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ABSTRACT

Project portfolio selection (PPS) is a significant problem faced by most organizations.

How to best select the many innovative ideas that a company has developed to de-

ploy in a proper and sustained manner with a balanced allocation of its resources

over multiple time periods is one of vital importance to a company’s goals. This

dissertation details the steps involved in deploying a more intuitive portfolio selec-

tion framework that facilitates bringing analysts and management to a consensus on

ongoing company efforts and buy into final decisions. A binary integer programming

selection model that constructs an efficient frontier allows the evaluation of portfolios

on many different criteria and allows decision makers (DM) to bring their experience

and insight to the table when making a decision is discussed. A binary fractional

integer program provides additional choices by optimizing portfolios on cost-benefit

ratios over multiple time periods is also presented. By combining this framework

with an ‘elimination by aspects’ model of decision making, DMs evaluate portfolios

on various objectives and ensure the selection of a portfolio most in line with their

goals. By presenting a modeling framework to easily model a large number of project

inter-dependencies and an evolutionary algorithm that is intelligently guided in the

search for attractive portfolios by a beam search heuristic, practitioners are given a

ready recipe to solve big problem instances to generate attractive project portfolios

for their organizations. Finally, this dissertation attempts to address the problem

of risk and uncertainty in project portfolio selection. After exploring the selection

of portfolios based on trade-offs between a primary benefit and a primary cost, the

third important dimension of uncertainty of outcome and the risk a decision maker

is willing to take on in their quest to select the best portfolio for their organization

is examined.
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DEDICATION

In the hallway of the university, Wittgenstein asked a colleague: “I’ve always won-

dered why for so long people thought that the sun revolved around the earth.”

“Why?” said his surprised interlocutor, “well, I suppose it just looks that way.”

“Hmm”, retorted Wittgenstein, “and what would it look like if the earth revolved

around the sun?”

This puzzled the interlocutor.
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Chapter 1

INTRODUCTION
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Project Portfolio Selection (PPS) is a problem of great significance to the suc-

cess of a company and refers to the activity of choosing a feasible roadmap while

optimizing certain objectives, minimizing risk and the use of limited resources in a

manner sustainable over the entire planning horizon that may include many time

periods. The objectives are often intangible, strategic or qualitative in nature. As

such, a robust product portfolio selection process must allow for all kinds of conflict-

ing objectives to factored into the decision making process. Another difficulty in the

process is the inter-dependencies between the various entities in the selection pro-

cess. In our implementation we came across numerous such interdependencies that

included projects that were mutually exclusive, depended on other projects in order

to be completed and projects that were essential for the road map to work. Moreover,

resource consumption of the various entities may not be well known and the available

resource to optimize against may also be uncertain. For example, decision makers at

Intel often have a ’signing authority’ in US dollars that they may use at their own

discretion. If a demonstrable case can be made for value addition, decision makers

can often endorse large sums of money to expand their portfolio to far exceed the

initial constraint. Headcount constraints can also be overcome as Intel’s standing

as the world’s largest chip manufacturer translates into the fact that it can often

find and hire the right skill set at short notice. While these may not always be the

case (and signing bonuses and additional hiring to include expansion in a division’s

portfolio) are not frequent events, a useful decision support methodology will incor-

porate the possibility of these occurrences into the process. The difficulty in product

portfolio selection is compounded by the fact that not all projects for consideration

in the process are at the same stage of their life cycle. While some projects may be

in the manufacturing stage, others may still be in R & D while still others are only

concepts that have just entered the exploratory stage. The uneven nature of resource
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consumption also means that a portfolio full of R& D projects that are resource fea-

sible for one year and promising future payouts, may be unsustainable in future years

when additional R & D and manufacturing costs cause the resource consumption of

a portfolio to balloon. Entities in the portfolio optimization process themselves may

not be immutable. A project close to the end of its R & D stage may now be valued

much more (or less) than initial estimates in previous time periods. As such a senior

decision maker may want alternatives that are provided more (or less) resources to

that particular entity. It is thus important to provide the ability to decision makers

to model alternatives to entities and view how portfolios may change when including

different versions of a particular product. Another challenge for a PPS framework

that aims to be successful within an organization is its defensibility to senior deci-

sion makers. Unrealistic assumptions that present senior decision makers alternatives

that differ from actual choice behavior are often exposed and rejected. Thus any

framework that seeks to address the problem succesfully must provide a quick and

effective way to allow interaction between the intuition of senior decision makers and

the analytics of various mathematical models. In Archer and Ghasemzadeh (1996),

the authors state that ”One of the major reasons for the failure of traditional opti-

mization techniques is that they prescribe solutions to portfolio selection problems

without allowing for the judgment, experience and insight of the decisionmaker”. The

authors also present a review of the various product portfolio and optimization tech-

niques, and note that when projects have a lot of interdependencies project selection

is typically handled by optimization techniques. Optimization techniques address

a lot of quantitative issues and combined with the right decision support systems,

can be used to inspect and incorporate qualitative issues into the decision making

process as well Liberatore and Titus (1983). In Stummer and Heidenberger (2003),

the authors present an optimization technique to optimize a portfolio with a lot of
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project interdependencies, and use a three stage approach to minimize the number of

projects that enter the optimization stage before an interactive phase with decision

makers. This paper attempts to include all projects in the optimization stage and

not prematurely discard opportunities that seem poor but may actually be part of

an optimal contribution. Dickinson et al. (2001) describes the use of a dependency

matrix, to model project interdependencies and couple it with a nonlinear, integer

program model to optimize project selection, but admit that obtaining accurate esti-

mates for the dependency matrix can be difficult and often inaccurate as a corporate

exercise. Mathieu and Gibson (1993) deal with a methodology for large scale R& D

planning based on Cluster Analysis and model a framework to manage risk in R& D

project portfolio management and note that project selection literature indicated a

wide variety of models, but low acceptability by R & D practitioners. We present in

this paper a novel binary integer fractional linear programming model to maximize

the ratio of conflicting objectives and constraints using cuts detailed in Nemhauser

and Wolsey (1988). The elimination by aspects method of discarding less desirable

portfolios as a decision rule that we employ is discussed in some detail in Gigerenzer

and Selten (2002).

PPS is a major problem faced by most organizations around the world in every

major industrial sector, each with its own challenges and complexities. We develop

in this thesis a mathematical framework with an emphasis on practicality and defen-

sibility to senior decision makers at a major semiconductor manufacturing firm that

largely follows the three broad stages as detailed in Archer and Ghasemzadeh (1996)

of project screening, project evaluation and portfolio selection. The mathematical

models used in project evaluation and portfolio selection are discussed in detail and

finally, a discussion of how to factor in risk during portfolio optimization is presented

to illustrate in greater detail the workings of the framework. While the second chap-
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ter sets up the basic framework and demonstrates how to apply the framework, to

smaller problem instances, the third chapter of the thesis generalizes the formulation

and describes a optimization algorithm to solve very large problem instances when

the number of interdependencies between projects is so large that even listing out

the number of elements in each category is not feasible for practical purposes. We

attempt to investigate a genetic algorithm that will fit in with the decision making

framework as described before and examine the complexities involved with this ap-

proach. The fourth chapter takes the framework further to tackle incorporating risk

considerations into the PPS framework.

While further explanations are provided within the chapters, a quick note to

motivate this thesis and the various problems it focuses on would be a good thing

to get into. One of the major difficulties with PPS is the interdependencies between

the various portfolio units. To understand this concept better, consider the following

analogy of a hiker who is about to embark on a long trek and is faced with many

options on various items she can carry in her knapsack. Considering finite capacity,

she has to choose a subset of items that maximizes the objectives she has for the

trip. This is the classic knapsack problem to which extensive literature has been

dedicated throughout the years. But what if the value of the items she had to choose

from depended on what other items she decided to carry? In Figure 1.1, we have a

collection of items or portfolio units to choose from. The portfolio unit Ice shares

some relationships with the units Cooling Gel and Plastic Bags, both of which define

its neighborhood. We do not consider Water in Ice’s neighborhood, because it doesn’t

(for the sake of this example) affect the value of Ice. Consider a scenario where only

Plastic Bags exist but not Cooling Gel. This scenario defines a particular decision

unit of Ice and upon deriving the valuation we find that the Plastic Bags enhance

the value of Ice as the hiker can now store the Ice longer and prevent the rest of the
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knapsack from getting wet. In terms of the MCKP, a decision unit is an alternative

for a category within the knapsack. The hiker may choose the Cooling Gel or Ice (but

not both). They both cost different amounts and can be used differently. Plastic Bags

are required for Trail Mix. Plastic Bags may be included in the knapsack with our

without Trail Mix, but Plastic Bags must be included if the hiker wishes to have

Trail Mix on the hike. The hiker may eventually decide to pack her knapsack with

the units Ice, Plastic Bags and Water. This would define her Portfolio.

Figure 1.1: A Simple Example of a Portfolio Problem with Entities and Relationships

It becomes obvious that as the number of interdependencies increases between

projects, the complexity explodes, and a framework to firstly formulate and then

solve is needed. A more detailed description of the problem with further granulation

of the entities in the framework is discussed in the second and third chapters. These

chapters consider portfolios, that are generated using a primary cost metric and

primary benefit metric, but later evaluated using many other metrics. However, the

values considered for these metrics are considered deterministic. A chance-constrained

based formulation that considers ranges on each of the metrics to produce portfolios

that are more robust in the face of uncertainty are considered in the fourth chapter

before we present our conclusions.
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Chapter 2

A DECISION-MAKING FRAMEWORK FOR PROJECT PORTFOLIO

PLANNING AT INTEL CORPORATION
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Abstract: The work we describe addresses the problem of deciding between

project-funding opportunities under budget and headcount constraints. Although

the projects lead to products that yield revenue in the market, complex interactions

between the projects and products make the selection of a portfolio difficult.

Furthermore, the senior managers in the company have a wealth of business intuition

that can inform the required decisions. We combine modeling, simulation, and

optimization techniques to provide a set of the best portfolios possible from the

proposed projects and resulting products. We also provide a rich set of analysis

and visualization tools for the decision makers to use in exploring the suggested

portfolios and applying their intuition to make the final selection. The resulting

interplay between analytics and intuition produces better business solutions through

a more focused and effective debate in a shorter time than achieved previously. Key

words: analytics; binary integer linear program; decision support; elimination by

aspects; intuition; portfolio management; practice of OR; simulation

Funding reviews occur regularly in companies offering a variety of products in a

number of markets. At any point in time, many product-development projects are in

various stages of execution, ranging from those in their initial ramp-up stages to those

nearing new-product launch; all require continued funding. Other projects are new

and seeking startup funding. In innovative companies, the number of requests usually

exceeds the budget available to fund these requests. Management has to periodically

make decisions on the effective allocation of limited budgets to achieve corporate

goals, including profit maximization. Making these decisions is inherently difficult

because of the combinatorial complexity resulting from the number of projects, prod-

ucts, and markets involved and their extensive interrelationships. For example, one

project may support many products. Other projects may depend on each other for
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intermediate deliverables. One product may be released into multiple markets and

one market may receive many different products. Product offerings can affect each

other synergistically or cannibalistically in the marketplace. These interactions re-

sult in a single project or product having different costs and (or) benefits depending

on the other projects or products the company decides to undertake. Funding (or

not funding) any specific development project will have far-reaching consequences

for products in the marketplace. We define the result of this strategic selection of

funding opportunities that advance the company’s stated goals as project portfolio

planning. Portfolio selection is further complicated by the business reality of dealing

with multiple objectives (e.g., revenue, sales volume, investment efficiency), many

participants, and the long-lasting effects of decisions. Various projects compete for

limited resources with their respective champions’ advocating supporting strategies

and agendas. Some of these competing ideas are quantifiable, while others are based

on qualitative intuition. What constitutes a good portfolio depends on goals that

align with an organization’s overall vision and resources. A successful portfolio se-

lection framework must therefore allow for open and transparent comparison of both

tangible and intangible objectives, as well as project and product relationships, to

a committee of decision makers to enable the committee members to ultimately se-

lect a good portfolio. With hundreds of innovative products in tens of competitive

markets across the globe, Intel Corporation faces project portfolio planning decisions

on a regular cadence. With 2014 revenues of $55.9 billion, Intel is a world leader

in silicon innovation. Intel product divisions compete in a wide variety of markets,

including desktop and laptop computing, servers, networking, communications, en-

tertainment, and embedded computing. In addition, Intel Research operates on an

innovation treadmill that regularly produces new product technologies, including en-

hanced graphics, security, novel sensors, input-output modalities, and connectivity
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advancements. Considering the diversity and dynamics of both markets and tech-

nologies, effectively solving project portfolio planning problems at Intel is vitally

important. We have designed and implemented a decision support system that ad-

dresses the combinatorial complexities encountered in this process, while making use

of the business intuition that senior managers have gained through years of experi-

ence in developing and marketing Intel products. We use modeling, simulation, and

multicriteria optimization to analyze high-quality data to produce a relatively small

set of project portfolio recommendations that maximize net present value (NPV),

while respecting the available budget and project relationships. Conversely, we pro-

vide a rich set of analysis and visualization tools and easy-to-use what-if capabilities

to enable senior decision makers to apply their intuition and unique perspectives to

further evaluate our suggestions and select the best portfolio. We have found that

managing the interaction between analytics and intuition is a very effective method

to produce superior project portfolios from the perspective of NPV and efficient use

of budgets. All members of the decision-making team are able to reach decisions with

transparency in less time than they previously required. Analytics directs decision

makers to the best portfolios in the combinatorial search space. Intuition helps deci-

sion makers compare the best portfolios against each other beyond the optimization

metrics. The analytical tools support what-if scenarios stimulated by intuition, and

drive the convergence to a single project portfolio. We developed the new framework

described in this paper with the goals of producing the best analytics and enabling

the refinement of the results with the decision-makers’ business intuition. Analyt-

ics informs intuition and intuition informs analytics; the result is superior business

results.
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2.1 The Planning Framework

We begin to describe our framework by providing an initial definition of key terms

as defined in Table 2.1

Portfolio Unit Any project or product that a company decides to fund and develop

moving forward.

Relationships A relationship between two portfolio units that affects the value of one

or both of them.

Neighborhood All portfolio units that affect through a relationship the value of a specific

portfolio unit.

Scenario A unique combination of all portfolio units in a neighborhood that affect

a portfolio unit.

Decision Unit A particular version of a portfolio unit as determined by a specific sce-

nario.

Valuation The end result of assigning values to different metrics of a particular

decision unit.

Portfolio A collection of portfolio units.

Table 2.1: Definition Of Key Entities And Terms Used In Our Framework

We include three types of portfolio units in Table 2.2 and five types of relationships

between those portfolio units Table 2.3.
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Project A modeling construct that stores the engineering cost information of a

given venture. Projects have positive spending and negative NPV.

Products A modeling construct that stores the manufacturing cost information of

a certain physical product or venture. Products have zero spending and

zero NPV.

Prospect A modeling construct that stores the volume and average selling price

information of a specific product in a specific market. Prospects have

zero spending and positive NPV.

Table 2.2: Definition of the Three Types of Portfolio Units

Figure 2.1: A Simple Example of a Portfolio Problem Shows Entities (Projects in

Ovals, Products in Squares, Prospects in Diamonds, Markets in Hexagons), and Re-

lationships (Required with Double Arrows, Optional with Single Arrows, Influence

with Dashed Arrow)
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Required When one portfolio unit is required by another in order to be funded or

developed.

Optional When a portfolio unit affects the value of another portfolio unit.

AND When two or more portfolio units must all be funded or worked on to-

gether or not at all.

Soft OR When two or more portfolio units are mutually exclusive and picking one

is optional.

Hard OR When two or more portfolio units are mutually exclusive but one must

be picked.

Influence When two or more Prospects influence market impacts (synergistic, can-

nibalistic)

Table 2.3: Six Types of Relationships Between Portfolio Units

In the example in Figure 3.1, the ovals represent projects, including three en-

gineering projects (ENG-1, ENG-2, ENG-3) and one marketing project (MKTG).

Execution of the engineering projects results in two products represented by boxes

(PROD-A and PROD-B). ENG-1 is required to realize PROD-A and ENG-2 is re-

quired to realize PROD-B, as the double arrows show. The single arrows show that

ENG-3 is optional for both products, although inclusion of ENG-3 enriches both

products. Prospects represented by diamond shapes (C1 and C2) connect products

to a market represented by hexagons (MARKET-X). Although they are not portfolio

units, markets are a construct that stores information for associated prospects con-

cerning the total available market and share of the available market we believe we can

capture. The dashed arrow between prospects indicates that there may be synergism

(at least one of the respective products nets more value in that market than it would

if done without the other) or cannibalism (at least one of the products nets a lesser
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value than it would if done without the other) between products. The dotted line

indicates the neighborhood of prospect C1 including all portfolio units connected to

that prospect. Because making a decision regarding the various prospects to bring

to a particular market uniquely determines which products to manufacture, and be-

cause we define products to have no NPV or spending (these values are incorporated

into corresponding projects or prospects), we typically do not include products in our

optimization formulations or directly in the calculation of the statistics of portfolios.

However, we do indirectly use the information contained in markets and products to

determine various statistics associated with prospects and projects using simulation,

which we discuss later. We next explain in detail the manner in which some portfolio

units affect the value of other portfolio units.

Decision Unit Neighborhood Units excluded NPV

1. C1 : PROD-A + ENG-1 + ENG-3 + C2 + MKTG 166

2. C1 : PROD-A + ENG-1 + ENG-3 + C2 ( - MKTG ) 125

3. C1 : PROD-A + ENG-1 + ENG-3 + MKTG ( - C2 ) 75

4. C1 : PROD-A + ENG-1 + C2 + MKTG ( - ENG-3 ) 55

5. C1 : PROD-A + ENG-1 + ENG-3 ( - C2, - MKTG ) 42

6. C1 : PROD-A + ENG-1 + C2 ( - ENG-3, - MKTG ) 23

7. C1 : PROD-A + ENG-1 + MKTG ( - ENG-3, - C2 ) 59

8. C1 : PROD-A + ENG-1 ( - ENG-3, - C2, - MKTG ) 30

Table 2.4: Eight Decision Units in the Neighborhood of Prospect C1 (Figure 1)

The third phase is optimization, which has been previously approached in different

ways as reported in the literature. Archer and Ghasemzadeh (1996) and Krishnan

and Ulrich (2001) present reviews of various project portfolio selection techniques and

note that when projects have many interdependencies, project selection is typically

best realized using integer optimization techniques. These techniques address the
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quantifiable issues and, when used as the foundation for a decision support system,

can incorporate qualitative issues based on business-user intuition into the decision-

making process Liberatore and Titus (1983). Our optimization approach relies heav-

ily on including both quantitative and qualitative aspects necessary for adoption by

the Intel business community. Stummer and Heidenberger (2003) present a technique

to optimize a portfolio with many project interdependencies using a three-stage ap-

proach to minimize the number of projects that enter the optimization stage prior

to an interactive phase with decision makers. Our approach includes all projects in

the optimization stage, and does not prematurely discard opportunities that seem

poor, but may actually be part of an optimal contribution. Dickinson et al. (2001)

use a dependency matrix to model project interdependencies and couple it with a

nonlinear integer programming model to optimize project selection, but note that

obtaining accurate estimates for the required matrix can be difficult and often in-

accurate as a corporate exercise. Mathieu and Gibson (1993) use a methodology

for large-scale project portfolio planning based on cluster analysis to manage risk

in project portfolio management, but note low acceptance by planning practition-

ers. Our approach models the business by first visually mapping all the projects

involved, collecting from analysts estimates for the various metrics associated with

them, explicitly simulating various scenarios, and finally converting this nonlinear

knapsack problem (NLKP) into an integer program (IP). The decision phase is the

fourth phase; in it, senior business managers, who use their intuition to select a port-

folio that achieves company goals, further evaluate the results of the optimization

phase. A variety of visualizations, novel and innovative incremental-value reports,

and waterfall diagrams generated by additional optimization techniques are available

to help them. This phase includes executing what-if scenarios, which may lead to

more analytics and further pruning of solutions. The elimination-by-aspects method,
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which we employ as a decision rule, was proposed by Tversky (1972) and discussed

in Gigerenzer (2004). In this paper, we present an extensive framework that details

modeling the problem in a manner that makes it intuitive to present to both analysts

and decision makers. We divide this framework into a mapping section in which we

detail an algorithm that recursively solves a binary-integer linear program (BILP) to

define the various decision alternatives from which to select, a simulation section in

which we assign each decision alternative relative numeric attributes, an optimization

section in which we detail an algorithm that recursively solves a BILP to generate

an efficient frontier of feasible portfolios that maximize the NPV, while minimizing

budget consumption, and a what-if section in which we detail various algorithms we

employ to generate additional portfolios that decision makers may consider interest-

ing to explore. In the optimization section, we also present a novel binary-integer

fractional linear programming model to maximize the ratio of conflicting objectives

and constraints using cuts, as detailed in Nemhauser and Wolsey (1988). Figure 2.2

details the entire process flow.

Figure 2.2: Details of the Process Flow in Our Four-phase Decision-making Frame-

work
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2.2 Mapping Phase

Analysts typically work on their individual responsibilities for a few weeks before

meeting together to map out the company’s existing portfolio units and identify all

new portfolio units. Assumptions are stated and viewpoints are shared until analysts

agree on all portfolio units, their relationships with each other, and all alternatives.

