can be written as

max
Xτ

∑
v∈S̃τ−1

ατvXv,τ + βτv

subject to Xτ is consistent with I and T.

(4.11)

Note that only nodes in S̃τ−1 ∩ I can change from susceptible to infected at time

slot τ. The problem is combinatoric in nature since Xv,τ ∈ {0, 1}. Next we reduce the

problem above to a weighted set cover problem. Note that the consistency conditions

are to guarantee all infected nodes can be infected at the observed infection time or

by the time at which the snapshot was taken. It is not difficult to see that we only

need to check the consistency of nodes in I \ Ĩτ−1 for Xτ because nodes in Ĩτ−1 have

been successfully infected by time τ − 1 and nodes in V \ I should always stay as

susceptible. Problem (4.11) can be converted to a weighted set cover problem with

the following steps:

(1) Define the universe to be

U = I \ Ĩτ−1,

i.e., the set of nodes whose consistency needs to be verified in Xτ .

(2) Set S = S̃τ−1 ∩ I. For each node in S, say node u, initiate a set Su = ∅.

(3) For each node in the universe (say node v), construct a modified-breadth-first-

search (MBFS) tree as follows: Reverse all edges of the infected subgraph. On

the reversed graph, starting from the node, we conduct the breadth-first search

(BFS). When BFS hits an infected node in Ĩτ−1 or with observed infection

time, BFS at this node stops, i.e., the node becomes a leaf-node of the MBFS

tree. Note that a path from the root to any leaf-node of the MBFS-tree is an

ITF-path.

65

– If one of leaf-nodes on the MBFS-tree, which is not in S, satisfies the

consistency condition S3 or S4 for root node v, then node v is removed

from the universe, i.e.,

U = U \ {v}

because node v is consistent in Xτ regardless of the states of nodes in S.

– Otherwise, for each node (say node u) in S with Tu > τ , remove u from

S, i.e.,

S = S \ {u}.

For each node u in S :

∗ If Tv 6= −1, check whether the depth of node u on the MBFS-tree is

≤ Tv − τ. If it is the case, node v is added to Su, i.e.,

Su = Su ∪ {v}.

∗ If Tv = −1, check whether the depth of node u on the MBFS-tree is

≤ T − τ. If it is the case, node v is added to Su.

(4) According to (4.10), we calculate the weight of set Su : wu = −ατu for u ∈ S.

For each u ∈ S with wu < 0, set Xu,τ = 1, change the universe U to U \Su, and

remove u from S.

Note that v ∈ Su implies that node v’s consistency is guaranteed if node u becomes

infected at time slot τ. The problem (4.11), therefore, is equivalent to identifying a

set of Su (u ∈ S) with the smallest summation of weights to cover the universe U .

Consider a simple network in Figure 4.2a. Assume the infection probability of any

edge is 0.3, the snapshot is taken at T = 4, and all nodes are in the infected state at

time 4. Furthermore, assume the infection time of nodes b, c and h is known (Tb = 2,

66

Infected node by time 0

a

b
c

d e

f
g

h

(a) The network when the

time slot is 1.

Infected node by time 0

b
c

d

f
g

(b) The MBFS-tree

when node c is the

root.

Infected node by time 1

a

b
c

d e

f
g

h

(c) The reconstructed net-

work state for time 1.

Figure 4.2: The example of diffusion network state single-step reconstruction.

Tc = 2 and Th = 2). We next outline the key steps to solve (4.11) by starting from

node d, i.e., assuming X̃0 = [0 0 0 1 0 0 0 0]tr where tr means the transpose. So

Ĩ0 = {d}

and

U = I \ Ĩ0 = {a, b, c, e, f, g, h}.

Furthermore,

S̃0 = {a, f, g, e}.

Now consider the MBFS rooted at node c. The algorithm first explores the outgo-

ing neighbors of c, which are nodes b, f and g. The edges (c, b), (c, f) and (c, g) are

added to the MBFS tree. Since b′s infection time is known, the outgoing neighbors

of b should not be explored in the next step. In the next step, the MBFS checks the

outgoing neighbors of f and g. Since node d is an outgoing neighbor of node f, edge

(f, d) is added to the MBFS-tree. And the outgoing neighbors of node g, which are f

and d, are already explored by the MBFS, the MBFS at g stops. Since node d does

not have any outgoing neighbors, the MBFS stops and the MBFS-tree at root c is in

Figure 4.2b.

67

On the MBFS-tree in Figure 4.2b, nodes b and d do not satisfy S3.c1 or S3.c2

for node c, so node c cannot be removed from the universe. We then check the

ITF-paths to nodes f and g on the MBFS-tree, and both ITF-paths have a length

≤ Tc − 1. So node c is added to Sf and Sg. After doing a similar procedure for

other MBFS-trees, we have U = {b, c, f, g, h}, Sa = {b}, Se = {e, h}, Sf = {c, b}, and

Sg = {c}. According to (4.10), the weights are wa = −α1
a = 0.847, wf = −α1

f = 0.847,

wg = −α1
g = 0.847, and we = −α1

e = 0.847. For this example, the solution to the

weighted set cover problem is easy to find, which are Sf and Se, i.e., nodes f and e

should become infected at time slot 1. The reconstructed network state at time slot

1 is shown in Figure 4.2c.

In the discussion above, we need the MBFS-tree of every remaining-infected-node

in X̃τ−1, while the MBFS-tree depends on the state of X̃τ−1. Running the MBFS

at every single step is very time-consuming. Instead, we run the MBFS starting

from every infected-node at the beginning of the algorithm and save the MBFS-trees.

Then in each iteration, when a remaining-infected-node is selected to be an already-

infected-node (say node u is selected), we prune the subtree starting from node u from

all MBFS-trees but keep node u. The reason the subtree starting from node u can be

pruned is because for any node on the subtree, say node y, we have d(v, y) > d(v, u),

where v is the root of the MBFS-tree, so node v can be infected by node y via an

ITF-path after τ only if it can be infected by node u via an ITF-path.

An single-step reconstruction algorithm based on weighted set cover is stated in

Algorithm 4.2, which is formed by four steps:

1. Prune each MBFS-tree rooted at a susceptible node v in previous network state

with Iv = 1;

2. Convert the problem to a weighted set cover problem by following the procedure

68

in Page 4;

3. Solve the weighted set cover problem by using greedy set cover algorithm;

4. Obtain the network state according to the result of greedy set cover algorithm

and calculate the objective in (4.11).

As described in Algorithm 4.1, by using Algorithm 4.2 recursively, we can get a

diffusion history, which is consistent with the observation.

In general, the weighted set cover problem is NP-hard. However, we can use the

greedy set cover algorithm in Young (2008) to find a feasible solution with performance

guarantee. Define O to be the objective value of Algorithm 4.2 for equation (4.11)

and O? to be the objective value of the optimal solution. Let k denote the largest set

size for the set cover problem and Hk =
∑k

i=1 1/i.

Lemma 4.1. By using Algorithm 4.2, we have O ≥ HkO
?.

Proof. The proof is straight forward according to Theorem 1 in Young (2008).

Define GI(VI , EI) to be the infected subgraph of G(V , E), which is formed by the

infected nodes observed at T. Then we have VI = |VI |. The next lemma shows the

feasibility of the SSR algorithm for generating a consistent diffusion history.

Lemma 4.2. X̃τ output by Algorithm 4.2 is consistent with the observation (I,T) if

X̃τ−1 is consistent with the observation.

Proof. According to our previous definition, the reconstruction state X̃τ is consistent

with the observation (I,T) if for each node, one of the conditions S1, S2, S3 and S4

holds.

In the Single-Step Reconstruction algorithm, only the observed infected nodes can

get infected in the reconstruction. Therefore, each observed susceptible node satisfies

69

Algorithm 4.2: Single-Step Reconstruction

Input : Network G(V , E), the previous reconstructed network state X̃τ−1, the
observed information (I,T), current time τ and the MBFS-tree Tv
(v ∈ I \ Ĩτ−1) rooted at node v from previous step.

Output: The network state X̃τ , the value of objective in (4.11), o, and the
MBFS-trees after pruning.

o← 0; U ← I \ Ĩτ−1; X̃τ ← X̃τ−1; S ← S̃τ−1 ∩ I;
let Sv ← ∅ for each v ∈ S; M← {v|v ∈ I, Tv 6= −1};
for v ∈ I \ Ĩτ−1 do

let tv ← Tv if v ∈M. Otherwise, tv ← T ;
for u ∈ {the nodes on Tv} do

if u ∈ Ĩτ−1 then remove the subtree rooted at u on Tv except u;

if there exists a node u ∈ {the nodes on Tv} ∩ (M\ Ĩτ−1) such that the
depth of u on Tv is ≤ tv − Tu and Tu > τ then remove v from U ;

else if there exists a node u ∈ {the nodes on Tv} ∩ Ĩτ−1 such that the depth
of u on Tv is ≤ tv − τ then remove v from U ;

else
for u ∈ S do

if u ∈M and Tu > τ then continue;
else if u ∈ {the nodes on Tv} and the depth of u on tree Tv is
≤ tv − τ then Su ← Su ∪ {v};

remove any node v ∈ S with Tv > τ ;
if the union of Sv for any v ∈ S is not equal to U then o← −∞;
else

wv ← −ατv for any v ∈ S ;
for v ∈ S do

if wv < 0 or Tv = τ then
Xv,τ ← 1; U ← U \ Sv; S ← S \ {v};

let R to be the result of the greedy set cover algorithm Young (2008) on
the subset Sv for any v ∈ S and the universe U ;

if o 6= −∞ then
set Xv,τ ← 1 for any v ∈ S with Sv ∈ R;
calculate the objective value in (4.11), o;

return X̃τ , o and Tv for v ∈ V ;

70

Algorithm 4.3: Build Feasible Initial States

Input : Network G(V , E), the observed information (I,T).
Output: The set of feasible initial states Vs.
M← {v|v ∈ I, Tv 6= −1};
P ← {v|v ∈ I, Tv = 0};
let tv ← T for v ∈ I with Tv = −1 and tv ← Tv for v ∈ I with Tv 6= −1;
for v ∈ I \ (M\P) do

for any u ∈ I \ {v} do
build the MBFS tree Tu;

let Iv = ∅;
for u ∈M do

if there exists a node w ∈ {the nodes on Tu} ∩ F such that the depth of
w on Tu is ≤ tu then Iv = Iv ∪ {u};

for u ∈ I \ Iv do
if there exists a node w ∈ {the nodes on Tu} ∩ F such that the depth of
w on Tu is ≤ tu then Iv = Iv ∪ {u};

else if there exists a node w ∈ {the nodes on Tu} ∩M such that w ∈ Iv
and the depth of w on Tu is ≤ tu − tw then Iv = Iv ∪ {u};

for any F ⊂ I \ (M\P) with |F| = N and P ⊂ F do
if ∪v∈FIv = I then Vs = Vs ∪ {F};

return Vs;

condition S1 in X̃τ . Since X̃τ−1 is consistent with the observation according to the

assumption, for each node v ∈ V with Iv = 1 and X̃v,τ−1 = 1, the condition S2 holds.

Thus, we only need to discuss the v ∈ I with X̃v,τ−1 = 0. For each of those nodes, v,

the consistency requirement can be converted to the following three conditions:

C1 There exists u ∈ I with Tu 6= −1, X̃u,τ−1 = 0 and Tu ≥ τ such that

d(u, v) ≤ tv − Tu;

C2 There exists u ∈ V with X̃u,τ−1 = 1 and

d(u, v) ≤ tv − τ ;

C3 There exists u ∈ S̃τ−1 ∩ I with Tu = −1 and

d(u, v) = tv − τ.

71

Here d(u, v) represents the length of the shortest ITF-path between node u and v.

And tv = Tv if Tv 6= −1, otherwise, tv = T.

For any node v ∈ I with X̃v,τ−1 = 0, assume condition C1 holds at τ − 1, which

means for node v, there exists some u ∈ I with Tu 6= −1, X̃u,τ−2 = 0, and

d(u, v) ≤ tv − Tu.

If X̃u,τ−1 = 0, condition C1 is satisfied at τ. Otherwise, if X̃u,τ−1 = 1, which means

Tu = τ − 1, we have

d(u, v) ≤ tv − Tu = tv − t+ 1. (4.12)

Thus, there exists a node w with either X̃w,τ−1 = 1 or X̃w,τ−1 = 0 on the shortest

ITF-path between u and v such that d(w, v) ≤ tv − t, which means either C2 or C3

is satisfied at τ for node v.

Assume C2 holds for node v at τ − 1, which means there exists some node u with

X̃u,τ−2 = 1 and

d(u, v) ≤ tv − τ + 1.

Then there exists a node w, which is the neighbor of u on the shortest ITF-path

between u and v such that

d(w, v) ≤ tv − τ.

Thus, either C2 or C3 is satisfied at τ.

If C1 or C2 holds for node v at time τ −1, then we have node v is consistent with

the observation at τ from the previous discussion. Now, we assume only C3 holds at

τ − 1 for node v. Then, there exists some set D ⊂ S̃τ−2 ∩ I such that for any u ∈ D,

d(u, v) = tv − τ + 1

and Tu = −1. Then, according to Algorithm 4.2, at least one node, u ∈ D needs to

be infected at τ − 1, which means X̃u,τ−1 = 1. Then there exists a susceptible node w

72

which is the neighbor of u on the ITF-path between u and v such that d(w, v) = tv−τ,

which means C3 holds at τ for node v.

Therefore, from the above, we can see if X̃τ−1 is consistent, X̃τ output by Algo-

rithm 4.2 is consistent.

4.2.2 Feasible Source Combinations

For infected node v with Tv = −1 or Tv = 0, define 1(v) to be a V -dimensional

vector such that 1
(v)
v = 1 and 1

(v)
m = 0 for m 6= v. Define P = {v|v ∈ I, Tv = 0}. Then,

we use 1(v) as the initial state to run the Single-Step Reconstruction algorithm, but

instead of generating the network state at time slot 1, we find a set of infected nodes,

Iv, such that for each u ∈ Iv, there exists a path from v to u such that node u can

be infected at its observed infection time. For any combination of N infected nodes

with unknown infection time or infection time 0, F , we define Vs such that 1F ∈ Vs

if only if ∪v∈FIv = I and P ⊂ F . Here Vs is a set of initial states. The pseudocode

can be found in Algorithm 4.3.

Lemma 4.3. X̃0 ∈ Vs if only if X̃0 is consistent with the observation.

Proof. Assume X̃0 = 1(F), where |F| = N and F ⊂ V .

• X̃0 ∈ Vs implies X̃0 is consistent:

This can be shown by contradiction. Suppose X̃0 is not consistent with the

observation.

– If S1 does not hold for X̃0, which means for some node v with v 6∈ I,

we have X̃v,0 = 1. According to the construction of Vs, only the observed

infected nodes can be the sources. Thus, X̃0 6∈ Vs.

– If S2 does not hold for X̃0, which means for some node v with Tv = 0,

73

Xv,0 = 0. Since the observed sources are included in each possible source

combination, we have X̃0 6∈ Vs.

– Assume for some node v with Tv > 0, S3 does not hold.

∗ Suppose X̃v,0 = 1. According to the algorithm to construct Vs, only

infected nodes without infection time observed can be set as initial

infected nodes, which means X̃0 6∈ Vs.

∗ Suppose X̃v,0 = 0 while both c1 and c2 do not hold, which means

there does not exist a path to make sure node v can be infected at

time Tv. Thus, we have v 6∈ ∪u∈FIu, which means X̃0 6∈ Vs.

– Suppose for some node v with Tv = −1, S4 does not hold. By using a

similar argument we use for S3, we have X̃0 6∈ Vs.

• X̃0 is consistent implies X̃0 ∈ Vs :

Suppose X̃0 is consistent, we need to show ∪v∈FIv = I. For any u ∈ I, X̃0 is

consistent means there exists a path from a node w ∈ F to u such that node u

can be infected at Tu (if Tu 6= −1) or by time T (if Tu = −1). Then, according

to the algorithm to construct Vs, we have u ∈ Iw. Thus, we have ∪v∈FIv = I.

Theorem 4.2. From the initial state X̃0, we can build a diffusion history consistent

with the observation if only if the X̃0 ∈ Vs.

Proof. • X̃0 ∈ Vs implies X̃ is consistent:

According Lemma 4.3, X̃0 is an initial state which is consistent with the obser-

vation. Then, by using Lemma 4.2, we can reconstruct a series of network state

at different times, X̃τ (1 ≤ τ ≤ T) which are consistent with the observation.

Thus, we can reconstruct a consistent diffusion history.

74

• X̃ is consistent implies X̃0 ∈ Vs:

This can be shown by contradiction. If X̃0 6∈ Vs, then according to Lemma 4.3,

X̃0 is not consistent with the observation. Thus, according to our definition,

the reconstructed diffusion history cannot be consistent with the observation.

Theorem 4.3. Algorithm 4.1 outputs a diffusion history consistent with the obser-

vation with a worst-case computational complexity of O(V N+1
I EI), where N is the

number of sources.

Proof. The first half of the theorem holds according to Theorem 4.2. We next analyze

the complexity of our algorithm. Define GI(VI , EI) to be the infected subgraph of

G(V , E).

• At first, we need to run Algorithm 4.3 to generate the set of feasible initial states.

In Algorithm 4.3, the complexity of building MBFS trees is O(V 2
I EI). Then, for

each combinations of N infected nodes without infection time observed, we need

to check whether it is a feasible source set. These operations have a complexity

of O(V N+1
I). Thus, the complexity of Algorithm 4.3 is O(V 2

I EI + V N+1
I).

• Then for each feasible source set, we build the MBFS trees, whose complexity

is O(VIEI). In each single step reconstruction, we need to prune the tree first.

