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ABSTRACT

The tools developed for the use of investigating dynamical systems have provided

critical understanding to a wide range of physical phenomena. Here these tools are

used to gain further insight into scalar transport, and how it is affected by mixing.

The aim of this research is to investigate the efficiency of several different partitioning

methods which demarcate flow fields into dynamically distinct regions, and the corre-

lation of finite-time statistics from the advection-diffusion equation to these regions.

For autonomous systems, invariant manifold theory can be used to separate the

system into dynamically distinct regions. Despite there being no equivalent method

for nonautonomous systems, a similar analysis can be done. Systems with general

time dependencies must resort to using finite-time transport barriers for partitioning;

these barriers are the edges of Lagrangian coherent structures (LCS), the analog to

the stable and unstable manifolds of invariant manifold theory. Using the coherent

structures of a flow to analyze the statistics of trapping, flight, and residence times,

the signature of anomalous diffusion are obtained.

This research also investigates the use of linear models for approximating the el-

ements of the covariance matrix of nonlinear flows, and then applying the covariance

matrix approximation over coherent regions. The first and second-order moments

can be used to fully describe an ensemble evolution in linear systems, however there

is no direct method for nonlinear systems. The problem is only compounded by the

fact that the moments for nonlinear flows typically don’t have analytic representa-

tions, therefore direct numerical simulations would be needed to obtain the moments

throughout the domain. To circumvent these many computations, the nonlinear sys-

tem is approximated as many linear systems for which analytic expressions for the

moments exist. The parameters introduced in the linear models are obtained locally

from the nonlinear deformation tensor.
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5.1.2 Poincaré sections for the steady-cell flow and the quad-gyre flow . . . . . . . . . . 64

5.2.1 Comparison of FTLE and variances for strongly-chaotic Bickley jet . . . . . . . 68

5.2.2 Comparison of FTLE and variances for weakly-chaotic Bickley jet . . . . . . . . 70

5.2.3 Conditional variance statistics for the strongly-chaotic Bickley jet . . . . . . . . . 72

5.2.4 Conditional variance statistics for the weakly-chaotic Bickley jet . . . . . . . . . . 73

5.2.5 Conditional dispersion statistics for the strongly-chaotic Bickley jet . . . . . . . 75

5.2.6 Conditional dispersion statistics for the weakly-chaotic Bickley jet . . . . . . . . 77

5.2.7 Partitions for the Bickley jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.8 Comparison of trapping region boundaries for the Bickley jet . . . . . . . . . . . . . 82

5.2.9 Qualitative coherence for the Bickley jet partitions . . . . . . . . . . . . . . . . . . . . . . 84

5.2.10 Resident time statistics of passive tracers for the Bickley jet . . . . . . . . . . . . . 89

5.2.11 Partitions for the turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.12 Qualitative coherence for the turbulent partitions . . . . . . . . . . . . . . . . . . . . . . 95

5.2.13 Resident time statistics of passive tracers for the turbulent flow . . . . . . . . . 96

6.3.1 Comparison of covariance-elements for steady cell flow . . . . . . . . . . . . . . . . . . . 111

6.3.2 Absolute error for moment approximations of the steady cell flow (field) . . . 112

6.3.3 Absolute error for moment approximations of the steady cell flow (hist) . . . 114

6.3.4 Absolute error for moment approximations of the double-gyre flow (hist) . . 115

6.3.5 Absolute error for moment approximations of the ADG flow (hist) . . . . . . . . 116

6.3.6 Scalar density fields for DG flow, τ = .25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



Figure Page

6.3.7 Scalar density fields for ADG flow, τ = .25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.8 Scalar density fields for DG flow, τ = .1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.9 Scalar density fields for ADG flow, τ = .1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.10 Scalar variance decay for DG flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.11 Scalar variance decay for ADG flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2.1 Comparison of field partitions for the integrable ABC flow . . . . . . . . . . . . . . . 138

8.2.2 Comparison of field partitions for the steady ABC flow . . . . . . . . . . . . . . . . . . 139

8.2.3 Comparison of extracted trapping regions for the steady ABC flow. . . . . . . . 140

8.2.4 Comparison of field partitions for the unsteady ABC flow . . . . . . . . . . . . . . . . 141

8.2.5 Pdfs of trapping and nontrapping regions for the integrable ABC flow. . . . . 144

8.2.6 Pdfs of trapping and nontrapping regions for the steady ABC flow. . . . . . . . 146

8.2.7 Pdfs of trapping and nontrapping regions for the unsteady ABC flow. . . . . . 146

8.2.8 Pdfs of the total displacements of tracers in the ABC flows. . . . . . . . . . . . . . . 148

8.2.9 Second-order moments of the surface mixing model obtained from RDM . . 150

8.2.10 Second-order moments of the surface mixing model obtained from D3D . . 151

8.2.11 Second-order moments of the surface mixing model obtained from Q3D . . 152

8.2.12 Second-order moments of the surface mixing model obtained from D3D,

Q3D, and RDM at τ = .1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2.13 Second-order moments of the surface mixing model obtained from D3D,

Q3D, and RDM at τ = .15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xi



Chapter 1

MOTIVATION

Mathematical tools and methods from dynamical systems are used to facilitate a

more comprehensive understanding of how passive scalar transport processes are af-

fected by coherent structures. This will be done by: using several coherent structure

detection diagnostics to investigate their impact on scalar statistics, creating linear

strain-shear flow models to recover scalar moments of nonlinear flows for finite-time,

and combining these two aspects to create an effective-transport operator, capable of

approximating conditional transport processes in nonautonomous dynamical systems.

The standard diffusion model can be used to analytically describe how passive

scalars1 are transported in the absence of forcing. However, when forcing is present,

transport barriers can form, thus mitigating transport and leading to anomalous

diffusion. These finite-time transport barriers could highlight coherent structures -

trajectories of the dynamic system that have major influence over nearby trajectories.

Since coherent structures are ubiquitous in environmental and geophysical flows, ob-

taining models to describe their impacts on transport processes is of great importance

not only to the mathematical and physics communities, but also to conservational re-

search.

In Peacock and Haller (2013), this importance was discussed from the viewpoint

of determining where contaminants spread in geophysical flows. These examples are

varied in scale, and come from volcano eruptions, oil spills, nuclear disasters and even

cloud formation. The basic structures in these cases are related back to the ideas of

invariant manifold theory and stretching within the flow. Further, in Douglass et al.

1Passive scalars are diffusive contaminants that have no dynamical impact on the fluid motion.
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(2014) it was stressed that understanding chlorofluorocarbons transport is necessary

for understanding the ozone hole; describing how stronger Brewer-Dobson circulation

leads to greater transport in the Arctic lower stratosphere. Moreover, this greater

circulation leads to polar stratospheric clouds (PSCs) dissipating from the polar vor-

tex before late April, whereas in the Antarctic vortex, the PSCs can remain until

after October. The presence of the PSCs leads to the large depletion of ozone, since

heterogeneous chemical reactions are occurring within them to create chlorine gas.

The chloroflourocarbons that comprise the PSCs are inertial particles that are carried

by the wind patterns, and subject to body forces. In studies with inertial particles

viscous drag and other body forces must be accounted for.

In another model using inertial particles, Tang et al. (2012) investigated the trans-

port of pollution in an urban setting. It is seen that transport around the buildings

is strongly correlated to the stretching field, revealed using the finite-time Lyapunov

exponent (FTLE). The results show a strong correlation between the building place-

ments and pathways of pollutant transport, suggesting the presence of concentrated

pollutant transport. Such areas of pollution transport should be further investigated

and incorporated into city planning processes2 .

The Fukushima Daiichi nuclear disaster and Deepwater Horizon oil spill, despite

providing very rich datasets, illuminated how woefully unprepared and ineffective

current methods are at contaminant containment in the ocean. It was seen that the

size and impact from these disasters was heavily influenced by their locations and the

surrounding flow fields; with the oil spread in the Atlantic mitigated by a Northward

circulating flow, and the nuclear contaminants spread dramatically throughout the

Pacific due to strong currents along the Fukushima coast. With a better understand-

2For instance, CiteTree and similar projects could be place based on pollution pathways instead
of some other metric.

2



ing of the role coherent structures play in the transport of such harmful scalars as

those released in the aforementioned disasters, better containment strategies can be

devised through analytics. For all of these examples, it is vital to understand how

transport is affected by stirring, regardless of scale.

Since the primary concern is how a passive scalar’s release position affects the

scalars evolution, either the standard diffusion model can be solved for every initial

condition in the domain – a computationally intensive exercise – or a fractional dif-

fusion model can be used. The fractional diffusion model is a transport model that

uses fractional derivatives in space and time; these derivatives are integro-differential

operators that extend the notion of the derivative to fractional orders. The fractional

diffusion model is appropriate for investigating anomalous diffusion. Experimental

and theoretical works on scalar intermittency indicate that the existence of transport

barriers and coherent structures leads to non-Gaussian statistics and anomalous diffu-

sion (see Castaing et al. (2006); Yakhot et al. (1990); Pumir et al. (1991); McLaughlin

and Majda (1996)).

In Gollub et al. (1991) the probability density functions of temperature fluctua-

tions are investigated for a flow stirred with a mean gradient. It is seen that these

pdfs depend on some critical Reynolds number (R), a dimensionless parameter given

by the ratio between the advective and diffusive time scales. The Reynolds number

can be written as R = uL/ν, where u is the characteristic velocity, L is the charac-

teristic length, and ν is the kinematic viscocity. In Gollub et al. (1991) Gaussian fits

are observed for the case R = 600, but with an exponential fit for R = 3700. This

is expected since low R indicates the system is dominated by molecular diffusion,

where a large R suggests that transport is dominated by the advective component,

leading to the tails of the pdf being more broad. This change of behavior of the

system highlights the change in the dynamics. Solomon et al. (1993) study transport
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in a time-periodic flow composed of a cirrcular chain of vortices in a rapidly rotating

annulus. This system has chaotic trajectories, where intermittently trajectories stick

near vortices before moving large distances, in avalanche-like motion. The variance

of the chaotic trajectories in the azimuthal direction is seen to scale anomalously as

σ2(t) ∼ tγ with γ = 1.65± .15. The histograms of the sticking times and flight times

follow power law distributions and are seen to correspond very well with theoretical

relations.

Anomalous diffusion was observed in the experimental setting for a quasi-two-

dimensional turbulent flow in Cardoso et al. (1996). The onset of subdiffusion (γ < 1),

which is slower spreading than regular diffusion, was caused by “sticky” or trapping

type regions, and superdiffusion (γ > 1), which spreads faster than regular diffusion,

was observed as Lévy flights in the particle trajectories. The probability density

function of the flight times had an exponential scaling, where the pdf of the waiting

times had algebraic decay. The subdiffusion was observed as the trapping of dye in

vortex cores in a lattice of counter-rotating vortices; this lattice is similar to Rayleigh-

Bénard convection cells. Although, since this system was given stationary forcing,

the results might not hold for turbulent flows that exhibit an inverse energy cascade.

In Elhmaidi et al. (1993) the problem of 2-dimensional turbulence is once again

addressed, this time where an inverse energy cascade is present. The flow is pa-

rameterized based on the dominance of the relative deformation or rotation, leading

to a separation into hyperbolic or elliptic classification, respectively. It was noted

that surrounding strongly elliptic regions (vorticies) was the presence of strongly hy-

perbolic regions (circulation cells). The background turbulence is a combination of

regions with little deformation and regions of little vorticity. This binary partition

of the flow allows for the investigation of the single-particle dispersion conditioned of

region. Anamolous scalings were obtained for both the ellpitic and hyperbolic regions.
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The scaling for the hyperbolic region was found to be robust, due to the tendency of

the particles to concentrate in these regions.

In Tang and Walker (2012), the FTLE was used to highlight transport barriers,

which were used to separate coherent regions in a strongly-chaotic periodic flow.

Analysis showed that passive scalar variances were multimodal when taken over the

entire domain, but when the statistics were conditioned amongst their respective

coherent regions, unimodal structures were observed. This unimodal property of the

conditional statistics suggests that the isolated regions considered coherent are nearly

dynamically homogeneous. It was also noted that the scaling-law parameters varied

amoungst the regions, suggesting that the separate coherent regions are dynamically

distinct. This, in turn, verifies the presence of anomalous diffusion. Since the scaling-

law parameters and the conditional statistics are so intimately dependent on the

classification of these coherent regions, the accuracy of finding Lagrangian coherent

structures (LCSs) is of critical importance.

In Walker et al. (2018), several LCS detection methods (geometric and probabilis-

tic) are used to partition a turbulent flow into coherent regions; these regions were

then used to compute scalar statistics. Unlike the previous investigation which was

concerned with dispersion statistics, the interest is now in resident-time statistics. It

is seen that the scaling type (algebraic or exponential) of the statistics could change

based off of which method was used, further supporting that when the coherent re-

gions are incorrectly identified the conditional statistics will be affected.

Along a similar vein, in Jones et al. (2018) the FTLE and geodesic methods were

used to analyze a 2-bacteria competition model, where the background flow used was

the 2D turbulent flow seen in Walker et al. (2018). The bacteria species differ in their

motility – one species is passive in the flow, while the other species is able to swim,

driven via a chemotactic mechanism. The uptake advantage between the species was
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computed as a function of time and initial release position of the nutrient patch. Areas

of high stretching (as indicated by the FTLE) had a maximum in this advantage at

earlier times; correlating to the nutrient patch quickly filamenting and being more

accessible to the motile and non-motile bacteria. By using geodesic theory the elliptic

regions were detected, for which later peaks were seen in the uptake advantage. This

is due to the elliptic regions’ coherence, it acts to trap the nutrient, only making it

available to the bacteria inside. Further, the motile species will be able to enter the

elliptic regions, while the non-motile bacteria will not be able to. With the stretching

and elliptic regions considered, 3 stages leading to peaks in nutrient consumption

were uncovered for this chemotactic model.

With an accurate classification of the coherent regions for general nonautonomous

systems, the focus shifts to approximating the covariance matrix for these flows using

linear models; this was seen in Walker and Tang (2018). For linear incompressible

flows, a closed-form solution for the scalar concentration exists, whereas for nonlin-

ear flows no closed-form solution exists. Because of this, the general nonautonomous

system is treated as a sequence of constant-valued linear systems and local approx-

imations to the deformation gradient are obtained. This linearization allows for an

accurate approximation to long-time behavior in autonomous and nonautonomous

2D systems.

For 3D systems, the breaking of symmetry of the eigenvectors leads to further

modeling concerns. For a fully 3-dimensional linear flow the elements of the covariance

matrices are seen to become unwieldy. However, geophysical flows have aspect ratios

such that the vertical component plays a minor role, giving quasi-3D flows. Quasi-3d,

or weakly 3D, systems are used to understand the importance of surface mixing and

how it is affected by vertical advection. It is seen that the GLM3D method is capable

of generating approximations to the covariance matrices of the quasi-3D flows from
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a decoupled 3D linear flow approximation. The major shortcoming of this method,

besides being restricted to quasi-3D flows, is the approximation of parameters of the

method. Further, since a linear approximation is used, as the integration time is

increased the accuracy of the method is reduced.

7



Chapter 2

BACKGROUND

The Advection-Diffusion Equation

The interplay of diffusion and stirring results in nontrivial mixing structures and

finite-time transport barriers. Since the presence of transport barriers is ubiquitous in

environmental flows, understanding their impact on mixing processes is paramount.

In the following the stirring is introduced by the addition of an advective term to the

diffusion equation; this results in the advection-diffusion or transport equation:

∂tθ +∇ · (uθ) =
1

2

(
∇ · (D∇θ)

)
, θ(x, t0) = θ0(x), (2.1.1)

where u is the velocity field, θ represents some scalar quantatiy, D is the diffusiv-

ity tensor, and θ0 is some initial distribution at t0. In the following the velocity

field is incompressible (∇ · u = 0), and the diffusivity tensor is given by D = 2κI,

for some constant κ, where I is the identity matrix. This choice of D corresponds

to homogeneous isotropic diffusion. With these assumptions in mind the standard

advection-diffusion equation is reduced to:

∂tθ + u · ∇θ = κ∇2θ. (2.1.2)

Note here that for generic u, (2.1.2) does not have a Green’s function, thus the

equation will need to be solved for each initial concentration separately.

The Diffusion Equation

When there is no flow present (u = 0), the advection-diffusion equation reduces

to the standard diffusion equation. The standard diffusion equation can be used
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to describe the evolution of an initial distribution within a domain, subject only to

uncorrelated microscopic perturbations. The effect of these microscopic perturbations

is the softening of concentration gradient; the equation is given as,

∂tθ =
1

2

(
∇ · (D∇θ)

)
, θ(x, t0) = θ0(x). (2.1.3)

For the homogeneous isotropic case (D = 2κ), the solution to the standard diffusion

equation can be written as:

θ(x, t) =

∫ ∞
−∞

G(x,x′; t, t0)θ(x, t0)dx′, (2.1.4)

where G is the Green’s function given by the following,

G(x,x′; t, t′) =

(
1

4πκ(t− t′)

)d/2
e−(x−x′)2/4πκ(t−t′). (2.1.5)

From the Green’s function it is possible to accurately obtain the evolution of any

scalar concentration at time t. However, when a flow is introduced (u 6= 0) an analytic

description for θ becomes much more difficult (if not impossible) to obtain due to the

formation of transport barriers.

The Effective-Diffusion Equation

As a means of providing an approximate Green’s function to (2.1.2), the effective-

diffusion model and subsequent Dispersion Diffusion Theory (DDT) were introduced.

In Lin et al. (2010) an effective-diffusion operator is defined that replaces κ∇2θ−u·∇θ

with ∇ ·
(
Keff · ∇θ

)
, where Keff represents the effective diffusivity tensor, which

describes transient passive particle dispersion due to the nonlinearity of the flow.

The elements of Keff are of the form:

Keff
ij (t;x0) =

1

2

d

dt
E[(Xi(t)−Xi(0))(Xj(t)−Xj(0))], i, j = 1, · · · , d (2.1.6)
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where X(t) =
(
X1(t), · · · , Xd(t)

)T
is the trajectory of the passive tracers, and X(0) =

x0. Once the effective diffusivity tensor is obtained, then without sources or sinks,

the probability density of a single passive tracer, denoted as ρ(x, t;x0, t0), may be

approximated by solving:

∂ρ(x, t;x0, t0)

∂t
=

∂

∂xi
Keff
ij (t− t0;x0)

∂ρ(x, t;x0)

∂xj
, (2.1.7)

where the initial distribution ρ(x, t0;x0) = δ(x−x0). The solution to (2.1.7) is given

for spatially periodic problems, with period L, as:

ρ(x, t;x0, t0) =
1

Ld

∑
L~k
2π
∈Zd

ei
~k·(x−x0)− 1

2
~k·M(t−t0;x0)·~k, (2.1.8)

where M(t − t0;x0) is the covariance matrix (Keff = 1
2
d
dt
M). From this, the solu-

tion to (2.1.2) with the addition of a general source sink distribution s(x, t), can be

approximated with:

θDDT (x, t) =

∫ t

0

∫
[0,L]d

ρ(x, t;x0)s(x0, t0)dx0dt0. (2.1.9)

This is the scalar distribution given by Dispersion Diffusion Theory (Lin et al., 2010).

Since DDT retains the dependence on initial position in the effective diffusivity, it

is viewed as a generalization of Batchelor’s inital theory for stirring by homogeneous

turbulence. For the flow used in Lin et al. (2010) an analytic expression for Keff is

found, however if the flow is too complex then obtaining an analytic representation

for Keff for arbitrary location and time is not possible. The difficulty of obtaining

analytic representations for the moments is understood easily with the infinitesimal

generator approach, where lower order moments are constructed from higher order

moments. Thus, if there isn’t some form of a closure condition then the moment

approximations cannot be obtained.

Instead of looking for a global operator, the methodology calls for searching for

a local operator that takes flow structures into account. Since this effective-diffusion
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operator can vary with location, this would naturally be describing an anamolous

diffusion/transport process. The standard diffusion process is recovered if the local

operators are the same. As such, these constrained effective-diffusion operators should

be viewed as a generalization of the work in Lin et al. (2010).

The Fractional Diffusion Equation

To properly account for transport barriers, the presence of “trapping” and large

“jump” events need to be included in the model. Let the “jump” probability distri-

bution function (pdf) be given as λ(ξ), and the waiting-time pdf be given as φ(τ).

For the waiting-time pdf, instead of jump events occuring at regular intervals, the

time between jumps, τi = ti − ti−1, is a random variable drawn from the pdf φ(τ).

The probability of finding a particle at position x and time t is determined by the

Montroll-Weiss equation:

P (x, t) = δ(x)

∫ ∞
t

φ(t′)dt′ +

∫ t

0

φ(t− t′)
∫ ∞
−∞

λ(x− x′)p(x′, t′)dx′dt′. (2.1.10)

Here the first term corresponds to tracers that haven’t moved during the interval[
0, t
]
. The second term corresponds to tracers moving from x′ to x. For the standard

diffusion process λ(ξ) is a Gaussian (corresponding to Fickian transport), and φ(τ)

is exponentially decaying (corresponding to a Markovian process). However, a wide

range of waiting-times (due to trapping eddy regions) and broad jump distributions

(due to avalanche-like transport) have been seen in problems of interest.

It was noted in del Castillo-Negrete et al. (2004) that the standard diffusion model

was not sufficient for describing the anomalous transport experienced by tracer par-

ticles advected in a turbulent plasma. Although this seems like a niche shortcoming,

the underlying problem is of great interest. The problem comes from nonlocal effects

in space and time. In order to correctly capture the non-Fickian and non-Markovian
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transport aspects a fractional diffusion model was introduced. This model can be

obtained from applying Fourier and Laplace transforms to (2.1.10), which provides:

ˆ̃Prh(k, s) =
1− ψ̃(rs)

s

1

1− ψ̃(rs)λ̂(hk)
, (2.1.11)

where r and h are scaling parameters and the Fourier and Laplace transforms are

denoted by the hat(̂·) and tilde(̃·), respectively. In the standard diffusion model, the

Markovian-Fickian case, the waiting-time and jump pdfs are assumed to be of the

following forms:

ψM(τ) = µe−µτ , λF (ζ) =
1√
2πσ

e−ζ
2/(2σ), (2.1.12)

where 〈τ〉 = 1/µ is the characteristic waiting-time, and σ is the characteristic mean-

square jump. From taking the transforms, expanding the resulting expressions, and

substituting the results back into (2.1.11) the Laplace-Fourier formulation of the

standard diffusion model is obtained; as r, h→ 0 this is given as:

s ˆ̃P (k, s)− 1 = −χk2 ˆ̃P (k, s), (2.1.13)

where χ = h2σµ/(2r). However, if the Markovian or Fickian assumptions are not

valid, such a simple model is not obtained. In del Castillo-Negrete et al. (2004) jump

and waiting-time pdfs are assumed to have asymptotic algebraic decay, these are

given as, φ ∼ τ−(β+1) and λ ∼ |ξ|−(α+1), where α and β are bound. The resulting

Laplace-Fourier formulation is thus given as:

sβ ˆ̃P (k, s)− sβ−1 = −χ|k|α ˆ̃P (k, s), (2.1.14)

where χ = c2h
α/(c1r

β) is a finite constant, with c1 and c2 coming from the expansion

of the waiting-time and jump pdfs, respectively. It is noted that (2.1.14) is not

obtainable from the Laplace-Fourier transforms of simple derivative operators, but
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instead fractional derivative operators must be used. The Caputo definition of the

fractional derivative operator is given here,

c
0D

β
t φ =

1

Γ(1− β)

∫ t

0

∂τφ(x, τ)

(t− τ)β
dτ, (2.1.15)

and has the necessary Laplace-Fourier transforms to replace the time derivative. This

definition also has the added benefit that it reduces to the standard derivative operator

for integer values of β. For the spatial derivatives the definitions for the left and right

Riemann-Liouville derivatives are used:

0D
α
xφ =

1

Γ(m− α)

∂m

∂xm

∫ x

a

φ(y, τ)

(x− y)α+1−mdy,

xD
α
b φ =

1

Γ(m− α)

∂m

∂xm

∫ b

x

φ(y, τ)

(y − x)α+1−mdy,

(2.1.16)

where m is the smallest positive integer that is greater than α. It is noted that due to

issues at the boundaries the Caputo definition might be used for space as well; owing

to the fact that the regularized definitions absorb boundary conditions.

With these definitions the fractional diffusion equation is given as,

c
0D

β
t P = χ

(
1 + ς

2 0D
α
xP +

1− ς
2 xD

α
b P

)
, (2.1.17)

where ς is a skewness parameter that accounts for jumps having a preferential di-

rection in heterogeneous systems. This model provides a direct relation between the

scalings of the jump and waiting-time pdfs and the differential operators. Using the

rates of decay from the pdfs, (2.1.17) can be used to model the evolution of tracer

particles. Further, it was noted in del Castillo-Negrete et al. (2004) that for the

symmetric case (ς = 0), the Green’s function is obtained as,

G(x, t) =
1

2π

∫ ∞
−∞

eikxEβ
(
−χ|k|αtβ

)
dk, (2.1.18)

where Eβ(z) is the Mittag-Leffler function, given as:

Eβ(z) =
∞∑
n=0

zn

Γ(βn+ 1)
. (2.1.19)
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For α = 2 and β = 1 (parameters consistent with the standard diffusion model),

the Green’s function given in (2.1.5) is recovered.

Random Displacement Model

The partial differential equation (PDE) given by (2.1.2) is the Fokker-Planck equa-

tion to be solved, which can be accomplished by direct numerical simulations (DNS).

However, since the investigation is on how the release position of a tracer patch — the

initial condition to (2.1.2) — affects the solution, DNS would have to be computed for

a large number of ICs; this method quickly becomes computationally expensive. Fur-

ther, (2.1.2) corresponds to viewing the problem in the Eulerian prespective, where

values at fixed points are measured as a function of time. The mixing process can

also be modeled in the Lagrangian perspective, where trajectories are computed as a

function of time, defining a dynamical system.

In using this Lagrangian perspective, the Fokker-Planck equation is approximated

as a system of stochastic differential equations (SDEs) – one possible form of a ran-

dom displacement model (RDM). Random displacement models are defined as the

evolution of a large ensemble of passive tracers with stochastic trajectories. Since

the trajectories of passive tracers are independent, they can be computed in parallel

which allows the method to experience a reduction in the computational time.

The RDM that corresponds to (2.1.2) is given by:

dX(t) = u
(
X(t), t

)
dt+

√
2κdW(t), (2.2.1)

where X(t) represents the location of the passive tracers at time t, and W is canonical

d-dimensional Brownian motion; thus dW is Gaussian white-noise. Since the noise

comes from a Gaussian distribution, (2.2.1) models the standard diffusion process.
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The diffusion model, when viewed at the microscopic level, is the work of an

uncorrelated Gaussian stochastic process, whereas anomalous diffusion is related to

continuous-time random walk (CTRW) processes. Thus the RDM must be able to

handle non-Gaussian diffusion as well. This can be done by changing the stochastic

perturbation to come from a more general distribution. The RDM used in this work

varies only slightly from (2.2.1), as seen here:

dX(t) = u
(
X(t), t

)
dt+DdL(t), (2.2.2)

where D represents the magnitude of the stochastic perturbation (previously
√

2κ),

and the noise vector is L = RBd, where R is an α-stable random variable, and Bd is the

d-dimensional unit sphere. In the 3D setting, L =
[
R
√

1− S2 cos θ, R
√

1− S2 sin θ, RS
]
,

where θ is a uniformly distributed random variable taking values in [0, 2π], and

S comes from a uniform distribution for [−1, 1]. For the 2D cases, S = 0 (L =[
R cos θ, R sin θ

]
). R is symmetric, mean-zero, unit-scale with the characteristic ex-

ponent α. The flexibility in this model allows for the modeling of Gaussian noise

(α = 2), as well as super(α < 2) and sub(α > 2) diffusive cases. In the follow-

ing analysis two values for α were used: α = 2 and α = 1.5 (Lévy noise). When

investigating the evolution of deterministic trajectories, D = 0.

Dynamical Systems and Coherent Structures

As alluded to earlier, the Lagrangian trajectories of passive tracers define a dynam-

ical system. As such the discussion naturally begins with the classification of dynam-

ical system types. For the systems considered herein two classifications are possible:

autonomous and nonautonomous. Autonomous dynamical systems are noted by their

lack of dependence on time. Time-periodic flows can be viewed as autonomous sys-

tems by looking at maps corresponding to the period of the flow (shown later). The
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other types of systems, nonautonomous systems, have a general time dependence,

which make coherent structure identification not as well defined, since there is no

characteristic timescale.