Then, quantitative estimates on various portfolio unit metrics, such as spending,

headcount, expected sales volume, ASP, time for demand to ramp-up, years at peak,

and any other metrics that are important to the decision-making process, are calcu-

lated. Analysts enter a low, base, and high estimate for each variable, corresponding

to the 10th percentile, median, and 90th percentile values. They also record variable

correlations and log annotations capturing their assumptions. Identifying all possible

different decision units is often difficult because a single portfolio unit may interact

with many others. Identifying all decision units becomes arduous for even moderately

connected portfolio units, because each optional relationship doubles the number of

decision units. We define the valuations for hundreds of portfolio units by employing

an optimization algorithm that generates only valid decision units and determines

distinct valuations for each. For a given portfolio unit surrounded by many neighbor-

hood items, we wish to discover all possible feasible combinations of these portfolio

units, thus determining the decision units and then evaluating them. We use an IP

formulation to iteratively generate all different decision units of a given portfolio unit;

see Appendices A and B. We then iterate the IP until all valuations have been gener-

ated and no further valuations exist, as determined by finding no feasible solutions for

the IP. Each iteration of the IP includes all cuts generated to that point. Aggregating

all the solutions from all iterations for all portfolio units, we are able to define ma-

trices that summarize the various valuations and their corresponding decision units.
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We use these matrices to constrain feasible combinations of portfolio units when we

optimize for various objectives in a later stage.

2.3 Simulation Phase

Now that we have identified and explicitly expressed each decision unit, we need

to assign a quantitative value to objective and constraint metrics to perform the

subsequent optimization. To achieve this, we record historical and expert input and

used the data to calculate decision-unit metrics to arrive at a valuation. The expected

NPV (eNPV) of a decision unit is derived via a financial calculation with a number

of different variables. Many of these variables may have some uncertainty associated

with them, as well as a time dimension. We must therefore run a Monte Carlo

simulation to determine the eNPV and other metrics. Consider a simple estimate in

which the profit earned equals the number of units sold, multiplied by the difference

between the selling price and the manufacturing cost, minus the total engineering

investment. Even for this simplified calculation, many of the variables have a time

dimension. Engineering costs occur before any manufacturing costs are incurred,

and manufacturing costs are incurred before and during product sales. The volume

sold in different periods will ramp up quickly, peak for a few periods, and then

gradually decline. The problem is thus compounded if we wish to calculate the eNPV

of a decision unit, forcing the summation of the investment and (or) costs and (or)

revenues in each period, including the discount rate in the multiyear life cycle of

the decision unit. Because of these complications, we use a Monte Carlo simulation

to estimate the NPV distribution. Depending on the phase of project execution,

the engineering investment, manufacturing cost, sales volume, and ASP will not be

known with certainty and may best be modeled using distributions. The distribution

of overall profit is thus a convolution of distributions that might not all belong to
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the same family of distributions. The eNPV is equal to the sum of the profits at

various periods and is a random variable itself. Some variables may be estimated

from historical information. For example, engineering cost depends largely on the

number of engineers working on a project over time. This can be inferred from a

company’s long history of working on similar projects. For typical projects that

are underway, headcount numbers for the remainder of the decision unit’s life cycle

can thus be estimated by extrapolating the existing information until the end of the

project as seen in Figure 2.3

Figure 2.3: This Example Estimates Future Data from Current Data and Historical

Experience, Here for Engineering Headcount Needed to Finish a Project

Once all necessary information is at hand, simulations can be run to estimate the

values for various decision unit metrics at different stages of their life cycle, and thus

derive the appropriate valuation. It is typical to sample the 10th percentile 30 percent

of the time, the 50th percentile 40 percent of the time, and the 90th percentile 30 per-

cent of the time. One simulation run will then sample from the distributions (taking

into account any correlations that may exist between these variables and simulation

runs of other decision units) of each of these for each period and derive a value for
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the profit at various periods. These time-dependent profits, when appropriately dis-

counted and summed, will provide the eNPV distribution. We typically run between

2,000 and 5,000 simulations and aggregate the results. At this stage, the results are

visualized, showing analysts the distribution of the NPV, profit, and other variables

at various periods in case they want to adjust some of their initial estimates. Once

this cycle has been repeated the required number of times, and analysts are satis-

fied with their inputs, a quality review team consisting of independent analysts and

senior managers reviews the data and especially the assumptions. The review team

may call for a revision of assumptions and advocate changing the value of other input

parameters. Simulations are rerun until the quality review board is satisfied. We now

have the quantitative metrics for the decision units that we can use as an objective

to maximize and the spending on engineering efforts in dollars, which could represent

a constraint with regard to a group’s available budget.

2.4 Optimization Phase

Once all the decision units have been simulated and their eNPV, spending, and

other metrics have been determined, we run an iterative optimization algorithm to

successively generate all nondominated portfolios in terms of eNPV versus next year’s

spending budget. We define a nondominated portfolio as a combination of decision

units for which no other combination exhibits a lower spending and a higher eNPV.

Appendices A and C show the formulation of the algorithm used to generate all

nondominated solutions. To generate the first portfolio with the largest possible

eNPV, we start by removing any spending constraint. We then iteratively generate

all nondominated solutions by including the previous solution as a cut and adding a

spending cut to ensure that each solution generated is nondominated. We continue

this procedure until we have generated all nondominated portfolios. A subset of the
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nondominated portfolios generated defines an outer convex hull or the efficient fron-

tier. We identify the portfolios on the efficient frontier algorithm via a fast algorithm

by starting with the portfolio that has the lowest spending. We then calculate the

slope to every other portfolio in the set and identify the portfolio that provides the

highest slope in the objective function space. We select this point and repeat the

procedure until we can identify all the points that generate the efficient frontier and

present them for initial exploration and analysis. Note that other metrics for opti-

mization can be implemented or incorporated as constraints if they are of interest to

senior business unit managers. These may include, but are not limited to, meeting

specified revenue targets, maximizing the volume of the company’s portfolio, mini-

mizing and (or) meeting headcount specifications, and maximizing the efficiency or

the ratio of the eNPV divided by the total spending over all years for a portfolio.

At this point in the process, most of the original analysts who mapped the portfolio

units are no longer involved. Their role is to assemble a high-quality set of inputs

for the optimization. The decision makers involved in the next phase are the senior

managers of the business unit and their senior financial analysts who have more global

business intuition to incorporate into the generated portfolios. In the next section, we

explain in detail the manner in which we manage the incorporation of their intuition,

including additional optimization techniques that support intuitive what-if analyses

in the decision-making process.

2.5 Decision Phase

The final selection is made by comparing and contrasting various portfolios gen-

erated in the previous step, which have been identified as desirable, and discussing

the implications of implementing any portfolio on the future of the company. The

analytics we describe in the previous sections inform the business intuition through
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a wide variety of reports supplied by the system, and the intuition informs the an-

alytics through the execution of various what-if scenarios requested by the decision

makers. The efficient frontier visualization is an easy way to survey the nondom-

inated portfolios generated in a manner that the decision makers can understand.

Figure 2.4 informs decision makers about the least amount of budget they need to

spend to achieve a desired portfolio eNPV and the most eNPV they can achieve at

their current budget. If a currently approved but relatively inefficient portfolio or

future funding strategy exists, the efficient frontier shows the increase in value the

company can potentially achieve by switching to a lower-spending, higher-eNPV port-

folio. The results of business-intuition-driven what-if analyses are initially displayed

on the efficient-frontier visualization.

Figure 2.4: A Visualized Efficient Frontier Shows a Variety of Portfolios, Including

Optimal Portfolios That Our System Generates Automatically, What-if Portfolios

That Our System Generates and That Include the Intuition of Senior Managers, and

the Portfolio or Plan Used Prior to the Current Planning Session

Next, a set of basic reports are generated to guide the iteration between analyt-
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ics and intuition. Selecting a specific portfolio on the efficient frontier generates the

listing of all projects and products in the selected portfolio. Selecting two portfolios

generates a report that indicates the similarities and differences between the portfo-

lios with respect to the projects and products included. A variant of these reports

shows a product roadmap, plotting time on the X-axis and markets on the Y-axis

with bars spanning introduction to end of life for each product in the model. Colored

bars indicate inclusion in the portfolio selected, while grey bars indicate exclusion.

If products are excluded (included) that disagree with intuition, a what-if analysis

can be run by forcing those products in (out) as a constraint in our basic IP opti-

mization model; this forces the entity in question to be included (excluded) in the

portfolio that resulted from solving the IP and presenting it to the decision mak-

ers for review. Although resource-pool size and skill-set mix can be included in our

formulation as constraints, a popular option for decision makers is to get a resource

view through reports rather than optimization. Selection of a portfolio generates an

estimate of the resources required for execution; using their historical knowledge of

projects, the decision makers can judge whether the required increase (decrease) in

size and change of skill sets to realize a portfolio are practical. We have generated

more sophisticated reports to inform decision-makers’ intuition in the later stages of

portfolio selection. Below, we describe three of the most useful reports; each requires

the development and use of further optimization models. The first example is the

budgets-efficiency report. Optimizing overall efficiency over time is usually one of the

most important objectives for senior managers. It is a difficult task, because spend-

ing budgets are often hard to estimate beyond the near future, which may comprise

the next year or two; however, companies may still want to increase the amount of

benefit realized for every dollar spent over the entire planning horizon. An impor-

tant consideration arises when a portfolio that looks promising with respect to next
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year’s budget contains multiyear projects that have back-loading spending causing

that attractive portfolio to exceed budget in the out years. Optimizing efficiency

over many years to generate portfolios within certain spending limits in the current

year is mathematically challenging, because it requires maximizing a ratio objective

of two linear functions. This involves converting the BILP (see Appendices A and

C) into a fractional linear program. Not only is this challenging to formulate, but

the difficulty is compounded by the binary nature of the variables. Transforming

the BILP into a suitable fractional linear program also makes cutting off previous

solutions difficult. It invalidates our previous cuts because, although the value of the

new variables still toggles between two distinct values, the higher of those values is no

longer 1. As Appendices A and D show, we overcome this problem by converting the

original binary integers into a form suitable for the fractional program and introduc-

ing additional indicator variables that enable us to continue implementing the cuts

that are critical for our basic optimization approach (Appendices A and C). Another

example is the incremental-value report, which compares the difference in value of a

particular portfolio when a selected portfolio unit is dropped (added) in response to

an intuitive what-if analysis. Each portfolio unit has many alternate decision units,

each of which is determined by a specific scenario and may cost and be worth dif-

ferent amounts; therefore, the value of a portfolio unit to a portfolio is not readily

apparent. A portfolio unit may define scenarios for a variety of other portfolio units.

Thus, dropping a portfolio unit from a portfolio based on business intuition may have

a cascading effect on a variety of other portfolio units and cause them to be worth a

different amount based on the relationships defined between all the units. We explain

our incremental-value algorithm in Appendices A and E.
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Figure 2.5: Typical Incremental-value Report Shows the Consequence of Dropping

Unit D and the Unintended Devaluation of Unit B Caused by Dropping Unit D on

Portfolio NPV

In PORTFOLIO#1 in Figure 2.5, when Portfolio Unit D is dropped in a requested

what-if analysis, this affects the values of all other portfolio units in the portfolio.

Our algorithm provides a feasible PORTFOLIO#2, which does not contain Portfolio

Unit D, with minimal changes to PORTFOLIO#1. As Figure 4 illustrates, when

Portfolio Unit D is dropped, PORTFOLIO#1 is worth less because of the loss of

revenue from Portfolio Unit D; however, Portfolio Unit B is also now worth less

because Portfolio unit D contained a technology that would complement the sales

of Portfolio Unit B. Differencing the eNPV values between these portfolios gives us

the incremental value for the value lost from removing that portfolio unit from the

original portfolio, in addition to the changes in value wrought to all the remaining

portfolios units in the portfolio. These relatively simple comparisons enable decision

makers to have meaningful discussions on the value of various investment options

or portfolio units in their portfolios. The waterfall report, which allows decision

makers to visualize the changes they would need to make to migrate between any two

portfolios, provides a more sophisticated comparison. One common example is from

an existing portfolio of record that resulted from a previous planning cycle to a new
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and improved portfolio suggested in the current planning cycle. Utilizing the same

formulation used to generate the incremental-value report, we iteratively add or drop

portfolio units, recording the largest negative change at each step and designating that

as the next step in the trajectory to generate the waterfall report; see Appendices

A and F. Part of the challenge of building a waterfall diagram is the necessity to

maintain a feasible portfolio at each step. If an intermediate step is not a feasible

portfolio, with respect to satisfying all relationship and budgetary constraints, it is

not truly representative of a migration plan from one portfolio to another. Figure 2.6

shows a typical report from executing the waterfall algorithm to morph PORTFOLIO

#3 into PORTFOLIO #4. This report indicates that by dropping Portfolio Units M,

N, O, P, Q, and R, and adding Portfolio units S, T, U, V, and W, we obtain a net

gain in portfolio value. Waterfall reports generated from intuitive what-if analyses

lead to important discussions among decision makers looking to choose an optimal

portfolio.
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Figure 2.6: Typical Waterfall Diagram Shows the Change in Portfolio Enpv as Six

Portfolio Units Are Removed and Five Portfolio Units Are Added in Morphing Port-

folio #3 into Portfolio #4

At this stage in the business process, a few valuable portfolios have been identified,

in some cases using multiple criteria. Based on the preference of our senior executives,

we use an elimination-by-aspects method to prune the existing solutions to choose the

plan of record. In using this method, as Tversky (1972) proposes, decision makers

prioritize objectives and constraint metrics and then eliminate portfolios at each step

as they traverse the list of objectives in a lexicographical fashion. The decision makers

identify and discuss portfolio units until they select a final portfolio upon which they

can all agree.
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Figure 2.7: This Example Illustrates Pruning the Set of Promising Portfolios As-

pect by Aspect to Get to the Final Decision, Specifically, by Budget, Then Strategic

Product Inclusion, Engineering Skill-set Availability, Spending over Time, and Bal-

ance over Business Segments

Various aspects can be chosen and visited in a number of sequences depending

on business goals; Figure 2.7 illustrates one plausible example of this process. After

running our analytics process and using our reports and what-if analysis tools, the

senior managers select the 16 most promising portfolios relative to the corporate

goals they are striving to achieve. Careful consideration of strategic products for

key customers, some of which the optimization might have rejected because of low

eNPV, reduces the set to 11. The feasibility of finding the number of engineers

required to implement the portfolio, and especially the necessary skill-set mix, trims

the set to seven members. Using the multiyear-spending what-if analysis tool to detect

portfolios with unrealistic spending into the future eliminates three more portfolios.

Assuming the decision makers involved in the process represent different divisions of

the business being planned, the final selection is made based on balance of investment

and return across the divisions, strategic versus tactical, and established business
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versus new ventures.

2.6 Business Implementation

To implement this process, we need a suite of tools that enables analysts and

decision makers to realize the four phases we list above in this paper. At Intel, we

built such a suite of tools, which we called Voyager. In the mapping section of the

suite, analysts can draw portfolio units and their relationships, and input all relevant

details. Our simulation section automatically generates the necessary decision units

and their valuations and feeds them to the optimization portion of the suite. Here

analysts and decision makers can set up optimization parameters and proceed to

investigate and identify possible portfolios. The decision portion of the suite allows

for easy navigation of the solution space through intuition-based what-if scenarios and

building reports that aid in portfolio selection. We wrote the entire suite in C# and all

visualizations utilize the Windows Presentation Framework (WPF) controls. For each

optimization, we used IBM’s ILOG Concert/CPLEX solver, populating the necessary

data structures in C# before calling the CPLEX solver; the solver returns the results

in C# to be processed and used as required in interactive displays or reports. The

suite is deployed on a remote server and is accessed through a client on analysts’

machines, removing most client-machine dependencies. The server’s specifications

include quad-core Intel i7 2nd generation processors, and 8 GB RAM with 100 GB

of disk space. For problem sizes of approximately 200 portfolio units (which in turn

yielded approximately 500 decision units), it takes a few days of coordinated planning

by the business team to enter all the requisite information into the mapping step.

It takes roughly two hours for the simulator to value a problem of this size and

make the necessary details available to the optimization engine. The efficient frontier

is then built in approximately 30 seconds. Performing what-if scenarios, such as
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forcing portfolio units in or out and comparing portfolios, are fast operations that

can be performed in a few seconds. Building the incremental-value report on a given

portfolio and the waterfall report between two portfolios both take about 30 seconds

to generate. These short turnaround times are vital to maintain the momentum of a

decision meeting among senior Intel decision makers.

2.7 Business Results

The funding process that Intel had used for years prior to deploying Voyager relied

on data-driven advocacy. Leaders of individual business segments assembled the case

for each of their projects based on market projections for the resulting product(s)

and estimates of engineering and manufacturing costs. Many of the projects in their

business segments were in some stage of execution; others were new. The projects

were put in a priority order based on expected cost and return or perceived strategic

importance of the resulting products. The lists from each individual segment were

passed up to the next level of management for discussion and merged into a mas-

ter list of projects for the larger business group. Dollars were allocated to projects

starting at the top of the master list until the budget was exhausted and the cut

line drawn. Although projects well above (below) the cut line were considered in

(out) of the plan of record, debates continued for projects just below (above) the

cut line, sometimes resulting in additional budget requests up to the next level of

management. In late 2011, the vice president of an individual business segment in

Intel’s Data Center Group (DCG) first used our decision support tool as an aid to

the standard advocacy process. DCG’s senior vice president was intrigued by the

approach and mandated its trial use as an advocacy aid by a number of (but not all)

DCG business segments for a plan cycle in mid-2012. The positive feedback from

this trial lead to a defining experiment, including all DCG business segments, in late
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2012. The advocacy process was executed without the aid of our tool. Using the

same input data, a set of project portfolios was built using our tool without the aid of

advocacy. Direct comparison was achieved by forcing our tool to reproduce the same

product roadmap that resulted from the standard advocacy process. The small set

of project portfolios produced by our approach exhibited an overall eNPV roughly

10 percent higher than the project portfolio produced by the standard advocacy pro-

cess. Furthermore, because we could directly compare portfolios in our system, we

avoided debate that might normally have included discussions of many projects. It

was relatively easy to see that our approach identified three large projects that were

being overfunded and six smaller projects that were being underfunded or prevented

from starting in the advocacy-generated portfolio. Studies of our reports provided

decision makers with a broader and deeper analysis than they had previously been

able to access. The use of our model enabled them to satisfactorily address a number

of their data-related questions. An evaluation of a number of intuition-based what-if

analyses demonstrated the soundness of our recommendations. In only a few days,

the managers of the three large projects, which we had questioned, were able to pro-

vide options for sufficiently trimming their budgets to fund the six smaller projects.

Somewhat surprisingly, the managers who were requested to give back funding did so

willingly once they were shown the rationale supported by the overall analysis. (They

had been engaged early in the process to supply data, but only for their own projects.)

Based on these positive business results and the transparency and speed with which

the results were realized, for the past two years, DCG has adopted our approach

as the principle project portfolio planning tool. Although we continue to improve

data-collection activities to provide input to the system and incrementally refine and

expand the set of output reports for the decision makers, the core mathematics have

been robust, requiring only minor modifications to cope with new business scenarios.

31



Perhaps the most important contribution of our decision support system has been to

show the highest levels Intel management that the appropriate give-and-take interac-

tion between analytics and intuition produces higher-quality business solutions than

either approach can produce individually. The resulting plan is superior in terms of

NPV return for the budget dollars invested; in addition, decision makers engage in

higher-quality debate (their feedback to the Voyager team) and arrive at consensus

in a much shorter time (as measured). Given a receptive but tough-minded group

of decision makers, analytics can inform intuition and intuition can inform analytics

to the benefit of the business. Review of the DCG results at the corporate level

has exposed other product groups and their senior management and finance person-

nel to the Voyager tools and processes. The combination of improved results and

a transparent, fast process has caught the attention of many Intel decision makers.

Voyager is currently under preliminary evaluation for use in Intel’s largest and oldest

product group, the Personal Computer and Client Group (PCCG), as well as Intel’s

newest product groups, the Mobile Communications Group (MCG) and the Internet

of Things Group (IoTG).
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Chapter 3

GENERALIZING THE FRAMEWORK AND SOLVING LARGE PROJECT

PORTFOLIO SELECTION PROBLEM INSTANCES
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Abstract: Project Portfolio Selection (PPS) is a complex problem faced by major

companies whenever multiple funding opportunities present themselves with insuffi-

cient budget to fund them all. PPS is a difficult problem for a number of reasons

including interactions between the projects being considered causing them to either

reduce or enhance the benefit contribution or spending of other projects in the portfo-

lio. In the work presented by Sampath et al. (2015) the authors present a quantitative

approach to tackle PPS that involves generating a priori all the different versions of

each projects based on various possible combinations with other projects to be in-

cluded in a portfolio. However, as the number of projects and relationships between

them increase, this approach is unable to scale efficiently. This is a common problem

with optimization based approaches to PPS. Here we present an interactive modeling

framework to describe the PPS problem that employs a specialized heuristic to seed

a genetic algorithm and generate an efficient frontier of desirable portfolios. We call

this beam search informed genetic algorithm BIG, and address the key scalability is-

sue that arises in the course of solving the problem and generate attractive solutions

within reasonable times. We also discuss how the framework can enable intuitive

decision strategies to choose portfolios that best satisfy business goals.

Key words: Project Portfolio Selection, Decision Engineering, Meta-heuristics,

genetic algorithm seeding, intuitive decision frameworks

3.1 Introduction

Project portfolio selection (PPS) is a problem faced by many companies that have

to survive in the global marketplace by developing new technologies, products and

solutions. Considering the multitude of options for projects, this periodic process

of identifying the right portfolio in which to invest funds is an extremely complex

undertaking. One source of complexity is the set of inter-dependencies that may exist
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between the projects. For example, projects may yield different benefits and consume

different amounts of resources depending on the other projects that the company is

undertaking at any given time period. Moreover, projects within the same portfolio

are often in different stages of completion and the information for some projects

may be known with higher certainty than that for others. Additional challenges

often arise from the array of competing objectives considered by the different parties

involved in the portfolio decision making. Beyond these challenges, the solutions

recommended by a PPS framework must be defensible to senior decision makers.

Unrealistic assumptions that result in undesirable alternatives are often identified and

rejected by decision makers, who, over the years, may have developed deep intuition

on the markets and technologies involved in developing these projects. Thus, any

framework that seeks to address the problem successfully must provide a fast and

effective way to allow interaction between the intuition of senior decision makers and

the analytics resulting from advanced mathematical models.