For each MBFS-tree, after pruning, the nodes removed from the MBFS-tree at

the current step will not appear in the MBFS-tree for the future single step

reconstructions. Thus, for a specific MBFS-tree, the worse case complexity for

pruning in the diffusion history reconstruction is O(VI). Since there are at most

VI MBFS-trees, the worst case complexity of pruning the MBFS-trees for a

specific initial state is O(V 2
I). In a similar way, the worst case complexity of

75

Figure 4.3: An example of diffusion. For v ∈ {a, b, c, d}, tIv is the infection time of

node v. In this example, a is the source.

the greedy set cover is also O(V 2
I) for a specific initial state. Thus, for each

feasible source set, the complexity of Algorithm 4.2 in SSR is O(VIEI + V 2
I).

Since the number of feasible initial states is V N
I in worst case, the complexity

of Algorithm 4.2 in Algorithm 4.1 is O(V N+1
I EI).

Therefore, the complexity of Algorithm 4.1 is O(V 2
I EI + V N+1

I + V N+1
I EI). Since

N ≥ 1, we have V N+1
I EI ≥ V 2

I EI and V N+1
I EI ≥ V N+1

I , which means the complexity

is O(V N+1
I EI).

4.3 Performance Evaluation

In this section, we compare the performance of SSR with other heuristics using

following three performance measures.

• Kendall’s τb coefficient: Since the diffusion history includes the infection

time of each infected node in the network, we compare the infection order of

the obtained diffusion history with the true infection order. Since there could

be ties in the infection order because more than one nodes may be infected in

the same time slot, we use Kendall’s τb statistic Agresti (2010), which takes ties

76

into consideration. The value of τb varies from −1 to 1, where τb = 1 means

the two orders are in perfect agreement and τb = −1 means the two orders are

perfect inversion to each other.

• Edge precision: From a diffusion history, we can further infer the set of edges

involved in the diffusion process. We call edge u → v a diffusion edge if node

v was infected by node u in information diffusion. Under the SI model, given

a diffusion history, each edge u → v satisfying tIu < tIv is a possible diffusion

edge. Define Ed to be the set of possible diffusion edges based on the true

diffusion history X and Ẽd to be the set of possible diffusion edges based on the

reconstructed diffusion X̃. We consider the following performance metric:

P =
|Ed ∩ Ẽd|
|Ed|

.

There is few work on using partial infection time information to reconstruct the

diffusion history. The only one in the literature which can be used in our setting is

A ILP developed in Fajardo and Gardner (2013). Therefore, we compare our algo-

rithm with A ILP, and two other heuristics: the breadth-first-search (BFS) heuristic

and the infection-simulation (IS) heuristic.

• BFS: On the infected subgraph, we construct the breadth-first search (BFS)

tree from each source combination and set the infection time of a node to its

distance to the root. Then we consider the set of infected nodes with observed

infection time, and compare its infection order on the breadth-first search tree

with the actual infection order using Kendall’s τb coefficient. The BFS tree with

the largest τb is chosen to be the diffusion history.

• IS: For each source combination, we generate an infection sequence using the SI

model on the original network. The diffusion stops when the diffusion process

77

“infects” all observed infected nodes. We again extract the infection order of

the nodes with observed infection time and compare the order of it with the

true infection order using Kendall’s τb coefficient. The infection sequence with

the largest τb is chosen as the diffusion history.

In Fajardo and Gardner (2013), the source is assumed to be known. However, in our

setting, the source of the diffusion process is unknown. Therefore, when we implement

the A ILP algorithm, we try to reconstruct the diffusion path for each possible source

and then choose the reconstructed diffusion path with the largest value of optimization

objective derived in Fajardo and Gardner (2013) as the result of A ILP.

We tested our algorithm on both synthetic diffusion data and real data. The

networks used in generating the synthetic diffusion data include

• The power network: This network is used to represent the topology of the

Western States Power Grid of the United States, which contains 4941 nodes

and 6594 edges Watts and Strogatz (1998).

• The BA network: This is a network generated by using the Barabási-Albert

model Barabasi and Albert (1999) with 300 nodes. Each new node is connected

to 3 existing nodes.

• The IAS network: This is the Internet Autonomous Systems network Leskovec

et al. (2005), which contains 10670 nodes and 22002 edges. This is a small-world

network.

In our experiment, we first generated a diffusion sequence by using the discrete

time SI model with an equal infection probability p for each edge and a set of randomly

chosen sources. At time T, we took a snapshot of the network. Define srate to be the

fraction of infected nodes with infection time observed. For example, if srate = 20%,

we randomly choose 20% of infected nodes and reveal their infection time.

78

We further evaluated the performance of our algorithm on the Weibo dataset

provided by the WISE 2012 challenge 1 , which contains the data of Sina Weibo 2

, a famous microblogging website in China. The dataset consists of two parts: the

friendship graph and a set of tweets.

Since each tweet in the dataset contains the post time, user id, retweet path and

message id, we extracted the tweets for a specific message and considered the post

time of each tweet as the infection time of that user.

We pre-processed the dataset as follows:

1. We added links used in the retweet path into the friendship graph to form the

network of the diffusion.

2. We removed the nodes whose infection time is not consistent with the network.

3. We selected the weakly connected component formed by all the nodes with

infection time, and the first infected node on this component is viewed as the

source.

4. We calculated the average infection time according to

t̄ =

∑
(u,v)∈E,tIu<tIv

(tIv − tIu)

m
,

where E is defined to be the set of edges on the weakly connected component

and m is the number of directed edge (u, v) such that tIu < tIv. Here tIv is defined

to be the infection time of node v.

5. We discretized the infection time according to

t′u = dt
I
u − tIs
t̄
e,

1http://www.wise2012.cs.ucy.ac.cy/challenge.html

2http://www.weibo.com

79

http://www.wise2012.cs.ucy.ac.cy/challenge.html
http://www.weibo.com

srate (%)
0 20 40 60 80 100

τ b
0.2

0.4

0.6

0.8

1SSR
A_ILP
BFS
IS

(a) Average τb for different srate with 25-75

percentile

s
rate

 (%)
0 20 40 60 80 100

P

0.5

0.6

0.7

0.8

0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.4: Power Network with a single source, p = 0.3 and T = 10.

where s is the first infected node of the component.

6. We deleted the node whose adjusted infection time is not consistent with the

network structure.

After these steps, we obtained 357 diffusion traces generated by a single source with

an average size of 81.82 nodes/trace.

4.3.1 Performance Evaluation with Synthetic Diffusion Traces

Figure 4.4, Figure 4.5 and Figure 4.6 show the performance of Algorithm 4.1

and other algorithms based on the synthetic diffusion traces on different real-world

networks with a single source. A ILP has to solve a linear integer programming

multiple times, and becomes very time-consuming on large-size networks such as the

IAS network. So the performance of A ILP is not included in Figure 4.6. In Power

Network, BA Network and IAS Network, our algorithm has the best performance

under most of the sample rates in terms of all the metrics, which proves that our

algorithm is prominent under tree-like network and small-world network.

80

srate (%)
0 20 40 60 80 100

τ b
0

0.2
0.4
0.6
0.8

1SSR
A_ILP
BFS
IS

(a) Average τb for different srate with 25-75

percentile.

s
rate

 (%)
0 20 40 60 80 100

P

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.5: BA Network with a single source, p = 0.3 and T = 10.

srate (%)
0 20 40 60 80 100

τ b

0
0.2
0.4
0.6
0.8

1SSR
BFS
IS

(a) Average τb for different srate with 25-75

percentile.

s
rate

 (%)
0 20 40 60 80 100

P

0.5

0.6

0.7

0.8

0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.6: IAS Network with a single source, p = 0.04 and T = 4.

Furthermore, we test our algorithm for diffusion traces generated by multiple

sources. For these diffusion traces, if the infected subnetwork generated by each

source is not connected with each other, we can simply run a single source SSR

algorithm on each component. Thus, we only used the diffusion traces where the

infected subnetwork is a single connected component, in other words, the infected

subnetworks from different sources are mixed. Figure 4.7 and Figure 4.8 provide the

performance of SSR and other algorithms when the number of sources is 2. Similar

81

to the results from the single source case, our algorithm still outperforms the others

under most of the sample rates. Figure 4.9 and Figure 4.10 compares the performance

of SSR on the diffusion traces generated by 2 sources and 3 sources. We can see that,

the performance of SSR when the number of sources is 3 is close to the case when

the number of sources is 2, which means the performance of our algorithm is robust

with different number of sources. In the other algorithms, without determining the

feasible source combinations first, we need to test much more combinations of N

nodes as the sources compared to our algorithm, which makes the other algorithms

very time-consuming as N increases. Therefore, we did not include the results of the

other algorithms when the number of sources is 3. Algorithm 4.3 is to find the all

the feasible initial states that could generate a valid diffusion history. Without using

Algorithm 4.3, we can still use Algorithm 4.2 to build a diffusion history for each

source combination. However, the number of source combinations is proportional to

V N
I , which makes the algorithm almost impossible to run for multi-source diffusion

processes. Table 4.2 and Table 4.3 shows the number of initial states with or without

using Algorithm 4.3 for Power Network with N = 2 and 3. From the tables, we can

see Algorithm 4.3 can reduce the number of initial states dramatically.

4.3.2 Performance Evaluation with the Weibo Dataset

In the experiment based on the Weibo dataset, since we do not have the infection

probability, we set the infection probability to be 0.8 for each edge. The performance

of our algorithm as well as other algorithms is shown in Figure 4.11. From Figure

4.11, we can see that our algorithm has the best performance under most sample

rates in terms of τb and P.

82

s
rate

 (%)
0 20 40 60 80 100

τ
b

0.4

0.6

0.8

1SSR
BFS
IS

(a) Average τb for different srate with 25-75

percentile.

s
rate

 (%)
0 20 40 60 80 100

P

0.7

0.8

0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.7: Power Network with two sources, p = 0.4 and T = 10.

s
rate

 (%)
0 20 40 60 80 100

τ
b

0.2

0.4

0.6

0.8

1SSR
BFS
IS

(a) Average τb for different srate with 25-75

percentile.

s
rate

 (%)
0 20 40 60 80 100

P

0.5
0.6
0.7
0.8
0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.8: BA Network with two sources, p = 0.1 and T = 10.

4.3.3 Optimality of the Single-Step Reconstruction

In the single-step reconstruction, we converted the problem to a weighted set

cover problem, which is well-known to be NP-hard. Thus, we adopted the greedy set

cover algorithm in Young (2008), which provides a worst-case approximation ratio

guarantee. In this set of simulations, we compared SSR using the greedy set cover

solution for single-step reconstruction with SSR using the optimal solution for single-

83

s
rate

 (%)
0 20 40 60 80100

τ
b

0.4

0.6

0.8

12 Sources
3 Sources

(a) Average τb for different srate with 25-75 per-

centile.

s
rate

 (%)
0 20 40 60 80 100

P

0.7

0.8

0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.9: Power Network p = 0.4 and T = 10.

s
rate

 (%)
60 80 100

τ
b

0.4

0.6

0.8

12 Sources
3 Sources

(a) Average τb for different srate with 25-75 per-

centile.

s
rate

 (%)
60 80 100

P
0.7

0.8

0.9

1

(b) Average P for different srate

with 25-75 percentile.

Figure 4.10: BA Network with p = 0.1 and T = 10.

step reconstruction. Here, we used a small-size network, Zachary’s Karate Club

Network Zachary (1977), which has 34 nodes and 78 edges. Figure 4.12 shows the

results of the comparison between the two algorithm. We can see that the results are

almost identical, which shows that the greedy solution performs reasonably well, at

least for small size networks.

84

srate (%)
0 20 40 60 80 100

τ b

0.2

0.4

0.6

0.8

1SSR
A_ILP
BFS
IS

(a) Average τb for different srate with 25-75

percentile.

s
rate

 (%)
0 20 40 60 80 100

P

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) Average P1 for different srate

with 25-75 percentile.

Figure 4.11: Weibo dataset.

Sample Rate Without Algorithm 4.3 With Algorithm 4.3

20% 15855.78 266.86

40% 9066.33 48.97

60% 3951.05 11.91

89% 1060.31 3.30

Table 4.2: The average number of initial states with or without Algorithm 4.3 on

Power Network with N = 2 .

Sample Rate Without Algorithm 4.3 With Algorithm 4.3

20% 4439775.98 7285.78

40% 1884810.87 528.19

60% 567404.51 64.69

89% 73913.57 9.19

Table 4.3: The average number of initial states with or without Algorithm 4.3 on

Power Network with N = 3 .

85

srate (%)
0 20 40 60 80 100

τ b

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1SSR
Optimal

(a) Average τb for different srate with 25-75

percentile.

s
rate

 (%)
0 20 40 60 80 100

P

0.5

0.6

0.7

0.8

0.9

1

(b) Average P1 for different srate.

Figure 4.12: Comparison with optimal on Zachery’s Karate Club Network with a

single source, p = 0.3 and T = 10.

Infected network size
0 200 400 600 800 1000 1200

W
a
ll-

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

0

200

400

600

800

1000

1200

1400

Figure 4.13: Wall-clock time vs infected network size.

86

s
rate

 (%)
0 20 40 60 80100

W
a
ll-

cl
o
ck

 t
im

e
101
102
103
104
105

SSR
BFS
IS

(a) Wall-clock time when the number of

sources is 2 for different srate.

s
rate

 (%)
0 20 40 60 80100

W
a

ll-
c
lo

c
k
 t

im
e

10
1

10
2

10
3

10
4

10
5

(b) Wall-clock time when the num-

ber of sources is 3 for different srate.

Figure 4.14: Power Network with p = 0.4 and T = 10.

4.3.4 Efficiency Results

Figure 4.13 shows the wall-clock time of our algorithm versus the network size.

In order to obtain Figure 4.13, at first, many diffusion traces were generated based

on the power network Watts and Strogatz (1998) with a single source and infection

time T varying from 5 to 90. Then we used the sample rate 40%. We tested the

wall-clock time of our algorithm on these diffusion traces and classified the wall-clock

time by the number infected nodes. For example, a diffusion trace with 150 infected

nodes was included into the calculation of size 200. Finally, Figure 4.13 was obtained

by calculating the average wall-clock time of each cluster and plotting the figure of

wall-clock time versus the cluster size. From Figure 4.13, we can see that the running

time increases in a near-linear trend with the size of infected subnetwork. Note that

the x-axis is the size of the infected subnetwork, which is much smaller than the size

of the power network Watts and Strogatz (1998).

Figure 4.14 provides the result of the wall-clock time versus the sample rate when

the number of sources is 2 and 3. From the figure, we can see that as the sample

rate increases, the running time of our algorithm decreases significantly and becomes

87

much faster than the other heursitics.

4.4 Conclusion

In this chapter, we studied the problem of diffusion history reconstruction. We

formulated the problem as an optimization problem and developed a step-by-step

reconstruction algorithm, in which the single-step reconstruction can be converted to

a weight set cover problem. Our simulation results show the superior performance

over heuristic and existing algorithms.

88

Chapter 5

INTERDEPENDENT NETWORK ROBUSTIFICATION: REAL-TIME

REWIRING

Interdependent networks are widely used to model and analyze many real-world com-

plex systems, such as the Internet, social networks, transportation systems, biochem-

ical reactions, etc Albert and Barabási (2002); Di Muro et al. (2016). Interdependent

networks consist of nodes and links where nodes represent different components of a

complex system and links characterize the interaction between the components. Many

researchers have studied interdependent networks to gain insights about features and

properties of complex systems, such as their robustness, stability, connectivity and

structure Yuan et al. (2015); Vespignani (2010); Buldyrev et al. (2010); Gao et al.

(2012); Di Muro et al. (2016); Watts and Strogatz (1998); Albert et al. (2000); Albert

and Barabási (2002); Callaway et al. (2000); Albert et al. (1999); Newman (2010);

Schneider et al. (2011); Zeng and Liu (2012). An important topic in this area is to

preserve the robustness of interdependent networks under site or link attacks. This

problem is important to many real-world networks, such as power networks, trans-

portation networks, fuel distribution networks and communication networks. Many

of these networks may have low tolerance to damages on their structures (e.g. the

diameter doubled after only 5% of the most connected nodes are removed on the

scale-free network Albert et al. (2000)).

In an interdependent network, different networks (layers) interact with each other.

For example, the nodes in the communication network need the power from the power

stations of the power network, while the power stations need to communicate via the

communication network.

89

We consider the problem of improving the robustness of an interdependent network

under a localized attack. We focus on the development of algorithms that rewire

the links of the interdependent networks in real-time to minimize the impact of the

localized attack. In particular, we assume an interdependent network consists of two

subnetworks A and B, in which the functioning of each node can depend on a set of

nodes from the other layer. We study a localized attack model such that the nodes

around attacked nodes are removed hop by hop inspired by Shao et al. (2015). The

main contributions of this chapter are summarized below.

• Problem Formulation: We formulate the interdependent network link rewiring

problem as a Markov decision process (MDP) problem, and prove that the

problem is NP-hard by reducing the maximum coverage problem to our MDP

problem.

• Algorithm: We propose a greedy algorithm to rewire the links during the

attack. The key idea of the algorithm is to maximize the objective of the MDP

problem in a greedy manner.

• Analysis: We compare the performance of our algorithm with the exact so-

lution of the MDP problem on a small network. The results show that the

performance is close in terms of the objective of the MDP problem.

• Empirical Evaluations: We evaluate the performance of the algorithm on

interdependent networks formed by the real networks including the air traffic

network, the IAS network and the power grid network with simulated localized

attacks. In most cases, when a large fraction of nodes in the networks are

attacked, our algorithm outperforms others.

90

5.1 Problem Formulation

5.1.1 Interdependent Networks

The chapter adopts the interdependent network model inspired by Buldyrev et al.

(2010), which consists two networks, network A and network B, and a set of directed

dependency links. Each dependency link is a directed link starting from a node

in network A (B) and ending at a node in network B (A), which represents the

influence of network A (B) on network B (A). Let Ga(Va, Ea) (Gb(Vb, Eb)) represent

the topological structure of network A (B), where Va (Vb) is the set of vertices and Ea

(Eb) is the set of edges of graph Ga (Gb). Define D to be the set of dependency links

that connect graph Ga and graph Gb. The interdependent network can be represented

by the tuple (Ga(Va, Ea), Gb(Vb, Eb),D). For each vertex v ∈ Vb (Va) we can define its

supporting node set to be

Rv = {u|∀(u, v) ∈ D}. (5.1)

Here Rv is a set of nodes from graph Ga (Gb), whose failures will impact the func-

tioning of node v from Gb (Ga). In this chapter, we consider the case where a node v

will stop functioning if all its supporting nodes in Rv from the other layer fail. Note

that if Rv is empty, the functioning of node v does not depend on any other node

from the other layer.