Let Φ : X → Y denote a general autonomous system, with X, Y ⊆ Rd. For

the flow fields investigated herein either periodic or no-slip boundary conditions are

used; this reduces the autonomous system to Φ : X → X. For autonomous systems,

the manifolds connecting fixed points can be used to analyze the system behavior.

These invariant manifolds are impenetrable to deterministic trajectories and therefore

demarcates the dynamics of the system. This is beautifully discussed and depicted

in Ottino (1989).

Let Φ : X×R→ Y denote a general nonautonomous system. Due to the boundary

conditions, the system reduces to Φ : X×R→ X. For a periodic flow with period T ,

the time-T map of the ODE can be used to describe the system in continuous time.

The advantage to time-periodic systems is that although the ability to use manifolds

is lost over time, with Poincaré sections the precise underlying skeleton of the mixing

process can be uncovered. For flows with general time dependence neither invariant

manifold theory nor Poincaré sections are suited for the analysis.

As the methods and theories of nonlinear dynamical systems have evolved over

previous decades, the objective extraction of coherent structures in nonautonomous

systems has also gained popularity. The term “coherent structures” is used to refer

to trajectories of dynamic systems that have major influence over nearby trajectories.

The term “Lagrangian coherent structures” (LCSs) is used to refer to coherent struc-

tures that maintain this property under the action of the dynamic system for some

finite-time. Due to their characteristic of inhibiting transport normal to themselves,

the presence of these structures naturally lead to anomalous transport and thus they

should be viewed as finite-time transport barriers. Generally speaking, in the context
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of the deterministic advection of a passive tracer, if the tracer is in a coherent region

(a region bounded by LCSs) at some time then it will remain in that coherent region

for the lifespan 1 of that coherent region. Since the passive tracer has a deterministic

trajectory it will not be able to cross the boundaries of these coherent regions.

As forcing is introduced into the system, transport barriers can start to form.

These transport barriers typically present themselves as regions of high strain, large

vorticity, or some combination of the two, and could describe physical flow features

such as the boundaries of a jet or an eddy region (which correspond to hyperbolic

points and KAM regions in the dynamical systems context, respectively). Regardless

of the properties of the regions bound by LCSs, LCSs themselves have an inherent

property of limiting exchange across themselves. If a LCS forms a closed “curve”, it

encloses a coherent region. These regions can correspond to persistent KAM curves

or the temporary boundary of an eddy region that will be destroyed over time.

Probabilistic LCS Detection Methods

There are two main families of LCS detection methods: geometric and probabilis-

tic. Various methods from both families will be discussed in greater detail in Sections

4.2 and 7.2, while the initial steps for the probabilistic methods are introduced here.

The family of probabilistic methods ignore the local transport barrier structures, but

instead divide the phase space into minimally dispersive sets. These are classified as

invariant sets, almost invariant sets, or finite-time coherent sets (dependent on the

particular method used and the type of system). Invariant sets and almost-invariant

sets are appropriate for autonomous systems, while finite-time coherent sets should

be used for nonautonomous systems. The reasoning for this distinction will be clear

after the following discussion.

1The lifespan of a coherent feature is simply the time until the feature becomes decorrelated.
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Let Y ⊆ X ⊆ Rd be closed, it is invariant under the map F if Y = F−1(Y ). Almost

invariant sets (AISs) are those that approximately satisfy the previous condition, i.e.

Y is almost invariant under the mapping F if Y ≈ F−1(Y ), with respect to the

appropriate measure. A finite-time coherent set (FTCS) is inherently different in the

fact that the previous two set types (invariant and almost-invariant) were both fixed

in phase space. FTCS are sets that come in pairs and are free to move in phase

space. They can be defined as follows: Yt0 and Yt0+τ are finite-time coherent pairs

if Yt0 ≈ F−1 (Yt0+τ ). The probabilistic methods rely on the Perron-Forbenius (or

transfer) operator, which is commonly approximated by the Ulam-Galerkin matrix.

Before being able to construct the Ulam-Galerkin matrix, or its’ approximation,

further definitions are needed. Let X ⊆ Rd and Y ⊆ Φ (X), where Φ defines a

general nonautonomous system, define the collection of sets (Bi) and (Cj) to be

mutually exclusive covers of X and Y , respectively. This is more clearly written and

understood as:

X =
n⋃
i=1

Bi, and Y =
m⋃
j=1

Cj, (2.4.1)

where n and m denote the number of elements in the cover of X and Y , respectively.

Note here that in general both (n,m) and (X, Y ) need not be the same. Due to the

boundary conditions applied, X and Y will be taken as the same. Even with this,

it is possible for n and m to be varied, i.e. two different covers. However, in the

following they are conveniently taken to be the same.

With the above in mind, the approximation to the Ulam-Galerkin matrix can be

written as:

P (t)ij =
#{xk|xk ∈ Bi and Φ(xk) ∈ Bj}

#{xk|xk ∈ Bi}
(2.4.2)

where the sequence {xk} is an ensemble of passive tracers, Bi is the set the tracers

are in at time t0, Bj is the set that the image of the tracers (that were originally in
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Bi) are in at time t, and # denotes the tracer count – number of members from the

ensemle satisfying the conditions. Note that since the covers are the same Cj := Bj.

From here on, the explicit time dependence will be suppressed.

Moment Approximation

Instead of advection via a general flow, if the advection is linear in the coordinates

then (2.1.3) can be rewritten as:

∂tθ + A(t) · x · ∇θ =
1

2
∇ · (D∇θ) , θ(x, t0) = θ0(x), (2.5.1)

where A and D are constant matrices; specifically, the Jacobian and the diffusivity

tensor, respectively. The advantage to approximating the transport process as a

series of linear systems (in d dimensions) is that for an initial condition of θ (x, t0) =

δd(x− x0), a spiked initial concentration at the centroid defined by x0, the problem

in (2.5.1) has a closed-form solution. This solution is dependent on the first and

second-order moments, and is found in Van Kampen (1992) as:

θ (x, t) = (2π)−d/2
(
detM(t)

)−1/2
exp(−1

2
(xT − 〈xT 〉)M−1(t)(x− 〈x〉)), (2.5.2)

where M(t) is the covariance matrix and 〈·〉 indicates spatial average. The moments

can be computed as:

〈x〉 = etAx0, (2.5.3)

M(t) =

∫ t

0

e(t−s)ADe(t−s)AT

ds. (2.5.4)

From the above: given A and D, or being able to compute them, provides the time

evolution of the moments, which can be used to compute the scalar distribution.

Further, it is seen that with our choice of D that (2.5.4) reduces to the following:

M(t) = 2κ

∫ t

0

e(t−s)(A+AT )ds. (2.5.5)
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With this reduction, it is easy to see that the moment evolution given by (2.5.5)

is based on a symmetrized flow: the rotational component is lost. Therefore, this

equation is only capable of describing the evolution of the elements of the covariance

matrix, and not its orientation. Later other methods for obtaining these covariance

matrices that retain the orientation will be investigated.

Given the scalar concentration as defined in (2.5.2), an analytic representation can

be obtained for the scalar variance as well. Setting 〈θ〉 = 0, the variance simplifies to

V ar(t) = 〈θ2〉. For θ given by (2.5.2), the vairance is:

V arK(t) =
1

(2π)d V

∫ (
detM(t)

)−1
exp(−(xT − 〈xT 〉)M−1(t)(x− 〈x〉))dx, (2.5.6)

where V represents the volume of the domain.

Further, for linear systems of the form (2.5.1) it was shown in Zeldovich et al.

(1984) and similarly in Thiffeault (2008) that the resulting scalar concentration can

be analytically computed using Fourier transforms. In Thiffeault (2008) this is shown

as:

θ (x, t) =

∫
θ̂0 (k0) exp

(
−ix · Tt · k0 − κ

∫ t

0

(Ts · k0)2 ds

)
ddk0, (2.5.7)

where θ̂0 (k0) is the Fourier transform of the initial distribution with k0 as the ini-

tial wavevector (multidimensional set of wavenumbers), and Tt is the fundemental

solution. The most general expression defining Tt is given as follows:

Tt = exp

(
−
∫ t

0

A(s)ds

)
, T0 = I, (2.5.8)

where A(t) is the matrix defining the linear system at time t. Recall that this ex-

pression is only for linear flows, and further, that (2.5.8) can be reduced for systems

independent of time. An analytic representation for the variance is also given in

Thiffeault (2008) as:

V arT (t) =

∫
|θ̂0 (k0) |2 exp

(
−2κ

∫ t

0

(Ts · k0)2 ds

)
ddk0. (2.5.9)
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Being able to provide an accurate approximation to the scalar variance, it can be

incorporated into an effective-diffusion model that is conditional on structure.
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PART 1 -

THE 1D CASE
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Chapter 3

ONE-DIMENSIONAL ANALYSIS

A one-dimensional setting provides a useful framework for introducing the analysis

methodology, and is the natural starting point. In Taylor’s seminal work (Taylor,

1920) in order to simplify the analysis for his interests, concerned himself only in the

transmission of heat in one direction. With considering a uniform flow, he found that

the rate of heat transfer was determined by the mean-value of the traversed distance

squared; giving a relation that connected the flow to the scalar moments. Given the

flow as ẋ = u, then the mean value of heat transfer is given by [u(x − a)]. Letting

X = x− a the heat transfer is given by:

[u(x− a)] =

[
X
dX

dt

]
=

1

2

d

dt

[
X2
]
. (3.0.1)

Further, by observing the downwind distribution of smoke from smoke stacks Taylor

was able to find rich relations between the moments corresponding to the distribu-

tions. It is with his understanding of how a nonphysical abstraction can still provide

deep understanding of a physical case that the one-dimensional case is pursued.

Stability Analysis

In 1D flows the analogue to transport barriers are the fixed points of the system.

These points provide clear distinctions of the separation of the different dynamics

of the system. Even in higher dimensions the connections between hyperbolic fixed

points can still be seen to accurately demarcate the flow.

However, in one dimension fixed points are only distinguished as stable (sink/attractor)

or unstable (source/repellor). From finding these fixed points and analyzing their sta-

bility predictions to the final state behavior of the system are obtained. Given the
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X

Figure 3.1.1: The phase plot for the exponential growth function shows trajectories moving away

from an unstable fixed point at zero, shown as an open circle.

system as ẋ = f(x), the 1D phase space is the x-axis, where x(t) represents a trajec-

tory. The only possible outcomes for the trajectories in a vector field on the real line,

is that they either approach fixed points or diverge to ±∞. The fixed points, x∗, of

the system correspond to f(x∗) = 0. The direction of the transmission of data near

a fixed point can be obtained from looking at the sign of df
dx

evaluated at that point.

As an example of this method, the simplest linear model will be used, the expo-

nential growth (or decay) function; given by (3.2.1). Due to only having one fixed

point the dynamics of the system are very dull: if µ > 0, then x(0) ∈ (0,∞) will

tend towards infinity, while x(0) ∈ (−∞, 0) tends towards −∞. This idea is dis-

played graphically with the phase plot seen in Fig. 3.1.1, where the arrows indicate

the direction of a trajectory, and the circle is the fixed point. The circle is hollow to

indicate that the fixed point in unstable. By increasing the number of fixed points,

the number of resulting possible final states can also increase. The question then

becomes - is it possible, in one of these systems, that the outcome for a trajectory

can be changed by perturbations to the trajectory? As will be discussed later, the

answer to this question is an uninteresting yes.
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X

Figure 3.2.1: The phase plot for the logistic equation shows and unstable fixed point at zero and a

stable fixed point at K. The stable fixed point is a solid dot, and attracts trajectories from above

and below.

Flows and Analysis

The 1D flows investigated were chosen to exhibit a range of behaviors for the tra-

jectories. Below is a list of the different standard one-dimensional cases investigated,

along with the fixed points and the type of system represented, where µ ∈ R and

K ∈ R+.

ẋ = µx, x∗ = 0 exponential growth (3.2.1)

ẋ = µx(1− x

K
), x∗ = 0, K logistic growth (3.2.2)

ẋ = µx− x2, x∗ = 0, µ transcritical bifurcation (3.2.3)

ẋ = µx− x3, x∗ = 0,±√µ pitchfork bifurcation (3.2.4)

By definition the deterministic trajectories of all the above systems are given by

x(t) = x(0) +
∫ t

0
ẋ(s)ds. From a perturbation analysis of the trajectories of the

exponential model, it is clear that only perturbations around x = 0 can result in a

change of final states. Given the solution to the exponential model is x(t) = x(0)eµt,

then initially the solution can be approximated by x(t) ≈ x(0)(1 + µt), for t << 1.

Thus, for a trajectory initiated near x = 0 at some location b > 0, a perturbation of

magnitude ε > b(1 + µ∆t) could force the trajectory to become negative and diverge

to −∞, instead of ∞.
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X

Figure 3.2.2: The phase plot for the transcritical bifurcation is similar to that of the logistic equation.

Since trajectories are defined for negative values, values below zero are included.

Having just discussed the growth equation, a system with more interesting dynam-

ics is now analyzed. The logistic equation (3.2.2) admits 2 fixed points: one stable

and one unstable. Fig. 3.2.1 gives the phase space plot for the logistic equation. It

is first noted that since this equation is intended to model population dynamics, all

values of x are non-negative. Further, for x ∈ (0, K] trajectories tend toward K from

below, while if x ∈ [K,∞) then the trajectories tend toward K from above; indicat-

ing that K is a stable fixed point, and 0 is unstable. The same behavior from the

exponential model is essentially seen for the logistic model; any perturbation away

from x = 0 results in trajectories reaching the final state K.

The transcritical bifurcation is similar to the logistic equation in terms of the type

of behavior observed; the phase plot for the transcritical bifurcation is given in Fig.

3.2.2. For the transcritical bifurcation the perturbation around x = 0 can either lead

trajectories to the fixed point or diverge to −∞. This situation changes slightly for

the pitchfork bifurcation – where, on both sides of the unstable fixed point, lie stable

fixed points. From the phase plot in Fig. 3.2.3, it is clear that only perturbations

around x = 0 can result in trajectories approaching either fixed point.

1-dimensional Model of a Limit Cycle

In 2D settings the dynamics are more interesting, and it is possible to have limit

cycles around fixed points. These limit cycles are periodic orbits that can either be
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X

Figure 3.2.3: The phase plot for the pitchfork bifurcation has 3 fixed points: 2 stable, and an unstable

fixed point between them. Depending on which side of the unstable fixed point a trajectory starts

will predict what fixed point it goes to.

stable or unstable – unstable cycles either expand away from or contract towards a

fixed point. For this analysis an unstable repelling limit cycle is presented, and a

model is given to describe the return map behavior of trajectories along a fixed axis.

First consider the 1D return map of a 2D trajectory around a limit cycle centered

at 0. This model is obtained from only looking at the intersection of the trajectories

with the x-axis. An approximation to an unstable limit cycle is obtained from the

map xn+1 = −xn|xn|. This model represents decaying spiral trajectories within the

bounds of the limit cycle x ∈ (−1, 1), and expanding spiral trajectories outside of the

limit cycle, x ∈ (−∞,−1) ∪ (1,∞). While trajectories on the boundary x ∈ {−1, 1}

are seen to have periodic orbits, and remain on the boundary. However, it is noted

that the accumulation of trajectories to the center of the limit cycle is not physically

motivated from the viewpoint of incompressibility. To remedy this a piecewise model

is introduced to represent the more realistic return behavior of trajectories inside a

vortex (limit cycle). This map is,

xn+1 =


−xn, if |xn| ≤ 1

− (1 + α)xn, if |xn| > 1

, (3.3.1)

with the parameter α > 0. On the interior of the structure trajectories follow smooth

periodic orbits, while on the exterior the trajectories are shed from the edge of the
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Figure 3.3.1: The return map for the piecewise limit-cycle model shows stable trajectories (in green)

inside the bounds of the limit cycle (solid black curve). The blue dashed curve highlights an unstable

trajectory, and red dots are used to indicate the return map of the trajectories.

limit cycle; this behavior is seen in Fig. 3.3.1 as the dashed green line (stable periodic

orbits) and the dashed blue line (an unstable spiral). The separatrix is seen as the solid

black circle with unit radius centered around zero – it is this curve that distinguishes

between the behavior seen in the system. The red dots in Fig. 3.3.1 along the Y = 0

axis indicate the intersection of the trajectories with that axis.

When the trajectories are deterministic then all trajectories initiated within the

structure will be contained within it, and all trajectories initiated outside will spiral

away. For the trajectories within the structure this provides simple return maps,

where the location is just flipped about the X = 0 axis, i.e. xn+1 = −xn. If the

trajectories are perturbed or slightly stochastic then these behaviors will change. To

investigate the impact noise plays in the change of behavior four different perturbation

levels are used: D =
√
.00002, D =

√
.0002, D =

√
.002, and D =

√
.02. Trajectories
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are initiated from x ∈ [−1.5, 1.5] with y = 0; 50000 realizations are used for each initial

condition. Since there is a natural competition between D and α, three different

α values are used; representing rapid (α = .1), moderate (α = .01), and slowly

(α = .001) shedding cases .

Given the mapping as (3.3.1), the deterministic location of tracers initiated outside

of the vortex after n iterations is given by, xn = (−1)n(1 + α)nx0; where x0 is the

initial tracer location. From this expression the escape time – the time it takes

for trajectories outside of the vortex to leave the domain – for the deterministic

trajectories can be analytically computed. With the domain arbitrarily taken to be

[−3, 3] and the bounds of the vortex having magnitude 1, the escape iteration is given

by,

nescape = d log 3

log (1 + α)
e, (3.3.2)

where d·e denotes the ceiling function, rounding up to the nearest integer. For the

systems considered this results in nescape = [12, 111, 1100] for the α = [.1, .01, .001]

cases, respectively. By looking at the number of tracers that remain inside the domain

after these iterations the impact the noise plays to conteract the shedding can be seen.

In order to look at the retention rate of the original structure, a histogram of tracer

locations was computed over the domain [−3, 3] with a resolution of 512 elements;

this results in a bin size of ∆xhist = .0117. With this bin spacing, all of the stochastic

cases, except for D =
√
.00002, are capable of exhibiting large jumping behaviors –

where tracers jump over a bin element completely on a single iteration of the map –

this behavior is only enhanced in the rapidly shedding case. For the rapidly shedding

cases the analytic jump in the map is α = .1, thus even in the absence of noise,

large jumps can occur in the histogram. Further, for the rapidly shedding cases,

three of the four noise levels used are smaller than the magnitude of the shedding,

indicating that the advective transport dominates diffusion. This means that even if
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the stochastic perturbation was exactly opposite to the motion of the deterministic

portion, the trajectory would still have a net positive increase in distance from the

center of the domain.

From looking at the time evolution of the histogram the behavior of the system is

revealed. In the initial few iterations of the map, the deterministic trajectories that are

originally outside the vortex boundary (x 6∈ [−1, 1]) begin to move to the boundary of

the system. For α = .1, these trajectories are seen as the section of red dots near the

boundary at the 50000 level in Fig. 3.3.2. Further, initially right underneath these

lines are plateaus (not shown) in the histograms for the three lowest noise levels.

These plateaus correspond to a large number of the same initial trajectories as the

red lines above them, with the remaining tracers moving further away from or towards

the center of the domain. The larger the stochastic perturbation is the more smooth

the histograms become, resulting in the features of the curves being lost at large noise

levels.

In the case where D =
√
.02, the stochastic perturbation is able to overcome the

motion of the deterministic mapping and a few trajectories initially outside of the

vortex are able to invade. For a large enough perturbation the short-term behavior

is described by two mechanisms: trajectories originally within some δ distance of the

boundary (but outside of the structure) are able to cross into the stable region due to

the perturbation, and trajectories originally within the structure are able to escape

into the unstable region via the perturbation. The long-term behavior of the system

is dominated by trajectories finally escaping the structure. In this case, although

the perturbation is of a significant size (or perhaps due to this fact), the trajectories

that invade the vortex, are expelled before 150 iterations. The quick rate of escape

highlights the difficulties of trajectories to return to the vortex region after being
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Figure 3.3.2: The histograms of the tracers locations after 12 iterations of the map. The map uses

α = .1. The red circles correspond to the deterministic trajectories, then in increasing levels of noise

intensity are the green(
√
.00002), yellow(

√
.0002), black(

√
.002), and magenta(

√
.02) circles.

perturbed outside of it – this will be discussed further alongside the results of the

other maps.

To further see the impact of noise on the retention rate of tracers in the vortex

region, the ratio of the number of tracers in this region at final time over the number

of tracers originally in the region is computed for the various noise levels; listed in

Table 3.1. It is seen that, as expected, the ratio of retention for the deterministic

cases are all 1, indicating no tracers were perturbed outside of the vortex. When

small perturbations are made to the tracers, they are able to escape the vortex and

become subject to the strength of the shedding. If the magnitude of the shedding

is sufficiently greater than that of the perturbations, the tracers will not be able

to return to the vortex. This is observed in the table as the increase of retention
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Deterministic
√
.00002

√
.0002

√
.002

√
.02

α = .1 1 .6207 2× 10−6 0 0

α = .01 1 .6152 .1186 .0205 .0128

α = .001 1 .7725 .6811 .5137 .2184

Table 3.1: The ratio of tracers retained in the vortex region after 400 iterations of the map for

various values of α; the different columns corresponding to the different noise levels.

rates as the shedding is lowered. When large perturbations are made to the tracers,

the deterministic action is not able to compete, and tracers from throughout the

vortex core find their way outside of the vortex region after enough iterations. This

is observed as the low retention ratios for the strongest perturbation level.

When α = .01, moderate shedding, the structures in the histograms are more well

defined and long-lived. Shown in Fig. 3.3.3 are the histograms of the various noise

levels for the map with α = .01, after 110 iterations. With this α, the stochastic

motion will dominate in all except the D =
√
.00002 case. The implications of

this are seen in Fig. 3.3.3 as the smoothing out of the dynamics for all except the

green curve. Further it is noted that for all the noise levels except D =
√
.00002,

considerable amount of trajectories entered the vortex within the first 20 iterations.

These trajectories then proceeded to diffuse out of the vortex and towards the domain

boundaries. When α = .001, slow shedding, the structures in the histograms are

extremely long-lived since the dynamics are dominated by the perturbations. In this

case, since the shedding is so weak, all of the perturbations are able to counteract the

advective component of transport.

To look at the role of noise in the system, the decay rate of the maximum values

in the histograms are computed. In Fig. 3.3.4 the maximum values of the histogram
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Figure 3.3.3: The histograms of the tracers locations after 111 iterations of the map. The map uses

α = .01. The red circles correspond to the deterministic trajectories, then in increasing levels of

noise intensity are the green(
√
.00002), yellow(

√
.0002), black(

√
.002), and magenta(

√
.02) circles.

curves, that are inside the domain, are plotted as a function of time for the various α

values. The different line styles are used to reflect the three α values, with solid lines

for α = .001, hollow circles for α = .01, and dots for α = .1. Black dashed curves

are used to fit exponential functions of the form eγt to the data. From Fig. 3.3.4 it

is easy to see that for the α = .1 map the decay rates are nearly identical for three

of the noise levels, with D =
√
.00002 showing no decay. This result suggests that

for D =
√
.00002, very few trajectories inside the vortex region have been expelled

by diffusion. The results are similar for the α = .01 cases: D =
√
.00002 shows no

decay, while the other three curves are seen to follow the same exponential decay rate,

γ = −.01. In the slowly shedding case the decay is very slow with γ taking values

between −.001 and −.002.
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Figure 3.3.4: Time history of the maximum values inside the domain for the various maps and noise

levels. The map that uses α = .1 are shown as dash-dots, with the α = .01 results shown with

dash-dash, and α = .001 with solid lines. The colors of the curves are used to distinguish the noise

level used; green(
√
.00002), yellow(

√
.0002), black(

√
.002), and magenta(

√
.02) circles; blue dashed

lines are used to show the scalings.

By tracking the number of tracers that originated outside of the vortex and have

found their way inside via perturbations, the strength of the shedding can be observed.

These time histories are plotted in Fig. 3.3.5 for the various α and D values. It is

seen that for larger α values fewer trajectories are able to enter the vortex, and that

for some of the noise levels no tracers are seen. This is expected as the deterministic

motion expells trajectories too quickly from the vortex barrier for the stochastic

perturbations to have a noticeable impact. In the α = .1 case only one noise level

is able to compete with the deterministic transport. For the moderate shedding case

(α = .01) three of the noise levels are seen to cause trajectories to enter the vortex

region. A quick exponential decay is seen for the D =
√
.0002 case, with γ = −.21.
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Figure 3.3.5: Time history of trajectories initiated outside the vortex that have invaded for the

various α and D values. The line styles designate which α value is used: dash-dot (α = .1), dash-

dash (α = .01), and solid lines (α = .001). Colors are used to distinguish what noise level is used:

green (
√
.00002), yellow (

√
.0002), black (

√
.002), and magenta (

√
.02); blue dashed lines are used

to show the scalings.

The decay in this case is quick since the deterministic transport is in close competition

with the stochastic perturbations. For the noise levels D =
√
.002 and D =

√
.02

the decay rates are lower because the perturbations dominate the transport. When

α = .001 only D =
√
.00002 provides results that are not completely dominated by

the perturbations; this curve has a decay rate of γ = −.0265.

Solomon Experiment

To introduce the framework for the fractional diffusion model, the experiments

of Solomon et al. (1993, 1994) are discussed, along with the model provided in del
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Castillo-Negrete (1997). The experiments studied the dispersion of particles advected

by a flow inside an annular tank; the bottom of the tank is slightly conical, to simulate

the Coriolis effect seen in geophysical flows. The annulus is set to rotate at a constant

rate, approximately 1 − 2 Hertz; with such a rapid rotation the flow is quasi two-

dimensional. Forcing is added to the system by pumping fluid through holes in the

bottom of the tank, seen in Fig. 3 of Solomon et al. (1994); with other holes in the

system to allow water to exit. When the forcing is sufficiently large the azimuthal flow

becomes unstable, resulting in the formation of a vortex chain. When particles are

inside a vortex they remain trapped for a very long time – this is referred to as sticking

– while particles in the jet experience flights around the tank. In the experiments

particles were seen to alternate between moving in the azimuthal direction and being

trapped in vortices. The nearly neutrally bouyant particles in the experiment, made

with fluorescent crayons and concrete powder, are tracked using automated image

processing techniques.

In del Castillo-Negrete (1997) the following model was proposed to provide an

analytic model to approximate the experimental setup:

ψ = − log (cosh y) + ζ (x, t)φ(y) cosmx+ cy, (3.4.1)

with, ζ (x, t) = a− ε cos2
(
(x+ ωt) /2

)
φ(y) = [1 + tanh y]

1−c
2 [1− tanh y]

1+c
2 ,

(3.4.2)

where m is the number of vortices, c is the non-dimensional speed of the vortex chain,

and ω is the frequency of the perturbation. The perturbation (3.4.2) is further defined

with the parameters a and ε := ε0+g, where ε0 is a constant and g is a random number

from a Gaussian distribution.

The contour plot of the unperturbed model (ε = 0) is reproduced here, Fig.

3.4.1. From the plot several distinct dynamic regions are observed. Shear bands

near the core of the annulus are separated from the shear region on the outer edge
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Figure 3.4.1: The contour plot for the unpreturbed annulus flow is shown with the separatrix noted

with a solid black curve. Shear regions are seen on either side of the separatrix.

by the vortex chain. The vortices are seen to lie nested between hyperbolic fixed

points. The connections between these fixed points forms the separatrix – the barrier

distinguishing the different dynamic regions (shown as the thick black lines in the

figure).

Since the trajectories of tracers are bound in the radial direction, either by the

walls of the annulus or the separatrix, a one-dimensional analysis is able to be done on

the azimuthal displacements. From investigating only the azimuthal displacement in

this model, del Castillo-Negrete (1997) was able to obtain the same decay exponents

for the statistics as obtained in the experiments in Solomon et al. (1993). Given the

decay exponents of the flight and trapping time statistics, a fractional diffusion model

can be implemented, as outlined in del Castillo-Negrete et al. (2004). In the hopes of

expanding this methodology to higher dimensions, the analysis is reviewed here first

for the 1D setting.
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Due to the inhomogeneities in the flow, caused by the presence of vortices and

shear flow, anomalous diffusion is expected. The distinction between normal and

anomalous diffusion can be made by examining the decay rate of the velocity corre-

lation, or similarly, by looking at the rate of growth of the displacement distribution

of an ensemble of particles. The variance in the azimuthal direction is given by:

σ2(t) =

〈(
∆θ(t, τ)−

〈
∆θ(t, τ)

〉)2
〉
, (3.4.3)

where ∆θ(t, τ) = θ(τ + t)− θ(τ) is the azimuthal displacement. The variance is seen

to grow as σ2 ∼ tγ, for γ > 0. Recalling that the normal diffusion process corresponds

to a linear growth of the variance (γ = 1), anomalous diffusion is seen for this model.