Quantitative optimization models deal with many important aspects of the PPS

problem that other approaches often do not, and are preferred whenever they are

implementable. This is because quantitative optimization models allow for the incor-

poration of standard company financial measures as well as allowing decision makers

to perform spending-benefit comparisons between various projects. However, sev-

eral challenges have to be addressed when considering optimization models for PPS,

including access to data and development of a practical solution framework that is

flexible enough to incorporate the decision makers’ intuition. One such framework

that identifies attractive portfolios based on multiple conflicting objectives has been

successfully implemented at Intel Corporation, and is discussed in detail in the work

presented by Sampath et al. (2015). In this paper, the authors present a combination

of modeling, simulation, and optimization techniques to optimize the project portfolio
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while providing a rich set of analysis and visualization tools for management to use

in exploring the suggested portfolios and applying their intuition to make the final

selection. The advantage of this decision framework is that as the underlying struc-

ture of the business itself changes, the optimization methodology can also be changed

without affecting the overall framework for decision makers. The model discussed in

that paper is a first step towards a more holistic approach to solving the problem;

however, it is restrictive in two ways: (i) it presents ways to represent the projects

and characterize the relationships between them that are specific to a particular op-

timization model, and (ii) it fails to scale well with the increase in the number of

interactions a project has with other projects.

The contributions of this paper, then, are to present a more generalized modeling

construct to incorporate modeling organization dynamics while providing a quick

way to solve this problem for large problem instances to generate a Pareto-optimal

front or efficient frontier. To ensure usability of the results, the paper also includes a

discussion on the various steps that help decision makers to parse the efficient frontier

and select a desirable portfolio, drawing from their real life experiences. The work is

significant because it provides a successfully implemented PPS modeling framework

for a large company that scales well with increasing interactions between projects.

The rest of the paper will discuss a brief literature review, explain the problem and

the role of various agents involved and then present details on a versatile and intuitive

way to model an optimization framework for the PPS problem. Details regarding a

genetic algorithm that can be modified to handle a wide variety of PPS problems

using the modeling framework we propose are then presented. Lastly, we discuss the

results of numerous experiments examining the efficacy of the genetic algorithm after

a brief description on how to process the results of the optimization model to help

better incorporate intuition of the decision maker in choosing the most appropriate
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portfolio.

3.2 Literature Review

Most successful frameworks that tackle the PPS problem are divided into stages

as discussed by Archer and Ghasemzadeh (1999). This involves (i) pre-screening

projects for viable funding alternatives, (ii) benefit measurement of the individual

projects and (iii) project selection. Chien (2002) notes that financial analysis meth-

ods that use some form of quantitative financial measure as a criterion are used by

most firms for the first two stages. It would follow that an optimization model to aid in

selecting a portfolio using these quantitative results would seem natural. The advan-

tage of using optimization models for solving PPS problems, as described by Archer

and Ghasemzadeh (2004), is that such models tend to structure the problem in a

very intuitive manner that is easily understood by decision makers while effectively

handling inter-dependencies between projects and allowing easy analysis of changing

the supply of available resources on the portfolio. Despite these advantages, these

methods have largely not been adopted because they do not lend themselves well to

handling increasing model complexity, as well as incorporating qualitative measures,

as discussed in the work of Wu et al. (2017). The overall decision making framework

should engage decision makers with the process and present them with multiple op-

tions, allowing them to apply their intuition for a successful implementation of the

solution in a corporate setting. Recent efforts at improving the visualizations for a

single-criterion optimization problem to increase its chances of being adopted by an

organization are discussed in da Silva et al. (2017).

Quantitative PPS optimization problems are usually modeled as knapsack prob-

lems (KP), where a subset of items must be selected from a set of items each with

a benefit and spending profile, maximizing the overall benefit of the selection while
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not exceeding the total available amount of resources. When attempting to find an

appropriate solution for the purpose of solving knapsack problems, one is faced with a

problem of choosing from a large number of different solutions, each of which is suited

to a different requirement (Martello and Toth (1990)). There are many different styles

in which a KP can present itself. The two most relevant for PPS problems are the

“Multi Dimensional KP”(MDK) (where one faces the problem of the data spanning

multiple dimensions Bas (2012), Sakawa et al. (2001), Stewart (2016), Lifshits and

Avdoshin (2016) and Fonseca et al. (2015)) and the “Multiple Choice KP”(MCK)

(where it is mandatory to select one element from each of the multiple groupings of

items present Tavana et al. (2013), Razi et al. (2015), Kuchta (2002), Altuntas and

Dereli (2015) and Gafarov et al. (2016)). Some of the problems discussed in the works

cited above present characteristics of both of the above types, and are referred to as

“Multiple Choice Multidimensional KPs”(MMKP). In MMKPs, the condition where

one needs to definitely choose an element from each grouping is not strongly enforced.

This allows the possibility of omitting an item from a grouping if it does not add to

the optimality of the solution.

In general, PPS problems are made harder by the fact that there may be non-linear

effects on the benefit or spending of the individual elements based on the inclusion

or exclusion of other items in the selection. Capturing these inter-dependencies and

relationships between the projects requires a systematic modeling framework and a

solution methodology that supports this complexity. This difficulty is illustrated in

the work presented by Li et al. (2010), for selecting a green technology portfolio

from an environmental strategy perspective, where the objective is to maximize the

economic and environmental benefits of an enterprise. The authors use an integer-

programming model to maximize the synergies between various technologies. The

model, however, becomes laborious while trying to explicitly address more than six
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‘synergistic components,’ and faces scalability issues in terms of data capture as well

as solution times.

To avoid these issues, we present a generalized modeling framework that con-

siders the interactions between the project alternatives being considered and that

can be extended to an exponentially large number of relationships. With regard to

the solution methodology, KPs with even a few hundred thousand variables often

quickly become intractable to solve to optimality by traditional commercial integer-

programming solvers with increasing problem instance size. A discussion can be found

in Pisinger (2005). This necessitates the adoption of a heuristic to solve the prob-

lem. In the study by Gomede and de Barros (2014), the authors note that while the

literature has seen a steady increase in the number of PPS papers, it has not seen a

proportional rise in the use of heuristics to solve the PPS problem. This paper is a

contribution towards this gap in the literature.

An added element of difficulty in choosing an appropriate solution methodology is

the fact that a single solution to the portfolio optimization problem is never enough

during real-life decision making for PPS. Decision makers often demand multiple

solutions to choose from so that they may explore and contrast them from the view-

point of many complex, and often conflicting objectives. One way to visualize and

present multiple solutions to a decision maker is the efficient frontier. As discussed

in the work of Levine (2007), the efficient frontier remains one of the best tools in

the decision maker’s toolkit while selecting an optimal portfolio. It provides an easy

and intuitive way to visualize the decision space with the corresponding spending

of the portfolio on the horizontal axis, and the vertical axis displaying the value of

the project quantified with respect to the expected revenue based on the impact and

alignment with business drivers. Our experience has shown the efficacy of quickly

comparing and contrasting multiple solutions and was one of the primary reasons for
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the ready acceptance of the framework by all parties involved in the PPS process.

Liu and Wang (2015) note that genetic algorithms lend themselves very well to

producing such a set of solutions in addition to lending themselves well to paralleliza-

tion. This is important with recent trends towards the availability of more parallel

processing computational power, be it “scale-up” or “scale-out.” In addition, genetic

algorithms like the Non-dominated Sorting Genetic Algorithm (NSGA) family of algo-

rithms developed by Deb et al. (2002) remain some of the best in terms of generating

multiple solutions quickly to form efficient frontiers Yuan et al. (2014). This leads

to the preference of genetic algorithms over other meta-heuristic algorithms like tabu

search and simulated annealing. One problem, however, with evolutionary algorithms

like NSGA is the poor algorithm efficiency measured in terms of the total number of

evaluations required for convergence to the true optimal frontier due to getting stuck

on local optimal solutions Sindhya et al. (2011). Another cited problem is the diver-

sity of solutions with a view towards obtaining a wide variety of options for decision

makers to choose from Vachhani et al. (2016).

In this study, we present BIG, a genetic algorithm that uses a specialized heuristic

based on a beam search-like technique to improve convergence and another heuristic

to replace NSGA’s traditional method of maintaining diversity through its crowding

distance operator while performing fewer operations, and thus, having better worst-

case complexity for the problem at hand. This is due to the fact that instead of

a “cold start,” our genetic algorithm is seeded with a set of solutions to start with

and improve upon rather than starting from scratch, and hence converges to the true

efficient frontier faster Saavedra-Moreno et al. (2011); Grosan and Abraham (2007);

Paul et al. (2015). Elitism is achieved by tracking how close solutions are to the

first front of nondominated solutions, and how many generations a solution has been

retained to try and fill in large gaps in the efficient frontier.
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Generating a large number (if not all) of nondominated solutions and presenting

them on a two-dimensional efficient frontier, however, is not enough. We still need

to allow the decision maker to switch between the various portfolios on the basis of

different qualitative and quantitative metrics and considerations. One could generate

and visualize multiple efficient frontiers based on the other quantitative and qualita-

tive metrics. However, these are difficult to communicate, and furthermore, it is often

difficult to prioritize objectives especially if there are many different decision makers

each with different preference functions. One way to tackle this problem is to try and

measure the preference function of the decision maker and generate an appropriate

solution tailored to this estimate. This approach is discussed in Fowler et al. (2010),

where the authors describe an interactive methodology to achieve multi-objective op-

timization by estimating and using a linear utility function to order solutions. A

feedback loop is established and the population order is corrected if it is not in accor-

dance with the decision maker’s expressed preferences. This methodology is able to

handle any quasi-concave objective function and presents a genetic algorithmapproach

to solve for the decision maker’s subjective preferences.

A similar methodology is presented by Yu et al. (2012), where the authors attempt

to solve a 0-1 knapsack PPS with a genetic algorithm in conjunction with linear pro-

gramming methods, but collect decision maker preferences before optimization and

incorporate it into their model. In the study presented by Amid et al. (2009), a “fuzzy

objective” is discussed where a fuzzy measure of the decision maker’s risk preferences

is obtained by assigning a degree of satisfaction between criteria and constraints, and

defining tolerances for constraints in the interest of obtaining the goal value in the

objective risk function. Such compensatory decision strategies of choosing between

portfolios, where the various attributes are amalgamated, and good values of one

attribute can make up for deficiencies in other attributes are quite popular in the
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literature. However, one of the major problems with these kinds of approaches is

that they are both time consuming and often confusing for decision makers to under-

stand because of the large time gap between giving their preferences in the benefit

measurement stage and the actual optimization or project selection stage, which typ-

ically occurs much later. The decision makers’ preference information may not be

static and change over time, as new market and technological information becomes

available. Furthermore, optimization models designed with certain individuals’ pref-

erence functions may not accurately reflect current decision makers’ preferences, since

decision makers may rotate in and out of departments, or leave the company during

this interval. Finally, such approaches are also not very transparent for the decision

maker as it may not be clear why some portfolios are being preferred over other ones.

We find that even if the above problems were tackled somehow by weighting the

various decision makers’ preferences correctly, and adjusting for time and new infor-

mation, a decision maker’s time is extremely expensive and gets progressively more

expensive the higher up one goes along the chain of management. Hence, measuring

the decision makers’ preferences to incorporate into the optimization problem is often

prohibitively expensive in the first place. Considering that the possible outcomes of

this exercise are often the funding or defunding of large scale projects, it is extremely

common for final calls to be made by the highest levels of management. While a

project is in its inception, gaining an audience with senior decision makers may be

difficult unless there is a strong champion to make the case.

For these reasons, we employ a non-compensatory method for decision making.

In a non-compensatory method, instead of combining different attributes, a decision

maker may drop an option if it does not meet a cut-off on one attribute, even if it

has desirable values for other attributes. These kinds of strategies describe more

accurately how people make decisions in real life, and are therefore, more likely to
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get various members in the decision making pipeline to buy in to the process, as it

allows them to bring their intuition to the analytics in a holistic manner to arrive at

a decision.

3.3 Modeling Framework

In this section, we illustrate various concepts we will need for the remaining sec-

tions of the paper. The key requirements of this framework are two-fold: (i) to define

a framework that easily allows the representation of interaction effects between vari-

ous projects under consideration,and (ii) ensuring that the problem can be modeled

easily as a mathematical program. If it is possible to formulate the actual underlying

business problem as a 0-1 knapsack problem, solving the problem for an arbitrary

objective function yields a feasible portfolio.

We present the modeling and solution of one particular problem instance in the

appendix of this paper. We call the fundamental unit in our modeling framework

a portfolio unit, which may represent any project or product that the company is

considering to fund and develop. Portfolio units may have any number of relevant

attribute metrics or attributes that pertain to the business such as volume of units

projected to be sold, net present value expected to be realized by executing the

portfolio unit, the spending associated with the design and engineering of the portfolio

unit, and so on. For the set N of portfolio units, binary decision variable xi, i ∈ N

indicates whether portfolio unit i was selected or not. We refer to the model presented

here as the Portfolio Selection Integer Programming Model (PSIPM).

Relationship constraints describe the inclusion and exclusion states of each portfo-

lio unit with respect to each other in a feasible portfolio. Resource constraints define

bounds on the amounts of various resources that can be consumed by a feasible port-
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folio. Qualitative constraints typically describe rules detailing the composition of the

portfolio based on some qualitative portfolio unit attribute. For example, only portfo-

lios that have at least a third of their spending allocated to early stage R&D projects

may be desired by management. Alternatively, the portfolio selection exercise may

call for limiting portfolios to the set that allot only a certain amount of headcount

to projects nearing completion. These can be attained by modeling constraints in

PSIPM using qualitative portfolio unit attributes. If the value of the portfolio de-

pends on the interaction effects between various portfolio units and all the values a

portfolio unit may realize depending on which relationships are active in the portfo-

lio are too numerous to generate, then exact methods to solve PSIPM do not scale

well with problem instance size due to an increase in the number of variables and

constraints. This becomes apparent as we continue with the description of our model

framework and will be discussed in detail later.

A portfolio is a combination of portfolio units. Relationships are constructs that

are an attempt to model business rules that define a feasible portfolio. They contain

information regarding the interaction between two or more portfolio units in a feasi-

ble portfolio, although it should be noted that feasibility is not determined only by

relationships but also through the qualitative and quantitative constraints discussed

earlier. Through a relationship, a portfolio unit may impact another portfolio unit.

The impact is a modeling construct that contains information regarding the change

in the value of some attribute metric of the portfolio unit being impacted when the

portfolio unit that impacts it is also selected within the same portfolio. We find in

our experience that when each of these constructs are represented visually such as in

Figure 3.1, they provide a more intuitive understanding of the business as a whole.

When one portfolio unit impacts another, the unit being impacted may now find

itself having multiple values for some attribute metric, e.g., one when the portfolio
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unit impacting it is also executed in the same portfolio, and one where the impact-

ing portfolio unit is not. We call these different versions of the portfolio unit that

may have different values of some attribute metric based on the presence or absence

of other portfolio units in the portfolio, a decision unit. To better express the con-

cept of a decision unit, we define a portfolio unit’s neighborhood. Each portfolio

unit’s neighborhood includes all portfolio units that, through a relationship, affect

the value (of some attribute) of that specific portfolio unit. A unique combination of

the elements of a neighborhood determines a scenario. Each scenario corresponds to

a different decision unit. To “valuate” a decision unit, we first determine its corre-

sponding scenario. This allows us to identify all the impacts affecting the portfolio

unit. Evaluating all the impacts yields the decision unit’s valuation. A valuation

is the end result of some function of the input attributes of a portfolio unit and its

impacts. It represents a quantitative value that we can use in some tangible way for

decision making. Portfolios may have the same attribute metrics as portfolio units.

The value of a portfolio’s benefit or spending metric is some function of the valuations

of the decision units of the corresponding portfolio units that constitute the portfolio.

Portfolio units (and by extension, portfolios) have a primary benefit metric (usually

NPV) and a primary spending metric (usually engineering spending over the planning

horizon.

Even for very complex business cases, we find that a few key relationships listed

below are sufficient to model the vast majority of portfolio unit interactions in prac-

tice.

1. When one portfolio unit is required by another, it cannot be funded or executed

without that unit. This relationship is usually used to model cases where a

higher or more complex technology requires some lower or basic technology,

without which it cannot be built.
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2. When one portfolio unit is optional to another, it affects the value of the other

portfolio unit through an impact. For example, a marketing effort is not fun-

damental to building a product, but it may greatly affect the number of units

sold. It is thus optional to the product, but impacts it by increasing the sales.

3. At-Most-Or relationships between a group of portfolio units indicate that at

most a subset of them can exist in any one portfolio. This is usually used to

model cases where portfolio units with similar functionality exist. For example,

a feasible portfolio may include at most one of the portfolio units in a At-

Most-Or relationship. One business example would be three variants of a new

product, each with a different feature set. If management has decided that only

one of these variants can be funded at most, but that all three may be eschewed

for other opportunities, then the At-Most-Or relationship is used to ensure that

at most one of these portfolio units is selected.

4. A Hard-Or relationship between a group of portfolio units, on the other hand,

describes the situation where a certain number of portfolio units must be se-

lected from a group of portfolio units. A feasible portfolio must include the

specified number of the portfolio units that share the Hard-Or relationship.

In the context of semiconductor manufacturing, for example, this may involve

choosing between various versions of a bread-and-butter technology offering. If

there exists a version that can be brought to market in two years versus one

that can be brought to market in three years, then management must decide

on which one to execute. If the technology has been promised to an external

partner, then not choosing one of the variants is not an option.

5. A similar concept to the Hard-Or relationship can occur when a feasible portfolio

must execute at least a certain number of portfolio units from a given a set. For
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example, when from a group of five technology projects, three or more must be

executed, we say that that the five technology projects share an At-Least-Or

relationship.

6. When a group of portfolio units cannot exist without each other, they are said

to share an Hard-And relationship. This is used to model portfolio units that

typically have no value without the other, like a microprocessor and its corre-

sponding chipset. It is different from the relationship defined by the required

dependency sets because portfolio units that share this relationship cannot be

executed alone without the others in that dependency set.

7. An At-Least-And is similar. In this case, at least a certain number of portfolio

units must be selected from a group if any portfolio units from the group are

selected at all.

We define the concept of a dependency set to represent relationships. These de-

pendency sets can be used to set up the relationship constraints in PSIPM. There

are two types of dependency sets that we have encountered most frequently in our

experience. The first is a required dependency set, denoted by ∆R. Each element of

a required dependency set consists of an ordered pair. The first element of the pair

is a set of portfolio units and the second element of the pair is a single portfolio unit.

To generate a feasible portfolio containing the portfolio unit in the second element of

the ordered pair, at least one of the portfolio units in the first element must also be

selected. This can be converted into a constraint in PSIPM and is shown in Table 3.1.

The second type of dependency set will be represented by the notation d∆
Z where

the superscript Z of the set indicates what type of dependency set it is (At-Most-Or,

Hard-Or and so on) and the subscript d indicates a parameter of the relationship the
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Dependency Set Set Element Constraint

Required (δRl1, δ
R
l2) : (δRl1, δ

R
l2) ∈ ∆R

∑
i∈δRl1

xi ≥ xi∈δRl2

Table 3.1: Translating Required Dependency Sets to Constraints

dependency set represents. This is presented in Table 3.2. For the And and At-Least-

And constraints, we define indicator variables wAld, and wGld that indicate whether the

dependencies shared by the elements of sets dδ
A
l and dδ

G
l are satisfied by the portfolio

with the corresponding portfolio units selected.
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Dependency Set Set Element Constraint

At-Most-Or dδ
S
l : dδ

S
l ∈ ∆S

∑
{i∈dδSl }

xi ≤ d

Hard-Or dδ
H
l : dδ

H
l ∈ ∆H

∑
{i∈dδHl }

xi = d

At-Least-Or dδ
T
l : dδ

T
l ∈ ∆T

∑
{i∈dδTl }

xi ≥ d

Hard-And dδ
A
l : dδ

A
l ∈ ∆A

∑
{i∈δAl }

xi = dwAld, wAld ∈ {0, 1}

At-Least-And dδ
G
l : dδ

G
l ∈ ∆G

∑
{i∈dδGl }

xi ≥ dwGld, wGld ∈ {0, 1}∑
{i∈dδGl }

xi ≤ |dδGl |wGld

Table 3.2: Translating Dependency Sets to Constraints

Figure 3.1 shows an example with some of the possible relationships that can be

modeled with this framework. The neighborhood of portfolio unit A is shown by the

dotted line. If we look at portfolio unit A, we see that it shares a required relationship

that allows decision makers to model the business case where either one of portfolio
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A

RequiredB CAt-Most-Or

D Hard-And

E

F

G

Figure 3.1: Example of a Portfolio Unit and Its Neighborhood. Here Portfolio Unit

A’s Neighborhood Is Denoted by the Dotted Line

units B or C, must be selected to execute A. In this case, an At-Most-Or dependency

set exists between portfolio units B and C, which implies only one of these can be

present in a feasible portfolio. A feasible portfolio that contains portfolio unit A must

then contain either portfolio unit B or C. Portfolio unit A must be executed in all

cases alongside portfolio unit D. Portfolio units E and F impact the value of A in some

way. Portfolio unit A’s value contribution to the overall value of a portfolio may thus

change depending on the combination of E and F units that are also picked in any

given portfolio. There are a total of eight decision units that arise for portfolio unit A

in this example. The associated scenarios with each of the eight decision units and

the value of portfolio unit A in each of those cases is detailed in Table 3.3. Portfolio

unit G is not in portfolio unit A’s neighborhood. It does not directly impact A’s

value, although it is required for executing portfolio unit E. It does not, however,
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need to be considered when enumerating the decision units of portfolio unit A.