5.1.2 Localized Attack Model

We consider the localized attack model inspired by Yuan et al. (2015). The attack

occurs and spreads on network A. In particular, at the beginning, a single node from

network A is attacked and fails. Then, at each time slot, each attacked node at

network A can attack and cause the failures of all its neighbors on network A. We

assume the attack stops with probability p at each time slot before time T and stops

91

A

B

(a) t = 0

A

B

(b) t = 1

A

B

(c) t = 2

A

B

(d) t > 2

Figure 5.1: An example of the localized attack with p = 0 and T = 2. The red

diamond represents failures. At time t = 0, a node in network A is attacked and fails.

Then, the attack starts to propagate. At time t = 1, the neighbors of the previous

attacked nodes in network A get attacked and fail. The similar procedure goes on at

time t = 2. Then, the attack stops and there are 4 more node failures caused by the

failures of their supporting nodes.

at time slot T if it does not stop before that. There are two kinds of failures during

this attack:

• The failure directly resulted from attacks: A node stops functioning because it

is attacked.

• The failures caused by failures: A node stops functioning because of the failures

of all nodes from its supporting node set.

We assume failures directly due to the attack propagates much faster than the failures

caused by other failures. Thus, the attack propagates on network A first and the

second type failures happen after the attack stops as shown in the example in Figure

5.1. Consider an interdependent network where the communication network is the

92

first layer and the power grid is the second layer. In general, the cyber attack occurring

on the communication network spreads very fast, while the failures ocurring in the

power grid may take some time. For example, in the sequence of events that led to

the cascading failures of the power grid in India 2012, the 2nd event ocurred one hour

and twenty minutes after the 1st event and the 3rd event was 58 minutes after the 2nd

event Bakshi et al. (2012). Motivated by this, we assume the propagation of failures

due to the attack is much faster than the failures due to the loss of supporting nodes.

5.1.3 Markov Decision Process (MDP) Formulation

Markov decision processes (MDPs) have been widely used to model the control of

stochastic systems. At each time step, the process in some state s moves to a new

state s′ given action a, which results in a certain reward. Now we try to explain the

intuition of our algorithm by using the Markov decision process (MDP). Denote the

interdependent network by the tuple

(Ga(Va, Ea), Gb(Vb, Eb),D).

Define Ct to be the set of nodes attacked and failed at time slot t on Ga, Ft = ∪ti=0Ci,

and Gt
a(V ta, E ta) (Gt

b(V tb, E tb)) to be the topological graph of network A (B) before action

is taken at time slot t. Thus, we have G0
a = Ga and G0

b = Gb. Define the state at time

slot t as a tuple

st = (Gt
a(V ta, E ta), Gt

b(V tb, E tb), Ct,Ft,D).

The action at on state st can be considered as edge rewiring happened on Gt
a, where

a number of

nt = min(br||Wt||c, z) (5.2)

edges are rewired, where

Wt = {(v, u) ∈ E ta|v ∈ Ft and u ∈ V ta \ Ft}

93

is the set of edges that connect the current attacked nodes with unattacked nodes in

network A, and r, z are two constants while 0 < r < 1 and z ∈ Z. At each time slot,

the number of rewired links is the smaller value of a constant z and the number of

links connecting current attacked nodes and healthy nodes multiplying by a constant

r (0 < r < 1). We remark under the assumption above, the attacked nodes cannot

be isolated from the rest of the network by cutting all the edges between attacked

nodes and unattacked nodes. If it is possible, then a simple solution is to isolate the

attacked nodes immediately. Denote by T the attack propagation time. We further

assume at each time slot t (t ≥ 0), the diffusion of the attack stops with probability

p.

At time slot 0, we have

s0 = (Ga(Va, Ea), Gb(Vb, Eb), {source}, {source},D),

where source represents the single attacked node at time slot 0. Given state

st = (Gt
a(V ta, E ta), Gt

b(V tb, E tb), Ct,Ft,D) (t ≥ 0),

and action at, define Gt′
a(V t′a , E t′a) to be the graph at time t after action at has been

taken. Then, the state transitions can be described as the following:

1. If Ct = ∅, we have Ct+1 = ∅, Ft+1 = Ft, Gt+1
a = Gt′

a and Gt+1
b = Gt

b.

2. If Ct 6= ∅, we have Gt+1
a = Gt′

a and Gt+1
b = Gt

b. Since with probability p, the

attack stops at time slot t, and with probability 1− p, the attack continues, we

have

Ct+1 =



∅, with probability p,

{u|∀u ∈ V t′a \ Ft, (v, u) ∈ E t′a , v ∈ Ft},

with probability 1− p,

94

and Ft+1 = Ft ∪ Ct+1.

Then we use S to represent the set of possible states and A to represent the set

of actions. Define a reward function f : S ×A → R such that:

1. If Ct 6= ∅, define

Pt = {u|∀u ∈ V t′a \ Ft, (v, u) ∈ E t′a , v ∈ Ft},

where Pt represents the set of nodes that can be attacked in the next time slot.

Define Ota to be the set of failed nodes caused by the failures of Ft ∪ Pt on

network A and Otb to be the set failed nodes caused by the failures of Ft ∪ Pt

on network B. Denote f ta as the size of the largest connected component of Gt′
a

after removing the nodes Ft∪Pt∪Ota. Similarly, denote f tb to be the size of the

largest connected component of Gt
b after removing nodes in Otb. When Ct 6= ∅,

the reward function returns f ta + f tb .

2. Otherwise, it returns 0.

We remark that here we use the size of the largest connected component as the

robustness metric. The value function at time t is

Vt(st) = max
at

(f(st, at) + γ
∑
st+1

P(st+1|st, at)Vt+1(st+1(st, at)). (5.3)

In our case, we may set the discount factor γ = 1. Thus, we have

Vt(st) = max
at

(f(st, at) +
∑
st+1

P(st+1|st, at)Vt+1(st+1(st, at)). (5.4)

Calculating the value function V0(s0) is equivalent to solving the following problem

Powell (2007):

Problem 1 (MDP problem).

max
π

E(
T∑
t=0

f(st, at)|s0) (5.5)

where π is a policy that decides which action to take at each state.

95

5.2 A Low-Complexity Algorithm

5.2.1 Challenges - NP-hardness

To solve the MDP problem, we have the following difficulties:

1. The cardinality of the state set and the action set are very large, which makes

it impossible to solve the problem by using dynamical programming.

2. There is no closed form expression of function f.

Theorem 5.1. The MDP problem defined in Problem 1 is NP-hard.

Proof. The proof can be done by reducing the maximum coverage problem to Problem

1. Detailed proof can be found in Appendix C.

5.2.2 Proposed Algorithm - REALWIRE

Since the MDP problem is hard to solve, we propose a heuristic algorithm, REAL

W IRE, based on the expected number of link failures. Define gta(Ṽ ta, Ẽ ta) to be a

directed subgraph of Gt
a at time t such that

Ṽ ta = V ta \ Ft−1

and

Ẽ ta = ∪v∈Ct,u∈Vta\Ft{(x, y)| (x, y) ∈ E ta, and (x, y) is on the

shortest path between node v and u

on graph Gt
a.}

Then, for ∀v ∈ Ṽ ta, we define the expected number of link failures of node v at time t,

f tv to be

f tv =
∑
u∈N tv

f tu
dtin(u)

+ (1− p)ltv(dtout(v) + wtv +
dta(v)− dtin(v)− dtout(v)

2
). (5.6)

96

Here p is the stopping probability for the localized attack at each time slot, N t
v is the

set of successors of node v on graph gta, d
t
in(v) is the incoming degree of node v on

gta, d
t
out(v) is the outgoing degree of node v on gta, d

t
a(v) is the degree of node v on

subgraph of Gt
a with node set Ṽ ta, and ltv is the level of node v on graph gta, where

ltv = min
u∈Ct

distt(u, v),

and distt(u, v) is the distance from node u to v on graph gta. In the definition of the

expected number of link failures :

• dtout(v) represents the link failures of outgoing links brought by the attack of

node v on graph gta.

• dta(v)−dtin(v)−dtout(v)

2
is the number of link failures caused by the attack of node v

on the edges with endpoints from the same level ltv on graph Gt
a. Here we divide

it by 2 because we attribute half to each endpoint for each failed link.

• wtv represents the links failures caused by the second kind of node failures, which

can be calculated according to Algorithm 5.4.

• f tu
dtin(u)

is the expected link failures brought by node u which is from level ltv + 1

whose shortest paths from the current attack nodes pass through node v.

• (1− p)ltv is the probability that the attack continues at level ltv.

In REALW IRE, we use the total expected number of link failures,

Ft+1(st, at) =
∑

v∈Vta\Ft

(1− p)ltv(dtout(v) + wtv +
dta(v)− dtin(v)− dtout(v)

2
) (5.7)

to replace Vt+1(St+1(St, at)) in the equation (5.4), and the number of link failures

brought by the current attack,

ft(st, at) =
∑
v∈Ct

(dtout(v) + wtv + 1/2
∑
v∈Ct

(dta(v)− dtout(v)) (5.8)

97

to replace f(st, at(nt)). Thus, equation (5.4) becomes

Ft(st) = min
at

ft(st, at) + Ft+1(st, at)

= min
at

∑
v∈Vta\Ft−1

(1− p)ltv(dtout(v) + wtv +
dta(v)− dtin(v)− dtout(v)

2
)

(5.9)

REALW IRE can be divided into four steps:

1. At each time slot t, we build the graph gta(Ṽ ta, Ẽ ta) by using Algorithm 5.1. Figure

5.2 provides an example of how the algorithm works. Figure 5.2.a shows the

network at time 0, while there is only one attacked node in network A. Then,

the result of gta(Ṽ ta, Ẽ ta) can be found in Figure 5.2.b.

2. We calculate the expected number of link failures for any node v ∈ Ṽ ta according

to Equation 5.6. Figure 5.2.c shows the calculations of the expected number of

link failures for the example.

3. For each edge (u, v) ∈ Ẽ ta, we assign a score wu,v = f tv
dtin(v)

. The result of link

scores for the example is presented in Figure 5.2.d.

4. Pick the top n links with the highest scores. For each one of those links (u, v),

reattach node v to another node on gta on the highest level with a probability

proportional to its degree according to Algorithm 5.2. Finally, the network after

rewiring is in Figure 5.2.e.

The pseudo code can be found in Algorithm 5.3. Higher the score an edge has,

more shortest paths will be affected by removing the edge. Thus, in Algorithm

5.3, by choosing the link with the highest score to remove, REALW IRE aims at

increasing the distances between the current attacked nodes and unattacked nodes.

Then, we reattach the node to the lowest level in gta so that the levels, ltv, for the

nodes whose shortest paths will be impacted by the edge can be increased the most.

98

A

B

(a) In this example, assume

at current time slot, in each

subnetwork, there is only

one attacked node, which

is marked by red diamond.

The dash lines between two

layers are bidirectional de-

pendency links.

A

B

1

1

2

2
3

3 4

(b) In the first step, we run

a breadth-first search from

the current attacked node

in subnetwork A. The num-

ber around each healthy

node in subnetwork A rep-

resents the distance from

current attack.

A

B

8.79

4.27

4.52

2.93
1.10

1.44 0.48
u

v

(c) Calculate the expected

number of link failures for

each healthy node in sub-

network A according to

(5.6). For example, with

assumption of p = 0.3, for

node v, we have f tv = 0.74×

2 = 0.48. Then, we have

f tu = f tv/2 + 0.73 × 2.5 =

1.10.

A

B

8.79
4.27

4.521.47
1.10

0.72

0.24

u

v
1.47

0.72

0.24

(d) We assign the expected

number of link failures of

each node equally to the in-

coming links of these nodes.

A

B

(e) Finally, we choose links

with highest scores to cut

and reattach the endpoints

to the nodes with the

largest level number. In

this example, assume we

only can reattach one link.

The link with score 8.79 is

cut and the link in blue is

added.

Figure 5.2: An example of our algorithm.
99

Thus, according to equation (5.9), our algorithm aims to minimize Ft(st) in a greedy

manner.

5.2.3 Complexity Analysis

Lemma 5.1. The complexity of our algorithm is O(T |Va||D|+ T |Ea|).

Proof. At each time slot, the complexity comes from three parts:

1. Calculating wtv for each node v, which contributes a complexity O(|Va||D|).

2. Finding the BFS subnetwork, which has a complexity

O(|Va|+ |Ea|).

3. Selecting the top nt links with highest scores. This step has a complexity

O(|Ea| log nt).

Since nt is upper bounded by a constant, the complexity becomes O(|Va||D| + |Ea|).

Assume T is the duration of the attack, then the complexity of the algorithm is

O(T |Va||D|+ T |Ea|).

Figure 5.3 plots the wall-clock time vs network size for the BA-BA networks with

attack duration T = 4. From Figure 5.3, we can see the complexity has a near linear

trend.

5.3 Performance Evaluation

5.3.1 Performance Measures

We use the following performance metrics to measure the performance:

100

4000 6000 8000 10000 12000 14000
Network size

0

5

10

15

20

25

W
a
ll-

cl
o
ck

 t
im

e

Figure 5.3: The wall-clock time vs network size for BA networks when attack time

duration is 4.

Algorithm 5.1: BFS subnetwork

Input : Graph Gt
a(V ta, E ta), current attack Ct, Ft−1,

Output: gta(Ṽ ta, Ẽ ta), level ltv, ∀v ∈ V ta
ltv ← 0, ∀v ∈ Ct;
Current← Ct, T otal← Ct;
Let gta be a null graph;
Add nodes V ta \ Ft−1 to graph gta;
while Current 6= ∅ do

Next← ∅;
for v ∈ Current do

for u in neighbors of v on Gt
a do

if u 6∈ Total and gta has node u then
Add directed link v → u to graph gta;
Add u to the set Next;
ltu ← ltv + 1;

Current← Next;
Total← Total ∪ Current;

101

Algorithm 5.2: Probabilistic Reattach

Input : Node v, graph gta(Ṽ ta, Ẽ ta), Gt
a(V ta,V ta), Gt

b(V tb,V tb), ltu ∀u ∈ Ṽ ta.
Output: Gt

a(V ta, E ta).
ReattachSet← {u|u ∈ Ṽ ta, ltu = maxu∈Ṽta l

t
u} \ {u|(u, v) ∈ E ta};

d←
∑

u∈ReattachSet d
t
a(u) +

∑
w∈Vtb ,

where u∈Rtw

db(w)
||Rtw||

;

Randomly pick a node u from ReattachSet with probability

(dta(u) +
∑
w∈Vtb ,

where u∈Rtw

db(w)
||Rtw||

)/d and add an edge between v and u;

Algorithm 5.3: REALW IRE

Input : Graph Gt
a(V ta, E ta), Gt

b(V tb, E tb), current attack Ct, number of rewired
links n, stopping probability p.

Output: Gt
a(V ta, E ta).

Construct graph gta(Ṽ ta, Ẽ ta) by using Algorithm 5.1;

Calculate f tv ∀v ∈ Ṽ ta according to Equation (5.6);
wu,v ← f tv/d

t
in(v) for ∀(u, v) ∈ gta;

W ← the n edges with highest wu,v;
i← 1;
for 1 ≤ i ≤ n do

Remove edge (u, v) on Gt
a with (u, v) = W [i];

Reattach node v by using Algorithm 5.2;

Algorithm 5.4: Calculate wtv
Input : Graph Gt

a(V ta, E ta), current attack Ct, attacked nodes Ft, node v, the
set V isitedEdges, the score dictionary D

Output: A score

if v ∈ V ta then Dv ← dta(v);
else Dv ← db(v);
for (v, w) ∈ D do

if (v, w) 6∈ V isitedEdges and (w, v) 6∈ V isitedEdges;
then
V isitedEdges.add((v, w));
if D does not contain Dw then

Calculate Dw using Algorithm 5.4 based current V isitedEdges and
D;

Dv ← Dv + Dw
||{(u,w)|∀(u,w)∈D}|| ;

Return Dv;

102

1. Largest connected component fraction: The size of the largest connected com-

ponent of graph Ga (Gb) after removing all failed nodes divided by the original

size of the graph.

2. Natural connectivity: It is defined in Jun et al. (2010) as

λ̄ = ln(
1

N

N∑
i=1

eλi), (5.10)

where λi is the ith largest eigenvalue of the adjacency matrix of a graph. It

can be used to measure the number of closed walks on the graph. Since in the

interdependent networks, there are two networks Ga and Gb, after removing the

failed nodes, we calculate the natural connectivity for each network and add

them together.

3. Spectral radius: The spectral radius is defined as the largest absolution value

of the eigenvalues of the adjacency matrix.

4. Spectral gap: The spectral gap of a graph is the difference between the largest

and the second largest eigenvalues of the adjacency matrix. The spectral gap

is closely related to the expansion properties of the graph. It has been used as

a robustness metric in Malliaros et al. (2012).

5.3.2 Optimality on the Small Networks

For a small size network, we can calculate the optimal solution for the MDP prob-

lem defined in Problem 1. In this experiment, we used the Florentine families graph,

which only contains 15 nodes. Since there are two networks, A and B, involved in the

interdependent network model, we used the Florentine families graph to represent A

(B) and randomly assign the name 0, 1, . . . , 14 to each node. Then, the functioning

of one node in B depends on the node with the same name in A. Then, we let the

103

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Source

40

50

60

70

80

90

100

M
D

P
 o

b
je

ct
iv

e

Optimal

REALWIRE

Random

Figure 5.4: Florentine families network.

attack start from each node in the network A and propagate for 2 time slots. The

result is listed in Figure 5.4. The bars of the optimal solution are generated based

on the maximum objective value defined in (5.5) over all possible rewiring traces.