In Solomon et al. (1993), γ = 1.65 ± .15 was obtained from the experimental setup;

while values of γ = 1.57 and γ = 1.9 were obtained in del Castillo-Negrete (1997).

Further, in Solomon et al. (1993) the following two relations are given for γ:

γ = 4− µ, γ =
2ν

µ− 1
, (3.4.4)

where µ is exponent of decay for the flight-time pdf, and ν is the exponent of decay

for the sticking-time pdf. The flight pdf, PF (a) gives the distribution of a flight event

being of a certain length a, and τF is the average flight duration. The sticking time

pdf, PS(a), and average sticking time, τS, are defined analogously. These pdfs are

taken to scale as follows:

PF (a) ∼ a−µ PS(a) ∼ a−ν . (3.4.5)

In Fig. 3.4.2 the azimuthal displacement of typical trajectories are shown. It is

seen that trajectories tend to display both sticking and flight events, with the sticking

events presenting themselves as small oscillations around horizontal lines, while the

flight events are seen as steep diagonal lines. In del Castillo-Negrete (1997) and
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Figure 3.4.2: The azimuthal displacements as a function of time for various trajectories are shown.

Sticking events are seen as oscillations about horizonatal lines (beginnings of c and d). Flight events

are seen as diagonal lines separating sticking events (end of d). The initial angle θ(t = 0) is arbitrary

for plotting purposes.

Solomon et al. (1993, 1994) flight events are classified by ∆θ > π/3 between successive

extrema; approximately the angular width of a single vortex. The flight segments are

seen to have approximately constant slopes, indicating a steady azimuthal velocity.

The sticking times are simply taken as the intervals between flights, and are seen to

range from as short as a couple seconds to over 300s. Further, the chaotic trajectories

associated to the previous azimuthal displacements are seen in Fig. 3.4.3. In the

figure the green dots represent the starting position, while the red dots show the

final location. From the figure it is clear that the perturbations in the model allow

trajectories to alternate between sticking and flight events.

In using the pdfs of the sticking and flight-times to obtain γ, (3.4.4) provides

two possible relations. If the system is dominated by flight events, then the first
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a) b)

c) d)

Figure 3.4.3: Chaotic trajectories in the perturbed annulus flow. The beginning of each trajectory

is marked with a green dot, with red dots used to mark the end of each trajectory. Long sticking

events are seen in each case, with long flight events seen in a) and b).

relation should be used, while the second relation is used when sticking events are

vital to the dynamics. From exponents of the pdfs of the sticking and flight-times in

Solomon et al. (1993); del Castillo-Negrete (1997) (ν = 1.6± .3 and µ = 2.3± .2, and

ν = {1.7, 1.85}, µ = {2.1, 2.4}, respectively), it is observed that the CTRW model

prediction-based relation is valid for representing the growth rate of the variance,

γ = 4− µ.

As an extension of this study, the affect of noise on trajectories of the unperturbed

model is now analyzed in this dissertation. The benefit of looking at the unperturbed

model, where ε = 0, is that the classification of trapping and non-trapping events is

immediate. As discussed earlier, the separatrix provides a natural separation of the

different dynamic regions within the system. Trapping events are then simply given

by the presence of a particle in the area bound by the upper and lower branches of the
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Figure 3.4.4: The partition of the unperturbed annulus model shows the trapping region (yellow),

nontrapping region (blue), and tracers that exit the trapping region (green), along with tracers that

enter the trapping region (red).

separatrix. The statistics are then conditioned based on residence time of trajectories

inside the trapping regions.

It is noted that for deterministic trajectories, these conditional statistics would

exhibit flat pdfs with peaks at the terminal time. However, as seen in Fig. 3.4.4 –

where the trapping region is shown in yellow, and the nontrapping/flight region is in

blue – some of the tracers initiated along the partition boundary exhibit at least one

exit event, these tracers are plotted as green dots. Similarly, some tracers initiated

outside of the trapping region also exhibited at least one trapping event, and are

plotted as red dots. The retention rates of deterministic trajectories in the trapping

and flight regions, i.e. the percent of tracers that spend the entire simulation in the

trapping region, are 96.92 and 91.68 for the trapping and flight regions, respectively.

The lower retention rate for the flight region indicates that the classification can

be improved. However, since the partition is obtained from the separatrices it will

be used for this autonomous system; investigating the impact and ability of other

classification techniques will be done in later sections.
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Figure 3.4.5: [left] The azimuthal displacements as a function of time for various trajectories are

shown. Sticking events are seen as oscillations about horizonatal lines (beginning of c and the end

of b). Flight events are seen as diagonal lines separating sticking events (end of d). The initial angle

θ(t = 0) is arbitrary for plotting purposes. [right] Chaotic trajectories in the perturbed annulus

flow, D = .0225. The beginning of each trajectory is marked with a green dot, with red dots used to

mark the end of each trajectory. Long sticking events are seen in each case, with long flight events

seen in a), b) and d).

With the addition of a perturbation on the trajectories, chaotic behavior is ob-

served. The noise amplitude of D = .0225 was used so that typical trajectories exhibit

at least one trapping event. Fig. 3.4.5 shows the azimuthal displacements (left) and

trajectories (right) of typical tracers in the flow. These results compare well with

what is seen in Fig. 3.4.2 and Fig. 3.4.3. The retention rates for the trapping and

flight regions are now 0.56% and 52.27% respectively. The reduction in retention is

naturally expected as now tracers beyond the periphery of the trapping region are

able to traverse the boundary.

The pdfs of the trapping and flight-times of the stochastic trajectories are seen

in Fig. 3.4.6. The trapping time pdf is in blue, while the flight-time pdf is shown

in black. The power-law scalings that fit the data are seen as dashed lines in Fig.

3.4.6. The scales, ν = 1.5 and µ = 1.6, deviate from the experimental and numerical
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Figure 3.4.6: Pdfs of the (a) trapping and (b) flight-times, for particles in the annulus flow, with

noise level D = .0225. The dashed black curves show the power-law fit to the data.

results of previous studies. This could be due in part to the large noise component,

the statistics are also affected by tracers that don’t experience trapping events, but

also nontrapping events are defined less strictly here than in the literature. The scales

obtained indicate that variance of the azimuthal displacement is dominated by flight

events, following the relation γpred = 4−µ. In Fig. 3.4.7 the variance of the azimuthal

displacement is shown along with a curve highlighting the power-law growth. The

directly computed growth rate of γ = 1.9 is within the bounds of the experimental

uncertainty, but disagrees with the predicted value of γpred = 2.4; γ = 1.9 is also the

value obtained in del Castillo-Negrete (1997) for the model with noise.

Using a smaller perturbation of D = .0025 results in retention rates of 82% and

88.26% for the trapping and nontrapping regions, respectively. The pdfs of the trap-

ping and flight-times, as seen in Fig. 3.4.8, follow decay rates of ν = 1.4 and µ = 2.1;

these match well with the scales obtained in previous studies. Further, the predicted

γpred value now matches the directly computed value of 1.9.
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Figure 3.4.7: Variance of the azimuthal displacements of tracers in the steady annulus flow, subject

to Gaussian perturbations. The black-dashed curve shows the power-law growth, with an exponent

of γ = 1.9.
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Figure 3.4.8: Pdfs of the (a) trapping and (b) flight-times, for particles in the annulus flow, with

noise level D = .0025. The dashed black curves show the power-law fit to the data.
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Use Statistics to Model Transport

In del Castillo-Negrete et al. (2004) the parameter scales of the waiting-time and

jump statistics, α and β respectively, were used to reproduce the radial displacement

pdf. By defining the moments by
〈[
x− 〈x〉

]n〉 ∼ tnν , the parameters α and β are

seen to provide the following relation, ν = β
α

.

Recalling the Green’s function of the fractional diffusion model from (2.1.18), by

using the variable η = x(χ1/βt)−β/α the function can be re-expressed as:

G(x, t) =
(
χ1/βt

)−β/α
K(η), (3.4.6)

where

K(η) =
1

π

∫ ∞
0

cos (ηz)Eβ(−zα)dz. (3.4.7)

Based on a localized initial conditions |x| ≤ ε/2 with ε � 1, the PDF of particle

displacements is written as:

P (x, t) =
(χ1/βt)−β/α

2δ

(∫ δ−η

0

K(z)dz +

∫ δ+η

0

K(z)dz

)
, (3.4.8)

where δ = ε
2
(χ1/βt)−β/α. The above solution is further approximated as

P (x, t) ∼ Cχ
tβ

x1+α

(
1 + ε2

(α + 1)(α + 2)

4!x2
· · ·
)
, |x| > ε/2

P (x, t) ∼ A

αχtβ

(
2

ε

)1−α
(

1− 2α(1− α)

(
x

ε

)2
)

+
B

(χ1/βt)β/α
, |x| < ε/2,

(3.4.9)

where

A =
1

π

Γ(1− α)

Γ(1− β)
sin

(
πα

2

)
B =

1

π

Γ(1− 1/α)Γ(1 + 1/α)

Γ(1− β/α)
C =

1

π

Γ(1 + α)

Γ(1 + β)
sin

(
πα

2

)
.

(3.4.10)

Here the histogram of the radial displacements are compared between the actual

model and the curve generated from (3.4.9).
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Figure 3.4.9: Long-term radial displacement pdfs for the annulus flow, for D = .0025 (left) and

D = .0225 (right).

Results

From comparing the pdfs of radial displacements for the small noise and large noise

cases many interesting features are observed. In Fig. 3.4.9 the long-term behavior is

seen for the small noise case (left), and the larger noise case (right). The steep peak

seen at the final time (t = 5) pdf for the small noise highlights the anomalous transport

of the system; indicating a inhibition of dispersion in the radial direction. The large

noise case on the other hand has a distribution more reminiscient of a standard

Gaussian distribution, this shows the impact noise had smoothing the statistics. For

both cases, the pdfs of radial displacemenets have been plotted without scaling, and

are seen to be self-similar profiles. For the small noise case the long-term pdfs fall

onto the same curve without rescaling, while a scale of ν = .4 can be used for the

larger noise case.
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Figure 3.4.10: Short-term radial displacement pdfs for the annulus flow, for D = .0025 (left) and

D = .0225 (right).

In Fig. 3.4.6 the short-term behaviors are compared for the two noise cases. In

both plots the initial pdfs are almost indistinguishable until around t = .1. For the

small noise, t = .1 is when the center of the pdf start become more peaked, while

the center of the pdf for the large noise becomes more broad and the maximum value

starts to decay. The decay of the maximum value is not seen for the small noise,

suggesting a clustering of trajectories that is not able to be broken apart from the

perturbations; the decay of the maximum, or lack thereof, was also seen in Fig. 3.4.9.

The semilog plot of the scaled radial displacements is shown in Fig. 3.4.11 for both

the small and large noise cases. The form of the scalings used are Ptν and x/t−ν2 ;

where values of ν = .5 and ν2 = .25 for the small noise case, and ν = .6 and ν2 = .25

for the large noise. The use of a two parameter fit indicates that the azimuthal flow

is inhibiting dispersion, causing a slow decay in the radial direction. Further, the

vortex chain acts to trap tracers, especially for the small noise, thus the statistics are

driven by 3 regions: the outer shear flow, inside the vortex chain, and the inner shear

flow (near the core of the annulus). Both the outer and inner shear regions utilize the

strong shear forces to keep tracers from escaping. With a larger noise amplitude it is

possible for these tracers to traverse these boundaries and venture into other dynamic
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Figure 3.4.11: Scaled radial displacements for the annulus flow with small (left) and large (right)

noises. The red curve shows the solution to the fractional diffusion equation given α = .85 and

β = .5.

regions. The ability of the tracers to traverse boundaries is seen in Fig. 3.4.11 as the

broadening of the tails of the pdf. Also in the figure is the red curve coming from

(3.4.9), with α = .85, β = .5 and χ =
√
.0025.

The parameter α comes from looking at the pdf of radial displacements on a log-

log plot, and noticing the decay exponent. In Fig. 3.4.12 the log-log plot of radial

displacements is shown with the curve showing the decay rate of α+ 1 = 1.85. From

Fig. 3.4.11 it is seen that the pdf of radial displacements is obtainable from the kernel

of the fractional diffusion equation, further highlighting the anomalous characteristics

of the system.
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Figure 3.4.12: Scaled radial displacements for the annulus flow with small and large noises. The

black-dashed line shows the power-law decay, with an exponent of α+ 1 = 1.85.
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PART 2 -

THE 2D CASE
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Chapter 4

2D LCS DETECTION METHODS

In this chapter the various two-dimensional methods for partitioning the flow

topology are introduced. As seen later, some of the methods discussed here have

natural extensions to 3D, while others are not suitable.

Poincaré Sections

For periodically forced systems, such that F (~x, t) = F (~x, t+T ), where T is the pe-

riod of the system, there is an objective method for identifying the different kinematic

regions; Poincaré return maps or sections. Poincaré sections (PS) are obtained from

looking at the period-T return maps for tracers – this is just a record of the tracer

location under the periodic action of the flow. Region boundaries are revealed from

tracer locations taken from looking at a large number of applications of the periodic

map. There are two main drawbacks with this method. The first being, since PS

are constructed from these return maps, a large number of iterations will be needed

to reveal them, and further, these structures represent the infinite-time state of the

system and therefore don’t depict the transient dynamics. The other shortcoming is

that PS can only be done for periodic flows, so this method is not valid for nonau-

tonomous systems with general time dependence. Despite these drawbacks, PS will

be used to gauge the accuracy of other methods when looking at periodic flows.

LCS Detection Methods

Having no shortage of LCS detection methods to choose from, here the attempt

is to offer a broad sampling of these, but the list of methods used is in no way
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exhaustive. Numerous methods were compared while working towards the goal of

finding an accurate but computationally inexpensive method that was suited to work

on autonomous and nonautonomous dynamical systems. As stated earlier, when

discussing LCS detection there are two families of methods, the geometric methods

and the probabilistic methods. The geometric methods use geometric information,

such as strain and vorticity, from the map to highlight transport barriers or invariant

manifolds. The probabilistic methods, however, use tracer trajectories to determine

invariant sets, almost invariant sets, or finite-time coherent sets in phase space.

Geometric Methods

Early studies on flow topology identification were based on Eulerian quantities,

specifically the Okubo-Weiss (OW) parameter; as in Elhmaidi et al. (1993). Since

then, the development of Lagrangian descriptors for coherent structure identification

has progressed. It has been noted that Lagrangian diagnostics lead to identifying

regions that tend to remain coherent more so than from Eulerian diagnostics. How-

ever, in Kadoch et al. (2011), the Lagrangian history of the Eulerian OW parameter

was used successfully to study the relationship between Lagrangian statistics and

flow topology for a 2D turbulent flow. The OW measure is included here to contrast

against the Lagrangian measures for turbulent and non-turbulent flows.

The OW parameter is the difference between the norms of the instantaneous strain

and vorticity, and is given by:

Q(x, t) = s(x, t)2 − ω(x, t)2, (4.2.1)

where s2 =
(
∂xu− ∂yv

)2
+
(
∂xv + ∂yu

)2
and ω =

(
∂xv − ∂yu

)
. So, roughly speaking,

regions with high Q value are highly strained, while low Q values indicate regions

dominated by rotation. In the following, strain-dominated regions will be classified
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Types Condition

� Elliptic (trapping) Q(x, t) ≤ −Q0

� Hyperbolic (jumping) Q(x, t) ≥ Q0

� Intermediate (both)
∣∣Q(x, t)

∣∣ < Q0

Table 4.1: Classification of Coherent Regions Given by the OW Measure

as hyperbolic (jumping type regions), rotation-dominated regions will be classified

as elliptic (trapping/sticking type regions), and all else is considered part of the

intermediate region. This is summarized in Table 4.1. Q0 is chosen arbitrarily as the

standard deviation of the field (Q0 =
√
〈Q(x, t)2〉), and thus the bounds obtained do

not correspond to actual transport barriers.

Finite-Time Lyapunov Exponent

LCSs are historically extracted from the finite-time Lyapunov exponent (FTLE) field,

Shadden et al. (2005). The FTLE is a finite-time analogue of the traditional Lyapunov

exponent, which quantifies the asymptotic behavior of infinitesimally nearby tracers.

The FTLE quantifies the relative rate of separation of infinitesimally nearby tracers

over a finite-time interval. Roughly speaking, in forward-time, regions of high FTLE

value are highly separating, whereas regions of low value tend to be more steady.

Since the FTLE highlights regions of large separation, shearing and stretching are

not distinguished, and it was noted in Haller (2011) that FTLE ridges can give false

positives and negatives, with regards to material transport barriers.

The FTLE is computed from the deformation gradient tensor, J(t;x0, t0) =

∂x(t;x0, t0)/∂x0, where x(t;x0, t0) denotes the current position of a trajectory that
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initiated from (x0, t0). The FTLE field, Λt
t0

(x0), is then defined as the scalar field

that associates the maximal rate of stretching with each initial position x0:

Λt
t0

(x0) =
1

|t− t0|
lnλmax (J) , (4.2.2)

with λmax(J) denoting the maximum singular value from the singular value decom-

position of J(t;x0, t0).

Since the FTLE is computed from the rate of separation of infinitesimally nearby

trajectories, it seems that a dense mesh would be needed to obtain a valid represen-

tation. As discussed in Farazmand and Haller (2012) it is possible to obtain a high

resolution FTLE field without resorting to a dense mesh. This is done by using the

auxiliary grid method, where small perturbations are taken to the computational grid

and they are used to compute the components of the deformation gradient tensor.

This is shown schematically in Fig. 4.2.1. Letting xlj(t0) designate an initial aux-grid

location, and xlj(t) denote its location at time t, then the elements of the Jacobian

are given as:

J(t;xj, t0) =


xrj (t)−xlj(t)
xrj (t0)−xlj(t0)

xrj (t)−xlj(t)
xuj (t0)−xdj (t0)

xuj (t)−xdj (t)

xrj (t0)−xlj(t0)

xuj (t)−xdj (t)

xuj (t0)−xdj (t0)

 =

 xrj (t)−xlj(t)
2δx

xrj (t)−xlj(t)
2δy

xuj (t)−xdj (t)

2δx

xuj (t)−xdj (t)

2δy

 . (4.2.3)

All other geometric LCS detection methods used later also use this auxiliary-grid

approach.

Instead of giving a cut-off to demarcate the domain, the FTLE simply highlights

regions of large deformation. While this gives good characterization of the transport

barriers in the Bickley jet and gyre flows, such barriers in the turbulent flow are

not easily identified. For the turbulent flow the regions are classified by using one

standard deviation away from the mean value; this is analogous to what was done for

OW. Letting σ(x, t) = Λt
t0

(x0) and σ̄ = 〈σ〉, where 〈·〉 indicates the spatial average,

then Table 4.2 describes the FTLE partition for the turbulent flow. Note that in the
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Figure 4.2.1: Hollow circles indicate the auxiliary grid points used for computing the gradient of the

flow map, while filled circles represent the original grid.

Types Condition

� Elliptic (trapping) σ < σ̄ −
√
〈(σ − σ̄)2〉

� Hyperbolic (jumping) σ > σ̄ +
√
〈(σ − σ̄)2〉

� Intermediate (both) |σ − σ̄| <
√
〈(σ − σ̄)2〉

Table 4.2: Classification of Coherent Regions Given by the FTLE Measure for the Turbulent Flow

other models the FTLE ridges are still used to extract the shear boundaries, while

the trapping region condition from Table 4.2 is used to identify the elliptic regions.

Mesochronicity

Mesochronicity (MESO), the diagnostic proposed in Mezić et al. (2010), looks at the

determinant of the mesochronic Jacobian – the gradient of the Lagrangian average

velocity – to partition flows. Similar to OW this method gives clear boundaries for
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Types Condition

� Mesoelliptic (trapping) 0 <Mt+t0
t0 (x0) < 4

t2

� Mesohyperbolic (jumping) Mt+t0
t0 (x0) > 4

t2

� Mesohelical (both) Mt+t0
t0 (x0) < 0

Table 4.3: Classification of Coherent Regions Given by the MESO Measure

vortex motion over strain. The classification of region type is based off of the difference

between vorticity and strain, computed from the Lagrangian averages, instead of

instantaneous values.

Let u∗(t + t0,x(t + t0;x0, t0)) denote the average Lagrangian veloctiy for a tra-

jectory starting at the point (x0, t0) and being advected for an integration time of

t. The mesochronic velocity is computed by taking the difference of the trajectories

over t, from time t0 until t0 + t, obtained by:

u∗(t+ t0,x(t+ t0;x0, t0)) = (x(t+ t0;x0, t0)− x(t0;x0, t0))/t, (4.2.4)

or equally from,

u∗(t+ t0,x(t+ t0;x0, t0)) =
1

t

∫ t0+t

t0

u(τ,x(τ ;x0, t0))dτ. (4.2.5)

The determinant of ∇u∗(x(t+t0;x0, t0)) is then defined asMt+t0
t0 (x0) :≡ u∗xv

∗
y−v∗xu∗y.

Subsets of the mesochronicity field are easliy classified and defined as mesohelical,

mesohyperoblic, and mesoelliptic. The mesoelliptic regions are rotationally dominant,

while strain dominates the mesohyperbolic regions, and a combination is seen in the

mesohelical; this is summarized in Table 4.3. Note that as the integration time t goes

to zero, the Okubo-Weiss criterion are recovered.
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Geodesic Theory

The last geometric method investigated is the recently developed geodesic theory

(GEO) presented in Farazmand and Haller (2012). Here coherent structures are

identified as minimal stretching curves under the action of the system, and are identi-

fied by finding extremals to the functional defining the stretching of such curves. The

variational problem differs from the classical one in the sense that the extremal end

points are a priori unknown – this difference leads to the classification of different

types of coherent structures based on the boundary conditions imposed. Hyperbolic

barriers are defined as strainline segments whose relative stretching is locally minimal.

Parabolic and elliptic barriers are defined as open and closed shearlines, repsectively.

The strainlines and shearlines are calculated by solving a system of first-order differ-

ential equations given by:

r′st = ξ1(r) (4.2.6)

r′sh = η±(r), (4.2.7)

where ξ1 is the eigenvector corresponding to the smaller eigenvalue of the Cauchy-

Green strain tensor (JTJ), η± are the Lagrangian shear vector fields, and rst,sh denote

the strain and shear lines, respectively. The normalized Lagrangian shear vector fields

are:

η± =

√
λ2 − λ2

λ2 − λ1

ξ1 ±

√
λ2 − λ1

λ2 − λ1

ξ2, (4.2.8)

where λ2 = λ1λ2, and λ1,2 are the eigenvalues corresponding to ξ1,2, respectively.

Note that for incompressible flows λ1λ2 = 1, but in practice, a small range of values

near 1 is used for λ to allow for some stretching and contraction. This identification

method is the most sophisticated and computationally demanding of those discussed

so far, due to having to solve the additional ODEs, (4.2.6) and (4.2.7). This expense
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is justified, as the boundaries of the rigorously defined materially coherent regions

can be obtained for nonautonomous flows.

Probabilistic Methods

The probabilistic methods rely on the creation and skillful manipulation of the

transfer or transition matrix. Recalling Section 2.4, the matrix element Pij gives the

probability of a tracer initiated in Bi ⊂ X ending up in Cj ⊂ Y at time t.

Finite-Time Entropy

In Froyland and Padberg-Gehle (2012), as a step towards providing a mathematical

link between the geometric and probabilistic approaches, they defined the entropy of

a probability measure µ, as H(µ) := −
∑n

i=1 µ(Bi) log µ(Bi). Making the substitution

pi = µ(Bi) leads to the form H(p) = −
∑n

i=1 pi log pi. The discrete finite-time entropy

(FTE) on the partition set Bi is then defined as FTE(Bi, t, τ) = 1
|τ |H (δiP ), where δi is

an n-vector with 1 in the i-th position and 0 everywhere else, and τ is the integration

time. It is typically seen that the FTE qualitatively correlates very highly to the

FTLE, and as such the partition based on the FTE is done similar to that for the

FTLE. More clearly, by letting α = FTE(Bi, t, τ) and ᾱ be its mean value (ᾱ = 〈α〉),

then the FTE partition for the turbulent flow is given by Table 4.4. The partition

for the Bickley jet shear boundaries are based on the ridges fo the FTE field, and the

condition for trapping regions is used to identify elliptic regions.

Almost-Invariant Sets

As discussed in Froyland et al. (2010), relative coherent sets can be determined from

the transition matrix by applying a thresholding algorithm on the singular vectors;

where the singular vectors highlight coherence and the corresponding phase space
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Types Condition

� Elliptic (trapping) α < ᾱ−
√
〈(α− ᾱ)2〉

� Hyperbolic (jumping) α > ᾱ +
√
〈(α− ᾱ)2〉

� Intermediate (both) |α− ᾱ| <
√
〈(α− ᾱ)2〉

Table 4.4: Classification of Coherent Regions Given by the FTE Measure for the Turbulent Flow

structures. These relatively coherent sets are obtained from executing the following

algorithm; this will be referred to as the PF-algorithm or just PF1 for brevity.

PF-algorithm

1. Calculate the second left and right singular vectors {xi}, {yj} of the tran-

sition matrix P .

2. Find values {(bk, ck)} as pairs, and %
(
X(bk), Y (ck)

)
=

∑
i|xi>bk&j|yj>ck

piPij∑
i|xi>bk

pi
,

where pi = µ (Bi), X(bk) = ∪i|xi>bkBi and Y (ck) = ∪j|yj>ckCj.

3. Choose the partition that produces the maximum %.

The partitions are then defined as being X1 = ∪i|xi>b∗Bi and X2 = ∪i|xi≤b∗Bi, where

(b∗, c∗) is the pair of parameters that maximize %.

When the PF-algorithm is computed for an autonomous system, the resulting sets

are almost-invariant sets (AISs). These sets are fixed regions in phase space that are

minimally dispersive. Since the Bickley jet is periodic with period T, looking at the

time-T map of the system leads to an autonomous system. Thus, the fixed regions in

phase space that are almost-invariant under the dynamics of successive applications of

the time-T map are sought after. Motivated by the structures seen in the PS, a q-way

1PF is for the Perron-Frobenius operator, which is what the transfer matrix approximates
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cut approach is used to identify q almost-invariant sets. This technique is outlined

in Froyland and Dellnitz (2003), and the clustering algorithm used was presented in

Bezdek et al. (1987) and modified in Froyland (2005).

Finite-Time Coherent Sets

When PF is computed for nonautonomous systems finite-time coherent sets (FTCSs)

are obtained instead. These differ from AIS in that the regions defined by FTCS are

not fixed in phase space. Since the FTCS partition is binary (results in 2 distinct

sets), a recursive calculation is done in order to detect multiple regions that remain

coherent. The procedure defining this recursive calculation is given in Ma and Bollt

(2013), and briefly reviewed here.

This process starts with the computation of the PF-algorithm to obtain the co-

herent pairs (X1, Y1) and (X2, Y2), where Y1 can be considered as the image of X1

under the action of the flow, for the specified integration time. Relative measures are

then defined for these sets as:

µXi(S) =
µ(S)

µ(Xi)
, and vYi(T ) =

v(T )

v(Ti)
, (4.2.9)

for all S ⊂ Xi and T ⊂ Yi. With these relative measures it is now possible to perform

the same thresholding operation (i.e. PF) on X1 and Y1, with using µX1 instead of

µ. This leads to coherent pairs (X11, Y11) and (X12, Y12). Relative measures can now

be computed for these sets, and so forth. This process can be repeated until the

desired amount of sets are found, or the stopping criterion is met. Since the number

of coherent regions is usually a priori unknown, the relative coherence (%) is used as

an indication of when to stop. The procedure should terminate if, for some coherent

pair (Xn, Yn), maxk

(
%
(
Xn(bk), Yn(ck)

))
< %0, where %0 ∈ (0, 1).
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For a more indepth and complete discussion of almost-invariant and coherent sets,

the reader is referred to Bahsoun et al. (2014).
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Chapter 5

THE FLOWS AND ANOMALOUS TRANSPORT ANALYSES

In this chapter the 2D flows that will be used in later analyses are introduced.

Flows

The 2D flows investigated were chosen to exhibit integrable, chaotic, and turbulent

trajectories. Analysis will begin with autonomous or time-periodic systems, where

precise partitions are available, via invariant manifold theory and Poincaré sections,

respectively.