B C D E F Valuation of arbitrary

Decision Unit (In/Out) (In/Out) (In/Out) (In/Out) (In/Out) metric of A

1 1 0 1 1 1 100

2 1 0 1 1 0 200

3 1 0 1 0 1 149

4 1 0 1 0 0 322

5 0 1 1 1 1 312

6 0 1 1 1 0 112

7 0 1 1 0 1 199

8 0 1 1 0 0 121

Table 3.3: Various Decision Units That Exist for Portfolio Unit A in Figure 3.1. A

Value of 1 Signifies the Presence of That Portfolio Unit in the Scenario, and a Value

of 0 Signifies the Absence. The Last Column Reports the Value of Portfolio Unit A

in That Scenario

Generating all of the decision units for a particular portfolio unit with t other

portfolio units that are optional to it, has a worst-case complexity of O(2t). It must

be noted that after generating each decision unit, each must be valuated to derive all

of the corresponding quantitative metrics of interest in the decision making process.

Thus, even for moderate values of t it may not be practical to generate all of the

decision units, valuate them, and then pass them off to a complex integer program

that must be repeatedly solved to generate an efficient frontier of portfolios. The last

column in Table 3.3 denotes the valuation of some metric of portfolio unit A for that

particular scenario. The concept of a decision unit, therefore, is to explain interaction

effects between different portfolio units. Hence, with increasing model complexity, due

to increasing number of interactions, we need a solution methodology that does not
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depend on a complete enumeration of all decision units as well as their valuation,

prior to setting up and solving a large-scale integer program.

Evaluations depend on the “existence” of other projects, not the values derived

from them, or costs incurred to perform them. This is why it is sufficient to only

consider the immediate neighborhood of the project when valuating it. The informa-

tion for the impact resides on the relationship itself and is separate from the portfolio

unit it originates from. Thus each decision unit’s (of a given portfolio unit) val-

ues are determined merely by the presence or absence of other portfolio units in its

neighborhood and not by the actual underlying values of those other portfolio units.

One way to achieve that is by not generating all of the decision units beforehand

but determining them on-the-fly for a given portfolio and then computing the value of

the portfolio at a point where we know all of the portfolio units included in the current

solution. In contrast, a traditional integer program requires all decision units to be

identified and valuated apriori. We can calculate the benefits and spending metrics

of a portfolio by determining the corresponding decision units that were realized for

each portfolio unit, calculating the value for each decision unit, and then computing

the value of the portfolio using some appropriate function.

In Sampath et al. (2015), the authors generate an efficient frontier by first enumer-

ating all decision units, valuating them, and then passing the results of the valuation

step to an algorithm that employs an exact method to generate the efficient frontier of

portfolios. If the number of decision units exceeds a certain threshold, this approach

of “Enumerate, Valuate and Solve” (EVS) may not be computationally tractable.

Depending on how the financial model valuates a portfolio, the value of a metric

for a portfolio may be more or less than the sum of the values of the decision units that

comprise it, and this could add to the difficulty of the problem. For example, many

high value projects may all operate in the same market and hence may cannibalize
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Figure 3.2: Various Parties Involved in the Portfolio Selection Process

each others benefit. These portfolio units may not share relationships with each other

directly, but the financial model may cap the aggregate of their contributions. The

value of the portfolio as a whole may then be less than the sum of the values of

individual decision units. Such cases sometimes arise when there are a number of

portfolio units that have a high probability of success that all operate in the same

market segment. Another example of this would be a penalty component that the

financial model ,might add to the individual values of the decision unit. An instance

of such a case would arise if while valuating the NPV of a portfolio, the manufacturing

costs or a tax component were modeled separately outside of the individual portfolio

unit for reporting purposes as decision makers may only be interested in the pure

value contribution of a portfolio unit.

More discussion into the financial model used to valuate portfolios and portfolio

units is beyond the scope of this paper, but as evidenced by this discussion, it plays a
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huge role in the process. The framework itself, it should be noted, is agnostic to the

nature of the valuation model. However the fact that the value of the portfolio may not

be a linear combination of the values of the individual portfolio units that constitute

it, further makes the EVS approach undesirable. Therefore, another approach must

be taken to generate the efficient frontier.

Figure 3.2 shows the various parties involved in the portfolio selection process

we have described above. Portfolio Unit Owners are typically project leads, or se-

nior management, and are generally the people most vested in decisions regarding

the funding or defunding of a particular project. Financial Analysts, who report

to Portfolio Unit Owners, are responsible for capturing input information regarding

the portfolio unit. Once these inputs are captured, a Data Scientist, who is often

agnostic to the data itself, oversees the algorithm and the support of the decision

support system (DSS) for the input as well as the output visualizations of the results.

Decision Makers are usually senior managers, Vice Presidents or the Chief Executive

Officer of the company, and finally decide on what projects to fund. They often have

the most intuition to bring to the process, and through interactions with the opti-

mization process, decide on the best portfolio. A Portfolio Lead oversees the entire

process and the flow of data and information from each stage and is responsible for

developing the list of portfolio units to be considered by the PPS exercise and what

outputs to present to decision makers to aid them in the decision making process.

Portfolio Leads are responsible for running the entire PPS process and are the ones

who request optimization runs and collate results to present to decision makers.

From our experience in building a decision support system (DSS) at Intel Corpo-

ration to support the PPS process, we find that visualizing the business in the manner

discussed in this section generates focused conversations on how the business is run

and helps to quickly reach a consensus on how the business is modeled that can easily
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be communicated with all levels of management. Through a DSS, individual analysts

can enter input information for their relevant portfolio units and all relevant neighbor-

hood items, the impact of optional portfolio units and other information. Specifying

impacts in a meaningful manner depends on the underlying financial model used to

valuate the portfolio units and is beyond the scope of this paper. Typically, a Portfo-

lio Lead is tasked with maintaining the overall visual of how portfolio units interact

with each other and performing data quality checks and vetting the assumptions of

the individual analysts. Decision Makers typically prefer exploring the solution space,

comparing and contrasting different portfolio alternatives using an efficient frontier

of portfolios that displays the best portfolio alternative at various spending levels. As

stated in the study presented by Gruia (2003), efficient frontiers are especially useful

for clarifying basic questions on investment efficiency, trade-offs between greater ben-

efits and increasing spending, the cost of breaking various constraints and avoiding

investments in regions of diminishing returns.

It should be noted that PPS optimization models of the kind described here typ-

ically avoid sunk cost biases. As such projects that possess momentum from having

significant engineering efforts dedicated to them will invariably look more attractive

than newer projects whose future seems uncertain and risky. Senior decision mak-

ers can weigh in on allotting a certain amount of budget towards new projects. By

running the model with up-to-date information throughout the year, progress can

be tracked when optimal portfolios from the current run are compared to optimal

portfolios from the last PPS exercise. Senior decision makers can weigh in and kill

projects they feel are not delivering and contributing to the optimal roadmap going

forward. However, in the cases where there may exist a real sunk-cost of the kind

that cannot be ignored, such as a contract with another company for example that,

if reneged upon, involves a penalty that cannot be avoided, the cost of stopping or
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exiting a project must be factored in. By analogy, this means that not choosing an

item in the knapsack problem still reduces the capacity of the knapsack by a certain

amount. Not selecting a portfolio unit to be included in the portfolio thus carries

a real quantifiable impact that must be factored into the optimization model. This

can be achieved by modeling the case where a portfolio unit is not selected, as it’s

own separate portfolio unit, and then modeling a Hard-Or relationship between the

original portfolio unit and the new one with the condition that only one of the two

can be selected and every feasible portfolio must contain one or the other. For a

portfolio unit A that models the cost and benefit of including a certain portfolio unit

in the portfolio, portfolio unit A’ would model the cost and benefit of not including

the portfolio unit in any feasible portfolio. Each feasible portfolio would contain one

or the other.

The rest of this paper provides further details on the solution methodology we

used to generate an efficient frontier of portfolios to present to Decision Makers.

Identifying this efficient frontier is difficult given the black-box nature of either the

objective function, the spending function, or both. It should be noted that this does

not prevent us from modeling the portfolio units and only their relationships as an

integer program and solving for a zero objective to generate feasible solutions.

3.4 Solution Methodology

In this section we describe the details of BIG. While genetic algorithms lend

themselves well to solving the kind of knapsack problems that PPS problems are

usually modeled as Zhang et al. (2011); Yu et al. (2012); Cruz-Reyes et al. (2017);

Abbasianjahromi et al. (2016). While there are some common features that most

genetic algorithms share, they must be adapted to suit the specific problem structure

at hand. The NSGA-II multiobjective evolutionary algorithm is one such algorithm
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for quickly identifying hierarchical dominance frontiers for multiple objectives. How-

ever, for our methodology we only need to generate an efficient frontier based on two

metrics, a primary spending and a primary benefit metric. This is because represent-

ing information in more than two dimensions is expensive to compute, difficult to

communicate to senior decision makers, and is typically not represented well on their

usual means of communication such as slide presentations.

Working on a parent population, the NSGA-II algorithm generates offspring simi-

lar to conventional evolutionary algorithms, using the usual operators of tournament

selection, crossover, and mutation. By employing elitism, non-dominated solutions

from each generation are retained until the final stage. NSGA-II in general divides

solutions into different dominance frontiers while attempting to spread them out in

the objective space using a concept called the crowding distance. This is the esti-

mate of the distance of the end points of a cuboid whose vertices are the two nearest

neighbors, with extreme solutions assumed to define a cuboid of infinite size. Elitism

is achieved by retaining solutions with higher dominance frontier ranks and higher

crowding distances.

While the NSGA-II is one of the better evolutionary algorithms in the literature

for this kind of application, convergence and diversity are still issues that arise for a

large number of problem instances, especially if the objective function is not smooth

or the feasible region is not part of a convex set. If the black box nature of the

objective function is computationally expensive, we are further motivated to avoid a

situation of starting from scratch with no knowledge of good search directions. Thus,

we attempt to seed the algorithm with good starting solutions to search from rather

than starting from nothing. The concept of seeding is discussed in some detail in

the work of Friedrich and Wagner (2015), who propose some seeding algorithms for

the NSGA-II. However, no seeding algorithm has any real advantages over another
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for all problem instances, and we find that many are needlessly complex with no

real computational payoff. Therefore, it is often more practical to choose a simple

heuristic with low worst-case complexity such as a beam search that can be controlled

effectively and is known to work well for single function minimization problems given

the problem structure.

3.4.1 Identifying Attractive Initial Solutions

In choosing an appropriate algorithm to generate seed solutions for the genetic

algorithm, we need to take into consideration the efficacy of the algorithm at solving

knapsack problems, its complexity and how easy it is to retool it to produce a rough

set of non-dominated solutions. Beam search is one such algorithm that satisfies all

three criteria, as discussed by Jaszkiewicz (2004). The worst case complexity of the

beam search algorithm depends on the beam width β, or the number of solutions

retained at each level and the depth of the tree, which is the maximum number of

one-step transitions to ending a branch. Thus, the worst case complexity can be

controlled very easily by limiting the beam width, and this makes it an attractive

seeding algorithm to run for the NSGA-II.

The beam search algorithm is a robust algorithm that provides good solutions

for knapsack type problems Baldi et al. (2014); Hu and López-Ibáñez (2017). It is

a modification of best-first search that creates a search tree, and then uses breadth-

first search. It lends itself easily to providing multiple solutions (by sampling at

various stages of the beam search) that are typically diverse in the spending of the

portfolios generated, and can be sorted to provide a set of non-dominated solutions,

which we can later use to seed our genetic algorithm. The fact that multiple solutions

can be evaluated at every stage of the beam search also makes it attractive due to

the opportunity for parallelization it offers when being implemented on a computing
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system with access to a parallel computing cluster.

Over the spending-benefit objective space, this can be done by one of two ap-

proaches. If the spending is not a black-box function and is known beforehand, we

can start with the highest spending portfolio, and at every stage of the beam search,

go down to a lower spending portfolio by some predefined rule, ending either when a

predetermined number of solutions have been generated or no solution of lower spend-

ing can be generated. If the spending is a black-box function, then one can start with

the portfolio with the highest number of portfolio units and work backwards to the

portfolio with the least number of portfolio units.

At every stage of the beam search, solutions are evaluated, and only a specified

number solutions are retained to continue on to the next level of the beam search

and so on, until the stopping condition is met. At the end of this exercise, sorting

the remaining portfolios and eliminating the dominated solutions provides us with

a preliminary Pareto-optimal front that can be used to seed the genetic algorithm,

leading to both faster convergence times and greater diversity in spending values of

solutions generated than a so-called cold start. An example of the results of a specific

implementation of the beam search for a particular PPS problem instance discussed

in the appendix are presented in Figure 3.6a. Typically, the beam search itself does

not produce a diverse efficient frontier, but without the initial population it provides,

the genetic algorithm’s performance is severely impacted and takes a long time to

approach the true efficient frontier.

3.4.2 Genetic Algorithm Details

Crossover and mutation are both relatively straightforward steps and depend on

the encoding scheme. While we mainly used random mutation operators and flat

crossover operators, recently improvements in convergence rates have been achieved
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by using specialized operators for mutation and crossover Lim et al. (2017). Elitism

and the stopping condition used to generate an efficient frontier as part of a successful

PPS framework require more careful thought, however, and are discussed in more

detail below. Another important operation to consider is error correction, especially

when feasible solutions are hard to generate. It should be noted that for any generated

offspring x′, if Ar and br are the relationship coefficient matrices from setting up the

PPS problem as an integer program, we can easily check if a given portfolio is feasible,

i.e., a candidate portfolio x′ generated by the genetic algorithm is feasible if and

only if Arx
′ ≤ br. Moreover, by setting the objective decision vector of the integer

program to match an arbitrary portfolio generated by the genetic algorithm and

solving the integer-program, we can achieve error correction by finding the ‘nearest

neighbor’ in terms of being closest to the generated candidate portfolio in portfolio

unit composition. For example, assuming the genetic algorithm generates a solution

x′, then only modeling the relationship constraints while maximizing the objective∑
{i:x′i=1} xi−

∑
{i:x′i=0} xi in model M1 and solving will yield a feasible portfolio that

will attempt to incorporate all the portfolio units included in x′ with the minimal

number of additional portfolio units needed to make the portfolio feasible.

The encoding scheme used for the genetic algorithm will depend on the structure

of the problem. An example is discussed in the appendix. Genetic algorithms often

tend to throw away a large number of generated chromosomes as infeasible when

applied to KPs. The authors present some repair operators in Chih (2015). However,

candidate repair is still generally considered expensive. Moreover, most fail if the

problem reaches the level of complexity described in this paper. Feasible portfolios

may be generated by solving Model M1 for a dummy objective but error correction

using this method is only recommended when the number of feasible portfolios is low

to improve the performance of the genetic algorithm. In general, it is more effective
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to discard an infeasible portfolio and generate a new one in its place, rather than try

to correct it.

3.4.3 Retention of Elite Solutions

Once seeded, the NSGA-II algorithm converges to the true Pareto-optimal front

much faster than it would have done from a cold start. However, this still does

not guarantee obtaining a diverse set of solutions that span the whole spectrum of

spending values with corresponding revenues. Qualitatively, our practice at Intel

Corporation has shown that a smooth and well-populated efficient frontier was better

received and inspired more confidence in the results than a jagged and sparse efficient

frontier, even when resulting from relatively quick runs of approximately 10 minutes.

It is entirely possible, however, that there are large gaps in the efficient frontier

due to the underlying structure of the problem, the relationships, the input values

of the portfolio unit metrics, and the impacts on each other. When generating an

efficient frontier of solutions, the solutions retained after each generation greatly affect

the quality of solutions in the next generation. Hence, the retention policy must

identify gaps in the efficient frontier and work towards filling them up to provide

viable portfolios for all spending levels while striving to maximize the benefit at

every spending level. The goal here is to not have gaps in the efficient frontier. This

is to ensure portfolio alternatives exist at every spending level for decision makers to

choose from. Since we are only building an efficient frontier in two dimensions, this

means that the crowding distance operator used in the NSGA-II algorithm may not

be very effective at retaining solutions that may, in the future, fill up the defined gaps

in the efficient frontier. This happens because elitism in the NSGA-II is achieved by

first retaining numbers with a higher non-domination rank, and then, by crowding

distance. This may lead to cases where dominated solutions may be retained in a
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region where the efficient frontier is already well-populated in terms of portfolios for

that benefit level, but not for the resource level.

We address this problem by implementing the following steps. First, all non-

dominated portfolios are automatically retained. For each dominated portfolio, a

weighting function is applied to order the portfolios by their potential viability to

produce children with better spending-benefit ratio. The weighting function is as

follows:

i. the non-dominated portfolios are ordered by resource value

ii. each non-dominated portfolio has an “age” value, which increases by one for every

generation the portfolio is included on the frontier.

iii. for every consecutive pair of non-dominated portfolios, compute the ratio of:

(a) the Cartesian distance, from the dominated portfolio closest to the mean

spending of the two non-dominated portfolios, to the line segment defined

by the two non-dominated portfolios, and

(b) the Cartesian distance between the two non-dominated portfolios.

iv. to the computed ratio, add the lesser of the two non-dominated portfolios’ ages,

divided by an “age mitigation value” parameter, which increases as the frontier

becomes more stable. In other words, as the average efficiency of solutions on

the frontier (defined in Section 3.4.4) begins to change less, the age of the items

on the frontier becomes less of a factor in the weighting function.

The dominated portfolios are sorted by ascending weight. If there are gaps in

the frontier, this causes dominated portfolios close to the gaps in the frontier to be

favored over others and elitism to be achieved in this way. The two fronts are merged

with crowding distance.
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A specified number of portfolios with the highest spending-benefit ratio are se-

lected from the ordered dominated set, with each remaining offspring selected with a

certain probability of stopping when a specified threshold on the number of portfolios

that survive each generation is reached. The parameters, probability of survival and

the offspring population threshold are dynamically increased, up to an appropriate

value, as more generations pass without finding a new efficient solution.

This methodology could also be extended to identifying non-dominated frontiers in

more dimensions, since the basic principle applies in that case as well. The NSGA-II

algorithm that is designed to solve for M dimensions and an offspring of N candidate

solutions has a worst case time complexity of O(2MN log 2N) for crowding distance

calculation and O(2N log 2N) for then sorting on the crowding distance. In our

proposed methodology, calculating the crowding distance and sorting on it is replaced

by calculating the weights and sorting on it. This is significantly easier, given the

problem structure and our assumption that sorting is always done on the primary

spending metric and hence, it has a worst-case complexity of ordinary sorting.

3.4.4 Stopping Criterion

If the spending-benefit ratio of a solution is defined by the benefit of a solution di-

vided by the resource consumption of a solution, then we define the average efficiency

of a set of solutions by the sum of the spending-benefit ratios of all solutions in the

set divided by the cardinality of the set. We used the average change in the average

spending-benefit ratio of all non-dominated solutions discovered so far between gen-

erations as a metric to determine the stopping condition of the genetic algorithm. At

each generation, the average value of the spending-benefit ratio of all offspring can

be calculated and the average change in this metric over the last few generations is

computed.
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When this change is less than a certain threshold value for a certain number of

generations, the algorithm is terminated. However, the problem with this approach,

when applied to time-sensitive planning exercises, is that depending on the machine it

is run on and the parameter combination chosen, the time taken for the optimization

to complete is not very predictable. As such, setting stopping criteria to have the

optimization run for a particular amount of time is much more attractive during ‘real

time’ PPS exercises. The problem with this approach, in turn, is that based on the

machine it is run on, the algorithm could result in varying solution quality;,in spite

of using the same random number seed to inject randomness into the process.

3.5 Selecting the Ideal Portfolio

Though optimization techniques represent the best quantitative approach for PPS

and are the most flexible in terms of attacking all the relevant issues, they have largely

been ignored due to (i) poor input modeling frameworks, (ii) burdensome computing

requirements, and (iii) non-intuitive results from optimization models. So far, we

have addressed the first two of these three issues. In this section, we will address the

third issue.

In Hess (1993), the author contends that management science has failed to pro-

duce intuitive and attractive selection models. These models, the study states, have

little practical impact despite the increased sophistication displayed by optimization

models. This has largely been true in our experience, and is a sentiment echoed by

the authors in Ghasemzadeh and Archer (2000), where the authors go so far as to say

“One of the major reasons for the failure of traditional optimization techniques is that

they prescribe solutions to portfolio selection problems without allowing for the judg-

ment, experience and insight of the decision maker.” The “increased sophistication”

referred to by the PPS literature tends to focus on optimizing portfolios on multiple
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objectives, or on one normative utility maximizing decision vector. However, deci-

sion makers prefer minimally restrictive decision support systems that allow them to

model their own intuition along with the analytics, as demonstrated in Pfeiffer et al.

(2014). Decision strategies such as satisficing (SAT) where solutions are retained for

every objective that meet a certain threshold until only a certain number of solutions

are left, lexicographical (LEX) where objectives are ordered by priority and only a cer-

tain number of solutions that maximize the most important objective are retained,

and elimination by aspects (EBA), which is a combination of LEX and SAT where

objectives are prioritized and then evaluated sequentially with solutions that do not

meet a certain threshold being discarded at each stage until only a certain number

remain, are typically used to whittle down the number of portfolios. All three have

received considerable attention in the literature as decision strategies employed to

choose between various alternatives in different decision environments. These strate-

gies can be extended to selecting the ideal portfolio, once enough alternatives have

been generated. The advantage of using these kinds of strategies, and especially EBA,

is that they can easily be made interactive and allow decision makers to bring their

intuition to the problem, and spend more time engaging with the decision making

process in a meaningful manner.

From our experience at Intel Corporation, Financial Analysts work on the financial

modeling of various portfolio units along with Portfolio Leads. This portfolio team is

responsible for modeling interdependencies and relationships between portfolio units

in addition to performing some level of portfolio unit screening to reduce the number

of portfolio units to be considered in the selection exercise. This pre-processing step

may, for example, exclude portfolio units that have already been committed and thus

cannot be excluded, or portfolio units that do not align with the overall business

strategy. This “roadmap” is then sent off to individual portfolio unit owners to verify
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the values for a number of attributes, ranging from volume to timing to headcount,

and any others used to calculate a benefit metric, such as NPV.

