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ABSTRACT  
   

This work investigates the effects of non-random sampling on our understanding 

of species distributions and their niches. In its most general form, bias is systematic error 

that can obscure interpretation of analytical results by skewing samples away from the 

average condition of the system they represent. Here I use species distribution modelling 

(SDM), virtual species, and multiscale geographically weighted regression (MGWR) to 

explore how sampling bias can alter our perception of broad patterns of biodiversity by 

distorting spatial predictions of habitat, a key characteristic in biogeographic studies. I 

use three separate case studies to explore: 1) How methods to account for sampling bias 

in species distribution modeling may alter estimates of species distributions and species-

environment relationships, 2) How accounting for sampling bias in fossil data may 

change our understanding of paleo-distributions and interpretation of niche stability 

through time (i.e. niche conservation), and 3) How a novel use of MGWR can account for 

environmental sampling bias to reveal landscape patterns of local niche differences 

among proximal, but non-overlapping sister taxa. Broadly, my work shows that sampling 

bias present in commonly used federated global biodiversity observations is more than 

enough to degrade model performance of spatial predictions and niche characteristics. 

Measures commonly used to account for this bias can negate much loss, but only in 

certain conditions, and did not improve the ability to correctly identify explanatory 

variables or recreate species-environment relationships. Paleo-distributions calibrated on 

biased fossil records were improved with the use of a novel method to directly estimate 

the biased sampling distribution, which can be generalized to finer time slices for further 

paleontological studies. Finally, I show how a novel coupling of SDM and MGWR can 
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illuminate local differences in niche separation that more closely match landscape 

genotypic variability in the two North American desert tortoise species than does their 

current taxonomic delineation. 
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CHAPTER 1 

INTRODUCTION 

Sampling bias is an issue that obscures statistical inference across a wide range of 

disciplines, including the natural and social sciences. Both of these broad realms of 

scientific inquiry have benefitted from the quantitative revolution in the late 1960’s and 

early 70’s, and more recently, have seen a proliferation in the availability of large crowd-

sourced and federated datasets. This is especially true in the discipline of quantitative 

geography, where new analytical methods are continually being developed to analyze 

newly available data (Fotheringham et al. 2000). Most of these methods rely on statistical 

models, many of which are sensitive to biases and have implicit assumptions such as 

being free of spatial dependence (Besag and Newell 1991). Research on topics such as 

spatial dependence and spatial heterogeneity have helped address some of these 

assumptions (Anselin 2003), and have spilled over to benefit countless other fields of 

research in the social and natural sciences (Fotheringham et al. 2000). In particular, the 

fusion of quantitative geography and spatial ecology has led to improved methods for 

dealing with environmental sampling bias in species distribution modelling (SDM), a set 

of methods that has become common in the fields of ecology and biogeography.  

SDM is a quantitative modeling approach that relates locations of species 

occurrences to environmental covariates hypothesized to influence or define the 

suitability of habitat of the species and is often used to predict the geographic distribution 

of species or to generate maps of habitat potential (Franklin 2010a). SDM is especially 

well suited for tasks such as designing conservation and monitoring programs, evaluating 

the efficacy of proposed land management actions, and developing recovery planning for 
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threatened or endangered species (Franklin 2013). Additionally, SDMs are being used to 

assess large-scale patterns of species richness (Graham and Hijmans 2006, Franklin 

2010a) and to evaluate potential changes in species distributions resulting from climate 

change (e.g. Pearson and Dawson 2003, Sinclair et al. 2010), as well as to hindcast 

distributions under past climates based on current species-environment relationships 

(Svenning et al. 2011, Varela et al. 2011, Franklin et al. 2015).  

SDM quantifies relationships between environmental conditions at locations 

where a species occurs (presence) and where it does not (absence) to make spatial 

predictions about where the species may occur. While presence locations are often 

readily available, locations where an organism is absent are not always known or 

available, and are far more difficult to ascertain (MacKenzie et al. 2002, Elith and 

Leathwick 2009). This lack of absence observations is becoming more common due to 

the increased availability of occurrence records found in online museum databases now 

available for thousands of species (Graham et al. 2004a, Frey 2009, Newbold 2010), and 

has contributed to the development of presence-background (PB) modeling methods that 

compare environmental conditions at locations where a species has been observed to 

environmental conditions across the entire study area (background). These methods do 

not rely on knowledge of locations where a species is absent, and as such, software for 

PB data (e.g. MaxEnt; Phillips et al. 2006) have become primary tools for SDM research 

in recent years (Guillera-Arroita et al. 2015).  

However, while PB methods offer many advantages (e.g., availability of data, 

prevalence of software), they make several assumptions that are not always 

acknowledged in practice (Elith and Leathwick 2009). One key assumption with PB 
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methods is that the sampling of occurrence localities is unbiased and that any sampling 

bias is proportional to the background distribution of environmental covariates (Araújo 

and Guisan 2006, Phillips et al. 2009). This assumption is routinely ignored or only 

cursorily addressed (Guillera-Arroita et al. 2015) due to the high cost of conducting 

random or stratified sampling and because many studies using SDM draw on historical 

museum records that generally represent haphazard and opportunistic sampling (Elith and 

Leathwick 2007, Newbold 2010). Because of this, SDM often relies on observations that 

are highly clustered and/or non-randomly distributed in geographic and environmental-

space (Loiselle et al. 2007, Hortal et al. 2008). In lieu of starting with bias-free 

calibration data, several methods to reduce the effects of environmental sampling bias 

have been proposed and used with varying degrees of success over the past decade. I 

address three of the most commonly used bias-correction methods in Chapter 2 with a 

simulation approach to explore the effects of sampling bias on SDM in PB frameworks. 

Specifically, I aim to identify which of these three methods is best able to account for 

sampling bias across a wide range of species. Where these methods have been compared 

previously, emphasis has been on spatial predictions of habitat potential. Here I dig 

deeper into the use of these correction methods by exploring how sampling bias not only 

affects predictions of habitat potential, but also our understanding of niche characteristics 

such as which explanatory variables and species-environment relationships best represent 

the niche. 

In Chapter 3, I investigate sampling bias in another growing segment of SDM 

applications: paleo-distribution modeling. Paleo-distribution modeling (paleo-SDM) has 

become an important tool for paleontological studies, allowing researchers to estimate 
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species’ past distributions for questioning how organisms used resources and their 

environment historically (Guillera-Arroita et al. 2015). Paleo-SDM draws on the recent 

development of paleoecological archives providing geo-located fossil observations and 

reconstructions of historical environmental conditions. Paleoecological archives are used 

directly for calibrating models under past environmental conditions, and any sampling 

bias in the calibration dataset has the potential to affect these reconstructed distributions 

and therefore skew results of archeological and paleobiogeographic questions. 

In general, areas with more recent geologic formations have a greater prevalence 

of fossils due to the larger volume of sedimentary rock and because more recent 

formations will have had fewer destructive erosional forces (Raup 1972). While these 

patterns are generally attributed to time scales describing changes in the fossil record 

from the Cambrian through the Permian and into the Tertiary periods, they can influence 

the distribution of fossils during the Late Quaternary - such as the distribution of 

Neotoma (North American packrat) middens. These nests can contain an immense wealth 

of plant and animal remains preserved by crystallized urine in arid environments (Wells 

1976), which have been 14C dated and are geo-referenced. However, while the analysis of 

packrat middens has spanned the past 50 years, this wealth of geo-referenced macrofossil 

information has rarely been used in paleo-SDM studies. In Chapter 3, I explore potential 

effects of sampling bias in the North American Neotoma packrat plant macrofossil record 

(Strickland et al. 2013, Williams et al. 2018), and test whether (1) the spatial sampling 

bias inherent in this record can influence estimates of paleo-distributions, (2) this bias can 

alter our ability to measure shifts in distributions from the early/mid Holocene (11.5 ka – 
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5 ka) to present day (1950 – present), and (3) bias correction methods can improve paleo-

distributions and analyses of range shifts and niche breadth. 

Another issue gaining recognition in biogeographical research is that of spatial 

non-stationarity, which has drawn recent attention from the infusion of geographic 

thought to the spatial ecology domain (Foody 2008, Miller and Hanham 2011, Miller 

2012). Most applications of SDM rely on the assumption that species-environment 

relationships are constant across a species’ geographic distribution. In a regression 

framework, species-environment relationships are treated as stationary by estimating a 

single parameter (or possibly several for non-linear relationships) for the entire study area 

(i.e. ‘global’) for each covariate of interest. Spatial non-stationarity suggests that instead 

of remaining constant across a species’ distribution, a species-environment relationship 

may change across a landscape such that in one part of a species’ range, a relationship 

may be positive, but in another part, negative. This idea has been explored in context of 

macroecology patterns such as species richness (Rahbek and Graves 2001, Willis and 

Whittaker 2002, Foody 2004, Bickford and Laffan 2006), but has only recently been 

extended to species distribution modeling (Miller 2012) – likely due to the complexity of 

the many factors that influence a species’ distribution. 

In biophysical ecology, many relationships of an organism’s physiology and its 

environment are assumed to be stationary due to their foundation in first principles (e.g. 

an organism’s thermodynamic exchange with its proximal environment; Porter and Gates 

1969). These relationships (such as an organism’s rate of water loss) are governed by 

physical properties such as an organism's size, shape, solar reflectance, insulation, 

metabolic rate and so forth, which do not vary as an organism moves across a landscape. 
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However, population level manifestations of these relationships can be affected by 

heterogeneity in local conditions (e.g. interactions between temperature and soil 

moisture), resulting in apparent macro-scale variation in species-environment 

relationships across a species’ distribution. Similarly, spatial non-stationarity may be 

apparent when key variables are omitted or the model functional form is mis-specified 

(Fotheringham 1997). Variable omission is likely when proxies are used instead of 

mechanistic causal factors (Kearney and Porter 2009), especially when the proxies are 

non-linearly related to the unmeasured factors they are supposed to represent. In this 

case, an environmental covariate, such as ‘mean annual temperature’ may serve as a 

proxy for the more mechanistically relevant factor of hourly surface substrate 

temperature (Kearney et al. 2014), and as such may show a changing relationship across a 

species’ range as a function of another unmeasured variable such as substrate type. Due 

to these issues, and likely a misunderstanding of how spatial non-stationarity can arise in 

broad ecological patterns, very few published works have incorporated spatial non-

stationarity with species distribution modeling (Kupfer and Farris 2006, Miller 2012).  

Geographically weighted regression (GWR; Fotheringham et al. 2003) has 

become a dominant method to incorporate spatial non-stationarity in a regression 

framework and uses local statistics to explore evidence of spatially varying relationships. 

GWR uses spatially explicit kernel weighting schemes to create local parameter estimates 

(coefficients, t-values, standard errors and R2) for each observation. These weighting 

schemes rely on a bandwidth parameter used to define the shape of the spatial weighting 

scheme and can be fixed or allowed to shrink and expand in geographic space (i.e. 

‘adaptive kernel’) to include an optimal number of observations to accommodate 
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variations in observation density. A single GWR model is an amalgamation of many 

separate regression models, and results in locally varying estimates of the relationships 

between covariates and response variable. Obvious benefits to SDM are the ability to 

model spatial non-stationarity and to account for spatial autocorrelation in calibration 

data through a spatial weights matrix. While the latter has been addressed through the 

development of hierarchical Bayesian models (e.g. Chakraborty et al. 2010) and spatial 

dependence terms (e.g. Miller et al. 2007), the former presents a new paradigm with 

which to view SDM.  

Another obvious benefit of the GWR framework is the estimation of locally 

varying intercepts, which have the potential to account for sampling bias by offsetting the 

intercept parameter in a given area to account for locally intense sampling efforts. This is 

because at fine local scales, the geographic variation in survey effort can be assumed to 

be constant. Therefore, as long as the bandwidth can approximate the local scale of the 

survey effort bias, locally varying intercepts may reduce environmental sampling bias 

caused by biased survey efforts. However, at very fine local scales, calibration of logistic 

regression models may fail to converge due to complete separation of response classes if 

some areas contain only presence or only absence observations. This problem is 

magnified under extreme sampling bias, and generally forces SDM cast in a GWR 

framework to use large bandwidths approximating global models (Miller 2012). In 

Chapter 4, I use a novel application of SDM and GWR to investigate differences in 

habitat use between two species of North American tortoise, Gopherus agassizii 

(Agassiz’s desert tortoise) and Gopherus morafkai (Morafka’s desert tortoise). 

Specifically, I 1) identify landscape boundaries in habitat use between the two species, 



 

8 

and 2) determine which of three hypothesized delineations better describes landscape 

patterns of genotype variation. These hypothesized delineations include A) the current 

geographic boundary defining each species, B) the Mojave and Sonoran Basin and Range 

ecotone, and C) geographic similarities in local habitat use. The results of this study have 

implications for land management in and around the secondary contact zone due to the 

difference in protection status between these two species. Further, this work will inform 

conservation planning in other regions where local habitat use is of concern. 
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CHAPTER 2 

COMPARING SAMPLE BIAS CORRECTION METHODS FOR SPECIES 

DISTRIBUTION MODELING USING VIRTUAL SPECIES 

ABSTRACT 

1. A key assumption in species distribution modeling (SDM) with presence-background 

(PB) methods is that sampling of occurrence localities is unbiased and that any sampling 

bias is proportional to the background distribution of environmental covariates. This 

assumption is routinely violated when federated museum records from natural history 

collections are used due to their incomplete and biased survey methods. 

2. I use a simulation approach to explore the effectiveness of three methods developed to 

account for sampling bias in SDM with PB frameworks. Two of the methods rely on 

careful filtering of observation data: geographical thinning (G-Filter) and environmental 

thinning (E-Filter); while a third method, FactorBiasOut, creates selection weights for 

background data to bias their locations towards areas where the observation dataset was 

sampled. Where these methods have been assessed previously, emphasis has been on 

spatial predictions of habitat potential. Here I dig deeper into the effectiveness of these 

methods by exploring how sampling bias not only affects predictions of habitat potential, 

but also our understanding of fundamental niche characteristics such as which 

explanatory variables and response curves best represent species-environment 

relationships. I simulate 100 virtual species ranging from generalists to specialists in 

terms of habitat preferences and introduce geographical and environmental bias at three 

intensity levels to measure the effectiveness of each correction method to: 1) identify true 
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explanatory variables, 2) recreate true species-environment relationships, and 3) predict 

the true probability of occurrence across the study area. 

3. I find that the FactorBiasOut method most often showed the greatest improvement in 

recreating known distributions but did no better at correctly identifying environmental 

covariates or recreating species-environment relationships than the G-Filter or E-Filter 

methods. Narrow niche species are most problematic for biased calibration datasets, such 

that correction methods can, in some cases, make predictions worse. 

4. I highlight the need for SDM practitioners to be cognizant of sampling bias when 

inferring species-environment relationships using historical museum records or other 

biased occurrence data.  

INTRODUCTION 

A methodology that has taken the forefront in conservation biology, spatial 

ecology and biogeography is species distribution modeling (SDM), a statistical modeling 

approach that relates locations of species observations to environmental covariates 

hypothesized to influence or define an organism’s niche (Franklin 2010b). SDM using 

discriminative statistical methods characterizes the relationships between environmental 

conditions at locations where a species has been observed to those locations where it has 

not in order to predict how likely it is to occur at other unobserved locations (Mateo et al. 

2010). Unfortunately, locations where an organism is absent are not always known or 

readily available, and can be difficult to ascertain (MacKenzie et al. 2002, Elith and 

Leathwick 2009). This has contributed to the development of so-called presence-

background (PB) modeling methods that compare environmental conditions at locations 

where a species has been observed to environmental conditions across the entire study 
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area (background). Methods not relying on locations where species are absent have 

propelled software for PB data (e.g. Maxent; Phillips et al. 2006) to become primary tools 

for SDM research in recent years (Guillera-Arroita et al. 2015). 

However, while PB methods have many advantages over presence-absence 

methods, (e.g. availability of data and software), they make several assumptions that are 

not always acknowledged in practice (Elith and Leathwick 2009). One key assumption of 

PB methods is that any sampling bias is proportional to the background distribution of 

environmental covariates (Araújo and Guisan 2006), and that a species’ niche is sampled 

over the full range of environmental conditions in which they occur (Phillips et al. 2009). 

To meet these assumptions, an obvious solution is to use random or stratified-random 

sampling designs to collect observations in a manner free of sampling bias (Hirzel and 

Guisan 2002, Edwards et al. 2006). Unfortunately, the high cost of conducting these 

surveys often precludes their use and has resulted in widespread use of a growing number 

of federated museum records to describe species occurrences for SDM. These natural 

history collections generally represent haphazard and opportunistic sampling (Elith and 

Leathwick 2007, Loiselle et al. 2007, Hortal et al. 2008, Newbold 2010), and introduce 

sampling bias to the locality information for thousands of species.  

There are two types of bias problematic for SDM: 1) incomplete sampling, and 2) 

over-sampling; both result in spatial heterogeneity in the sampling intensity across a 

landscape. The former occurs when not all parts of environmental space where a species 

can occur (realized niche space) is sampled, leaving certain combinations of 

environmental conditions absent from the observation dataset. This may occur when 

some regions of a species’ range are unavailable for sampling, resulting in few 
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observations in certain areas that are otherwise occupied. Over-sampling occurs when 

some occupied regions of environmental space are sampled at higher intensities than 

others, thereby shifting model coefficients towards conditions represented by those 

heavily sample regions and away from regions that may be equally suitable for the 

species. This may result when some geographic areas are sampled at higher intensities 

than others, such as when areas proximal to roadways and access routes are more heavily 

sampled than remote and inaccessible areas (Kadmon et al. 2004). Other species may 

suffer from heterogeneity in sampling intensity caused by administrative boundaries, 

such as when national parks, wildlife refuges or other locations of interest are sampled 

more heavily, thereby biasing model coefficients towards environmental conditions found 

in those areas. These two types of bias can occur in museum records because these 

sources rarely stem from systematic sampling regimes (Ponder et al. 2001, Frey 2009, 

Newbold 2010). 

Another factor affecting sampling bias is the size of a species’ geographic range 

or prevalence of occupied areas across a landscape. SDMs for species with large 

geographic ranges and high prevalence have shown poorer model fit than rarer species 

with smaller ranges and lower prevalence (Brotons et al. 2004, Elith et al. 2006, Marmion 

et al. 2008, Franklin et al. 2009) because smaller ranges require fewer observations to 

obtain an unbiased sampling distribution than larger ranges. Similarly, species with high 

landscape prevalence and large ranges are often generalists, that is, occurring across a 

wide range of habitats or environmental conditions (Brown 1984, Pulliam 2000, Slatyer 

et al. 2013). The difficulty in distinguishing their niches from the available background 

may result in poor model performance (Segurado and Araujo 2004, Luoto et al. 2005).  



 

13 

Two of the more straightforward methods to reduce sampling bias rely on careful 

filtering of observation data. The first method, geographical filtering (G-Filter), has been 

used in numerous applications in SDM and, in its simplest form, involves removing 

occurrence records from areas with high sample densities (Boria et al. 2014). In contrast, 

the second filtering method, environmental filtering (E-Filter), involves filtering 

observation data based on environmental clustering rather than geographic clustering 

(Varela et al. 2014). Here, clusters in n-dimensional environmental space are identified 

and random samples are selected from each cluster; thereby ensuring that all 

combinations of covariate space are equally represented in the observation dataset. While 

subtly different in their implementation, these two methods both rely on filtering 

observations to create a smaller observation dataset with minimal bias. A third approach 

uses the complete (but biased) observation dataset, and instead manipulates the selection 

of background records to mimic the spatial sampling bias found in the observations using 

a background weight correction. This method is implemented using the FactorBiasOut 

algorithm (Dudik et al. 2005) in MaxEnt (Phillips et al. 2006) and has gained popularity 

due to the ease with which it can be applied. 

I use a simulation approach to explore the effects of sampling bias on SDM in PB 

frameworks. Specifically, I aim to identify which of these three commonly used methods 

is best able to account for sampling bias across a wide range of diverse species. Where 

these methods have been addressed previously emphasis has been on spatial predictions 

of habitat potential. Here I dig deeper into the use of these methods by exploring how 

sampling bias not only affects predictions of habitat potential, but also our understanding 

of fundamental niche characteristics such as which explanatory variables and species-



 

14 

environment relationships best represent the niche. Simulated and virtual species (Hirzel 

et al. 2001, Meynard and Kaplan 2012, Miller 2014, Moudrý 2015) offer a controlled 

environment with which to assess the performance of these three bias correction methods, 

and to disentangle the effects of biased observations from niche characteristics such as 

landscape prevalence and niche breadth. I simulate 100 virtual species ranging from 

habitat specialists to generalists and introduce geographical and environmental bias at 

three intensity levels to measure the effectiveness of each correction method to: 1) 

identify true explanatory variables, 2) recreate true species-environment relationships, 

and 3) predict the true habitat potential across my study area. The work flow used here is 

shown in Figure 2.1.  

MATERIALS AND METHODS 

Study Area 

I use environmental maps of an arid, interior southwestern region of the USA to 

define the environment and environmental correlates of realistic, but virtual, species 

distributions. My study area covered 918,557 km2 and incorporated a broad range of 

ecosystems ranging from Southern and Central California Chaparral and Oak Woodlands 

to the southwestern Mojave, Sonoran and Chihuahuan Deserts. I chose this area for the 

availability of a rich set of environmental data (e.g. Vandergast et al. 2013, Inman et al. 

2014) describing a broad range of physiographic (e.g. landform type, surface texture and 

geologic character) and climatic (e.g. temperature, precipitation norms and extremes) 

environmental conditions available to develop distributions of virtual species that could 

plausibly inhabit this region.  

Simulated Species 
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I created distributions for 100 virtual species using the package virtualspecies 

(Leroy et al. 2015) in R 3.3.2 (R Core Team 2016). Each species' niche was defined using 

two to five randomly selected environmental covariates from a suite of ten possible 

explanatory variables spanning physiographic and climatic constraints. These raster 

layers represented environmental conditions hypothesized to influence the distribution of 

many actual species in the region (Inman et al. 2014), and were generalized to a spatial 

resolution of 1 km (Appendix 2.1). For simplicity, I set the realized niches of these 

species equal to their fundamental niches, precluding the need to simulate predation or 

competition, and assumed that these virtual species were in equilibrium with their 

environment and therefore exhibited stable population sizes. The ‘true’ habitat potential 

for each species in each grid cell was deterministically defined using response curves that 

included linear, quadratic, logistic or Gaussian functions in an additive approach. In order 

to create realistic species distributions and habitat preferences, I ensured that response 

curves could not contradict one another on the landscape (e.g. result in species living 

simultaneously in the hottest and coldest portions of my study area) using an iterative 

approach, wherein mechanistic response curves were created sequentially. In the first 

step, a single response curve was randomly generated and applied to its corresponding 

environmental covariate to create a grid surface representing habitat potential for the 

virtual species based only a single environmental descriptor. An ‘occupied’ raster layer 

was created from this habitat potential for each species using a probabilistic approach 

wherein occupied cells were selected with the probability: 

 !" =
$
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Where xi is the habitat potential value for cell i for x explanatory variable. For the 

next explanatory variable, a response curve was randomly developed for areas considered 

occupied from the first covariate, and a new grid surface representing habitat potential for 

the virtual species was created by combining the two response curves in an additive 

approach and applying them to the entire study area. If additional environmental 

explanatory variables were assigned, these steps were repeated resulting in a ‘true’ 

habitat potential value for each grid cell wherein each explanatory variable was given an 

equal weight. I created an occupied raster layer from the true habitat potential, which was 

then used to calculate the prevalence of occupied areas for each species, ranging from 

0.05% to over 97% of the study area. I attempted to create a range of specialist and 

generalist species by modifying the shape parameters for each of the linear, quadratic, 

logistic and Gaussian functions. The resulting virtual species had mean landscape values 

of their ‘true’ habitat potential ranging from 0.13 to 0.94.  

I hypothesized that the breadth of each species’ niche and their landscape 

prevalence would affect how much biased sampling distributions degraded SDM 

performance. Specifically, I hypothesized that specialists would show erratic responses to 

differing types and levels of sampling bias, because while rare species may require fewer 

samples to adequately estimate their distributions (Franklin et al. 2009), they may also be 

missed entirely or only sparsely sampled at extreme levels of sampling bias. In cases of 

the latter I assumed that SDM performance would be severely degraded. I measured 

landscape prevalence as the occupied proportion of the study area, and niche breadth with 

a novel approach quantifying the uniqueness of the environmental conditions defining 

each species’ geographic distribution. Metrics of niche breadth can range from 
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volumetric measurements of n-dimensional hypervolumes (e.g. Blonder et al. 2014), 

reduced principle component axes of presumed occupied regions of environmental space 

(e.g. Saupe et al. 2015) to counts of unique habitat types presumed to be occupied (e.g. 

Harnik et al. 2012, Nürnberg and Aberhan 2013). I developed a novel approach 

quantifying the environmental uniqueness of occupied habitat drawing on Mahalanobis 

distances in environmental space because I was most interested in how unique the 

occupied habitat was from the rest of the study area across all environmental explanatory 

variables. The niche breadth value for each species was defined as the median of the 

squared Mahalanobis distance of all occupied cells: 

 ./0 = (Χ3 − 56)′Σ:$(Χ6 − 56) (2.2) 

Where Xo is the matrix of explanatory variables used to define the species’ niche 

over all occupied cells, Xa is the matrix of the same explanatory variables over all cells in 

the study area, µa is a vector of variable means of the study area and Σ	is the covariance 

matrix of Xa. Occupied cells with high D2 values have greater environmental distance 

from all other cells and are therefore more unique, indicative of specialist species. ./0  

values can range from near 0 to well over 400, a completely unrealistic value 

representing the most specialist species possible in my study area; namely a species 

occurring on a single grid cell with the most unique environmental conditions. I therefore 

rescaled ./0  into niche breadth values as the inverse of the realistic minimum and 

maximum possible values in my study area (zero and ten) with the equation: 

 <=>ℎ@	AB@CDEℎ = 	1 −	G
H0

$I
 (2.3) 

This index ranges from 0 - 1, wherein a niche breadth value of 0 indicates extreme  
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uniqueness of environmental variables at occupied cells, and results from a 

median squared Mahalanobis distance value of 10, the maximum realistic value in my 

study area. In contrast, a niche breadth value of 1 indicates the most generalist species 

possible, namely, one that occupies every cell with Mahalanobis distances near 0. Species 

with small niche breadths also had low landscape prevalence, although the opposite was 

not always true (Figure 2.2).  