Quadruple-Gyre Flow

The quadruple-gyre flow, or quad-gyre flow, is a two-dimensional kinematic model

of the Rayleigh-Bénard convection cells, with periodic boundary conditions in both

directions instead of material boundaries in y. The quasiperiodic version of this

system is seen in Lekien and Ross (2010), and a similar system was studied by Shadden

et al. (2005). The streamfunction is given by:

ψ(x, y, t) = sin
(
π
(
x− g(t)

))
sin(πy), (5.1.1)

where g(t) = ε1 sin(4πt) + ε2 sin(2t). The physical domain of the flow is given by the

2-torus, [0, 2]2.

The system type (i.e. autonomous or nonautonomous) is seen to be dependent on

the two parameters ε1 and ε2. When both parameters are equal to zero the steady cell

flow is recovered. This system is autonomous, and invariant manifold theory can be

used to analyze the dynamics. The flow has families of periodic orbits around elliptic
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Figure 5.1.1: The invariant manifold analysis for the steady-cell flow. Hyperbolic fixed points of the

steady-cell flow are shown as green circles, while elliptic fixed points are red circles. The hyperbolic

boundaries that divide the cells are shown as green lines. Red lines highlight some of the periodic

orbits.

fixed points, bounded by the heteroclinic orbits that connect the hyperbolic fixed

points. The periodic orbits are seen as counter-rotating vortices contained within

cells; these orbits are seen in Fig. 5.1.1 as red curves. Further, due to the manifolds

connecting the hyperbolic points, no (deterministic) transport is possible between the

cells.

However if only one of the ε’s is nonzero then the streamfunction is periodic. In

the periodic case it is possible for KAM regions, closed invariant curves with the

period T , to exist within the chaotic sea, whereas in the quasiperiodic case (where

both ε’s are nonzero) these structures are typically destroyed. Using 500 periods of

the steady-cell and quad-gyre (periodic) flows, the obtained Poincaré sections are

shown in Fig. 5.1.2.

In Fig. 5.1.2a the structures uncovered from the invariant manifold analysis are

clearly seen; even the elliptic fixed points are clearly obtained. However, for the
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Figure 5.1.2: The Poincaré sections obtained from 500 iterations of the periodic maps for a) the

steady-cell flow, and b) the quad-gyre flow.

periodic case (Fig. 5.1.2b), a lot of structure is lost to the chaotic sea, which is only

interrupted by the 4 KAM regions. The middle of these KAM regions also contains

elliptic points. Writing the parameters ε1 and ε2 as (ε1, ε2), the following cases are

investigated: (0, 0), (.3, 0), and (.3, .1).

Bickley Jet

A natural extension from the annulus flow discussed in Section3.4 is the Bickley

jet model. It comes from the studies of the stability of a zonal shear flow, where the

zonal velocity u ∝ sech2 y (see Bickley (1937)), and can exhibit two vortex chains

separated by a shear jet. The introduction of a second vortex chain allows for more

complex dynamics – this is further stressed by the bulk motion of the two chains. The

northern chain tends to propagate trajectories westward, while the southern vortices

show trajectories heading east. This break in symmetry will present itself later in the

tails of the PDFs for the x statistics. The streamfunction of the Bickley jet is given
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by:

ψ(x, y, t) = tanh y + sech y
2∑
i=1

εi cos ki (x− cit) (5.1.2)

where εi, ki, ci are the amplitude, wave number and phase speed of the waves, re-

spectively. Parameters are chosen to be dynamically consistent with the governing

equations:

∆ =

√
1− 3

2
β, β ∈

(
0,

2

3

)
; c1,2 =

1

3
(1±∆) , k2

1,2 = 6c1,2, (5.1.3)

hence the dynamics are given in a three-parameter family (β, ε1,2). β is chosen such

that the streamfunction is spatially-periodic in the zonal direction with period 5π;

β = 0.6144. A reference frame co-moving with one of the waves, c2, is adopted. The

streamfunction is then time-periodic with period T = 2π/k1(c1 − c2). Given the co-

moving frame and the choice of β, the period is T = 21.04. Further, since the Bickley

jet is time periodic it is possible to frame it as an autonomous system. The physical

domain for the Bickley jet is given by [−2.5π, 2.5π]× [−3, 3], with periodic boundary

conditions in x and free-slip boundaries in y.

It has been noted in del Castillo-Negrete and Morrison (1993), that dependent

on choice of parameters the phase portrait may transition between homoclinic and

heteroclinic connections, as well as transition between a persistent zonal jet and the

breaking up of this central barrier. The parameters used in this work were chosen

such that for one case the integrable jet coexists with chaotic zones, and for the other

case, along with the previous features there also exists persistent eddies. These cases

represent a strongly-chaotic Bickley jet with ε1 = .1 and ε2 = .3, and a weakly-chaotic

Bickley jet with ε1 = .002, ε2 = .3.
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Turbulent Flow

The two-dimensional turbulent flow is obtained from using the streamfunction-

vorticity formulation (below) in a direct numerical simulation (DNS):

ωt + J [ψ, ω] = d+ f, (5.1.4)

where ψ is the streamfunction, ω = ∇2ψ is the vorticity, J [ψ, ω] is the Jacobian

operator acting on ψ and ω, d is the dissapation mechanism and f is the forcing to

enforce conservation of enstrophy. The dissipation mechanism is given more specif-

ically as, d = ∇2ω/Re + ψ. The first term is the standard dissipation mechanism

and acts to removes energy at the small scales, whereas the second term, the inverse

Laplacian of ω, provides damping at the large scale, limiting the inverse cascade of

energy. The forcing f is applied to ensure the conservation of enstrophy at the (2, 2)

mode. A random phase on the forcing is used so that coherent structures are not

permanent features. From using a length scale of 100km, a velocity scale of 0.01m/s

and an eddy viscosity of 1m2/s, the Reynolds number Re is given as, Re = 1000.

The non-dimensional physical domain of the turbulent flow is given by the 2-torus,

[0, 2π]2.

Anomalous Transport Analyses

The analyses discussed in this chapter focus on using Lagrangian coherent struc-

ture identification techniques to partition the topology of a flow into dynamically

distinct coherent regions, and then looking at the conditional statistics obtained from

these partitions. The probability density functions (pdfs) of these statistics will then

be used in a fractional diffusion model to approximate the transport process.

Aiming to show that Lagrangian coherent structures (LCSs) are appropriate for

the use in anomalous diffusion modeling, as a first step in this direction is verification
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that LCSs are effective tools for detecting the barriers between dynamically distinct

regions of a dynamical system. This will be done by looking at conditional variances

of passive tracer ensembles and observing their behavior. From there, conditional

jump and waiting-time pdfs are obtained to use as inputs to a fractional diffusion

model.

Conditional Variances

First, a brief review on the work of Tang and Walker (2012). A comparison is done

between the FTLE field, and fields highlighting the variability in the variances in x and

y. For this analysis the strongly-chaotic and weakly-chaotic Bickley jets (as discussed

in Section 5.1.2) will be used, while an integration time of τ : t− t0 = 50T , where T

is the period of the flow, was used to compute the FTLE field. The same integration

time was used for the advection of the passive tracers. This long integration time

gives ample time for structures to develop, as well as for the variances of the tracer

ensembles to reach steady-state.

The statistics of interest are those related to diffusion and dispersion, as such

the evolution of the variance for each initial condition is tracked. This variance is

computed for an ensemble released at x0, as:

var
(
x (t;x0, t0)

)
=

K∑
r=1

[
xr(t;x0, t0)− xr(t;x0, t0)

]2

, (5.2.1)

where K represents the number of passive tracers used, xr is used to signify that

the statistics in x and y are taken separately, and the overbar is used to denote the

average taken over the tracer ensemble.

The flow topology and variability of scalar variances for the strongly-chaotic and

weakly-chaotic Bickley jets are compared in Figs. 5.2.1 and 5.2.2, respectively. The de-

terministic forward-time FTLE fields (shown in Figs. 5.2.1a and 5.2.2a for the strong
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Figure 5.2.1: Comparison among LCS and variances, all dependent on the initial conditions and

computed for an integration time of 50 wave periods with the strongly-chaotic Bickley jet. (a)

Forward-time FTLE based on deterministic trajectories, (b) forward-time FTLE based on means of

stochastic trajectories, (c) variance of x displacements, and (d) variance of y displacements.

and weakly chaotic Bickley jets, respectively) are obtained using an integration time

of 50 wave periods, with a resolution of 1152×512. Using the auxiliary grid approach

the boundaries of shear regions are highly resolved. With the parameters selected the

central barrier is preserved for both flows, depicted as the wavy region of relatively

low FTLE values around Y = 0.

For the strongly-chaotic Bickley jet(Fig. 5.2.1a), outside of the central jet, jet

barriers are seen on both sides. These take the form of a smooth transition of FTLE

values, up to highlighting FTLE ridges which separate the jet boundaries from the

chaotic zones. The FTLE values inside of the chaotic zones appear to predict large

separations, due to the fine structures of the heteroclinic tangles. These tangles are

not fully resolved at this resolution, and result is relatively high FTLE values in the

chaotic zones. Outside of the chaotic zones are two shear bands, one on the north of

the domain, and one on the south.
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Figs. 5.2.1b,d show the variability of scalar variances based on initial location in

the flow, in the x and y directions, respectively. In order to compute the values seen in

the contour maps, an ensemble of tracers is released from every gridcell for a reduced

resolution. A reduced resolution of 144×64 was used for the variance plots to reduce

computational costs. The ensembles are then evolved forward in time according to

(2.2.2) for 50 wave periods. In order to model the normal diffusion process, Gaussian

noise was used (α = 2), with a noise amplitude of D =
√
.002. The variance in x

and y was then computed for each ensemble using (5.2.1), and correlated back to its

initial location. Each ensemble was comprised of 50,000 trajectories.

The contour maps indicating the variability of variance correspond well with their

respective flow topologies, except for in the chaotic zones. The variance figures

display regions of the chaotic zone that have relatively lower variances, indicating

low-dispersion. In these regions, although deterministic trajectories are chaotic, an

ensemble of stochastic trajectories behave quite regularly after sufficient time. Moti-

vated by this bulk behavior, the stochastic FTLE is computed to see if this behavior

is captured.

The stochastic FTLE fields (shown in Figs. 5.2.1c and 5.2.2c, for the strongly

and weakly chaotic Bickley jets, respectively) are obtained from the ensemble mean

trajectories. The mean trajectories are used to compute the deformation gradient

tensor and subsequently the FTLE. The stochatic FTLE (Fig. 5.2.1c) shows regions

of relatively low values that correspond very well to the regions of low variance within

the chaotic zones (b,d). However, note that the computation of the stochastic FTLE

requires the advection of ensembles of trajectories for each cell. Instead the determin-

istic FTLE is used as the partitioning method, in the hopes of relating the diffusion

processes to a priori knowledge of coherent structures without having to compute

(2.2.2).
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Figure 5.2.2: Comparison among LCS and variances, all dependent on the initial conditions and

computed for an integration time of 50 wave periods with the weakly-chaotic Bickley jet. (a)

Forward-time FTLE based on deterministic trajectories, (b) forward-time FTLE based on means of

stochastic trajectories, (c) variance of x displacements, and (d) variance of y displacements.

For the weakly-chaotic Bickley jet there is less shear in this central jet, thus the

jet barriers cover a greater portion of the domain than before; this is seen in Fig.

5.2.2a. Regions of relatively low FTLE values are seen collected together in the

chaotic zones, these represent KAM regions. The low values in the center correspond

to elliptic cores, where the other low values correspond to resonant islands near the

elliptic boundaries. From a direct comparison of the deterministic FTLE to the

contour plots of the variance (Figs. 5.2.2b,d) good correlation is seen in the central

jet region as well as the vortex chains. The lower values seen in the variance plots

confirm that the elliptic structure seen in the FTLE field act to trap the passive

tracers. The stochastic FTLE in Fig. 5.2.2c, shows regions of lower FTLE values that

correspond to where the lower variances are seen in (b) and (d).
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Results

Encouraged by the observation of near-constant variance values within distinct sub-

sets of the flow domain, the probability density functions (pdfs) for the variances

conditioned on initial region types are investigated. More explicitly, the flow topol-

ogy given by Fig. 5.2.1a is separated into 4 distinct regions based on: relative FTLE

value, large gradients in the FTLE field, and eliminating spurious results1 via visual

inspection. For the strongly-chaotic Bickley jet, the resulting partition is depicted

in Fig. 5.2.3e with colored dots representing members of a given region in their re-

spective locations. This is plotted on top of the FTLE field for further emphasis.

Recalling that the variances were computed for all the cells of a 144 × 64 resolution

grid, these initial conditions are used as the representative candidates of the regions.

The initial conditions that belong to the central jet (parabolic region) of the

strongly-chaotic Bickley jet, are seen in Fig. 5.2.3e as the collection of white dots

that are centered along Y = 0. To the north and south of the parabolic region

the white dots represent the initial conditions that are in the chaotic zones. The

outer most set of black dots represent the initial conditions classified as being in the

hyperbolic region, whereas the remaining black dots represent the hyperbolic-shear

region. The pdf of the conditional variances for the hyperbolic, hyperbolic-shear,

chaotic and parabolic regions are seen in Fig. 5.2.3a-d, respectively. The chaotic and

hyperbolic zones represent “jumping” type regions, where tracer trajectories evolve

rapidly, exhibiting large displacements, and scalar dispersion is enhanced.

In the plots of the variance pdfs, the solid black curves are used to represent the

quantities with respect to the variance in x, and the dashed blue curves are used for

1These are the false positives and negatives discussed earlier.
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Figure 5.2.3: Conditional statistics of variances and the FTLE based partition of the flow field into

different regions; the statistics and FTLE field are obtained from the strongly-chaotic Bickley jet with

an integration time of 50 wave periods. (a) Outer barriers that are hyperbolic, (b) inner barriers that

transition from hyperbolic to parabolic structures, (c) chaotic zone between the hyperbolic barriers,

(d) parabolic central jet, and (e) partitioning of the domain (based on FTLE) superimposed on

FTLE.

values obtained from the variance in y. Further, the same color code was used on the

axes for those figures.

As expected, in all except for the chaotic zone, the conditional variances show

unimodal behavior with relatively narrow width, indicating high probability in a small

range of diffusivity. The residence time of trajectories in the center of the chaotic

zone is longer than those close to the hyperbolic barriers, due in part to finite-time

structures that live on a shorter timescale than the integration time used. The result

is a continuous transition of initial conditions from the center towards the edge of

the zone – seen as the relatively flat and wide pdf for the variances in Fig. 5.2.3c.

From this it is observed that conditional statistics for coherent regions are unimodal

— indicating homogeneous dynamics throughout.
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Figure 5.2.4: Conditional statistics of variances and the FTLE based partition of the flow field into

different regions; the statistics and FTLE field are obtained from the weakly-chaotic Bickley jet with

an integration time of 50 wave periods. (a) Outer barriers that are hyperbolic, (b) inner barriers that

transition from hyperbolic to parabolic structures, (c) chaotic zone between the hyperbolic barriers,

(d) parabolic central jet, and (e) partitioning of the domain (based on FTLE) superimposed on

FTLE.

Having had greater correlation between the FTLE field and the scalar variances

of the weakly-chaotic Bickley jet, the results are now contrasted to the previous case.

The region detected as chaotic will be represented in Fig. 5.2.4e as red dots, and

will be referred to as the hyperbolic region. The white dots along the curve centered

around Y = 0 represent the parabolic region, while the other white dots now represent

the elliptic regions, or “trapping” type regions; in these regions the relative dispersion

of scalars is inhibited. The black dots designate the hyperbolic-shear region.

For most of the regions, the pdfs are unimodal with narrow widths. The pdf of

the variance in y of the initial conditions that started in the hyperbolic-shear region

is seen (in Fig. 5.2.4b) to have a wide and relatively flat peak. The same behavior

is seen in the pdfs of the variances for the elliptic region. As before, residence times
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of trajectories in the center of these elliptic regions is longer than those close to the

boundaries. These flat pdfs also suggest that the partition has incorrectly identified

several dynamically distinct regions as one; a more refined partition of the field might

help distinguish the regions. For instance, the northern and southern elliptic regions

are all treated as one region, while in reality the different elliptic regions could have

varying dynamics. This rough partition still gives insight to the anomalous transport.

Conditional Dispersion Statistics

Moving from the variances to looking directly at the temporal evolution of the

conditional dispersion statistics. The dispersion statistics are obtained from using

all of the realizations with the same initial condition, and subtracting their mean

value; the relative displacement from the ensemble mean. For each initial condition

x0 in the same LCS (i.e. hyperbolic, chaotic zone, etc.), the pdf of the dispersion is

computed as:

δxr = xr(t;x0, t0)− xr(t;x0, t0), (5.2.2)

where the overline denotes the average at time t of all the realizations originating

from x0. As the statistics reach steady-state it is possible, with a proper rescaling

in time, to see the pdfs fall onto self-similar profiles. Here we use the same flows

and partitions outlined in Section 5.2.1, for which the variances are seen to reach

steady-state within 50 wave periods.

The pdfs for δxr are shown in Fig. 5.2.5 for the different regions of the strongly-

chaotic Bickley jet. The hyperbolic zone in Fig. 5.2.5a corresponds to the combination

of the two boundary regions in Fig. 5.2.3(a-b). The chaotic (Fig. 5.2.5b) and parabolic

(Fig. 5.2.5c) zones cover the same regions as Fig. 5.2.3c-d, respectively. The results

taken over the entire domain are shown in Fig. 5.2.5d. Again, the black curves and

axes associate with the x statistics, while blue is used for the y statistics. The lonely
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Figure 5.2.5: Conditional statistics on scalar dispersion in different partitions of the flow, for the

strongly-chaotic Bickley jet.

solid curves in each panel correspond to t = 5T and those that fall onto the self-similar

profile are t = 35T (dashed line), t = 40T (doted line), t = 45T (dashed-dotted line),

and t = 50T (solid line), where T is the period. These last four curves (after proper

rescaling) are almost indistinguishable in Fig. 5.2.5, with only small variabilities.

In analyzing the δy statistics, simple symmetric structures are noted. With flatter

and wider peaks, along with fatter tails, the y statistics at t = 5T appear to be non-

Gaussian for all of the regions. The pdfs, with proper rescaling are seen to approach

a Gaussian profile as time progresses. The pdf is of the form, P (δy, t) = t−γ/2f(ξ),

ξ = δy/tγ/2, where f is a scaling function, ξ a scaled coordinate, and γ the exponential

decay rate. A decay rate of one (γ = 1) indicates normal diffusion, γ < 1 indicates

subdiffusion, and γ > 1 indicates superdiffusion. For the strongly-chaotic Bickley jet,

the exponent γ is found to be: 0.75, 0.78, 0.72, and 0.7 for Fig. 5.2.5a-d, respectively.

The dispersion in y is seen to be consistently subdiffusive. The parabolic region

has the least decay, consistent with the fact that the shear barriers inhibit cross-jet

transport.

Looking now at the δx statistics, irregular shapes are noted in Fig. 5.2.5. As time

progresses the pdfs fall onto self-similar curves, but these are not Gaussian profiles.
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In fact, it is seen that the left and right tails scale at different rates. The self-

similar profile takes the form, P (δx, t) = t−α/2g(η), η = δx/tβ±/2, where g is a scaling

function, η a scaled coordinate, α is the exponential decay rate, and β± corresponds

to the expansion of the tails in positive and negative branches of δx, respectively.

For the strongly-chaotic Bickley jet, the expansion rates in the positive branch

(β+) are 1.78, 1.78, 1.95, 1.78, while the expansion rates in the negative branch (β−)

are 1.48, 1.52, 1.48, 1.5 and the decay rates α are 1.5, 2, 1.75, 2 for Fig. 5.2.5a-d,

respectively. All the scaling parameters are summarized in Table 5.1.

The loss of symmetry in the tails is due to the relative motion of neighboring

regions. More explicitly, the parabolic jet moves in the positive x direction, while

the chaotic and shear zones move in the negative x direction, resulting in different

growth rates in the positive and negative tails. Further, since a significant amount of

realizations diffuse into the outer shear regions from the hyperbolic and chaotic zones,

a peak is seen in the pdfs at negative values of η in Fig. 5.2.5a-b. Since the parabolic

zone has the jet boundaries as effective transport barriers, not a significant amount of

realizations leak from the parabolic zone to the chaotic zone; therefore, a similar peak

is not seen for negative η values. With the decay rates found for the strongly-chaotic

Bickley jet, zonal transport is superdiffusive. Indicating that coherent structures can

aid in the mixing/diffusion process.

The pdfs shown in Fig. 5.2.6 are for the different regions of the weakly-chaotic

Bickley jet. It is again seen that the y statistics have simple structures compared to

their x counterparts. The parameters used for the scaling can be found in Table 5.2.

It is seen from the variability of the conditional dispersion statistics that zonal trans-

port in consistently superdiffusive, while dispersion in y is consistently subdiffusive.

The conclusion is that even a rough partition (as used here) is able to capture and
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Parameter Zone Type

Hyperbolic Chaotic Parabolic Entire

γ 0.75 0.78 0.72 0.7

β+ 1.78 1.78 1.95 1.78

β− 1.48 1.52 1.48 1.5

α 1.5 2 1.75 2

Table 5.1: Scaling parameters used for the pdfs of the conditional statistics for the strongly-chaotic

Bickley jet.

Figure 5.2.6: Conditional statistics on scalar dispersion in different partitions of the flow, for the

weakly-chaotic Bickley jet.

characterize some of the aspects of anomalous diffusion, in both weakly and strongly

chaotic systems.

Conditional Resident-Time Statistics

In Tang and Walker (2012), it was seen that use of FTLE in studying anoma-

lous diffusion is promising because of its ability to highlight structures. However, it

was also noted that poor classification of regions lead to non-unimodal statistics (cf.

Fig. 5.2.5d and Fig. 5.2.6d). Here this investigation is expanded upon with a clear

objective: a comparison of the effect the partitions obtained from the LCS detection

techniques have on the conditional statistics. This is not attempting to make a com-

parison of the objectivity between the methods, but more simply, the robustness of
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Parameter Zone Type

Hyperbolic Hyperbolic-shear Elliptic Parabolic Entire

γ 0.75 0.75 0.82 0.62 0.66

β+ 1.75 1.7 1.75 1.8 1.8

β− 1.9 1.93 1.6 1.45 1.6

α 1.7 1.2 1.5 1.6 2

Table 5.2: Scaling parameters used for the pdfs of the conditional statistics for the weakly-chaotic

Bickley jet.

the statistics to detection method/tool used for classifying the finite-time coherent

regions. This section is under review by Physical Review E.

A coherent region is one which retains all of its members under the deterministic

action of the flow. When noise is added, passive tracers are able to traverse the trans-

port barriers and escape these regions. The deterministic trajectories are compared

with two types of stochastic trajectories; One where the noise is Gaussian (α = 2),

and the other, with Lévy noise (α = 1.5). For both stochastic cases, a noise amplitude

of D = .005 is used. The trajectories are obtained from solving (2.2.2).

The weakly-chaotic Bickley jet is used as a guide to test the ability of the methods

to correctly classify coherent regions. Coherence will be tested by looking at the

retention rate for each classified region type. Since the flow is periodic, PS provides

a precise partitioning of the flow domain, seen in Fig. 5.2.7a. As such, it is against

this partition that the other domain partitions will be compared.

The PS of the model (Fig. 5.2.7a) is obtained by seeding the domain with tracers

and integrating their deterministic trajectories for one thousand wave periods. From

these, a few special trajectories are used to highlight the partition of the flow topology.

Based on the Bickley jet parameter selection, an integrable jet should be present in the
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Figure 5.2.7: Comparison of different partitions used for the Bickley jet at t = 0. For methods that

require an integration time, trajectories were integrated for 10 wave periods, except for PS which

used 1000 wave periods. (a) Partition based on PS, (b) based on OW, (c) based on FTLE, (d) based

on GEO, (e) based on MESO, (f) based on FTE, and (g) based on AIS. In all panels, the black

curves separate the jumping and shear regions and white (red in PS) curves bound trapping regions.

flow – this feature is seen as the white band centered near Y = 0. This parabolic jet is

bound on either side by black trajectories. Just beyond these black trajectories lie the

northern and southern chaotic zones, these regions tend to exhibit large separation

of initially nearby trajectories; except for the regions bound by the red curves, these

correspond to elliptic regions. The two black trajectories that are furthest from

Y = 0 indicate the terminal edge of their respective chaotic zones, beyond which lie

integrable shear regions.

The partitions for all of the methods are given in Fig. 5.2.7, where the panels are

a) Poincare Section (PS), b) Eulerian Okubo-Weiss (OW), c) finite-time Lyapunov
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exponent (FTLE), d) geodesic method (GEO), e) Mesochronicity (MESO), f) finite-

time entropy (FTE), and g) almost-invariant set (AIS) respectively; all corresponding

to t = 0. Where applicable, the color scales are below the center panels, and above the

bottom panels. For the Lagrangian methods, an integration time of 10 wave periods

was used. For OW, FTLE, and FTE, the measures are created with a resolution of

576×256. The thresholds for trapping region boundaries are 0.01 for FTLE and 1.75

for FTE. For GEO and MESO, a 1000 × 1000 resolution grid was used to extract

the trapping region boundaries for each KAM structure (roughly corresponding to a

subdomain of size 2π × 3 for each region). As discussed earlier, the auxiliary grid

approach is used for computing gradients where appropriate.

For the computation of AIS, the grid resolution is reduced to 288 × 128 such

that the eigenvectors of the transfer matrix can be handled by computer. In order

to obtain the transfer matrix used in the FTE computation, 100 initially uniformly

distributed trajectories are used for each grid cell. These trajectories are also used for

the lower resolution AIS computation – now corresponding to 400 initially uniformly

distributed trajectories for each grid cell. A 5-way cut approach/partition has been

implemented to provide the relevant flow features for AIS. It is noted that a 4-way

cut would have resulted in the exclusion of the resonant islands in the KAM regions.

For all of the partitions, the regions classified as “jumping” regions are bound by

black curves, while the “trapping” regions are bound by white curves – except for PS

which uses red curves to bound the trapping regions. For the FTLE, MESO, and FTE

methods, the boundaries of shear regions are highlighted by a notable change in the

measure value and pattern differences. These changes in pattern are used to manually

obtain the shear boundaries, resulting in curves that are virtually indistinguishable

from those obtained from PS. Further, since the shear boundary extraction for GEO

is similar to that for FTLE, the shear and jet regions obtained from GEO are also
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virtually indistinguishable from those obtained from PS. For AIS, the multi-level

partition gives a direct identification of the flow features. Since GEO and AIS are

set based approaches – they identify regions instead of boundaries – no color scale is

used.

From comparing the partitions, it is evident that the results given by OW are the

most different. This is owing to the fact that the OW measure is instantaneous and

Eulerian, while the other methods are all Lagrangian. The Lagrangianly integrated

OW measure would provide similar images to the other methods, but in order to

compare the results to Kadoch et al. (2011), which uses the instantaneous OW, the

instantaneous OW is used.

From comparing the Lagrangian based methods further, note that the trapping

regions as identified via the thresholding for FTLE and FTE provide the least re-

semblance to PS. The two methods do, however, give very similar results to each

other. This is expected since, for the chosen systems the FTE is viewed as a non-

linear generalization of the FTLE, that operates on ε-scales instead of infinitesimal;

Froyland and Padberg-Gehle (2012). At the center of the KAM regions, as identified

by PS, an eddy core can be identified from FTLE/FTE. In addition to the eddy core,

some smaller regions of low FTLE/FTE value can be identified around the KAM tori.

These smaller regions correspond to resonant islands found in PS (cf. Fig. 5.2.8). The

trapping region boundaries identified from GEO and MESO are both close to those

obtained in PS, with small differences on the edge. The chaotic zones identified by

AIS are slightly larger than the results from PS. The chaotic zones given by AIS

include portions of the outer shear regions and the inner jet, as identified by PS.