Once the financials have been modeled, the Portfolio Lead then “plays out” various

scenarios by constraining different resources and optimizing for different objectives,

queuing a separate run of the optimization process each time. This results in a set

of attractive portfolios. The Portfolio Lead then interacts with the efficient frontier,

exploring the objective space to select a few portfolio options usually around the

current portfolio being executed. For example, in Figure 3.3, the Portfolio Lead may

explore the efficient frontier in the objective space defined by the NPV and portfolio

spending by picking any one of the portfolios and adding or excluding portfolio units

that are currently not in that portfolio to observe the change in NPV and spending

. With a DSS, this change can be immediately visualized and understood, and can

help communicate the impact of such a change. Usually, the Portfolio Lead may

choose portfolios close to the current execution portfolio that allows the building of a

compelling story. These decisions have to be based off of the current ”plan of record”

or portfolio when communicating to senior management to bring out the benefit

of changing the company portfolio. For example, if I is the current portfolio being

implemented at the company, a powerful case could be made for moving from portfolio

I to II for a little extra spending , which would allow the company a significant

rise in NPV. Alternatively, moving from portfolio I to III would allow the company

increased NPV, and additionally, some savings in spending. Moving to IV would

mean maintaining the same NPV but would allow the company to have a significant

savings in spending. The efficient frontier thus allows for visualizing the impact of

various decisions and help communicate this effectively.

The EBA methodology is then used by the Portfolio Lead to prune the set of

portfolio alternatives building a detailed story for each one of the remaining options.
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Figure 3.3: Objective Space with Efficient Frontier Relative to Portfolio I, the Current

Portfolio Being Executed by the Company. Portfolio II, III and IV Are Candidate

Portfolio Alternatives the Portfolio Lead May Select

The Portfolio Lead presents these to the Decision Maker and his staff, who then

examine the portfolio unit composition of each portfolio and have detailed discussions

regarding the composition of the final portfolio they decide to execute. This process

flow is summarized in Figure 3.4.

Given a black-box valuation function for the portfolio metrics, it is important at

this stage to present all relevant information to the decision makers while they make

their decision. As such, we find that the features most useful to the process, apart

from the efficient frontier, are:

• A comparison grid to compare portfolios on various metrics

• A comparison grid to compare and contrast the constituents of a portfolio, the

contribution of each portfolio unit to the overall portfolio, and various portfolio
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Figure 3.4: Process Flow for Portfolio Decision Making

metrics

• A “fence” report that summarizes the portfolio units that are “on the fence,”

i.e., not in all portfolio choices but present in at least one, allowing decision

makers to focus their attention on the important portfolio units and not on

those that are in all portfolios or are always left out

• The ability to navigate within the objective space and investigate the effects of

forcing portfolio units in and out.

• An “incremental value” report that indicates what the change in spending,
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benefit or some other metric of a portfolio would be if a particular portfolio

unit was dropped. Given the black-box nature of the valuation, this may not

be immediately obvious.

• A “waterfall” report that details, step-by-step, how the organization can migrate

from one portfolio to another.

The goal of a waterfall report is to produce an ordered series of feasible portfo-

lios each with minimal changes from the previous portfolio in the series in terms of

portfolio unit composition. Hence each step in a waterfall report should be a feasible

portfolio. This provides decision makers with an idea of the portfolio units to be

added or dropped from the starting portfolio to reach the ending portfolio, and the

impact of each of these steps or funding decisions. A sample waterfall report is dis-

played in Table 3.4, ordered by the benefit impact between two portfolios comprising

portfolio units A, C, D, E and G, and B, E, F and G. By recalling the structure of

the problem in Figure 3.1, we notice that portfolio units A and D shared a Hard-And

relationship, and hence, must be added or dropped together. This is why step two

includes a change comprising two portfolio units. Each of the transition portfolios is

a valid portfolio by itself. Portfolio Leads are able to generate useful conversations

with the aid of waterfall reports regarding funding or de-funding of portfolio units.
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Type of Portfolio Portfolio Composition Decision Benefit Impact Resource Impact

Starting Portfolio ACDEG $100M $10M

Transition Portfolio CEG Drop AD −$20M −$3M

Transition Portfolio CEFG Add F −$50M +$2M

Transition Portfolio EFG Drop C +$10M −$1M

Transition Portfolio BEFG Add B +$80M +$3M

Ending Portfolio BEFG $120M $11M

Table 3.4: A Waterfall Report Generated Between Two Portfolios Containing the

Portfolio Units A, B, C, D, E and A, B, F, G Respectively. Values in the Last

Two Columns for Rows with No Decision Indicate the Value of the Combination of

Portfolio Units in the Portfolio Composition Column

Implementing these tools in a DSS is possible, thanks to the fact that the problem

was modeled as an integer program. Therefore, by making simple constraint changes

and solving the integer program, it is possible to make the various transitions and

investigate the effects of the various changes. Each new resulting portfolio of the

new ‘solve’ will have to be ‘re-valuated’, as usual for the new metrics. Allowing users

to inspect and contrast portfolios on various metrics in this manner also overcomes

another traditional shortcoming of integer programming based optimization models,

namely, the ability to incorporate risk in the decision making framework since the risk

involved with any particular portfolio can be inspected just like any other portfolio

metric in the DSS.

3.6 Computational Results

For initial testing, we began by comparing the performance of the solution al-

gorithm outlined in this paper for a small set of 2,000 decision units resulting from
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around 150 portfolio units based on a real portfolio selection problem within the com-

pany. All decision units were exhaustively enumerated and valuated for this small

example, and compared to an efficient frontier generated via the EVS methodology,

which represents an exact method for obtaining the efficient frontier. We then solved

the problem using BIG, which was able to identify all of the same portfolios on the

efficient frontier, taking approximately the same time (around two minutes) as the

EVS methodology, as shown in Figure 3.5. A video of the progression of the genetic

algorithm can be viewed at https://www.youtube.com/watch?v=hYb3-9PR7Fs. Fig-

ure 3.6 provides the efficient frontiers produced by the genetic algorithm at interme-

diate stages to produce the final efficient frontier shown in Figure 3.5.
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Figure 3.5: A Small Problem Instance Where the Generated Efficient Frontier

Through Evs (Hollow Circles) Perfectly Corresponds with the Results from Big

(Crosses) for a Problem Instance of 2000 Decision Units

For larger problem instances, the time taken for the EVS methodology increases
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Genetic algorithm population at intermediate stages
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Figure 3.6: Plots at Various Stages of BIG to Arrive at the Same Solutions That

Comprise the Efficient Frontier in Figure 3.5. The Algorithm Favors Retention of

Solutions That Fill the ‘gaps’ in the Efficient Frontier

exponentially, which of course is one of the primary motivations for developing BIG.

As discussed earlier, this stems from the increased number of interactions, especially

the optional relationships, between the various portfolio units that causes a large

number of decision units to exist for each portfolio unit. Generating the decision

units before hand, so that the appropriate values can be looked up by the beam

search and genetic algorithm as needed greatly speeds up the performance of BIG,

but depending on the size of each decision unit and the fact that the number of

decision units for each portfolio unit increases by a factor of two for every optional
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relationship in the neighborhood, there may only be a certain number of decision units

that can be stored in memory. This means that if a new decision unit not stored in

memory is encountered, it must be valuated on the fly, and this can considerably slow

down the performance of the algorithm.

Further computational studies were then conducted on variations of the portfolio

selection problems of the six main groups for which our methodology was implemented

at Intel Corporation. The six groups represent actual divisions within the company

and can be broadly described by the market they service. Three of the groups (PC,

Server and Embedded Computing) serve external markets, while the other three work

on portfolio units that were used by the first three. For example, a hardware or

software module used to build desktop computers by the PC group would be classified

as a support portfolio unit that belonged to one of the latter three groups.

For each of the six divisions, based on the actual data from their respective PPS

exercises, 20 different problem instances were generated. These divisions largely differ

from each other in terms of the parameter α, or the ratio of total decision units to

portfolio units in the problem instance. efficient frontier, and recorded the average

EVS solve time for all 20 problem instances. The results are shown in Table 3.5.
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Ratio of

Number of Number of Decision Units to Average EVS

Department Decision Units Portfolio Units Portfolio Units Solve Time (mins)

Division 1 700 700 1 0.5

Division 2 400 200 2 0.5

Division 3 8,000 200 40 5

Division 4 50,000 200 250 60

Division 5 180,000 200 900 180

Division 6 36,000,000 1000 36000 1440

Table 3.5: Problem Instance Parameters and Average Solve Time for Six Different

Divisions at Intel Corporation

In the Division 4 problem instances, for example, with 50,000 decision units,the

genetic algorithm was able to quickly approximate the efficient frontier within about

5 minutes and reach the true efficient frontier within twenty minutes, on average. In

comparison, the EVS methodology took about an hour to identify the same frontier

on the same server. This is shown in Figure 3.7, where the “5 minute Genetic” shows

the status of the genetic algorithm after five minutes of run time. The “20 minute

Genetic” shows the status of the efficient frontier and the improvements to it after

running it for an additional 15 minutes. These results are contrasted with the EVS

run that took about sixty minutes to generate the same portfolios on the efficient

frontier.

All groups had similar financial models with slight variations in how they were

modeled in terms of the optimization problem. An example of Division 6’s problem

structure is detailed in the Appendix. The overall framework was well received by all

the divisions we worked with and is now an integral part of their decision making.
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Efficient Frontier comparisons between EVS and the genetic algorithm
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Figure 3.7: Comparison of the Genetic Algorithm Run for Different Amounts of Time

Versus the Efficient Frontier Obtained via EVS

As the ratio of decision units to portfolio units rises, the solve time for the EVS

begins to increase exponentially. We found from our results that when this ratio is

low, approximately less than 5, the genetic algorithm takes a long time to identify all

non-dominated solutions. This is because the genetic algorithm is not very effective

at handling problems that have a high number of portfolio units that are required

for others, as the number of feasible solutions in those cases are very low. As such,

the EVS works better for problem instances with a ratio of decision units to portfolio

units less than five. Otherwise, the correction operator discussed earlier in this paper

would have to be employed. As evidenced by Figure 3.8, as α increases, the genetic

algorithm performs significantly better. For low levels of α the EVS approach is able

to identify the efficient frontier faster.

In all the instances, the weights for elitism were contrasted with the crowding
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Solve Time Differences between EVS and BIG
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Figure 3.8: Differences in Solve Time for Various Divisions Between the EVS and

BIG. As Alpha Increases, the EVS Solve Time Rises Significantly. BIG Was Run for

Twenty Minutes for All Problem Instances

operator and observed to reach stopping conditions in fewer, or, in at most an equal

number of generations. Diversity can also be achieved by dividing the objective space

into “windows” or various resource consumption zones and conducting local searches

within those windows. This has proved promising in improving upon solutions within

a resource consumption zone already identified by the genetic algorithm. Candidate

solutions that do not fall into the current resource consumption zone are thrown away

and generating new feasible ones or correcting infeasible ones can get computation-

ally expensive. As such, this methodology is best suited for fine tuning the results

in a particular resource consumption or spending range rather than being used for

developing the entire efficient frontier.

All experiments were run on an Intel Xeon E5-2680 v4 @ 2.40 Ghz with two physi-
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cal processors, each with 14 cores and hyperthreading yielding 56 logical cores and 1.5

TB of RAM. Before we discuss the performance of the algorithm as a whole, it should

be noted that in our experiments, 70 to 90% of the running time of the algorithm was

spent evaluating the NPV of generated solutions. The complex financial model used

to determine the benefit of each solution was formulated by senior financial analysts

and involves a Monte Carlo simulation. To remind the reader, valuating a portfolio

involves identifying the decision units comprising the portfolio and then using a finan-

cial model to valuate the decision units. Storing the results of common decision units

greatly helped in speeding up the identification of the efficient frontier, however, due

to the amount of information stored, including various benefit and resource metrics

for each decision unit, we limited the number of decision units for which results were

stored to a maximum of two million, which in our exercise occupied roughly around

4 GB of memory.

3.7 Discussion on Real-life Business Implementation

Genetic algorithms have a higher probability of producing better solutions the

longer they are run. However, Portfolio Leads require attractive solutions quickly,

and discovering the right parameters for the genetic algorithm is key to executing

an efficient PPS framework. In practice, we abstracted the various genetic algorithm

parameters into short, medium and long runs based on the amount of time Portfolio

Leads were willing to spend discovering attractive solutions. We also developed a real

time visual of the progress of the genetic algorithm so that Portfolio Leads could see,

at any stage, the change in the efficient frontier of solutions discovered at any point

in time. Portfolio Leads were, in general more favorable to having the solver run for

a deterministic amount of time rather than waiting for it to terminate on its own.

Given the number of changes to various inputs based on new information coming in
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at the last moment, having the portfolio solver run for long hours to terminate on

its own, was not an attractive option for the Portfolio Leads. They typically ran the

tool many times during a planning exercise, often going back and adjusting various

inputs and then rerunning the solver again. The ability to enable Portfolio Leads to

easily perform these operations is key to having the PPS process run smoothly.

This visualization provided two benefits. One was to manage expectations while

Portfolio Leads waited for the results of the optimization which depending on the

running time specified ranged from between five minutes to twenty four hours. The

second was to inform the Portfolio Leads that there could possibly exist an efficient

frontier with a greater average spending-benefit ratio of all solutions. This was im-

portant because using the genetic algorithm does not yield provably optimal solutions

like EVS.

The difficulty of solving the problem via EVS, and the increased solution times

it results in, are simply not acceptable to fast moving dynamic PPS exercises. Typi-

cally new information is continuously being made available to various analyst teams

regarding market conditions that could result in them reworking their inputs to their

various portfolio unit models. As such an algorithm that runs for a day that provides

a provably optimal answer may be less useful than one that approximates closely the

efficient frontier in a fraction of the time to better accommodate requests to rerun

the optimization to incorporate last minute changes to inputs. Moreover, this also

allows the process to be repeated more frequently through the financial year.

Overall, the entire approach, including the modeling framework and the optimiza-

tion, was deployed through a DSS called “Voyager.” Initially deployed with Intel

Corporation’s server division, Voyager was soon mandated by company leadership to

manage the PPS decisions for the rest of Intel Corporation’s product divisions totaling

roughly 25 billion dollars in terms of spending and 195 billion dollars in NPV. Sur-
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veying the analysts who input information into “Voyager,” it was unanimously agreed

that it sped up the process from months to days and helped improve the quality of

PPS decisions while making the entire process easier and more intuitive compared

to previous years practice, which included ad-hoc advocacy based approaches, off-the

shelf tools and hiring outside consultants. The framework was easy to learn and

communicate, and extremely flexible to work with, requiring little to no training on

how to use it. Transitioning portfolio analyst teams typically had less than a day’s

training to begin using the tool.

The ability to arrive at a good efficient frontier quickly using the genetic algorithm

detailed in this paper depends on the following parameters: the number of solutions

retained after every step of the beam search, the number of solutions retained after

every step of the genetic algorithm, and the number of stagnant generations before

evaluation is terminated.

Using the various tools mentioned earlier, the decision maker and his staff were

able to examine, compare and contrast the various portfolios presented by the port-

folio leads and have discussions where the portfolios were evaluated on the basis how

they performed for various conflicting objectives like NPV, revenue in a particular

year, headcount consumption for specific skill sets and so on. The portfolio exercise

was more effective and decision making at the company dropped from a period of a

few months to a few days.

3.8 Conclusions

PPS is an extremely complex task because of the many competing objectives on

which portfolios have to be optimized and the large number of interdependencies these

portfolio units have with each other. These interdependencies typically cause the

benefit expected to be realized from a portfolio unit to be dependent on the inclusion
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of other portfolio units in the portfolio. This greatly increases the complexity of the

portfolio optimization problem and presents a real challenge to decision makers.

An organized framework is needed to tackle the PPS problem, and one such inte-

grated framework is presented in Sampath et al. (2015). However, the optimization

methodology presented in that paper falls short when the number of interactions

between portfolio units is too large. To address this deficiency, we present in this

paper an alternative solution methodology that aims to generate an efficient frontier

of portfolios for decision makers in an acceptable amount of time. We have attempted

to combine heuristics in an intelligent manner to arrive at attractive solutions quickly

and believe that it has great promise towards solving other problems of this nature,

where the objective function is hard or expensive to evaluate. The ready acceptance

of of this optimization-based PPS framework by the PPS committee at Intel Corpo-

ration due to its ability to handle problem instances involving great model complexity

demonstrates that it is a step in the right direction towards increasing the acceptance

of optimization-based PPS models in industry.

With regards to the framework itself, this paper has addressed (i) a scalable

framework that incorporates increasing model complexity, and (ii) better ways to

increase decision maker confidence in the results produced. There are a number of

avenues of further research we have not addressed, however. One of them is how

to normalize the inputs from various analysts who may interact with the tool in

the modeling stage to input data regarding each portfolio unit. We have also not

addressed the issue of how to model portfolio units and impacts from a financial

perspective, and have assumed the financials and impacts have already been modeled.

Further research is also needed toward algorithm implementation to improve the

speed of portfolio generation to approach the true EVS frontier and better ways to

incorporate risk considerations in the framework. With regards to algorithm im-
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plementation, future research should focus on achieving attractive solutions faster,

including better utilization of modern parallel processing technologies to evaluate the

benefit of large number of offsprings in each generation, as this is often very expen-

sive in terms of processor cycles. Further research should be focused towards possibly

tracking the direction of improvement for portfolios towards the efficient frontier for

the duration of the genetic algorithm and replacing the complex objective evaluation

function for a few cycles to speed up the algorithm.

More research into the use of combining PPS optimization models with low-

cognitive, non-compensatory decision strategies will ultimately lead to a higher adop-

tion rate of versatile models like the one presented here that tackle many different

aspects of the PPS process. However, until risk considerations are incorporated into

the model before optimization, portfolios attractive from a risk perspective may not

be present among the portfolio choices decision makers are provided.
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Chapter 4

INCORPORATING PROJECT COST AND BENEFIT RISK CONSIDERATIONS

INTO THE PPS FRAMEWORK

82



4.1 Introduction

Project portfolio selection is a very important activity for most organizations as

it prioritizes and determines the projects a company will undertake by determining

where spending is directed. With large organizations, project portfolio selection may

occur once or twice a year and the final portfolio must be approved by senior man-

agement and then communicated to the rest of the company. It is a complex process

that involve many different players that gather, process and visualize the data needed

to make such decisions. Often times, decisions to fund various project alternatives

within an organization cannot be made in isolation - the impact of a candidate project

must be examined in context of the projects. In other words, the interrelationships

of various projects that are being considered for selection determine the final contri-

bution of a project to the portfolio. Based on the financial model used to valuate

(i.e. to quantify and assign numerical value to), the benefit accrued from a project,

and the nature of the impacts that these projects have on one another, the process of

modeling and solving a problem instance can be extremely complex and it is often not

possible to represent the resulting benefit of the combination of projects as a linear

relationship. This may result in a project having many different versions, each with

its own values for its benefit (for example, the revenue accrued upon the completion

of a project), depending on other projects that are included alongside it in a port-

folio. Enumerating and valuating all the different versions of a project may require

off-line pre-processing that takes into account the various intricate relationships be-

tween projects and valuates them in order to feed into an optimization model. Once

all the different viable versions for each project have been valuated however, they still

must be combined in a feasible manner to yield a viable portfolio.

Optimization models for Project Portfolio Selection (PPS) problems are great for
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building portfolios that maximize or minimize certain portfolio metrics, but their use

in practice until recently has not been comparable to other selection techniques (such

as ad-hoc approaches and strategic planning tools) in part due to the amount of data

they required to be collected Alpaugh (2008). This has however started to change.

The literature on PPS is extensive incorporating multiple realistic features such as

Net Present Value(NPV) and headcount. These models are easily incorporated into

existing decision making processes and have been successfully deployed at various

organizations. Sampath et al. (2015) present a framework that overcomes many of

the challenges associated with traditional optimization-based frameworks for PPS

like the ability to handle model complexity, project interactions and user acceptance,

all of which are problems well documented by the work of Archer and Ghasemzadeh

(1999). This paper extends the framework presented in the paper and describes a

methodology of prioritizing portfolios that are not as “risky” as others.

Maximizing profit (by either maximizing a benefit or minimizing a cost, or both)

and minimizing risk are two common objectives in PPS problems that decision makers

in large organizations find useful Bible et al. (2011). An effective decision making

methodology must allow for the exploration of trade-offs between the two objectives

while at the same time taking into consideration the risk involved in meeting certain

targets for the benefit or the risk involved in exceeding a certain pre-determined

budget. This framework should thus incorporate risk as a metric to assess portfolios.

Projects may have a number of benefit and cost metrics associated with them.

Some of these metrics are captured directly through reports from analysts familiar

with the project’s financials. These reports are then used to infer the parameters of

the underlying probability distribution that represents the set of possible outcomes

for that project metric. The remaining project metrics are functions of these input

metrics. The expected value approach, where the expected value of distribution of

84



the various metrics are maximized, may yield solutions that are sub-optimal when

evaluated in terms of risk. Based on the expression that determines the value of

these derived metrics, the expected value approach may hide the dispersion of the

distribution of the project metric used to evaluate risk. As such, portfolios with

significant probabilities of extreme case events may be selected and presented to

decision makers.

In large organizations, there are often various stages involved in selecting the

optimal portfolio with different parties involved each with different roles and respon-

sibilities. If a senior decision maker higher up the company decision making hierar-

chy rejects a portfolio optimized for some central tendency measure, this may lead

to another cycle of portfolio generation and selection. In the worst case, a portfo-

lio optimized for some central measure tendency like the expected value, may lead to

catastrophic realizations of outcome. This may particularly be problem when the dis-

tributions of the various project metrics are represented by asymmetric distributions.