For the other algorithms, we run 500 times for each source and take the average.

Based on Figure 5.4, we can see that the value of the MDP objective generated by

our algorithm is close to the optimal solution.

To calculate the optimal solution of the MDP problem, we need to consider every

possible rewiring of the networks, which means as the increase of the propagation time

, T , the computation time grows exponentially. For example, the average number of

possible rewiring combinations over all possible attack sources is 312 when T = 1,

103342 when T = 2, and 13718030 when T = 3.The average of the wall-clock time or

the number of possible rewirings versus attack duration is shown in Figure 5.5. From

Figure 5.5, we can see the computation time grows exponentially as the increase of T,

which makes the calculation of the optimal solution for large networks unpractical.

5.3.3 General Networks

We tested our algorithm on the following networks:

104

0 1 2
Attack duration

0

50

100

150

200

250

300

W
a
ll-

cl
o
ck

 t
im

e

(a) Wall-clock time vs attack

duration.

0 1 2 3
Attack duration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

#
 o

f
p
o
ss

ib
le

 t
ra

ce
s

1e7

(b) Number of possible rewiring

traces vs attack duration.

Figure 5.5: The complexity of the optimal algorithm on the Florentine families net-

work.

1. BA network: The network is generated by using the Barabasi-Albert preferential

attachment model, in which the number of edges to attach from a new node to

the existing nodes is 3.

2. Air traffic network: The network is built based on one year (2016) of interval

USA air traffic data 1 composed of 1243 airports connected by 16106 links.

3. IAS network: The IAS network is based on the Internet Autonomous Systems

peering information inferred from oregon route-views Leskovec et al. (2005).

The network contains 6474 nodes and 13895 edges 2 .

4. Power grid network:This network is used to represent the topology of the West-

ern States Power Grid of the United States, which contains 4941 nodes and

6594 edges Watts and Strogatz (1998).

From each of the network mentioned above, we built the following interdependent

1https://www.transtats.bts.gov/TRAFFIC/

2http://snap.stanford.edu/data/as.htmls

105

https://www.transtats.bts.gov/TRAFFIC/
http://snap.stanford.edu/data/as.htmls

networks.

• The BA-BA network: Both the first layer and second layer are BA networks with

2000 nodes generated randomly. We generated a one-to-one mapping between

nodes from both layers as the dependency links.

• The IAS-PG network: For each node v in the IAS network or the power grid

network, we uniformly picked an integer number d from 0 to 2 and randomly

chose d nodes from the other layer as the supporting nodes of node v.

• The IAS-Air network: Since the communication network can impact the air

traffic network and not the other way around, we generated a single direction

interdependent network in this case. For each node v in the air traffic network,

we randomly picked 0 ∼ 2 nodes from the other layer as the supporting node

of node v.

We compared our algorithm with the following two heuristics:

• Single step rewiring: Instead of rewiring during the attack, it rewires the links

before the attack. This algorithm aims to balance the degree of two endpoints

connected by each edge.

– For each link (u, v) on Ga, we define the degree difference to be |da(u) −

da(v)|. We rank all the links according to their degree differences.

– We pick the top n links with largest degree differences and remove those

links.

– For each removed link, we rewire the endpoint with the smaller degree to

another node in the network with a small degree.

• Degree rewiring: This algorithm consists of the following steps:

106

REALW IRE Degree rewiring Single step rewiring

BA-BA 126.81 130.34 299.55

IAS-PG 131.68 126.10 694.75

IAS-Air 134.78 119.63 694.74

Table 5.1: The average number of rewired links.

– At each time slot t, we only rank all the links that connect attacked nodes

and unattacked nodes and rank them according to a score based on the

degree of their unattacked endpoints. For example, assume there is an

edge (u, v) ∈ Gt
a, while u ∈ Ft and v ∈ V ta \ Ft. Then the score of edge

(u, v) is dta(v) +
∑

w∈Vb,
while v∈Rw

db(w)
|Rw| , where db(w) is the degree of node w on

Gb, and dta(v) is the degree of node v on the subgraph of Gt
a with node set

V ta \ Ft−1.

– We pick nt links with highest scores to remove and then reattach the

unattacked endpoint of each link to another unattacked with a higher score.

Here nt is defined in Equation (5.2).

We evaluated our algorithm on a more general SI model, where at each time slot

each attacked node in network A can attack its unattacked neighbors with certain

probability pa. In the experiments for the BA-BA network, pa = 1, while for the

IAS-Air network and the IAS-PG network, pa = 0.7. The attack stops after a certain

fraction of nodes gets attacked. For the number of rewired links at each time slot,

we set r = 0.5 and z = 20 in Equation (5.2). For the single step rewiring algorithm,

we chose to rewire 5% of the total number of links on network A. Table 5.1 shows

the average number rewired links where for REALW IRE and degree rewiring, the

numbers were calculated when the attack fraction is 0.9. From Table 5.1, the number

107

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

No rewiring

Single step rewiring

Degree rewiring

REALWIRE

(a) Largest component fraction

of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

(b) Largest component fraction

of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0

1

2

3

4

5

6

7

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(c) Natural connectivity of

network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0

1

2

3

4

5

6

7

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(d) Natural connectivity of

network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

1

0

1

2

3

4

5

S
p
e
ct

ra
l
G

a
p

(e) Spectral gap of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
ct

ra
l
G

a
p

(f) Spectral gap of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0

2

4

6

8

10

12

14

S
p
e
ct

ra
l
R

a
d
iu

s

(g) Spectral radius of network

A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

2

4

6

8

10

12

14

S
p
e
ct

ra
l
R

a
d
iu

s

(h) Spectral radius of network

B.

Figure 5.6: The BA-BA network.

108

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

No rewiring

Single step rewiring

Degree rewiring

REALWIRE

(a) Largest component fraction

of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

(b) Largest component fraction

of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

5

0

5

10

15

20

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(c) Natural connectivity of

network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

30

40

50

60

70

80

90

100

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(d) Natural connectivity of

network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

4

2

0

2

4

6

8

10

12

S
p
e
ct

ra
l
G

a
p

(e) Spectral gap of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

20

30

40

50

60

70

S
p
e
ct

ra
l
G

a
p

(f) Spectral gap of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

5

0

5

10

15

20

25

30

S
p
e
ct

ra
l
R

a
d
iu

s

(g) Spectral radius of network

A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

30

40

50

60

70

80

90

100

S
p
e
ct

ra
l
R

a
d
iu

s

(h) Spectral radius of network

B.

Figure 5.7: The IAS-Air network.

109

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

No rewiring

Single step rewiring

Degree rewiring

REALWIRE

(a) Largest component fraction

of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.2

0.0

0.2

0.4

0.6

0.8

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

(b) Largest component fraction

of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

5

0

5

10

15

20

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(c) Natural connectivity of

network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(d) Natural connectivity of

network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

4

2

0

2

4

6

8

10

12

14

S
p
e
ct

ra
l
G

a
p

(e) Spectral gap of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
ct

ra
l
G

a
p

(f) Spectral gap of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

5

0

5

10

15

20

25

30

S
p
e
ct

ra
l
R

a
d
iu

s

(g) Spectral radius of network

A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

1

2

3

4

5

6

7

S
p
e
ct

ra
l
R

a
d
iu

s

(h) Spectral radius of network

B.

Figure 5.8: The IAS-PG network.

110

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

No rewiring

Degree rewiring

REALWIRE

(a) Largest component fraction

of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

La
rg

e
st

 c
o
m

p
o
n
e
n
t

fr
a
ct

io
n

(b) Largest component fraction

of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

10

5

0

5

10

15

20

25

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(c) Natural connectivity of

network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

30

40

50

60

70

80

90

100

N
a
tu

ra
l
C

o
n
n
e
ct

iv
it

y

(d) Natural connectivity of

network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

4

2

0

2

4

6

8

10

12

14

S
p
e
ct

ra
l
G

a
p

(e) Spectral gap of network A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

25

30

35

40

45

50

55

60

65

70

S
p
e
ct

ra
l
G

a
p

(f) Spectral gap of network B.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

5

0

5

10

15

20

25

30

S
p
e
ct

ra
l
R

a
d
iu

s

(g) Spectral radius of network

A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Attack fraction

40

50

60

70

80

90

100

S
p
e
ct

ra
l
R

a
d
iu

s

(h) Spectral radius of network

B.

Figure 5.9: The IAS-Air network with backup links.

111

of rewired links resulted by REALW IRE is close to the number of rewired links

from the degree rewiring, which is much smaller than the number of links rewired

by the single step rewiring algorithm. From Figure 5.3, we can see that the wall-

clock time is almost linear to the size of the network. From Figure 5.6,5.7,5.8, we

can see that in terms of the largest connected component fraction, our algorithm

performs the best. For example, in the IAS-Air network, when the attack fraction

is 0.3, the largest connected component fraction under REALW IRE is 0.39, which

is much higher than that under the degree rewiring, 0.28. In the BA-BA network,

our algorithm outperforms others in terms on network B, while in network A, as

the attack fraction increases, our algorithm starts to perform better than the degree

heuristic. In the IAS-Air network, our algorithm outperforms the others for most

metrics. In the IAS-PG network, the performance of our algorithm and the degree

heuristic is close.

In reality, there exist circumstances, in which we cannot add a link between any

two nodes in the network. This means we may not be able to rewire the links according

to our algorithm. Thus, we considered another scenario, in which we assume each

node has some backup links we can activate during the attack. In this experiment, for

each node we randomly generated a number of backup links equal to 20% multiplying

by its degree. So during the attack, for each link we cut, we can activate a backup

link of one of its endpoints. The other parameters are the same as the rewiring case.

From Figure 5.9, we can see our algorithm still outperforms the others.

5.4 Conclusion

In this chapter, we studied the problem of improving robustness of interdependent

networks against the localized attack. We proposed a novel algorithm, named REAL

W IRE, to improve the robustness of the interdependent networks and to limit the

112

impact of the attack by rewiring the links of the networks in real-time. We formu-

lated the problem as an MDP problem, which has been proved to be NP-hard, and

then proposed a greedy algorithm. The simulation results showed the performance

of REALW IRE is close to the exact solution of the MDP problem in a small net-

work and REALW IRE outperforms the others in different networks when the attack

fraction is high.

113

Chapter 6

CONCLUSION

In this dissertation, we covered three problems related to information diffusion pro-

cesses on networks: information source detection, diffusion history reconstruction,

and network robustification with real-time rewiring.

In Chapter 2 and Chapter 3, we studied the information source detection prob-

lem. In Chapter 2, we investigated the information source detection problem with a

complete snapshot under SIR model. We presented an algorithm, named clustering

and localization, for tree networks. We proved that for a regular tree, the distance

between any estimator and its closest real source is bounded by a constant with a

high probability under some conditions. Then we extended our algorithm to general

networks. In Chapter 3, we considered the information source detection problem un-

der a more general setting, including a partial observation instead of the complete

snapshot and the heterogeneous SIR model instead of the homogeneous one. We

proposed a novel algorithm, named Optimal-Jordan-Cover (OJC), for locating mul-

tiple sources and showed theoretical guarantees on the detection rate for non-tree

networks. Furthermore, we developed a heuristic based on the K−means, called

Approximate-Jordan-Cover (AJC), to reduce the complexity of OJC.

In Chapter 4, we studied the problem of reconstructing the history of a diffusion

process. Under SI model as the diffusion model and a partial snapshot as observation,

we formulated the diffusion history reconstruction problem as a maximum a posteriori

(MAP) estimate problem, and showed its NP-hardness. We proposed a greedy and

step-by-step reconstruction algorithm to reconstruct the most likely network state

at time slot based on the network state at time slot while guaranteeing the state

114

is consistent with the partial observation, and further developed a greedy algorithm

for a single-step construction. We proved that the diffusion history obtained by the

step-by-step reconstruction algorithm is always consistent with the observation.

In Chapter 5, we considered the problem of improving the robustness of an in-

terdependent network under a localized attack. We formulated the interdependent

network link rewiring problem as a Markov decision process (MDP) problem, which

is NP-hard. Then, we proposed a greedy algorithm to rewire the links during the

attack.

For each algorithm we proposed, an extensive amount of experiments on both syn-

thetic networks and real-world networks have been done, which shows our algorithms

outperform other algorithms.

115

REFERENCES

Abrahao, B., F. Chierichetti, R. Kleinberg and A. Panconesi, “Trace complexity of
network inference”, in “Proc. of the 19th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining”, pp. 491–499 (Chicago, USA, 2013).

Agresti, A., Analysis of ordinal categorical data, vol. 656 (John Wiley & Sons, 2010).

Albert, R. and A.-L. Barabási, “Statistical mechanics of complex networks”, Rev.
Mod. Phys. 74, 47–97 (2002).

Albert, R., H. Jeong and A.-L. Barabási, “Internet: Diameter of the world-wide web”,
Nature 401, 130–131 (1999).

Albert, R., H. Jeong and A.-L. Barabasi, “Attack and error tolerance of complex
networks”, Nature 406, 378–382 (2000).

Bailey, N. T. J., The mathematical theory of infectious diseases and its applications
(Hafner Press, 1975).

Bakshi, A., A. Velayutham, S. Srivastava, K. Agrawal, R. Nayak, S. Soonee and
B. Singh, “Report of the enquiry committee on grid disturbance in northern region
on 30th july 2012 and in northern, eastern & north-eastern region on 31st july
2012”, New Delhi, India (2012).

Barabasi, A.-L. and R. Albert, “Emergence of scaling in random networks”, Science
286, 5439, 509–512 (1999).

Bikhchandani, S., D. Hirshleifer and I. Welch, “A theory of fads, fashion, custom,
and cultural change in informational cascades”, J. of Political Economy 100, 5,
992–1026 (1992).

Briesemeister, L., P. Lincoln and P. Porras, “Epidemic profiles and defense of scale-
free networks”, in “Proc. of the 2003 ACM Workshop on Rapid Malcode”, pp.
67–75 (Washington DC, USA, 2003).

Buldyrev, S. V., R. Parshani, G. Paul, H. E. Stanley and S. Havlin, “Catastrophic cas-
cade of failures in interdependent networks”, Nature 464, 7291, 1025–1028 (2010).

Callaway, D. S., M. E. J. Newmann, S. H. Strogatz and D. J.Watts, “Network robust-
ness and fragility: Percolation on random graphs”, Phys. Rev. Lett. 85, 5468–5471
(2000).

Chan, H., L. Akoglu and H. Tong, “Make it or break it: Manipulating robustness
in large networks”, in “Proceedings of the 2014 SIAM International Conference on
Data Mining”, pp. 325–333 (SIAM, 2014).

Chan, H., S. Han and L. Akoglu, “Where graph topology matters: the robust sub-
graph problem”, in “Proceedings of the 2015 SIAM International Conference on
Data Mining”, pp. 10–18 (SIAM, 2015).

116

Chen, C., J. He, N. Bliss and H. Tong, “Towards optimal connectivity on multi-
layered networks”, IEEE Transactions on Knowledge and Data Engineering 29,
10, 2332–2346 (2017).

Chen, Z., H. Tong and L. Ying, “Full diffusion history reconstruction in networks”,
in “2015 IEEE Int. Conf. on Big Data (Big Data)”, pp. 707–716 (IEEE, 2015).

Chen, Z., H. Tong and L. Ying, “Robustification on-the-fly: Real-time rewiring on in-
terdependent networks”, Tech. rep., Arizona State University, available at http://
www.public.asu.edu/~zchen113/Publications/TechnicalReport.pdf (2018).

Chen, Z., K. Zhu and L. Ying, “Detecting multiple information sources in networks
under the SIR model”, in “Proc. IEEE Conf. Information Sciences and Systems
(CISS)”, (Princeton, NJ, 2014).

Cohen, R., K. Erez, D. Ben-Avraham and S. Havlin, “Resilience of the internet to
random breakdown”, Phys. Rev. Lett. 85, 4626–4628 (2000).

Di Muro, M., C. La Rocca, H. Stanley, S. Havlin and L. Braunstein, “Recovery of
interdependent networks”, Scientific reports 6 (2016).

Dong, W., W. Zhang and C. W. Tan, “Rooting out the rumor culprit from suspects”,
in “Proc. IEEE Int. Symp. Information Theory (ISIT)”, pp. 2671–2675 (Istanbul,
Turkey, 2013).

Fajardo, D. and L. M. Gardner, “Inferring contagion patterns in social contact net-
works with limited infection data”, Networks and Spatial Econ. 13, 4, 399–426
(2013).

Ganesh, A., E. Massouli and D. Towsley, “The effect of network topology on the
spread of epidemics”, in “Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM)”,
pp. 1455–1466 (2005).

Gao, J., S. V. Buldyrev, H. E. Stanley and S. Havlin, “Networks formed from inter-
dependent networks”, Nature physics 8, 1, 40–48 (2012).

Gardner, L. M., D. Fajardo and S. Travis Waller, “Inferring contagion patterns in
social contact networks using a maximum likelihood approach”, Natural Hazards
Review 15, 3 (2014).

Goldenberg, J., B. Libai and E. Muller, “Talk of the network: A complex systems
look at the underlying process of word-of-mouth”, Marketing Lett. 12, 3, 211–223
(2001a).

Goldenberg, J., B. Libai and E. Muller, “Talk of the network: A complex systems
look at the underlying process of word-of-mouth”, Marketing Letters 12, 3, 211–223
(2001b).

Gomez Rodriguez, M., J. Leskovec and A. Krause, “Inferring networks of diffusion
and influence”, in “Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining”, pp. 1019–1028 (Washington DC, USA, 2010).

117

http://www.public.asu.edu/~zchen113/Publications/TechnicalReport.pdf
http://www.public.asu.edu/~zchen113/Publications/TechnicalReport.pdf

Gruhl, D., R. Guha, D. Liben-Nowell and A. Tomkins, “Information diffusion through
blogspace”, in “Proc. of the 13th Int. Conf. on World Wide Web”, pp. 491–501 (New
York, USA, 2004).