To highlight the differences in the trapping region detection between the La-

grangian methods, a higher resolution analysis is done around one of the KAM re-

gions, as identified in PS. The comparison is seen in Fig. 5.2.8, where the scattered
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Figure 5.2.8: Comparison of trapping region boundaries among the Lagrangian methods for the

Bickley jet. The Ponicaré section is shown as the objective depiction of the KAM. The extracted

curves are: black curve –boundary of trapping region from PS; solid blue curve – transport barrier

from GEO; dashed red curve – boundary of elliptic coherent sets from AIS; solid magenta curve

–isocontour of FTLE at σ = 0.01; dashed green curve–isocontour of FTE at α = 1.75; solid cyan

curve – largest smooth ring from MESO.

black points are from PS and highlight the elliptic KAM region, the chaotic zones

surrounding it, and portions of the integrable jet and outer shear region to the north

and south, respectively. Two resonant islands are clearly visible at the lower left and

right of the KAM core. The black curve is the trapping region boundary obtained

from trajectories which last for four thousand wave periods without entering the

chaotic zone. The solid blue curve is the trapping boundary from GEO. This curve

closely approximates the bounding black curve, and also tightly bounds the resonant

islands. The red dashed curve is the boundary given by AIS. Although the AIS results

suffer from being computed at a lower resolution, they still closely approximate the

bounding curve given by PS. The boundary given by MESO is obtained by extracting

the largest smooth ring of elliptic motion, and is shown as a solid cyan curve. The
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partitions given by FTLE (solid magenta curve) and FTE (dashed green curve) are

seen to only extract the KAM core and the resonant islands.

Essentially, although there are slight differences, PS, GEO, AIS, and MESO can

be grouped together – for this simple model – as a type of approach that emphasizes

extraction of elliptic type motion and offer similar results. In the same manner, the

FTLE and FTE methods can be grouped as a type of approach that emphasizes hy-

perbolicity. The thresholding used for FTLE and FTE is not expected to objectively

extract the vortices, as the choice of threshold is arbitrarily taken. However, given

that only portions of the KAM regions are extracted in these methods, it is interest-

ing to see what affect there will be on the statistics. This is further motivated by the

fact that the computation of FTLE is cheaper than GEO, and similarly, computing

FTE is cheaper than AIS.

Coherence

If the partition is completely coherent, then the deterministic trajectories should re-

turn to the same regions – due to the periodicity in time and space for the flow.

This is shown in Fig. 5.2.9 for the four types of partition methods used. As discussed

earlier, the results for PS, GEO, and MESO are all grouped together, but since the

chaotic zone was larger for AIS it is considered separately. In all the panels, the

initial partition boundaries are shown by black curves. The red and blue dots are

used to indicate the terminal position of trajectories that were initiated in jumping

and trapping regions, respectively. For the Lagrangian methods, the black dots cor-

respond to the terminal location of trajectories initiated in the shear regions. While

black dots correspond to trajectories initiated in the intermediate region for OW.

The trajectories were deterministically advected for an integration time of ten wave

periods, the same integration time used to obtain the Lagrangian partitions. Since

83



the integration time is an integer multiple of the period, good correlation between the

colored dots and the black bounding curves is expected for the Lagrangian methods

(i.e. trajectories of the same color should stay in the same region separated by the

black curves).

2
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PS (GEO, MESO)

2
0
2

OW

5 0 5
2
0
2

FTLE (FTE)
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X

AIS

X
5 0 5
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a) b)

c) d)

Figure 5.2.9: Comparison between trajectory initial and terminal conditions for various partitions,

for trajectories integrated for 10 wave periods with the Bickley jet model. The black curves in each

panel show the initial partition of the flow domain, and the color-coded points correspond to the

current locations of trajectories and the colors indicate the original partition. The blue indicates

tracers that are classified as being in trapping regions at t = 0, red indicates tracers classified as

being in the jumping region, and the black dots correspond to the remaining tracers. The methods

used are (a) PS. (b) OW, (c) FTLE, and (d) AIS.

Fig. 5.2.9a shows the PS results, the OW results are shown in Fig. 5.2.9b, the

FTLE and FTE results are grouped together and the FTLE results are shown in

Fig. 5.2.9c, and AIS is shown in Fig. 5.2.9d. Despite there still being minor leaks in

the Lagrangian partitions, the trapping regions hold up nicely. Bearing in mind the

fact that the OW partition is based on an instantaneous quantity, it is not expected

that trajectories would return to their original partitions, which is indeed the case.
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It is seen for OW that the red and blue dots do not remain bounded by the black

contours. As discussed earlier, the chaotic zone given by AIS invades into the northern

and southern shear zones as identified by PS, and based on the scattered dots, these

boundaries seem to separate high and low shear within the shear regions – instead of

separating the integrable and non-integrable trajectories as defined by PS.

Although this qualitative comparison of the coherence is insightful, a quantitative

comparison would be more beneficial. To this end, the retention rate for the different

region types are computed for each method. Passive tracers are uniformly seeded

throughout the computational domain, with 5000 trajectories per grid cell (20, 000 per

cell for AIS due to the larger cell size). The tracers are then advected deterministically

in forward-time for ten wave periods, and the percentage of tracers that were in a

given region type at t = 0 that are still in that partition type at the terminal time

(trajectories may leave and return during the interval) is given in Table 5.3.

Region type Partition method

PS OW FTLE MESO GEO FTE AIS

Trapping 99.93 22.1 77.7 98.1 99.1 79.4 93.6

Jet 100 — 100 100 100 100 97.7

Jumping 99.6 46.5 99.91 96.2 97.2 99.93 93.2

Shear 100 88.2 100 100 100 100 96.8

Table 5.3: Comparison of percentage of tracers that remain in their classified region type at the end

of ten periods, for various partition methods. The central shear band is labeled as “Jet”, while the

shear zones located outside of the hyperbolic regions are collectively labeled as “Shear”.

Note that since OW only identifies trapping and jumping regions, and considers

everything else to be in an intermediate region, the intermediate regions are listed

under “Shear” in the table above.

85



It is expected that PS is completely coherent, this appears however to be not

the case as indicated by Table 5.3. First, since PS is used to reveal the infinite-

time dynamics, it might not accurately reflect the finite-time dynamics. Further, the

partition curves are only discrete approximations of the actual partition boundaries,

and given a dense coverage of trajectories, there is minor leakage. As such, PS does

not have complete coherence in some regions. It does, however, still have the highest

mean retention rate of all the methods.

Since the OW partiton is based on an instantaneous measure, it is not expected

that strong coherence will be observed (cf. Fig. 5.2.9b). In fact, low coherence is

seen in both the trapping and jumping regions. The relatively high coherence in the

intermediate region is purely due to the fact that this region corresponds to a majority

of the domain, but this region does not necessarily correspond to coherent features of

the flow. In fact, parts of the integrable central jet and outer shear regions, as well as

some portions of the trapping regions (as identified by PS) are all in the intermediate

region based on the OW partition. Since several region types (as identified by PS)

are being considered as one (by OW), the statistics obtained from OW should show

a marked distinction from the statistics obtained from the Lagrangian measures.

The retention rates for the “Jet” and “Shear” regions are the same amoungst the

Lagrangian partition methods, since the shear boundaries extracted for these methods

were virtually identical. There is however a notable difference in the retention rates

for the trapping and jumping regions. The FTLE and FTE partitions both have lower

coherence in the trapping region (slightly less than 80%). This is partly attributed to

the thresholding used to obtain these partitions – the isocontours of FTLE/FTE are

not material barriers and are chosen arbitrarily. AIS gives much better coherence in

the trapping region, as it more closely approximates the PS. However, AIS still gives

lower results than MESO or GEO. AIS suffers partly from a lower resolution, each
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entire grid cell is considered to be within a given region type, where the actual region

boundaries might pass through the grid cells. It was seen earlier that MESO and

GEO gave the closest approximation to PS, but that GEO was slightly more precise.

As such, GEO is seen to have a higher retention rate than MESO. In the jumping

regions, the FTE and FTLE methods provide the largest retention rates. The higher

retention rate for FTLE and FTE is due to more trajectories being classified as in

the jumping regions, but they are actually in the KAM regions (as identified by PS).

The jumping regions obtained by PS, MESO, GEO, and AIS show some variability,

with PS being the most coherent.

Resident-time Results

To capture the time evolution of the coherent structures the partitions are generated

at successive times using a sliding time interval. For the Bickley jet, the time interval

between two successive “instances” (time instance related to the partition) is 1/20

of a wave period. The integration time used for the Lagrangian measures is 10 wave

periods, and the trajectories are integrated for 50 wave periods. In order to classify the

Lagrangian histories of the trajectories to compute the resident events, 1000 instances

are necessary – but due to periodicity only 20 partitions need to be computed.

Comparison amoung residence time statistics for the deterministic and stochastic

trajectories in the kinematic model of the Bickley jet is summarized in Fig. 5.2.10. In

each panel, the resident time statistics for a particular type of partition is contrasted

amoung the different methods used for partitioning. The top row shows statistics for

deterministic trajectories, the center row for trajectories with Gaussian noise added,

and the bottom row is for trajectories with Lévy noise. The columns, from left to

right, represent the statistics for the jumping, trapping, jet and shear regions, as

classified in Section 4.2. Because of the similarities amoung PS, GEO, and MESO, as
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well as those between FTLE and FTE, for clarity of the figure only PS, OW, FTLE,

and AIS are shown. In each panel, the thick black curve is for PS, the blue curve is

from FTLE, the magenta curve is from OW, and the cyan curve is from AIS. The

thin black curves are fittings to scaling law behaviors.

Due to the persistence of coherent structures in this model, the resident-time

statistics of the deterministic trajectories give valuable insight into the accuracy of

the partition. In an ideal situation where the partition boundary is exact, all trajec-

tories would be bound to their partitions, leading to flat statistics with a spiked tail

at terminal time. In reality, because the partition boundaries are numerical approx-

imations, and the dynamics within a grid cell need not be homogeneous, leaks are

inevitable.

In the jumping region Fig. 5.2.10a, the yellow PS curve indicates that exit events

exist for any time duration. The FTLE and AIS curves follow a similar rate of de-

cay, with the AIS curve having a periodic structure. This periodic structure suggests

that at certain phases of the flow, it is more likely for trajectories to cross the ap-

proximated transport barriers. While the curves obtained from Lagrangian methods

showed events at all time scales, the Eulerian OW results show no residence events

longer than a period.

Similar decays are also seen in the trapping regions Fig. 5.2.10b, except for the

PS curve which shows an exponential decay rate in its tail, followed by a sharp

peak. The exponential decay at larger time scales indicates the majority of events

happening at small time scales, and the initial decay being due to the partition. The

final peak highlights the coherence of the trapping region, in that a portion of tracers

never experienced an exit event. The curves for FTLE and AIS are seen to decay

at essentially the same rate as in the jumping regions, t−2, however both now reveal

more of a periodic structure. This structure is due to leakage around the elliptic
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Figure 5.2.10: Each panel corresponds to the comparison of statistics among different partition

methods for the same region. The top row correspond to the statistics from deterministic trajectories,

the center row from Gaussian noise, and the bottomw row from Lévy noise. The partitions, from left

to right, are jumping, trapping, jet and outer shear regions, respectively. In each panel, the thick

yellow curve is computed from the partition based on PS, the blue curve from FTLE, magenta curve

from OW, and the cyan curve from AIS. The dashed black curves are scalings fit to the different

curves.

regions, and the resolution of the partitions. The OW curve is again seen to fall off

quickly, with no events longer than a period.

Since the instantaneous Eulerian OW doesn’t identify a central jet, and only

distinguishes an “intermediate” region (which is contrasted with the shear region),

only the statistics corresponding to Lagrangian measures will be used for the jet

regions Fig. 5.2.10c. Further, since the partition for the parabolic jet and outer shear

regions are the same for the PS and FTLE (or at least indistinguishable), the FTLE

curve will be omitted from these figures. The jet region Fig. 5.2.10c shows the PS
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and AIS curve decaying at the same rate. While both curves show varying degrees of

periodicity in their structures, the PS curve has a larger peak in the tail.

In the final deterministic panel Fig. 5.2.10d, the decay rates of the resident-time

statistics in the shear regions are shown. The PS and AIS curves are seen to follow

a similar decay rate, and show periodicity in their structures; in all cases, more

variability is seen in the AIS statistics due to the difference in resolution. The OW

curve shows a distinct exponential scaling decay rate, indicating that the majority of

trajectories will be predominantly in regions classified as “intermediate” with short

(less than half a period intervals) visits into other classified region types, before

returning.

In each of the panels discussed, dashed black curves have been used to highlight

the various scaling behaviors. In all regions, a t−2 algebraic scaling is found for the

Lagrangian partitions. The statistics of OW in the jumping and trapping regions

drop to zero too quickly for any fit, but the statistics for OW in its intermediate

region falls off by e−1.15t. This is clearly distinct from the sclaing seen in PS. The tail

of the PS curve in the trapping region Fig. 5.2.10c has an exponential decay of e−.1t.

Now consider the case where the trajectories were subject to Gaussian noise (center

row of Fig. 5.2.10). In all the regions, the curves are seen to follow different algebraic

scalings. In the jumping regions Fig. 5.2.10e, the Lagrangian methods follow a scaling

of t−1.5 for intermediate times (between 1 and 10 periods), but at longer times PS

and AIS change behavior. At longer times, the PS and AIS curves follow exponential

scalings, given by e−0.016t and e−0.05t, respectively. The algebraic decay being lower

than the deterministic case suggests more exit events, while the exponential decay at

the tails suggest more small scale exit events.

The pdfs of the resident-time statistics conditioned on trapping regions vary be-

tween the deterministic and Gaussian cases. In Fig. 5.2.10f the AIS and FTLE curves
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follow a t−1.8 scale of decay, this is slightly less than before, indicating more exit events

at the larger times. The PS curve obeys the algebraic decay rate of t−1.1, in contrast

to the deterministic case where there was an exponential scaling for the tail. This

difference is a direct contribution of the noise; the Gaussian noise has increased the

number of exit events at all time scales, smoothing out the tails. In the jet and shear

regions (Fig. 5.2.10g and h) only algebraic decay rates are seen. Overall the decay

rates are lesser than their deterministic counterparts. It is interesting to note that

with the introduction of Gaussian noise, the OW curve has changed from exponential

scaling to an algebraic scaling of t−2. This change of scaling type is indicative of the

impact of noise on events at all length scales.

In analyzing the Lévy case in the bottom row of Fig. 5.2.10, note the similarities

to the Gaussian case. From first looking at the jet and shear regions (Fig. 5.2.10k and

l) the scaling types are the same as found in the Gaussian case; the scales themselves

have just been lessened, indicating an increased number of exit events. The short-

time decay rate for the jumping region for the Lévy case (Fig. 5.2.10i) is t−1.1, while

the Lagrangian methods all show different long term scalings. The long-term behav-

ior is seen as exponential tails, the scalings for the PS, AIS, and FTLE curves are

e−.25t, e−.22t, and e−.95t, respectively. The PS curve in the trapping region follows the

same scaling in the Gaussian and Lévy cases. The AIS and FTLE curves now have

exponential decaying tails; AIS follows a scale of e−.23t, while FTLE follows a slightly

different scale of e−.32t. Now to contrast these findings to those for the turbulent flow.

Turbulent Flow

It is seen from Fig. 5.2.11 that the turbulent flow exhibits well defined trapping

regions. However, by construction these are not permanent features of the flow and

are therefore referred to as vanishing eddies. In the simulated non-dimensional flow,
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the typical velocity magnitude around an eddy was 3, with a typical eddy diameter of

about 1, giving an eddy turnover time of 1 time unit. Since the interest is in looking

at how trapping regions impact the statistics, a moderate integration time of 2 time

units is used. This choice provides trajectories in eddy regions enough time to revolve

around, while not excluding shorter lived trapping events. Long term trapping and

jumping events of trajectories is reflected by the sliding window analyses of evolving

coherent structures.

The methods contrasted for the turbulent flow are a) OW, b) FTLE, c) GEO,

d) MESO, e) FTE, and f) FTCS. For each pair in Fig. 5.2.11 the top panel shows

the extraction at time t = 0 and the bottom panel shows the extraction at t = 2.

More explicitly, for the Lagrangian methods, the top panels contain information from

t ∈ [0, 2], and the bottom panels contain information from t ∈ [2, 4]. Note that PS

and AIS were not used; these methods are not suitable for analysis on nonautonomous

systems, instead FTCS is the appropriate equivalent for AIS. Further, since the FTCS

partition is binary, the heirarchial technique for recursively finding sets that have a

relative coherence greater than a threshold is employed. This technique was developed

in Ma and Bollt (2013). A relative coherence threshold of %0 = .955 was used.

The grid resolution for the Lagrangian analyses and the flow simulation is 256×

256. For the FTLE, GEO, and MESO methods, the auxiliary grid approach was

implemented. For the probabilistic measures, FTE and FTCS, a lower resolution of

128×128 is used and 400 trajectories are uniformly released in each grid cell. For OW,

FTLE, and FTE, the regions are identified by Tables 4.1, 4.2, and 4.4, respectively.

The trapping regions in MESO are identified as the outermost mesoelliptic rings for

the coherent regions. Regions where the MESO measure is between 0 and 1 but

outside the rings are excluded. This extension of MESO is to properly account for

the outermost boundary of the coherent vortices. For GEO, 9 equally spaced λ values
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between 0.8 and 1.2 are used to find the largest λ-curves 2 . A compromise is made on

the number of λ values investigated due to the need to extract these coherent regions

for many frames (400) of turbulent data to obtain the resident time statistics.

Figure 5.2.11: Comparison of different partitions used for the turbulent flow at t = 0 (top row) and

t = 2 (bottom row). For methods that require an integration time, trajectories were integrated for

2 time units. (a) Partition based on OW, (b) based on FTLE, (c) based on GEO, (d) based on

MESO, (e) based on FTE, and (f) based on FTCS. In all panels, the trapping regions are given by

the white contours. Black curves give the jumping regions for OW, FTLE, and FTE. Note that the

partitions at t = 2 are not from advection of the identified boundaries at t = 0.

In all except for panels c), d), and f) of Fig. 5.2.11, the black curves enclose regions

that are considered to be jumping regions, and the white curves enclose regions that

are considered trapping. In between them is the intermediate region, characterized

by a combination of stretching and rotation. For GEO, MESO, and FTCS, the flow is

only partitioned into trapping and non-trapping domains, and the contours indicating

the boundaries are shown in white. This is because the hyperbolic structures as

defined in GEO are line segments and do not have measures of area, whereas a fine

2The λ-curves give the boundaries to the elliptic regions, as defined by GEO.
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partition of MESO into mesohyperbolic and meoshelical regions results in jumping

trajectories for both of them, and finally FTCS can only partition the domain into

two sets. Only three types of regions are considered here because of the complexity

of the flow and the lack of easily identifiable jet regions across all partition methods.

In the top row of Fig. 5.2.11, the regions identified at t = 0 are seen, based on the

flow field data from t ∈ [0, 2], except for in panel a) since OW is an instantaneous

measure. Recall that for the Bickley jet model, the OW measure was not capable of

identifying regions similar to those found by the Lagrangian methods. Now however,

the trapping regions seen in OW match qualitatively to those identified by GEO.

This is quite remarkable due to the difference in computational complexity and cost

between the two methods. It is seen that FTLE and FTE methods identify much

more of the initial domain to be a trapping region than the other methods. This is

due to the arbitrary nature of the partition criteria imposed – the partitions do not

correlate to actual material lines.

Coherence

From comparing the top and bottom panels of Fig. 5.2.11 note their similarities.

These similarities make it seem possible that the regions obtained at t = 2 (from

using flow data from t ∈ [2, 4]), coincide with the material advection of the boundaries

found at t = 0, indicating long lived material transport and containment. To check

this, the region classifications at t = 0 is used to color-code trajectories based on

their initial location, shown in the top row of Fig. 5.2.12. The trajectories are then

deterministically advected in forward time for 2 timeunits, and their location is shown.

Fig. 5.2.12 illustrates how the regions identified as coherent are maintained over

the integration time. The red dots correspond to tracers initially in regions identified

as jump regions, blue dots are used for tracers initially in trapping regions, and black
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Figure 5.2.12: The top panels for each method show the initial positions of passive tracers, color-

coded corresponding to region types as defined by the partition method. The bottom panels for

each method are the resultant terminal locations of the passive tracers from being deterministically

advected by the flow for 2 time units (the integration time of the methods). The blue indicates

tracers that are classified as being in trapping regions at t = 0, red indicates tracers classified as

being in the jumping region, and the black dots correspond to the remaining tracers.

dots are used for the rest. It is seen that for OW, the hyperbolic regions spread

dramatically throughout the flow field, whereas the hyperbolic regions identified by

FTLE, and FTE remain hyperbolic in jumping regions. These two thresholding-based

partitions (FTLE and FTE) also appear to incorrectly identify intermediate regions

as trapping. This is not suprising due to the arbitrary thresholding used. From

comparing the methods, it is clear that GEO is the most robust method for trapping

regions with MESO and FTCS not trailing far behind.

Resident-time Results

For the turbulent flow, the time between two successive “instances” is 1/20 of a

timeunit, and the integration time used for the Lagrangian methods is 2 timeunits.
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In order to obtain the statistics, the tracer trajectories are integrated for 20 timeunits,

resulting in 400 instances used to classify the resident events.
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Figure 5.2.13: Each panel corresponds to the comparison of statistics among different partition

methods for the same region. The top row correspond to the statistics from deterministic trajectories,

the center row from Gaussian noise, and the bottomw row from Lévy noise. The partitions, from left

to right, are jumping, trapping, intermediate and nontrapping regions, respectively. In the panels,

various methods are represented: FTLE (blue), FTE (red), MESO (green), OW (magenta), FTCS

(cyan), and the thick black curve is from GEO. The thin black curves are scalings fit to the different

curves.

From comparing each column of Fig. 5.2.13, it is seen that the statistics obtained

are robust for the noise level investigated. In the trapping regions, algebraic scalings

are seen for the statistics of all of the partitioning methods, and exponential scalings

are seen for the intermediate regions. These results are consistent with those found in

Kadoch et al. (2011). The jumping region however, seems to scale exponentially in-

stead of algebraically, as seen previously. Upon closer inspection of the OW statistics

an algebraic scaling is seen in the jumping regions for transient times, for each noise
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type; the scaling is t−3.75, which is consistent with previous results. The results from

FTLE, FTE, and OW scale similarly for the jumping regions, where the OW results

seem to almost be bound by the other two. In the intermediate region it is seen that

the OW method provides the slowest decay, due to a majority of the domain being

classified as that region type. Slower decay rates are seen for FTLE and FTE, with

FTE decaying slightly more rapidly than FTLE. The FTCS and GEO methods are

seen to provide very similar scalings in the non-trapping regions, with FTCS decaying

slightly faster. The difference in rates is most likely due to the FTCS using a lower

resolution; with a lower resolution trajectories are more easily mis-identified. The

MESO statistics do not show any decay with time, suggesting that the non-trapping

regions – and by extension, the trapping regions – have exit events at all time scales,

and further that few trajectories escaped to other region types. The non-trapping re-

gion GEO statistics decay due to poor identification of the trapping regions. Although

GEO is the most mathematically rigorous of the methods used, its implementation

is also one of the most demanding, and the detection of elliptic structures has been

seen to give divergent results.

In conclusion, the conditional resident-time statistics appear robust to noise at

low levels, and that different region types display different scaling law behaviors. The

most variability between decay rates was seen in the statistics for the Bickley jet

model. Since the key features of this flow are naturally Lagrangian (jet and shear

regions), it is not surprising that the instantaneous Eulerian OW measure provided

such drastically different results to the Lagrangian measures. The inclusion of the

OW results is to highlight the methods’ dependence on flow characteristics.

It was also seen for the turbulent flow, that in terms of decay rates of the statis-

tics, the OW method provides comparable results to GEO; an instantenous Eulerian

measure gives comparable results to a computationally expensive, mathematically
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rigorous Lagrangian measure. This is partly due to the short integration time im-

plemented to identify all trajectories that have experienced one turn-over rotation.

Had the integration time be chosen longer, the results will be very different, however,

a longer integration time will also lose the weakly rotating regions. Since the inter-

ests are in usability and coherence detection, MESO appears to be the appropriate

measure to use.
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Chapter 6

SECOND-ORDER MOMENTS OF NONLINEAR FLOWS FROM LINEAR

MODELS

Almost a century ago in Taylor (1920) a correlation between different statistical

properties of a system were sought after in order to explain the spreading of scalar

distributions. In his fundamental work, Taylor looked at a highly idealized case of

a 1-dimensional heat transfer problem. Regardless of the simplicity of the model

this work provided a theoretical basis for turbulent diffusion. Further, it suggests a

first step towards modeling via the moments: obtaining a curve of the variance as a

function of time will provide insights to the nature of the flow.

This was followed by the work of Townsend (1951) that looked to further the link

between analytic solutions and experimental measurements of diffusion in turbulence.

In this work heat spots are created inside a 3-dimensional turbulent flow, and their

downstream distribution is measured. The flow field used to advect the heat spots

was modeled as an uncoupled linear flow, for which the analytic solution of the scalar

distribution can be computed. Since the interests were only in the decay of the peak

temperature, the model was reduced further by assuming a simple dependence on

time for the flow parameters. Excellent agreement was seen between experimental

and analytic results for intermediate values for the Reynolds number. For very high

Reynolds numbers the rapid rate of cooling in flows prohibited accurate analysis in

their work.

Here it is shown that for nonlinear flows, the second-order moments can be ac-

curately approximated for some finite-time by using local linear-flow approximations

(LFAs). The utility of the LFA allows one to reconstruct a density evolving under the
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action of the nonlinear flow via only linear transformations. This sections is under

review by Physical Review E.

Linear Flow Approximations

As discussed earlier the interest is in solving scalar mixing processes of the follow-

ing form:

∂tθ + u · ∇θ = κ∇2θ, θ(x, t0) = θ0(x), (6.1.1)

where u is some (possibly nonlinear) flow. In Van Kampen (1992) a closed form

solution of (6.1.1) is given, but only for the case of a linear flow, u = σx where σ is a

constant matrix; which is the form of the LFAs. Note that σ could be dependent on

time, but in the following it is taken as constant over an interval.

The closed form solution that Kampen gives is for the d-dimensional problem and

is given as follows:

θ(x, t) = (2π)−d/2(detM(t))−1/2exp

(
−1

2

(
x− 〈x〉t

)T
M−1(t)

(
x− 〈x〉t

))
, (6.1.2)

where 〈x〉t and M(t) denotes the mean and the covariance matrix at time t, respec-

tively. Thus, by approximating the first and second-order moments, equation (6.1.2)

can be used to approximate the concentration. Moreover, by imposing 〈θ(x, 0)〉 = 0,

the scalar variance can be computed via the following:

V ar(t) = (2πV )−1

∫
(detM(t))−1exp

(
−
(
x− 〈x〉t

)T
M−1(t)

(
x− 〈x〉t

))
dx, (6.1.3)

where V is the domain volume. In the 2-dimensional case, this is just the area of the

domain.

With the goal of obtaining an approximation to the covariance matrix, several

methods were explored, all of which use strain field information from the nonlinear

flow. The nonlinear flow field will be replaced locally with a constant-valued linear

systems. The linear approximation has the following form: u = σx, where the

condition trace(σ) = 0 is imposed to preserve incompressibility.
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The first two LFAs investigated are motivated by decoupling the covariance matrix

into separate rotational and stretching components. The decomposition is of the form:

Mt
t0

(x0) =
(
RM̄t

t0
(x0) +

(
RM̄t

t0
(x0)

)T)
/2, (6.1.4)

where R is a rotation tensor, and M̄t
t0

(x0) is the local principal covariance matrix.

This covariance matrix is computed from locally approximating the flow field with

the purely straining flow, given by the following system:

σtt0(x0) =

λ 0

0 −λ

 . (6.1.5)

For (6.1.5), it is quickly determined that λ is equal to the finite-time Lyapunov

exponent (FTLE) for x0. Further, from (6.1.5) and with infinitesimal generators (cf.

Appendix A), it is easy to determine the principal covariance matrix as:

M̄t
t0

(x0) =

κλ (e2λτ − 1
)

0

0 κ
λ

(
1− e−2λτ

)
 , (6.1.6)

where κ is the diffusivity constant, λ is the FTLE value, and τ is the integration

time (τ := t− t0) used to obtain the strainfield data. Since (6.1.6) is symmetric the

expression in (6.1.4) is given as:

Mt
t0

(x0) =
(
RM̄t

t0
(x0) + M̄t

t0
(x0)RT

)
/2. (6.1.7)

Polar Rotation Angle + FTLE

Having accounted for the stretching and compression, the overall rigid-body rota-

tion of material elements needs to be computed. In Farazmand and Haller (2016), a

unique decomposition to the deformation gradient is discussed, and the polar rotation

angle (PRA) is introduced as θtt0(x0).
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More specifically, the PRAs are related to the eigenvalues/vectors of the Cauchy-

Green strain tensor, by the following relations:

cos θtt0 = 〈ξi,∇F t
t0
ξi〉/

√
λi, i=1 or 2

sin θtt0 = (−1)j 〈ξi,∇F t
t0
ξj〉/

√
λj, (i,j)=(1,2) or (2,1)

, (6.1.8)

where λ1,2 are the eigenvalues of the 2D Cauchy-Green strain tensor, and ξ1,2 are their

corresponding eigenvectors. From the above, the actual PRA is found as:

θtt0 =
[
1− sign

(
sin θtt0

)]
π + sign

(
sin θtt0

)
arccos cos θtt0 , (6.1.9)

where the “sign” function returns 1 if the input is non-negative, and returns −1

otherwise.