Offline processing allows the handling of complex evaluations of the distributions of

each project metric because it allows us to work with the entire distribution rather

than the expected value which may be derived from the input distributional informa-

tion of the various projects. By incorporating the distributions into decision making,

uncertainties and risks are no longer ignored and decision makers can be confident of

selecting a portfolio that meets their level of risk aversion.

Senior DMs who often have the final say in PPS decision making exercises must be

presented with options that are attractive given their risk preferences without taking

up too much of their time eliciting said preferences. The optimization model must

then be able to generate attractive portfolios that maximize utility for a given DM

or group of DMs based on their varying risk preferences.

In this paper, we present a chance-constrained PPS model that generates an effi-
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cient frontier of portfolios considering the two objectives of benefit (to be maximized)

and cost (to be minimized) for various risk levels that enables decision makers to

choose the most preferred portfolio. This model seeks to incorporate various kinds of

constraints that model business rules that are encountered in the selection process. It

allows for the incorporation of a decision maker’s risk tolerance by generating portfo-

lio options for various risk levels for various cost budgets and benefit targets. It also

incorporates project inter-dependencies in a novel and generalizable way and presents

a new way to evaluate projects. We follow this section with a brief literature review

discussing incorporating risk in the PPS process, followed by a section that discusses

project evaluation and optimization. We then present a numerical study to better

illustrate the models in the previous section and finally present our conclusions.

4.2 Literature Review

A number of studies including those by Heidenberger and Stummer (1999) and

Archer and Ghasemzadeh (1999) note that when it comes to PPS, mathematical pro-

gramming approaches are viable tools that can incorporate project interdependencies

into the model and support sensitivity analysis. However these studies also discuss

why these models are often overlooked for a number of reasons that include a) the

extent of data that needs to be collected, b) model complexity and c) the inability in

general to incorporate risk considerations in an effective manner. The need to collect

large amounts of data cannot, in most cases, be skirted for better quality decision

making. Assuming that the organization undertaking the exercise has the necessary

resources to collect a sufficient amount of information to derive meaningful results

for decision making, the works by Sampath et al. (2015) and Sampath et al. (2018)

introduce a framework that is intuitive to understand and readily accepted by senior

decision makers. This model is also able to handle increasingly complex problem
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instances that involves numerous project interactions.

However, as stated before, since these kinds of optimization models often opti-

mize on some central tendency measures, the portfolio options generated must then

be examined from a risk perspective which may lead to more portfolio alternatives

being generated than necessary with no guarantee of generating a portfolio that meets

the desired risk tolerance of the decision maker. These also may not produce solu-

tions for a given risk tolerance level. Moreover, an optimization model must have

specified a suitable benefit metric to optimize to produce portfolios. This is why

there is a lot of literature on developing the appropriate benefit metrics like net

present value (NPV) Sefair et al. (2017), Li et al. (2015). Other metrics like Value

at Risk (VaR) Zhao and Xiao (2016), Molina et al. (2017), Conditional Value at

Risk (CVaR) Paquin et al. (2016), Maier et al. (2016) are also considered. These

approaches seek to incorporate the risk into the optimization metric, and may be

considered as metrics to be minimized in an optimization model at a given risk level.

NPV remains the most popular metric to measure the benefit of portfolios in prac-

tice Harmsen et al. (2010).

Recently, more complex measures have also been developed and used. Hall et al.

(2015) specify alternative risk indices to VAR and CVAR to optimize portfolios

against. These indices model correlation and interaction effects such as synergies

and use a discrete non-linear optimization model to produce robust portfolios. Sim-

ilarly, Costantino et al. (2015) develop a neural network model to develop project

critical success factors (CSFs) and use it to select for portfolios that are less likely to

fail. These works along with Abbassi et al. (2014) where the authors employ a 0-1

Mixed Integer Program to maximize the cross-entropy of a project portfolio where the

projects have various risks and interdependencies all seek to find ways to characterize

the risk of portfolios with a new measure while using it as the objective in their op-
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timization models but may suffer the same problems as the expected value approach

by ignoring the dispersion present in asymmetric distributions used to evaluate risk.

The use of fuzzy models for project portfolio evaluation and selection has also

received some attention in the literature. Various portfolio metrics like the net present

value, spending and so on are represented by ‘fuzzy sets’. Fuzzy sets are characterized

by membership functions that determine the degree of membership of any number to

a set and have to be explicitly stated before being used in an optimization model as

noted by Perez and Gomez (2016). Some efforts have been made to make the fuzzy

approach to project portfolio selection more intuitive in the works of Mohagheghi

et al. (2015). However, fuzzy logic rules are difficult to develop and analysis is difficult

because fuzzy membership functions and outputs can be interpreted in a number of

different ways. Other quantitative approaches to PPS along with their shortcomings

are detailed in Iamratanakul et al. (2008).

An alternative way to deal with the risk inherent in various portfolio metrics

is to incorporate chance-constraints into an optimization model. Typically, given a

certain risk-level or tolerance, a chance-constrained formulation makes sure that the

probability of meeting a certain constraint meets a specified risk-level. Originally

developed by Charnes and Cooper (1959), much work has been done in the field

of chance-constrained programming. Many studies such as Henrion (2004) over the

years have sought to look into ways of increasing the efficiencies of solving such

problems. Chance-constraints in financial portfolio optimization has also begun to

receive some attention as evidenced by the studies of Dombrovskii and Obyedko (2015)

and Noorian and Leong (2014). A more detailed review of the practical applications

of chance-constraints is discussed in Geletu et al. (2013), Shen et al. (2010), Luedtke

(2014), Luedtke et al. (2010) and Küçükyavuz (2012). The use of chance-constraints

is necessitated because when the distributions being considered are not normal, it is
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hard to find a deterministic equivalent mathematical formulation that can be solved

such as those in (Wiesemann et al., 2014; Goh and Sim, 2010; Kalashnikov et al.,

2017).

To the best of our knowledge, there have been few approaches discussed so far

that allow the incorporation of risk into the optimization model with the use of joint

chance constraints to solve a PPS problem while evaluating projects by incorporating

dependencies from other projects for various cost and benefit levels. In this paper, we

employ chance constraints defined over various risk tolerance levels to provide deci-

sion makers portfolio choices so that they may explore the available optimal portfolios

generated and select the most attractive portfolio. The optimization framework takes

into account the probability of meeting certain targets, and the subsequent optimiza-

tion to identify non-dominated portfolios meeting certain benefit targets at various

cost levels for certain levels of risk.

4.3 Problem Description

For the purposes of this paper, we shall refer to a project, or any engineering

effort that consumes company resources and yields some benefit as a portfolio unit.

Inter-dependencies or relationships that these portfolio units share with each other

may cause a given portfolio unit to yield a different benefit depending on the other

portfolio units being executed. We handle this by defining a decision unit as a specific

version of a portfolio unit that is defined explicitly by the other portfolio units it

shares inter-dependencies with that have also been picked to be executed alongside

the portfolio unit. A decision unit is thus a ‘version’ of a portfolio unit. We divide

this section into two parts, the first of which describes project evaluation, and the

second the optimization.
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Figure 4.1: A Few Portfolio Units with Optional Relationships That Yield 22 Total

Decision Units. The Dotted Line Indicates the Portfolio Units in the Neighborhood

of Portfolio Unit D

4.3.1 Project Evaluation

For example, in Figure 4.1 portfolio unit B would have four different decision

units each of which may yield a different benefit based on whether B was executed

alongside portfolio unit A, portfolio unit C, both, or neither. These will be explained

in more detail later.

To begin, we describe the input and output metrics of a portfolio unit. Input

metrics are those metrics for which distributional information is directly captured,

whereas output metrics are functions of various other input or output metrics. The

implicit assumption that is being made in this methodology is that the portfolio units,

and their “neighborhood” or other portfolio units they have relationships with, exist

in silos, in the sense that capturing distributional information about a portfolio unit
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and the relationships that affect that particular portfolio unit is enough to derive

all the distributional information of the decision units. This is illustrated in 4.1,

an inter-dependency graph that shows how these portfolio units effect each other.

The portfolio unit at the end of the directed arc is impacted by the portfolio at the

beginning of the directed arc. The portfolio unit at the beginning is not affected

by the portfolio at the end of the arc. The incoming arcs indicate a dependency

between two portfolio units. Portfolio units exist in silos and their decision unit values

only depend upon its immediate neighborhood and incoming arcs. To reinforce the

concept of how the portfolio units and their neighborhood exist in silos, we present

the example of a decision unit and look at the distribution of its various metrics. To

remind the reader, the distributional information of the input metrics is captured for

the underlying portfolio unit and the relationships that are active for that particular

decision unit. For example, in Figure 4.1 the portfolio unit F, and in particular, the

decision unit of F when D is also included in a portfolio (but not E). The distribution

of the metrics of F depend only on the probabilistic reports captured for portfolio

unit F and the relationship value modifiers for the relationship between D and F.

The decision unit also captures that portfolio unit E was excluded. The inclusion

of portfolio unit D, however, does not depend on the evaluation of portfolio units

G and J, because portfolio unit F resides in a silo with respect to those portfolio

units. Relationship value modifiers here refers to the change in value of the metric of

a portfolio unit because of another portfolio unit its neighborhood being selected in

the portfolio alongside it. The distribution of the various metrics of F are agnostic

to whether, portfolio units G and J are included alongside in the portfolio or not,

because it exists in a silo where it only depends on its immediate neighborhood, that

includes portfolio units D and E, but excludes portfolio units G and J. The values

associated with portfolio unit F depend on the relationship between portfolio units
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D and F rather than the portfolio unit D, which is why the evaluation of portfolio

units G and J which affect portfolio unit D, do not affect the evaluation of portfolio

unit F. Based on the decision unit selected and the relationships that are “active” or

present in the portfolio, the values reported for the relationships will be modifiers that

appropriately affect the input metric distributions of the portfolio unit for the specific

decision unit. The output metrics of the decision unit can then be calculated by using

the sampled input distributions and the financial model. It should be noted that the

input metrics contain stochastic factors which may lead to the output metrics being

stochastic as well. Moreover, due to the complex project evaluation, even assuming

the silos, the output metrics’ distribution is not easy to embed into an optimization

model.

The final values of the distributional information captured for the input metrics

of each decision unit are not directly reported - they in turn are a function of the

values reported for the underlying portfolio unit plus any relationships that affect

that particular portfolio unit that are active for the portfolio and hence modify the

distributions of the portfolio unit metrics. The output metric could thus be a function

of other distributions that may not be known for more complicated financial models.

This is illustrated in Figure 4.2.

Each input and output metric of every decision unit is treated as a random vari-

able. In order to incorporate these random variables into an optimization model, we

sample from their underlying distribution in order to model joint chance constraints.

The distribution that models these metrics may not be symmetric, and therefore mod-

eling an exact formulation is not possible. The possibility of these distributions being

highly asymmetric reinforces the need for sampling from them and then creating joint

chance constraints to model uncertainty and risk. A number of different metrics may

be considered for the financial model utilized to valuate the various decision units.
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Figure 4.2: Decision Unit Valuation Depends on the Underlying Portfolio Unit Input

Distributional Information and the Presence of Other Portfolio Units. The Impacts

Are Coded In the Relationships Which Modify the Input Distributional Informa-

tion and Yields the Output Distributional Information After Passing Through The

Financial Model

We discuss an example of one such simple model whose metrics are presented in 4.1.

For a set of samples, s ∈ S, for time periods t ∈ T , the set of portfolio units I and

the sets of decision units for each portfolio unit Ji, i ∈ I, we can use a financial model

to valuate the output and input metrics for each decision unit of ever portfolio unit

for sample.
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Input Metrics

Lsjt Number of units sold i ∈ I, t ∈ T

Asjt Average selling price of a single unit i ∈ I, t ∈ T

M s
jt Manufacturing cost of a single unit

Gs
jt Total engineering costs for development including research and develop-

ment i ∈ I, t ∈ T

Ds
jt Discount rate i ∈ I, t ∈ T

Tjt Taxes and depreciation i ∈ I, t ∈ T

Output Metrics

γsjt Cost of goods sold i ∈ I, t ∈ T

νsj Net Present Value (NPV)

Table 4.1: Parameters of a Simple Model to Calculate the Net Present Value of a

Decision Unit For a Particular Sample From the Underlying Metric Distribution

Table 4.1 shows some input and output metrics for a simple financial model to

calculate the NPV of a decision unit. At this point, the distributions of the input

metrics are known, since offline evaluation of impacts of the input metrics due to

project dependencies has been evaluated.

If the NPV is defined as by the contributing metrics as demonstrated in Equa-

tions (4.1) and (4.2), any small change to any of the input metrics through a relation-

ship value modifier (a concept explained in more detail later) can have a cascading

effect on the NPV.

γjt = Ljt ∗Mjt , j ∈ Ji, i ∈ I, t ∈ T (4.1)

νj =
∑
t∈T

(Ljt(Ajt −Mjt)−Gjt − Tjt)Djt , j ∈ Ji, i ∈ I (4.2)

For more complex models, the NPV distributions may not be symmetrical making

the implementation of a closed-form for the chance constraints impractical and hence
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motivates the methodology with sampling. Each of the terms that make up the NPV

in Equation (4.2) may be an output metric of its own and may be chosen to be the

primary benefit or cost metric. For example, if LsjtAjt is the revenue, Lsjtµjt the cost

of goods sold, (Lsjt(A
s
jt−µsjt) the profit margin or the gross profit, (Lsjt(A

s
jt−µsjt)−Es

jt

the contributing margin or the net profit, Lsjt(A
s
jt− µsjt)−Es

jt− τ sjt the free cash flow

or the tax adjusted net profit then it becomes clear that the distributions of each of

these may not be well behaved based on the input distributions the financial model

used. The input metrics are sampled first and corresponding samples for the output

metrics are calculated for each sampling.

Once the distributions for the input metrics for each portfolio unit have been

derived and sampled and fed into the financial model to produce various samples for

the output metrics, then we can formulate an optimization model that incorporates

the chance constraints, the relationships and other business logic. We detail the

optimization model below along with the elements required to set it up.

To illustrate the above concepts, we define G as the set of neighborhoods. Gi

is the set of all portfolio units in the neighborhood of portfolio unit i. li′i is then

a relationship between portfolio unit i′ and portfolio unit i, where i′ ∈ Gi. For the

sake of example, if we assume that the input metrics are PERT-Beta distributed, and

we collect reports on estimates of what the low, median and high values will be for

a particular metric. For a particular input metric u and an output metric v, uLi is

the value of the metric reported in the low case, uBi for the median case, and uHi for

the high case. Relationship modifiers may also exist, and they are mapped to the

relationships. Thus, uLi′i, u
B
i′i and uHi′i are used to model the distribution that can be

sampled to realize the modification to the reported values of the sampled distribution

value of ui if portfolio unit i′ is also included in the portfolio.
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4.3.2 Portfolio Optimization

Once the decision units are identified, the appropriate samples can be calculated

for the output metrics as well, using the appropriate financial model. These distribu-

tion samples are then sampled and used to set up the optimization model. We will

present an example to better illustrate these concepts in the next section. We detail

the various inputs to the optimization model in 4.2. The allowable budget and target

benefit define the targets for the optimization. Bmax and Rmin define the maximum

budget and minimum revenue in case the corresponding targets are not met. cij and

pij are the realizations of the random variables used to model the primary cost and

benefit metric. S is the number of samples, τ is the risk tolerance level or the max-

imum percentage of samples that may miss either target. Variance reduction during

sampling ensures that each sample pij for the benefit metric is taken from the same

simulation that produces corresponding cost metric cij.

S Set of samples for chance constraints s ∈ S

bmax Allowable budget for a feasible portfolio

Bmax Maximum cost metric value of a portfolio allowable for a feasible portfolio

rmin Target benefit metric value of a portfolio allowed for a feasible portfolio

Rmin Minimum benefit metric relaxation value of a portfolio allowed for a feasible portfolio

cij Cost of decision unit j ∈ Ji of portfolio unit i, i ∈ I

pij Benefit of decision unit j ∈ Ji of portfolio unit i, i ∈ I

τ Risk tolerance level

Table 4.2: Optimization Parameters

The model can be set up in terms of decision units using coefficient matrices C and

E that ensure that the right mix of portfolio units in the neighborhood of portfolio

unit i are picked alongside each decision unit selected.
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Ci
jk =


1, if portfolio unit k is included in the valuation of decision unit j

of portfolio unit i, for all i, k ∈ I, and j ∈ Ji ,

0, otherwise.

(4.3)

Ei
jk =


1, if portfolio unit k is excluded in the valuation of decision unit j

of portfolio unit i, for all i, k ∈ I, and j ∈ Ji ,

0, otherwise.

(4.4)

The inclusion matrix and the exclusion matrix defined above are used to ensure

that for any particular decision unit selected, the appropriate portfolio units that

make up the specific scenario for that decision unit are included or excluded

accordingly. The decision variables for the model are defined as follows.

yij Binary variable that takes a value of 1 indicating if Decision Unit j of Portfolio Unit

i is included in the current portfolio and 0 otherwise.

zs Binary variable that takes a value of 1 indicating if the chance constraint associated

with sample s has been violated and 0 otherwise

This model is presented here below that aims to maximize the number of samples

that satisfy given budget and target benefit targets called MRL.
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MRL :Minimize τ =
∑
s∈S

zs (4.5)

subject to:∑
i∈N

∑
j∈Ji

csijyij ≤ bmax + (Bmax − bmax)zs ∀s ∈ S (4.6)

∑
i∈N

∑
j∈Ji

psijyij ≥ rmin − (rmin −Rmin)zs ∀s ∈ S (4.7)

∑
j∈Ji

yij ≤ 1 ∀i ∈ N (4.8)

∑
k∈N :Ci

jk=1

yij −
∑

k∈N :Ci
jk=1

∑
l∈Jk

ykl ≤ 0, ∀i ∈ N, j ∈ Ji (4.9)

∑
k∈N :Ei

jk=1

yij +
∑

k∈N :Ei
jk=1

∑
l∈Jk

ykl ≤
∑

k∈N :Ei
jk=1

1, ∀i ∈ N, j ∈ Ji (4.10)

yij ∈ {0, 1} ∀i ∈ N, j ∈ Ji

The objective function ensures that the least amount of chance-constraints are

violated when targeting a specific revenue and budget target or minimizes the prob-

ability of a portfolio violating the chance constraints. Constraint sets 4.6 and 4.7 are

the primary cost and revenue constraints for each sample of the corresponding met-

rics. When zs = 0, the specific revenue target or budget for that particular scenario

are met. If zs = 1, the constraint is essentially relaxed, and one or both of the targets

may be violated for a particular scenario. This means that the model seeks to mini-

mize the probability of violating the chance constraints, P (
∑

i∈N
∑

j∈Ji c
s
ijyij ≤ bmax

and
∑

i∈N
∑

j∈Ji p
s
ijyij ≥ rmin). We only use one variable per scenario to guarantee

that the same scenarios are selected (or discarded) for the revenue and budget chance

constraints. Constraint set 4.8 ensures that at most only one decision unit per portfo-

lio unit is selected. Constraint sets 4.9 and 4.10 ensure that the right combinations of

portfolio units are selected for the decision units selected. For example, if the decision
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unit of portfolio unit F discussed earlier is selected, constraint set (4.9) would ensure

that some decision unit of portfolio unit D is selected and constraint set (4.10) would

ensure that no decision unit of portfolio unit E was selected. Solving this model

leads us to map a specific target revenue and budget to a risk level, so we call this

map-to-risk level model (MRL). This model’s objective function estimates the prob-

ability of meeting the specified targets for benefit and cost. In the next model, this is

contrasted against an objective function that, for a decision maker’s risk preferences,

maximizes the achievable benefit target for a specific cost level.

However, for a specific budget, decision makers may be interested in maximizing

the benefit they can achieve for a certain risk level. We can achieve this with a

second optimization model, the benefit-for-risk model (BFR). We define additionally

a decision variable xr that refers to the target benefit that we wish to maximize for a

given budget and risk level. Here M is a sufficiently large value that relaxes the right

hand side of Equation (4.13) for s ∈ S that result in the case where the left hand

side is not greater than the decision variable r. Note that we know that a solution

providing at least Rmin and satisfying the budget constraint in at least τ ∗ scenarios

exists, due to the first phase. τ ∗ is a specific risk level, the number of scenarios that

we know can be satisfied from solving MRL, and we can use this to maximize r in

BFR for a specific cost level.
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BFR :Maximize r (4.11)

subject to:∑
i∈N

∑
j∈Ji

csijyij ≤ bmax + (Bmax − bmax)zs∀s ∈ S (4.12)

∑
i∈N

∑
j∈Ji

psijyij ≥ xr −Mzs ∀s ∈ S (4.13)

∑
i∈N

∑
j∈Ji

psijyij ≥ Rmin ∀s ∈ S (4.14)

∑
s∈S

zs ≤ τ ∗ (4.15)

Constraint sets (4.8), (4.9), (4.10)

yij ∈ {0, 1} ∀i ∈ N, j ∈ Ji

Incorporating Additional Business Logic

This framework allows for many other constraints that reflect the business logic com-

monly encountered in PPS problems to be modeled. For example, so far we only

showed relationships that impact other portfolio units but do not preclude specific

combinations of various portfolio units. Such soft constraints may not be sufficient

to describe the underlying business. Many hard constraints as precedence and logical

constraints can also be modeled Sampath et al. (2016). For example, one portfolio

may be required by another in order to be selected for the portfolio. Relationships

may also exist between subsets of portfolio units that make only certain combinations

of units within the subset feasible for selection in a portfolio. Apart from the primary

cost metric and benefit metric quantitative constraints can also be modeled sampling

from the distributions of the other metrics.