Sampling Bias  

I introduced two types of sampling bias, geographic and environmental, into 

observation datasets derived from the virtual species’ distributions to explore the 

potential effects of each type of bias on the performance of SDM. For each type of bias, I 

created biased observation samples for each species to represent three levels of bias 

intensity (Low, Medium and High). These three levels ranged from almost no bias 

(nearly indistinguishable from a randomly sampled set of observations) to an extreme 

level greater than that expected to be found in most presence-only observation datasets. 

Bias was introduced with spatial inclusion weights, which were used to preferentially 

sample N occupied cells for inclusion to each biased observation dataset. Each biased 

dataset assumes perfect detection such that if an organism occurs in a given area, it would 

be detected with a probability of 1. While this may not always be the case (MacKenzie et 

al. 2002), I assume perfect detection in order to focus on the differences between methods 

to correct sampling bias. An additional observation dataset with no bias was created for 

each species by randomly selecting N observations from the occupied cells. 

Inclusion weights for the geographically biased observation datasets were 

calculated using a spatially clustered sampling schema by randomly seeding 5, 8, or 10 
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cluster centers for the Low, Medium and High intensities of bias, respectively (Figure 

2.3). For each level of intensity, I created a Gaussian density kernel raster using the equal 

split method of Okabe et al. (2009) with a bandwidth of 500 , 250, or 100 km for the 5, 8, 

or 10 cluster centers, respectively, in GRASS GIS (Neteler et al. 2012). The inclusion 

weight for each occupied cell was defined by rescaling each Gaussian density kernel 

raster to 0-1. This spatially clustered sampling schema ensures that occupied cells closest 

to the randomly seeded cluster were selected with higher probabilities than those further 

away. I create biased observation datasets by randomly selecting occupied cells according 

to their inclusion weights. The number of cells selected (N) for each species was 

determined by the prevalence of occupied cells across the study area, and was calculated 

as: 

 < = J ∗ 500 (2.4) 

Where p is the prevalence of occupied cells across the study area. I limited the 

maximum number of observations to 500 to ensure a realistic sample size for each biased 

observation dataset. I assessed the degree of sampling bias in each dataset using a 

generalization of the Ripley’s K function for inhomogeneous point processes (Baddeley 

et al. 2000), which describes the density of observations in the point process over 

multiple distances, r. I measure the mean difference between the theoretical K(r) and 

border-corrected K(r) density functions of the spatial point pattern for each biased dataset 

out to a maximum distance of 350 km with the package spatstat (Baddeley et al. 2015) in 

R 3.3.2 (R Core Team 2016). Spatial point patterns with theoretical K(r) and border-

corrected K(r) differences near 0 are close to spatially random, while higher values 

indicate increased levels of spatial bias. Spatial bias among the unbiased and biased 
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observation datasets for the 100 virtual species ranged from 1 to 197 (Figure 2.4A), and 

each class (No, Low, Medium and High Bias) was significantly different when 

accounting for repeated measures of the 100 virtual species (F3,272=121.5716; p<0.0001). 

Inclusion weights for the environmentally biased datasets were defined by identifying 15 

unique clusters in the multivariate space of the 10 possible explanatory variables used to 

create the 100 virtual species. The clusters were identified using a partitioning-around-

medoids clustering algorithm in the package cluster (Maechler et al. 2016) in R 3.3.2 (R 

Core Team 2016) and were mapped to geographic space. Inclusion weights were 

assigned to occupied cells in each mapped cluster based on the total area of each cluster 

with the equation: 

 !" = N $
OPQRS&TUT&6(()
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Where a equals 1, 3, or 5 for the Low, Medium, or High bias scenarios, and 

ClusterArea is the proportion of the study area that is covered by the mapped cluster 

containing cell i. This method ensures that mapped clusters with larger areas are less 

likely to be selected, whereas areas with smaller areas were more likely to be sampled. 

Inclusion weights were rescaled to 0 - 1 prior to use. As with the geographically biased 

observation datasets, I randomly selected N occupied cells according to their inclusion 

weights (equation 2.1). The degree of sampling bias for each level was assessed with the 

random Skewers method of covariance similarity (Cheverud 1996) in the package 

phytools (Revell 2012) in R 3.3.2 (R Core Team 2016), measuring the collinearity 

between two random selection vectors, each operating on a single covariance matrix 

(Cheverud and Marroig 2007). This method is used increasingly in evolutionary biology 

and genetics to estimate similarity among genetic covariance matrices due to its simple 
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implementation and use of random permutations that can be cast as null hypotheses of the 

complete un-relatedness between two matrices (Roff et al. 2012). Here I use this method 

to estimate the relatedness between the covariance matrix of the environmental 

explanatory variables at locations in the biased observation datasets and the covariance 

matrix of the environmental explanatory variables at all of the occupied cells. The 

random Skewers covariance similarity coefficient among the 100 virtual species ranged 

from 0.997 to 0.904 for each of the four levels of environmentally biased datasets (Figure 

2.4B), and each class (No, Low, Medium and High Bias) was significantly different when 

accounting for repeated measures of the 100 virtual species (F3,273=31.19; p<0.0001). 

Bias Correction Methods 

I implemented the geographic filtering (G-Filter) method of bias correction using 

a sampling mesh with equally sized rectangular cells, each 225 km2 in area, resulting in 

4119 unique sampling areas throughout the study area (Figure 2.5). I limited observations 

in each sampling area to 2 observations per 225 km2, a rate that has been effective in 

minimizing sampling bias for other desert species (Inman et al. 2014). I implemented the 

environmental filtering (E-Filter) correction by sampling observations at a uniform rate 

across multiple clusters identified in the n-dimensional environmental space defined by 

the explanatory variables for a given model specification. I used the same partitioning 

around medoids clustering algorithm used to introduce environmental sampling bias into 

the observation datasets, but since the true number of clusters or degree of bias in a 

biased sampling distribution is rarely known, I estimate an optimal number by 

maximizing the average silhouette width with package fpc (Hennig 2015) in R (R Core 

Team 2016). In each cluster a random sample with a size equal to the minimum number 
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of observations in any cluster was selected, and these were pooled to create an 

observation dataset. This method ensures an equal sampling intensity across each cluster 

in environmental space, though it does not necessarily result in an even sampling 

intensity across geographic space.  

I implement background weight correction with the FactorBiasOut algorithm 

(Dudik et al. 2005) in Maxent (Phillips et al. 2006). FactorBiasOut estimates the 

combined distribution of the biased sample selection distribution (biased survey effort; s) 

and the true species distribution (p) and factors out s, which is assumed to be known and 

represented as an auxiliary variable (Phillips et al. 2009), often in the form of a bias grid 

(Elith et al. 2011). This method relies on the knowledge of the biased sample selection 

distribution (s), which in practice, is rarely known. However, because the biased 

observation dataset is a sample of s, (the observations are sampled with the biased 

sampling distribution), s can be estimated when the observation dataset is large (Phillips 

et al. 2009). I use a bias grid as an estimate of s by creating a kernel density raster of 

each biased observation dataset and use it to alter background selection weights. The 

bandwidth for each kernel was estimated using cross-validation to minimize mean-square 

error (Baddeley et al. 2015). The resulting kernel density raster was rescaled to 1 - 20, to 

give greater selection probability to areas with higher densities of observations (Elith et 

al. 2011).  

Models and Performance Criteria 

I used MaxEnt v. 3.4.0 (Phillips et al. 2018) to create distribution models for each 

virtual species and to assess the three bias correction methods in their ability to: 1) 

identify correct explanatory variables, 2) recreate the shape of the species-environment 
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relationships, and 3) correctly predict habitat potential across the study area. To address 

the first objective, I considered all unique combinations of two to five of the 10 possible 

explanatory variables. Interaction terms were not included and pairs of explanatory 

variables with correlation coefficients greater than 0.7 were excluded. To reduce 

processing time, I randomly selected 10 virtual species to evaluate the first objective. For 

the second and third objectives I created a single model for each of the 100 virtual species 

specified with the true explanatory variables because for these analyses I assumed that 

the true explanatory variables were known. The latest versions of Maxent software (e.g. 

version 3.4.0) implement a new function to produce an estimate of occurrence 

probability: the complementary log-log function (Phillips et al. 2017). I use this 

transformation as an indication of habitat potential, and allow inclusion of all feature 

classes (linear, quadratic, product, threshold and hinge). 

The two filtering methods were applied in a replicated fashion because each 

involves random thinning to remove observations. I replicated the G-Filter and E-Filter 

methods 20 times each to generate a set of filtered calibration datasets for each biased 

observation dataset. I estimated a Maxent model for each of the replicated filtered 

datasets. The background weight correction was implemented using FactorBiasOut in 

Maxent with the bootstrap option, also with 20 replications. For each of the 800 biased 

observation datasets (2 bias types, 4 bias intensities, 100 virtual species) and 4 bias 

correction methods (no correction, G-Filter, E-Filter, FactorBiasOut), I selected the single 

best performing model with the average Area Under the receiver operating characteristic 

Curve value (AUC; Fielding and Bell 1997) across the 20 replicates, one of the most 

commonly used test measures in SDM literature. AUC provides a robust measure of a 
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model’s ability to discriminate between presence and absence localities, independent of 

an arbitrary cutoff threshold (Cumming 2000), although it has been criticized for its 

sensitivity to areal extent, among other factors (Lobo et al. 2008). However, because my 

models were evaluated using the same geographic extent, and because my goal was to 

select a single model with which to evaluate the bias correction methods, I used AUC to 

evaluate each model. 

Variable selection is a key step in SDM development (Elith and Leathwick 2009, 

Williams et al. 2012, Bell and Schlaepfer 2016), and yet few studies investigate or 

comment on the choice of potential environmental covariates, often including widely 

available climatic variables with little justification (Bell and Schlaepfer 2016). I 

evaluated each of the bias correction method’s ability to identify the correct explanatory 

variables with the Jaccard similarity coefficient using the equation: 

 W(X, A) = (X ∩ A)/(X ∪ A) (2.6) 

Where A is the set of true explanatory variables, B is the set of explanatory 

variables selected by the model, and X ∩ A is the count of the correctly identified 

explanatory variables and	X ∪ A is the count of unique explanatory variables in the “true” 

virtual species model and the best model identified by a given bias correction method. 

Higher values indicate a greater ability to discriminate the correct set of variables used to 

define the distribution of the virtual species. The ability to recreate the form of the true 

species-environment relationships for each explanatory variable was assessed with the 

Pearson’s correlation coefficient between the true relationship and that estimated by the 

model (Appendix 2.2). I measured collinearity between the marginal response curves 

produced by Maxent, and those used to create each corresponding virtual species. 
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Marginal response curves represent the average response curves for each explanatory 

variable by holding all other variables at their mean for the study area (Phillips et al. 

2006). Finally, I assessed the performance of each bias correction method to correctly 

estimate the true habitat potential for each virtual species in the study area using the 

Expected fraction of Shared Presences (ESP; Godsoe 2013) by comparing the estimated 

habitat potential to the true habitat potential across all cells with the equation: 

 ]^! =
/∑ `ab`Hbb

∑ c`ab`Hbdb
 (2.7) 

Where P1j denotes the true habitat potential at location j and P2j denotes the 

prediction generated from the model at location j. This index is a modified Sorenson 

similarity index (Sørensen, 1948) used to compare predicted probabilities that each 

species is present at a given cell rather than relying on presence/absence information 

(Godsoe 2013). Scores of 1 indicate perfect agreement between the two maps, while an 

ESP value of 0 indicates complete geographic separation (Godsoe 2013). For all three 

objectives and their respective performance metrics (Jaccard’s similarity, Pearson’s 

correlation coefficient, and ESP), I test for loss in performance due to each type and level 

of bias intensity, as well as a gain in performance due to the 3 correction methods. I use 

mixed models to account for random effects among species and denote differences where 

significant. 

RESULTS 

Variable Selection 

In the absence of sampling bias, the mean Jaccard Index score of the randomly 

selected 10 virtual species was 0.62 (sd=0.22), with the true set of explanatory variables 

being selected only 15% of the time. When bias was introduced, reductions in Jaccard 
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Index scores ranged from -0.06 (environmental) and -0.10 (geographic) for low intensity 

bias to -0.14 (environmental) and -0.10 (geographic) for the high intensity bias (Table 

2.1). This translated to reductions in Jaccard Index scores of up to 22% for the high 

intensity environmental bias level and resulted in the correct set of explanatory variables 

being selected only 3% of the time. In general, Maxent models of specialist species did 

better at identifying the correct variables than generalist species, though effect was only 

marginally significant (F1,18=3.927; p=0.063). Bias correction methods rarely improved 

the ability to select the correct explanatory variables (Table 2.1), and I found no 

difference among the three correction methods in their ability to improve Jaccard Index 

scores (F2,168= 0.377, p=0.686). Similarly, I found no relationship between niche breadth 

and the three methods’ ability to improve Jaccard Index scores (F2,166= 1.065; p=0.347). 

Species-Environment Relationships 

On average, the correlation between true and estimated response curves was 0.797 

(sd=0.341) when no sampling bias was present, though Pearson’s correlation coefficients 

ranged from -0.974 to 0.999 (Table 2.2). This suggested that when the true explanatory 

variables are known, Maxent was able to recreate response curves reasonably well (fewer 

than 10% of response curve correlation coefficients were below 0.5). It was rare for the 

estimated response curve to be completely wrong (e.g. negative correlation), with 

correlation coefficients below 0 only occurring 2% of the time. There was no apparent 

relationship between niche breadth (F1,182=1.734; p=0.190) or landscape prevalence 

(F1,182=3.115; p=0.080) with estimated response curves, though the variability of 

correlation coefficients was greater among species with wide niches. 
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When bias was introduced, the mean of the correlations between actual and 

estimated response curves dropped significantly (F3,2630=24.478; p<0.001) to 0.760 

(sd=0.386), 0.687 (sd=0.452) and 0.633 (sd=0.486) for the Low, Medium and High levels 

of environmental bias, respectively (Table 2.2). This translated to mean proportional 

reductions of 10%, 17% and 16% for the Low, Medium and High environmental bias 

levels, respectively. Geographic bias caused greater overall reductions in correlation 

coefficients, with 26%, 18% and 36% for the Low, Medium and High levels of bias, 

respectively (Table 2.2). There was no apparent relationship between losses in correlation 

coefficients and niche breadth (F1,90=1.119; p=0.293); specialist species showed the same 

reduction in correlation coefficients as generalist species. This pattern held for landscape 

prevalence as well, with no discernable difference between rare and widespread species 

(F1,90=0.079; p=0.780). In general, bias correction methods did not provide any 

improvement in estimating response curves (F3,10440=0.118; p=0.950), though there was 

extreme variability in improvement among species with respect to both niche breadth 

(Figure 2.6A) and prevalence (Figure 2.6B).  

Habitat potential Predictions 

When using unbiased observation data, ESP scores measuring the similarity 

between virtual species’ true and estimated distributions ranged from 0.177 to 0.756, with 

a mean of 0.487 (sd=0.128) across all virtual species. Generalist species showed greater 

agreement between the true and estimated distributions (Figure 2.7A), as did species with 

high landscape prevalence (Figure 2.7B). When bias was introduced, ESP scores were 

reduced (less accurate estimation of true habitat potential), with mean scores for the 100 

virtual species of 0.461 (sd=0.128), 0.442 (sd=0.125), and 0.397 (sd=0.140), for the Low, 
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Medium and High bias levels of both types of bias, respectively. Reductions were 

greatest for the high environmental bias level, equating to an average reduction of 26% in 

ESP scores across all species (Table 2.3). However, not all species showed reduced ESP 

scores when bias was introduced; ~20% resulted in higher ESP scores when bias was 

introduced, and nearly half of these were at the low bias level (shown as a negative loss 

in Figure 2.8A). Species with an increase in ESP after bias was introduced tended to be 

very rare, with low landscape prevalence. Only 20% of the instances where biased 

observation data resulted in improved ESP scores were at the high bias level, suggesting 

that highly biased observation datasets rarely resulted in improved prediction ability. I 

found a slight effect of niche breadth (F1,90=5.369; p=0.003) on loss of ESP scores, 

suggesting that specialist species were more susceptible to sampling bias than were the 

most generalist species in my study area (Figure 2.8B); though this effect was most 

pronounced in the high bias level. Interesting, I found no effect of landscape prevalence 

on the loss of ESP scores (F1,90=0.086; p=0.770), though rare species showed the greatest 

variability in loss of ESP scores (Figure 2.8A). 

Bias correction methods were usually able to increase prediction ability, though 

the E-Filter method resulted in lower ESP scores 43% of the time. This loss was nearly 

equally distributed among the three bias levels, suggesting that the E-Filter correction 

method was poor at compensating for any level of bias. The environmentally biased 

datasets saw greater improvement than the geographically biased ones, especially with 

the FactorBiasOut correction method (Figure 2.9). Overall, FactorBiasOut provided the 

greatest improvements of the three methods across both types of bias (F2,1560=331.856; 

p<0.001), with an average 11% greater increase in ESP than the other two methods 
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(Figure 2.9). In addition, FactorBiasOut was able to improve ESP scores in 96% of the 

cases, whereas the G-Filter and E-Filter only improved ESP scores 82% and 55% of the 

time, respectively. On average, all three correction methods provided 2% greater 

improvements with the environmentally biased datasets than with the geographically 

biased datasets (F1,1377=29.269; p<0.001); suggesting that while environmental bias 

caused the greatest reduction in ESP scores, it was also improved the most by correction 

methods. I found an interaction effect between niche breadth and the bias correction 

methods (F2,1558=83.259; p<0.001); specialist species and rare species showed greater 

improvements with the FactorBiasOut method.  

DISCUSSION 

I use a simulation study with virtual species to compare three easily implemented 

sampling bias correction methods that are often used in presence-only SDM but have not 

been systematically compared. I found that even in the presence of low levels of bias, 

model performance was degraded, and that correction methods did not improve the 

ability to correctly identify explanatory variables or recreate species-environment 

relationships. It seems that identifying true drivers of distributions is difficult, at best. 

Bias correction methods did, however, improve the accuracy of mapped predictions of 

habitat potential, which is often the focus of SDM studies. For studies focusing on spatial 

patterns of habitat potential rather than an understanding of the mechanisms driving those 

patterns, the FactorBiasOut correction method is well suited. I found that for spatial 

predictions of habitat potential, FactorBiasOut outperformed the G-Filter and E-Filter 

bias correction methods across all levels and types of bias. However, when for 

identifying and understanding drivers of species distributions, SDM with unbiased 
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presence and absence data (Guisan and Zimmermann 2000, Hirzel and Guisan 2002), or 

mechanistic models incorporating biophysical ecology and functional traits (e.g. Kearney 

et al. 2010, Higgins et al. 2012), may be better suited. 

Estimating Distributions 

SDM is most often used for estimating spatial predictions of distributions, and in 

these cases, the use of bias correction methods is clearly recommended. Previous work 

has shown contrasting results, however, with some studies suggesting that G-Filter 

methods may outperform the FactorBiasOut method in some instances (Kramer-Schadt et 

al. 2013, Fourcade et al. 2014, Stolar and Nielsen 2015), and others showing E-Filter 

methods as superior to G-Filter methods (Varela et al. 2014). Yet other work suggests 

that the FactorBiasOut is superior, especially when target group background data are 

incorporated (Syfert et al. 2013, Fourcade 2016). The target group background approach 

estimates the biased sampling distribution (s) from pooled observations of multiple 

species within a ‘target group’ of similar taxa whose locality data were collected in the 

same way as the modelled species, and has shown promise for reducing sampling bias 

(Phillips and Dudik 2008, Elith et al. 2011, Ranc et al. 2016). The benefit of pooling 

observations from multiple taxa is increasing the sample size to estimate s, thereby 

improving its precision (Phillips and Dudik 2008). However, this method assumes that s 

is the same across all species of the target group, which may not be true for many species 

represented in biodiversity repositories composed of aggregate survey efforts (Ponder et 

al. 2001, Hortal et al. 2008, Newbold 2010).  

My results suggest that the FactorBiasOut method consistently outperformed both 

of the two filtering methods in their ability to accurately estimate geographic 
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distributions. While my results may contradict some previous findings, they are not too 

dissimilar. For example, Kramer-Schadt et al. (2013) found that a G-Filter method 

resulted in lower omission errors than the FactorBiasOut method, but those differences 

were within 7%, a margin that was found only in a single, wide ranging species. 

Similarly, other work has shown considerable variability in the performance of correction 

methods among differing levels of bias, with the FactorBiasOut method outperforming 

other methods in a single virtual species, but not two (actual) species (Fourcade et al. 

2014). To address this ambiguity, I simulated 100 virtual species with niche 

characteristics ranging from rare specialists to common generalists and found that the 

difference among correction methods was independent of niche breadth. 

Niche Breadth, landscape prevalence and rarity 

In the absence of sampling bias, my results confirm the previously well-

established relationship between sample size, and therefore landscape prevalence, with 

the ability to estimate true distributions (e.g. Hernandez et al. 2006, Wisz et al. 2008, van 

Proosdij et al. 2015). However, the relationship between niche breadth and sampling bias 

is not well understood. Previous work has suggested that occupied niches may be more 

difficult to distinguish from background environmental space in generalists with broad 

tolerances than for specialists (Brotons et al. 2004, Elith et al. 2006, Franklin et al. 2009); 

on the other hand, recent work has shown that specialist species are more susceptible to 

sampling noise and may require larger sample sizes to quantify their distributions 

(Soultan and Safi 2017). If distributions of specialists are in fact more easily estimated 

than generalists, this would suggest that specialists may be less susceptible to biased 

sampling than generalists because their smaller niches are likely to be sampled more 
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completely than larger ones. However, in previous studies, niche breadth is often 

conflated with landscape prevalence (or rarity), assuming that generalists with wide 

niches are less rare than specialists.  

Species with wide niches may in fact also be rare if the areas they occupy are 

similar to the conditions throughout the study area with respect to all but a single 

environmental variable. This can result in wide niche breadths, but low landscape 

prevalence. I found evidence that specialists with narrow niches are more susceptible to 

high intensities of biased sampling than generalists, but this effect was weak, at best. 

There was no effect of landscape prevalence on susceptibility to sampling bias, and no 

interaction between landscape prevalence and niche breadth, suggesting that any 

susceptibility to sampling bias was due to niche breadth alone, not rarity. My results 

suggest that niche breadth is therefore more important than landscape prevalence, except 

in cases of extreme rarity: biased sampling actually improved predictions of habitat 

potential in a few, very rare, species. By design, my study sampled each species 

proportional to landscape prevalence, resulting in small sample sizes for rare species. 

However, this may not represent reality for rare species that are well-studied and heavily 

sampled; in these cases, rare species may be more easily modelled than generalists, as 

previously suggested.  

Contrast of methods 

Of the three bias correction methods compared here, the FactorBiasOut and G-

Filter methods are used most often. These methods are rather straight forward to 

implement, though each require tuning with parameters and little guidance is provided in 

the literature. The FactorBiasOut method implemented in Maxent requires a bias grid 
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representing hypothesized sampling intensity across the study area. Where documented, 

these grids are often created as Gaussian kernel densities of observations as 

recommended by Elith et al. (2010), though the choice of standard deviation (SD) for the 

kernel is not often reported. This choice influences the distance at which adjacent cells 

affect estimated densities, wherein a small SD equates to a local influence among 

neighboring cells. The consequences of different choices of SD are not well understood. 

Elith et al. (2010) suggest SD might reflect some property of a species’ dispersal ability 

to capture the possibility of animal movement between surveys. However, the haphazard 

nature of opportunistic sampling inherent in museum databases likely confounds the 

interpretation of SD, and therefore I chose a cross-validation approach based on the 

spatial pattern of observations to estimate an optimal value for SD. This method 

minimizes the mean squared error in the Gaussian kernel density field at multiple SD 

values and identifies an optimum value for a given observation data set (Diggle et al. 

1998). The tradeoffs and implications of using statistical measures over biological 

knowledge are not well understood; additional work is needed to provide guidelines for 

selecting SD and developing bias grids.  

The G-Filter method also relies on selecting a spatial parameter, namely the 

bandwidth used, to identify areas with high observation densities. Previous studies have 

filtered observations based on nearest neighbor distances, such as removing observations 

that are within a certain distance of one another (e.g. Dormann 2007, Veloz 2009, 

Anderson and Raza 2010, Kramer-Schadt et al. 2013, Boria et al. 2014, Aiello-Lammens 

et al. 2015), while others use spatial grids to filter observations from cells with high 

densities (Vandergast et al. 2013, Inman et al. 2014, Varela et al. 2014). The decision for 
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the bandwidth size is rarely discussed, though Veloz et al. (2009) use a novel method of 

exploring spatial autocorrelation in model residuals to determine an optimal value. My 

selection of bandwidth and choice of filtering methods were based on previous work to 

reduce sampling bias in aggregated observations for the southwestern USA (Vandergast 

et al. 2013, Inman et al. 2014). As with the FactorBiasOut method, additional research is 

needed to explore differences among alternative implementations of the G-Filter method. 

In contrast to the G-Filter method, the E-Filter method is less well represented in 

the literature. This is likely because it is more tedious to implement and is dependent on 

the set of explanatory variables included in any given model. Whereas thinning using G-

Filter occurs entirely in geographic space and results in a single dataset that can be used 

to calibrate multiple model specifications, the E-Filter method results in a separate 

calibration dataset for each model specification. This precludes any multi-model 

inference or complexity metrics, such as Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC). Model complexity is not often discussed, but has been 

shown to be an important factor affecting predictions across geographic regions and time 

periods (Warren and Seifert 2011, Syfert et al. 2013, Merow et al. 2014, Bell and 

Schlaepfer 2016). Virtual species with wide niches were often characterized with few 

explanatory variables, but I found no differences between the three bias correction 

methods in their ability to accurately identify those variables; possibly because I was 

unable to use multi-model inference or complexity metrics with the E-Filter method.  