Hartigan, J. A. and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm”,
Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 1, 100–108
(1979).

Hayashi, Y., M. Minoura and J. Matsukubo, “Recoverable prevalence in growing
scale-free networks and the effective immunization”, arXiv:cond-mat/0305549 v2
(2003).

Hethcote, H. W., “The mathematics of infectious diseases”, SIAM Review 42, 4,
599–653 (2000).

Jun, W., M. Barahona, T. Yue-Jin and D. Hong-Zhong, “Natural connectivity of
complex networks”, Chinese Phys. Lett. 27, 7, 078902 (2010).

Karamchandani, N. and M. Franceschetti, “Rumor source detection under probabilis-
tic sampling”, in “Proc. IEEE Int. Symp. Information Theory (ISIT)”, (Istanbul,
Turkey, 2013).

Kempe, D., J. Kleinberg and E. Tardos, “Maximizing the spread of influence through
a social network”, in “Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining”, pp. 137–146 (Washington DC, USA, 2003).

Kermack, W. O. and A. G. McKendrick, “A contribution to the mathematical theory
of epidemics”, in “Proc. of the Royal Soc. of London A: Math., Physical and Eng.
Sci.”, vol. 115, pp. 700–721 (1927).

Kleinberg, J., “The small-world phenomenon: an algorithm perspective”, in “Pro-
ceedings of the thirty-second annual ACM symposium on Theory of computing”,
p. 170 (ACM, 2000).

Leskovec, J., L. A. Adamic and B. A. Huberman, “The dynamics of viral marketing”,
ACM Trans. Web (TWEB) 1, 1, 5 (2007).

Leskovec, J., J. Kleinberg and C. Faloutsos, “Graphs over time: densification
laws, shrinking diameters and possible explanations”, in “Proc. of the 11th ACM
SIGKDD international conference on Knowledge discovery in data mining”, pp.
177–187 (ACM, 2005).

Luo, W. and W. P. Tay, “Identifying multiple infection sources in a network”, in
“Proc. Asilomar Conf. Signals, Systems and Computers”, (2012).

Luo, W. and W. P. Tay, “Estimating infection sources in a network with incom-
plete observations”, in “Proc. IEEE Global Conference on Signal and Information
Processing (GlobalSIP)”, pp. 301–304 (Austin, TX, 2013a).

118

Luo, W. and W. P. Tay, “Finding an infection source under the SIS model”, in “Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP)”, (Vancouver,
BC, 2013b).

Luo, W., W. P. Tay and M. Leng, “Identifying infection sources and regions in large
networks”, IEEE Trans. Signal Process. 61, 2850–2865 (2013).

Luo, W., W. P. Tay and M. Leng, “On the universality of jordan centers for estimating
infection sources in tree networks”, CoRR abs/1411.2370, URL http://arxiv.
org/abs/1411.2370 (2014).

Malliaros, F. D., V. Megalooikonomou and C. Faloutsos, “Fast robustness estimation
in large social graphs: Communities and anomaly detection”, in “Proc. of the 2012
SIAM International Conference on Data Mining”, pp. 942–953 (SIAM, 2012).

Myers, S. and J. Leskovec, “On the convexity of latent social network inference”, in
“Advances in Neural Inform. Process. Syst.”, pp. 1741–1749 (2010).

Newman, M., Networks: An Introduction (Oxford University Press, Inc., 2010).

Powell, W. B., Approximate Dynamic Programming: Solving the curses of dimen-
sionality, vol. 703 (John Wiley & Sons, 2007).

Prakash, B. A., D. Chakrabarti, M. Faloutsos, N. Valler and C. Faloutsos, “Threshold
conditions for arbitrary cascade models on arbitrary networks”, in “IEEE 11th Int.
Conf. on Data Mining (ICDM)”, pp. 537–546 (Vancouver, Canada, 2011).

Prakash, B. A., H. Tong, N. Valler, M. Faloutsos and C. Faloutsos, “Virus propaga-
tion on time-varying networks: Theory and immunization algorithms”, in “Mach.
Learning and Knowledge Discovery in Databases”, pp. 99–114 (2010).

Rényi, A. and P. Erdős, “On random graphs”, Publicationes Mathematicae 6, 290-
297, 5 (1959).

Richardson, M. and P. Domingos, “Mining knowledge-sharing sites for viral market-
ing”, in “Proc. of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining”, pp. 61–70 (Edmonton, Canada, 2002).

Rozenshtein, P., A. Gionis, B. A. Prakash and J. Vreeken, “Reconstructing an epi-
demic over time.”, in “KDD”, pp. 1835–1844 (2016).

Schneider, C. M., A. A. Moreira, J. S. Andrade, S. Havlin and H. J. Herrmann,
“Mitigation of malicious attacks on networks”, Proc. the National Academy of
Sciences 108, 10, 3838–3841 (2011).

Sefer, E. and C. Kingsford, “Diffusion archaeology for diffusion progression history
reconstruction”, in “IEEE 14th Int. Conf. on Data Mining (ICDM)”, pp. 530–539
(Shenzhen, China, 2014).

Shah, D. and T. Zaman, “Detecting sources of computer viruses in networks: Theory
and experiment”, in “Proc. Ann. ACM SIGMETRICS Conf.”, pp. 203–214 (New
York, NY, 2010).

119

http://arxiv.org/abs/1411.2370
http://arxiv.org/abs/1411.2370

Shah, D. and T. Zaman, “Rumors in a network: Who’s the culprit?”, IEEE Trans.
Inf. Theory 57, 5163–5181 (2011).

Shah, D. and T. Zaman, “Rumor centrality: a universal source detector”, in “Proc.
Ann. ACM SIGMETRICS Conf.”, pp. 199–210 (London, England, UK, 2012).

Shao, S., X. Huang, H. E. Stanley and S. Havlin, “Percolation of localized attack on
complex networks”, New Journal of Physics 17, 2, 023049 (2015).

Song, Y., A. Li, J. Huang, Y. Quan and L. Deng, “History path reconstruction
analysis of topic diffusion on microblog”, in “Recent Developments in Intelligent
Systems and Interactive Applications”, pp. 150–157 (Springer, 2016).

Sun, Y., C. Qian, N. Yang and P. S. Yu, “Collaborative inference of coexisting infor-
mation diffusions”, Arxiv preprint arXiv:1708.06890 (2017).

Tong, H., B. A. Prakash, T. Eliassi-Rad, M. Faloutsos and C. Faloutsos, “Gelling,
and melting, large graphs by edge manipulation”, in “Proceedings of the 21st ACM
international conference on Information and knowledge management”, pp. 245–254
(ACM, 2012).

Tong, H., B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos and D. H.
Chau, “On the vulnerability of large graphs”, in “IEEE 10th Int. Conf. on Data
Mining (ICDM)”, pp. 1091–1096 (Sydney, Australia, 2010).

Valler, N., B. A. Prakash, H. Tong, M. Faloutsos and C. Faloutsos, “Epidemic spread
in mobile ad hoc networks: Determining the tipping point”, in “Networking 2011”,
pp. 266–280 (2011).

Vespignani, A., “Complex networks: The fragility of interdependency”, Nature 464,
7291, 984–985 (2010).

Wang, Y., D. Chakrabarti, C. Wang and C. Faloutsos, “Epidemic spreading in real
networks: An eigenvalue viewpoint”, in “IEEE Proc. 22nd Int. Symposium on
Reliable Distributed Syst.”, pp. 25–34 (Florence, Italy, 2003).

Watts, D. J. and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks”,
Nature 393, 6684, 440–442 (1998).

Young, N. E., “Greedy set-cover algorithms (1974-1979, chvátal, johnson, lovász,
stein)”, Encyclopedia of Algorithms pp. 379–381 (2008).

Yuan, X., S. Shao, H. E. Stanley and S. Havlin, “How breadth of degree distribution
influences network robustness: Comparing localized and random attacks”, Phys.
Rev. E 92, 3, 032122 (2015).

Zachary, W. W., “An information flow model for conflict and fission in small groups”,
J. of Anthropological Research pp. 452–473 (1977).

Zeng, A. and W. Liu, “Enhancing network robustness against malicious attacks”,
Phys. Rev. E 85, 6, 066130 (2012).

120

Zhang, Y., A. Adiga, S. Saha, A. Vullikanti and B. A. Prakash, “Near-optimal algo-
rithms for controlling propagation at group scale on networks”, IEEE Transactions
on Knowledge and Data Engineering 28, 12, 3339–3352 (2016).

Zhu, K., Z. Chen and L. Ying, “Locating the contagion source in networks with
partial timestamps”, Data Mining and Knowledge Discovery pp. 1–32 (2015).

Zhu, K., Z. Chen and L. Ying, “CatchEm All: Locating multiple diffusion sources
in networks with partial observations”, in “AAAI Conference on Artificial Intelli-
gence”, (2017).

Zhu, K. and L. Ying, “Information source detection in the SIR model: A sample
path based approach”, in “Proc. Information Theory and Applications Workshop
(ITA)”, (2013).

Zhu, K. and L. Ying, “A robust information source estimator with sparse obser-
vations”, in “Proc. IEEE Int. Conf. Computer Communications (INFOCOM)”,
(Toronto, Canada, 2014).

Zhu, K. and L. Ying, “Information source detection in the SIR model: A sample path
based approach”, IEEE/ACM Trans. Netw. (2015a).

Zhu, K. and L. Ying, “Source localization in networks: Trees and beyond”,
arXiv:1510.01814 (2015b).

Zhu, K. and L. Ying, “Information source detection in networks: Possibility and
impossibility results”, in “Proc. IEEE Int. Conf. Computer Communications (IN-
FOCOM)”, (San Francisco, CA, 2016).

Zong, B., Y. Wu, A. K. Singh and X. Yan, “Inferring the underlying structure of
information cascades”, in “IEEE 12th Int. Conf. on Data Mining (ICDM)”, pp.
1218–1223 (Brussels, Belgium, 2012).

121

APPENDIX A

PROOF OF CHAPTER 2

122

(a) Time t = 0. (b) Time t = 1. (c) Time t = 2.

Figure A.1: An example of one-time-slot branching process starting from node 1. For
simplicity, we assume the time when node 1 gets infected is 0. From Figure A.1b, at
t = 1, the current level is 0 and there are two nodes, 2 and 4, from level 1 infected
by node 1 from level 0. Figure A.1c shows that at t = 2, node 5 from next level 2 is
infected by node 2 from the current level 1. Therefore, at each time slot, there is at
least one node infected at level, l + 1,by infected node from level l.

A.1 Proof of Theorem 2.1

Consider a (g+1)-regular tree G(V , E) with S different information sources, named
ζ1, ζ2, ..., ζS. These S original sources and the paths between each pair form a tree,

named Gs = (VGs , EGs). Define event A =
S⋂
i=1

Aζi , where Aζi(i = 1, ..., S) is the event

that includes the following cases:

• Case 1: At least (S+1) one-time-slot branching processes from source ζi survive
after time t0, where these (S + 1) one-time-slot branching processes do not
overlap.

• Case 2: The infection spreading tree starting from ζi terminates at or before
time t0. We describe this as the infection process from source ζi dies out at time
t0 on tree G.

We remark that t0 is a constant. The one-time-slot branching process is defined to be
the process that starting from an infected node, at each time slot, at least one node
at the the next level, l+ 1, gets infected by an infected node from the current level l.
The level of a node is defined to be the distance between that node and the starting
node of the process, while the current level is defined to be the largest level among
all infected nodes associated with the starting node of the one-time-slot branching
process at the beginning of the current time slot. In Figure A.1, an example is used
to explain the definition of the one-time-slot branching process.

Then, we define a node set

Vα = {α| α ∈ VGs and min
i=1,...,S

d(α, ζi) 6 C1},

in which each node is the on tree Gs and within C1 (C1 > 0 and C1 ∈ N) distance
from at least one source, and Vβ = VGs\Vα, in which each node is on the tree Gs

and in a distance larger than C1 from any source. Define set VS = {ζ1, ζ2, ..., ζS} to
be the set of original sources and we have VS ⊂ Vα. After that, define m = |Vα|

123

(a) G. (b) Gs. (c) T1.

Figure A.2: An example of tree G, tree Gs and tree T1. In this example, the original
tree is the tree in Figure A.2a. Assume the original sources are ζ1 = 4 and ζ2 = 5.
Then tree Gs formed by the orginal sources and paths between each pair of them is
shown in Figure A.2b. And Tree T1, which starts from root 1 without edges on Gs,
is shown in Figure A.2c.

and n = |Vβ|. Without loss of generality, we assume Vα = {α1, α2, ..., αm} and define
Vβ = {β1, β2, ..., βn}.

Define Ta to be a subtree on G, which starts from root a without edges on Gs. To
better understand the definition of tree Gs and Ta, an example is provided in Figure
A.2. We further define Aa to be the event that on the tree Ta there are at least (S+1)
one-time-slot branching processes survived after time t0 or all infection processes die
out at time t0. Then we have

P (A)

= P (
S⋂
i=1

Aζi)

≥ P (Aα1 ...AαmAβ1 ...Aβn)

=
∑
tI ,tR

P (Aα1 ...AαmAβ1 ...Aβn|tI , tR)P (tI , tR)

>
∑

(tI ,tR)∈M1

P (Aα1 ...AαmAβ1 ...Aβn|tI , tR)P (tI , tR),

(A.1)

where
tI = (tIα1

, ..., tIαm , t
I
β1
, ..., tIβn),

tR = (tRα1
, ..., tRαm , t

R
β1
, ..., tRβn)

and M1 = {(tI , tR)| ∀a ∈ VGs , tIa ≤ C1 or tIa =∞}. Define event

Ã =
⋂

a∈VGs

Aa
⋂
{(tI , tR) ∈M1},

which is the event of A restricted to M1.

124

Lemma A.1. For any ε > 0, there exist some constants C1 and t0 such that P (Ã) >
1− ε, if the distance between any two sources is larger than 2C1.

Proof. According to the definition of Ã, we have

P (Ã) =
∑

(tI ,tR)∈M1

P (Aα1 ...AαmAβ1 ...Aβn|tI , tR)P (tI , tR). (A.2)

To obtain a lower bound on P (Ã), we need to analyze P (Aα1 ...AαmAβ1 ...Aβn|tI , tR)
when (tI , tR) ∈M1 and P ((tI , tR) ∈M1) separately.

For P ((tI , tR) ∈M1), we have

P ((tI , tR) ∈M1) = 1− P ((tI , tR) ∈M c
1), (A.3)

where M c
1 is the complementary set of M1. Define event C = {(tI , tR)| ∃β ∈ Vβ, tIβ >

0 and tIβ 6= ∞}. Since the probability of event M is difficult to analyze directly, we
define M1 = M c

1 ∩ C and M2 = M c
1 ∩ Cc, i.e.,

P (M c
1) = P (M1) + P (M2) (A.4)

Before discussing P (M c
1), we analyze when the infection process on a path is going

to stop. From Figure A.3, we know that during each time slot the infection process
on a path stops only when the recently infected node is recovered before the node
next to it becomes infected. The probability for this event to happen is p(1 − q).
Use (ζj → a) to represent the event that node a is associated with ζj and a{t=k,ζj} to
represent the event that infection process from source ζj to a does not stop at time
slot k. Define ps = 1− p(1− q) and we have

P (tIa > C1 and tIa 6=∞|ζj → a)

≤ P (a{t=1,ζj} ∩ a{t=2,ζj} ∩ · · · ∩ a{t=C1,ζj}|ζj → a)

= P (a{t=1,ζj}|ζj → a)P (a{t=2,ζj}|a{t=1,ζj}, ζj → a) . . .

P (a{t=C1,ζj}|a{t=C1−1,ζj}, ζj → a)

= (ps)
C1 .

(A.5)

Therefore, we have

P (tIa > C1 and tIa 6=∞)

=
S∑
i=1

P (tIa > C1 and tIa 6=∞|ζi → a)P (ζi → a)

≤
S∑
i=1

(ps)
C1P (ζi → a)

≤ (ps)
C1 . (A.6)

125

Figure A.3: The situation of the stop of infection process.

Next, we analyze P (M1). Define set

Vb = {b|b ∈ Vβ and ∃j, s.t. d(ζj, b) = C1 + 1},

and for any β ∈ Vβ, since d(β, ζi) > C1 for any i = 1, ..., S, we have tIβ > C1 as long

as tIβ 6=∞. Thus, C ⊂M c
1 , and we have

P (M1) = P (M c
1 ∩ C)

= P (C)
(a)
= P (

⋃
b∈Vb

{tIb > C1 and tIb 6=∞})

≤
∑
b∈Vb

P (tIb > C1 and tIb 6=∞)

≤ |Vb|(ps)C1

≤ S(S − 1)(ps)
C1 ,

(A.7)

where (a) holds because β ∈ Vβ infected by the information from source ζi along the
path that contains node b and satisfies d(b, ζi) = C1 + 1.

For P (M2), we have

P (M2) = P (M c
1 ∩ Cc)

< P ({(tI , tR)|∃α ∈ Vα, tIα > C1 and tIα 6=∞})

= P (
⋃
α∈Vα

{tIα > C1 and tIα 6=∞})

≤
∑
α∈Vα

P (tIα > C1 and tIα 6=∞)

(a)
<
∑
α∈Vα

(ps)
C1

= m(ps)
C1 ,

(A.8)

126

where (a) comes from (A.6). Based on inequalities (A.7) and (A.8), we conclude

P ((tI , tR) ∈M1)

= 1− P ((tI , tR) ∈M c
1)

= 1− P (M1)− P (M2)

> 1−m(ps)
C1 − S(S − 1)(ps)

C1

(a)
> 1− S(S − 1)C1(ps)

C1 − S(S − 1)(ps)
C1

= 1− S(S − 1)(C1 + 1)(ps)
C1 .