Since the computation of the PRA requires the computation of the Cauchy-Green

strain tensor’s eigenvalues and vectors, the FTLE field can be computed essentially

for free. With this, it would be computationally advantageous to use the PRA to

compute the rotation tensor in (6.1.4). Using the polar rotation angle θtt0(x0) in the

rotation tensor gives:

PRAM
t
t0

(x0) =
(
Rt
t0

(x0)M̄t
t0

(x0) + M̄t
t0

(x0)Rt
t0

(x0)T
)
/2

=

 κ
λ

(
e2λτ − 1

)
cos θtt0(x0) κ

λ
(cosh 2λτ − 1) sin θtt0(x0)

κ
λ

(cosh 2λτ − 1) sin θtt0(x0) κ
λ

(
1− e−2λτ

)
cos θtt0(x0)

. (6.1.10)

Dynamic Rotation Tensor + FTLE

It is noted in Farazmand and Haller (2016) and Haller (2016) that the rotation

tensor obtained from the PRA is not dynamically consistent. In Haller (2016) a

dynamically consistent rotation tensor (DRT) is introduced. The DRT is given as,

Ȯt
t0

(x0) = W(x, t)Ot
t0

(x0), with Ot0
t0(x0) = I, (6.1.11)
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where W(x, t) = 1
2

(
∇u− (∇u)T

)
. This reduces the computation of the dynamically

consistent rotation tensor to:

Ȯt
t0

(x0) =

 0 −ω(x,t)
2

ω(x,t)
2

0

Ot
t0

(x0), (6.1.12)

where ω is the vorticity computed from the strainfield of the nonlinear flow. The

solution to the system is quickly obtained as,

Ot
t0

(x0) =

cos
(

1
2

∫ t
t0
ω(x(s), s)ds

)
− sin

(
1
2

∫ t
t0
ω(x(s), s)ds

)
sin
(

1
2

∫ t
t0
ω(x(s), s)ds

)
cos
(

1
2

∫ t
t0
ω(x(s), s)ds

)
 , (6.1.13)

where
∫ t
t0
ω(x(s), s)ds =: LAV t

t0
(x0), is the Lagrangian-averaged vorticity (LAV) as

introduced in Haller et al. (2016).

Using the dynamic rotation tensor with the principal covariance matrix, the ap-

proximation now becomes:

DRTM
t
t0

(x0) =
(
Ot
t0

(x0)M̄t
t0

(x0) + M̄t
t0

(x0)Ot
t0

(x0)T
)
/2

=

 κ
λ

(
e2λτ − 1

)
cos
(

1
2
LAV t

t0
(x0)

)
κ
λ

(cosh 2λτ − 1) sin
(

1
2
LAV t

t0
(x0)

)
κ
λ

(cosh 2λτ − 1) sin
(

1
2
LAV t

t0
(x0)

)
κ
λ

(
1− e−2λτ

)
cos
(

1
2
LAV t

t0
(x0)

)
.

(6.1.14)

General Linear Model (GLM)

In this section the moment generation is explored from a different viewpoint.

Instead of approximating the flow as purely straining and then applying a rotation,

here the most general linear flow with closed form solutions for the elements of the

covariance matrix is used, and then the parameters of the linear model are fit to the

nonlinear flow. More explicitly, since the focus is 2D nonlinear flows, σ takes the

general form of:

σtt0(x0) =

λ β

γ −λ

 , (6.1.15)
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where λ, β, and γ are constants. From (6.1.15) and use of infinitesimal generators

([cf. Appendix B]), the elements of the covariance matrix are given as:

GLMM11(t;x0) =
κ

2α3

((
λ2 + α2 + β2

)
sinh(2ατ)

)
+ F (β, γ, λ, κ, τ)

GLMM12(t;x0) =
κ(γ + β)

2α2
cosh(2ατ) +

κλ(γ − β)

2α3
sinh(2ατ) + λκ(β − γ)τ/α2

GLMM22(t;x0) =
κ

2α3

((
λ2 + α2 + γ2

)
sinh(2ατ)

)
+ F (γ, β,−λ, κ, τ) ,

(6.1.16)

where F (β, γ, λ, κ, τ) = κ
α2

(
λ cosh(2ατ)− λ+ γβτ − β2τ

)
and α :=

√
λ2 + βγ. In

(6.1.15) and (6.1.16) the explicit dependence on time and initial positions are su-

pressed for the GLM parameters for brevity; the full dependence is seen in (6.1.19).

In order to obtain this approximation the values of λ, β, and γ still need to be

determined. To do this the deformation tensor is used, given here as:

J tt0(x0) =
∂x(t;x0)

∂x0

, (6.1.17)

where x0 is the initial location at t0. The deformation tensor of the general linear

model (GLM) is,

J tt0(x0) =

cosh(ατ) + λ
α

sinh(ατ) β
α

sinh(ατ)

γ
α

sinh(ατ) cosh(ατ)− λ
α

sinh(ατ)

 . (6.1.18)

Thus, the parameters necessary to fit the local linear approximation of the flow – RHS

of (6.1.15) – can be obtained directly from manipulating the entries of the deformation

tensor of the nonlinear flow. The important parameters of the local approximation

are obtained as follows:

α(t;x0) =
1

τ
arcCosh

(
J11(t;x0) + J22(t;x0)

2

)
, β(t;x0) =

α(t;x0)J12(t;x0)

sinh(α(t;x0)τ)

λ(t;x0) =
α(t;x0)(J11(t;x0)− J22(t;x0))

2 sinh(α(t;x0)τ)
, γ(t;x0) =

α(t;x0)J21(t;x0)

sinh(α(t;x0)τ)
.

(6.1.19)
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Note that here Ji,j(t;x0) are the elements of the deformation tensor for the nonlinear

flow. Further, note the form of the linear Jacobian in (6.1.18). By denoting the

determinant of the system σtt0(x0) as α2
σ, the Jacobian comes from the following:

J tt0(x0) = coshασt · I + α−1
σ sinhασt · σtt0(x0). (6.1.20)

Reconstructions

So far, approximations to the first and second-order moments of the nonlinear flow

have been obtained at time t by looking at the strainfield data over the interval [t0, t].

Since the flows considered are nonlinear, the linear flow approximations will become

less accurate for longer integration times. However, with shorter integration times

more reconstructions are needed to get to tf (the final time) and this can slow down

computations. Therefore, the maximum integration time that still gives accurate

results in terms of the components of the covariance matrix is essential to determine.

Since the interest is in θ(x, tf ), the case where tf 6∈ [t0, t] must be considered.

For the typical case of tf > t, a sequence of reconstructions will have to be done.

Here, for simplicity in the computations, it is assumed that tf is evenly divisible by

the integration time – the same time interval corresponding to the approximations.

Further, since the moment information is only needed at reconstruction times, the

computational cost can be reduced further for autonomous and periodic systems.

For autonomous systems there is no explicit dependence on time, so once an

integration time is picked, the strainfield and the subsequent moment information

obtained from using it can be reused for each of the reconstruction steps. This

provides a way to reconstruct the density for possibly very long times from just one

computation of the nonlinear strainfield.
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The computational requirements naturally increase when the flow has an explicit

time dependence. However, for periodic flows, some of the increased computational

necessity can be alleviated by using an integration time that divides the period of

the flow, Tp. For example, if the integration time is taken to be Tp/4, then only

4 computations of the strainfield are needed (given that tf is still divisible by the

integration time); from [0, Tp/4], [Tp/4, Tp/2], [Tp/2, 3Tp/4], and [3Tp/4, Tp].

Once the strainfields are computed and the moments obtained, the density recon-

struction is computed according to one of two methods: the analytic representation

and an ensemble approximation. The analytic representation is done by solving (6.1.2)

with the moment information. This method, although accurate, can be computational

prohibitive; since for each cell of the domain an entire density field has to be com-

puted before all of these fields are composed together. For example, given an Nx by

Ny computational domain, the necessary number of computations is on the order of

(NxNy)
2. The ensemble approximation tries to avoid such costly computations by

using the covariance matrix approximations to generate new Gaussian distributions

with ensemble sizes dependent on density. This method uses an ensemble of tracers

that can be quickly sorted through a histogram algorithm to determine the density in

each cell and the number of initial conditions to use for the subsequent reconstruction.

Now both methods will be discussed in more detail.

Analytic Reconstruction

With the local covariance matrices obtained over the integration time, a Green’s

function for the system can be constructed over that integration time. This Green’s

function is given as, G(x, τ |x0, t0). The reconstruction steps proceed by convolving
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this Green’s function with the current density field,

θ(x, t+ τ) =

∫
A

G(x, τ |x0, t0)θ(x0, τ)dx0, (6.2.1)

where A represents the computational domain. This process is repeated until final

time is reached.

Given the probability density of a single passive tracer by:

ρ(x, t+ t0) =

(
detM(t+ t0)

)−1/2

2π
exp

(
−1

2
(x− x0)M−1(t+ t0) (x− x0)

)
, (6.2.2)

the analytic scalar density reconstruction, from the proposed methods, can be given

as:

θA(x, t) =

∫ t

0

∫
A

ρ(x, t;x0, t0)s(x0, t0)dx0dt0, (6.2.3)

where s(x0, t0) defines the source distribution at (x0, t0). Note that in (6.2.2) the

dependencies on x0 and t0 are suppressed for M(t;x0, t0) and ρ(x, t;x0, t0) for cove-

nience.

From the start:

First, obtain the strainfield data of the nonlinear flow and pick an initial condi-

tion, δ(x0, t0). For the initial construction, the parameters needed to compute the

local approximation are obtained from interpolating the initial condition in the scalar

field associated to those parameters. The covariance matrix is then computed as in

(6.1.10), (6.1.14) or (6.1.16), and is used to determine the density for every cell in

the domain according to (6.2.2). The superposition of all of these densities gives

the scalar density for the domain, and is computed by (6.2.3). If t = tf , then the

computation is done, otherwise the following steps are repeated until tf is reached.

Every element of the new density field is now taken as a new initial condition

(s(x, t) = 1) and the density given by that element is used to construct the next

density field.
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Ensemble Approximation

From the start:

This approximation starts very similarly to the analytic reconstruction, in that

the initial condition δ(x0, t0) is first used to interpolate the parameter-fields in order

to obtain the covariance matrix. However, where the analytic reconstruction uses

the moments to compute the density field, the ensemble approximation uses the

moment data to create an ensemble distribution of K tracers. The members of the

ensemble come from the normal distribution N (µ,M), where µ is the mean, and M

is the covariance matrix; these values are dependent on the initial condition. Letting

LLT = M , the elements of the ensemble, S(t), are given as:

S(t) = {Lyi + µ|i = 1, . . . , K} (6.2.4)

where yi is a vector with elements picked from a normal random distribution.

The elements of S(t) are then put through a 2D histogram algorithm that returns

the number of tracers in each cell. Letting [ζ, C] = hist(S), then ζ gives the number

of tracers in each cell, and C gives the collection of cells that have tracers in them. The

tracer count will be used as the density, and more importantly, it informs which cells

have tracers in them. This second aspect is where the method gains a computational

advantage over the analytic reconstruction; since the subsequent reconstruction step

is only going to use non-empty cells as initial conditions. After long enough time, or

with a large enough diffusivity, the tracers will homogenize throughout the domain,

at which point this method will be on par with the analytic reconstruction, com-

putationally. However, before the homogenization limit is reached, a computational

advantage in terms of computational cost is seen.

The number of tracers in Ci is given as ζi; if ζi 6= 0 then the cell is used as initial

condition for the next step of the reconstruction. The set of tracers at t + τ is then
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given by,

S(t+ τ) =
⋃
i|ζi 6=0

(
randn (ζi, 2) cholMi + repmat (µi, ζi, 1)

)
, (6.2.5)

where µi is the mean value and Mi is the covariance matrix, corresponding to Ci.

The above equation is similarly written as:

Si(t+ τ) = {Liyj + µi|j = 1, . . . , ζi} i|ζi 6= 0

S(t+ τ) =
⋃
i|ζi 6=0

Si(t+ τ),
(6.2.6)

where Li is the Cholesky decomposition of the covariance matrix corresponding to Ci.

The new collection of tracers is then put through the 2D histogram algorithm and

the process is repeated until the final time is reached. At the final time the density

field is easily obtained by counting the number of tracers in each cell and dividing

it by the original K, for proper scaling. The elements of the density field become

θ(i, j)(tf ) = ζi,j/K.

Results

In order to obtain the elements of the covariance matrix, for comparison purposes,

the Fokker-Planck equation is solved via DNS for every grid in the domain. These

initial conditions are evolved with the nonlinear flows and their covariances recorded

over time. The elements of the covariance matrices are related back to the initial

release position and a field of these elements is constructed. Three different levels

of diffusion were investigated: D =
√
.02, D =

√
.002, and D =

√
.0002. Since

the covariance matrix approximations are simply scaled by D, looking at various

diffusivities can help understand how long the linear approximation is valid.

109



Moments

In the following, for figures with 4×3 subfigures: the top row of each subfigure are

the elements of the covariance matrix approximation PRAM
t
t0

(x0), the second row are

the elements of the covariance matrix approximation given by DRTM
t
t0

(x0), the third

row are the elements of the covariance matrix that were computed using the GLM,

and the bottom row of each subfigure are the elements of the covariance matrix that

were obtained from DNS.

For the figures with 3 × 3 subfigures: the top row is given by the absolute value

of PRAM
t
t0

(x0) over the actual values (given by DNS), the middle row is the absolute

value of the ratio of DRTM
t
t0

(x0) over the actual values, and the bottom row shows

the same ratio but for the general linear model (GLM). All the subfigures of a given

column use the same color scale: for the 4× 3 figures, the scale is given by the DNS

results, for the 3× 3 figures, the bottom row is used for scaling. The first analysis is

with the steady cell flow with D =
√
.02.

It is seen that for the steady cell flow (Fig. 6.3.1) that as the integration time is

reduced the agreement between the approximations and the actual variances (bot-

tom rows) becomes greater; which is expected as this is a linear approximation to

a nonlinear system. It is also seen that the scale of the cross-covariance terms is

about an order of magnitude smaller than the diagonal elements of the covariance.

This is a characteristic seen in the other flows as well. For this flow it is seen that

the PRA-FTLE and DRT-FTLE methods give similar results. Unfortunately, even

for short integration times the cross-covariance elements are poorly represented by

these methods. The GLM however is more capable of accurately representing these

elements.
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From Fig. 6.3.2 the validity of each model is seen as a function of integration

time. It is immediately seen that PRA-FTLE and DRT-FTLE given similar results,

as is expected. Note that the scale of results given by GLM tend to be more-so

centered around 1 than the other methods. For all methods, the largest errors were

seen in the cross-covariance terms, due to the scale of the values of the field. After

τ = .25 the approximations break down due to nonlinear effects. This puts an upper-

bound on the integration time allowable for the steady cell of τ = .25, in order to

expect a reliable reconstruction. Although these qualitative comparisons are nice, a

quantitative comparison is really needed to see whats going on.

(a) (b)

Figure 6.3.1: Comparison of the moment approximations obtained from PRA-FTLE (top rows),

DRT-FTLE (second rows), and GLM (third rows) to the actual moments (bottom rows) for the

steady cell flow with an integration time of (6.3.1a) τ = .05 and (6.3.1b) τ = .25. D =
√
.02.
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(a) (b)

Figure 6.3.2: Absolute value of the ratio of the approximation given by PRA-FTLE (top rows),

DRT-FTLE (middle rows), and GLM (bottom rows) over the actual values for the steady cell flow,

with an integration time of (6.3.2a) τ = .05, (6.3.2b) τ = .25. D =
√
.02.

The utility of the methods can be assessed by looking at the histogram of the

relative error. The comparisons are for the steady cell flow, the periodic quad-gyre

and the aperiodic quad-gyre. In the following figures, the blue lines indicate the

results for the case D =
√
.02, the red lines are the results for the D =

√
.002 case,

and the green lines are the results when D =
√
.0002. For each 3 × 3 subfigure: the

top row is the histogram given by the absolute value of PRAM
t
t0

(x0) over the actual

values (given by DNS), the middle row is the histogram given by the absolute value of

the ratio of DRTM
t
t0

(x0) over the actual values, and the bottom row shows histograms

for the same ratio but for the GLM.
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It is first noted, that in each subfigure, little variation is seen between the different

diffusivities. However, as the integration time is increased some variation between the

curves is seen. This simply suggests that for the integration times investigated, diffu-

sivity has not played much of a role in the transport. Further, for shorter integration

times (a)-(b) of Figs 6.3.3-6.3.5, it is seen that the values are peaked around 1 and

quite unimodal; suggesting a good approximation. For an integration time of τ = .25

(125∆t), the peaks of the PRA-FTLE and DRT-FTLE methods start to shift towards

0, while also losing their unimodal shape. For all of the flows, with an integration

time of τ = .25 the GLM is able to maintain these peaked unimodal structures cen-

tered around one, but only for the diagonal covariance terms. The cross-covariance

terms are poorly represented for τ ≥ .1. When the integration time exceeds τ = .25

the structures within the histograms are lost. These characteristics are seen for all

three gyre flows, with only slight differences in scale; highlighting a characteristic of

the short-time variances obtained from convection cells.
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Figure 6.3.3: Histograms of the absolute value of the ratio of the approximation given by PRA-

FTLE (top rows), DRT-FTLE (middle rows), and GLM (bottom rows) over the actual values for

the steady cell flow, for 3 diffusivitives: κ = .01 (blue), κ = .001 (red), and κ = .0001 (green). With

an integration times τ = .05 (6.3.3a), τ = .1 (6.3.3b), τ = .25 (6.3.3c), and τ = .5 (6.3.3d).
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Figure 6.3.4: Histograms of the absolute value of the ratio of the approximation given by PRA-

FTLE (top rows), DRT-FTLE (middle rows), and GLM (bottom rows) over the actual values for

the quad-gyre flow, for 3 diffusivitives: κ = .01 (blue), κ = .001 (red), and κ = .0001 (green). With

an integration times τ = .05 (6.3.4a), τ = .1 (6.3.4b), τ = .25 (6.3.4c), and τ = .5 (6.3.4d).
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Figure 6.3.5: Histograms of the absolute value of the ratio of the approximation given by PRA-

FTLE (top rows), DRT-FTLE (middle rows), and GLM (bottom rows) over the actual values for

the aperiodic quad-gyre flow, for 3 diffusivitives: κ = .01 (blue), κ = .001 (red), and κ = .0001

(green). With an integration times τ = .05 (6.3.5a), τ = .1 (6.3.5b), τ = .25 (6.3.5c), and τ = .5

(6.3.5d). 116



Reconstructions

From looking at the histogram results, there is high confidence in the ability of the

approximation for short times. To see how the differences within the approximations

propagate to the final time each approximation was used to try and generate the

distribution evolution. An integration time of 125 timesteps (τ = .25) was initially

used; this integration time was the largest from earlier whose histograms maintained

peaks centered near one (for GLM). Since the validity of the approximation was

independent of D at this integration time, the following analysis is only done with

D =
√
.002. The initial condition (IC) used in the following analysis was randomly

chosen as [.475, 1.235].

Reconstructions for both the periodic and aperiodic quad-gyre flows will be com-

puted. The moment approximations given by both the PRA-FTLE and DRT-FTLE

schemes fail to preserve positive definiteness for both flows for the integration time

used (τ = 125∆t), without this the reconstruction of the density field is not possible.

The moment approximations given by GLM preserves the positive definiteness for

both flows – allowing a reconstruction to be possible, for the integration time used.

For periodic flows, with period Tp, the analytic reconstruction scheme will only have

to compute Tp/τ Green’s functions; which makes it a viable method to use.

For the quad-gyre flow, in order to check the validity of the final time reconstruc-

tions they are compared to the solution obtained from DNS of the Fokker-Planck

equation. The DNS solution is seen in Fig. 6.3.6a. The analytic solution for the re-

constructions – obtained from (6.1.2) – is seen in Fig. 6.3.6b, while the solution given

by the ensemble approximation is seen in Fig. 6.3.6c. To ensure good agreement be-

tween the analytic representation and the ensemble approximation, as well as DNS,
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Figure 6.3.6: Comparison of the a) actual solution to the solutions obtained via the b) analytic and

c) ensemble approaches, with the GLM; using an integration time of τ = .25, for the quad-gyre flow

at tf = 5.

the initial tracer ensemble is taken to have K = 1000NxNy elements, where Nx and

Ny are the resolutions of the computational domain.

In Fig. 6.3.6 it is seen that the solution obtained at final time via the GLM (using

either method), with an integration time of τ = .25, matches qualitatively very well

to the solution given by DNS for tf = 5. The figures use the same color scale, given

by DNS. The solution obtained via GLM is seen to have a higher maximum value

– evidenced by the dark red regions. These same behaviors are seen in the results

for the aperiodic quad-gyre, Fig. 6.3.7. Due to the additional computational cost to

compute the analytic solution from (6.1.2), only DNS and the ensemble approaches

are used for the aperiodic quad-gyre.

With shorter integration times, better agreement was seen by the approximations

(see Fig. 6.3.4(a)-(b)). Further, and arguably more intriguing, is that with a shorter

integration time it might be possible for the PRA-FTLE and DRT-FTLE methods

to still provide positive definite approximations. Guided by these curiosities, a sub-

stantially shorter integration time of 50 timesteps (τ = .1) was used to compute the

118



Figure 6.3.7: Comparison of the a) actual solution to the solution obtained via the b) ensemble

approach, with the GLM; using an integration time of τ = .25, for the aperiodic quad-gyre flow at

tf = 5.

reconstructions. These results are seen in Fig. 6.3.8 for the periodic quad-gyre, and

Fig. 6.3.9 for the aperiodic quad-gyre.

Even with this much shorter integration time the moment approximations given

by the DRT-FTLE method violated the positive definiteness for these flows, while the

PRA-FTLE method was able to provide approximations capable of reconstruction.

In interest of time and brevity, the reconstructions for the GLM and the PRA-FTLE

approximations are only done using the ensemble approximation.

In Fig. 6.3.8 it is seen that the solutions obtained at final time via the GLM and

PRA-FTLE approaches, with an integration time of τ = .1, match qualitatively very

well to the solution given by DNS for tf = 5. The solution obtained via GLM is seen

to have a higher maximum value than DNS, and is almost indistinguishable from the

solution given by PRA-FTLE. These same behaviors are seen in the results for the

aperiodic quad-gyre, in Fig. 6.3.9. The two approximations (GLM and PRA-FTLE)

give similar results to each other, and are seen to over and underapproximate the
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Figure 6.3.8: Comparison of the actual solution (a) to the solution obtained via the ensemble

approximation with the GLM (b), and with PRA-FTLE (c) using an integration time of τ = .1, for

the quad-gyre flow. tf = 5.

solution in certain regions. More specifically, the density along the Y = 1 line is seen

to be consistently underestimated by the approximations.

Scalar Variance Decay

Motivated by the qualitative resemblance of the reconstructions, and previous

research interests, the focus is now on the scalar variance. The scalar variance is

defined as θrms(t) =
√
〈θ2(x, t)〉 − 〈θ(x, t)〉2. This is computed at every timestep in

the DNS, and at every reconstruction step for the approximations (GLM and PRA-

FTLE). The time history of the scalar variance for the IC is seen in Fig. 6.3.10 for the

periodic quad-gyre, and Fig. 6.3.11 for the aperiodic quad-gyre. In Fig. 6.3.10 good

agreement between the actual variance and all of the computed variances is seen.

Given the “analytic” reconstruction formulation, (6.2.3), the variance is obtained as

follows (assuming 〈θ(x, t)〉 = 0):

〈θ2(x, t)〉 =

∫
A

(∫ t

0

∫
A

ρ(x, t;x0, t0)s(x0, t0)dx0dt0

)2

dx0. (6.3.1)
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Figure 6.3.9: Comparison of the actual solution (a) to the solution obtained via the ensemble

approximation with the GLM (b), and with PRA-FTLE (c) using an integration time of τ = .1, for

the aperiodic quad-gyre flow. tf = 5.

This relation simplifies greatly for single source, delta-function type distributions, but

not for random source distributions. Given the formulation of the ensemble approxi-

mations a closed-form representation of the scalar variance cannot be obtained.
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Figure 6.3.10: Time history of the scalar variance for [.475, 1.235], in the periodic quad-gyre flow

until tf = 5.
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Figure 6.3.11: Time history of the scalar variance for [.475, 1.235], in the aperiodic quad-gyre flow

until tf = 5.
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PART 3 -

THE 3D CASE
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Chapter 7

3D LCS DETECTION METHODS AND GLM

In this chapter the models used for the 3-dimensional cases are discussed, as well

as extensions the previously discussed LCS detection methods to 3D. When changing

from the 2D to 3D setting the symmetry imposed by the incompressibility condition

is lost. This asymmetry, coupled with the difficulties of visualizing the phase space

of the system, makes the analysis of 3-dimensional systems more difficult. Previously

the incompressibility condition Πd
i=1λi = 1 led to λ1 = 1/λ2. This highlights that

expansion in one direction is exactly compensated for by compression in a direction

normal to the first. This dichotomy of expansion and contraction could be seen in the

2D straining flow as σ =

λ 0

0 −λ

. For the 3D cases, the incompressibility condition

only gives λ1λ2λ3 = 1, from which little can be obtained. As discussed in Zeldovich

et al. (1984), there are two scenarios of interest: the “rope” (λ3 > 1, and λ1, λ2 ≤ 1),

and the “pancake” (λ3, λ2 ≥ 1, and λ1 ≤ 1), where, without loss of generality, λ1 ≤

λ2 ≤ λ3. In the rope case, one expansion direction and two compressive directions

transform fluid elements into long tube-like structures. The “pancake” is noted by the

two expansive directions and single compressive direction, leading to fluid elements

evolving into thin sheet-like manifolds. These two fundamental structure types lead

to rich dynamics.

Probabilistic Methods

Since the probabilistic methods rely on finding minimally dispersive regions of

phase space, the methods naturally extend to higher dimensions. However, the in-
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crease in size of the transfer matrix that occurs from moving to the 3D setting makes

these methods not computationally viable. Due to the computational cost of these

approaches, they will not be pursued in this work. However, it is noted that these

approaches have been used previously to investigate various 3-dimensional systems.

In Froyland and Padberg-Gehle (2012), the kinematic models of the Lornez flow and

ABC flow are analyzed with finite-time entropy (FTE). Moreover, in Froyland et al.

(2010), 2D and 3D geophysical flows are investigated using finite-time coherent sets

(FTCS).

Geometric Methods

As alluded to earlier, while several of the coherent structure identification methods

are strictly limited to the 2-dimensional setting, some of the methods are defined for

the 3D case as well. The finite-time Lyapunov exponent (FTLE) is an example of a

geometric method that is applicable across all (finite) dimensions, as it is computed

from the deformation gradient tensor. However, the FTLE field is still subject to false

positives and negatives. Thus, while it provides valuable insight about the system, it

is not precise in indicating coherent boundaries in the flow. Here a few other methods

suited for 3D are briefly discussed, noting that this list is by no means exhaustive.

Ease of computation, as well as extension from previous methods were taken into

consideration when choosing these methods.

Okubo-Weiss-Chong

In the 2D cases one instantaneous Eulerian measure (OW) was used to compare

and contrast to the Lagrangian measures. Although there is no direct extension to

3D, the Okubo-Weiss-Chong (OWC) classification gives an instantaneous Eulerian

description of the flow topology; this classification is given in Chong et al. (1990).
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OWC is based on 3 invariant measures that come from analyzing the stability of

critical points in the flow. These invariant measures are the coefficients of the charac-

teristic polynomial of the deformation gradient tensor. Letting A be the deformation

gradient tensor, the characteristic polynomial is given as:

λ3 + Pλ2 +Qλ+R = 0, (7.2.1)

where P := −trace(A), Q := .5(P 2 − trace(A2)), and R := −det(A). Regions are

classified as non-hyperbolic for R = 0, and hyperbolic otherwise. Note that further

classification of the hyperbolic and non-hyperbolic regions is possible, but unnecessary

for the analysis.

Polar Rotation Angle

Another measure with a natural extension to 3D is the polar rotation angle (PRA).