I chose to implement the E-Filter method with a partitioning around medoids 

clustering algorithm because it can be optimized for large datasets (Kaufman and 

Rousseeuw 2008) and because multiple environmental explanatory variables can be 
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incorporated; previous implementations have used only two (Varela et al. 2014). The use 

of a clustering algorithm instead of visually assessing 2-dimensional clusters enables the 

identification of an optimum number of clusters or regions in environmental space that 

can be thinned to achieve uniform sampling intensity. As implemented here, the E-Filter 

method resulted in the greatest reduction of sample sizes with an average loss of 32% of 

the total observations records per dataset. Because sample size is such a critical aspect to 

model calibration and fit, it is no wonder that the E-Filter method often performed poorly. 

In contrast, the G-Filter resulted in an average loss of only 9% of observations, thereby 

resulting in higher sample sizes more of the time. However, not all biased datasets 

resulted in larger G-Filter than E-Filter calibration datasets; the medium and high biased 

datasets resulted in E-Filter calibration datasets that were larger than G-Filter calibration 

datasets 12% of the time. The E-Filter method is therefore highly dependent on the 

explanatory variables considered and can outperform the G-Filter method in certain 

instances – but more often I found little improvement with the E-Filter method. 

Bias correction in practice  

Overall, this research suggests that bias correction improves spatial predictions of 

habitat potential across a wide range of bias intensity, but thus far, these levels of bias are 

not tied to observational data. Here I frame my results by comparing the geographic Low, 

Medium, High, and No Bias levels to bias found for nine species occurring in the 

southwestern continental USA. These species represent a diverse group of flora and 

fauna, including squamata, aves, rodentia, asterales, and zygophyllales. Locality records 

were downloaded from the Global Biodiversity Information Facility (GBIF; 

www.gbif.org) with the package rgbif (Chamberlain 2016) in R 3.3.2 (R Core Team 



 

36 

2016) and are provided in Appendix 2.3. I assessed each observation dataset for 

geographic sampling bias using the same Ripley’s K function for inhomogeneous point 

processes (Baddeley et al. 2000) used with my virtual species. I did not assess these 

datasets for environmental bias, as this type of bias is dependent on the hypothesized 

environmental explanatory variables considered during SDM and can only be assessed 

after explanatory variables have been identified. Most of the GBIF observational datasets 

produced Ripley’s K function scores indicative of Low or Medium geographic bias levels 

defined in this study, but two species, Chionactis occipitalis, and Perognathus 

longimembris, yielded geographic bias equivalent to my most extreme biased observation 

datasets (Figure 2.10). Both of these species are well studied and are represented with 

sample sizes over 1500; I suspect each suffer from extreme study bias wherein 

observations are locally dense at trap sites or along roads. At these extreme levels of bias, 

I suggest practitioners be wary of using model fit to identify explanatory variables or 

infer ecological meaning from species-environment relationships when using SDM in PB 

frameworks. Moreover, I suggest that further work is needed to quantify bias and assess 

trends across multiple taxa. 
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TABLES 

Table 2.1. Agreement scores for best models. Mean and standard deviation (SD) Jaccard Index agreement scores for the best models 
selected by area under the curve (AUC) for 10 virtual species with and without sampling bias. Jaccard Index agreement scores 
measure the proportion of the true explanatory variables identified by the model with the highest AUC score. Agreement scores 
without bias (Original) and change (Change), after bias was introduced, or correction methods were applied.  
 

  High Bias  Medium Bias  Low Bias  No Bias 
Bias Type Correction Method Original Change  Original Change  Original Change  Original 
Environmental None 0.48 (0.19) -0.14 (0.19)  0.48 (0.17) -0.14 (0.16)  0.56 (0.23) -0.06 (0.13)    
 FactorBiasOut   -0.00 (0.09)    -0.04 (0.08)    -0.00 (0.09)    
 G-Filter   -0.00 (0.00)    -0.00 (0.00)    -0.00 (0.00)    
 E-Filter   -0.00 (0.09)    0.02 (0.06)    0.03 (0.07)    
Geographic None 0.52 (0.22) -0.10 (0.22)  0.54 (0.21) -0.08 (0.22)  0.52 (0.19) -0.10 (0.25)    
 FactorBiasOut   0.04 (0.08)    -0.06 (0.19)    0.04 (0.08)    
 G-Filter   -0.00 (0.09)    -0.04 (0.08)    -0.00 (0.00)    
 E-Filter   -0.05 (0.11)    0.04 (0.08)    -0.00 (0.00)    
No Bias None                0.62 (0.22) 
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Table 2.2. Pearson’s correlation coefficients for best models. Mean and standard deviation (SD) Pearson’s correlation coefficients for 
models with the true explanatory variables for 100 virtual species with and without sampling bias. Collinearity between the true and 
estimated response curves assesses the ability to represent mechanistic determinants of species distributions when the true explanatory 
variables are known. Collinearity scores without bias (Original) and change (Change), after bias was introduced, or correction 
methods were applied. 
 

    High Bias Medium Bias Low Bias No Bias 

Bias Type Correction 
Method Original % Change Original % Change Original % Change Original 

Environmental None 0.633 (0.476) -16.110 (153.104) 0.687 (0.452) -16.610 (150.876) 0.760 (0.386) -10.379 (168.960)   
 FactorBiasOut     -13.969 (87.339)     117.317 (914.175)     -24.472 (221.228)     
 G-Filter   -9.509 (115.195)   -8.735 (59.212)   3.540 (23.933)   
 E-Filter     -6.124 (67.598)     -127.698 (1193.770)     -3.918 (142.925)     
Geographic None 0.591 0.486 -36.218 (54.881) 0.687 0.447 -18.016 (82.597) 0.674 0.454 -25.799 (67.176)   
 FactorBiasOut     23.985 (333.284)     -11.048 (82.558)     -5.512 (73.364)     
 G-Filter   -5.293 (45.029)   -6.298 (26.030)   4.816 (44.772)   
 E-Filter     4.967 (125.325)     -6.060 (27.372)     14.054 (157.511)     
No Bias None                         0.979 (0.341) 
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Table 2.3. Expected fraction of Shared Presences for best models. Mean and standard deviation (SD) Expected fraction of Shared 
Presences (ESP) for models with the true explanatory variables for 100 virtual species with and without environmental (ENV) and 
geographic (GEO) sampling bias. ESP without bias (Original) and change (Change), after bias was introduced, or correction methods 
were applied. 
 

  High Bias Medium Bias Low Bias No Bias 

Bias Type Correction 
Method Original % Change Original % Change Original % Change Original 

ENV None 0.361 0.149 25.648 (24.514) 0.432 (0.123) 10.047 (18.648) 0.466 0.128 4.073 (14.855)     
 FactorBiasOut   21.668 (14.619)   15.126 (13.721)   9.722 (9.763)   
  G-Filter     5.210 (7.025)     2.631 (3.970)     1.087 (2.097)     
 E-Filter   4.732 (13.727)   1.998 (8.207)   0.443 (7.528)   
GEO None 0.432 0.122 11.787 (15.869) 0.451 (0.126) 7.797 (13.981) 0.457 0.127 6.827 (16.439)     
 FactorBiasOut   11.310 (7.569)   11.843 (8.938)   10.798 (9.795)   
  G-Filter     2.693 (2.602)     1.393 (1.818)     0.885 (1.560)     
 E-Filter   0.510 (8.653)   2.024 (7.702)   3.143 (8.921)   
No Bias None                         0.487 (0.128) 
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FIGURES 

 

 
 
Figure 2.1. Methodology Flow Diagram. For the three types of bias (None, Geographic 
and Environmental), we assessed three bias correction methods (FactorBiasOut, G-Filter 
and E-Filter) along with no bias correction in 100 virtual species to assess response 
curves and habitat potential. We also used 10 virtual species to assess the identification of 
explanatory variables. 
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Figure 2.2. Prevalence and Niche Breadth in Virtual Species. Species with low landscape 
prevalence (y-axis; proportion of study area occupied by species) had narrow niche 
breadths (x-axis; uniqueness of occupied habitat). However, species with wide niches 
(low uniqueness of occupied habitat) were not necessarily widely present across the 
landscape.  
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Figure 2.3. Generating Geographic Sampling Bias. Biased observation datasets were 
created by randomly selecting occupied cells according to their inclusion weights. 
Inclusion weights for the geographically biased observation datasets were calculated 
using a spatially clustered sampling schema by randomly seeding 5, 8, or 10 cluster 
centers (red) for the Low, Medium and High intensities of bias, respectively. 
  



 

 

43 

 

 
 
Figure 2.4. Measured Sampling Bias in Observation Datasets. Environmental sampling 
bias was measured with Skewer’s covariance similarity index (A). Observation datasets 
with No Bias had the highest similarity scores, and each class was significantly different 
from one another. Geographic sampling bias was measured as the mean difference 
between t theoretical K(r) and border-corrected K(r) Ripley’s K density function for 
inhomogeneous point processes of the spatial point pattern for each biased dataset out to 
a maximum distance of 350 km. 
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Figure 2.5 Geographic Sampling Mesh. The geographic filtering (G-Filter) method of bias correction used a sampling mesh with 
equally sized rectangular cells, each 225 km2 in area, resulting in 4119 unique sampling areas throughout the study area. Occupied 
habitat (grey) and unoccupied non-habitat (white) are shown for an example simulated species. Bias observations (black) are 
concentrated around 8 sampling clusters, but are thinned to 2 observations per 225 km2 cell with the G-Filter method.  
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Figure 2.6. Improvement in Predicting Response Curves. In general, bias correction 
methods did not provide any improvement in estimating response curves though there 
was extreme variability among species in improvement with respect to both niche breadth 
(A) and prevalence (B).  
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Figure 2.7. Species Traits and Predicting Habitat Potential. Generalist species showed 
greater agreement between the true and estimated distributions (A), as did species with 
high landscape prevalence (B). Spatial agreement between predictions of habitat potential 
were made with Expected fraction of Shared Presences (ESP). Scores of 1 indicate 
perfect agreement between the two habitat potential maps, while an ESP value of 0 
indicates complete geographic separation. In absence of bias, generalists and those that 
were widely distributed showed higher predictive power.  
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Figure 2.8. Reduction in Predicting Habitat Potential. The majority of habitat potential 
predictions were worsened when bias was introduced, though some with low landscape 
prevalence were improved (shown as a negative loss A). There was a slight effect of 
niche breadth on loss of ESP scores, suggesting that specialist species were more 
susceptible to sampling bias than were the most generalist species in our study area (B), 
though this effect was most pronounced in the high bias level.
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Figure 2.9. Improvement in Predicting Habitat Potential. All three correction methods were able to increase prediction ability in most 
species, though the FactorBiasOut correction method showed the greatest improvement across the board with an average 11% greater 
increase in ESP than the other two methods. The E-Filter method resulted in lower of ESP scores 43% of the time.
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Figure 2.10. Geographic Sampling Bias in Selected Species. Geographic sampling bias in 
9 observation datasets obtained from the Global Biodiversity Information Facility give 
context to the No, Low, Medium and High Bias observation datasets used for all virtual 
species. Geographic sampling bias was measured as the mean difference between t 
theoretical K(r) and border-corrected K(r) Ripley’s K density function for 
inhomogeneous point processes of the spatial point pattern for each biased dataset out to 
a maximum distance of 350 km. 
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CHAPTER 3 

SPATIAL SAMPLING BIAS IN NEOTOMA MIDDEN ARCHIVES AFFECTS 

SPECIES PALEO-DISTRIBUTION MODELS 

ABSTRACT 

Aim: Quantification of the spatial sampling bias in a North American packrat midden 

archive and its impact on species distribution modeling (SDM) of plant paleo-

distributions. I test whether (1) spatial sampling bias inherent in this plant macrofossil 

record can influence estimates of paleo-distributions, (2) any bias can alter the ability to 

measure shifts in distributions and climatic niche breadth from the early/mid Holocene 

(11.5 ka – 5 ka) to present day (1950 – present), and (3) bias correction methods can 

improve paleo-distribution models and analyses of range shifts and niche breadth.  

Location: Western North America 

Methods: I estimate spatial sampling bias in a packrat midden archive for the early/mid 

Holocene period with a three-stage statistical model, each representing a hypothesized 

source of bias: fossil site availability, preservation and accessibility. This approach 

enables us to use SDM to evaluate three separate paleo-distributions calibrated on the 

packrat midden archive: those without bias correction (s-naïve), those created with a 

standard method (s-standard), and those created with a novel alternative (s-modeled) 

incorporating the three-stage model of bias. I compare these paleo-distributions to a set of 

‘true’ paleo-distributions created by hindcasting present-day models of 6 species well 

represented in the packrat midden archive, and to independent locations identified in 

pollen records from lake sediment cores. I measure niche breadth using a generalized 

dissimilarity matrix of Mahalanobis distance.  



 

 

51 

Results: I find that paleo-distributions modelled for the early/mid Holocene without bias 

correction (s-naïve) provided poor estimates of hindcast paleo-distributions, and that the 

s-modeled correction method improved paleo-distributions for my six species with, on 

average, 91% higher overlap to hindcast distributions than s-naïve paleo-distributions (s-

standard results fell between s-naïve and s-modeled). These improvements were 

confirmed at independent locations from lake sediment pollen records. 

Main Conclusions: I suggest that this approach can be applied to finer time slices using 

the Neotoma record, and more generally, can be adapted for other paleoecological 

archives as a framework for estimating spatial sampling bias.  

INTRODUCTION 

A core focus of biogeography rests in understanding the determinants of species 

distributions and the processes by which they change. Towards that goal, rapid 

development of ecological archives and analytical tools over the past 20 years has enable 

investigations of broad macro-ecological, evolutionary and conservation questions about 

the mechanisms and forces altering patterns of biodiversity throughout the history of our 

planet (Swetnam and Allen 1999, Brewer et al. 2012). A dominant methodological tool in 

biogeographic studies is species distribution modeling (SDM), a quantitative modeling 

approach that relates environmental conditions at locations where a species has been 

observed to locations where it has not (Franklin 2010a). However, confirming locations 

where organisms are absent is far more difficult than identifying where they are present 

(MacKenzie et al. 2002, Brotons et al. 2004, MacKenzie 2005); as a result, presence-

background (PB) modeling methods that compare environmental conditions of the entire  
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study area (background) to locations where a species has been observed have been 

developed. These methods do not rely on knowledge of species absence, and as such, 

software for PB methods (e.g. Phillips et al. 2006) have become primary tools for 

paleobiogeography research in recent years (Moreno-Amat et al. 2017). 

The ability to infer paleo-distributions with limited knowledge of absence has 

propelled SDM’s use as an analytical method for addressing paleobiogeographic 

questions of niche stability (e.g. Stigall 2012), range dynamics (e.g. Nogués-Bravo et al. 

2008), speciation (e.g. Peterson and Nyári 2008), and extinction (e.g. Lorenzen et al. 

2011), among many others. When used to investigate paleo-distributions, SDM offers 

two analytical opportunities to use paleoecological archives: 1) validation of models 

calibrated on extant species that have been ‘hindcast’ to past environmental conditions, 

and 2) direct calibration with past environmental conditions. The former has been used 

most often, driven by the wealth of spatially explicit ecological archives available for 

extent species (Moreno-Amat et al. 2017). In this approach, models are developed using 

modern observations of species and their environment and are applied to environmental 

data representing paleoclimatic conditions to create spatial predictions of biotic 

distributions for the historic period of interest. Paleoecological archives are then used to 

quantitatively assess the accuracy of these hindcast projections (e.g. Martinez-Meyer et 

al. 2004, Franklin et al. 2015) or to qualitatively evaluate the congruence between 

hindcast projections and fossil localities (e.g. Carnaval and Moritz 2008). I refer to these 

predictions of paleo-distributions as ‘hindcast’ distributions. In paleo-SDM, 

paleoecological archives are used directly for calibrating models under past 

environmental conditions. Rather than using species-environment parameters from 
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modern distributions to hindcast, paleo-SDM estimates species-environment parameters 

directly from locations obtained from paleoecological archives and reconstructions of 

environmental conditions. Paleo-SDM is likely used less often because paleo-distribution 

data are usually sparse in time and space and can be poorly resolved chronologically and 

taxonomically (Moreno-Amat et al. 2017). However, paleo-SDM allows a key 

assumption of hindcasting to be relaxed, namely, the requisite of niche conservation 

through time. Under niche conservation, species-environment model parameters are 

maintained through time, even with environmental change (Wiens and Graham 2005); 

this is a key assumption of hindcasting. In hindcasting, one might expect to see a species 

track preferred habitats and exhibit geographic shifts instead of niche changes (Nogués-

Bravo 2009).  

Paleo-SDM, directly calibrating on fossil archives, can estimate new species-

environment parameters for different chronological sequences. Each different set of 

species-environment model parameters may provide evidence of a changed niche, and in 

conjunction with spatial predictions of habitat potential, can be compared across different 

time slices to evaluate change in habitat. Often, these studies primarily rely on the spatial 

predictions of habitat potential because many clear metrics exist for evaluating overlap in 

spatial distributions such as the Sorenson’s similarity index (Sørensen 1948), Schoener's 

D (Schoener 1968) or Godsoe’s ESP (Godsoe 2013). These metrics, among others, allow 

for simple comparisons of spatial predictions rather than complex assessments of niche 

complexity, dimensionality, or breadth. And when coupled with hindcasting, direct tests 

of niche conservation can be made between distributions derived from hindcasting (or 

projections forward) and those from paleo-SDM (e.g. Walls and Stigall 2011). These 
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coupled approaches have been used often, contributing evidence that niches evolve 

slowly (e.g. Peterson et al. 1999, Peterson 2011, Malizia and Stigall 2011, Stigall 2012, 

2014). In the vast majority of studies, reliance on paleoecological archives for paleo-

SDM equates to using small sample sizes, which can be biased in space and time (Varela 

et al. 2011). If adequate paleo-distribution and paleoenvironmental data were available in 

time and space, it would be preferable to develop paleo-distribution models using 

contemporaneous observations rather than hindcasting, and with expanding 

paleoecological databases this may be possible (e.g. Blois et al. 2013). However, because 

paleo-SDM often necessitates a PB framework, the issue of small sample sizes and 

sampling bias needs to be addressed.  

Explored extensively since the 1970’s, sampling bias in terrestrial and marine 

paleoecological archives can be introduced due to 1) substrate exposure (erosion 

processes), 2) substrate material type, and 3) substrate volume; each represented by the 

age of the substrate (e.g. Raup 1972, Signor 1982, Varela et al. 2011). In general, areas 

with more recent deposits will have greater prevalence of fossils due to the larger volume 

of sedimentary material, and because more recent deposits are often less eroded (Raup 

1972). The biases introduced to paleoecological archives span taxonomic, temporal and 

spatial bias, and may hinder a model’s ability to accurately represent historic 

distributions. Taxonomic bias affects estimated changes in biodiversity and occurs when 

certain species are preserved better than others in the fossil record (Allison and Bottjer 

2010). The fossil pollen record suffers from taxonomic bias resulting from differences 

among species in pollen production and dispersal levels, as well as differences in 

deposition and preservation (Birks and Birks 2000, Goring et al. 2013). Temporal bias is 
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most evident when evaluating chronosequences through deep time, and results in some 

time periods being better represented than others due to differential fossilization through 

time (Allison and Bottjer 2010). Spatial bias is very common in the fossil record (Varela 

et al. 2011), though frequently unquantified or unaccounted for in analyses of 

Phanerozoic biodiversity (Vilhena and Smith 2013, Moreno-Amat et al. 2017).  

Spatial bias is problematic for PB SDM because these methods assume that any 

sampling bias is proportional to the background distribution of environmental covariates 

(Araújo and Guisan 2006), and that a species’ niche is sampled over the full range of 

environmental conditions in which they occur (Phillips et al. 2009). These assumptions 

are not often met with paleoecological archives due to spatial variation of taphonomic 

conditions in different deposits (Allison and Bottjer 2010, Varela et al. 2011, Vilhena and 

Smith 2013, Moreno-Amat et al. 2017), and results in spatial bias where more fossils are 

found in certain areas due not to a greater prevalence of an organism, but instead to a lack 

of fossils in other areas. Spatial bias in biodiversity data for extant species is often 

addressed with one or more bias correction methods that have been developed for PB 

frameworks. These methods stem from careful filtering of observation data (Varela et al. 

2014, Boria et al. 2014) or from estimating the biased sampling distribution (s) and 

manipulating background selection weights to result in proportional background samples 

(Phillips et al. 2009). In order be effective, these bias correction methods require large 

sample sizes. Paleoecological archives, however, rarely offer large samples (Svenning et 

al. 2011, Moreno-Amat et al. 2017), and the ability to estimate s from them is not often 

tested. An alternative method to estimate s that does not rely on large sample sizes 

usually unavailable in paleoecological archives may improve estimates of paleo-
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distributions, thereby allowing analyses of range shifts and niche characteristics through 

time. 

Here I explore potential effects of sampling bias on paleo-SDM and investigate an 

alternative for estimating s with a focal group of extant plant species. Specifically, I test 

whether (1) spatial sampling bias inherent in a commonly used paleoecological archive, 

the North American Neotoma packrat plant macrofossil record (Strickland et al. 2013, 

Williams et al. 2018), can influence estimates of paleo-distributions, (2) this bias can alter 

our ability to measure shifts in distributions and niche breadth from the early/mid 

Holocene (11.5 ka – 5 ka) to present day (1950 – present), and (3) bias correction 

methods can improve paleo-distributions and analyses of range shifts and niche breadth. I 

do this by comparing paleo-distributions created by hindcasting present-day models to 

three separate paleo-SDMs calibrated on the fossil record: those without bias correction 

(s-naïve), those created with a standard method (s-standard), and those created with a 

novel alternative (s-modeled). Using hindcast distributions for paleo-SDM evaluation 

assumes that the hindcast distribution is valid, and so to independently verify the paleo-

SDM distributions I also used pollen records from lake sediment cores from the western 

USA not used in the modeling. I aim to identify an effective method for reducing 

sampling bias in paleo-SDM and to highlight how bias may affect analyses of range shifts 

and niche breadth.  

METHODS 

Study Area and Environmental Gradients 

My study region covered 3,171,335 km2 of the western USA (Figure 3.1) 

encompassing the locations of packrat middens represented in the Neotoma database. I 
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assembled raster data describing 11 climatic and physiographic environmental conditions 

to characterize present-day (1950 – 2000 yr) and early/mid Holocene (11.5 ka – 5 ka) 

time periods and generalized each at a spatial scale of 1 km (Appendix 3.1). I assumed 

that most changes between the two periods were limited to climatic variables, and that 

any changes in surface physiographic conditions due to Holocene erosion or deposition 

were minimal and within 2x the maximum vertical error of the terrain elevation data; 10 

m (Danielson and Gesch 2011). 

Species Distribution Modeling 

I developed present-day and paleo-distributions for 6 extant species well 

represented in the North American Packrat midden archive that occur in a range of 

habitat types, including two small perennial shrubs inhabiting cold desert habitats 

(Artemisia tridentata, Coleogyne ramosissima), a small deciduous tree inhabiting 

foothills and low mountain elevations (Quercus gambelli), a small conifer tree confined 

to northern latitudes (Juniperus communis), and two large conifers occurring in high 

elevation mountain habitat (Abies concolor, Pinus ponderosa). The Neotoma database 

has been used extensively since the 1960’s to assess regional vegetation community shifts 

(e.g. Phillips et al. 1974, Cole and Webb 1985, Spaulding 1990, McAuliffe and Van 

Devender 1998, Thompson and Anderson 2000, Jackson et al. 2005) paleoclimate (e.g. 

Jacobson 1991, Arundel 2002, Coats et al. 2008, Thompson et al. 2012) and faunal 

community composition (e.g. Van Devender et al. 1977, Van Devender and Mead 1978, 

Mead 1981) during the late Pleistocene and throughout the Holocene. More recently, 

packrat midden archives have been used to estimate spatially explicit paleo-distributions 

for some species (e.g. Angulo et al. 2017), though few studies have used paleo-SDM 



 

 

58 

methods. The paucity of studies using paleo-SDM is likely due to the spatial bias inherent 

in the packrat midden archive (Webb and Betancourt 1990). I develop a novel approach 

to estimate and correct for this bias (s) so that paleo-SDM may be used to create spatially 

explicit paleo-distributions from the packrat midden database.  

I obtained macrofossil observations from the USGS/NOAA North American 

Packrat Midden database (Strickland et al. 2013) for the early/mid Holocene period based 

on radiocarbon ages and used them to create paleo-distributions with each of the three 

paleo-SDM methods. A species was considered present at the reported midden location if 

any of the 14C ages associated with that species were dated to the early/mid Holocene, 

resulting in sample sizes ranging from 21 – 129 (Table 3.1). Extant locations from 1950 

to present-day for the 6 species were obtained from the Geographic Biodiversity 

Information Facility (www.GBIF.org) in October, 2017 (Appendix 3.2).  

Present-day Distributions 

I used MaxEnt version 3.4.0 (Phillips et al. 2006), a widely-used PB SDM, to 

create distribution models for present-day conditions. For each species, I created a model 

with all 11 environmental explanatory variables and sequentially removed those 

contributing the least to model fit using a step-wise jackknife test of training gain 

(Phillips and Dudik 2008, Elith et al. 2011). I stopped removing variables when a 

noticeable drop in the Area Under the receiver operating characteristic Curve (AUC; 

Fielding and Bell 1997) was observed with 20% withheld test data. In theory, the AUC 

metric provides a robust measure of a model’s ability to discriminate between presence 

and absence localities, independent of an arbitrary cutoff threshold (Cumming 2000) - 

though it has been criticized for its sensitivity to areal extent, among other factors (Lobo 
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et al. 2008). However, because my models were evaluated under the same geographic 

extent, and because I was attempting to select a single model with which to evaluate the 

differences between bias correction methods, I used AUC rather than incorporating a 

multi-model inference perspective (e.g. Warren and Seifert 2011). The resulting present-

day model for each species contained three to five explanatory variables. The Maxent 

software implements a transformation function to estimate of occurrence probability: the 

complementary log-log function (Phillips et al. 2017). I used this function, allowed 

inclusion of each feature class (linear, quadratic, product, threshold and hinge) in a 

bootstrap framework with 100 iterations, and saved the standard deviation across all 

iterations to approximate model error at each grid cell.  