(A.9)

where (a) holds because of m ≤ S(S − 1)C1. Then we can choose a constant C1 such
that for any ε1 > 0,

P ((tI , tR) ∈M1) > 1− ε1. (A.10)

Now, we need to discuss P (Aα1 ...AαmAβ1 ...Aβn|tI , tR) when (tI , tR) ∈ M1. In this
case, we have

P (Aα1 ...AαmAβ1 ...Aβn|tI , tR)

=
∏
α∈Vα

P (Aα|tIα, tRα)
∏
β∈Vβ

P (Aβ|tIβ, tRβ).

(A.11)

According to the definition of Vβ, we have for any β ∈ Vβ and 1 ≤ i ≤ S, d(β, ζi) > C1,
which implies that for any (tI , tR) ∈ M1 and any β ∈ Vβ, we have tIβ = ∞. So

P (Aβ|tIβ, tRβ) = 1.

For P (Aα|tIα, tRα) when α ∈ Vα, we define u1, ..., uk to be the child nodes of root α
on the tree Tα when α ∈ Vα and Aui (i = 1, ..., k) to be the event that on the tree
T−αui (T−αui is a subtree of Tα rooted at ui but without the branch from α), there are at
least (S + 1) one-time-slot branching processes survived after time t0 or all infection
processes die out before or at time t0. On a (g+ 1)-regular tree, we have k 6 g. Then
we have

P (Aα|tIα, tRα) > P (Au1 ...Auk |tIα, tRα)

=
∑
tIu

P (Au1 ...Auk |tIu, tIα, tRa)P (tIu|tIα, tRα)

>
∑

tIu∈M2

P (Au1 ...Auk |tIu)P (tIu|tIα, tRα),

(A.12)

where tIu = {tIu1 , ..., t
I
uk
} and M2 = {~tIu| for i = 1, ..., k, tIui − t

I
α ≤ C2, or tIui = ∞},

and C2 ∈ N is a constant.

To compute P (tIu ∈M2|tIα, tRα), we consider the following three cases:

1. When tIα = ∞, we have tIui = ∞ for i = 1, ..., k, which means P (tIu ∈
M2|tIα, tRα) = 1.

127

2. When tRα − tIα ≤ C2 and tIα 6= ∞, we always have tIui − t
I
α ≤ C2 or tIui = ∞ for

i = 1, .., k, which means tIu ∈M2. Thus, we have P (tIu ∈M2|tIα, tRα) = 1.

3. When tRα − tIα > C2 and tIα 6=∞, we have

P (tIu ∈M2|tIα, tRα)

=
k∏
i=1

P (tIui − t
I
α ≤ C2 or tIui =∞|tIα, tRα)

=
k∏
i=1

(

C2+tIα∑
tIui=1+tIα

q(1− q)tIui−tIα−1 + (1− q)tRα−tIα)

=
k∏
i=1

(1− (1− q)C2 + (1− q)tRα−tIα)

>
k∏
i=1

(1− (1− q)C2)

= (1− (1− q)C2)k.

(A.13)

In summary, we always have

P (tIu ∈M2|tIα, tRα) > (1− (1− q)C2)k. (A.14)

We also have

P (Au1 ...Auk |tIu, tIα, tRα) =
k∏
i=1

P (Aui |tIui)
(a)
> (1− ε2)k, (A.15)

where (a) can be proved by following the proof of Lemma 6 in Zhu and Ying (2013).
By substituting (A.14) and (A.15) into (A.12), we have

P (Aα|tIα, tRα)

>
∑

tIu∈M2

P (Au1 ...Auk |tIu, tIα, tRα)P (tIu|tIα, tRα)

> (1− ε2)k(1− (1− q)C2)k.

(A.16)

Since k ≤ g, we can choose a constant C2 such that for any ε3 > 0, (1− (1− q)C2)k >
1− ε3. Then we have

P (Aα|tIα, tRα) > (1− ε2)k(1− ε3),

and
P (Aα1 ...AαmAβ1 ...Aβn|tI , tR) >

∏
α∈Vα

(1− ε2)k(1− ε3)

= ((1− ε2)k(1− ε3))m.

(A.17)

128

(a) e and f are infected by two
sources.

(b) e and f are infected by the same
source.

Figure A.4: Different cases of distances between two infected nodes. In Figure A.4a,
we consider the infection process of two sources, ζi and ζj. Assume bi and bj are
the nodes on path (ζi, ζj) that satisfy d(bi, ζi) = C1 and d(bj, ζj) = C1. Under event

Ã, on path (ζi, ζj) only nodes on (ζi, bi) and (ζj, bj) can be infected. If e and f are
endpoints of survived one-time-slot branching processes, we have d(ζi, e) ≥ t − t0
and d(ζj, f) ≥ t − t0. Therefore, d(e, f) ≥ d(ζi, ζj) − d(ζi, bi) − d(ζj, bj) + d(ζi, e) −
d(ζi, bi) + d(ζj, f) − d(ζj, bj), which means d(e, f) ≥ d(ζi, ζj) + 2(t − t0) − 4C1. In
Figure A.4b, we consider the situation that e and f are infected by the same source,
ζi. If e and f are endpoints of survived one-time-slot branching process, we have
d(e, f) = d(ζi, e) + d(ζi, f) − 2d(ζi, g). Since the survived one-time-slot branching
processes do not overlap after t0, we have d(ζi, g) ≤ t0. Therefore, we have d(e, f) ≥
2(t− t0)− 2t0 = 2t− 4t0

Substituting (A.17) and (A.10) into (A.1), we have

P (A) > P (Ã)

=
∑

tI ,tR∈M1

P (Aα1 ...AαmAβ1 ...Aβn|tI , tR)P (tI , tR)

> ((1− ε2)k(1− ε3))m(1− ε1)

> 1− ε.

(A.18)

Assuming that the time when the snapshot is taken, t, satisfies t� t0 and t� di,j
for any i, j = 1, ..., S, where di,j is defined to be d(ζi, ζj), and d > 3St0 + 4SC1, where
d = min

1≤i,j≤S
di,j. We need to prove that the distance between each estimator and its

closest original source is bounded by some constants under event Ã. We say a source
ζi has infected nodes if there are some infected nodes associated with ζi when the
snapshot was taken. Since in the following proof, we will use the distance between
two infected nodes in the graph frequently, here in Figure A.4, we discuss some cases
of distances between two infected nodes commonly used later.

We divide event Ã into three subevents:

1. Infection processes from all original sources die out at time t0.

There are two cases under this condition:

129

• The number of infected nodes is less than or equal to S. All those infected
nodes will be treated as our estimators according to Algorithm 2.1. Be-
cause there is no node getting infected after time t0, each of these nodes
is within the distance of t0 from the source that infects it. Therefore, the
distance between each estimator and its closest source is bounded by t0,
which is a constant.

• The number of infected nodes is greater than S.

Claim A.1. After step 2, the set B contains infected nodes associated with
all sources who have infected nodes when the snapshot is taken.

Proof of Claim A.1: Assume set B does not contain any infected node
associated with some source ζk that has infected nodes observed in the
snapshot, which means B contains at least two nodes associated with same
source. Assume a, b ∈ B are associated with source ζj and c /∈ B to be an
infected node associated with ζk.

Then we have d(a, b) ≤ 2t0. For any e ∈ B, we have

d(e, c) ≥ d− 2C1

> 3St0 + 4SC1 − 2C1

> 2t0
> d(a, b),

(A.19)

which contradicts the step 2 in Algorithm 2.1.

Claim A.2. After step 3, in each set V(i)
I (i = 1, ..., S), the nodes are

infected by the same source.

Proof of Claim A.2: Without loss of generality, we assume B = {e1, ..., eS}
and ei ∈ V(i)

I . Assume node a in set V(i)
I is associated with a source which

is different from the source that ei is associated with. Then we have

d(a, ei)
(a)

≥ d− 2C1

> 3St0 + (4S − 2)C1,
(A.20)

where (a) is true because of the definition of event Ã and set M1. According
to Claim A.1, set B contains nodes associated with the sources that have
infected nodes associated with them in the snapshot. Therefore, we can

assume in another set V(j)
I , node ej is associated with the same source as

node a. Then we have d(ej, a) < 2t0. Therefore, we have d(ej, a) < d(ei, a),
which is in contradiction with step 3. Thus, Claim A.2 holds.

According to Claim A.2, in each set V(i)
I , all the nodes are infected by the

same source. Therefore, the maximum infection radius rmax after step 4
should satisfy that rmax ≤ t0. Assume γi to be the estimator generated

by V(i)
I that contains ei and ζi to be the actual source who infected the

nodes in V(i)
I . Then we have d(γi, ei) = rmax and d(ei, ζi) ≤ t0. Therefore,

130

d(γi, ζi) ≤ 2t0, which means the distance between each estimator and its
closest source is bounded by 2t0, which is a constant.

2. There are at least two sources surviving (S+1) one-time-slot branching processes
after time t0.

Assume the number of sources who survive at least (S+1) one-time-slot branch-
ing processes is n0. And we have n0 ≥ 2. We will then prove the following
conclusions:

(a) e1, e2, ..., en0 are infected by different sources that survive at least (S+ 1)
one-time-slot branching processes after t0.

(b) For any i ≥ 2,

d(ei, ζ̂i) ≥ t− it0 − 4(i− 1)C1, (A.21)

and when i = 1,
d(e1, ζ̂1) ≥ t− 2t0 − 4C1, (A.22)

where ζ̂i represents the source that ei is associated with.

(c) For any 1 ≤ i, j ≤ n0, we have

d(ei, ej) > 2t. (A.23)

Proof of the conclusions:

• e1, e2(i = 1, 2): Assume η1 and η2 are two leaf-nodes of one-time-slot
processes associated with two different sources. Since for any a, b ∈ VI ,
d(e1, e2) ≥ d(a, b), we have

d(e1, e2) ≥ d(η1, η2)
(a)

≥ d+ 2(t− t0)− 4C1 > 2t,

where (a) is true because of Figure A.4a. Thus, e1 and e2 have to be
infected by two different sources. Without loss of generality, we assume ζ1

and ζ2 are the two sources who infect e1 and e2. Then we have

d(e1, ζ1) + d1,2 + d(e2, ζ2) ≥ d(e1, e2)

≥ d1,2 + 2(t− t0)− 4C1,
(A.24)

where di,j = d(ζi, ζj) for any i, j = 1, ..., S and because d(e1, ζ1) ≤ t and
d(e2, ζ2) ≤ t, we have d(e1, ζ1) ≥ t−2t0−4C1 and d(e2, ζ2) ≥ t−2t0−4C1.
Because t� t0 and t� C1, we may consider d(e1, ζ1) > t0 and d(e2, ζ2) >
t0, which implies ζ1 and ζ2 must be two surviving sources. Therefore, e1

and e2 satisfy these three conclusions.

• ek(2 ≤ k ≤ n0 − 1): Assume that ek satisfies the three conclusions, which
means that ek is infected by another source ζk, who survives at least (S+1)
one-time-slot branching processes at time t0, d(ei, ζk) ≥ t−kt0−4(k−1)C1,
and for any 1 ≤ i, j ≤ k, d(ei, ej) > 2t.

131

• ek+1: If ek+1 is infected by ζ1, ..., ζk or any source that dies out at time

t0, we have
k

min
i=1

d(ei, ek+1) ≤ 2t. If ek+1 is infected by another source ζk+1,

who survives at least (S + 1) one-time-slot branching processes at time
t0, assume ηk+1 is the leaf-node of one survived one-time-slot branching
process infected by ζk+1 and we have

d(ηk+1, e1) ≥ (t− 2t0 − 4C1) + d1,k+1 + t− t0 − 4C1

(a)
> 2t,

(A.25)

where (a) holds according to d1,k+1 ≥ d > 3St0 + 4SC1, and

d(ηk+1, ei) ≥ (t− it0 − 4(i− 1)C1)

+di,k+1 + t− t0 − 4C1

> 2t,

(A.26)

for i = 2, ..., k. Thus, we have

d(ek+1, ei) ≥
k

min
i=1

d(ηk, ei)

> 2t.
(A.27)

Therefore, we know that when ek+1 is infected by ζk+1, we have

k

min
i=1

d(ek+1, ei) > 2t.

Then, ek+1 has to be infected by another source who survives at least (S+1)
one-time-slot branching processes at time t0 according to Algorithm 2.1.

Assuming j = arg min
i∈{1,...,k}

d(ηk+1, ei), we have

d(ek+1, ζk+1) + dj,k+1 + d(ej, ζj)

≥ d(ek+1, ej)

≥ d(ηk+1, ej)

≥ d(ej, ζj) + dj,k+1 + t− t0 − 4C1

≥ t− kt0 − 4(k − 1)C1 + dj,k+1 − 4C1 + t− t0
= 2t− (k + 1)t0 − 4kC1 + dj,k+1.

(A.28)

Because d(ej, ζj) ≤ t, we have d(ek+1, ζk+1) ≥ t−(k+1)0−4kC1. Therefore,
ek+1 satisfies the three conclusions mentioned before.

Then we complete the proof the conclusions.

132

Since e1, . . . , en0 are infected by different sources who survive at least (S + 1)
one-time-slot branching processes, we can assume ei(i = 1, ..., n0) is infected by
ζi, while ζi survives at least (S+1) one-time-slot branching processes after time
t0. According to inequalities (A.21), (A.22) and (A.23), we have

d(ei, ζi) ≥ t− n0t0 − 4(n0 − 1)C1 (A.29)

and for any 1 ≤ i, j ≤ n0, d(ei, ej) > 2t.

Define ζ̂i to be the source whom ei (i = n0 + 1, ..., S) is associated with. Then
we will prove the following conclusion:

(a) For ei(i = n0 + 1, ..., S), we have

d(ei, ζ̂i) ≥ t− (3i− 2n0)t0 − 4(n0 − 1)C1, (A.30)

where ζ̂i is one of ζ1, ..., ζn0 .

(b) For j = 1, ..., i− 1, we have

d(ei, ej) ≥ 2t− (3i− 2n0)t0 − 4(n0 − 1)C1. (A.31)

Proof of the conclusions:

• en0+1: If en0+1 is infected by a source ζn0+1, whose infection process dies
out at time t0, for any i = 1, ..., n0, we have d(en0+1, ei) ≤ dn0+1,i + t + t0,
which means

min
i∈{1,...,n0}

d(en0+1, ei) ≤ d′ + t+ t0, (A.32)

where d′ = min
i∈{1,...,n0}

dn0+1,i.

If en0+1 is infected by ζj, where j = 1, 2, ..., n0, we have

d(en0+1, ei)

≥ d(ei, ζi) + di,j − 4C1 + d(en0+1, ζj)

≥ t− n0t0 + 4(n0 − 1)C1 + di,j − 4C1 + d(en0+1, ζj)

= t− n0t0 − 4n0C1 + di,j + d(en0+1, ζj)

> t+ d(en0+1, ζj),

(A.33)

where i 6= j, i = 1, ..., n0, and

d(en0+1, ej) ≤ t+ d(en0+1, ζj). (A.34)

Therefore, assuming ηn0+1 is the leaf-node of a survived one-time-slot
branching process generated by ζj, we have

min
i∈{1,...,n0}

d(en0+1, ei) = d(en0+1, ej)

≥ d(ηn0+1, ej).
(A.35)

133

Since every surviving source has at least (S + 1) one-time-slot branching
processes survived after time t0, we can always find a leaf-node ζn0+1, whose
one-time-slot branching process doesn’t overlap with path (en0+1, ζj). There-
fore, we have

d(en0+1, ej) ≥ d(ηn0+1, ej)

≥ d(ej, ζj) + d(ηn0+1, ζj)− 2t0
≥ t− n0t0 − 4(n0 − 1)C1 + t− t0 − 2t0
= 2t− (n0 + 3)t0 − 4(n0 − 1),

(A.36)

which is bigger than d′ + t+ t0 of (A.32) according to t� t0 and t� di,j
for any i, j = 1, ..., S. This means en0+1 has to be infected by a source that
survives at least (S + 1) one-time-slot branching processes at time t0.

According to (A.33), (A.34) and (A.36), we have d(en0+1, ei) ≥ 2t− (n0 +
3)t0 − 4(n0 − 1), where i = 1, ..., n0. Because d(en0+1, ζj) + d(ej, ζj) ≥
d(en0+1, ej) and d(ej, ζj) ≤ t, we have

d(en0+1, ζj) ≥ t− (n0 + 3)t0 − 4(n0 − 1)C1.

Therefore, the conclusions holds for en0+1.

• ek(n0 + 1 ≤ k < S): Assume that it’s infected by one of ζi(i = 1, ..., n0)
and we have

d(ek, ζ̂k) ≥ t− (3k − 2n0)t0 − 4(n0 − 1)C1 (A.37)

and for i = 1, ..., k − 1,

d(ek, ei) ≥ 2t− (3k − 2n0)t0 − 4(n0 − 1)C1. (A.38)

• ek+1: If ek+1 is infected by a source ζk+1, whose infection process dies out

at time t0, for any i = 1, ..., k, we have d(ek+1, ei) ≤ d(ζk+1, ζ̂i) + t + t0,
which means

min
i∈{1,...,k}

d(ek+1, ei) ≤ d′′ + t+ t0, (A.39)

where d′′ = min
i={1,...,k}

d(ζk+1, ζ̂i).

According to the assumption for ek and inequality (A.29), we have

d(ei, ζ̂i) ≥ t− (3k − 2n0)t0 − 4(n0 − 1)C1, (A.40)

for i ∈ {1, ..., k}.
If ek+1 is associated with ζj, where j ∈ {1, ..., n0}, for ζj 6= ζ̂i, we have

d(ek+1, ei) ≥ d(ek+1, ζj) + d(ζ̂i, ei) + d(ζj, ζ̂i)− 4C1

≥ t− (3k − 2n0)t0 − 4(n0 − 1)C1

+d(ζj, ζ̂i) + d(ek+1, ζj)− 4C1

> t+ d(ek+1, ζj).