Given the eigenvectors of the Cauchy-Green strain tensor and the deformation tensor

as ξi and ∇F t
t0

, respectively, the 3D form of the PRA satisfies:

cos θtt0 =
1

2

(
Σ3
i=1

〈ξi,∇F t
t0
ξi〉√

λi
− 1

)
(7.2.2)

sin θtt0 =
〈ξi,∇F t

t0
ξj〉 − 〈ξj,∇F t

t0
ξi〉√

2εijkek
, i 6= j ∈ 1, 2, 3, (7.2.3)

where e = [e1, e2, e3]T is the normalized eigenvector corresponding to the unit eigen-

value of the matrix,

[H t
t0

]jk =
〈ξj,∇F t

t0
ξk〉√

λk
, j, k ∈ 1, 2, 3, (7.2.4)

and εijk is the Levi-Civita symbol. The four-quadrant PRA is then obtained from:

θtt0 = (1− sign(sin θtt0))π + sign(sin θtt0) cos−1
(
cos θtt0

)
, (7.2.5)

where sign(α) is 1 for non-negative alpha (α ≥ 0), and −1 otherwise.
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In Farazmand and Haller (2016) the PRA was not only used to identify elliptic

islands in 2D systems, but was also used for the 3D steady ABC flow. The flow is an

exact steady solution of Euler’s equation of inviscid Newtownian fluids with periodic

boundary conditions. Due to the property of coinciding connected level sets 1 , it

is possible to obtain the classification corresponding to (7.2.5) without solving for

sin θtt0 . The two-quadrant angle is then simply given by:

θtt0 = cos−1

1

2

(
Σ3
i=1

〈ξi,∇F t
t0
ξi〉√

λi
− 1

) . (7.2.6)

Elliptic Lagrangian coherent structures can be approximated as the outermost

closed PRA level curves. It was further noted in Farazmand and Haller (2016) that

the PRA is not objective in 3D.

Lagrangianly Averaged Vorticity Deviation

Haller et al. (2016) introduced a measure for uncovering vortices in nonautonomous

systems based on the vorticity. This relatively simple computation gives similar re-

sults to the computationally intensive geodesic theory (for 2-dimensional flows). With

no direct extension for geodesic theory to 3D, the Lagrangianly averaged vorticity de-

viation (LAVD) could be used in these settings to obtain elliptic (trapping) regions.

The LAVD (for 3D cases) is given as:

LAV Dt0+t
t0 (x0) =

∫ t0+t

t0

|ω(x(s;x0), s)− ω̄(s)|ds, (7.2.7)

where ω is the vorticity, and the overbar denotes the field average. From this field,

vortex centers are found as local maximums, and level sets around these centers are

used to obtain the 3-dimensional vortex tubes. Note that the same type of level set

1This property ensures that connected level sets of cos θtt0 and sin θtt0 correspond to connected
level-sets of θtt0 .
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extraction is used for the PRA fields, and that with the PRA, vortex centers are

distinguished by local extrema in the field.

General Linear Model (GLM3D)

Motivated by the results seen in the 2D case, an approximation to the deformation

over short intervals is sought for the 3D setting. First, the 2D linear flow-subsystem

is simply imbedded in a 3D computational domain, where the third dimension does

not contribute to the dynamics. This 3D system is given as:

ẋ = λx+ βy

ẏ = γx− λy

ż = 0,

(7.3.1)

and referred to as barely-3D. Since it is only in name that the dynamics of this system

could be classified as 3-dimensional. The barley-3D system inherits its incompressibil-

ity from the 2D subsystem, but the determinant is now seen to be 0. The Jacobian is

computed with the use of infinitesimal generators (seen in Appendix C), and is given

as:

J =


coshαt+ λ

α
sinhαt β

α
sinhαt 0

γ
α

sinhαt coshαt− λ
α

sinhαt 0

0 0 1

 , (7.3.2)

where α :=
√
λ2 + βγ (the determinant of the 2D subsystem) as previously seen.

The Jacobian in (7.3.2) is seen to contain the 2D-Jacobian within it, and 1 in the

(3, 3) component, indicating no variation in z-direction. This is consistent with the

method in which (7.3.1) is constructed. Further, from looking at the second-order

moments (using infinitesimal generators, in Appendix C), it is seen that the moments

matrix also contains its 2D counterpart. However, more than the (3, 3) component is
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nonzero. The z-based generators give the following expressions:

˙E[XZ] = λE[XZ] + βE[Y Z]

˙E[Y Z] = γE[XZ]− λE[Y Z]

˙E[Z2] = 2κ.

(7.3.3)

It is seen that the (XZ, Y Z)-subsystem is of the same form as the first-order moments

of the 2D linear system. Thus the z-moments are given as:

E[XZ] = E[XZ](t0)

(
cosh(ατ) +

λ

α
sinh(ατ)

)
+ E[Y Z](t0)

β

α
sinh(ατ)

E[Y Z] = E[Y Z](t0)

(
cosh(ατ)− λ

α
sinh(ατ)

)
+ E[XZ](t0)

γ

α
sinh(ατ)

E[Z2] = E[Z2](t0) + 2κτ.

(7.3.4)

Assuming an initial distribution of a delta function, all of the initial values of the

second-order moments are set to zero (E[X2](t0) = 0,E[XY ](t0) = 0,E[XZ](t0) = 0,

etc.). The moments are given as:

E[X2] =
κ

2α3

((
λ2 + α2 + β2

)
sinh(2ατ)

)
+ F (β, γ, λ, κ, τ)

E[XY ] =
κ(γ + β)

2α2

(
cosh(2ατ)− 1

)
+
κλ(γ − β)

2α3
sinh(2ατ) + λκ(β − γ)τ/α2

E[Y 2] =
κ

2α3

((
λ2 + α2 + γ2

)
sinh(2ατ)

)
+ F (γ, β,−λ, κ, τ)

E[Z2] = 2κτ.

(7.3.5)

where F (β, γ, λ, κ, τ) = κ
α2

(
λ cosh(2ατ)− λ+ γβτ − β2τ

)
. Schematically the mo-

ment matrix appears as:

M =


E[X2] E[XY ] 0

E[XY ] E[Y 2] 0

0 0 E[Z2]

 . (7.3.6)
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Quasi-3D Model

Moving slightly past the model built up from the 2D case: a quasi -3D flow can be

obtained from incorporating small perturbations to (7.3.1). The new flow takes the

form:

ẋ = λx+ βy

ẏ = γx− λy

ż = ηz,

(7.3.7)

where η � 1 is small; to leading order this system is identical to (7.3.1). However,

when the contributions ofO(ε) terms are considered slight variability in the z-direction

is possible. For η 6= 0 the system is not truly incompressible, but approximately. From

the first-order generators (seen in Appendix C) the Jacobian is obtained as:

J =


coshαt+ λ

α
sinhαt β

α
sinhαt 0

γ
α

sinhαt coshαt− λ
α

sinhαt 0

0 0 eηt

 , (7.3.8)

where α :=
√
λ2 + βγ. It is noted here that as η → 0, (7.3.8) converges to (7.3.2).

For this system, approximations to the elements of the covariance matrices can be

explicitly obtained, as shown in Appendix C. It is immediately seen that the elements

obtained here are those seen in the 2D case. It is further noted that the E[Z2] has

changed to the following:

E[Z2] = Ez2e
2ητ +

κ

η

(
e2ητ − 1

)
. (7.3.9)

Assuming η � 1, the exponential can be expanded into its series form. The resulting

expression would be,

E[Z2] = Ez2e
2ητ +

κ

η

(
(2ητ) +

(2ητ)2

2
+

(2ητ)3

6
+ · · ·

)
, (7.3.10)
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and is seen to converge to E[Z2] = Ez2 + 2κτ ; this is the same expression for the

barely-3D model.

The parameters necessary to obtain the covariance elements are then obtained in

the same fashion as the 2D case, through the expressions in (6.1.19). More specifically,

the following expressions are used to determine the parameters of the model:

α(t;x0) =
1

τ
arcCosh

(
J11(t;x0) + J22(t;x0)

2

)
, β(t;x0) =

α(t;x0)J12(t;x0)

sinh(α(t;x0)τ)

λ(t;x0) =
α(t;x0)(J11(t;x0)− J22(t;x0))

2 sinh(α(t;x0)τ)
, γ(t;x0) =

α(t;x0)J21(t;x0)

sinh(α(t;x0)τ)

η(t;x0) =
1

τ
log J33(t;x0).

(7.3.11)

Decoupled-3D Model

To properly analyze 3D-incompressible flows, the following decoupled -3D model is

introduced:

ẋ = λx+ βy

ẏ = γx− (λ+ η) y

ż = ηz.

(7.3.12)

Although there is no restriction on η � 1, it is seen that as η → 0, (7.3.1) is recovered

yet again.

Using the same approach as in Appendix E, the first-order moments can be ob-

tained for the x and y terms. By appending the result obtained from E[Z] to the

solutions for E[X] and E[Y ], the Jacobian matrix is obtained:

J =


e
−ηt
2

(
cosh θt/2 + η+2λ

θ
sinh θt/2

)
e
−ηt
2

2β
θ

sinh θt/2 0

e
−ηt
2

2γ
θ

sinh θt/2 e
−ηt
2

(
cosh θt/2− 2λ+η

θ
sinh θt/2

)
0

0 0 eηt

 ,
(7.3.13)
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where θ :=
√
η2 + 4(λ2 + ηλ+ βγ). It is seen that as η → 0, the results approach

that of the barely-3D flow (Appendix C). However, when η does not tend towards

zero the parameters of the model become difficult to recover.

The full second-order moments are given in Appendix D, while here the expressions

are given assuming a delta-function as the initial condition. The delta-function initial

condition provides that the initial expectations (Ex2 , Exy, and Ey2) can be reasonably

approximated as 0.

E[X2] =
κe−ητθ sinh θτ

θ2(λ2 + ηλ+ βγ)

(
(η + λ) (η + 2λ) + βγ + β2

)
+

κe−ητ cosh θτ

θ2(λ2 + ηλ+ βγ)

(
θ2 (η + λ) + βη (β − γ)

)
− κ (η + λ)

(λ2 + ηλ+ βγ)
− κβ (β − γ) η

θ2(λ2 + ηλ+ βγ)
− 4κβ (β − γ)

θ2η

(
1− e−ητ

)
(7.3.14)

E[XY ] =
κe−ητ

θ2(λ2 + ηλ+ βγ)
θ sinh θτ

(
γ (η + λ)− βλ

)
+

κe−ητ

θ2(λ2 + ηλ+ βγ)
cosh θτ

(
(β + γ)

(
θ2 − λ (η + 2λ)− 2βγ

)
− 2βηλ

)
+

κ

θ2(λ2 + ηλ+ βγ)

(
γ
(
2η2 − θ2

)
+ λη (β − γ)

)
− 2κ (β − γ) e−ητ

θ2

+
4κλ (β − γ)

θ2η

(
1− e−ητ

)
(7.3.15)

E[Y 2] =
κe−ητθ sinh θτ

θ2(λ2 + ηλ+ βγ)

(
λ (η + 2λ) + γ (γ + β)

)
+

κe−ητ cosh θτ

θ2(λ2 + ηλ+ βγ)

(
ηγ (γ − β)− λθ2

)
+

κλ

(λ2 + ηλ+ βγ)
+

κγ (β − γ) η

θ2(λ2 + ηλ+ βγ)
+

4κγ (β − γ)

θ2η

(
1− e−ητ

)
(7.3.16)
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The parameters necessary for the second-order moments are obtained from the

following relations:

η =
1

t
log(J33), θ =

2

t
arcCosh

((
J11 + J22

2

)
e
ηt
2

)

γ =
θJ21e

ηt
2

2 sinh θt
2

, β =
θJ12e

ηt
2

2 sinh θt
2

λ =
(J11 − J22) θe

ηt
2

4 sinh θt
2

− η

2

. (7.3.17)

Fully-3D Model

When a fully-3D linear flow, as such:

ẋ = λ1x+ β1y + β2z

ẏ = γ1x+ λ2y + β3z

ż = γ2x+ γ3y + λ3z,

(7.3.18)

is considered, the parameters become unwieldy and closed analytic expressions for

the moments are difficult to obtain.
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Chapter 8

THE FLOWS AND ANALYSIS

Flows

Arnold-Beltrami-Childress Flow

The Arnold-Beltrami-Childress (ABC) flow is a 3D flow with a periodic domain

that has been a test-bed for various computational algorithms. The dynamics of the

system are governed by the parameters A,B,C,D ∈ R, and is given as:

ẋ = A(t) sin z + C cos y

ẏ = B sinx+ A(t) cos z

ż = C sin y +B cosx,

(8.1.1)

with A(t) = A + Dt sin t. For D = 0 the system is autonomous, and further, if any

other parameter is also zero then the system will be integrable. In this integrable

case, the system can be rephrased as a decoupled second-order system; the solutions

of which can be written as polynomials or in terms of elliptic functions. When all

of the parameters are non-zero the system is nonautonomous with a general time

dependency. The physical domain of the system is given by the 3-torus, on [0, 2π]3.

Given the flow parameters as (A,B,C,D), the following cases were pursued to pro-

vide a direct comparison to previous works: integrable case (0,
√

2, 1, 0), steady case

(
√

3,
√

2, 1, 0), and nonautonomous case (
√

3,
√

2, 1, 1).
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Inertia-Gravity Wave

In Tang et al. (2010) the impact of noise on a 3-dimensional inertia-gravity wave

(IGW) model is investigated. The IGW model provides a prototypical integrable

model for studying the affect of noise on Lagrangian dynamics. With the ubiquity of

these waves in the environment understanding how sub-scale perturbations can affect

mixing is of vital importance. The non-dimensional IGW model is given as:

ẋ = U cos
(
2π (x+ z − t)

)
ẏ = U sin

(
2π (x+ z − t)

)
ż = −U cos

(
2π (x+ z − t)

)
,

(8.1.2)

where U is the nondimensional velocity scale, and the nondimensional wave phase is

defined as Φ := 2π (x+ z − t). Due to the cancellation of the x and z terms in the

wave phase, the system is integrable. This means that for a deterministic flow no

Lagrangian mixing will occur over the flows wave period. This property also makes

it possible to obtain closed form solutions for the second-order moments. Since these

moments are directly computable, these will be used to directly compare against

the moment approximations obtained from the GLM3D method. However, since

GLM3D is modeled for a flow where the surface dynamics are mostly decoupled from

the vertical component, good agreement between the actual moment values and the

approximations obtained by GLM3D is not expected, even for short times.

Ocean Surface Mixing Model: Quasi-3D Flow

The need for anisotropy in the diffusivities of geophysical flows was also discussed

in Tang et al. (2010). Since vertical fluctuations are suppressed in density stratified

environments, the components of diffusivity in the horizontal (σ2
h = 2εh) and vertical

(σ2
v = 2εv) directions are taken at separate scales. Further, in Aharon et al. (2012) the
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impact of vertical convection on surface layer mixing in the ocean was investigated.

The vertical convection was modeled as a 3D perturbation to an asymmetric double-

gyre flow. This convoluted model is generated from three planar stream functions,

Ψxy(x, y, t), Ψyz(y, z, t) and Ψxz(x, z, t), as:

ẋ =
∂Ψxy

∂y
− ∂Ψxz

∂z

ẏ = −∂Ψxy

∂x
+
∂Ψyz

∂z

ż =
∂Ψxz

∂x
− ∂Ψyz

∂y
,

(8.1.3)

where the stream functions are given by,

Ψxy(x, y, t) =
udouble−gyre

2π

(
sin

2πy

Ly
+ sin

πy

Ly

)
sin

πx

Lx

+
εutide

2π
sin (ωtidet+ θtide) sin

2πy

Ly
sin

πx

Lx

Ψyz(y, z, t) =
εuvert

4π
ξ(t) sinπz tanh

αy

Ly
tanh

α (yhz − y)

Ly
tanh

α
(
y − Ly

)
Ly

Ψxz(x, z, t) = 0,

(8.1.4)

with the parameter values given as: Lx = 3/4, Ly = 5/4, yhz = Ly/2, ωtide = 36π/19,

ωday = π, c̄2 = 1, α = 10, and ξ(t) :=
(
c̄2 + 4

π
sinωdayt

)
. For the parameters used,

t = 2 corresponds to a day in dimensional units.

It was observed in Aharon et al. (2012) that the strength of the vertical pertur-

bation was capable of changing the dynamics of mixing; where with the decrease in

perturbation, the results approach those obtained from the 2D surface layer model.

It is noted that for the GLM2D, short integration times (as long as 1/4 of the period

of the flow) were necessary such that the linear flow approximation was still valid.

Given the additional complexity of another dimension this short time restriction is

still seen.
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Types Condition

� Elliptic (trapping) σ < σ̄ −
√
〈(σ − σ̄)2〉

� Hyperbolic (jumping) σ > σ̄ +
√
〈(σ − σ̄)2〉

� Intermediate (both) |σ − σ̄| <
√
〈(σ − σ̄)2〉

Table 8.1: Classification of Coherent Regions Given by the FTLE Measure for the 3-dimensional

Flows

Analysis for 3D Systems

The following sections will be submitted to Physics of Fluids. The first step of the

analysis for the 3D systems is obtaining the LCS classification of trapping regions.

In Budǐsić et al. (2015) the same ABC systems were analyzed, and it is noted here

that the full OWC partitions obtained therein contain no non-hyperbolic regions(i.e.

trapping regions). As such, the OWC partition although theoretically interesting is

not suited for the following analysis, and will therefore be omitted.

The finite-time Lyapunov exponent (FTLE) field will be used to identify trapping

type regions via a threshholding argument, similar to what was done for the 2D

turbulent flow. The regions are classified by using one standard deviation away from

the mean value. Letting σ(x, t) = Λt
t0

(x0) denote the FTLE field, and σ̄ = 〈σ〉 be the

field average (〈·〉 indicates the spatial average), then Table 8.1 describes the FTLE

partition for the 3D flows. Note that in the 3D cases only trapping and nontrapping

regions are considered, therefore the “Hyperbolic” and “Intermediate” regions are

combined.

Further, since the integrable and steady ABC flows are autonomous, only one set

of partitions is needed to analyze their dynamics. As such, for these flows level-sets
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Figure 8.2.1: Comparison of the partitions for the integrable ABC flow, obtained by a) the standard

deviation of the FTLE field, b) the FTLE level-sets, c) the PRA level-sets, and d) the LAVD

level-sets, using an integration time of τ = 5. The fields are horizontal slices at z = 0

extracted from the FTLE fields are also used to partition the domain. However,

since this procedure is computationally intensive and requires well defined transport

boundaries, the unsteady ABC flow will not use the level-sets extracted from the

FTLE field. As discussed earlier, the trapping regions for the PRA and LAVD meth-

ods are obtained by extruding level-sets throughout the 3-dimensional domain.

In Fig. 8.2.1 the trapping regions for the integrable ABC flow are shown. It is

seen that using the classification based on the standard deviation of FTLE gives false

positives for trapping regions. This partition is also the most dissimilar to the others.

The partitions obtained from using level-set extraction all give similar results, only

differing if the size of the defined trapping regions. It is also noted that for the

integrable ABC flow, the boundaries of the trapping regions do not change with z;

the partitions obtained at z = 0 are the same for all z ∈ [0, 2π].

In a similar manner, the partitions for the steady ABC flow can be seen in Fig.

8.2.2. This figure shows a comparison of the partitions obtained using an integration

time of τ = 10, at the z = 0 slice. Similar to the integrable flow, the FTLE partition

obtained via threshholding is the most dissimilar, and least accurate. The major

distinctions between the level-set based partitions appears to be the width of the
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Figure 8.2.2: Comparison of the partitions for the steady ABC flow, obtained by a) the standard

deviation of the FTLE field, b) the FTLE level-sets, c) the PRA level-sets, and d) the LAVD

level-sets, using an integration time of τ = 10. The fields are horizontal slices at z = 0.

vortex-tube on the leftside of the domain; for the FTLE and PRA methods only the

vortex core is extracted, while LAVD extracts a much wider region.

Further, unlike the integrable case, the partitions of the steady flow vary along

the z-axis. Fig. 8.2.3 depicts the interior of trapping regions with black dots. In this

figure the vortex-tubes can clear be inferred. Having seen how poor a partition the

FTLEstd gave in Fig. 8.2.2, it is no suprise to see many erroneous classifications in

the 3D plot.

For the nonautonomous case, the classification of trapping regions at later times

is necessary. In order to achieve this a sliding time interval is used (just like what was

used in the 2D analysis), with a spacing of 1/20 of a timeunit between partitions and

an integration time of τ = 5 time units. In Fig. 8.2.4 the partitions of the unsteady

ABC flow are seen, for t = 0. Due to the nonlinear temporal terms in the flow,

the simple structures that obtained the steady case are lost. With the well defined

barriers lost, the level-set approach is not used for the FTLE field. However, since

both the PRA and LAVD methods rely on extracting level-sets surrounding local

extrema in the fields, extraction is used for these partitions. The ellitpic region, as

defined in Table 8.1, is seen as the dark blue regions in Fig. 8.2.4a); these regions
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Figure 8.2.3: Comparison of the extracted trapping regions for the steady ABC flow, obtained by

a) the standard deviation of the FTLE field, b) the FTLE level-sets, c) the PRA level-sets, and d)

the LAVD level-sets, using an integration time of τ = 10.

do not appear to correspond well with the underlying dynamics, this is a result of

the arbitrary nature of the threshold used for demarcating the regions. For the PRA

and LAVD partitions, the respective fields are first plot, then on top the trapping

regions, as obtained from level-set extraction, are distinguished. In Fig. 8.2.4b) the

trapping regions are seen as black dots, that correspond well to the structure of the

underlying field, with a few random artifacts present. The reason for the spurious

results could be due to imaginary components in the PRA. The trapping regions for

the LAVD field, presented as red curves in Fig. 8.2.4c), distinguish similar regions

to PRA, without the additional artifacts. Further, the LAVD method captures two

regions on the left side of the domain, in the region that was a horizontal vortex tube

for the steady case. This suggests that when the instability is introduced for the

unsteady flow and the vortex tube starts to breakdown, the bulk motion of tracers in

this region may not be chaotic over the integration time used for the field.
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Figure 8.2.4: Comparison of the partitions for the unsteady ABC flow, obtained by a) the standard

deviation of the FTLE field, b) the PRA level-sets, and c) the LAVD level-sets, using an integration

time of τ = 5. The fields are horizontal slices at z = 0

Conditional Jump and Flight-time Statistics

Using the partitions from the previous section, the scalings of the jump and flight-

time pdfs are obtained. Two types of trajectories are analyzed for each flow: determin-

istic (N) and stochastic. The stochastic trajectories use Gaussian noise to simulate

the diffusion process. Further, two types of stochastic trajectories are used in order

to investigate isotropic (G1) and anisotropic (G2) diffusion. The anisotropic diffusion

is done by using a horizontal diffusivity κh, and vertical diffusivity κv ≡ κh/100. By

looking at how the statistics vary between these two cases, some of the modeling

necessities for geophysical flows by toy models can be better understood.

Recalling the simple structures of the partitions for the integrable ABC flow two

complimentary analyses are done for it. Since the flow is uniform in the z-direction,

a dense sampling of the x− y plane is used to obtain the statistics; the sampling uses

40000 initiation points (corresponding to a 200× 200 grid) for tracer ensembles with
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4900 members. However, due to data storage issues this dense of a sampling cannot be

extended to the third dimension. Instead, for flows that vary in z, a much more sparse

initial sampling is used. The sparse sampling uses initiation points corresponding to

a 32 × 32 × 32 lattice. To draw a direct comparison of the impact of the sampling

types, both are used for the integrable ABC flow.

The dense data is obtained by initiating the tracer ensemble at a single point in

the 200 × 200 grid, while the sparse sampling is done using 17 × 17 × 17 uniformly

spaced tracers in each cell of the 32× 32× 32 lattice. An integration time of 50 time

units is used for computing the trajectories.

In Table 8.2 the relative coherence rates for the different partitions and initiation

type are seen. These coherence rates are similar to the retention rates, howere where

retention rates cares only about the classification of the tracer’s initial and final

locations, the coherence rates checks if a tracer ever has an exit event – switching

from one classification to another. For the deterministic trajectories this number

provides a metric for gauging the accuracy of the partition. Further, when noise is

added this number indicates the robustness of the coherent structures. From the table

it is seen that the the densely and sparsely initiated cases maintained similar levels of

coherence (to each other) for the 3 noise cases, suggesting that the sparse sampling

is sufficient.

For the deterministic case the largest rates of coherence are expected, as the

trajectories are not able to traverse the transport barrier. It is seen that the two

types of stochastic trajectories result in the same retention rates approximately, this

is expected for this flow since the anisotropic noise limits the perturbation in the z

direction. The FTLEstd is seen to consistently give the lowest coherence, due to the

arbitrary nature in which partitioning is done, while the level-set based approaches

have greater coherence. When noise is added the trajectories are able to escape the
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Region Type Partition Type

FTLEstd FTLE PRA LAVD

Trapping (d/s) (N) .4224 : .3985 .7271 : .7118 .8982 : .9029 .8989 : .8911

Flight (d/s) (N) .6409 : .6444 .9505 : .9547 .9391 : .9310 .9576 : .9616

Trapping (d/s) (G1) .1035 : .1027 .2567 : .2491 .5697 : .5765 .5410 : .5387

Flight (d/s) (G1) .3618 : .3617 .8473 : .8510 .7173 : .7139 .7733 : .7758

Trapping (d/s) (G2) .1034 : .1024 .2566 : .2491 .5716 : .5765 .5423 : .5388

Flight (d/s) (G2) .3612 : .3617 .8473 : .8510 .7169 : .7139 .7737 : .7758

Table 8.2: Coherence rates for the integrable ABC flow using 3 noise types: deterministic (N),

isotropic Gaussian noise (G1), and anisotropic Gaussian noise (G2); along with 2 initial release

configurations: dense (d) and sparse (s). The trajectories are obtained using an integration time of

τ = 50.

trapping and flight regions, resulting in lower coherence. However, relatively large

coherence is maintained in the flight/nontrapping regions for the level set approaches,

due to the size of this region compared to the domain. As expected little difference

is seen between the isotropic and anisotropic cases since there is no variability of the

flow in the z direction.

The pdfs of trapping and nontrapping events for the sparsely initiated integrable

flow are seen in Fig. 8.2.5. It is seen that the PRA and LAVD give similar results, with

FTLE and FTLEstd being slightly different; this is expected due to the differences in

the partitions. Due to the simplicity of this flow, the mixing of tracers is driven by

the noise. Further, due to the noise level, a majority of tracers originally in one of

the vortex tubes will stay there, with only a few tracers on the boundaries entering

and exiting; this is seen as the spikes in the histograms at the final time. Further,

the oscillatory behavior seen in the FTLEstd and FTLE indicate that the boundaries

of the vortex tubes were not correctly classified, resulting in tracers inside the vortex

tube to be misidentified as exiting the region. The dashed black lines show the
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Figure 8.2.5: Pdfs of trapping and nontrapping regions for the integrable ABC flow, as obtained

from FTLEstd (cyan), FTLE (blue), PRA (red), and LAVD (green), using an integration time of

τ = 10. The black dashed lines show the power-law decay rates for the various noises.

power-law decay rates, ranging from t−1.3 to t−2. The same decay rates are seen for

the isotropic and anisotropic noise, which is expected due to the structure of the flow.

The fast decay rate for the deterministic trajectories corresponds to tracers that were

originally mislabelled, and from only portions of coherent regions being extracted.

For the steady and unsteady ABC flows it is expected that the isotropic and

anisotropic diffusions will lead to differing results; due to the partitions variability

in z. In Table 8.3 the coherence rates for the steady and unsteady ABC flows are

seen. Since the steady flow is still autonomous, tracers are expected to stay coherent

over the integration time of their trajectories. However, for the unsteady case the

coherent regions are not permanent features of the flow, and can deform or even

disassociate over the integration time of the trajectories. Further, since the coherent

regions in which a trajectory is initiated can be destroyed before the end of the

simulation, lower coherences are expected. Interestingly greater coherence is seen in

the anisotropic noise, than for the isotropic, owing to the fact that the anisotropic
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perturbation alters the tracer location by a smaller distance. The smaller perturbation

offers tracers fewer opportunities to escape their partitions. It is again seen that the

FTLEstd has the lowest retention for both the steady and unsteady flows, owing to

the arbitrary value the partition is based on.