I use the FactorBiasOut (hereafter, s-standard) algorithm (Dudik et al. 2005, 

Phillips et al. 2009) for reducing spatial sampling bias inherent in present-day GBIF 

observations. The s-standard method estimates the true species distribution (p) by 

deriving the combined distribution of p and biased sampling distribution (s), and then 

factoring s out. This method relies on knowledge of s, which, in practice, is rarely 

known. However, because the biased observation dataset is a sample of s (i.e. the 

observations are sampled with the same biased sampling distribution), s can be estimated 

when the observation dataset is large (Phillips et al. 2009). In these cases, s is 

represented as an auxiliary variable, often in the form of a sampling intensity bias grid 

(Elith et al. 2011). The s-standard method has been shown to be more effective at 

reducing bias than filtering methods in studies using simulated and actual species 

(Phillips et al. 2009, Syfert et al. 2013), especially with large sample sizes. My sample 
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sizes for extant observations ranged from 496 to 3007 (Table 3.1). I develop a bias grid to 

estimate s by creating a kernel density raster of each biased observation dataset, and 

estimate the bandwidth for each kernel with a cross-validated selection method to 

minimize mean-square error (Baddeley et al. 2015). The resulting bias grid was rescaled 

to 1-20, to give greater selection probability to areas with higher densities of observations 

as recommended by Elith et al. (2011). 

Early/Mid Holocene Distributions 

Paleo-distributions were created with 4 methods: 1) hindcasting from present-day 

conditions, 2) paleo-SDM without bias correction (s-naïve), 3) paleo-SDM with standard 

correction (s-standard), and 4) paleo-SDM with model correction (s-modeled). The 

hindcast paleo-distribution was created by projecting present-day distributions with the 

same explanatory variables, but with climate values representing the mid Holocene. I 

used the default options in Maxent for this, but disabled clamping to allow extrapolation 

of projections into potentially novel climate conditions. In contrast, the three paleo-SDM 

methods relied on calibrating new models with the same explanatory variables specified 

in the present-day distributions (but with climate values representing the mid Holocene) 

and the macrofossil records obtained from the USGS/NOAA North American Packrat 

Midden database dated to the early/mid Holocene period. For each of the paleo-SDM 

methods, I used the same bootstrap framework in MaxEnt with 100 iterations and 20% 

withheld test data, and I saved the standard deviation across all iterations to approximate 

model error at each grid cell. The s-naïve paleo-distributions were created without any 

bias correction, while the s-standard used the FactorBiasOut algorithm (described above) 
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with a kernel density bias grid estimated from the macrofossils to approximate the biased 

sampling distribution of the North American Packrat Midden archive. 

Because macrofossil sample sizes can be relatively small, I expected that the s-

standard method would not sufficiently reduce spatial sampling bias and therefore 

developed an alternative approach, s-modeled, to reduce model bias. I hypothesized that 

the macrofossils obtained from the North American Packrat Midden archive would be 

biased towards areas that 1) were suitable for Neotoma (packrat) populations during the 

early/mid Holocene, and 2) have been suitable for fossil preservation since the early/mid 

Holocene. These processes describe the conditions necessary for macrofossils to be 

‘sampled’ in the Packrat midden archive, and are therefore the processes that describe the 

taxonomic, temporal and spatial biases that may hinder paleo-SDM from accurately 

representing paleo-distributions.  

A new approach to paleo-SDM bias correction: s-modeled  

My s-modeled approach draws on three separate statistical models to estimate s, 

each representing a hypothesized source of bias in fossil data: availability, preservation 

and accessibility. The first statistical model, availability, accounts for the prerequisite of 

Neotoma species being present at a midden location during the early/mid Holocene. This 

component was modeled with paleo-SDM using macrofossil locations of N. albigula 

obtained from FAUNMAP (FAUNMAP Working Group 1994) dated to the early/mid 

Holocene. Biased sampling distributions were accounted for using the s-standard bias 

correction method because the sampling distribution is suitable to support this approach; 

the FAUNMAP repository contains over 5000 sampling sites in the continental USA  
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from a wide range of paleontological sites beyond those containing packrat middens 

(FAUNMAP Working Group 1994), and the sample size for FAUNMAP records of 

Neotoma for the early/mid Holocene was 1195, equivalent to sample sizes for extant 

species. As with other implementations of Maxent in this study, I use a bootstrap 

framework with 100 iterations and 20% of sample observations withheld for testing with 

AUC. Environmental explanatory variables consisted of the same datasets described in 

Appendix 3.1 but were extended to include the conterminous USA to include the full 

range of Neotoma. Variable selection was conducted with a jackknife test of gain.  

The second component, preservation, accounts for the physical conditions needed 

to create a well-preserved midden, which are limited to certain physiographic and 

substrate conditions such as rocky hillsides, cliff faces, or talus slopes, and are usually on 

north, northeast, south or southwest facing slopes (Webb and Betancourt 1990). Arid 

conditions are also needed for midden preservation, such that locations with high soil 

moisture or dense vegetation canopy cover are not very suitable (Webb and Betancourt 

1990). I considered explanatory variables representing climate (e.g. aridity and 

temperature), physiography (e.g. solar exposure, drainage, ruggedness, slope and aspect), 

underlying material composition (e.g. consolidated and unconsolidated), and geologic 

characteristics (e.g. sedimentary-, metamorphic-, and igneous- rock types) for the 

conterminous USA (Appendix 3.3). I calibrated this model on locations of middens 

containing records of any plant species dated to the early/mid Holocene. Again, I use a 

bootstrap framework with 100 iterations and 20% of observations withheld for testing the 

Maxent model based on AUC, and variables selected using a jackknife test of gain. 
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Background samples were selected randomly from the conterminous USA to create a 

probability map for macrofossil preservation potential since the early/mid Holocene. 

The third component, discovery, represented the potential for macrofossils to be 

discovered, and was therefore calibrated on all known midden sites in North America. I 

considered explanatory variables hypothesized to influence fossil discovery, such as 

erosional proxies and human accessibility (Appendix 3.3). The three statistical models for 

availability, discovery, and preservation components had AUC scores of 0.931, 0.891, 

and 0.950, respectively, and are mapped in Appendix 3.4. The product of these three 

probability models was used to represent s in the s-modeled paleo-distributions for each 

species and was used to select background records with a probability equal to s.  

Paleo-SDM validation with hindcast distributions: permutation tests 

I hypothesized that the s-modeled paleo-distributions would show higher 

congruence to the hindcast paleo-distributions than would either the s-naïve or s-

standard methods. This hypothesis relies on the assumption that hindcast distributions, 

calibrated on large samples from present-day conditions, should represent true paleo-

distributions better than the paleo-SDM models (which are calibrated on biased and small 

sample sizes). It is reasonable to assume that very little niche evolution occurred since the 

early/mid Holocene (Peterson 2011, Stigall 2012), especially when a species’ niche is 

characterized in climatic and environmental space (Wiens et al. 2009, 2010, Araújo et al. 

2013). Therefore, hindcast distributions over short intervals present opportunities for 

assessing the effectiveness of multiple bias correction methods.  

To assess congruences between hindcast and the s-naïve, s-standard and 
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 s-modeled paleo-distributions, I used the Expected fraction of Shared Presences overlap 

metric (ESP; Godsoe 2013) by comparing the estimated habitat potential of each across 

all cells with the equation: 

 !"# = %∑ '()'*))
∑ +'()'*),)

 (3.1) 

Where P1j denotes the habitat potential for the hindcast paleo-distribution at 

location j, and P2j denotes the prediction generated from either the s-naïve, s-standard or 

s-modeled paleo-distributions at location j. This index is a modified Sørenson similarity 

index used to compare two maps of predicted probabilities that each species is present in 

a given cell rather than relying on presence/absence information (Godsoe 2013). Scores 

of 1 indicate perfect agreement between the two maps, while an ESP value of 0 indicates 

complete geographic separation (Godsoe 2013). I incorporated the uncertainty of each 

model by randomly permuting the value of each cell 100 times according to the standard 

deviation obtained from model calibration. I use a Mann-Whitney test of univariate 

distribution shifts to test if the permutated ESP scores were greater for any of the s-naïve, 

s-standard or s-modeled paleo-distributions, and mixed-models with repeated measures 

to assess differences in overlap scores to hindcast paleo-distributions. I report marginal F-

tests for significance. 

Validation with Pollen 

I also compared the four paleo-distributions of each species to pollen records from 

lake sediment cores taken in the western conterminous USA obtained from Pangea 

(https://www.pangaea.de) in January 2018 (Appendix 3.5). I selected pollen count data 

for the genus of each of my focal species with 14C radiocarbon dates spanning the 
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early/mid Holocene. For each sediment core location, I calculated the mean habitat 

potential value within a 100 km radius for each of the four paleo-distributions to account 

for short-distance wind transport (King and Van Devender 1977, Broadhurst 2015). I 

hypothesized that habitat potential from the s-modeled bias correction method would be 

higher in the areas surrounding each sediment core containing pollen (and dated to the 

early/mid Holocene) than habitat potential from the s-naïve or s-standard methods and 

would be more similar to the hindcast distributions. 

Geographic Distribution Shifts and Niche Breadth 

I assumed that dominant niche characteristics have remained stable since the 

early/mid Holocene, and that any changes due to climate would result in distribution 

shifts only. I therefore investigated how sampling bias could affect estimates of 

geographic range shifts by measuring changes the spatial predictions of habitat potential 

between the present-day and early/mid Holocene derived from the s-naïve, s-standard, 

s-modeled paleo-distributions. I identified areas where habitat potential either increased 

or decreased significantly as those where the difference was greater than twice the 

combined standard error from the two time periods to capture ~ 95% of the potential 

variability due to model error. I report the total area where habitat potential either 

significantly increased or decreased for each species as estimates of range shifts. I 

hypothesized that the estimated net change for each species would be most similar 

between the hindcast and s-modeled paleo-distributions. I also posited that not all 

significant changes in habitat potential would be substantial. For example, areas with 

habitat potential of 0.95 during the early/mid Holocene that changed to 0.85 in the  
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present-day should not constitute substantial changes because these two values are 

high, even if the marginal change (0.1) was greater than two times the standard error of 

each model. I therefore identify areas where habitat potential switched from being below 

0.5 to above 0.5 (substantial increase), or from being above 0.5 to being below 0.5 

(substantial decrease).  

To test that niche characteristics have remained stable, I measured a primary 

niche trait, environmental niche breadth, by deriving estimates for present-day and 

early/mid Holocene for each of the four paleo-distributions. My metric for niche breadth 

measures the uniqueness of the environmental conditions defining each species’ 

geographic distribution, and was defined as the median of the squared Mahalanobis 

distance of all occupied cells: 

 -%. = (0 − 2)′567(0 − 2) (3.2) 

Where X is the matrix of explanatory variables used to define the species’ niche 

over all occupied cells, and Σ	is the covariance matrix of X. I determined occupied cells 

probabilistically, with the equation:  

 #: = 7

7;<
=>?@.BC
?@.@C

 (3.3) 

Where xi is the habitat potential for cell i. Niche breadth values can range from near 4 

(the most generalist species, or organism that has an ability to live in a wide variety of 

habitats in a wide range of environmental conditions) to over 400, a completely 

unrealistic value representing the most specialist of species (an organism capable of 

tolerating a narrow range of environmental conditions) possible in my study area; namely 

a species occurring on a single grid cell with the most unique environmental conditions. I 
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use the same permutation test described above to check if niche breadths under current-

day distributions were different from those calculated under each of the four paleo-

distributions, and I use a Mann-Whitney test to identify if the permutated niche breadth 

scores for the present-day were not significantly different from any of the four paleo-

distributions.  

Climate novelty 

I hypothesized that areas with novel climate in the present-day relative to 

early/mid Holocene would also be areas where distributions have retreated from and 

would therefore show a decline in habitat potential. I calculated univariate and 

multivariate climatic novelty by incorporating the correlation structure among climatic 

variables with Mahalanobis distances following the procedures for Type 1 and Type 2 

novelty proposed by Mesgaran et al. (2014). Type 1 novelty identifies areas where 

climate becomes novel because they are beyond the range of any individual covariate, 

and scores can range from 0 (no univariate novelty) to negative infinity (high univariate 

novelty). In contrast, Type 2 novelty identifies areas that are within the univariate range 

but represent novel combinations between covariates and can range from 0 to positive 

infinity, with values under 1 indicating no multivariate novelty (Mesgaran et al. 2014). I 

calculate both types of climate novelty across my study area and compare each using 

Pearson’s correlation with rasters of habitat potential change from the early/mid 

Holocene to present-day conditions under the hindcast, the s-naïve, s-standard and s-

modeled paleo-distributions.  

RESULTS 

Present-day and early/mid Holocene Distributions 
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Among the three bias correction methods, the s-modeled correction method 

resulted in paleo-distributions that best matched actual distributions when compared to 

hindcast models and independent pollen data. The geographic means of habitat potential 

scores for present-day conditions in the study area ranged from 0.173 (sd=0.226; C. 

ramosissima) to 0.543 (sd=0.163; A. tridentata), while hindcast paleo-distribution scores 

ranged from 0.159 (sd=0.242; C. ramosissima) to 0.552 (sd=0.156; A. tridentata), 

indicating that the relative amount of habitat remained consistent between periods (Table 

3.2). Of the three bias-correction methods (s-naïve, s-standard and s-modeled), s-naïve 

resulted in the lowest habitat potential scores across the study region and were 

substantially lower than hindcast paleo-distributions (Table 3.2). ESP overlap scores 

between hindcast paleo-distributions and the three fossil calibrated methods (s-naïve, s-

standard and s-modeled) were significantly different from one another (F2,10=19.6414, 

p<0.0001), with s-naïve paleo-distributions showing the lowest ESP scores (Figure 3.2); 

thereby indicating that without bias correction, sampling bias caused paleo-distributions 

to be far from their (assumed) true values. In contrast, the s-modeled paleo-distributions 

yielded ESP overlap scores that were significantly higher than either the s-naïve or s-

standard paleo-distributions for all species except C. ramosissima (Figure 3.2), 

suggesting that the model of s was able to overcome some of the bias inherent in the 

packrat midden fossil record and bring paleo-distributions closer to their (assumed) true 

value. Improvements ranged from 26 to 157% with the s-modeled bias correction 

method (Figure 3.2). I provide mean overlap between hindcast and the three paleo-SDM 

methods (s-naïve, s-standard and s-modeled) in Appendix 3.6. Independent pollen 
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locations yielded insight consistent with this improvement, with four of five taxa showing 

higher habitat potential estimated with the s-modeled method at sites where the pollen 

record indicated presence of the genera during the early/mid Holocene (Figure 3.3). The 

sixth species, C. ramosissima, did not have any corresponding pollen records and was 

excluded. The s-standard method also predicted increased habitat potential (over the s-

naïve method) at these sites, but increases were not as great as with the s-modeled 

method. 

Relationship of model improvement to sampling bias, s 

The ability to infer paleo-distributions with limited knowledge of true absence 

locations has propelled PB SDM to become the method of choice for addressing 

paleobiogeographical questions of extinction (McKinney 1997, Lorenzen et al. 2011), 

speciation (Wiens and Harrison 2004, Graham et al. 2004b) and niche conservation 

through time (Stigall 2012). However, a key assumption of PB frameworks is that any 

sampling bias (s) is proportional to the background distribution of environmental 

covariates (Araújo and Guisan 2006), and that species’ niches are equally sampled over 

the full range of environmental conditions in which they occur (Phillips et al. 2009). The 

degree to which this bias may affect paleo-SDM is the degree to which s can be 

quantified and separated from the true species distribution (p). In species where s and p 

are similar, there may be less need to precisely quantify s because their combined 

distribution may sufficiently represent the true species’ distribution (p). I might then 

expect that species with similar s and p would show limited improvement from a s-

modeled approach. I found some evidence for this; species with high correlation between 
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p (hindcast) and the estimate of s showed lower improvements in spatial overlap of s-

modeled and hindcast distributions (F1,4=4.9267, p=0.09065; Figure 3.4). But even in the 

case of C. ramosissima, which showed the highest degree of overlap between s and p 

(Figure 3.5), I found that s-modeled paleo-distributions were 25% better than s-naïve 

estimates, and that spatial overlap scores of s-modeled paleo-distributions were within 

1% of s-standard paleo-distributions. I therefore found little evidence that paleo-

distribution predictions were made worse by the s-modeled correction method.  

Geographic Distribution Shifts and Niche Breadth 

Estimates of range area shifts between the early/mid Holocene and present-day 

varied dramatically among the methods of estimating paleo-distributions. Projections of 

areas with significant increases in habitat potential from the early/mid Holocene to 

present-day with s-modeled paleo-distributions provided the closest estimates to changes 

in habitat potential from hindcast distributions for all species except C. ramosissima 

(Table 3.3), where the s-standard paleo-distribution provided the better estimate. 

However, when assessing significant reductions in habitat potential, the s-modeled 

paleo-distributions did not improve estimates over the s-naïve paleo-distributions (Table 

3.4). This suggests that while the s-modeled paleo-distributions provided higher spatial 

congruence with hindcast distributions than the s-naïve or s-standard paleo-distributions, 

they likely overestimate habitat potential in the early/mid Holocene and result in elevated 

estimates of habitat potential decrease from the mid-Holocene to the present. I found a 

similar pattern when I identified substantial increases (range expansions) and decreases 

(range contractions) in habitat potential: the s-modeled paleo-distributions provided the 
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closest estimates to hindcast distributions for all species except C. ramosissima (Tables 

3.3 and 3.4).  

Niche breadths for the 6 species ranged from 5.74 to 10.02 (Table 3.5), with A. 

concolor and J. communis being the most specialized, and A. tridentata and Q. gambelii 

the most generalist species within my study area. Niche breadths estimated with the s-

modeled paleo-distributions most closely replicated those from hindcast distributions for 

four species but not C. ramosissima and Q. gambelii. The s-naïve paleo-distributions 

provided the least accurate representations of niche breadth, with differences ranging 

from 10 to 50%.  

Climate novelty 

Type 1 novelty scores ranged from 0 to -0.0337, indicating no univariate novelty 

between the mid-Holocene and present-day datasets. I also found no multivariate novelty, 

with Type 2 novelty scores ranging from 0 to 0.9177 (scores <1 indicate no novelty). 

With minimal climatic novelty between the two periods, I expected little, if any, evidence 

of a relationship between climatic novelty and changes in climatic habitat potential. 

Pearson’s correlation coefficients between Type 2 climate novelty and the change in 

habitat potential between the early/mid Holocene and present-day period were negative 

for the hindcast paleo-distributions in five of the six species, though all correlation 

coefficients were below 0.5. J. communis was an outlier with a very low positive 

correlation coefficient (Table 3.6). Negative correlation coefficients are indicative of an 

association between habitat potential loss and Type 2 climate novelty and provided only 

weak evidence that novel climates resulted in habitat loss, my expected association. The 

s-modeled paleo-distributions most closely matched the relationship found with hindcast 
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paleo-distributions, but again, correlation coefficients were low, indicating a weak 

relationship at best. The s-naïve, and s-standard paleo-distributions suggested different 

relationships, with positive correlation coefficients for all species expect C. ramosissima. 

While all of these associations were weak, the estimation of any relationship between 

climate novelty and range shifts was reversed in the absence of bias correction or when 

the standard correction method was used. I had also hypothesized that areas with high 

model uncertainty during the early/mid Holocene would result in a loss of habitat 

potential projected by hindcasting using the model conditioned on present-day 

conditions. I found minimal support for this prediction, with correlation coefficients 

ranging from -0.07 to 0.51 (Table 3.6). 

DISCUSSION 

Packrat Midden Fossil Bias 

Paleobiogeographers have studied fossilized packrat middens since the pioneering 

work of Philip Wells in the 1960s (Wells 1966, Wells and Berger 1967). In the last half-

century, numerous researchers have contributed to the packrat midden archive, which has 

continued to grow taxonomically, temporally and spatially (Williams et al. 2018). This 

archive offers access to a wealth of macrofossil observations, many of which have 

species level taxonomic precision and can be geo-located to within 100 m of the midden 

site from which they were extracted (Vaughan 1990). This archive spans well into the 

Pleistocene at the limits of 14C dating methods, making it ideally suited for investigating 

changes in recent north American floral (e.g. Cole and Webb 1985, Spaulding 1990, 

McAuliffe and Van Devender 1998, Thompson and Anderson 2000, Jackson et al. 2005), 

faunal (e.g. Van Devender et al. 1977, Van Devender and Mead 1978, Mead 1981) and 
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climatic (e.g. Jacobson 1991, Arundel 2002, Coats et al. 2008, Thompson et al. 2012) 

reconstructions. While the breadth of biogeographic inquiries using these data continues 

to grow (Williams et al. 2018), their use of paleo-SDM has been limited at best. The 

paucity of studies using paleo-SDM to estimate spatially explicit paleo-distributions is 

likely due to the spatial bias inherent in the Neotoma database (Webb and Betancourt 

1990, Mensing et al. 2000). Here, I developed a statistical model of this bias, s-modeled, 

for the Neotoma database, and use it to develop paleo-distributions of six species for the 

early/mid Holocene.  

I found that paleo-distributions for the early/mid Holocene modeled without bias 

correction (s-naïve) provided poor matches to hindcast paleo-distributions, my 

comparison measure of true early/mid Holocene distributions. The s-modeled correction 

method improved paleo-distributions for my six species and showed, on average, 91% 

higher overlap with hindcast than s-naïve paleo-distributions. These improvements were 

confirmed at independent locations from lake sediment pollen records, where I found 

habitat potential scores for s-modeled paleo-distributions to be higher than the s-naïve 

and s-standard paleo-distributions.  

I used hindcast paleo-distributions as my reference distributions because they can 

draw on a wealth of biogeographic repositories characterizing contemporary distributions 

of extant species. Hindcast distributions however, assume that a species niche has 

remained unchanged between the calibration and projection time periods. This 

assumption is reasonable for periods in the mid- to late Holocene, a time frame of only a 

few millennia when the world’s climate has been relatively stable and evolutionary  
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change unlikely, but may be less so for paleobiogeographic studies of the Pleistocene or 

earlier (Peterson et al. 1999, Peterson 2011). In studies where hindcasting is less 

appropriate, paleo-SDM calibrated with paleo-ecological archives has shown to be useful 

(e.g. Walls and Stigall 2012, Saupe et al. 2014, Serra-Varela et al. 2015), although it still 

would benefit from correction measures to reduce the effects of biased sampling 

distributions (Svenning et al. 2011, Varela et al. 2011).  

Niche Characteristics 

Measuring niche characteristics is difficult, at best. My work confirms the 

subjectivity of niche breadth assessments and further suggests that fossil bias may cause 

even greater distortions in assessments of niche breadth and niche conservation. Niche 

conservation assumes that niche characteristics, such as niche breadth, remain stable 

through time (Wiens and Graham 2005) and that any changes in climate may instead 

cause shifts in geographic distributions. Formal tests, such as niche equivalency (Warren 

et al. 2008), have been developed and used extensively to investigate niche conservatism 

in related extant taxa (e.g. Strubbe et al. 2014, Kolanowska et al. 2017), but these tests 

compare spatial predictions of habitat potential to infer similarity in niche characteristics, 

and do not estimate niche properties directly. Properties such as niche breadth have often 

been assumed to be linked to extinction, with specialist species being more susceptible to 

extinction than generalist species (McKinney 1997, Hernández fernández and Vrba 2005, 

Nürnberg and Aberhan 2013), though this relationship is not universal; geographic range 

size is often given greater attribution to extinction risk (Kammer et al. 1997, Thuiller et 

al. 2005, Harnik et al. 2012, Saupe et al. 2015).  
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The contradictory evidence on the effect of niche breadth on extinction is no 

wonder; no unified metric with which to measure niche breadth exists. Metrics of niche 

breadth span volumetric measurements of the dominant principle component axes of 

presumed occupied regions of environmental space (e.g. Saupe et al. 2015), to counts of 

different habitat types presumed to be occupied (e.g. Harnik et al. 2012, Nürnberg and 

Aberhan 2013). These different metrics, including ours, are highly dependent on the 

environmental characteristics used to define an organism’s niche, and as such, are often 

not comparable (Slatyer et al. 2013). In all six species, s-naïve estimates of niche breadth 

were improved with s-modeled paleo-distributions, though in two species (C. 

ramosissima and Q. gambelii), s-standard paleo-distributions provided marginally 

improved estimates over s-modeled. This suggests that the s-modeled paleo-distributions 

did not always improve niche breadth estimates, and that estimates of niche breadth for 

species whose paleo-distributions align more closely with fossil bias may be reduced 

when calibrated on the fossil record.  

Climate Novelty 

I investigated potential relationships between climate change and range retraction 

under the assumption that habitat potential would decline in areas experiencing the 

greatest change in climate. I only found weak evidence of this, with negative Pearson’s 

correlation coefficients for only five of my six species. The greatest changes in climate in 

the Holocene occurred during the early period of the Holocene, prior to approximately 9 

ka (Viau et al. 2006), but the widely available paleoclimate data used here (Hijmans et al. 

2005) characterize climate during the Mid-Holocene, at approximately 6 ka. Assessments  
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of climate novelty comparing present day climate to the Mid-Holocene based on these 

data would not capture the changes influencing distribution shifts that were occurring 

during the early Holocene, such as the dramatic warming occurring prior to 9 ka. 