These relational and quantitative constraints certain qualitative constraints may
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also be necessitated in order to describe the underlying business logic faithfully. For

example, portfolio units may also possess certain qualitative attributes. A feasible

portfolio may necessitate a certain percentage of the portfolio to possess a certain

attribute. The framework allows for the easy modeling of these kinds of constraints

as well. For example, for any qualitative attribute of the portfolio unit, business needs

may require all portfolios to contain, in terms of cost or some other metric, a certain

percentage to be directed towards portfolio units possessing that characteristic. For

example, if hi = 1 indicates that portfolio unit i belongs to a certain category and

hi = 0 indicates that it does not, business needs may require at least τH% of the

portfolio’s cost to be directed towards units that possess that quality. This can be

modeled as such:

∑
i∈N

∑
j∈Ji

csijhiyij >= τH
∑
i∈N

∑
j∈Ji

csijyij (4.16)

Solving the model detailed earlier for various values of cost and benefit targets

allows us to identify similar risk regions that allows decision makers to initiate con-

versations regarding trade-offs between the various metrics.

4.4 Numerical Study

A computational study that seeks to validate the framework will have to address

a number of different areas detailed in the paper. Since problem complexity depends

on the number of relationships impacting a given portfolio unit, experimental stud-

ies should characterize how many decision units and optional units the framework

can handle before the problem becomes impractical to solve. The second is how

many samples need to be generated to effectively characterize the distributions of

the primary benefit and cost metrics. Based on the complexity of the model and the
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shape of the resulting distributions the number of samples and corresponding chance

constraints that need to be encoded to generate reasonable answers may vary. This

should also be considered while stress testing the capability of the model. Generating

results and sweeping across the axis for various values of the budget and revenue

target, along with varying values of risk will have to be explored in order to identify

what visualizations are most intuitive to decision makers.

For the numerical study, the data we will present corresponds to the problem

instance described by Figure 4.1. This problem instance has 11 portfolio units and 22

decision units and 8 relationships. This is illustrated in Table 4.3. For a decision unit,

the superscript indicates which portfolio units from the neighborhood are included,

and the subscript indicates which decision units from the neighborhood are excluded.

The − indicates no portfolio units exist that should be considered.
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Portfolio Unit Neighborhood Decision Units

A - A−−

B A,C

BAC
−

BA
C

BC
A

B−AC

C − C−−

D G, J

DGJ
−

DG
J

DJ
G

D−GJ

E − E−−

F D,E

FDE
−

FD
E

FE
D

F−DE

G − E−−

H K
HK
−

H−K

I H
IH−

I−H

J − J−−

K − K−−

Table 4.3: Optimization Parameters
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Each portfolio unit in a portfolio unit’s neighborhood impacts said portfolio unit.

For each input metric, an ordered triplet (ul, ub, uh) of low, base and high values is

reported and used to model the various metric distributions.
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Portfolio Unit Metrics Reports [l,b,h]

A

Volume [1, 9, 30]

ASP [8, 12, 13]

Manufacturing Cost [2, 3, 4]

Engineering Cost [1, 6, 7]

Tax & Depreciation [3, 4, 5]

B

Volume [20, 30, 35]

ASP [5, 6, 8]

Manufacturing Cost [2,3,4]

Engineering Cost [5,6,7]

Tax & Depreciation [3, 4, 5]

C

Volume [10, 30, 40]

ASP [4, 5, 9]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

D

Volume [10, 20, 30]

ASP [4.5, 5, 5.5]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

E

Volume [5, 20, 21]

ASP [4, 8, 10]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

E

Volume [10, 20, 50]

ASP [1, 5, 9]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

Table 4.4: Portfolio Unit Data for Units A-E
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Portfolio Unit Metrics Reports [l,b,h]

F

Volume [10, 20, 50]

ASP [1, 5, 9]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

G

Volume [1, 20, 30]

ASP [1, 9, 10]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

H

Volume [13, 52, 70]

ASP [4, 5, 12]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

I

Volume [10, 20, 30]

ASP [4, 5, 12]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

J

Volume [10, 20, 30]

ASP [4, 5, 6]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

K

Volume [10, 25, 26]

ASP [5, 10, 15]

Manufacturing Cost [2, 3, 4]

Engineering Cost [5, 6, 7]

Tax & Depreciation [3, 4, 5]

Table 4.5: Portfolio Unit Data for Units F-K
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Relationship Modifying Metric Reports [l,b,h]

rAB

Volume Adder [10, 20, 30]

ASP Adder [5, 9, 11]

Manufacturing Cost Adder [2, 3, 4]

Engineering Cost Adder [5, 6, 7]

Tax & Depreciation Adder [3, 4, 5]

rCB

Volume Adder [11, 12, 13]

ASP Adder [4, 5, 6]

Manufacturing Cost Adder [2, 3, 4]

Engineering Cost Adder [1, 2, 3]

Tax & Depreciation Adder [3, 4, 5]

rDF

Volume Adder [10, 20, 30]

ASP Adder [4, 5, 6]

Manufacturing Cost Adder [2, 3, 4]

Engineering Cost Adder [1, 1.5, 2]

Tax & Depreciation Adder [3, 4, 5]

rEF

Volume Adder [12, 22, 32]

ASP Adder [4, 5, 6]

Manufacturing Cost Adder [0.5, 0.75, 1]

Engineering Cost Adder [1, 2, 3]

Tax & Depreciation Adder [5, 6, 7]

rGD

Volume Adder [10, 20, 30]

ASP Adder [4, 5, 6]

Manufacturing Cost Adder [2, 3, 4]

Engineering Cost Adder [5, 6, 7]

Tax & Depreciation Adder [3, 4, 5]

rHI

Volume Adder [20, 21, 30]

ASP Adder [4, 5, 10]

Manufacturing Cost Adder [0, 0.5, 1]

Engineering Cost Adder [1, 4, 7]

Tax & Depreciation Adder [3, 4, 5]

rJD

Volume Adder [1, 2, 3]

ASP Adder [4, 5, 6]

Manufacturing Cost Adder [1, 2, 3]

Engineering Cost Adder [1, 2, 3]

Tax & Depreciation Adder [3, 4, 5]

rKH

Volume Adder [10, 20, 21]

ASP Adder [4, 5, 6]

Manufacturing Cost Adder [1, 1.5, 2]

Engineering Cost Adder [1, 2, 3]

Tax & Depreciation Adder [3, 4, 5]

Table 4.6: Relationship Modifier Data
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The reports in Table 4.4, 4.5 and 4.6 are used to fit a PERT-Beta distribution.

For each chance-constraint, all decision unit values are calculated by sampling from

the input distribution of the portfolio unit and then adding the value to the sample

from the distribution for the relevant relationship modifier distribution if one exists.

These modified values are then sampled and plugged into Equations (4.1) and (4.2)

to produce one sample of the output metrics.

In order to evaluate the various decision units, with the data presented so far,

the reported values were assumed to correspond to the low, base and high values of

the PERT-Beta Distribution whose probability density function is described by the

equation

P (X = x)P (X = x)P (X = x) =
(x− a)(α−1)(b− x)(β−1)

B(α, β)(b− α)(α+β−1)

Here, ul, ub and uh correspond to the ordered triplet reported earlier for each portfolio

unit metric. α and β are the shape parameters that can be calculated from the low,

base and high values using the following equations.

ααα =
4b+ h− 5l

h− l

βββ =
5h− l − 4n

h− l
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Distributions of Various Metrics for a Decision Unit

(a) Volume (b) ASP

(c) Engineering Cost (d) Contributing Margin

(e) Taxes (f) Cost

(g) NPV

Figure 4.3: Distribution of various metrics of the decision unit of portfolio unit F in

a portfolio that includes portfolio unit D, but not portfolio unit J from the problem

instance shown in Figure 4.1. The distributions are a result of the probabilistic reports

captured for portfolio unit F modified by the probabilistic reports captured for the

modifying relationship between D and F
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Figure 4.3 shows the distributions for the various metrics for a decision unit of

portfolio unit F. The distributions for a particular metric of the various decision units

of portfolio unit F may differ significantly as can be observed in Figure 4.4.

NPV distributions for various Decision Units

(a) F without D and J (b) F with J without D

(c) F with D without J (d) F with D and J

Figure 4.4: NPV Distributions for Various Decision Units of Portfolio Unit F

Solving model MBL for 7 different budget values equally spaced between 1000 and

2000 (1000, 1166, 1332, 1498, 1664, 1830, 1996) and 7 different target NPV values

equally spaced between 900 and 2500(900, 1166, 1432, 1698, 1964, 2230, 2496), gives

us the bubble plot in Figure 4.5. This is a satisfiability diagram. For any budget and

NPV target values, it shows the percentage of chance-constraints that were violated.
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This diagram helps orient the decision maker in terms of available options and focus

attention on a region of interest, depending on the level of risk she is willing to take

on as well as depicting the NPV target and allowable budget used in the model.

Figure 4.5: Bubble Plot Showing the Number of Chance Constraints Violated for

Various Benefit Targets and Allowable Budgets

Solving the BFR for the same values allows us to generate the bubble plots to

determine the maximum NPV target realizable for a given budget and risk value.

This yields an efficient frontier of portfolios attractive when evaluated from a risk

perspective. The risk level to solve at (τ) to choose at various levels of NPV target

and budget can be informed by the previous diagram where an existence proof was

established at every level for a portfolio that violated the least number of chance-
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constraints. In Figure 4.6, we observe the efficient frontiers solved for risk levels of

5%, 25% and 50%.

Figure 4.6: Efficient Frontier Plot Showing Portfolios Values for Solutions That Max-

imize the Target Benefit for a Particular Risk Level at Various Budgets. The Target

Revenues Are Displayed. The Top Curve Corresponds to a Risk Level of 50%, the

Middle Curve to a Risk Level of 25% and the Lower Curve to a Risk Level of 5%

Figure 4.5 shows the direction of the visualizations that this methodology ulti-

mately aims to provide. For various budget levels and NPV targets, portfolio that

minimized the number of chance constraints violated were produced. This gives de-
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cision makers some idea of the tradeoffs in the objective space of NPV versus Cost of

the kind of risk they incur in increasing their budgets for higher NPV portfolios. In-

tuitively these provide decision makers of an understanding of the quality of portfolio

solutions realizable given the problem instance. The dotted lines connect the convex

hull of the best portfolios for every risk level.

The initial bubble plot was solved to determine the best risk level achievable

at various target benefit and cost levels. The second figure showed what the best

achievable target benefit was achievable by plugging in the best risk level from the

first experiment for every cost level. This is the essential difference between the two

models.

Extensive testing must be conducted that show the actual trade-offs in the objec-

tive space for three different dimensions - benefit, cost and risk.

4.5 Conclusions

Capturing the intuition of senior DMs built over years of experience and the

inherent complexities of the nature of PPS itself including the interdependencies and

conflicting objectives make this a hard problem. In this work, we seek to present

an approach that makes it easier for DMs to interact with a PPS framework to

choose project portfolios that are attractive from a risk perspective without being

too burdensome on their times in terms of input.

We use joint chance-constraints to present optimization models that present intu-

itive visualizations that quickly orient the DM regarding the solution space and then

explore the solution space to choose the best portfolio.

The framework handles many common problems seen in quantitative optimization

models such as the need to gather lots of data, handling lots of inter-relationships and

also handling risk considerations. By only capturing a minimal set of reports to char-
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acterize the distributions of the various portfolio units, handling inter-relationships

via decision units, and using chance-constraints to generate robust solutions, the

optimization addresses all the major problems that have traditionally plagued the

adoption of such models in industry.
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Chapter 5

CONCLUSIONS
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This dissertation has primarily sought to present more intuitive frameworks that

make the adoption of optimization based project portfolio selection methods more

easily adopted at organizations. Traditionally, a variety of other methods such as ad

hoc approaches (portfolio profiles, interactive selection) and strategic planning tools

(cluster analysis, portfolio matrices) have been preferred over mathematical optimiza-

tion based approaches. It has long been lamented that optimization models have not

gained acceptance in industry, because i) they did not take decision makers’ intuti-

tions into consideration, ii) could not handle a large number of inter-dependencies

between projects well, iii) needed large amounts of data collected to be useful, iv) did

not handle risk considerations in a practical manner.

Chapter 2 presents a problem instance at Intel Inc. and how their product portfolio

selection problem was tackled with the aid of a planning framework we designed and

the results that came of it. It presents details of the problem instance and describes

the problem in some detail. The paper fills a real need in the literature for practical

product portfolio selection frameworks.

Chapter 3 of this document is an extension of the mathematical models used in

Chapter 2. It generalizes the types of problem instances that the framework presented

in the previous chapter can be used for and presents details of all the mathemati-

cal models necessary for solving it. These two chapters essentially try to generalize

the project portfolio selection formulation to extend it to large problem instance

sizes especially when there are lots of interdependencies between projects. The ef-

fort was part of a framework along with a decision support tool deployed at a large

semi-conductor manufacturing company, which was vital towards buying acceptance

into the larger finance community at the company. Chapters 2 and 3 address the

challenges of handling large problem instances, developing a general framework for

modeling inter-dependencies between projects and allowing decision makers to ap-
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ply their intuition to the selection process, while the fourth chapter concentrates on

handling risk and uncertainty in more detail by presenting a formulation to optimize

risk optimized portfolios and incorporate risk considerations into the decision making

process. The proof of the success of this framework was its ready acceptance by the

large finance community at Intel Inc, and was deployed using a Decision Support

System (DSS) the details of which we will discuss briefly alongside our findings.

5.1 Mapping

In the mapping stage or project evaluation stage, the current project roadmap

was visualized and all new project and product opportunities were formally stated.

Typically, analysts worked on their individual responsibilities for weeks before meeting

together to map out the companies roadmap and represent all new portfolio units.

Assumptions were stated and viewpoints were calibrated until analysts agreed on all

portfolio units, their relationships with each other and all alternatives. The mapping

session was usually followed by multiple quality review sessions where details for all

mapped units was discussed and passed by a board of experts. Data for each project

and its interdependencies was reviewed and closely scrutinized. Analysts stated all

assumptions in their model for the review board who either okayed the financial model

or asked for it to be reworked. Typically, at least the 10th, 50th and 90th percentile

values were captured for each variable. If a certain variable was suspected of being

multi-modal, additional percentiles were captured.
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Figure 5.1: Mapped Portfolio Units of a Particular Division

Figure 5.1 shows a part of the project road map for a particular division at

Intel Inc. The minimap at the bottom right gives analysts an idea of the overall

project road map and the dialogs at the bottom allow the input of project and re-

lationship data. Before the DSS that deployed the framework, the data existed in

individual spreadsheet formats and combining the models to make good decisions

was cumbersome and in most cases simply impossible within a practical amount of

time. This framework implemented by the DSS allowed each project to be further

examined along with its inter-dependencies. It allowed easy communication of the

organization’s options being considered and allowed analysts to better understand

final decisions regarding the portfolio selection process which in turn allowed more
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ready buy-in by everyone.

5.2 Simulation Phase

A Monte Carlo simulation was performed for every valuation of every portfolio

unit. Probability distributions and variable correlations captured during the mapping

phase were used to simulate various objective and constraint values for all alternatives.

This simulation was then visualized and examined to see if they provided hither-to

unknown insight to the analyst who could then revise their model. In order to perform

the simulation, a number of different curves were fitted to the percentiles captured in

the mapping phase and the best fit curve was chosen to represent a particular variable.

If the distribution was suspected of being multi-modal, a kernel distribution was also

fitted and compared for best fit. The expected values of these distributions were then

calculated and fed into the optimization process. Having a systematic framework

with a DSS that allowed easy inspection at different steps of the process, and again,

allowed easy buy-in from the financial community and allowed for the modeling of

uncertainty into the project valuation.

5.3 Optimization Phase

Once key objective and constraint values(decided upon earlier) were obtained for

every decision unit, an iterative optimization algorithm was used with special cuts to

quickly and efficiently generate all non-dominated portfolios with regard to a primary

objective and a primary constraint. Once this was done, an algorithm to detect the

upper convex hull of the generated points was implemented and used to identify an

efficient frontier. Now, decision makers could inspect individual portfolios and discuss

budgets for the fiscal year. Individual decision units could be forced in or out to play

“what-if ” games and view how portfolios were affected. In order to do this another
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optimization algorithm was run to generate a portfolio that contained the change

indicated and was also the closest match to the original portfolio. Optimizing the

cost-benefit ratio of a portfolio was also an important objective that was requested.

We achieved this by implementing a binary integer fractional program that maximized

the ratio of two different decision unit metrics by employing various integer cuts.

Figure 5.2: Efficient Frontier and Comparison Grid

A waterfall visualization was constructed to contrast portfolios of interest with

the help of an optimization algorithm based on a specified metric that builds a path

from one portfolio to another by dropping/adding portfolio units from least to highest

positive impact. The utility of this exercise was that a decision maker could stop at

any given point of the waterfall and still have a completely valid portfolio. This
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intermediary portfolio often contained characteristics of both the initial and final

portfolio used to build the waterfall. It could also be used to construct a path of

progress from the existing roadmap to a new one.

Figure 5.3: Sample Waterfall Between Two Portfolios. The Waterfall at the Top

Is Worth Less than the Waterfall at the Bottom. Every Step in the Waterfall Is a

Valid Portfolio. Management May Choose to Walk the Entire Path or Stop Midway

Between Two Portfolios

As explained before oftentimes decision makers wanted to examine the value of

various projects to a specific portfolio when that project was dropped. This ”incre-

mental value” could be easily summarized as shown in Figure 5.4.
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Figure 5.4: The Incremental Value of a Particular Portfolio. Portfolio Unit Names

Are Blurred on the Left. On the Right, Each Bar Represents the Magnitude of NPV

Lost upon Dropping the Corresponding Portfolio Unit from That Portfolio to Get a

New Portfolio. Clicking Any of the Bars Reveals a Waterfall Between the Original

Portfolio and the New Portfolio and the Exact Source of the Value Difference Can Be

Examined

5.4 Elimination by Aspects

Once the objectives and constraints of interest and limits for these were specified

and agreed on, a lexicographical traversal of each objective/constraint with non-

satisficing portfolios eliminated at each stage is performed until decision makers are

left with a small set of portfolios of interest. At every stage, portfolios were further

examined and simulations were run to present to decision makers more information

regarding the distributions of specific portfolio attributes. This was followed by much

discussion on the state of the projects in the selected portfolios and whether addi-

tional alternatives were needed or whether funding should be decreased for certain

portfolio units. The mapping and simulation phases were sometimes repeated. Visual

aids used to aid decision making by aspects typically involved exporting tool results
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to spreadsheets by analysts and examining the data in more detail there before sum-

marizing results in presentations to senior management.

5.5 Results

The most time consuming part of the framework was the Mapping phase. This was

because much care must be taken in project screening and data gathering. In order

to fully defend selected choices to senior decision makers during later phases, utmost

care was taken to gather all necessary information and validate it. Once the data was

entered and validated however, decision unit generation, simulation and optimization

was fast and automated for the most part and completed in reasonable amounts of

time. The entire process from project identification to final portfolio selection was

shortened from many months to a couple of weeks.

Studies of our reports provided decision makers with a broader and deeper analy-

sis than they had previously been able to access. The use of our model enabled them

to satisfactorily address a number of their data-related questions. An evaluation of

a number of intuition-based what-if analyses demonstrated the soundness of our rec-

ommendations. Perhaps the most important contribution of our decision support

system has been to show the highest levels Intel management that the appropri-

ate give-and-take interaction between analytics and intuition produces higher-quality

business solutions than either approach can produce individually. The resulting plan

is superior in terms of NPV return for the budget dollars invested; in addition, de-

cision makers engage in higher-quality debate (their feedback to the Voyager team)

and arrive at consensus in a much shorter time (as measured). Given a receptive but

tough-minded group of decision makers, analytics can inform intuition and intuition

can inform analytics to the benefit of the business. The transparency of the entire

process also led to ready buy-in from all the decision makers involved.
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5.6 Conclusions

Capturing the intuition of senior decision makers built over years of experience

and the inherent complexities of the nature of PPS itself including the interdepen-

dencies and conflicting objectives make it a hard problem. We presented in this work

a four phase approach that addresses this problem and was found to be intuitive and

attractive to decision makers of all levels. At first, a mapping phase allowed deci-

sion makers to screen and map out projects to be included in the planning exercise

and explicitly model their interdependencies. This aided in clarifying the data that

needed to be gathered and promoted buy-in from project leads who had to supply this

information. By clearly specifying the information needed, the data gathering effort

was also sped up. In the simulation phase, project alternatives were valuated using

the data gathered in the previous phase. An integer program that then generated an

efficient frontier was presented. We also presented a novel transformation to generate

interesting solutions when the objective function was the ratio between the cost and

benefit, and ordinary MILPs could not handle it. Finally a decision making phase

made use of an EBA style methodology to identify many interesting portfolios, high-

light and communicate the differences between them and better capture actual choice

behavior by letting decision makers interact freely with the process. This thesis also

generalized the formulation to describe a wide variety of PPS problems and presented

a specialized heuristic to quickly generate attractive solutions for large problem in-

stances as well. The framework can handle a large number of projects and effectively

addresses many of the concerns raised expressed by many authors in the PPS lit-

erature. Finally this thesis examined how to incorporate risk into the optimization

framework and generate robust solutions that were attractive to the decision maker.
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5.7 Future Work

The field of PPS has started to gain steam, and a lot of that momentum is

being generated by the research into quantitative methods, especially optimization

models, as organizations begin to adopt ’Big Data’ solutions that allow them to

collect, store and analyse more and more data. While machine learning methods

have been deployed on Big Data repositories, optimization libraries that utilize the

advantages of executing in parallel on Big Data do not yet exist. As such more

research needs to be done towards parallelizing optimization algorithms to solve larger

problem instances faster. This will increase the size of problems that can be handled

by the more exact methods and reduce, to some extent, the need to turn to heuristics

in identifying the ideal portfolio quantitatively.