(A.41)

134

When ζj = ζ̂i, we have d(ek+1, ei) ≤ t+ d(ek+1, ζj). Assume

e′ = argmin
{e1,...,ek}

d(ek+1, ei),

where e′ is one of e1, ..., ek and is associated with ζj, and ηk+1 is the leaf-
node of a survived one-time-slot branching process infected by ζj. Simi-
larly, we assume e′′ = arg minei d(ηk+1, ei), where e′′ is one of e1, ..., ek and
is associated with ζj.
According to Algorithm 2.1, we have

k

min
i=1

d(ek+1, ei) = d(ek+1, e
′)

≥ d(ηk+1, e
′′).

(A.42)

Since every survived source has at least (S + 1) one-time-slot branching
processes survived at time t0, we can always find an leaf-node ηk+1, whose
one-time-slot branching process doesn’t overlap with (ek+1, ζj). Therefore,
we have

d(ek+1, e
′)

≥ d(ηk+1, e
′′)

≥ d(ηk+1, ζj) + d(e′′, ζj)− 2t0
≥ t− t0 + t− (3k − 2n0)t0 − 4(n0 − 1)C1 − 2t0
= 2t− (3k + 3− 2n0)t0 − 4(n0 − 1)C1,

(A.43)

which is bigger than d′′+ t+ t0 of (A.39) because of t� t0 and t� di,j for
any i, j = 1, ..., k + 1. This means ek+1 has to be infected by a surviving
source. Since for i = 1, ..., k, the inequalities

d(ek+1, ei) ≥ 2t− (3k + 3− 2n0)t0 − 4(n0 − 1)C1,

d(ek+1, ζj) + d(e′, ζj) ≥ d(ek+1, e
′),

and d(e′, ζj) ≤ t, hold, we have

d(ek+1, ζj) ≥ t− (3k + 3− 2n0)n0t0 − 4(n0 − 1)C1, (A.44)

which satisfies the condition d(ei, ζ̂i) ≥ t− (3k+ 3− 2n0)t0− 4(n0− 1)C1,
when i = k + 1.

Then we complete the proof of the conclusions.

According to inequalities (A.29) and (A.40), we have that for i = 1, ..., n0,

d(ei, ζ̂i) ≥ t − it0 − 4(i − 1)C1 and for i = n0 + 1, ..., S, d(ei, ζ̂i) ≥ t − (3i −
2n0)t0 − 4(n0 − 1)C1 (i = n0 + 1, ..., S). Thus, when n0 ≥ 2, if we set C3 =

(3S−2n0)t0 +4(n0−1)C1, then we have d(ei, ζ̂i) ≥ t−C3. And for 1 ≤ i, j ≤ S,
we have

d(ei, ej) ≥ 2t− (3S − 2n0)t0 − 4(n0 − 1)C1, (A.45)

which means d(ei, ej) ≥ 2t− C3.

135

Claim A.3. If d > 3St0+4SC1 and there are at least two sources having (S+1)
one-time-slot branching processes survived, the leaf-nodes of all survived one-

time-slot branching processes in the same set V(i)
I (i = 1, ..., S) are associated

with the same source that ei is associated with.

Proof of Claim A.3: Assume ei ∈ V(i)
I is associated with source ζi and a ∈ V(i)

I
is the leaf-node of an survived one-time-slot branching process generated by

another source ζj, which means in set V(i)
I , ei and a are associated with different

sources.

Assume ej ∈ V(i)
I is associated with source ζj. Then we have

d(a, ei) ≥ d(ei, ζi) + d(a, ζj) + di,j − 4C1

≥ (t− C3) + (t− t0) + di,j − 4C1.

= 2t+ di,j − C3 − t0 − 4C1

(A.46)

Because C3 = (3S − 2n0)t0 + 4(n0 − 1)C1 and di,j > 3St0 + 4SC1, we have

di,j − C3 − t0 − 4C1

≥ (2n0 − 1)t0 + 4(S − n0)C1

> 0

(A.47)

which means d(a, ei) > 2t. However, we have d(a, ej) ≤ 2t, which means
d(a, ei) > d(a, ej), which is in contradiction to step 3. This completes the
proof Claim A.3.

Next, we need to prove that the distance between each estimator and its closest
source is bounded by a constant. Since there are S clusters and each surviving
source has at least (S + 1) one-time-slot branching processes, there is at least
one cluster containing two leaf-nodes of one-time-slot branching processes from

one source. Then in step 4, the infection radius ri of set V(i)
I that contains at

least two leaf-nodes of survived one-time-slot branching processes from a single
source satisfies that t − t0 6 ri 6 t. Then rmax = max {ri} in step 4 should
satisfy that t− t0 6 rmax 6 t.

Then, we need to prove that, in step 5, on the tree T , the node, which is in
distance rmax from ei, is in a constant distance to the surviving original source
with which ei is associated. Define node hi to be the node on path (ζ̂i, ei) that

satisfies d(ζ̂i, hi) = C3. Then we the following claim.

Claim A.4. Node hi is on the tree T for all i = 1, ..., S.

Proof of Claim A.4: There are two cases:

(a) ei, ej ∈ B are associated with the same source:

Without loss of generality, we assume ei and ej are associated with ζi.
Then we know that Kζi

ei,ej
(the definition is in Table 2.1) is on the path

(ei, ej) and we have

136

Figure A.5: The positions of ζi, ζj, ei and ej when ei and ej are associated with
different sources, where d(bi, ζi) = C1 and d(bj, ζj) = C1.

d(ei, ej) = d(ei, ζi) + d(ej, ζi)− 2d(ζi, K
ζi
ei,ej

) (A.48)

and
d(ei, ej) ≥ 2t− C3, (A.49)

which means

2d(ζi, K
ζi
ei,ej

) ≤ d(ei, ζi) + d(ej, ζi)− 2t+ C3

≤ C3,
(A.50)

Therefore, we have
d(ζi, K

ζi
ei,ej

) ≤ C3/2. (A.51)

(b) ei, ej ∈ B are associated with different sources:

Without loss of generality, we assume ei is associated with ζi, while ej is as-
sociated with ζj. Figure A.5 is the description of the relations among nodes

ei, ej, ζi and ζj. According to the definition, both Kζi
ei,ej

and (K
ζj
ej ,ζi

, ej)

are on the path (ζi, ej). More precisely, Kζi
ei,ej

is on the path (ζi, K
ζj
ej ,ζi

).

Since path (ζi, K
ζj
ej ,ζi

) is part of path (ζi, ζj), which means Kζi
ei,ej

is on

path (ζi, ζj). Because Kζi
ei,ej

is associated with ζi, under event Ã, we have

d(ζi, K
ζi
ei,ej

) ≤ C1

Therefore, for all ei, ej ∈ B, we have

d(ζ̂i, K
ζ̂i
ei,ej

) ≤ max{C3/2, C1}
= C3/2.

(A.52)

Then for each ei, if we choose hi which satisfies hi ∈ (ζ̂i, ei) and d(hi, ζ̂i) = C3.

We have hi ∈ (K ζ̂i
ei,ej

, ei). Since path (K ζ̂i
ei,ej

, ei) is on the tree T , hi is on the
tree T . This completes the proof of Claim A.4.

137

Therefore, we have d(ei, ζ̂i) = d(ei, hi) + d(hi, ζ̂i) and d(ζ̂i, hi) = C3. Assume γi
to be the estimator to ζ̂i generated by ei. Because rmax ≥ t−t0, (ei, hi) ⊂ (ei, ej)
for all ej ∈ B and

d(ei, hi) = d(ei, ζ̂i)− d(hi, ζ̂i)

≤ t− C3

< t− t0
≤ rmax,

(A.53)

we have rmax = d(ei, γi) = d(ei, hi) + d(hi, γi).

Therefore,

d(γi, ζ̂i) 6 d(γi, hi) + d(ζ̂i, hi)

= d(ei, γi)− d(ei, hi) + d(ζ̂i, hi)

= d(ei, γi)− (d(ei, ζ̂i)− d(hi, ζ̂i)) + d(ζ̂i, hi)

≤ t− (t− C3 − C3) + C3

≤ 3C3.

(A.54)

Finally, we have d(γi, ζ̂i) 6 3C3, which means the estimator we find is in a
constant distance with the surviving original source.

3. There is only one source surviving (S + 1) one-time-slot branching processes
after time t0.

Assuming ζ̂i to be the source that infects ei, we will prove the following conclu-
sions:

(a) For i = 1, ..., S, ζ̂i must be the same source that survives at least (S + 1)
one-time-slot branching processes at time t0.

(b) For e1, we have

d(e1, ζ̂1) ≥ t− 4t0 (A.55)

(c) For ei(i = 2, ..., S), we have

d(ei, ζ̂i) ≥ t− (3i− 2)t0. (A.56)

(d) For any i = 1, ..., S and j = 1, ..., i− 1, we have

d(ei, ej) ≥ 2t− (3i− 2)t0. (A.57)

Proof of the conclusions: At first we assume that the only source who
survives at least (S + 1) one-time-slot branching processes at time t0 is ζj.

• e1, e2: If e1 and e2 are associated with two other sources, let’s say ζi1 and
ζi2 , except ζj, we have d(e1, e2) ≤ 2t0 + di1,i2 .

If e1 and e2 are associated with the same source except ζj, we have d(e1, e2) ≤
2t0.

138

If e1 and e2 are associated with ζj, assuming η1 and η2 are two leaf-nodes
of survived one-time-slot branching processes of ζj, we have

d(e1, e2) ≥ d(η1, η2)

≥ d(η1, ζj) + d(η2, ζj)− 2t0
≥ t− t0 + t− t0 − 2t0
= 2t− 4t0.

(A.58)

Because t� t0, we know that when e1 and e2 are associated with the same
source ζj, we can get d(e1, e2) maximized. According to Algorithm 2.1, e1

and e2 are associated with ζj. Since d(e2, ζj) ≤ t and

d(e1, ζj) + d(e2, ζj) ≥ d(e1, e2)

≥ 2t− 4t0,
(A.59)

we have d(e1, ζj) ≥ t− 4t0. In a similar way, we have d(e2, ζj) ≥ t− 4t0.
Therefore, these conclusions hold for e1 and e2.

• ek(2 < k ≤ S − 1): Assume that ek is infected by ζj and it satisfies
d(ek, ζj) ≥ t−(3k−2)t0 and d(ek, ei) ≥ 2t−(3k−2)t0, where i = 1, . . . , k−1.

• ek+1(2 ≤ k ≤ S − 1): If ek+1 is associated with another source ζik+1
, we

have d(ek+1, ei) ≤ d(ζik+1
, ζj) + t+ t0.

If ek+1 is associated with ζj, assuming ηk+1 is the leaf-node of a survived
one-time-slot branching process of ζj who dose not overlap with (ζj, ei) for
i = 1, ..., k after time t0, we have

d(ei, ηk+1) ≥ d(ei, ζj) + d(ηk+1, ζj)− 2t0
≥ t− (3i− 2)t0 + t− t0 − 2t0
≥ t− (3k − 2)t0 + t− t0 − 2t0
= 2t− (3k + 1)t0,

(A.60)

which means for any i = 1, ..., k, we have

d(ei, ek+1) ≥
k

min
i=1

d(ei, ηk+1)

≥ 2t− (3k + 1)t0.
(A.61)

Since we hypothesize t >> t0 and t >> di,j for any i, j = 1, ..., k + 1, we
have 2t − (3k + 1)t0 > d(ζiS+1

, ζj) + t + t0, which means ek+1 has to be
associated with ζj.
Assuming

e′ = arg min
ei,i=1,...k

d(ei, eS+1),

because d(e′, ζj) ≤ t and

d(e′, ζj) + d(ek+1, ζj) ≥ d(e′, ek+1)

≥ 2t− (3k + 1)t0,
(A.62)

we have d(ek+1, ζj) ≥ t− (3k + 1)t0.

139

The we have finished the proof of these conclusions.

Therefore, according to inequalities (A.55), (A.56) and (A.57), for any i =
1, ..., S, we have

d(ei, ζ̂i) ≥ t− C4, (A.63)

d(ei, ej) ≥ 2t− C4,∀1 ≤ i, j ≤ S, (A.64)

where we define C4 = (3S − 2)t0, and e1, ..., eS are infected by the only source
who survives at least (S + 1) one-time-slot branching processes at time t0.

Because there are S clusters and each surviving source has at least (S + 1)
one-time-slot branching processes, we have at least one cluster containing two
leaf-nodes of one-time-slot branching processes. Then in step 4, the infection

radius ri of the set V(i)
I , which contains at least two leaf-nodes of survived one-

time-slot branching processes from a single source satisfies that t− t0 6 ri 6 t.
Then rmax = max {ri} in step 4 should also satisfy that t− t0 6 rmax 6 t.

Next, we need to consider the tree T , which is formed by nodes in B and paths
between every two nodes in B. According to the conclusions we have proved
before, the nodes in B are associated with the same source. Without loss of
generality, we assume that nodes in set B are infected by the source ζ1. Then
for any two nodes ei, ej in B we have

d(ei, ej)

= d(ei, ζ1) + d(ej, ζ1)− 2d(ζ1, K
ζ1
ei,ej

)

≥ 2t− C4,

(A.65)

which means
2d(ζ1, K

ζ1
ei,ej

)

≤ d(ei, ζ1) + d(ej, ζ1)− 2t+ C4

≤ C4.

(A.66)

Therefore, we have d(ζ1, K
ζ1
ei,ej

) ≤ C4/2.

According to the definition of T , we know that path (ei, K
ζ1
ei,ej

) is on the tree
T . Therefore, for node ei, if we define another node hi, which is on the path
(ζ1, ei) and satisfies d(hi, ζ1) = C4, hi is on the tree T . In a similar way, we can
define hj.

Thus, for each ei ∈ B(i = 1, . . . , S), we can define another node hi which is on
the path (ζ1, ei) and satisfies d(ζ1, hi) = C4 so that it is on the tree T . And we
have d(ei, ζ1) = d(ei, hi) + d(hi, ζ1) and d(ζ1, hi) = C4.

Assume γi to be the estimator to ζ1 generated by ei. Because rmax ≥ t− t0, we
have

rmax = d(ei, γi) = d(ei, hi) + d(hi, γi).

140

We have
d(γi, ζ1)

6 d(γi, hi) + d(ζ1, hi)

= d(ei, γi)− d(ei, hi) + d(ζ1, hi)

= d(ei, γi)− (d(ei, ζ1)− d(hi, ζj)) + d(ζ1, hi)

≤ t− (t− C4 − C4) + C4

≤ 3C4.

(A.67)

Finally, we have d(γi, ζ1) ≤ 3C4, which means the estimator we find is in a
constant distance to the surviving original source.

A.2 Reverse Infection Algorithm

The key idea of the reverse infection algorithm in Zhu and Ying (2013) is to let
each observed infected node to broadcast its identity (ID) to its neighbors. The set
of nodes who first receive all IDs of the infected nodes are declared to be Jordan
infection centers. The pseudocode is described in Algorithm A.1.

Algorithm A.1 Reverse Infection Algorithm

1: for i ∈ VI do
2: i sends its ID wi to its neighbors.
3: end for
4: while t ≥ 1 and STOP=0 do
5: for u ∈ V do
6: if u receives wi for the first time then
7: set tui = t, where t is the current time slot, and then broadcast the message

wi to its neighbors.
8: if there exists a node who received VI distinct messages then
9: set STOP=1.

10: end if
11: end if
12: end for
13: end while
14: return u? = arg mins∈S

∑
i∈VI tui, where S is the set of nodes who receive VI

distinct messages when the algorithm terminates. Ties are broken at random.

141

APPENDIX B

PROOF OF CHAPTER 3

142

B.1 Proof of E1 and E2

Lemma B.1. Assume the conditions in Theorem 2 hold, for any ε > 0, we have

Pr(E1) ≥ 1− ε,

and
Pr(E2|E1) ≥ 1− ε,

for suffciently large n.

The proof follows directly from the proof of Lemma 3 and 4 in Zhu and Ying
(2015b).

B.2 Proof of E3

Lemma B.2. Assume the conditions in Theorem 2 hold, for any ε > 0, we have

Pr(E3|E1) ≥ 1− ε,

for suffciently large n.

Proof. Since all sources are within D hops from s1 and the snapshot is taken at time
t, all the infected nodes are within t + D hops from s1. To prove the conclusion, we
only need to show that any node on level t+D+1 does not have more than (1−δ)3µqθ
neighbors. Since all infected nodes are within level t + D, instead of considering the
observed infected neighbors, we only need to show that any node on level t + D + 1
does not have more than (1− δ)3µqθ neighbors in level t+D.Therefore, in this proof,
we consider a more restrictive event which is only a topological feature of the ER
random and does not depend on the infection process.

Based on E1, there are at most [(1 + δ)µ]t+D nodes in level t + D and at most
[(1+δ)µ]t+D+1 nodes in level t+D+1. For any node v in level t+D+1, the neighbors
of node v in t+D are either the node which introduce node v into level t+D+1 (i.e.,
the parent of v in the BFS tree) or the collision edges between node v and nodes in
level t + D. The total number of possible collision edges depends on the order that
the parent of node v is introduced to the BFS tree.

In general, if the parent of node v is the ith node, the number of possible neighbors
on level t+D follows Bi([(1 + δ)µ]D+t − i, µ/n) + 1. As a summary, for any node on
level t+D+ 1 the number of neighbors in level t+D is stochastically upper bounded
by Bi([(1 + δ)µ]D+t, µn) + 1. Define

X , (1− δ)3µqθ − 1.

Define δ′ to be

δ′ ,
Xn

[(1 + δ)µ]tµ
− 1.

143

Denote by Nv the number of neighbors in level t + D for one node v on level
t+D + 1.