Access to paleoecological archives 

The marked increase in online data storage and ease of establishing and 

maintaining web services has led to the proliferation of online, open access 

paleoecological databases well suited for paleo-SDM. Such resources include broad data 

repositories like PANGAEA (https://pangaea.de), and the NOAA/World Data Service for 

Paleoclimatology (https://www.ncdc.noaa.gov), as well as curated databases such as the 

USGS/NOAA North American Packrat Midden database 

(https://geochange.er.usgs.gov/midden/; Strickland et al. 2013), the Neotoma Paleocology 

Database (Williams et al. 2018), FAUNMAP and MIOMAP (Carrasco et al. 2005), 

among others. These databases offer spatially referenced fossil archives that extend well 

into the Miocene. When species paleo-distribution records are combined with the 

Coupled Modelling Intercomparison Project (CMIP5: http://cmip-pcmdi.llnl.gov/cmip5/) 

and the Paleoclimate Modelling Intercomparison Project (PMIP3: 

https://pmip3.lsce.ipsl.fr/) that provide modeled and reconstructed spatial paleo-climates 

(e.g. Lima-Ribeiro et al. 2015, Lorenz et al. 2016, Fordham et al. 2017), paleo-SDM 

offers biogeographers new tools for exploring paleo-distributions well beyond the 

early/mid Holocene addressed here. Moreover, improvements in the temporal resolution 

of gridded climate data offer opportunities to investigate many time slices of recent 

history (Pearman et al. 2008, Blois et al. 2013). I suggest that the approach described here 

to model sampling bias can be applied to finer time slices using the Neotoma database, 
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and more generally, can be adapted for other paleoecological archives as a framework for 

estimating spatial sampling bias, s.  
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TABLES 

Table 3.1. Sample Sizes. Sample size of geo-referenced observations obtained from the 
Geographic Biodiversity Information Facility (extant) and the USGS/NOAA North 
American Packrat Midden database (early/mid Holocene).  
 

 sample size 
species extant early/mid Holocene 

Abies concolor 1359 59 
Artemisia tridentata 3007 129 
Coleogyne ramosissima 496 56 
Juniperus communis 732 76 
Pinus ponderosa 1687 82 
Quercus gambelii 529 21 
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Table 3.2. Habitat Potential Values. Mean (and standard deviation) of habitat potential values in the study area for Present-day (1950 – 
2000 yr) and early/mid Holocene (11.5 ka – 5 ka) conditions. Habitat potential for the early/mid Holocene conditions was estimated 
using 4 methods: hindcasting from present day conditions (Hindcast), paleo-SDM without bias correction (s-naïve), paleo-SDM with 
standard correction (s-standard), and paleo-SDM with model correction (s-modeled). 
 

 Present-Day early/mid Holocene 
Species   Hindcast s-naïve  s-standard  s-modeled  
Abies concolor 0.304 (0.224) 0.273 (0.228) 0.113 (0.181) 0.164 (0.215) 0.416 (0.332) 
Artemisia tridentata 0.543 (0.163) 0.552 (0.156) 0.133 (0.206) 0.185 (0.237) 0.347 (0.232) 
Coleogyne ramosissima 0.173 (0.226) 0.159 (0.242) 0.050 (0.136) 0.083 (0.173) 0.108 (0.189) 
Juniperus communis 0.232 (0.265) 0.244 (0.275) 0.138 (0.194) 0.262 (0.242) 0.483 (0.256) 
Pinus ponderosa 0.332 (0.256) 0.354 (0.268) 0.184 (0.215) 0.262 (0.242) 0.566 (0.316) 
Quercus gambelii 0.318 (0.278) 0.282 (0.258) 0.494 (0.176) 0.540 (0.143) 0.764 (0.205) 
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Table 3.3. Range Expansion. Total area (km2) with significant increase in habitat potential between early/mid Holocene and present-
day conditions. Areas with a significant increase in habitat potential were defined as areas where the difference was greater than twice 
the combined standard error of the paleo-distributions from the two time periods. Areas with substantial increase in habitat potential 
were identified as areas where habitat potential switched from being below 0.5 to above 0.5 (substantial increase).  

 
  Range Expansion (Increase) 

  significant substantial 
species Total Hindcast s-naïve  s-standard s-modeled  Hindcast s-naïve  s-standard s-modeled  

Abies concolor 

3,162,474 

360,035 1,716,853 1,552,253 419,966 79,818 457,183 444,537 67,806 
Artemisia tridentata 10,819 2,637,177 2,465,774 2,050,502 456 1,611,433 1,493,410 1,348,343 
Coleogyne ramosissima 240,286 1,936,083 1,243,322 1,503,453 28,653 215,272 139,440 169,305 
Juniperus communis 11,933 1,233,631 679,739 9,099 4,091 523,764 390,323 4,140 
Pinus ponderosa 11,699 1,303,959 878,375 64,370 4,257 660,325 572,172 22,063 
Quercus gambelii 109,392 248,897 174,506 11,359 33,186 202,509 84,211 31 

 
 
  



 

 

81 

Table 3.4. Range Contraction. Total area (km2) with significant decrease in habitat potential between early/mid Holocene and present-
day conditions. Areas with a significant decrease in habitat potential were defined as areas where the difference was less than the 
negative of twice the combined standard error of the paleo-distributions from the two time periods. Areas with substantial decrease in 
habitat potential were identified as areas where habitat potential switched from being above 0.5 to below 0.5 (substantial decrease).  
 

 Range Contraction (Decrease) 
 significant substantial 

species Hindcast s-naïve  s-standard s-modeled  Hindcast s-naïve  s-standard s-modeled  
Abies concolor 45,006 39,486 155,928 1,156,777 5,828 28,669 125,814 542,522 
Artemisia tridentata 85,029 49,354 102,444 385,328 19,144 10,595 17,492 260,398 
Coleogyne ramosissima 59,402 37 2,750 155,850 21,048 7 1,864 52,759 
Juniperus communis 105,601 186,426 999,505 2,428,090 9,453 149,562 288,986 593,964 
Pinus ponderosa 227,459 134,341 248,719 2,591,410 93,143 115,228 201,074 778,419 
Quercus gambelii 10,189 1,205,203 1,472,827 2,887,400 3,664 939,497 1,265,042 1,873,854 
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Table 3.5. Niche Breadths. Niche breadth as estimated by each of the 4 methods: hindcasting from present day conditions (Hindcast), 
paleo-SDM without bias correction (s-naïve), paleo-SDM with standard correction (s-standard), and paleo-SDM with model 
correction (s-modeled). Niche breadth used here measures the uniqueness of the environmental conditions defining each species’ 
geographic distribution and was defined as the median of the squared Mahalanobis distance of all occupied cells. 
 

 Hindcast s-naïve s-standard s-modeled  
species mean mean % Diff mean % Diff mean % Diff 

Abies concolor 10.02 7.79 22.254 7.19 28.275 9.01 10.069 
Artemisia tridentata 5.59 5.04 9.807 4.35 22.212 5.55 0.777 
Coleogyne ramosissima 6.27 9.63 -53.613 8.29 -32.299 9.21 -46.972 
Juniperus communis 9.52 5.55 41.664 5.73 39.837 7.71 18.986 
Pinus ponderosa 7.74 6.15 20.501 5.64 27.135 7.26 6.146 
Quercus gambelii 5.74 4.54 20.989 4.60 19.905 4.55 20.779 
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Table 3.6. Climatic Novelty. Pearson’s correlation coefficients and p-values as estimates of Type 2 novelty and paleo-distributions 
from each of the four methods: hindcasting from present day conditions (Hindcast), paleo-SDM without bias correction (s-naïve), 
paleo-SDM with standard correction (s-standard), and paleo-SDM with model correction (s-modeled). Type 2 novelty identifies areas 
that are within the univariate range but represent novel combinations between covariates and can range from 0 to positive infinity, 
with values under 1 indicating no multivariate novelty. 
 

   early/mid Holocene paleo-distributions 
 Hindcast Error Hindcast s-naïve s-standard s-modeled  
Species r p r p r p r p r p 
Abies concolor 0.24 0.00 -0.34 0.00 0.20 0.00 0.22 0.00 -0.28 0.00 
Artemisia tridentata 0.51 0.00 -0.34 0.00 0.05 0.00 0.11 0.00 -0.04 0.00 
Coleogyne ramosissima -0.07 0.00 -0.18 0.00 -0.21 0.00 -0.23 0.00 -0.37 0.00 
Juniperus communis 0.25 0.00 0.04 0.00 0.31 0.00 0.38 0.00 0.15 0.00 
Pinus ponderosa 0.17 0.00 -0.15 0.00 0.24 0.00 0.28 0.00 -0.23 0.00 
Quercus gambelii -0.03 0.00 -0.05 0.00 0.05 0.00 0.02 0.00 -0.37 0.00 
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FIGURES 

 

 
Figure 3.1. Study Area. Study area (thick black line) encompassed the greater western 
conterminous USA where the majority of Neotoma database records have been identified. 
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Figure 3.2. Overlap between Hindcast and Paleo-SDM. Mean Expected fraction of Shared Presences (ESP) scores for overlap between 
hindcasting from present day conditions to paleo-SDM without bias correction (s-naïve), paleo-SDM with standard correction (s-
standard), and paleo-SDM with model correction (s-modeled). ESP measures overlap between s-modeled paleo-distribution and 
hindcast paleo-distribution. 
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Figure 3.3. Independent Pollen Assessment. Mean habitat potential values within 100 km radius of sites where the pollen record 
indicated presence of the genera during the early/mid Holocene for each of the 4 paleo-distributions: hindcasting from present day 
conditions (Hindcast), paleo-SDM without bias correction (s-naïve), paleo-SDM with standard correction (s-standard), and paleo-
SDM with model correction (s-modeled). 
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Figure 3.4. Relationship between total improvement in Expected Fraction of Shared 
Presences (ESP) score (y-axis) and Pearson’s correlation coefficient (r; x-axis) between 
hindcast paleo-distribution models and the estimate of spatial sampling bias (s) from the 
midden potential model. ESP measures overlap between s-modeled paleo-distribution 
and hindcast paleo-distribution. 
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Figure 3.5. Habitat Potential Overlap with Estimated Sampling Bias. Pearson’s correlation coefficient between hindcast paleo-
distribution and the estimate of spatial sampling bias (s). The hindcast paleo-distribution for C. ramosissima showed the highest 
correlation to of spatial sampling bias (s), while J. communis was most negatively correlated.  
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CHAPTER 4 

USING MULTISCALE GEOGRAPHICALLY WEIGHTED REGRESSION TO 

INVESTIGATE ECOLOGICAL NICHE SEPARATION: THE CASE OF MOJAVE 

AND SONORAN TORTOISES 

ABSTRACT 

Aims: To investigate spatial congruence between genotype and ecological niche 

separation in spatially adjacent sister taxa of desert tortoise using multiscale 

geographically weighted regression. 

Location: Mojave and Sonoran Desert ecoregions; California, Nevada, Arizona, Utah, 

USA. 

Methods: I designate two areas of ecological niche separation using a novel approach 

coupling species distribution modeling and multiscale geographically weighted 

regression (MGWR). This approach uses a new extension to GWR to estimate parameters 

at separate spatial scales for each explanatory variable and explores non-stationarity in 

the spatial residuals of a pooled-taxa distribution model. I predicted ecological niche 

separation with multivariate clustering of the MGWR parameter surfaces. Using an index 

of phylogenetic diversity, I compare models of (i) a geographically-based taxonomic 

designation for two sister species, (ii) an environmental ecoregion designation, and (iii) 

an ecological niche separation from local habitat selection.  

Results: A model of ecological niche separation that was based on local parameter 

estimates of habitat selection better explained an index of phylogenetic diversity for two 

sister taxa than did either the geographically based taxonomic designation or an 

environmental ecoregion designation. A novel approach coupling SDM and MGWR 
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improved computation time by enabling smaller regions of interest to be analyzed with 

GWR while still incorporating the entire species range in SDM. 

Main Conclusions: Exploring spatial non-stationary with local regression can benefit 

studies of biogeography and conservation by coupling SDM and GWR. I find that niche 

separation in habitat selection conforms to genotypic differences between two sister taxa 

of tortoise in a recent secondary contact zone and highlights the need for special 

protection of individuals currently not covered by the geographic distribution defined 

under the US Endangered Species Act. 

INTRODUCTION 

Conservation biologists increasingly rely on metrics beyond taxonomic diversity 

to inform conservation priorities. The push towards a better understanding of the 

importance of functional (Cadotte and Jonathan Davies 2010, Flynn et al. 2011, Cadotte 

et al. 2011) and phylogenetic diversity (Crozier 1997, Helmus et al. 2007, Scoble and 

Lowe 2010, Vandergast et al. 2013, Wood et al. 2013) for conservation planning has led 

to an increased recognition that geographic patterns of multiple facets of diversity are 

required for managing biological resources (Myers et al. 2000, Naeem et al. 2012, Winter 

et al. 2013). Spatially structured variation in the different dimensions of diversity, 

especially phylogenetic variation, may foster ecosystem resilience to global change 

(Tews et al. 2004, Legendre et al. 2005, Devictor et al. 2010, Flynn et al. 2011), and 

long-term preservation of diversity may require protection of areas that span wide 

phylogenetic gradients (Moritz 2002, Scoble and Lowe 2010, Winter et al. 2013). 

Identifying the processes and conditions under which taxa have diverged can illuminate 

areas where inter-population divergence and intra-population genetic diversity sustain 
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adaptation to changing environments (Crandall et al. 2000, Moritz 2002). Moreover, 

identifying local variation in genetic divergence and diversity may also contribute to a 

biogeographical understanding of the conditions that influence speciation, their 

distributions, and their relationships to local environmental conditions.  

Spatial non-stationarity and species distribution modeling 

One hypothesis that often goes untested is the presence of spatial non-stationarity 

in species-environment relationships. In its application to conservation biogeography, 

spatial non-stationarity suggests that a single set of coefficients may not adequately 

represent species-environment relationships across space (Foody 2004) and that 

coefficients may covary with location (Fotheringham 1997, Atkinson 2001). Spatial non-

stationarity may be apparent when ecological processes operate at multiple scales 

(Legendre 1993), when key variables are omitted, or when the model functional form is 

mis-specified (Fotheringham 1997, Fotheringham et al. 2003). Variable omission is likely 

when proxies are used instead of predictor variables that measure mechanistic causal 

factors (Kearney and Porter 2009). For example, ‘mean annual temperature’ may serve as 

a proxy for the more proximal limiting factor of hourly surface substrate temperature 

(Kearney et al. 2014), and as such, may show a varying relationship across a species’ 

range as a function of another unmeasured variable such as substrate type. Spatial non-

stationarity may also be apparent at the limits of a species’ range or in areas with high 

phylogenetic diversity, especially if recent secondary contact between vicariant 

populations has highlighted gradients of niche differentiation (Endler 1977, Jiggins and 

Mallet 2000, Gay et al. 2008). Here, geographic gradients in habitat use (species-
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environment relationships) could be driven by parapatric speciation, though this 

hypothesis has rarely been tested.  

Species distribution modelling (SDM) comprises a suite of analytical methods 

used to test and explore habitat use by relating locations of species occurrences to 

environmental explanatory variables hypothesized to influence species limitations and 

habitat associations (Franklin 2010b). SDM characterizes relationships between 

environmental conditions at locations where species occur and where they do not in order 

to make predictions about their likelihood of occurring at un-sampled locations. A 

common form of SDM draws on ordinary least squares (OLS) regression methods such 

as generalized linear modeling (GLM) (Guisan and Zimmermann 2000), which rely on 

the assumption that species-environment relationships remain constant across a species’ 

geographic distribution. In this common form of SDM, a single (i.e. ‘global’) parameter 

representing each relationship is estimated, and any local residual variation is explored 

post-hoc. Often, the residuals of traditional, non-spatial regression are spatially auto-

correlated (Austin 2002); this non-independence violates a key assumption of standard 

regression and affects the significance and values of model parameters (Anselin and Rey 

2009). Moreover, the use of global parameters precludes the possibility of incorporating 

spatial non-stationarity directly into the model specification.  

Geographically weighted regression 

Geographically weighted regression (GWR; Fotheringham et al. 2003) has 

become a dominant method to incorporate spatial non-stationarity in a regression 

framework, and uses local statistics to characterize spatially varying relationships 

between predictors and response variables. GWR also enables the exploration of local 
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variation in processes that span borders (Cheng and Fotheringham 2013). Identifying 

spatially varying relationships across boundaries can provide inference about the nature 

of a boundary in terms of its permeability and history, and can draw attention to 

differences in data quality spanning those borders (Cheng and Fotheringham 2013). In a 

conservation biogeography context, borders and the gradients spanning them are key 

concepts that give context to phylogenetic diversity and the conditions that influence 

speciation (Hoffmann and Blows 1994). GWR is an underutilized tool for exploring the 

drivers of these biogeographical patterns, which are increasingly important to 

conservation planning and land management. Few studies have explored spatial non-

stationarity in context of biogeographical patterns (but see Foody 2004, Bickford and 

Laffan 2006, Holloway and Miller 2015), and even fewer have incorporated spatial non-

stationarity with SDM (e.g. Kupfer and Farris 2006, Miller 2012). Incorporating GWR 

into SDM provides the capacity to account for spatial autocorrelation in residuals and to 

explore spatial non-stationarity in habitat use. While the former has been addressed in 

SDM through model structures with spatial dependence terms such as Spatial Auto-

Regressive and Conditional Auto-Regressive models (Diggle et al. 1998, Miller et al. 

2007, Miller 2012) and hierarchical Bayesian models (Wikle 2003, Chakraborty et al. 

2010, Aderhold et al. 2012), spatial non-stationarity has rarely been addressed (but see 

Miller 2012).  

Many ecological processes have an implicit spatial scale (e.g. McIntyre and 

Lavorel 1994) and may become less important or non-significant at another spatial scale 

(Turner et al. 1989). Often, biodiversity studies incorporate multiscale approaches to 

investigate the additional dimension of spatial scale (e.g. Rahbek and Graves 2001, Willis 
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and Whittaker 2002, Seo et al. 2009). In GWR, spatial scale is represented with a 

bandwidth parameter that, in conjunction with adaptive spatial kernels, determines how 

nearby observations are given higher weights than more distance ones (Fotheringham et 

al. 2003). Large bandwidths approximate global models, while small bandwidths result in 

highly local models. However, previous GWR analyses have used a single bandwidth for 

all explanatory variables, regardless of the spatial scale at which they may affect the 

response variable. A recent development in GWR is the capacity to estimate separate 

bandwidths for each explanatory variable specified in the model: Multiscale 

Geographically Weighted Regression (MGWR; Fotheringham et al. 2017). Here I use 

MGWR to investigate whether non-stationarity in habitat use may be apparent for some, 

but possibly not all, explanatory variables. 

Some of the key features that have facilitated the widespread use of SDM have 

also hindered its integration with GWR. One of these features is the use of georeferenced 

observations of species occurrences (presence), or presence and absence. These data are 

not easily incorporated into GWR frameworks due to their sparse nature and often biased 

sampling; at fine local scales with few observations, calibration of local logistic 

regression models cannot converge due to complete separation of response classes (zeros 

and ones; Fotheringham et al. 2003). The biased sampling distributions problematic to 

SDM and GWR stem from two primary types of bias: 1) incomplete sampling, and 2) 

over-sampling. Both of these sources of bias result in spatial heterogeneity in sampling 

intensity, and both are common in geographically referenced biodiversity data (Ponder et 

al., 2001; Graham et al., 2004; Frey, 2009; Newbold, 2010). The use of biased species 

occurrence data in GWR is problematic and generally requires the use large bandwidths 
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approximating global models (Miller 2012), though this precludes exploration of local 

patterns and negates one of the primary benefits of GWR. 

Niche Differences in Sister Species 

In this study, I propose a novel method to overcome biased sampling when using 

GWR by coupling SDM with GWR, thereby drawing on the strengths of both 

approaches. To avoid convergence failure in logistic GWR, I first use occurrence 

localities obtained from biased sampling to develop global predictions of habitat 

suitability with SDM. By using SDM, I am also able to apply bias correction measures 

recently developed to reduce the effects of biased sampling (e.g. Phillips et al. 2009, 

Varela et al. 2014, Boria et al. 2014). I then apply MGWR to the residuals (unexplained 

variance), resulting from global SDM predictions, to explore local variability in habitat 

use (species-environment relationships). This shifts the role of GWR from prediction to 

exploration, for which GWR is more suited (Fotheringham et al. 2011).  

I develop a case study of two closely related sister-taxa that are found in the 

deserts of southwestern North America that suffer from 1) extreme sampling bias in 

occurrence observations, 2) differing legal conservation and protection status, and 3) 

distribution uncertainty. These two species, Gopherus agassizii (Agassiz’s desert 

tortoise) and Gopherus morafkai (Morafka’s desert tortoise) diverged approximately 6 

Ma due to geographic isolation by the Bouse embayment, a putative marine transgression 

of the ancestral Gulf of California along the lower Colorado River, resulting in allopatric 

speciation (Murphy et al. 2011). These two cryptic species were only recently 

distinguished as phylogenetically and taxonomically separate due to differences in 

genetics, reproductive ecology, and seasonal activity (McLuckie et al. 1999, Murphy et 
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al. 2011), but are not readily distinguished morphologically. Prior to the taxonomic split, 

a Distinct Population Segment defined as the Mojave population (Figure 4.1; tortoises 

west and north of the Colorado river) was listed as threatened (given legal protection) 

under the US Endangered Species Act (ESA) (Department of the Interior 1990) and has 

received extensive monitoring resulting in a wealth of georeferenced observations 

(Anderson and Burham 1996). The remaining "Sonoran Population", later elevated as a 

distinct species, G. morafkai, is not afforded the same protection or monitoring (Murphy 

et al. 2011, Service 2015). The Colorado River defines the geographic division between 

the two species, however, recent genetic work has identified a secondary contact zone 

where G. agassizii (the western species) occurs in a small population east of the Colorado 

River (McLuckie et al. 1999, Edwards et al. 2015). This secondary contact zone likely 

emerged only 2.5 ka as a result of fluctuations in the Colorado River, but now G. 

agassizii in this zone are isolated from individuals occurring on the other side of the 

Colorado River. This small, isolated population of G. agassizii east of the Colorado faces 

threats from increasing development in this region - but does not receive federal 

protection under the ESA due to the geographic delineation of the two species. This is 

further complicated by recent evidence of natural hybridization between G. agassizii and 

G. morafkai occurring in the secondary contact zone (Edwards et al. 2015), and by the 

lack of a clear definition of suitable habitat for this population of G. agassizii east of the 

River. The careful application of SDM for conservation management is particularly 

important where species boundaries are not easy determined (Barrowclough et al. 2011). 

Here, I use SDM and MGWR to investigate differences in habitat use by G. 

agassizii and G. morafkai in the recent secondary contact zone. Specifically, I aim to 1) 
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identify geographical boundaries in habitat use between the two species, and 2) determine 

which of three delineations better describes landscape patterns of genotypic variation. 

These delineations include A) the Colorado River, the current geographic boundary 

defining each species, B) the Mojave and Sonoran Basin and Range ecotone, and C) 

geographic similarities in local habitat use identified in this study. The results of this 

study will inform conservation planning in the secondary contact zone of these two 

species. 

METHODS 

Study Area 

My study area included the known range of G. agassizii and G. morafkai across 

68,323 km2 in the southwestern United States encompassing parts of California, Arizona, 

Nevada and Utah (Figure 4.1). This region is characterized as the Mojave Basin and 

Range Level III Ecoregion and Sonoran Basin and Range Level III Ecoregion 

(Commission for Environmental Cooperation Working Group 1997); hereafter the 

Mojave Desert and Sonoran Desert, respectively. The subregion encompassing the 

genetic sampling locations used by Edwards et al. (2015) offered an opportunity to 

explore habitat selection across the ecotone between the Mojave and Sonoran deserts, and 

the secondary contact zone between G. agassizii and G. morafkai.  

Modeling Overview  

I incorporate a 2-stage modeling approach drawing on the strengths of both SDM 

and MGWR to explore spatial non-stationarity in the species-environment relationships 

of G. agassizii and G. morafkai across this secondary contact zone. I treat the mapped 

residuals of SDM predictions as measures of local deviation from habitat preference of 
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the pooled-species and use MGWR of those residuals to explore non-stationarity in 

relationships to hypothesized environmental explanatory variables that may enumerate 

differences between the two species and their hybrids. While the interpretation of 

residuals is perhaps less intuitive than of global regression coefficients, residuals offer a 

local measure of SDM error that can be linked to explanatory variables with MGWR. 

This allows MGWR to illuminate landscape gradients in habitat selection in areas where 

logistic MGWR models with biased observation data would fail to converge. 

Species Distribution Modeling 

I developed pooled species distribution models for G. agassizii and G. morafkai 

using Generalized Additive Models (GAM) with the package mgcv (Wood 2011) in R (R 

Core Team 2016) in a presence/pseudo-absence framework. I treated G. agassizii and G. 

morafkai as a single taxon and pooled over 25,000 observations of both from 1970 

through 2013 from over 23 separate datasets spanning the US portions of the two species’ 

known ranges. Observations with spatial precision of less than 1 km were discarded, and 

the remainder were limited to one per each 1-km2 grid cell resulting in 8728 observations 

available for model calibration. Pseudo-absence data (Zarnetske et al. 2007) were 

generated for each species by taking equally sized random samples of grid cells without 

observations but excluding areas within 2 km of an observation. To reduce the effects of 

sample bias caused by aggregated observations, I used a geographically weighted 

resampling method with 20 replications of sampling without replacement. This method 

assumes that geographically clustered calibration data result in environmental sampling 

bias (Boria et al. 2014) and that thinning observations from heavily sampled areas will 

reduce this bias. The resampling method used a grid (10 km cell size) placed across the 
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study area to identify areas where spatially aggregated observations occurred. In these 

cells, random selections of no more than three occurrences were used in each replication. 

A gamma control parameter of 1.3 was used in all GAM models to reduce over-fitting 

(Wood 2006). 

Previous work modelling their habitat suitability has suggested a suite of 

physiographic, vegetative and climatic characteristics hypothesized to influence the 

distribution of G. agassizii and G. morafkai (Nussear et al. 2009, Inman et al. 2014, 

Edwards et al. 2015). I augmented these variables resulting in 18 explanatory variables 

available in this study (Table 4.1). I excluded pairs of variables from models with 

Pearson’s correlation values greater than 0.6 to reduce multicollinearity. I evaluated 

model performance with a random sample of 20 percent of the calibration records 

withheld each of the 20 replicates. This dataset was used to derive the Area Under the 

receiver operating characteristic Curve (AUC; Fielding and Bell 1997, Cumming 2000) 

and Kullback-Leibler mean cross-entropy (MXE; Kullback and Leibler 1951) in the 

package ROCR (Sing et al. 2005) in R (R Core Team 2016). I report the mean and CV of 

these two measures across all iterations. While the AUC criterion has been used 

extensively in SDM for evaluating model performance (cf Franklin 2010a), it may be 

influenced by species prevalence ratios and may not always give a complete picture of 

model performance (McPherson et al. 2004, Lobo et al. 2008). I therefore also use MXE, 

a metric that has gained recognition in evaluating the performance of machine learning 

models (Byrne 1993, Georgiou and Lindquist 2003). I selected a candidate group of the 

top three models for each of the AUC and MXE performance criteria across the 20 

replicates and used them to produce predictive maps; I averaged their outputs to create a 
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single model of habitat potential for the combined taxon of G. agassizii and G. morafkai. 

Residuals from the averaged model were calculated for all observations records and were 

centered to unit variance prior to use in MGWR.  