When different analysts enter in probabilistic inputs for two different projects,

how much the two projects contribute towards the risk of the entire portfolio often

depends on how each of the analysts’ probability models or in other words, their

probability function. In other words, if one analyst has a history of under-weighting

small probabilities or over-weighting large probabilities compared to the other, then

the likelihood of having his project selected over the other analyst’s tends to increase

even though the projects may actually be quite similar otherwise. A long history of

research in this area has shown however that people’s inner model of probability is

not linear exacerbating the differences. Moreover, depending on the analyst’s risk

attitude, it may skew their probability weighting function. How then can we not

only elicit an analyst’s true beliefs regarding the outcome of their project, but also

normalize the estimates from different analysts so that comparing their projects based

on their estimates is fairer? Research should be directed towards normalizing different

probability functions so that projects compete evenly and the system is not gamed.
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More intuitive visualizations will continue to engage senior decision makers in large

organizations and allow them to bring their intuition to the decision making process.

Focus should also be directed towards more risk measures to execute portfolios that

lead to good outcomes more often for the organization. As always, optimization

models are only as good as the data that is fed into it. Much care must be taken to

ensure that the various inputs into the project portfolio selection model are vetted

and trustworthy.
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APPENDIX A

VARIABLE DEFINITIONS
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In this appendix, we define the mathematical models referred to in Chapter 2.

Ci
j,k =


1, if Portfolio Unit k is included in Decision Unit j of Portfolio Unit i

0, otherwise

(A.1)

Ei
j,k =


1, if Portfolio Unit k is excluded in Decision Unit j of Portfolio Unit i

0, otherwise

(A.2)
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N Total number of portfolio units

Ii Set of portfolio units that are required for Portfolio Unit i, i ∈ {1, ..., N}

Ei Set of portfolio units that must be excluded when executing Portfolio Unit

i, i ∈ {1, ..., N}

Mi Set of mutually exclusive portfolio units, one and only one of which is re-

quired to choose Portfolio Unit i, i ∈ {1, ..., N}

Qi Set of mutually exclusive portfolio units, one and only one of which may be

chosen along with Portfolio Unit i, i ∈ {1, ..., N}

m(i) Number of portfolio units that define the neighborhood for Portfolio Unit

i.

D(i) Total number of valuations for Portfolio Unit i, i ∈ {1, ..., N}

pj(i) eNPV of Valuation j of Portfolio Unit i, i ∈ {1, ..., N}, j ∈ {1, ..., D(i)}

sj(i) Cost of Valuation j of Portfolio Unit i, i ∈ {1, ..., N}, j ∈ {1, ..., D(i)}

Bmin Minimum budget that a portfolio must exceed.

Bmax Maximum budget that a portfolio cannot exceed.

By Spending of Portfolio y.

Uj(i) Any portfolio benefit metric of Valuation j of Portfolio Unit i, i ∈ {1, ..., N}

Rj(i) Any portfolio cost metric of Valuation j of Portfolio Unit i, i ∈ {1, ..., N}

M Reciprocal of minj(i)={j(i):Rj(i)>0,i∈{1,...,N},j∈{1,...,D(i)}}(Rj(i))

ya Portfolio a with respect to which we wish to determine the incremental

value of various portfolio units.

Zj(i) Any benefit or cost metric of Valuation j of portfolio unit i.

yai Portfolio Unit i of Portfolio a.

xaj(i) Valuation j of Portfolio Unit i of Portfolio a.

Table A.1: Optimization Parameters for the PPS Model
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APPENDIX B

ENUMERATING ALL POSSIBLE DECISION UNITS
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xj(i) Binary variable indicating if Portfolio Unit j is included in the current

scenario of Portfolio Unit i,

Table B.1: Decision Variables to Generate All Possible Decision Units

Where:

xj(i) =


1, if Portfolio Unit j is included in the current scenario of Portfolio Unit i

0, otherwise

(B.1)

If x′ is a valid combination of neighborhood items that clearly define a unique decision

unit for the given portfolio unit, we add the following cut to the subsequent iteration:

Figure B.1: Given a Portfolio Unit and Its Neighborhood, Including All Relevant

Relationships, We Use This Method to Compute All Possible Decision Units of the

Portfolio Unit, as We Use in the Mapping Phase of Our Framework

Both Cj(i),k and Ej(i),k are outputs of the mapping phase.
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APPENDIX C

GENERATING NON-DOMINATED SOLUTIONS
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xj(i) Binary variable indicating if valuation j of Portfolio Unit i is included in

the current portfolio.

yi Binary variable indicating if Portfolio Unit i is included in the current port-

folio.

Table C.1: Decision Variables for the PPS formulation

Where:

xj(i) =


1, if Valuation j of Portfolio Unit i is included in the Portfolio

0, otherwise

(C.1)

yi =


1, if Portfolio Unit i is included in the Portfolio

0, otherwise

(C.2)
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Figure C.1: Given All Decision Units Including Their Associated Attributes, We

Use This Method to Compute an Ordered Set of All Nondominated Portfolios and

the External Convex Hull of the Set, as We Use in the Optimization Phase of Our

Framework
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APPENDIX D

EXPLORING SPENDING DURATION
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If the original formulation defined in Appendix C had a total of q decision variables

given by q =
∑N

i=1 D(i) +N and the A,b matrices represent all the constraints in the

original optimization, with w being a q × 1 column vector representing the original

decision variables [x1(1), ..., xN(D(N)), y1, ..., yN ]T , p representing a q × 1 vector with

the corresponding eNPVs for variables x1(1), ..., xN(D(N)) and zero otherwise, then the

original formulation can be represented as

Maximize: pTw (D.1)

subject to: Aw ≤ b, (D.2)

where: w ∈ {0, 1}q (D.3)

If we wish to generate additional portfolios to improve the efficiency based on

two metrics, (e.g., eNPV and total spending over 10 years), each represented by qx1

vectors U and R (with nonzero values only for decision units and zero for other

variables), then we have the following.

xj(i) Same as Appendix C.

yi Same as Appendix C.

xzj(i) Variable equal to the denominator value of the objective if valuation j of

Portfolio Unit i is included in the portfolio and zero otherwise,

yzi Variable equal to the denominator value of the objective if Portfolio Unit i

is included in the portfolio and zero otherwise.

t Variable equal to the reciprocal of the sum of
∑N

i=1

∑D(i)
j=1 Rj(i)x

z
j(i) + β

Table D.1: Decision Variables for the Linear Fractional Program to Optimize Cost-

Benefit Ratios
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Where:

xzj(i) =


1∑N

i=1

∑D(i)
j=1 Rj(i)x

z
j(i)

+β
, if xj(i) = 1

0, otherwise

(D.4)

yi =


1∑N

i=1

∑D(i)
j=1 Rj(i)x

z
j(i)

+β
, if yi = 1

0, otherwise

(D.5)
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Figure D.1: The Algebraic Formulation We Use to Explore Multiple-year Funding

Scenarios Helps Us to Avoid Picking a Portfolio That Looks Attractive in Year 1,

but That Contains Projects That Have High Spending in Later Years, Which Would

Cause the Portfolio to Exceed Budget

We achieve this mixed-integer linear formulation via the Charnes-Cooper trans-

formation Charnes and Cooper (1962) and add the integer cuts discussed above in

this paper. We can include any additional spending constraints and cuts to the xj(i)

and the yi variables and generate multiple portfolios, while still optimizing the ratio

using the xzj(i) and the yzi variables, which are continuous. The spending constraints
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from the original formulation are respected (Appendix C), but solutions are maxi-

mized for the new objective. This formulation utilizes the fact that upon solution, all

nonzero values of the xj(i)
z and the yzi variable will be equal to t because the original

formulation consisted entirely of binary variables.
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APPENDIX E

IDENTIFYING THE INCREMENTAL VALUE

147



Figure E.1: The Algebraic Formulation We Use to Construct the List of All Changes

Associated with the Intuition-based Elimination from a Portfolio of a Particular Unit

Is Necessary, Because Eliminating Any Unit Can Have a Variety of Non-Intuitive

Impacts on Other Units

We would change to y′i = 1 to see the effects of adding Portfolio Unit i′ to the

current portfolio.
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APPENDIX F

WATERFALL GENERATION
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Figure F.1: The Algebraic Formulation We Use to Explore the Step-by-step Trans-

formation of One Portfolio of Interest into Another Is Important Because, When

Comparing Two Portfolios, We Must Understand the Step-by-step Addition and Sub-

traction of Units Required to Convert One Portfolio to the Other

The set of Portfolios Y in essence describes the set of portfolios a feasible migration

from ya to yb.
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APPENDIX G

EXAMPLE PROBLEM INSTANCE
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We consider an actual project portfolio selection (PPS) decision faced by Intel

Corporation for one of their major product divisions. We model the problem as a

Multiple-Choice Knapsack Problem (MCKP) and solve it using our framework. This

problem instance attempts to capture the real world business model employed by

Division 6 described in the main paper. The names have been removed to protect

Intel Corporation’s data. Division 6 is one of Intel Corporation’s “bread and butter”

divisions, in other words, a division where the timings and volumes to be sold of

various portfolio units can be predicted with a reasonably high degree of certainty.

Figure G.1: A Simple Example of a Pps Problem Where Portfolio Units Are Divided

into Investment Categories (as Shown by the Dotted Circles). A Valid Portfolio Must

Contain One and Only One Portfolio Unit from Each Investment Category

In Figure G.1, we see portfolio units divided into “investment categories” (marked

by the dotted sets) that represent a Hard-or dependency set. A feasible portfolio must

have one and only one portfolio unit from each investment category. Portfolio units
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may have other relationships with other portfolio units from a different investment

category. In this particular division, the Hard-Or dependency sets were called invest-

ment categories and used to model a particular segment of the business, with each

portfolio unit in that investment category corresponding to a different strategy for

that segment. For example, in the “high end gaming laptop” division, three portfolio

units may represent the strategies “do-nothing”, “de-fund” and “increase funding”.

We will use 1∆H to denote the set of all Hard-Or dependency sets in this appendix.

We formulate the problem as an integer-program below. The various input pa-

rameters and variables for the problem can be summarized as follows. Let N denote

the set of all portfolio units, and ∆ denote the set of all dependency sets to set up

coefficient matrices used to generate the set of all decision units Ji for all i ∈ N . The

model can be set up in terms of decision units using coefficient matrices C and E

that ensure that the right mix of portfolio units in the neighborhood of portfolio unit

i are picked alongside each decision unit selected.

Ci
jk =


1, if Portfolio Unit k is included in the valuation of Decision Unit j

of Portfolio Unit i, for all i, k ∈ N , and j ∈ Ji ,

0, otherwise.

(G.1)

Ei
jk =


1, if Portfolio Unit k is excluded in the valuation of Decision Unit j

of Portfolio Unit i, for all i, k ∈ N , and j ∈ Ji ,

0, otherwise.

(G.2)

We define si as the spending value of Portfolio Unit i and pij similarly as the value

153



of the benefit metric (i.e., NPV) of Decision Unit j for Portfolio Unit i. The spending

value for all portfolio units within an investment category is assumed to be the same.

The inclusion matrix and the exclusion matrix defined above are used to ensure

that for any particular decision unit selected, the appropriate portfolio units that

make up the specific scenario for that decision unit are included or excluded

accordingly. The decision variables for the model are defined as follows.

yij Binary variable indicating if Decision Unit j of Portfolio Unit i is included in the

current portfolio. That is, yij = 1, if decision unit j of portfolio unit i is included in

the portfolio, yij = 0, otherwise

xi Binary variable indicating if Portfolio Unit i is included in the current portfolio.

That is, xi = 1, if Portfolio Unit i is included in the portfolio, xi = 0, otherwise

We can now define the optimization model for using only a primary spending met-

ric and a benefit metric (NPV), and no other qualitative or quantitative constraints,

we can define Model M1 as
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M1: Maximize
∑
i∈N

∑
j∈Ji

pijyij (G.3)

subject to:

Bmin ≤
∑
i∈N

sixi ≤ Bmax (G.4)

∑
j∈Ji

yij ≤ xi, ∀i ∈ N (G.5)

∑
k∈N

Ci
jkyij −

∑
k∈N

Ci
jkxi ≤ 0, ∀i ∈ N, j ∈ Ji (G.6)

∑
k∈N

Ei
jkyij +

∑
k∈N

Ei
jkxi ≤

∑
k∈N

Ei
jk, ∀i ∈ N, j ∈ Ji (G.7)

∑
i∈1δHl

xi = 1, ∀ 1δ
H
l ∈ 1∆H (G.8)

xi , yij ∈ {0, 1} ∀i ∈ N, j ∈ Ji

Any other relationships that exist can be added to Model M1. Given the problem

structure, and the problem instance encountered at Intel with an α value of 36000,

it is not possible to enumerate and valuate all of the decision units in a reasonable

amount of time and solve the problem using commercial integer programming solvers

on even powerful servers. Moreover the amount of memory storage required to store

the decision units is also prohibitively large. However, we can model the problem

using only the portfolio units as shown below by dropping equations (G.5),(G.6)

and (G.7). The NPV is now returned by a function, that for every portfolio first

computes which decision units constitute the portfolio, and then compute the value

of the portfolio. This is shown in Model M2. We can now use BIG to solve the Integer

program for various spending ranges represented in Model M2.
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M2: Maximize f(x)

subject to:

Bmin ≤
∑
i∈N

sixi ≤ Bmax (G.9)

∑
i∈ 1δHl

xi = 1, ∀ 1δ
H
l ∈ 1∆H (G.10)

xi ∈ {0, 1} ∀i ∈ N

This formulation is a simplified version of the model in Sampath et al. (2015) by

the fact that it excludes “decision units.” Constraint set (G.9) ensures that portfo-

lios lie within a specified spending range, while Equation (G.10) ensures that only

one portfolio unit from each investment category is chosen. The primary difference

between M1 and M2 is that while using the genetic algorithm to solve M2, we do not

generate all the decision units beforehand. We generate them on-the-fly, and then

compute the value of it at a point where we know every other portfolio unit included

in the current portfolio candidate solution. This is the reason all decision units need

not be enumerated and valuated a priori.If the spending for a portfolio unit is fixed

and all decision units share the same spending value i.e. it is a function of the portfolio

unit and not the decision unit, we calculate the benefit of a portfolio by determining

the corresponding decision units that were realized for each portfolio unit, valuat-

ing each decision unit, and then the portfolio itself. Appendix B discusses encoding

schemes, efficiently seeding the genetic algorithm and genetic algorithm operators.
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APPENDIX H

BEAM SEARCH IMPLEMENTATION FOR GENERATING A PRELIMINARY

EFFICIENT FRONTIER
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Before we discuss the beam search algorithm, we present two different data rep-

resentations we could use.

1𝛿𝑙
𝐻

4 3 2

0 0 0 0 0 0 01 1 1

a) Direct Representation

b) Binary Representation

1𝛿𝑙+1
𝐻

1𝛿𝑙+2
𝐻

1𝛿𝑙
𝐻

1𝛿𝑙+1
𝐻

1𝛿𝑙+2
𝐻

Figure H.1: Two Possible Chromosomes for the Genetic Algorithm Proposed to Solve

the MCKP. (a) in the Direct Representation, Each Allele Is an Investment Category

and the Max Number Possible in Each Allele Is the Cardinality of the Set of Options

in That Investment Category. (b) in the Binary Representation, Each Allele Is a 0-1

Variable That Shows Whether the Corresponding Option Is Selected or Not. Each

Investment Category Has a Certain Number of Alleles Assigned to It Equal in Number

to the Number of Options It Contains.

In Figure H.1, we see two types of possible chromosomes that could be utilized

to implement a genetic algorithm to generate feasible and interesting portfolios. Fig-

ure H.1(a) shows a “direct representation” while Figure H.1(b) shows the “binary

representation.” For example, with three investment categories each with four, three

and three options respectively, a portfolio that chooses the fourth, third and second
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option from each category can be represented in two ways because the length of the

solution is always fixed. A representation of this example is given in Figure H.1.

One of the advantages of the binary representation is that it makes it easy to

test whether a solution is feasible or not, since if we represent the problem as an

integer program and generate the relevant matrices, then it is a trivial matter to

check whether a given solution satisfies all the constraints. Moreover, one way of

seeding or generating an initial population is to repeatedly solve an integer program

with cuts. The disadvantages of this form of encoding is the potential to generate

more infeasible solutions and stricter regulation on the generation of new populations

because it is much bigger than the direct representation encoding. Furthermore, it

needs translation before a decision maker can make sense of the solution.

The direct representation, apart from being much more compact, also has the

added advantage of being easy to manipulate and be consumed by the Decision Maker.

This is important because there are often last minute changes that need to be input as

more information rolls in regarding option variables. However, explicit routines need

to be written to check if a solution is feasible. Moreover, generating initial solutions

is also more difficult because the same feasibility routines have to be run every time

during solution generation. This is especially a problem the more relationships there

are between various investment categories or portfolio unit groups.

For the binary representation, the allocated units of a particular investment cate-

gory are encoded by a segment of |δHl | bits, or the number of options in that investment

category. The chromosome’s length is
∑
{δHl ∈∆H} |δHl | . In the direct representation,

there are only |∆H | bits, so the search space is narrower. Mutation is essentially the

same for both representations. A random option within each investment category

is selected for mutation. Crossover, on the other hand, is much easier for the di-

rect representation and is trivial. For the binary representation an additional vector
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recording the indexes of various groups must be maintained to produce a meaning-

ful crossover. Possible repair operators must be applied to ensure that every child

describes a feasible solution.

For the set of investment categories L, assuming a direct mapping from L to

∆H , and that portfolio units are ordered by increasing resource metric sl,1 < sl,2 <

...sl,|δHl | within each investment category |δHl | for all l ∈ L, we can now describe

the implementation of the beam search algorithm. Using the direct representation

in Figure H.1, we define a solution to the MCKP as a vector z defined by |L| digits

where the value of the digit in the lth position indicates the option u within investment

category l that was included in the solution to the MCKP. Thus, z1 = 2 would indicate

that in the solution to the MCKP defined by z, option 2 was selected from investment

category 1. This is the first chromosome displayed in Figure H.1.

Using this definition, we now define the beam search algorithm inputs, z) and z
−

as follows

z) := portfolio with maximum spending where, z)l = |δHl |, ∀ l ∈ L

z
−

:= portfolio with minimum weight or spending where, z
−
i = 1 , ∀ l ∈ L

Z := the set of feasible solutions

The details of the beam search implementation are given in Algorithm 1. The

result of the beam search is a preliminary efficient frontier of solutions that will be

used to seed the genetic algorithm.

The worst-case complexity of the beam search depends on the beam width, or the

number of solutions retained at each level (i.e., β), and the depth of the tree or the

maximum number of one step transitions from z) to z
−
. This can be calculated using

the following logic. Suppose we pick a path from the root node of the beam search
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tree z), and at every level of the tree, adjust the level of one of the groups down

in weight, moving on to the next group once we reach the option with the lowest

weight in that group and repeating this process until we reach z
−
. Then, this is the

longest absolute path that we can take (because any other path would mean altering

a level at a previous level of the beam search, which is disallowed). The length of this

path can be easily calculated by summing up all options as
∑

l∈L
∑

1δH

k=1 1. Thus, the

complexity of the beam search algorithm is given as O(β
∑

l∈L
∑

1δH

k=1 1).

There are two other methods by which a rough initial frontier can be generated.

One is to set up the model M2 described earlier, but setting the objective function to

zero. Then, by varying the right hand side of Equation G.9 from Bmax to Bmin + ε,

we can generate feasible portfolios at different spending levels. Furthermore, storing

the coefficient matrices for M2 also provides an inexpensive way to check if a given

solution is feasible. This algorithm is detailed in Algorithm 2. Here we note that if x′

is a feasible solution to model M2 for any iteration of the algorithm, we need to add

a cut to M2 that removes the solution x′ from the feasible region. One such cut is

given in Equation (H.1). Another way is to update Bmax to be less than the spending

of the portfolio defined by x′ by a certain amount that must be specified. The set of

results produced by the beam search consistently outperforms this lazy method, but

we present it here as a methodology to generate new feasible solutions.

∑
{i:x′i=1}

xi ≤
∑
i∈N

x′i − 1 (H.1)
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Algorithm 1 Generating an Approximate Efficient Frontier Using a Beam Search

1: procedure Generate Efficient Frontier
2: Input: Set of Investment Categories L, and the corresponding set of Hard-

Or Dependency sets that represents the investment categories 1∆H

Sets of portfolio units in each investment category 1δ
H
l ,1 δ

H
l ∈1 ∆H

Associated constraint metric slk ordered sl1 < sl2 < ...sl|1δHl within each group
l ∈ L.
Function f(.) to evaluate a solution.
Parameter β: Number of solutions to be retained at each level of the beam
search

3: Output: χ A distinct set of non-dominated portfolios and
E , the subset of points that define the efficient frontier

4: χ← {z)}
χ1 ← {z)}
a← 0
b← |χ0|

5: while x
−
/∈ χ do

6: for c := c ∈ χa do
7: zd ← c
8: for l := l ∈ L do
9: if zdl > 1 then
10: zdl = zdl − 1
11: χa+1 ← χa+1 ∪ zd
12: Evaluate all solutions in χl+1 using f(.)
13: Order χa+1 to be monotonically decreasing in f
14: Update χa+1 discarding all infeasible solutions
15: Update χa+1 discarding all dominated solutions
16: if |χl+1| < β then
17: Discard last |χa+1| − β solutions from χa+1

18: χ← χ ∪ χa+1

19: a← a+ 1
20:

21: Calculate subset of points defining the convex hull in χ and assign it to E
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Algorithm 2 Generating an Approximate Efficient Frontier Using Integer-Program

1: procedure Generate Efficient Frontier
2: Input: Set up Model M2 with objective function 0, Maximum window

parameter ω

3: Output: χ A distinct set of non-dominated portfolios and
E , the subset of points that define an efficient frontier

4: Set the RHS of Equation G.9 to Bmax

5: χ← ∅
6: while There exists x′ a valid solution to M2 do
7: χ← χ ∪ x′
8: Update the RHS of Equation G.9 to

∑
{i:x′i=1} si

9: Update χ discarding all dominated solutions
10: Calculate subset of points defining the convex hull in χ and assign it to E
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