Pr(Nv ≥ X + 1|E1) (B.1)

≤ exp

(
−δ
′2[(1 + δ)µ]t+Dµ/n

2 + δ′

)
(B.2)

= exp

(
− δ′

2 + δ′
× δ′[(1 + δ)µ]t+Dµ/n

)
(B.3)

= exp

(
− δ′

2 + δ′
×
(

Xn

[(1 + δ)µ]t+Dµ
− 1

)
[(1 + δ)µ]t+Dµ/n

)
(B.4)

= exp

(
− δ′

2 + δ′
×
(

X

[(1 + δ)µ]t+Dµ
[(1 + δ)µ]t+Dµ− [(1 + δ)µ]t+Dµ/n

))
(B.5)

= exp

(
− δ′

2 + δ′
×
(
X − [(1 + δ)µ]t+Dµ/n

))
(B.6)

= exp

(
− δ′

2 + δ′
×
(
(1− δ)3µqθ − 1− [(1 + δ)µ]t+Dµ/n

))
(B.7)

= exp

(
− δ′µ

2 + δ′
(
(1− δ)3qθ − 1/µ− [(1 + δ)µ]t+D/n

))
(B.8)

≤ exp

(
−δ
′(1− δ)3qθµ

2(2 + δ′)

)
(B.9)

≤ exp

(
−(1− δ)3qθ

6
µ

)
(B.10)

Since t+D < logn
(1+α) log µ

, we have

t+D ≤ log n

log µ
×

1− logµ
logn

1 + log(1+δ)
logµ

. (B.11)

Hence,

[(1 + δ)µ]t+D

n
≤ 1

µ
(B.12)

Hence, Inequality (B.9) is based on Inequality (B.12) and Inequality (B.10) is based
on δ′ ≥ 1 for sufficiently large n. For any node in level t+D + 1, we have

Pr (∩vNv < X + 1|E1)

=1− Pr (∪vNv ≥ X + 1|E1)

≥1−
∑
v

Pr (Nv ≥ X + 1|E1)

≥1− [(1 + δ)µ]t+D+1 exp (−Ω(µ))

≥1− exp

(
(t+D + 1) log[(1 + δ)µ]− (1− δ)3qθ

6
µ

)

144

Note we have t+D ≤ logn
(1+α) log µ

. Therefore,

Pr (∩vNv < X + 1|E1)

≥1− exp

(
((t+D) log[(1 + δ)] + (t+D) log µ+ log[(1 + δ)µ])− (1− δ)3qθ

6
µ

)
≥1− exp

(
log n

(1 + α) log µ
log[(1 + δ)] +

log n

(1 + α)
+ log[(1 + δ)µ]− (1− δ)3qθ

6
µ

)
Let C ≤ 6

(1−δ)3(1+α)
and since µ > 1

Cqθ
log n, we have

Pr (∩vNv < X + 1) ≥ 1− exp (−Ω(µ))

for sufficiently large n. By substituting X, we proved the lemma.

B.3 Proof of E4 and E5

B.3.1 Neighboring structure of all sources

To prove E4 and E5 happen with a high probability, we first analyze the neigh-
borhood of all sources in the ER random graph. In this section, we derived upper
and lower bounds of the t neighborhood of all sources. Define Lil the set of nodes
from level 0 to level l of the BFS tree rooted in source si. In addition, define φ′i(v)
the number of offsprings of node v on the BFS tree rooted in source si. Define

Ei
1 = {∀v ∈ Lit−1, φ

′
i(v) ∈ ((1− δ)µ, (1 + δ)µ)

Denote by the event
Ẽ = ∩mi=2E

i
1 ∩ E1.

We have the following lemma.

Lemma B.3. If the conditions in Theorem 2 hold, for any ε > 0,

Pr(Ẽ) ≥ 1− ε

for sufficiently large n.

Proof. For each infection source si, follow the similar argument of Lemma 3 in Zhu
and Ying (2015b), we have

Pr(Ei
1) ≥ exp

(
−8 exp

(
− δ2µ

2 + δ
+ (t− 1) log[(1 + δ)µ]

))
≥ 1− 8 (µ (1 + δ))t−1

exp
(
δ2µ
2+δ

)
Hence, we have

Pr(Ēi
1) ≤ 8 (µ (1 + δ))t−1

exp
(
δ2µ
2+δ

)
145

Therefore, with an union bound, we have

Pr(∩mi=2E
i
1) ≥ 1−

m∑
i=1

Pr(Ēi
1)

≥ 1− 8(m− 1) (µ (1 + δ))t−1

exp
(
δ2µ
2+δ

)
≥ 1− exp

(
log 8(m− 1) + (t− 1) log (µ(1 + δ))− δ2µ

2 + δ

)
To make the probability larger than 1− ε, we have

t ≤
log ε

8(m−1)
+ δ2µ

2+δ

log(µ(1 + δ))
+ 1

Again, we have t + D < logn
(1+α) log µ

and µ > 1
Cqθ

log n > 3 log n which guarantees the

probability goes to 1 asymptotically.
Note the events ∩mi=2E

i
1 do not contain the neighborhood of source s1. Based on

Lemma B.1, with a union bound, it is straightforward to show that

Pr
(
∩mi=2E

i
1 ∩ E1

)
> 1− ε.

for sufficiently large n. Hence the lemma is proved.

B.3.2 Proof of E4 and E5

Lemma B.4. If the conditions in Theorem 2 hold, for any ε > 0,

Pr(E4, E5) ≥ 1− ε

for sufficiently large n.

Proof. We still consider the BFS tree rooted at source s1 and we can rewrite the
events E4 and E5 in a combined fashion

E4 ∩ E5 = {∀v ∈ ∪t−1
i=0Zi, ψ′(v) ≥ (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ}.

Define

Fi = {Zi|∀v ∈ Zi, ψ′(v) ≥ (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ}

Then, we have

Pr(E4, E5)

≥Pr(E4, E5|Ẽ) Pr(Ẽ)

146

Pr(E4, E5|Ẽ)

= Pr(∀v ∈ ∪t−1
i=0Zi, ψ′(v) ≥ (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ|Ẽ)

=
∑
Z1∈F1

· · ·
∑

Zt−1∈Ft−1

Pr(∀v ∈ Zt−1, ψ
′(v) > (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ

|Zt−1,Zt−2, · · · ,Z1, Ẽ) Pr(Zt−1,Zt−2, · · · ,Z1|Ẽ)

We have

Pr(∀v ∈ Zt−1, ψ
′(v) > (1− δ)2µq|Zt−1,Zt−2, · · · ,Z1, Ẽ)

≥1−
∑

v∈Zt−1

Pr(ψ′(v) ≤ (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ|Zt−1,Zt−2, · · · ,Z1, Ẽ)

Note conditioned on Zt−1,Zt−2, · · · ,Z1, consider an offspring u of node v on the BFS
tree rooted at source s1. Node u has two possible states: infected or susceptible. If u is
not infected, v will infect node u with probability q in the next time slot. On the other
hand, if u is infected, it counts as an infected offspring of node v deterministically.
Therefore, ψ′(v) is stochastically lower bounded by binomial distribution B((1 −
δ)µ, q). Therefore, with Chernoff bound in Zhu and Ying (2015b), we have

Pr(ψ′(v) ≤ (1− δ)2µq|Zt−1,Zt−2, · · · ,Z1, Ẽ) ≤ exp

(
−δ

2(1− δ)µq
2

)
Each infected nodes are observed with probability θ independently. Conditioned
on ψ′(v) ≥ (1 − δ)2µq, ψ′′(v) is stochastically lower bounded by B((1 − δ)2µq, θ).
Therefore,

Pr(ψ′′(v) ≤ (1− δ)3µqθ|ψ′(v) ≥ (1− δ)2µq,Zt−1,Zt−2, · · · ,Z1, Ẽ)

≤ exp

(
−δ

2(1− δ)2µqθ

2

)
(B.13)

Therefore, we have

Pr(ψ′′(v) ≥ (1− δ)3µqθ, ψ′(v) ≥ (1− δ)2µq|Zt−1,Zt−2, · · · ,Z1, Ẽ)

=

(
1− exp

(
−δ

2(1− δ)µq
2

))(
1− exp

(
−δ

2(1− δ)2µqθ

2

))
≥1− exp

(
−δ

2(1− δ)µq
2

)
− exp

(
−δ

2(1− δ)2µqθ

2

)
≥1− 2 exp

(
−δ

2(1− δ)2µqθ

2

)
Again with union bound, we have

Pr(∀v ∈ Zt−1, ψ
′(v) > (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ|Zt−1,Zt−2, · · · ,Z1, Ẽ)

≥1− 2|Zt−1| exp

(
−δ

2(1− δ)2µqθ

2

)

147

Note, based on event Ẽ, we have

|Zt−1| ≤ m

t−1∑
i=0

[(1 + δ)µ]i ≤ 2m[(1 + δ)µ]t−1

Hence, we have

Pr(∀v ∈ Zt−1, ψ
′(v) > (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ|Zt−1,Zt−2, · · · ,Z1, Ẽ)

≥1− 4m[(1 + δ)µ]t−1 exp

(
−δ

2(1− δ)2µqθ

2

)
Therefore, we have

Pr(E4, E5|Ẽ)

=
∑
Z1∈F1

· · ·
∑

Zt−1∈Ft−1

Pr(∀v ∈ Zt−1, ψ
′(v) > (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ

|Zt−1,Zt−2, · · · ,Z1, Ẽ) Pr(Zt−1,Zt−2, · · · ,Z1|Ẽ)

≥
∑
Z1∈F1

· · ·
∑

Zt−1∈Ft−1

(
1− 4m[(1 + δ)µ]t−1 exp

(
−δ

2(1− δ)2µqθ

2

))
×Pr(Zt−1,Zt−2, · · · ,Z1|Ẽ)

=

(
1− 4m[(1 + δ)µ]t−1 exp

(
−δ

2(1− δ)2µqθ

2

))
×
∑
Z1∈F1

· · ·
∑

Zt−2∈Ft−2

Pr(∀v ∈ Zt−2, ψ
′(v) > (1− δ)2µq, ψ′′(v) ≥ (1− δ)3µqθ

|Zt−2,Zt−3, · · · ,Z1, Ẽ) Pr(Zt−2,Zt−3, · · · ,Z1|Ẽ)

148

Then, iteratively apply the similar arguments, we obtain,

Pr(E4, E5|Ẽ) (B.14)

≥
t∏
i=2

(
1− 4m[(1 + δ)µ]i−1 exp

(
−δ

2(1− δ)2µqθ

2

))
(B.15)

=
t∏
i=2

(
1− exp

(
log 4m+ (i− 1) log[(1 + δ)µ]− δ2(1− δ)2µqθ

2

))
(B.16)

≥
t∏
i=2

exp

(
−2 exp

(
log 4m+ (i− 1) log[(1 + δ)µ]− δ2(1− δ)2µqθ

2

))
(B.17)

= exp

(
−2

t∑
i=2

exp

(
log 4m+ (i− 1) log[(1 + δ)µ]− δ2(1− δ)2µqθ

2

))
(B.18)

= exp

(
−2 exp

(
log 4m− δ2(1− δ)2µqθ

2

) t−1∑
i=1

exp (i log[(1 + δ)µ])

)
(B.19)

≥ exp

(
−4 exp

(
log 4m− δ2(1− δ)2µqθ

2
+ (t− 1) log[(1 + δ)µ]

))
(B.20)

To make the probability greater than 1− ε, we need,

t ≤ 1 +
log log(1− ε)−1/4 − log 2m+ δ2(1−δ)2µqθ

2

log((1 + δ)µ)
(B.21)

Since we have t + D < logn
(1+α) log µ

and µ > 1
Cqθ

log n > 2
δ2(1−δ)2qθ log n, Inequality B.21

is satisfied when n is large enough.
Therefore, based on Lemma B.3 and Inequality B.20, we showed that

Pr(E4, E5) ≥ Pr(E4, E5|Ẽ) Pr(Ẽ) ≥ 1− ε

for any ε > 0 when n is sufficiently large.

B.4 Proof of E6

Lemma B.5. If the conditions in Theorem 2 hold, for any ε > 0,

Pr(E6|E1) ≥ 1− ε

for sufficiently large n.

Proof. Define

E7 = {Z̃1
1 ≥ (1− δ)2µq} ∩ {∀v ∈ Z̃1

1 ,∩ti=2Z̃
i
i(v) ≥ (1− δ)2µqZ̃i−1

i−1(v)}

Following the similar arguments in Lemma 5 in Zhu and Ying (2015b), we have

Pr(E7|E1) ≥ 1− ε.

149

Note, for each node v ∈ Z̃1
1 , based on event E7, we have Z̃t

t(v) ≥ [(1 − δ)2µq]t−1.
Recall each infected node report its status independently. Therefore, Z̃ ′tt (v) is stochas-
tically lower bounded by Bi([(1− δ)2µq]t−1, θ). By Chernoff bound, we have

Pr(Z̃ ′tt (v) ≥ [(1− δ)2µq]t−1(1− δ)θ|E7, E1) ≤ exp

(
−δ

2[(1− δ)2µq]t−1θ

2

)
Note Z̃1

1 ≤ (1 + δ)µ based on event E1, with a union bound, we have

Pr(∀v ∈ Z̃1
1 , Z̃

′t
t (v) ≥ [(1− δ)2µq]t−1(1− δ)θ|E7, E1)

≥1− (1 + δ)µ exp

(
−δ

2[(1− δ)2µq]t−1θ

2

)
≥1− exp

(
log[(1 + δ)µ]− δ2[(1− δ)2µq]t−1θ

2

)
≥1− ε,

for sufficiently large n since µ > 1
Cqθ

log n.

Therefore, we have

Pr(E6|E1) ≥ Pr(E6|E7, E1) Pr(E7|E1) ≥ 1− ε.

The lemma is proved.

150

APPENDIX C

PROOF OF CHAPTER 5

151

C.1 Proof of Theorem 5.1

Proof. We prove this theorem by considering a special case of the MDP problem with
p = 1, which means the attack stops at time slot 0 and only the initial attack source
gets attacked. Thus, we have

E
T∑
t=0

f(st, at(nt)) = f(s0, a0) (C.1)

We define this as the single step MDP problem. If we can show the single step MDP
problem is NP-hard, the MDP problem is also NP-hard. The NP-hardness is shown
by reducing the maximum coverage problem to the single step MDP problem. The
decision versions of the maximum coverage problem and the single step MDP problem
are as follows:

Problem 2 (The maximum coverage problem decision version).
INSTANCE: A collection of sets U = {S1,S2, . . . ,Sm}, and integers k, h.
QUESTION: Is there a subset U ′ ⊆ U such that |U ′| ≤ k and | ∪Si∈U ′ Si| ≥ h?

Problem 3. (The single step MDP problem decision version)
INSTANCE: Ga(Va, Ea), Gb(Vb, Eb), C0,F0, D, and integers n0, q.
QUESTION: Is there a rewiring such that f(s0, a0) ≥ q?

Given any instance of the maximum coverage problem 〈U , k, h〉, where

U = {S1,S2, . . . ,Sm},

S = ∪Si∈USi and n = |S|. We first build a graph Ga(Va, Ea) as follows:

1. For each Si ∈ U , there is a node vi on Ga.

2. For each si ∈ S, there is a node ui on Ga.

3. For any si ∈ S, Sj ∈ U , there is an edge between ui and vj if si ∈ Sj.

4. For any vi, vj (1 ≤ i, j ≤ m), add edge between vi and vj.

5. Add node zij (1 ≤ i ≤ m, 1 ≤ j ≤ n) to graph Ga and add edge between zij
and zik for any 1 ≤ i ≤ m and 1 ≤ j, k ≤ n.

6. For each node vi (1 ≤ i ≤ m), add nodes xij (1 ≤ j ≤ nm − 1) and add edge
between vi and xij for 1 ≤ j ≤ mn− 1.

7. Add node r and add edge between r and vi for 1 ≤ i ≤ m.

An example of Ga can be found in Figure C.1. We then construct a graph Gb(Vb, Eb)
as a graph of isolated nodes, with |Vb| = |Va|. The set of dependency links is a one-
to-one mapping between nodes from Ga and Gb. Then, we set C0 = {r}, n0 = k and
q = kmn+kn+h+1. Since Gb is a graph of isolated nodes in our construction, there
is no connected component on Gb with size greater than 1 no matter how we rewire
Ga.

152

v1 v2 vm

r

u1 u2 un

x11

x12

x1mn�1

Subgraph
formed by

z1j (1  j  n)

Subgraph
formed by

z2j (1  j  n)

Subgraph
formed by

zmj (1  j  n)

Figure C.1: An example of Ga.

If we can find a subset U ′ with |U ′| = k such that | ∪Si∈U ′ Si| ≥ h, then for any
Si ∈ U ′, we remove the edge between vi and r and add an edge between vi and zi1.
Since n0 = k, this is a rewiring of n0 edges on graph Ga. According to the construction
of Ga, it is easy to find out f(s0, a0) ≥ kmn+ kn+ h+ 1.

Suppose we can find a rewiring of k links on Ga such that

f(s0, a0) ≥ kmn+ kn+ h+ 1. (C.2)

Since the contribution of graph Gb to f(s0, a0) is 1, the contribution of graph Ga to
f(s0, a0) has to be greater than or equal to kmn+kn+h. We can divide the rewiring
of an edge into two steps:

• Remove an edge between two nodes;

• Reattach one endpoint of the previous removed edge to another node in the
graph.

The removed edges have to be among the edges (r, vi) (1 ≤ i ≤ m). Otherwise, nodes
xij (1 ≤ j ≤ n) connected to vi will not contribute to the size of the largest connected
component, f(s0, a0(n0)), which means the term kmn in inequality (C.2) can not be
satisfied. Define V ′ to be the set of node vi with link (r, vi) removed. To satisfy term
kn in inequality (C.2), after removing k links between r and vi, for each vi ∈ V ′, we
have to add another edge between vi to any node zij (1 ≤ j ≤ mn). Then according
to inequality (C.2), we have

|{uj|(uj, vi) ∈ Ea ∀1 ≤ j ≤ n, vi ∈ V ′}| ≥ h, (C.3)

which means
| ∪Si∈U ′ Si| ≥ h, (C.4)

153

where U ′ = {Si|vi ∈ V ′}.
Therefore, we have the maximum coverage problem is polynomial-time reducible

to our problem, which means the single step MDP problem is NP-hard. Thus, the
MDP problem is NP-hard.

154

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	3
	4
	5
	6
	REFERENCES
	A
	B
	C