Multiscale Geographically Weighted Regression 

GWR uses spatially explicit kernel weighting schemes to create local parameter 

estimates (e.g. coefficients, t-values, standard errors and R2) for each observation. The 

weighting schemes for classical GWR rely on a single bandwidth parameter, used to 

define the spatial weighting scheme for all explanatory variables. This parameter can be a 

fixed size or allowed to shrink and expand to include an optimal number of observations 

to accommodate variations in observation density. Classical GWR assumes that each 

explanatory variable interacts with the response vector at the same spatial scale. Here I 

use the new extension, Multiscale Geographically Weighted Regression, MGWR 

(Fotheringham et al. 2017), which relaxes this assumption by allowing the relationship 

for each explanatory variable to be fit at different spatial scales. This is implemented by 

estimating an optimal bandwidth vector indicating the spatial scale at which each 

explanatory variable is related to the response vector. A single MGWR model is an 

amalgamation of many separate regression models and results in locally varying 

estimates of the relationships between explanatory variables and response vector, and 

each may have a different spatial scale.  

Rather than draw on the same environmental explanatory variables used to create 

the pooled SDM, I developed a reduced set of predictors for use in the MGWR analysis. 

MGWR can be more susceptible to multicollinearity than ordinary least squares 

regression (Fotheringham et al. 2003), and a carefully-chosen reduced set of explanatory 
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variables is less likely to exhibit multicollinearity. This reduced set of explanatory 

variables included the principal component axes summing to at least 80% of the 

component scores in four Principal Component Analyses (PCA) conducted separately for 

physiographic, climatic, soils and vegetation variables (Appendix 4.1). Principal 

components provide linearly uncorrelated explanatory variables representing the primary 

variation among multiple inputs (Abdi and Williams 2010), and offer straightforward 

methods for reducing the number of potential explanatory variables in an analysis. An 

additional variable representing highly unsuitable habitat in the form of impervious 

surfaces (such as paved roads and parking lots) and large water bodies (such as lakes and 

reservoirs) was created from the 2011 National Land Change Database (NLCD) Percent 

Developed Imperviousness layer (Fry et al. 2011) and the National Hydrography Dataset 

(Simley and Carswell 2010) and was quantified as the percent of each grid cell covered 

by impervious surfaces or water. All variables were centered to unit variance prior to 

PCA. I hypothesized that the bandwidths for the climate and land use explanatory 

variables would be larger than those for the vegetation or soil explanatory variables, 

because responses to climate and land use were not hypothesized to change across the 

landscape.  

I selected a set of these variables for use in MGWR by regressing natural cubic 

splines with polynomial orders of 2 and 3 of each variable against the pooled SDM 

residuals. Natural cubic splines were considered due to the non-linear species-

environment relationships found in the pooled SDM, and were compared using Bayesian 

Information Criterion (BIC; Sakamoto et al. 1986) to determine the optimal polynomial 

order for each variable. Variable selection was conducted using OLS regression with all 
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combinations of up to 10 variables. A single model was selected as the most 

parsimonious using the BIC to prevent including unnecessary variables. The set of 

variables included in this model were used in MGWR to explain the pattern of residuals 

from the pooled SDM in Python 2.7.10 (Python Software Foundation; 

http://www.python.org). MGWR uses an iterative back-fitting algorithm that is very 

computationally intensive (Fotheringham et al. 2017). I therefore thinned the calibration 

data to 3 per 10 km2 in order to reduce computation time, resulting in a dataset with 2156 

records. This thinning method created a near equal density of observations across the 

study areas to minimize bias towards the more heavily sampled species, G. agassizii. I 

used an adaptive bandwidth with a Gaussian spatial kernel for each explanatory variable, 

thereby allowing each explanatory variable to converge on a separate bandwidth with 

Akaike information criterion with small sample correction (AICc) selection 

(Fotheringham et al. 2017). Non-linear regression coefficients were not considered as 

they have not been implemented in MGWR, and because at fine local scales, response 

curves are expected to approximate linear responses due the limits in local range of each 

explanatory variable (Fotheringham et al. 2003). Bandwidths for each explanatory 

variable are reported along with the MGWR model R2. I use an inverse distance weighted 

method to interpolate local regression coefficients and MGWR residuals to fill in areas 

that were thinned prior to running MGWR.  

Comparison with Landscape Genetics 

I hypothesized that landscape patterns in the interpolated regression coefficient 

surfaces (species-environment relationships) would be congruent with previously 

reported genotypes found among individuals in the secondary contact zone identified by 
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Edwards et al. (2015). I represented genotypes with an index of admixture proportion (Q) 

of a pure G. agassizii genotype from STRUCTURE 2.3.4 (Pritchard et al. 2000). This 

index represents the probability that an individual contained G. agassizii genotypes 

(Edwards et al. 2015), and was interpolated across my study area using inverse distance 

weighting to create a map of genotype association index for the Mojave geneotype. I used 

Kendall’s rank correlation coefficient (tau) for paired samples to assess agreement of 

each explanatory variable’s local regression coefficient with the genotype association 

index and I report tau for each explanatory variable.  

I then asked if natural divisions (regions) in the interpolated local regression 

coefficients exist, and if present, do they coincide with the genotypes highlighted by 

Edwards et al. (2015). I identify any divisions with a K-mediods optimal partitioning in 

multi-variate space of the interpolated local regression coefficients for all interpolated 

local regression coefficients with the package cluster (Maechler et al. 2016) in R (R Core 

Team 2016). The optimal number of clusters was estimated by minimizing within-cluster 

variance (Hennig and Liao 2013). Cluster assignments were mapped back to geographic 

space and compared to the taxonomic (geographic) boundary for G. agassizii and G. 

morafkai as well as the genotypes of the sampled populations reported by Edwards et al. 

(2015). Here I used a spatial simultaneous autoregressive lag model (SSAR lag; Anselin 

2001) to determine if the current taxonomic division between the two species better 

explains the genotype association index than does my mapped clusters. The SSAR lag 

model is well suited for making spatial predictions when dependencies exist among the 

values of the dependent variable, as is the case for the genotype association index. Three 

SSAR lag models, each with a single explanatory variable of either the taxonomic 
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division or mapped cluster, were calibrated with a random subset of 2000 locations to 

reduce processing time, and were compared using AIC with the package spdep (Bivand 

and Piras 2015) in R (R Core Team 2016). 

Finally, I report the area of overlap between the clusters and the two taxonomic 

(geographic) ranges of the two species, and the mean of the genotype association index 

for each mapped cluster. I also compare the mapped clusters to the geographic division 

between the Mojave and Sonoran Deserts as defined by the U.S. EPA Level III 

Ecoregions to assess any spatial congruence between local regression coefficients and the 

ecotone between the two ecoregions and report the area of overlap.  

RESULTS 

Species Distribution Modeling 

A total of 20,838 models were considered to represent pooled habitat for G. 

agassizii and G. morafkai. The top 6 models had AUC scores that ranged from 0.848 to 

0.850 and MXE scores ranging from 0.463 to 0.466 (Appendix 4.2). Thirteen explanatory 

variables (descriptions found in Table 4.1) were included among these models: ten 

(PCPsmRt, SMCdiff, SMCs, SurfMat1, SurfMat2, TDIFF, TPX, TWMN, VEG1 and 

VEG2) were included in all 6 models, while three (SRF, SurfMat3 and VEG3) were 

included in only 3 of the 6 models (Appendix 4.2). Habitat potential from the average of 

the top 6 models is shown in Figure 4.2A.  

MGWR 

I included the first 3 components of each PCA as potential variables in the 

MGWR. The top performing OLS model predicting the residuals from the pooled SDM 

included 9 explanatory variables, incorporated 2nd or 3rd order cubic splines for 6 of the 
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explanatory variables (Appendix 4.3) and had an R2 of 0.301. Explanatory variables 

included the 1st and 3rd components of the physiographic PCA, the 1st and 3rd components 

of the climate PCA, the 2nd and 3rd components of the soils PCA, the 1st and 3rd 

components of the vegetation PCA and the land use variable (Appendix 4.3). The 

resulting MGWR model based on these 9 explanatory variables had an R2 of 0.722 and 

showed local R2 values that ranged from near 0 to 0.999 (Figure 4.2B). Local R2 values 

were highest in areas where habitat potential was either very low or very high (Figure 

4.3). This MGWR model converged on bandwidths of 87 (PHYS1), 110 (PHYS2), 44 

(CLIM1), 2154 (CLIM3), 44 (SOIL2), 44 (SOIL3), 2092 (LU2), 137 (VEG1) and 183 

(VEG3) nearest neighbors for each explanatory variable. I estimated approximate effect 

distances as the product of the average distance between nearest neighbors (3 km) and the 

bandwidths for the explanatory variables, and these effect distances ranged from 49 km to 

342 km (Table 4.2). Physiographic (PHYS1 and PHYS2) and soils (SOIL2, SOIL3) 

explanatory variables were optimized with short effect distances, indicating that their 

species-environment relationships varied at fine spatial scales across the study area. The 

vegetation explanatory variables (VEG1, VEG3) showed slightly larger bandwidths with 

effect distances approaching 100 km, which did not support my hypothesis that 

vegetation explanatory variables would exhibit the smallest bandwidths. As expected, the 

explanatory variable representing land use was optimized with the largest bandwidths 

(effect size = 336 km), indicating a near global species-environment relationship. 

Interestingly, the two climate explanatory variables showed different bandwidths, with 

CLIM1 optimizing with an effect size of 48 km, and CLIM3 optimizing at a near global 

bandwidth with an effect size of 342 km. The CLIM3 climate PCA component was 
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dominated by the annual temperature range and winter temperature, suggesting little 

differences between the two species in their response to either. In contrast, the CLIM1 

climate PCA component was dominated by annual precipitation and maximum 

temperatures, suggesting local differences in population responses to regional climate. 

Parameter surfaces and mapped outputs are provided in Appendix 4.4. 

Comparison with Landscape Genetics 

Kendall’s tau values representing the degree to which local parameter estimates 

were correlated with my genotype association index ranged from -0.43 to 0.40 (Table 

4.3), indicating a low overall agreement between any given parameter estimate and 

genotype. However, when I identified clusters within the local parameter estimates, the 

optimum number of clusters in the explanatory variable coefficient surfaces was two 

when evaluated by average silhouette width. The silhouette width for each partition was 

0.18 and 0.46, with isolation values of 1.46 and 1.18 respectively. When mapped back to 

geographic space, the two partitions were largely characterized by the Mojave and 

Sonoran deserts (Figure 4.4) with one cluster (Mojave) primarily west of the Colorado 

River and the other (Sonoran) primarily to the east. The division between the two regions 

was not directly along the Colorado River, however, and suggested a boundary 

approximately 40 km to the east of the Colorado River (Figure 4.4). The mean genotype 

association index for the two clusters was 0.98 and 0.15 for the Mojave and Sonoran 

clusters, respectively, indicating that the Mojave cluster was strongly associated with the 

Mojave genotype and the Sonoran cluster was not. The mapped categories of habitat use 

were better able to predict the genotype association index than either the ecoregions or 

the taxonomic (geographic) delineation between the species with a ∆AIC score of 51 
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between the top two models (Table 4.4). Each SSAR lag model had significant spatial 

terms with the Wald statistic (Rho: 0.984, 0.986, 0.988 for the habitat use, ecoregion and 

geographic delineation models, respectively). Overlaps between the mapped categories of 

habitat use and the current geographic delineations of the two species as well as to the 

Mojave and Sonoran ecoregions, suggested that the Mojave cluster most closely aligned 

with the Mojave ecoregion (93.1%) and not the current geographic delineation of the 

Mojave population of G. agassizii (Table 4.5). In contrast, the Sonoran cluster most 

closely aligned with the current geographic delineation of G. morafkai (96.6%), 

indicating that the current geographic delineation of G. morafkai is a better representation 

of Sonoran habitat use than the Sonoran ecoregion alone (Table 4.5). This is likely due to 

the presence of two additional ecoregion types in the Sonoran habitat use cluster: Arizona 

and New Mexico Mountains, and Arizona and New Mexico Plateaus. 

DISCUSSION 

I introduce a novel implementation of SDM to explore locally varying species-

environment relationships by coupling SDM with a new extension of Geographically 

Weighted Regression; MGWR (Fotheringham et al. 2017). My investigation of non-

stationarity in species-environment relationships for two sister taxa in a recent secondary 

contact zone has shown that local variation in habitat selection provides greater support 

for the phylogenetic differences among individuals than does the current geographic 

delineation between the two species. My results and recommendations lend additional 

evidence for the need to consider G. agassizii east of the Colorado River and west of 

Kingman AZ for species protection under the ESA. Here, I also find that habitat barriers 

such as water and developed surfaces (e.g. roads and cities) have consistently negative 
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effects on habitat regardless of location, while soil conditions and certain physiographic 

characteristics exhibit local effects that vary within the recent secondary contact zone. 

In support of phylogenetic boundaries 

I found evidence for two, but not three, categories (clusters) of habitat selection in 

the local species-environment parameter estimates. A third category, if it coincided with 

individuals showing a mixture of genotypes, might suggest that hybrid individuals select 

habitat in ways that are locally different than either of the two pure genotypes. Previous 

work did show that hybrid individuals exhibiting a mixture of genotypes also occupied a 

range of characteristics spanning Mojave and Sonoran habitats in terms of topographic, 

surface textural, and vegetation characteristics (Edwards et al. 2015). My enumeration of 

only two categories does not necessarily contradict this finding because I explored habitat 

selection, i.e. local species-environment relationships, and not differences in occupied 

habitat. Organisms located in different habitats may exhibit similar species-environment 

relationships when the local availability of habitat differs from one geographic region to 

another.  

For example, consider individuals in one area that occupy habitats with values 

near 10 on a hypothetical environmental gradient. If the surrounding habitat has values 

near 5, these individuals will exhibit positive local species-environment relationships 

because the locally available habitat is lower on the hypothetical gradient. However, in 

another region, individuals occupying habitats with values near 5 may also show positive 

local species-environment relationships if nearby environments show values of 1. In this 

simple example, the two groups may show similar positive local species-environment 

parameter estimates even though they occupy different regions of this hypothetical 
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environmental gradient (i.e. 10 vs 5). This is where coupling SDM with MGWR differs 

from traditional habitat assessments: local differences in habitat selection are uncovered 

rather than differences in occupied habitat.  

In the case of G. agassizii and G. morafkai, regional differences in occupied 

habitat are clearly evident. Differences span climate, vegetation, physiography, and 

geology (Nussear and Tuberville 2014), yet I found similar habitat selection (and 

avoidance) for characteristics such as land use disturbance (e.g. developed surfaces, 

agriculture and surface water), annual temperature range and winter minimum 

temperature throughout the secondary contact zone. This suggests that while the two 

species occupy different habitats, they exhibit similar habitat selection for certain 

environmental conditions. For example, both G. agassizii and G. morafkai appear to have 

range limits defined by cold winter temperatures, and each can tolerate extreme summer 

temperatures through behavioral aestivation (Nussear and Tuberville 2014). Similarly, 

disturbed areas such as road, cities and other developed surfaces have consistent negative 

effects on habitat regardless of location. 

In contrast, I found differences in local habitat selection on characteristics such as 

summer and winter precipitation, terrain (e.g. slope and rockiness), soil (e.g. soil moisture 

and evapotranspiration) and vegetation (e.g. phenology and canopy growth). Differences 

in environmental conditions may drive local adaptation and help maintain population 

structure of genotypes for G. agassizii and G. morafkai. Ongoing work suggests that 

genotypic structure within the Mojave population of desert tortoise (those west of the 

Colorado River) may be maintained by selective pressure on key genes from local 

environmental differences (T. Edwards, personal communication, February 2018). Such 
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environmental differences include a pronounced precipitation seasonality gradient across 

the combined ranges of G. agassizii and G. morafkai, with the most western regions 

exhibiting high winter (November to March) precipitation and few summer monsoonal 

storms, whereas eastern and southern areas are more prone to intense monsoonal storms 

but little winter precipitation. Local adaptation resulting in local habitat selection to these 

environmental characteristics may help maintain population structure and may provide an 

opportunity for selective pressure to result in speciation. My results with the genotype 

association index lend additional support for this hypothesis. Here, I found that the most 

parsimonious spatial model explaining the landscape pattern of genotype association was 

the two mapped categories (clusters) of habitat selection in the local species-environment 

parameter estimates rather than the Mojave and Sonoran ecoregions or the current 

geographic protection status of the two species. 

A novel SDM-MGWR coupled approach 

The use of local regression to explore non-stationarity in regression coefficients is 

not new to SDM but has had limited success given the widespread reliance on binary 

(presence-absence or presence-background) calibration data necessitating logistic GWR. 

Logistic GWR suffers from complete separation of response classes at fine spatial scales 

(Fotheringham et al. 2003), forcing models to use large bandwidths approximating global 

models (Miller 2012). This is especially problematic when calibration datasets exhibit 

extreme sampling bias. I avoided this problem by calibrating a MGWR model on the 

residuals of a pooled SDM for both taxa to explore local deviation in species-

environment relationships. Modeling residuals enables the use of Gaussian MGWR 

models and offers advantages for investigating non-stationarity in species-environment 
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relationships. By using SDM methods to create predictions of habitat potential, 

biogeographers can draw on the wealth of species occurrence data in biodiversity 

archives and SDM methods that have been developed over the past few decades (e.g. 

Phillips et al. 2006, Franklin 2010b, Elith and Leathwick 2015). These predictions can 

then be used to investigate non-stationarity with local regression tools such as MGWR.  

This coupled approach supports exploration of spatial non-stationarity within 

small regions of interest, which is necessary when computationally intensive MGWR 

models require extreme processing times due to their use of an iterative back-fitting 

algorithm to fit optimal bandwidth vectors (Fotheringham et al. 2017). Additionally, 

presence-background SDM methods assume that the entirety of a species’ range is 

sampled (Elith and Leathwick 2009, Franklin 2010a) and therefore local regression SDM 

would also need to include the entirety of a species’ range; this would require processing 

times on the order of months or more for large datasets. However, by using global SDM 

to create predictions for the entire range, MGWR can be used in a smaller subset of the 

species’ distribution to explore non-stationarity in deviations from these predictions, i.e. 

residuals.  

Importance for conservation  

Efforts to preserve biodiversity have placed new emphasis on quantifying and 

understanding geographic patterns in measures of biodiversity beyond simple taxonomic 

diversity. Understanding landscape patterns in phylogenetic diversity is especially 

important to conservation goals aimed at maximizing the resilience of the world’s 

biodiversity in the face of rapid global change (Legendre et al. 2005, Flynn et al. 2011) 

and identifying conditions where recent lineage divergence has contributed to local 
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differences in habitat selection that may aid in adapting to changing environments 

(Crandall et al. 2000, Moritz 2002, Ackerly et al. 2010). Identifying spatially structured 

variation in habitat association, coupled with an understanding of landscape genetics, is 

therefore important for predicting potential outcomes from land management 

conservation decisions (Whittaker et al. 2005, Ferrier and Drielsma 2010). Often, 

conservation priorities focus on hot spots (Myers et al. 2000, Naeem et al. 2012, Winter 

et al. 2013) delineated on the basis of taxonomic diversity (Myers et al. 2000, Ferrier et 

al. 2004), phylogenetic diversity (Crozier 1997, Helmus et al. 2007, Scoble and Lowe 

2010, Vandergast et al. 2013, Wood et al. 2013) or measures of evolutionary potential, 

such as sequence diversity (Tamura and Nei 1993) or divergence (Nei and Li 1979). 

However, the ability to compare these landscape measures of genetic diversity to 

landscape patterns of habitat selection (e.g. species-environment relationships) presents 

new opportunities to investigate the confluence of genetics and ecology in context of 

conservation biogeography. 

Conservation managers tasked as stewards of healthy and sustainable ecosystems 

often need recommendations for spatially-explicit information that supports management 

objectives. Lake Mead National Recreation Area, for example, is the agency responsible 

for stewardship of ~1.5 million acres of southern Nevada and northwest Arizona. Park 

managers need information on tortoise distributions and lineages in order to prioritize 

protection and restoration of tortoise habitat impacted by invasive weeds, fire, and road 

disturbance, recreation and development (Books and Esque 2002, Esque et al. 2010, 

Lovich et al. 2011). My work lends evidence that the current geographic boundary of the 

Mojave distinct population segment (Department of the Interior 1990) does not capture 
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the full extent of G. agassizii, and further suggests that local habitat use in and around the 

secondary contact zone may contribute to uniqueness of G. agassizii currently residing on 

the eastern side of the Colorado River. Protection and restoration of these areas would 

further park goals of managing and maintaining suitable tortoise habitat. 
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TABLES  

Table 4.1. Explanatory variable Descriptions. Names, abbreviations and general description of 18 explanatory variables considered for 
modeling the pooled distribution of two desert tortoises, Gopherus agassizii (Agassiz’s tortoise) and Gopherus morafkai (Morafkai’s 
tortoise). Explanatory variables spanned climate, physiographic, vegetation and surface hydrology environmental characteristics. 
Geographic mean and standard deviation are reported. 
 

Abbreviation Name Description Mean SD 

ST surface texture An index of apparent thermal inertia, the heat holding capacity of the surface 
substrate. 1.371 0.383 

SRF surface roughness Ratio of surface to planar area, calculated from dem. 1.018 0.031 

TPX topographic position 
index 

Index of surface drainage potential.  ln(a/tan(beta)),  where a: the area of the 
hillslope per unit contour length that drains through any point, tan(beta): the local 

surface topographic slope (delta vertical) / (delta horizontal). 
10.848 2.153 

SurfMat1 surface material 
index 1 

Component 1 from PCA of 5 emissivity and land surface temperature MODIS data 
products.  98.018 34.376 

SurfMat2 surface material 
index 2 

Component 2 from PCA of 5 emissivity and land surface temperature MODIS data 
products.  128.547 28.756 

SurfMat3 surface material 
index 3 

Component 3 from PCA of 5 emissivity and land surface temperature MODIS data 
products.  120.262 17.179 

TDIFF seasonal temperature 
difference TSMX - TWMN 21.384 2.686 

TSMX maximum summer 
temperature Maximum of average temperature of each month during summer season 300.678 4.857 

TWMN minimum winter 
temperature Minimum of average temperature for each month during winter season 279.290 4.433 

PCPwnt winter precipitation Total of monthly precipitation for winter months 182.678 146.38
8 

PCPsmRt seasonal precipitation 
difference 

(Summer Precipitation +Winter Precipitation)/(Summer precipitation -Winter 
precipitation) -0.306 0.268 

ETs summer 
evapotranspiration 

actual evapotranspiration for summer, is moisture limited and summed over all 
vegetation classes and also over all snow bands, mm  31.151 18.505 
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Abbreviation Name Description Mean SD 

ETdiff 
seasonal 

evapotranspiration 
difference 

seasonal in actual evapotranspiration for summer, is moisture limited and summed 
over all vegetation classes and also over all snow bands, mm  19.791 16.051 

SMCs summer soil moisture 
content 

summer soil moisture, mm (state, 1st day of month, summed across the three VIC 
soil layers)  201.090 65.713 

SMCdiff 
seasonal soil 

moisture content 
difference 

seasonal difference soil in moisture, mm (state, 1st day of month, summed across the 
three VIC soil layers)  1.982 23.920 

VEG1 vegetation index 1 Component 1 from PCA of 9 phonological vegetation layers  147.149   
VEG2 vegetation index 2 Component 2 from PCA of 9 phonological vegetation layers  131.959  
VEG3 vegetation index 3 Component 3 from PCA of 9 phonological vegetation layers  149.859   
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Table 4.2. Bandwidths and Effective Distances. Multiscale geographically weighted 
regression summary. Explanatory variable names, bandwidths (BW) and spatial scale 
(effective distances; km) are given along with the region of interest mean and standard 
deviation for each species of desert tortoise, Gopherus agassizii (Agassiz’s tortoise) and 
Gopherus morafkai (Morafkai’s tortoise). 
 

NAMES BW Effective Distance (km) 
SOIL2n 44 48.8 
SOIL3n 44 48.8 
CLIM1n 44 48.8 
VEG1n 137 86.2 
CLIM3n 2154 341.6 
PHYS2n 110 77.2 
VEG3n 183 99.6 
LU2n 2092 336.7 
PHYS1n 87 68.7 
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Table 4.3 Correlation to Genotype Association Index. Kendall’s rank correlation value 
for each local parameter surface of the multiscale geographically weighted regression 
model with the genotype association index. None of the local parameter surfaces showed 
correlations greater than 0.43, suggesting no direct relationship between any explanatory 
variables and the genotype association index. 
 

Variable Tau p 
SOIL2 0.169 p<0.001 
SOIL3 0.406 p<0.001 
VEG3n -0.411 p<0.001 
PHYS1 -0.437 p<0.001 
PHYS2 -0.030 p<0.001 
CLIM1 0.048 p<0.001 
CLIM3 0.065 p<0.001 
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Table 4.4. Spatial Model Summary. Spatial simultaneous autoregressive lag models were used to explain the spatial variation in the 
genotype association index. Each model used one of three explanatory variables and were compared with AIC. 
  

SSAR Lag Model DAIC AIC Rho Rho p Wald Statistic Wald p 
Mapped Cluster 0 -10121 0.98407 < 0.001 585320 < 0.001 

Ecoregion 37 -10084 0.98608 < 0.001 720030 < 0.001 
Geographic (taxonomic) 51 -10070 0.98777 < 0.001 872040 < 0.001 
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Table 4.5. Spatial Overlap between Geographic Clusters. Overlap between each mapped 
category (cluster) of habitat use with the 1) current geographic delineations between 
Gopherus agassizii (Agassiz’s desert tortoise) and Gopherus morafkai (Morafka’s desert 
tortoise), and 2) the Mojave and Sonoran Basin and Range U.S. EPA Level III 
Ecoregions. 
 

 Mojave Cluster % Sonoran Cluster % 
G. agassizii 
(geographic) 21,769 91.2 1,523 3.4 

G. morafkai 
(geographic) 2,091 8.8 42,956 96.6 

Mojave Ecoregion 22,215 93.1 4,818 10.8 
Sonoran Ecoregion 1,645 6.9 33,521 75.4 
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FIGURES 

 
 
Figure 4.1. Study Area. Study area used to create pooled-taxa species distribution models 
(light grey) and region of habitat for the two species of desert tortoise, Gopherus 
agassizii (Agassiz’s tortoise) and Gopherus morafkai (Morafkai’s tortoise) in dark grey. 
Smaller region of interest (black outline) for multiscale geographically weighted 
regression and genotype assessment. The Colorado River (blue) separates California and 
Arizona and creates the division between the two species of desert tortoise. A Distinct 
Population Segment defined as the Mojave population includes individuals located west 
of the Colorado River. 
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Figure 4.2. Habitat potential and MWGR Predictions. (A) Habitat potential resulting from 
the average of 6 pooled distribution models. (B) Local R2 from selected Multiscale 
Geographically Weighted Regression model of SDM residuals. (C) Standardized 
residuals from pooled distribution models, and (D) predicted y-hat values from selected 
Multiscale Geographically Weighted Regression model. The Colorado River (blue) 
separates California and Arizona and creates the division between the two species of 
desert tortoise. 
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Figure 4.3. Relationship between Habitat Potential and Local R2. Local R2 from selected 
Multiscale Geographically Weighted Regression model was highest for low and high 
values of habitat potential from the pooled distribution model. A spline regression line 
(blue) shown for emphasis of low local R2 values at mediocre habitat potential values.  
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Figure 4.4. Mapped Clusters of Local Habitat Use Parameters. Two categories (clusters) 
of habitat use identified from local parameter estimates of species-environment 
relationships. The Mojave cluster (dark grey) includes a region 40 km east of the 
Colorado River (blue) where Gopherus agassizii (Agassiz’s tortoise) individuals have 
been identified but are not protected under the US Endangered Species Act. The Sonoran 
cluster (light grey), includes a small region west of the Colorado River, though this area 
contains only marginal habitat.  
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CHAPTER 5 

CONCLUSIONS 

In the work presented here, I have investigated how sampling bias can degrade species 

distribution modelling (SDM), and in each chapter I have presented methods – some 

novel and new; others familiar and oft-used – to mitigate against biased observations. 

The three methods I contrast in Chapter 2 had not previously been systematically 

evaluated with a robust set of simulated species spanning generalist to specialist niche 

characteristics. The insight I have provided will benefit biogeographers and spatial 

ecologists investigating patterns of biodiversity, and those interested in conserving our 

planet’s biota. Researchers and practitioners in these fields have adopted SDM as a 

primary tool for quantifying the spatial configuration of biodiversity, and for uncovering 

the processes that have led to – and are changing – those patterns. The issue of sampling 

bias, then, has far reaching implications for understanding the biodiversity of our earth’s 

history and its future. This is more important than ever if humanity wishes to place some 

governance on the current loss of biodiversity that is ongoing and expected to worsen in 

years to come as our earth’s climate continues to be destabilized by anthropogenic 

activities. In Chapter 2, I have shown that even in the presence of low levels of bias, 

SDM results can be skewed, and that common methods to mitigate against bias did not 

improve the ability to correctly identify explanatory variables or recreate species-

environment relationships. The low levels of bias I used for the simulation studies in 

Chapter 2 were even lower than the lowest level of bias found in a survey of nine 

taxonomically diverse species occurring in the southwestern continental USA. Moreover, 

two of these species exhibited levels of geographic bias rivaling my most biased virtual 
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species. It seems that identifying true drivers of distributions may be difficult, at best. 

This is unfortunate since SDM can be used to infer niche characteristics from the 

explanatory variables and species-environment relationships identified during the 

calibration process. More often, however, studies using SDM are focused on the spatial 

predictions of habitat potential. When they do, bias correction methods become 

important: I found improvements in the accuracy of mapped predictions of habitat 

potential with the easily implemented FactorBiasOut method for Maxent (Phillips et al. 

2006) software. The insight I have provided about bias correction methods and their 

failure to improve niche variable selection and species-environment relationships further 

reinforces the need for SDM to be grounded in sound ecological theory prior to model 

calibration.  

While the bias correction methods I compare are most often used, they are not an 

exhaustive list of available techniques. I was unable to include some recent methods that 

use changes in model structure to statistically account for sampling bias by representing 

the variable of interest as a distribution conditional on latent processes (i.e. unmeasured 

factors affecting the response variable of interest; Wikle 2003). These process models 

estimate an unknown latent parameter (i.e. biased sampling distribution) from additional 

covariates that are believed to influence the response variable (Cressie et al. 2009). When 

cast in a Bayesian framework, these models assume that each process can be nested in a 

hierarchy and represented as a random variable modeled through posterior-predictive 

distributions (Banerjee et al. 2014). These models can also use additional covariates to 

model the underlying environmental sampling bias, such as sampling accessibility due to 

road proximity or land ownership (Gelfand et al. 2006). Due to logistical constraints, I 
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was unable to include these additional methods for incorporating sampling bias into 

SDM. Their use in SDM has been limited, with some authors implementing these 

methods as hierarchical Bayesian models (HBMs; e.g. Hooten et al. 2003, Gelfand et al. 

2006, Chakraborty et al. 2010, Aderhold et al. 2012, Hefley and Hooten 2016) with 

varying success. These HBMs have many theoretical benefits over other SDM methods, 

including the capacity to overcome the assumption of spatial independence by using a 

spatial random effects parameter modeled as conditionally dependent on its neighbors in 

a Conditional AutoRegressive specification (e.g. Besag et al. 1991). Another substantial 

benefit of the Bayesian approach is the clarity with which they can represent and quantify 

uncertainty in the modeling process (Cressie et al. 2009), which is often ignored in many 

implementations of SDMs (Rocchini et al. 2011). However, these methods are extremely 

computationally intensive and prohibitive for large datasets and species assemblies.  

Instead of using HBMs, I adopt a similar approach in Chapter 3 with a three stage 

statistical model of the theoretical biased sampling distribution in a paleoecological 

archive. This novel method represented the biased sampling distribution with a process 

model, but instead of estimating it as part of a nested hierarchical Bayesian model, I 

adapted the commonly used Maxent software to use background samples that I selected 

with a probability equal to that identified in my three stage statistical model of the bias in 

the Packrat midden archive. Here I found that estimates of paleo-distributions were 

improved, but that not all species were improved equally. Those with distributions more 

closely aligned to the hypothesized biased sampling distribution were improved the least, 

suggesting that this novel method may be less useful for correcting paleo-distribution of 

species like Coleogyne ramosissima, which are restricted to regions where fossilized 



 

 

127 

middens are most likely to occur. The benefit for numerous other species is improved 

estimates of historical habitat potential, which advances our understanding of how 

biodiversity patterns have changed in recent history.  

However, the analytical resolution of paleo-SDM is limited to the temporal 

resolution of available paleoclimate data. In Chapter 3, I used gridded climate 

reconstructions of the mid-Holocene because they are readily available for geographic 

analyses at 1 km resolution spatial scales; but they do not represent the temporal variation 

that has occurred since the start of the Holocene. Instead, these data (and many other 

modeled paleoclimate data) are the result of simulations run for limited time windows 

according to prescribed experimental protocols; the result is gridded climate data for 

periods such as the middle Pliocene (3.3 to 3.0 Ma), last interglacial (125 ka), last glacial 

maximum (21 ka), mid-Holocene (6 ka), and last millennium (Braconnot et al. 2012). 

The periods between these prescribed windows of analysis contain immense biological 

change in our earth’s history, and efforts to model and reconstruct climate at finer time 

slices (e.g. Lorenz et al. 2016, Fordham et al. 2017) offer an exciting opportunity 

leverage paleo-SDM and the wealth of paleoecological archives for exploring the 

biodiversity of our earth’s history.  

The results from chapter 4 shed light on two taxa that diverged approximately 6 

mya due to geographic isolation by the Bouse embayment resulting in allopatric 

speciation (Murphy et al. 2011). Conservation of desert tortoises is particularly important 

to federal agencies, especially because the Mojave desert tortoise (Gopherus agassizii) is 

protected under the US federal Endangered Species Act (ESA) while its sister species, the 

Sonoran desert tortoise (Gopherus morafkai), is not. Hybridization between the two 
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species is evident, yet land managers have little guidance on how to protect hybrids or G. 

agassizii in the secondary contact zone. If additional populations of G. agassizii and 

hybrids in Arizona are given formal protection under the ESA (i.e. “listed”), land 

managers would likely be tasked with new habitat conservation goals. I explore local 

differences in present-day habitat use and niche separation between these two species and 

find spatial patterns of habitat use that match genotypic differences between the species; 

lending further evidence that individuals in Arizona need unique habitat protection.  

This novel work has also shown how multiscale geographically weighted 

regression (MGWR) can be used to identify natural groupings in mapped habitat-use 

parameters, and that these groupings can be tied back to genetic differences resulting 

from allopatric speciation. Chapter 4 also demonstrates a key advantage of MGWR over 

classical GWR, that of unique bandwidths for each model covariate. Bandwidths, in 

conjunction with adaptive spatial kernels, determine how nearby observations are given 

higher weights than more distance ones (Fotheringham et al. 2003). Large bandwidths 

approximate global functions, while small bandwidths result in highly local functions. 

Some ecologists have struggled with the concept of spatial non-stationarity, because 

many patterns observed in ecology are assumed to be the result of biophysical processes, 

which are by definition, stationary due to their foundation in first principles (e.g. an 

organism’s thermodynamic exchange with its proximal environment; Porter and Gates 

1969). These relationships (such as an organism’s rate of water loss) are governed by 

physical properties such as an organism's size, shape, solar reflectance, insulation, 

metabolic rate and so forth, and do not vary as a function of an individual’s location on 

the landscape. With MGWR, these global relationships can remain fixed across 
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geographic space, while other parameters exhibiting spatial non-stationarity can become 

locally different; such as the preference for sandy soils or alluvial fans that I have 

explored in Chapter 4.  

The work presented in this dissertation contributes to our broader understanding 

of spatial and ecological theory by building on the diverse fields of quantitative 

geography, macro- and evolutionary-ecology and conservation biology, motivated by 

improving our understanding of geographic distributions and environmental niches of 

desert adapted species of conservation concern. The contributions made here will not 

only benefit the conservation of these unique desert adapted organisms but will also 

benefit the broad fields of spatial ecology, paleobiogeography, landscape ecology and 

conservation biogeography by contributing new insights on how sampling bias affects 

SDM.  
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APPENDIX A (2.1) 

MAPPED ENVIRONMENTAL EXPLANATORY VARIABLES 
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APPENDIX B (2.2) 

EXAMPLE RESPONSE CURVE 
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164 
True (solid) and estimated (dashed) response curve for an example explanatory variable 
for a simulated species. Pearson’s correlation between the two provided measure of how 
well the true response curve was estimates.  
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APPENDIX C (2.3) 

GEOGRAPHIC BIODIVERSITY INFORMATION FACILITY OBSERVATIONS 
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Anaxyrus punctatus:   GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.bxxybz 

Artemisia tridentate:   GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.2tnmpa 

Chaetodipus penicillatus:   GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.nqlsfu 

Chionactis occipitalis: GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.8p812c 

Larea tridentate: GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.zcsgdw 

Perognathus longimembris: GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.qvxeea 

Quercus gambelii: GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.jwoiop 

Sceloporus magister:  GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.zqohri 

Toxostoma crissale:   GBIF.org (21st February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.l6n3rz 
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APPENDIX D (3.1) 

ENVIRONMENTAL DATA REPRESENTING PRESENT-DAY AND EARLY/MID 

HOLOCENE CONDITIONS 
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Abbreviation Name Description Source 

BIO12n Annual 
Precipitation 

Annual cumulative 
precipition 

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. 
Jones and A. Jarvis, 2005. Very high 
resolution interpolated climate surfaces for 
global land areas. International Journal of 
Climatology 25: 1965-1978.  

BIO14n 
Precipitation 
of Driest 
Month 

Precipitation of 
Driest Month 

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. 
Jones and A. Jarvis, 2005. Very high 
resolution interpolated climate surfaces for 
global land areas. International Journal of 
Climatology 25: 1965-1978.  

BIO2n Mean Diurnal 
Range  

(Mean of monthly 
(max temp - min 

temp)) 

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. 
Jones and A. Jarvis, 2005. Very high 
resolution interpolated climate surfaces for 
global land areas. International Journal of 
Climatology 25: 1965-1978.  

BIO3n Isothermality  (BIO2/BIO7) (* 100) 

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. 
Jones and A. Jarvis, 2005. Very high 
resolution interpolated climate surfaces for 
global land areas. International Journal of 
Climatology 25: 1965-1978.  

BIO6n 

Min 
Temperature 
of Coldest 
Month 

Min Temperature of 
Coldest Month 

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. 
Jones and A. Jarvis, 2005. Very high 
resolution interpolated climate surfaces for 
global land areas. International Journal of 
Climatology 25: 1965-1978.  

fGEOL Geologic 
Units  

Bedrock geologic 
map units of the 

conterminous United 
States  

Schruben, Paul G., Arndt, Raymond E., 
Bawiec, Walter J., King, Philip B., and 
Beikman, Helen M., 1994, Geology of the 
Conterminous United States at 1:2,500,000 
Scale -- A Digital Representation of the 1974 
P.B. King and H.M. Beikman Map: U.S. 
Geological Survey Digital Data Series DDS-
11, U.S. Geological Survey, Reston, VA. 
https://pubs.usgs.gov/dds/dds11/ 

fLITH Surficial 
Lithology 

A new classification 
of the lithology of 

surficial materials to 
be used in creating 

maps depicting 
standardized, 

terrestrial ecosystem 
models for the 

conterminous United 
States.  

Cress, Jill, Soller, David, Sayre, Roger, 
Comer, Patrick, and Warner, Harumi, 2010, 
Terrestrial ecosystems—Surficial lithology of 
the conterminous United States: U.S. 
Geological Survey Scientific Investigations 
Map 3126, scale 1:5,000,000, 1 sheet. 

PHYS1n 
Primary 
Physiographic 
Variable 

1st Component of 
Physiographic 

Variables PCA; 43% 
Variance 

Aspect, Apparent Thermal Inertia, Eastness, 
Horizon Angle, Albedo, Northness, Slope, 
Smoothness, Surface Roughness, Terrain 
Position Index PHYS2n 

Secondary 
Physiographic 
Variable 

2nd Component of 
Physiographic 

Variables PCA; 30% 
Variance 
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PHYS3n 
Tertiary 
Physiographic 
Variable 

3rd Component of 
Physiographic 

Variables PCA; 9% 
Variance 

SLR2n Secondary 
Solar Variable 

2nd Component of 
Solar Insolation 

Variables PCA; 17% 
Variance 

Mean Annual Beam Solar Insoltion, Mean 
Summer Diffuse Solar Insolation 

Raster data were compiled at a spatial scale of 1 km for present-day and the mid-
Holocene. Only climatic variables were assumed to have changed between periods. 
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APPENDIX E (3.2) 

GEOGRAPHIC BIODIVERSITY INFORMATION FACILITY OBSERVATIONS OF 

PRESENT-DAY CONDITIONS 
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Abies concolor: GBIF.org (9th February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.bjkxnk 

Artemisia tridentate: GBIF.org (9th February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.eql8i1 

Coleogyne ramosissima: GBIF.org (9th February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.yyx4ij 

Juniperus communis: GBIF.org (9th February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.1lqipx 

Pinus ponderosa: GBIF.org (9th February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.dtwshp 

Quercus gambelii: GBIF.org (9th February 2018) GBIF Occurrence 

Download https://doi.org/10.15468/dl.bahqyp 
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APPENDIX F (3.3) 

ENVIRONMENTAL DATA REPRESENTING PRESERVATION STATISTICAL 

MODEL 
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Abbreviation Name Description Source 

BIO12n Annual 
Precipitation 

Annual cumulative 
precipitation 

Hijmans, R.J., S.E. Cameron, J.L. 
Parra, P.G. Jones and A. Jarvis, 2005. 

Very high resolution interpolated 
climate surfaces for global land 
areas. International Journal of 
Climatology 25: 1965-1978.  

fGEOL Geologic 
Units  

Bedrock geologic map units of 
the conterminous United 

States  

Schruben, Paul G., Arndt, Raymond 
E., Bawiec, Walter J., King, Philip 
B., and Beikman, Helen M., 1994, 

Geology of the Conterminous United 
States at 1:2,500,000 Scale -- A 

Digital Representation of the 1974 
P.B. King and H.M. Beikman Map: 
U.S. Geological Survey Digital Data 

Series DDS-11, U.S. Geological 
Survey, Reston, VA. 

https://pubs.usgs.gov/dds/dds11/ 

fLANDF 
Land 
Surface 
Forms 

A biophysical stratification 
approach to classify surfaces 
with slope and local relief. 

Cress, J.J., Sayre, Roger, Comer, 
Patrick, and Warner, Harumi, 2009, 

Terrestrial Ecosystems—Land 
Surface Forms of the Conterminous 

United States: U.S. Geological 
Survey Scientific Investigations Map 

3085, scale 1:5,000,000, 1 sheet. 

fLITH Surficial 
Lithology 

A new classification of the 
lithology of surficial materials 

to be used in creating maps 
depicting standardized, 

terrestrial ecosystem models 
for the conterminous United 

States.  

Cress, Jill, Soller, David, Sayre, 
Roger, Comer, Patrick, and Warner, 

Harumi, 2010, Terrestrial 
ecosystems—Surficial lithology of 

the conterminous United States: U.S. 
Geological Survey Scientific 

Investigations Map 3126, scale 
1:5,000,000, 1 sheet. 

PHYS1n 
Primary 
Physiograph
ic Variable 

1st Component of 
Physiographic Variables PCA; 

43% Variance 

Aspect, Apparent Thermal Inertia, 
Eastness, Horizon Angle, Albedo, 

Northness, Slope, Smoothness, 
Surface Roughness, Terrain Position 

Index 
Raster data were compiled at a spatial scale of 1 km for the mid-Holocene.  
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APPENDIX G (3.4) 

SPATIAL PREDICTIONS OF EACH STATISTICAL MODEL USED TO 

REPRESENT s 
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Spatial predictions for the three statistical models (Availability, A; Preservation, B; 
Discovery, C) used to estimate s (D). Dashed line represents study area for paleo-SDM.  
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APPENDIX H (3.5) 

POLLEN SAMPLES FROM LAKE SEDIMENT CORES 
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ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Jiménez-Moreno, Gonzalo; Anderson, R Scott; Fawcett, Peter J (2017): 
CLAM age model and pollen profile of sediment core Bear_Lake. PANGAEA, 
https://doi.org/10.1594/PANGAEA.872848 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Allen, Judy R M; Anderson, R Scott; Behling, Hermann; Bonnefille, 
Raymonde; Cheddadi, Rachid; Combourieu-Nebout, Nathalie; Dupont, Lydie M; 
Fletcher, William J; González, Catalina; Grigg, Laurie D; Grimm, Eric C; Hayashi, 
Ryoma; Helmens, Karin F; Hessler, Ines; Heusser, Linda E; Hooghiemstra, Henry; 
Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie Fine; Jiménez-Moreno, 
Gonzalo; Kawai, Sayuri; Kumon, Fujio; Lawson, Ian T; Lebamba, Judicael; Ledru, 
Marie-Pierre; Lézine, Anne-Marie; Liew, Ping-Mei; Londeix, Laurent; López-Martinez, 
Constancia; Magri, Donatella; Maley, Jean; Margari, Vasiliki; Marret, Fabienne; Müller, 
Ulrich C; Naughton, Filipa; Novenko, Elena Y; Oba, Tadamichi; Roucoux, Katherine H; 
Takahara, Hikaru; Tzedakis, Polychronis C; Vincens, Annie; Whitlock, Cathy L; Willard, 
Debra A; Yamamoto, Masanobu (2017): CLAM age model and biomes of sediment core 
Bear_Lake. PANGAEA, https://doi.org/10.1594/PANGAEA.872779 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Pisias, Nicklas G; Mix, Alan C; Heusser, Linda E (2017): CLAM age model 
and pollen profile of sediment core W8709A-13. PANGAEA, 
https://doi.org/10.1594/PANGAEA.872919 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Grigg, Laurie D; Whitlock, Cathy L; Dean, Walter E (2017): CLAM age 
model and pollen profile of sediment core Little_Lake. PANGAEA, 
https://doi.org/10.1594/PANGAEA.872891 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Allen, Judy R M; Anderson, R Scott; Behling, Hermann; Bonnefille, 
Raymonde; Cheddadi, Rachid; Combourieu-Nebout, Nathalie; Dupont, Lydie M; 
Fletcher, William J; González, Catalina; Grigg, Laurie D; Grimm, Eric C; Hayashi, 
Ryoma; Helmens, Karin F; Hessler, Ines; Heusser, Linda E; Hooghiemstra, Henry; 
Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie Fine; Jiménez-Moreno, 
Gonzalo; Kawai, Sayuri; Kumon, Fujio; Lawson, Ian T; Lebamba, Judicael; Ledru, 
Marie-Pierre; Lézine, Anne-Marie; Liew, Ping-Mei; Londeix, Laurent; López-Martinez, 
Constancia; Magri, Donatella; Maley, Jean; Margari, Vasiliki; Marret, Fabienne; Müller, 
Ulrich C; Naughton, Filipa; Novenko, Elena Y; Oba, Tadamichi; Roucoux, Katherine H; 
Takahara, Hikaru; Tzedakis, Polychronis C; Vincens, Annie; Whitlock, Cathy L; Willard, 
Debra A; Yamamoto, Masanobu (2017): CLAM age model and biomes of sediment core 
Potato_Lake. PANGAEA, https://doi.org/10.1594/PANGAEA.872817 
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ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Heusser, Linda E (2017): CLAM age model and pollen profile of sediment 
core Rice_Lake_81. PANGAEA, https://doi.org/10.1594/PANGAEA.872909 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Heusser, Linda E (2017): CLAM age model and pollen profile of sediment 
core 146-893A. PANGAEA, https://doi.org/10.1594/PANGAEA.872839 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Jacobs, Bonnie Fine (2017): CLAM age model and pollen profile of 
sediment core Hay_Lake. PANGAEA, https://doi.org/10.1594/PANGAEA.872866 
 
ACER project members; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Daniau, 
Anne-Laure; Anderson, R Scott (2017): CLAM age model and pollen profile of sediment 
core Potato_Lake. PANGAEA, https://doi.org/10.1594/PANGAEA.872907 
 
Kennett, Douglas J; Kennett, James P; West, G J; Erlandson, Jon M; Johnson, John R; 
Hendy, Ingrid L; West, A; Culleton, B J; Jones, T L; Stafford, Thomas W (2008): Age 
determination, carbon geochemistry and palynology of section AC003. PANGAEA, 
https://doi.org/10.1594/PANGAEA.817597, Supplement to: Kennett, DJ et al. (2008): 
Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the 
Ållerød-Younger Dryas boundary (13.0-12.9ka). Quaternary Science Reviews, 27(27-
28), 2530-2545, https://doi.org/10.1016/j.quascirev.2008.09.006 
 
Kennett, Douglas J; Kennett, James P; West, G J; Erlandson, Jon M; Johnson, John R; 
Hendy, Ingrid L; West, A; Culleton, B J; Jones, T L; Stafford, Thomas W (2008): (Table 
5) Palynology of section AC-003 samples. PANGAEA, 
https://doi.org/10.1594/PANGAEA.817596, In supplement to: Kennett, DJ et al. (2008): 
Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the 
Ållerød-Younger Dryas boundary (13.0-12.9ka). Quaternary Science Reviews, 27(27-
28), 2530-2545, https://doi.org/10.1016/j.quascirev.2008.09.006 
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APPENDIX I (3.6) 

OVERLAP AMONG PALEO-DISTRIBUTIONS 
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Abies concolor Hindcast s-naïve  s-standard  s-modeled 
Hindcast 1 0.177 0.212 0.456 
s-naïve    1 0.398 0.228 
s-standard    19.5% 1 0.279 
s-modeled   156.9%   1 

     
Artemisia tridentata Hindcast s-naïve  s-standard  s-modeled 

Hindcast 1 0.247 0.314 0.434 
s-naïve    1 0.448 0.309 
s-standard    26.9% 1 0.362 
s-modeled   75.5%   1 

     
Coleogyne ramosissima Hindcast s-naïve  s-standard  s-modeled 

Hindcast 1 0.322 0.409 0.406 
s-naïve    1 0.388 0.304 
s-standard    27.0% 1 0.359 
s-modeled   25.9%   1 

     
Juniperus communis Hindcast s-naïve  s-standard  s-modeled 

Hindcast 1 0.196 0.306 0.483 
s-naïve    1 0.381 0.266 
s-standard    56.0% 1 0.397 
s-modeled   146.0%   1 

     
Pinus ponderosa Hindcast s-naïve  s-standard  s-modeled 

Hindcast 1 0.272 0.333 0.586 
s-naïve    1 0.437 0.292 
s-standard    22.2% 1 0.363 
s-modeled   115.1%   1 

     
Quercus gambelii Hindcast s-naïve  s-standard  s-modeled 

Hindcast 1 0.362 0.372 0.461 
s-naïve    1 0.560 0.561 
s-standard    2.8% 1 0.602 
s-modeled   27.5%   1 

Overlap (ESP) scores among each of the paleo-distributions shows that the s-modeled 
method resulted in the highest agreement to the assumed true paleo-distributions 
(hindcast). Percent improvement scores shown in lower right section. 
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APPENDIX J (4.1) 

PRINCIPLE COMPONENT SCORES AND LOADINGS FOR PHYSIOGRAPHIC, 

CLIMATIC, SOILS AND VEGETATION EXPLANATORY VARIABLES. 
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Climate PCA loadings. 
Name PCA % Importance Eigen values PCPsmRt PCPsm TDIFF TSMX PCPwnt TWMN 

CLIM1 PC1 50.78 3.05 0.2479 -0.4934 0.361 0.4784 -0.5141 0.2677 
CLIM2 PC2 25.30 1.52 -0.6392 0.3412 -0.0696 0.3873 -0.0299 0.5651 
CLIM3 PC3 17.32 1.04 -0.3196 0.2186 0.7469 0.1655 0.0478 -0.5125 
CLIM4 PC4 5.87 0.35 0.4687 0.1382 0.213 0.3638 0.7177 0.2616 
CLIM5 PC5 0.74 0.04 0.4563 0.7572 0.0126 0.0224 -0.4663 0.0204 
CLIM6 PC6 0.00 0.00 -0.0017 -0.0006 0.5114 -0.6789 0.0016 0.5269 
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Physiographic PCA loadings 

Name PCA % Importance Eigen values Eastness Northness North Slope Slope Rockiness Horizon 
Angle TPX Solar 

Insolation 
PHYS1 PC1 37.35 2.99 -0.0273 0.1154 0.1067 0.5305 0.5412 0.4147 -0.3738 -0.2975 
PHYS2 PC2 25.99 2.08 -0.0469 -0.5481 -0.6234 0.1679 0.1641 0.0837 -0.1514 0.4729 
PHYS3 PC3 12.49 1.00 0.9915 0.0102 -0.0192 0.0349 0.0275 -0.064 -0.0921 0.0446 
PHYS4 PC4 10.42 0.83 0.1172 -0.1916 -0.0887 -0.052 0.0141 0.6295 0.7095 -0.198 
PHYS5 PC5 6.28 0.50 0.0131 -0.7527 0.21 -0.0454 -0.0618 -0.228 -0.1351 -0.5596 
PHYS6 PC6 3.96 0.32 0.0133 0.0093 -0.0655 -0.4852 -0.3595 0.5664 -0.5541 -0.0547 
PHYS7 PC7 2.95 0.24 0.0018 -0.2878 0.737 0.0387 0.0386 0.2013 -0.002 0.5748 
PHYS8 PC8 0.53 0.05 0.0013 0.0029 -0.0099 0.6689 -0.738 0.0861 -0.0165 -0.0115 
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Vegetation PCA loadings 

Name PCA % Importance Eigen values AMP DUR EOSN EOST MAXN MAXT SOSN SOST TIN 
VEG1 PC1 46.88 4.22 0.3915 -0.1088 0.4121 0.1989 0.4617 0.2231 0.4049 0.2269 0.3836 
VEG2 PC2 29.48 2.65 -0.1774 0.276 -0.1372 0.5361 -0.1784 0.5157 -0.137 0.507 -0.1117 
VEG3 PC3 12.02 1.08 -0.4493 0.3485 0.4575 -0.0801 0.0866 0.0317 0.4808 -0.111 -0.4571 
VEG4 PC4 9.35 0.84 0.2053 0.8532 -0.0685 0.074 0.0421 -0.1554 -0.0786 -0.2617 0.3453 
VEG5 PC5 1.23 0.11 0.1179 0.1262 -0.115 -0.6683 0.0926 0.7015 -0.0771 -0.0578 -0.0185 
VEG6 PC6 0.57 0.05 0.2176 0.2146 -0.0282 -0.3508 0.1918 -0.3978 -0.0891 0.7102 -0.2746 
VEG7 PC7 0.41 0.04 -0.5574 -0.0009 0.1011 -0.2889 -0.2243 -0.0834 0.0802 0.3113 0.6596 
VEG8 PC8 0.04 0.00 -0.3397 -0.022 0.2768 0.066 0.6006 0.0117 -0.6603 -0.076 0.0212 
VEG9 PC9 0.02 0.00 0.2896 0.012 0.7046 -0.0603 -0.5379 0.0402 -0.3515 0.0169 -0.0328 
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APPENDIX K (4.2) 

TOP 100 CANDIDATE MODELS FOR GLOBAL POOLED SDM 
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Model Name & Explanatory Variables nCoeff nTerms nVariables nTrain nTest UBREave UBREcv AUCave AUCcv RMSEave RMSEcv MXEave MXEcv 
sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 91 10 10 930 398 -0.070 48.125 0.848 2.054 0.390 3.227 0.463 5.768 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG

1n_VEG2n 100 11 11 930 398 -0.071 48.006 0.848 2.092 0.390 3.210 0.463 5.734 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n
_VEG3n 100 11 11 930 398 -0.069 49.123 0.848 1.989 0.390 3.204 0.463 5.688 

sSRFn_TPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmr
n_VEG1n_VEG2n 109 12 12 930 398 -0.075 45.238 0.850 2.027 0.389 3.274 0.464 5.883 

sSRFn_TPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_
VEG2n 100 11 11 930 398 -0.074 45.214 0.849 1.977 0.389 3.252 0.465 5.781 

sSRFn_TPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmr
n_VEG1n_VEG2n_VEG3n 118 13 13 930 398 -0.074 45.880 0.849 1.915 0.390 3.192 0.466 5.736 

sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.068 49.416 0.846 2.152 0.391 3.266 0.464 5.844 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG

1n_VEG2n_VEG3n 109 12 12 930 398 -0.070 48.689 0.848 2.029 0.391 3.200 0.464 5.691 

sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.066 51.150 0.848 2.111 0.391 3.273 0.464 5.692 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG

2n 91 10 10 930 398 -0.066 51.553 0.846 2.170 0.391 3.298 0.464 5.801 

sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n_VEG3
n 91 10 10 930 398 -0.066 50.550 0.846 2.154 0.391 3.256 0.465 5.795 

sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VE
G2n 91 10 10 930 398 -0.069 49.630 0.846 2.135 0.391 3.221 0.465 5.739 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n 82 9 9 930 398 -0.069 49.366 0.845 2.131 0.391 3.253 0.465 5.820 
sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 91 10 10 930 398 -0.067 50.602 0.847 2.132 0.391 3.253 0.465 5.770 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n 91 10 10 930 398 -0.066 53.225 0.846 2.141 0.391 3.221 0.465 5.688 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n 82 9 9 930 398 -0.066 51.952 0.846 2.103 0.391 3.251 0.465 5.810 
sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n 82 9 9 930 398 -0.066 52.999 0.846 2.094 0.391 3.208 0.465 5.589 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG
1n 91 10 10 930 398 -0.069 49.292 0.845 2.108 0.391 3.204 0.465 5.653 

sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_V
EG2n 100 11 11 930 398 -0.062 52.918 0.846 2.157 0.392 3.307 0.465 5.715 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n
_VEG3n 100 11 11 930 398 -0.066 54.141 0.846 2.136 0.392 3.199 0.465 5.568 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n_VEG3n 91 10 10 930 398 -0.065 54.387 0.846 2.125 0.392 3.261 0.465 5.681 
sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VE

G2n_VEG3n 100 11 11 930 398 -0.067 50.595 0.846 2.129 0.391 3.218 0.465 5.788 

sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n_VEG3n 91 10 10 930 398 -0.065 51.832 0.847 2.114 0.391 3.307 0.465 5.744 
sSRFn_TPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_

VEG2n_VEG3n 109 12 12 930 398 -0.072 46.270 0.849 1.961 0.390 3.273 0.465 5.840 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG
2n_VEG3n 100 11 11 930 398 -0.064 53.010 0.846 2.168 0.392 3.288 0.465 5.768 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG3n 91 10 10 930 398 -0.067 50.407 0.845 2.112 0.392 3.250 0.465 5.773 
sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n

_VEG3n 100 11 11 930 398 -0.066 51.597 0.847 2.146 0.392 3.279 0.465 5.770 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG
1n_VEG3n 100 11 11 930 398 -0.068 50.149 0.845 2.117 0.392 3.225 0.466 5.749 

sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n 82 9 9 930 398 -0.065 54.208 0.845 2.252 0.392 3.302 0.466 5.920 
sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n 73 8 8 930 398 -0.067 50.389 0.843 2.240 0.392 3.321 0.466 5.909 

sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VE
G2n 100 11 11 930 398 -0.069 45.848 0.847 2.052 0.391 3.186 0.466 5.480 

sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n 73 8 8 930 398 -0.064 53.917 0.844 2.218 0.392 3.271 0.466 5.779 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn 82 9 9 930 398 -0.065 52.526 0.844 2.221 0.392 3.219 0.466 5.530 

sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n 82 9 9 930 398 -0.067 50.805 0.843 2.214 0.392 3.243 0.466 5.785 
sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n 82 9 9 930 398 -0.063 55.225 0.846 2.125 0.392 3.157 0.466 5.542 

sSRFn_TPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmr
n_VEG1n 100 11 11 930 398 -0.074 45.816 0.848 2.056 0.390 3.242 0.466 5.860 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n_VEG3n 91 10 10 930 398 -0.064 53.705 0.845 2.115 0.392 3.261 0.466 5.665 
sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n_VEG

3n 91 10 10 930 398 -0.063 55.334 0.844 2.293 0.392 3.342 0.466 5.856 

sSTn_TPXn_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 91 10 10 930 398 -0.061 53.985 0.845 2.107 0.392 3.294 0.466 5.670 
sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn 73 8 8 930 398 -0.064 53.253 0.844 2.206 0.392 3.264 0.466 5.711 
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Model Name & Explanatory Variables nCoeff nTerms nVariables nTrain nTest UBREave UBREcv AUCave AUCcv RMSEave RMSEcv MXEave MXEcv 
sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_V

EG1n_VEG2n_VEG3n 109 12 12 930 398 -0.061 54.344 0.845 2.179 0.392 3.402 0.466 5.866 

sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n 82 9 9 930 398 -0.062 53.938 0.845 2.240 0.392 3.301 0.466 5.669 
sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n 73 8 8 930 398 -0.065 53.499 0.843 2.153 0.392 3.228 0.466 5.643 

sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n 73 8 8 930 398 -0.062 56.628 0.846 2.087 0.392 3.169 0.466 5.516 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG2n 82 9 9 930 398 -0.062 57.473 0.844 2.247 0.392 3.233 0.466 5.646 

sTPXn_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.061 54.733 0.845 2.219 0.392 3.324 0.466 5.675 
sSRFn_TPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_

VEG1n 91 10 10 930 398 -0.073 45.779 0.847 2.051 0.390 3.277 0.466 5.879 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG2n 73 8 8 930 398 -0.061 57.921 0.844 2.231 0.392 3.279 0.467 5.725 
sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n_VEG3n 82 9 9 930 398 -0.063 55.150 0.844 2.203 0.392 3.248 0.467 5.652 
sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n 82 9 9 930 398 -0.064 52.728 0.845 2.147 0.392 3.210 0.467 5.583 
sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n_V

EG3n 91 10 10 930 398 -0.062 56.749 0.846 2.145 0.392 3.191 0.467 5.552 

sSTn_TPXn_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG
2n 91 10 10 930 398 -0.061 55.110 0.845 2.221 0.393 3.338 0.467 5.762 

sTPXn_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n
_VEG2n 91 10 10 930 398 -0.061 55.518 0.845 2.196 0.392 3.325 0.467 5.699 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n 82 9 9 930 398 -0.066 53.126 0.844 2.178 0.392 3.198 0.467 5.581 
sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG3n 82 9 9 930 398 -0.064 54.833 0.843 2.190 0.393 3.276 0.467 5.677 

sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCsmrn_VEG1n_VEG
2n 91 10 10 930 398 -0.063 50.085 0.846 2.050 0.392 3.128 0.467 5.541 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n
_VEG3n 91 10 10 930 398 -0.065 54.792 0.843 2.233 0.393 3.281 0.467 5.707 

sSTn_TPXn_SurfMat2n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2
n 91 10 10 930 398 -0.068 46.449 0.847 2.151 0.391 3.195 0.467 5.506 

sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG3
n 82 9 9 930 398 -0.065 51.511 0.843 2.171 0.392 3.258 0.467 5.780 

sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n 73 8 8 930 398 -0.061 54.908 0.845 2.179 0.392 3.307 0.467 5.708 
sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n_VEG2n_VEG3n 82 9 9 930 398 -0.061 57.573 0.845 2.097 0.393 3.203 0.467 5.536 

sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n 73 8 8 930 398 -0.064 53.569 0.845 2.168 0.392 3.280 0.467 5.674 
sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n 64 7 7 930 398 -0.064 54.683 0.841 2.305 0.393 3.308 0.467 5.816 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG
1n_VEG2n 91 10 10 930 398 -0.065 51.670 0.846 2.066 0.392 3.056 0.467 5.653 

sSTn_TPXn_SurfMat2n_TDIFFn_TSMXn_PCPsmwtRtn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.062 50.909 0.846 2.145 0.392 3.123 0.467 5.467 
sTPXn_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n_V

EG3n 91 10 10 930 398 -0.060 56.611 0.845 2.221 0.392 3.351 0.467 5.698 

sSRFn_TPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_
VEG1n_VEG3n 100 11 11 930 398 -0.071 46.679 0.847 2.022 0.391 3.299 0.467 5.924 

sTPXn_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.059 56.404 0.845 2.169 0.392 3.329 0.467 5.695 
sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VE

G1n_VEG3n 91 10 10 930 398 -0.066 51.768 0.843 2.211 0.393 3.267 0.467 5.786 

sTPXn_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 73 8 8 930 398 -0.060 55.767 0.845 2.208 0.392 3.351 0.467 5.719 
sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VE

G1n_VEG2n_VEG3n 109 12 12 930 398 -0.068 47.444 0.846 2.079 0.391 3.195 0.467 5.507 

sSurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n 73 8 8 930 398 -0.061 55.485 0.843 2.195 0.393 3.250 0.467 5.714 
sSTn_TPXn_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG

2n_VEG3n 100 11 11 930 398 -0.060 55.212 0.845 2.122 0.393 3.335 0.467 5.773 

sTPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_
VEG2n 91 10 10 930 398 -0.068 47.938 0.846 2.079 0.391 3.171 0.467 5.407 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG2n
_VEG3n 91 10 10 930 398 -0.060 59.385 0.844 2.311 0.393 3.276 0.467 5.695 

sSTn_TPXn_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG
2n_VEG3n 100 11 11 930 398 -0.059 56.666 0.845 2.249 0.393 3.419 0.467 5.832 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG2n_VEG3n 82 9 9 930 398 -0.059 59.649 0.843 2.214 0.393 3.229 0.467 5.615 
sTPXn_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.068 47.594 0.846 2.129 0.391 3.240 0.467 5.555 

sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n
_VEG3n 91 10 10 930 398 -0.063 53.631 0.844 2.243 0.393 3.342 0.467 5.817 

sTPXn_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 73 8 8 930 398 -0.066 48.245 0.846 2.150 0.391 3.263 0.467 5.561 
sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG3n 82 9 9 930 398 -0.062 54.610 0.844 2.209 0.393 3.358 0.467 5.782 

sSTn_TPXn_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2
n 91 10 10 930 398 -0.067 48.519 0.846 2.104 0.391 3.268 0.467 5.562 

sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn 73 8 8 930 398 -0.061 57.659 0.842 2.321 0.393 3.214 0.467 5.554 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG

1n_VEG2n_VEG3n 100 11 11 930 398 -0.064 52.774 0.846 2.043 0.392 3.074 0.467 5.679 

sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_VEG1n 73 8 8 930 398 -0.064 54.754 0.841 2.367 0.393 3.377 0.467 6.031 
sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VE

G2n 91 10 10 930 398 -0.063 50.445 0.845 2.084 0.392 3.249 0.468 5.503 

sTPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn 64 7 7 930 398 -0.061 58.434 0.842 2.233 0.393 3.173 0.468 5.406 
sSTn_TPXn_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.066 48.663 0.846 2.190 0.391 3.331 0.468 5.678 

sTPXn_SurfMat1n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n
_VEG3n 91 10 10 930 398 -0.060 55.661 0.844 2.271 0.393 3.344 0.468 5.752 



 

 

188 

Model Name & Explanatory Variables nCoeff nTerms nVariables nTrain nTest UBREave UBREcv AUCave AUCcv RMSEave RMSEcv MXEave MXEcv 
sSRFn_TPXn_SurfMat1n_SurfMat2n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_

VEG2n 91 10 10 930 398 -0.070 47.983 0.848 2.037 0.390 3.332 0.468 6.207 

sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_V
EG1n 91 10 10 930 398 -0.060 54.867 0.843 2.211 0.393 3.305 0.468 5.700 

sTPXn_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n
_VEG2n_VEG3n 100 11 11 930 398 -0.059 57.265 0.844 2.171 0.393 3.328 0.468 5.685 

sTPXn_SurfMat1n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG2n_VEG3n 82 9 9 930 398 -0.059 57.073 0.844 2.208 0.393 3.274 0.468 5.646 
sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VE

G1n 91 10 10 930 398 -0.069 46.281 0.845 2.112 0.392 3.250 0.468 5.541 

sSTn_TPXn_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n_VEG2n 82 9 9 930 398 -0.059 56.249 0.845 2.253 0.393 3.373 0.468 5.788 
sSurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VE

G2n_VEG3n 91 10 10 930 398 -0.059 57.318 0.842 2.271 0.393 3.294 0.468 5.785 

sTPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCdiffn_SMCsmrn_VEG1n 82 9 9 930 398 -0.068 47.848 0.844 2.090 0.391 3.205 0.468 5.497 
sTPXn_SurfMat1n_SurfMat2n_SurfMat3n_TDIFFn_TWMNn_PCPsmwtRtn_SMCdiffn_SMCs

mrn_VEG3n 91 10 10 930 398 -0.063 54.141 0.843 2.269 0.393 3.326 0.468 5.758 

sSTn_TPXn_SurfMat2n_SurfMat3n_TDIFFn_TSMXn_PCPsmwtRtn_SMCsmrn_VEG1n_VEG
2n_VEG3n 100 11 11 930 398 -0.061 52.380 0.845 2.040 0.392 3.108 0.468 5.535 
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APPENDIX L (4.3) 

TOP 100 OLS MODELS EXPLAINING RESIDUALS FROM POOLED SDM 

 



 

 

Model Name: Explanatory Variables nCoeff Deviance nullDeviance AIC BIC R2 maxVIF 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 19 154.922 221.762 481.528 595.048 0.301 5.038502 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 16 156.668 221.762 499.687 596.180 0.294 4.452492 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 16 156.751 221.762 500.835 597.327 0.293 4.802353 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 18 155.753 221.762 491.062 598.906 0.298 5.028685 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 15 157.478 221.762 508.808 599.625 0.290 4.440763 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 21 154.173 221.762 475.079 599.951 0.305 5.302458 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 20 154.852 221.762 482.547 601.743 0.302 5.283595 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 20 154.866 221.762 482.742 601.938 0.302 6.410887 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 21 154.673 221.762 482.063 606.935 0.303 6.946181 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 18 155.806 221.762 491.786 599.630 0.297 4.684349 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 17 156.364 221.762 497.506 599.674 0.295 5.03245 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 15 157.547 221.762 509.751 600.567 0.290 4.793397 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 17 156.463 221.762 498.861 601.029 0.294 4.663756 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 16 157.035 221.762 504.728 601.220 0.292 5.025987 
SurfMat2n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 14 158.177 221.762 516.353 601.493 0.287 3.845897 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 13 158.796 221.762 522.776 602.240 0.284 4.277122 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 14 158.259 221.762 517.475 602.615 0.286 4.455256 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 20 154.917 221.762 483.454 602.651 0.301 5.173315 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 20 154.922 221.762 483.519 602.715 0.301 5.17715 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 17 156.604 221.762 500.807 602.975 0.294 6.181493 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 17 156.656 221.762 501.520 603.688 0.294 4.555803 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 13 158.907 221.762 524.287 603.752 0.283 4.448015 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 17 156.664 221.762 501.635 603.803 0.294 4.581585 
SurfMat2n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 11 160.092 221.762 536.305 604.417 0.278 3.68583 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 18 156.163 221.762 496.726 604.570 0.296 5.043904 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 18 156.167 221.762 496.781 604.625 0.296 5.229518 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 17 156.746 221.762 502.754 604.922 0.293 4.93181 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 17 156.751 221.762 502.832 605.000 0.293 4.938606 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 19 155.647 221.762 491.591 605.112 0.298 6.321409 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 19 155.648 221.762 491.608 605.128 0.298 5.240826 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 12 159.589 221.762 531.521 605.309 0.280 4.268156 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 19 155.678 221.762 492.022 605.542 0.298 6.755709 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 16 157.362 221.762 509.216 605.708 0.290 6.095116 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 15 157.926 221.762 514.934 605.751 0.288 4.620415 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 17 156.823 221.762 503.822 605.990 0.293 5.026148 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 18 156.267 221.762 498.157 606.001 0.295 6.643892 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 19 155.741 221.762 492.890 606.410 0.298 5.159331 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 19 155.751 221.762 493.026 606.546 0.298 5.161699 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 16 157.430 221.762 510.150 606.642 0.290 4.681774 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 16 157.457 221.762 510.518 607.010 0.290 4.561585 
ns(PHYS1n, 2) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 19 155.793 221.762 493.606 607.126 0.297 4.790131 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 19 155.794 221.762 493.625 607.145 0.297 4.787478 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 16 157.471 221.762 510.707 607.199 0.290 4.542199 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 18 156.363 221.762 499.486 607.330 0.295 5.16955 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 18 156.364 221.762 499.496 607.340 0.295 5.148982 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 16 157.538 221.762 511.621 608.113 0.290 4.92228 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 16 157.543 221.762 511.701 608.193 0.290 4.921556 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 15 158.126 221.762 517.663 608.479 0.287 4.483039 
ns(PHYS1n, 2) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 18 156.454 221.762 500.744 608.588 0.294 4.766959 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 18 156.461 221.762 500.835 608.680 0.294 4.759726 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 17 157.021 221.762 506.543 608.711 0.292 5.156612 
SurfMat2n + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 15 158.144 221.762 517.900 608.716 0.287 6.548641 
SurfMat2n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 15 158.145 221.762 517.913 608.729 0.287 3.943095 
SurfMat2n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 16 157.587 221.762 512.293 608.785 0.289 4.033159 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 17 157.035 221.762 506.727 608.896 0.292 5.141185 
SurfMat2n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 15 158.158 221.762 518.097 608.913 0.287 3.957263 
PHYS3n + SurfMat2n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 15 158.177 221.762 518.347 609.163 0.287 3.934755 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 21 154.848 221.762 484.498 609.371 0.302 5.388698 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 21 154.849 221.762 484.508 609.380 0.302 5.419798 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 14 158.772 221.762 524.443 609.584 0.284 4.366355 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 14 158.784 221.762 524.617 609.757 0.284 4.466215 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 14 158.795 221.762 524.761 609.901 0.284 4.398633 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 15 158.250 221.762 519.352 610.168 0.286 4.534891 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 15 158.256 221.762 519.426 610.242 0.286 4.577949 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 18 156.594 221.762 502.667 610.511 0.294 6.36656 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 18 156.600 221.762 502.748 610.592 0.294 6.23605 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 14 158.889 221.762 526.036 611.176 0.284 4.564317 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 18 156.653 221.762 503.481 611.325 0.294 4.703188 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 14 158.902 221.762 526.219 611.359 0.283 4.526373 
SurfMat2n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 12 160.049 221.762 537.715 611.503 0.278 3.773404 
SurfMat2n + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 12 160.086 221.762 538.220 612.008 0.278 4.493187 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 19 156.149 221.762 498.532 612.052 0.296 5.152384 
SurfMat2n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 12 160.091 221.762 538.280 612.068 0.278 3.789049 
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Model Name: Explanatory Variables nCoeff Deviance nullDeviance AIC BIC R2 maxVIF 
PHYS3n + SurfMat2n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 12 160.092 221.762 538.301 612.089 0.278 3.766611 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 19 156.157 221.762 498.640 612.160 0.296 5.176132 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 19 156.164 221.762 498.745 612.265 0.296 5.334984 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 19 156.167 221.762 498.781 612.301 0.296 5.34844 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 18 156.745 221.762 504.752 612.596 0.293 5.088318 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 20 155.634 221.762 493.408 612.604 0.298 6.369728 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 13 159.570 221.762 533.263 612.727 0.280 4.356206 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n 15 158.439 221.762 521.920 612.736 0.286 3.998355 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 20 155.646 221.762 493.574 612.770 0.298 6.515055 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 13 159.577 221.762 533.345 612.810 0.280 4.382783 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n 18 156.763 221.762 504.989 612.833 0.293 4.559868 
ns(PHYS1n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 17 157.340 221.762 510.916 613.084 0.291 6.142886 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 17 157.356 221.762 511.140 613.309 0.290 6.273415 
ns(PHYS1n, 2) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 16 157.921 221.762 516.865 613.357 0.288 4.736269 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 16 157.924 221.762 516.901 613.394 0.288 4.713046 
ns(PHYS1n, 2) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 19 156.261 221.762 500.075 613.595 0.295 6.839842 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 18 156.819 221.762 505.766 613.611 0.293 5.156537 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 18 156.820 221.762 505.779 613.624 0.293 5.128116 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 19 156.264 221.762 500.124 613.644 0.295 6.739965 
ns(PHYS1n, 2) + ns(PHYS2n, 3) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 20 155.739 221.762 494.865 614.061 0.298 5.312534 
ns(PHYS1n, 2) + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + LU2n + VEG1n + VEG3n 17 157.419 221.762 512.002 614.170 0.290 4.751665 
ns(PHYS1n, 2) + PHYS3n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + CLIM2n + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU2n + VEG1n + VEG3n 17 157.422 221.762 512.032 614.200 0.290 4.844527 
SurfMat2n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 13 159.697 221.762 534.975 614.439 0.280 3.841956 
ns(PHYS1n, 2) + PHYS3n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 17 157.451 221.762 512.439 614.607 0.290 4.679819 
ns(PHYS2n, 3) + SurfMat2n + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + VEG1n + VEG3n 17 157.469 221.762 512.681 614.849 0.290 4.2444 
SurfMat2n + ns(SurfMat3n, 2) + ns(CLIM1n, 2) + ns(CLIM3n, 3) + ns(SOIL2n, 3) + ns(SOIL3n, 2) + LU1n + VEG1n + VEG3n 17 157.488 221.762 512.945 615.113 0.290 4.107915 
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APPENDIX M (4.4) 

MAPPED LOCAL PARAMETER SURFACES FOR 9 STANDARDIZED 

EXPLANATORY VARIABLES 
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Local parameter surfaces for the 9 standardized explanatory variables specified in the 
MGWR model of SDM residuals. Local parameter estimates ranged from -3.56 to 3.02 
and are shown with standardized color breaks for CLIM1 (A), CLIM3 (B), PHYS1 (C), 
PHYS2 (D), SOIL2 (E), SOIL3 (F), VEG1 (G), VEG3 (H), and LU2 (I). Explanations of 
each explanatory variable are given in Tables 4.1 and Appendix 4.1. The Colorado River 
(blue) separates California and Arizona and creates the division between the two species 
the two species of desert tortoise, Gopherus agassizii (Agassiz’s tortoise) and Gopherus 
morafkai (Morafkai’s tortoise). 
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