Region Type Partition Type

FTLEstd FTLE PRA LAVD

Trapping (S/U) (N) .0727 : 6.66e-4 .1964 .2183 : 0 .5472 : 0

Flight (S/U) (N) .0976 : .1042 .7277 .3836 : .3433 .6574 : .3417

Trapping (S/U) (G1) 2.9747e-4 : 6.09e-4 .0048 .0187 : 0 .2224 : 0

Flight (S/U) (G1) .0092 : .0625 .2979 .1713 : .3379 .2979 : .3334

Trapping (S/U) (G2) .0052 : 2.4692e-5 .0215 .0584 : 0 .3084 : 0

Flight (S/U) (G2) .0154 : .0857 .5824 .2287 : .3429 .3916 : .3400

Table 8.3: Conditional coherence rates for the steady (S) and unsteady (U) ABC flows using 3 noise

types: deterministic (N), isotropic Gaussian noise (G1), and anisotropic Gaussian noise (G2). The

trajectories of the steady ABC flows are obtained with an integration time of τ = 50, while the

unsteady flow uses an integration time of τ = 8.

Further, from looking at the pdfs of the trapping and nontrapping events the

impact of the anisotropy can also be seen. In Fig. 8.2.6, the pdfs of the trapping

and nontrapping events are shown along with power-law scales shown in black. It is

seen that not only is there much more variability between the results of the different

partitions, but that anisotropy has an impact on the curves. Tracers originating in

trapping regions are less likely to exit the transversal vortex tubes, and would find it

even more difficult to escape a vertical vortex tube.

As discussed earlier (and seen in Fig. 8.2.4) the partitions for the unsteady ABC

flow are less well defined, making the presence of coherent regions less noticeable. The

difficulty in accurately obtaining the trapping regions leads to misclassified regions,

as seen in the partition figure. In Fig. 8.2.7 the pdfs of the trapping and nontrapping
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Figure 8.2.6: Pdfs of trapping and nontrapping regions for the steady ABC flow, as obtained from

FTLE, FTLEstd, PRA, and LAVD, using an integration time of τ = 10. The black dashed curves

show the power-law decay rates for the various partitions.
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Figure 8.2.7: Pdfs of trapping and nontrapping regions for the unsteady ABC flow, as obtained from

FTLEstd, PRA, and LAVD, using an integration time of τ = 10. The black dashed curves show the

power-law decay rates for the various partitions.

regions are seen. The curves are more unsteady and unpredicatable compared to

those obtained for the integrable and steady cases. This is due to the misclassifica-

tion of tracers either at their initial location or along their trajectories. Despite the

misclassifications the general shapes of the curves still suggest similar scaling laws as

the other flows.
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Use Statistics to Model Transport

Having the different scales from the pdfs, they can be used as parameters for modelling

the 3D nonlinear transport as a 1D system. Previously the reduction of a higher

dimensional system to 1D used the radial displacement of tracers. Since the 3D

flows do not offer natural boundaries, like those seen in the annulus case, the total

displacement is used for the 1D model. The total displacement is simply given as,

∆tot(t) =

√(
x(t)− x0

)2
+
(
y(t)− y0

)2
+
(
z(t)− z0

)2
, (8.2.1)

where x0, y0, and z0 indicate the initial tracer location. The total displacement can

display many different behaviors depending on where the tracer is located. If a tracer

is in a chaotic region the changes in the total displacement can be very rapid, with

trapping-like behavior suddenly followed by a large flight event. For tracers in vortex

tubes, the total displacement could oscillate if the tracer was initiated near the vortex

core, or the total displacement could grow linearly if the tracer travels longitudinally

through the tube.

The following scaling models are used in order to obtain self-similar displacement

pdfs:

P (∆tot, t) = t−νf(ξ), ξ = ∆tot/t
β± , (8.2.2)

where f is a scaling function, ξ a scaled coordinate, and ν and β± are the decay rate

and expansion rates of the tails.

The impact of transport barriers becomes apparent from the pdfs of the total

displacements, shown in Fig. 8.2.8 as the multimodal structures seen in the steady

and unsteady cases. The various peaks, along with the tails of the pdf having different

scales, are signatures of anomalous transport. For the steady and unsteady flows,

the left and right tails of the pdf are seen to take values β− = −.35 ± .05 and
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Figure 8.2.8: Pdfs of the total displacements of tracers in the a) integrable, b) steady, and c) unsteady

ABC flows for isotropic noise. The black curves indicate the self-similar profile obtained at final

time, and the lone curves are for an earlier time.

β+ = −.55 ± .05. The timescale is slightly different between the two flows, with

the steady flow having ν = .9 and the unsteady flow ν = .7; implying that the

displacement of trajectories is greater in the steady flow. This is understandable since

there are long-lasting vortex tubes in which to promote displacement, whereas the

chaotic sea of the unsteady flow may cause tracers to rapidly change their direction,

inhibiting displacement.

A single well defined Gaussian is obtained in the case of the integrable flow, with

scaling parameter ν = .5. The pdfs obtained from the anisotropic noise are seen to

use the same parameters.

For the unsteady ABC flow it is less clear what the contributing factors are to

the changes seen in the total displacement. Since the coherent structures of this flow

can decorrelate over time, tracers initiated in trapping regions can exhibit chaotic

trajectories. Further, since coherent structures develop with time, it is also possible

that a tracer with a chaotic trajectory can enter into a trapping region and have a

smooth (possibly integrable) trajectory. This alternating between trajectory types

makes deciphering the statistics more difficult to understand, since it isn’t just per-

turbations that are causing tracers to change their dynamic region. However, with

the two stochastic cases, analyzing the impact of anisotropy is possible. It is seen

that with the smaller pertrubation in the z direction, the pdf grows more slowly.
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Linear Flow Approximation

For the 2D case, two distinct modeling approaches were used to approximate the

elements of the covariance matrix of nonlinear flows; the first was the decomposition

approach, where first the fluid element is contorted along its principal axis and then

subject to a rotation, and the second was the GLM method. For the 3D case however,

only the quasi-3D (Q3D) and decoupled-3D (D3D) versions of the GLM3D method

will be used to model the moments.

The analytic expressions for the second-order moments of the IGW model are

given in Appendix F. Having these analytic moments the validity of the GLM3D

models can be gauged for integrable non-decoupled 3D flows. In order to obtain the

parameters of the GLM3D, the Jacobian of the nonlinear flow is computed and the

elements of it are manipulated. The Jacobian for the IGW model is given by:

J tt0(x0) =


−2πU sin 2π (x+ z − τ) 0 −2πU sin 2π (x+ z − τ)

2πU cos 2π (x+ z − τ) 0 2πU cos 2π (x+ z − τ)

2πU sin 2π (x+ z − τ) 0 2πU sin 2π (x+ z − τ)

 . (8.2.3)

Recalling the form of the Jacobian for D3D, given by (7.3.13), it is clear that the

parameters obtained from (7.3.17) will be inaccurate, and further that Q3D and D3D

are not suited for non-decoupled 3D flows.

The surface mixing flow, which is decoupled, is suited for analysis with D3D.

Using the stream-functions, the Jacobian of the decoupled surface mixing model is

given by:

J tt0(x0) =


∂x∂yΨxy ∂y∂yΨxy 0

−∂x∂xΨxy −∂y∂xΨxy + ∂y∂zΨyz ∂z∂zΨyz

0 −∂y∂yΨyz −∂z∂yΨyz

 . (8.2.4)
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Figure 8.2.9: The second-order moments of the surface mixing model obtained from the RDM with

an integration time of τ = .05

Recalling the expression of Ψyz from (8.1.4) and that the model is concerned with

surface mixing, only the z = 0 plane is looked at. Further, by looking at this specific

z value, it is seen that ∂z∂zΨyz = 0 and ∂z∂zΨyz = 0, giving the above Jacobian the

same form as the D3D Jacobian.

Results

In order to compare with the moment approximations obtained from Q3D and D3D,

the RDM is used to obtain the moments. For each cell of the domain an ensemble of

5 million tracers is used to obtain the moments. It is seen in Fig. 8.2.9 that with such

large ensembles of tracers the moments are very smooth, except for the in the bottom

row and last column. The M13, M23, M31, and M32 elements seem chaotic, however
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Figure 8.2.10: The second-order moments of the surface mixing model obtained from the D3D with

an integration time of τ = .05

since the mean value of these fields are 0, the granularity seen is due to numerical

rounding.

As seen in Fig. 8.2.10, the moment approximations obtained from D3D give rea-

sonable qualitative agreement to the actual values. It is also seen that the M12 (and

M21) elements contain artifacts not seen in the actual moments. These artifacts lie

on the boundary of where θ starts to take imaginary values. More accurate moment

approximations for this model are obtained from the Q3D formulation; this is seen

in Fig. 8.2.11. Since the M12 term is computed using α instead of θ the artifacts are

not present.

Direct comparisons for the moments of interest are done in Figures 8.2.12 and

8.2.13. These figures show how the approximations vary as the integration time is

extended. As the integration time is extended, the moment approximations become

less accurate since they are based on a linearization of the nonlinear system. The
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Figure 8.2.11: The second-order moments of the surface mixing model obtained from the Q3D with

an integration time of τ = .05

differences between the approximations and the actual moments can already be seen

for τ = .1, and is most notable in the M12 term. When τ = .15 these differences

become even more apparent. With an integration time of τ = .2 the D3D and Q3D

methods produce moments that have imaginary components, since this is nonphysical

further integration times were not explored.
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Figure 8.2.12: The second-order moments of the surface mixing model obtained from the (top) D3D,

(middle) Q3D, and (bottom) RDM with an integration time of τ = .1

Figure 8.2.13: The second-order moments of the surface mixing model obtained from the (top) D3D,

(middle) Q3D, and (bottom) RDM with an integration time of τ = .15
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Chapter 9

SUMMARY AND CONCLUSIONS

In order to understand the finite-time, or transient, affects of mixing on scalars,

material transport barriers are used. It was observed that Lagrangian coherent

structures (LCSs) are the material transport barriers that should be used in nonau-

tonomous systems to distinguish the boundaries of coherent regions. The coherent

regions obtained from LCS identification techniques were observed to have unimodal

statistics, with different scaling parameters associated with different regions; the im-

plications of which being that the regions are dynamically homogeneous, with possibly

different dynamics for each region. It was further seen that for nonturbulent flows

Eulerian measures do not correctly distinguish the coherence of regions.

Using the coherent regions extracted using LCS methods, conditional statistics of

passive tracers were analyzed. In order to model the advection-diffusion process as a

purely diffusive one, the resident-time and dispersion statistics can be used as inputs

to a fractional diffusion equation. Here the conditional resident-time and dispersion

statistics are obtained for various flow features, and the scales of the statistics are

seen to vary by region. The differences of the scales between the varioius regions

highlights the anomalous aspect of the diffusion. Previously, the resident-time and

dispersion statistics were analyzed using the tracer trajectory information, whereas

here trapping and nontrapping behavior is clearly identified using the coherent regions

of the flows.

Analytic solutions can be obtained by reframing the advection-diffusion equation

as either an effective-diffusion equation or the linear-flow advection-diffusion equation.

For both of these equations, the computation of the covariance matrix is needed. Here
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the elements of the covariance matrix for any nonlinear 2D flow can be estimated

using the General Linear Method (GLM). Further, an analytic approximation for the

elements of the covariance matrix for nonlinear quasi-3D flows is given. Both of these

methods (GLM and GLM3D) rely on the incompressibility of the flows to provide a

closure argument when generating the higher order moments.

Geophysical flows can sometimes be viewed as quasi-3D, due to their aspect ratio

and the slight influence to the dynamics from the z-direction. For these flows, the

proposed GLM3D is capable of accurately approximating the elements of the covari-

ance matrix for finite-time. This provides a means by which to solve for the evolution

of a scalar concentration using the linear-flow advection-diffusion equation - a novel

modeling approach for geophysical flows. Further, the same covariance approxima-

tions can also be used in a conditional effective-diffusion equation to represent the

evolution of a scalar based on the type of coherent region the scalar was initiated in.

As natural extensions to this work, future topics of exploration fall into two as-

pects: using the resident-time and dispersion statistics for modeling, and using the

moment approximations for modeling. By utilizing the homogenization of dynamics

within coherent regions, the same scaling parameters may be assigned throughout

the region. It is noted here that some care would need to be taken on region bound-

aries to ensure consistent results. Further, the scale parameters of the resident-time

and dispersion statistics can be used in higher order fractional diffusion equations,

which might reflect the anomalous transport more accurately. In terms of working

further with the moment approximations, the GLM3D can be used to approximate

the evolution of scalar concentration as well as the decay of scalar variance for geo-

physical flows. Since GLM3D is a linear flow approximation, the solution to the linear

advection-diffusion equation can be used. However, the moment approximations can

be directly imployed in an effective-diffusion model.
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dimensional flow: Lévy flights and anomalous diffusion”, Physica D 76, 70–84
(1994).

Tang, W., B. Knutson, A. Mahalov and R. Dimitrova, “The geometry of inertial
particle mixing in urban flows, from deterministic and random displacement mod-
els”, Physics of Fluids 24, 6, URL http://scitation.aip.org/content/aip/
journal/pof2/24/6/10.1063/1.4729453 (2012).

Tang, W., J. E. Taylor and A. Mahalov, “Lagrangian dynamics in stochastic inertia-
gravity waves”, Physics of Fluids (2010).

Tang, W. and P. Walker, “Finite-time statistics of scalar diffusion in lagrangian co-
herent structures”, Physical Review E, 045201 (2012).

Taylor, G. I., “Diffusion by continuous movements”, PT URL http://archipelago.
uma.pt/pdf_library/Taylor_1920_PT.pdf (1920).

158

http://scitation.aip.org/content/aip/journal/pof2/8/2/10.1063/1.868806;jsessionid=4Nf-ODOXB2x69vPnyBgWOFTv.x-aip-live-03
http://scitation.aip.org/content/aip/journal/pof2/8/2/10.1063/1.868806;jsessionid=4Nf-ODOXB2x69vPnyBgWOFTv.x-aip-live-03
https://books.google.com/books?id=8OLVcbRoNSgC
https://books.google.com/books?id=8OLVcbRoNSgC
http://link.aps.org/doi/10.1103/PhysRevLett.66.2984
http://link.aps.org/doi/10.1103/PhysRevLett.66.2984
http://link.aps.org/doi/10.1103/PhysRevLett.71.3975
http://scitation.aip.org/content/aip/journal/pof2/24/6/10.1063/1.4729453
http://scitation.aip.org/content/aip/journal/pof2/24/6/10.1063/1.4729453
http://archipelago.uma.pt/pdf_library/Taylor_1920_PT.pdf
http://archipelago.uma.pt/pdf_library/Taylor_1920_PT.pdf


Thiffeault, J.-L., Scalar Decay in Chaotic Mixing, vol. 744 of Lecture Notes in Physics,
Berlin Springer Verlag (2008).

Townsend, A. A., “The diffusion of heat spots in isotropic turbulence”, Proc. Roy.
Soc. (1951).

Van Kampen, N. G., Stochastic processes in physics and chemistry, vol. 1 (Elsevier,
1992).

Walker, P. and W. Tang, “Obtaining second order moments from first order approx-
imations”, Physical Review E (2018).

Walker, P., W. Tang and D. del Castillo-Negre, “The lagrangian statistics of passive
scalar transport dependent on coherent structure identifications”, Physical Review
E (2018).

Yakhot, V., S. A. Orszag, S. Balachandar, E. Jackson, Z.-S. She and L. Sirovich, “Phe-
nomenological theory of probability distributions in turbulence”, Journal of Scien-
tific Computing 5, 3, 199–221, URL http://dx.doi.org/10.1007/BF01089164
(1990).

Zeldovich, Y., A. Ruzmaikin, S. Molchanov and D. Sokoloff, “Kinematic dynamo
problem in a linear veloctu field”, Journal of Fluid Mechanics pp. 1–11 (1984).

159

http://dx.doi.org/10.1007/BF01089164


APPENDIX A

INFINITESIMAL GENERATORS AND USE FOR SECOND-ORDER MOMENTS

160



In this appendix infinitesimal generators are introduced and used to compute
the principal covariance matrix given by (6.1.6). Given a function Z (X, Y, t), that
is continuous in its arguments, the expectation of w(t) = E

[
Z (X, Y, t)

]
solves the

following integral equation:

w(t) = w(t0) +

∫ t

t0

E
(
A[Z(s)]

)
ds, (A.1.1)

where A[Z] = ∂tZ + u∂xZ + v∂yZ + κ
(
∂2
xZ + ∂2

yZ
)

is the infinitesimal generator of

the diffusion process that solves (2.1.2).
For the decoupled linear system (6.1.5), the generators for the second-order mo-

ments are given as:

A[X2] = 2λX2 + 2κ

A[XY ] = 0

A[Y 2] = −2λY 2 + 2κ

. (A.1.2)

The above system gives 3 simple linear ODEs to solve, with initial conditions defined
as: E[X2](t0) = E[X2

0 ], E[XY ](t0) = E[XY0], and E[Y 2](t0) = E[Y 2
0 ]. Solving these

ODEs gives the elements of the covariance matrix as follows.

E[X2] =
κ

λ

(
e2λτ − 1

)
+ E[X2

0 ]e2λτ

E[XY ] = E[XY0]

E[Y 2] =
κ

λ

(
1− e−2λτ

)
+ E[Y 2

0 ]e−2λτ

. (A.1.3)

Since the initial distribution is assumed to be a delta function E[X2
0 ] = 0,

E[XY0] = 0, E[Y 2
0 ] = 0, and the expression in (6.1.6) is obtained.
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In this appendix it will be shown how to obtain the analytic expression of the
moments for the general linear model given by (6.1.15). The generators for the first-
order moments are given by:

A[X] = λX + βY

A[Y ] = γX − λY (B.1.1)

This reduces to a simple system of equations

˙E[X] = λE[X] + βE[Y ]

˙E[Y ] = γE[X]− λE[Y ]
, (B.1.2)

with solutions given by,
ẋ = eσtx0. (B.1.3)

The matrix exponential can be obtained from the eigenvalues and eigenvectors of σt.
Denoting D as the matrix of eigenvalues along the diagonal and V as the matrix of
eigenvectors, for the given system these result in:

D =

[
−αt 0

0 αt

]
V =

[
(λ− α)/γ (λ+ α)/γ

1 1

]
, (B.1.4)

where α :=
√
λ2 + βγ. The first-order moments are then obtained via J := eσt, where

J is the Jacobian and eσt = V expDV −1.

J =

[
(λ− α)/γ (λ+ α)/γ

1 1

] [
e−αt 0

0 eαt

]([
(λ− α)/γ (λ+ α)/γ

1 1

])−1

=
−γ
2α

[
(λ− α)e−αt/γ (λ+ α)eαt/γ

e−αt eαt

] [
1 −(λ+ α)/γ
−1 (λ− α)/γ

]
=
−1

2α

[
λ
(
e−αt − eαt

)
− α

(
e−αt + eαt

)
β
(
e−αt − eαt

)
γ
(
e−αt − eαt

)
−λ
(
e−αt − eαt

)
− α

(
e−αt + eαt

)]

=


(

cosh(ατ) + λ
α

sinh(ατ)
)

β
α

sinh(ατ)

γ
α

sinh(ατ)
(

cosh(ατ)− λ
α

sinh(ατ)
)
 .

(B.1.5)

The first-order moments are then given as:

E[X](t) = E[X0]

(
cosh(ατ) +

λ

α
sinh(ατ)

)
+ E[Y0]

β

α
sinh(ατ)

E[Y ](t) = E[Y0]

(
cosh(ατ)− λ

α
sinh(ατ)

)
+ E[X0]

γ

α
sinh(ατ)

. (B.1.6)

These solutions give an analytic connection to the deformation tensor, via (6.1.17).
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The generators for the second-order moments are given as:

A[X2] = 2λX2 + 2βXY + 2κ

A[XY ] = γX2 + βY 2

A[Y 2] = 2γXY − 2λY 2 + 2κ

, (B.1.7)

From the above it is seen that the integral equations for second-order moments
would give:

˙E[X2] = 2λE[X2] + 2βE[XY ] + 2κ

˙E[XY ] = γE[X2] + βE[Y 2]

˙E[Y 2] = 2γE[XY ]− 2λE[Y 2] + 2κ

(B.1.8)

By taking the derivative w.r.t. time once again for the top and bottom rows of the
above, and subtituting the middle row where appropriate the following two equations
are obtained:

¨E[X2] = 2λ ˙E[X2] + 2β
(
γE[X2] + βE[Y 2]

)
¨E[Y 2] = 2γ

(
γE[X2] + βE[Y 2]

)
− 2λ ˙E[Y 2]

(B.1.9)

Letting x1 = E[X2], x2 = ˙E[X2], x3 = E[Y 2], and x4 = ˙E[Y 2], the above system is
rewritten as:

~̇x =

˙
x1

x2

x3

x4

 =


0 1 0 0

2βγ 2λ 2β2 0
0 0 0 1

2γ2 0 2βγ −2λ



x1

x2

x3

x4

 . (B.1.10)

When this system is written more compactly as ~̇x = B~x, the solution is immediate
as ~x(t) = eB(t−t0)~x(t0). The solutions for the variances and their rates of change are
found by using an initial condition of:

~x(t0) =


E[X2

0 ]
2λE[X2

0 ] + 2βE[XY0] + 2κ
E[Y 2

0 ]
2γE[XY0]− 2λE[Y 2

0 ] + 2κ

 . (B.1.11)

Letting the initial conditions be represented by Ex2 for the x-variance, Exy for the
cross-variance term, and Ey2 for the y-variance, the solutions are given by the follow-
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ing:

E[X2] =
sinh 2τα

2α3

((
Exyβ + Ex2λ

) (
λ2 + α2 + βγ

)
+ κ

(
λ2 + α2 + β2

))
+

cosh 2τα

α2

(
Ex2

(
λ2 +

βγ

2

)
+ Ey2

β2

2
+ λβExy + κλ

)

+
1

α2

(
Ex2

βγ

2
− Ey2

β2

2
− Exyβλ+ κ

(
βτ (γ − β)− λ

))
,

E[Y 2] =
sinh 2τα

2α3

((
Exyγ − Ey2λ

) (
λ2 + α2 + βγ

)
+ κ

(
λ2 + α2 + γ2

))
+

cosh 2τα

α2

(
Ey2

(
λ2 +

βγ

2

)
+ Ex2

γ2

2
− λγExy − κλ

)

+
1

α2

(
−Ex2

γ2

2
+ Ey2

βγ

2
+ Exyγλ+ κ

(
γτ (β − γ) + λ

))
.

(B.1.12)

The equations for E[X2] and E[Y 2] can now be used in the middle row of (B.1.8)
to solve for E[XY ], giving:

E[XY ] =
sinh 2τα

2α3

(
Ex2γα

2 + Ey2βα
2 + λκ(γ − β)

)
+

cosh (2τα)− 1

2α2

(
Ex2λγ − Ey2βλ+ 2Exyβγ + κ(γ + β)

)
+
κλ(β − γ)τ

α2
+ Exy.

(B.1.13)

Since the initial distribution is assumed to be a delta function Ex2 = 0, Exy = 0,
and Ey2 = 0; and (6.1.16) is recovered. Further, it is seen that when β = 0 and γ = 0,
the above moments converge to those obtained in Appendix A.
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In this appendix it will be shown how to obtain the analytic expression of the mo-
ments for the barely-3D and quasi-3D flows, given by (7.3.1) and (7.3.7), respectively.

Barely-3D Flow Moments

First-order Moments

The generators for the first-order moments are given by:

A[X] = λX + βY

A[Y ] = γX − λY
A[Z] = 0,

(C.1.1)

where it is apparent that the first-order moments are unchanged from the 2D flow;
this and the simple relation for the z-moment make it simple to obtain the moments.
Following the same analysis presented in Appendix B, the first-order moments are
then given as:

E[X](t) = E[X0]

(
cosh(ατ) +

λ

α
sinh(ατ)

)
+ E[Y0]

β

α
sinh(ατ)

E[Y ](t) = E[Y0]

(
cosh(ατ)− λ

α
sinh(ατ)

)
+ E[X0]

γ

α
sinh(ατ)

E[Z](t) = E[Z0],

(C.1.2)

where α =
√
λ2 + βγ.

Second-Order Moments

The generators for the second-order moments are given as:

A[X2] = 2λX2 + 2βXY + 2κ

A[XY ] = γX2 + βY 2

A[Y 2] = 2γXY − 2λY 2 + 2κ

A[XZ] = λXZ + βY Z

A[Y Z] = γXZ − λY Z
A[Z2] = 2κ.

(C.1.3)
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The integral equations for the second-order moments can then be written as 3
systems:

˙E[X2] = 2λE[X2] + 2βE[XY ] + 2κ

˙E[XY ] = γE[X2] + βE[Y 2]

˙E[Y 2] = 2γE[XY ]− 2λE[Y 2] + 2κ

˙E[XZ] = λE[XZ] + βE[Y Z]

˙E[Y Z] = γE[XZ]− λE[Y Z]

˙E[Z2] = 2κ

(C.1.4)

From previous analysis in the 2D case (Appendix B), the solutions to (C.1.4) are
immediately known. Letting the initial conditions be represented by Ex2 for the
x-variance, Exy for the XY cross-variance term, Ey2 for the y-variance, etc.; the
solutions are given by the following:

E[X2] =
sinh 2τα

2α3

((
Exyβ + Ex2λ

) (
λ2 + α2 + βγ

)
+ κ

(
λ2 + α2 + β2

))
+

cosh 2τα

α2

(
Ex2

(
λ2 +

βγ

2

)
+ Ey2

β2

2
+ λβExy + κλ

)

+
1

α2

(
Ex2

βγ

2
− Ey2

β2

2
− Exyβλ+ κ

(
βτ (γ − β)− λ

))
,

E[Y 2] =
sinh 2τα

2α3

((
Exyγ − Ey2λ

) (
λ2 + α2 + βγ

)
+ κ

(
λ2 + α2 + γ2

))
+

cosh 2τα

α2

(
Ey2

(
λ2 +

βγ

2

)
+ Ex2

γ2

2
− λγExy − κλ

)

+
1

α2

(
−Ex2

γ2

2
+ Ey2

βγ

2
+ Exyγλ+ κ

(
γτ (β − γ) + λ

))
E[XY ] =

sinh 2τα

2α3

(
Ex2γα

2 + Ey2βα
2 + Exyλβ(γ − β) + λκ(γ − β)

)
+

cosh (2τα)− 1

2α2

(
Ex2λγ − Ey2βλ+ 2Exyβγ + κ(γ + β)

)
+
κλ(β − γ)τ

α2
+ Exy

(C.1.5)
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E[XZ] = Exz

(
cosh(ατ) +

λ

α
sinh(ατ)

)
+ Eyz

β

α
sinh(ατ)

E[Y Z] = Eyz

(
cosh(ατ)− λ

α
sinh(ατ)

)
+ Exz

γ

α
sinh(ατ)

E[Z2] = Ez2 + 2κτ.

(C.1.6)

Quasi-3D Flow Moments

First-order Moments

The generators for the first-order moments are given by:

A[X] = λX + βY

A[Y ] = γX − λY
A[Z] = ηZ,

(C.2.1)

where η � 1. Note that as η → 0, (C.2.1) converges to (C.1.1). The first-order
moments are obtained as 2 decoupled systems:

˙E[X] = λE[X] + βE[Y ]

˙E[Y ] = γE[X]− λE[Y ]

˙E[Z] = ηE[Z].

(C.2.2)

The solution to the x and y terms of (C.2.2) are the same as those of the 2D subsystem

defined by σtt0(x0) =

[
λ β
γ −λ

]
. The first-order moments are given as:

E[X](t) = E[X0]

(
cosh(ατ) +

λ

α
sinh(ατ)

)
+ E[Y0]

β

α
sinh(ατ)

E[Y ](t) = E[Y0]

(
cosh(ατ)− λ

α
sinh(ατ)

)
+ E[X0]

γ

α
sinh(ατ)

E[Z](t) = E[Z0]eητ ,

(C.2.3)

where α =
√
λ2 + βγ.

Second-Order Moments

The generators for the second-order moments are given as:

A[X2] = 2λX2 + 2βXY + 2κ

A[XY ] = γX2 + βY 2

A[Y 2] = 2γXY − 2λY 2 + 2κ

A[XZ] = (η + λ)XZ + βY Z

A[Y Z] = γXZ + (η − λ)Y Z

A[Z2] = 2ηZ2 + 2κ.

(C.2.4)
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Again the integral equations for second-order moments result in 3 systems. These
systems are given by:

˙E[X2] = 2λE[X2] + 2βE[XY ] + 2κ

˙E[XY ] = γE[X2] + βE[Y 2]

˙E[Y 2] = 2γE[XY ]− 2λE[Y 2] + 2κ

˙E[XZ] = (η + λ)E[XZ] + βE[Y Z]

˙E[Y Z] = γE[XZ] + (η − λ)E[Y Z]

˙E[Z2] = 2ηE[Z2] + 2κ

(C.2.5)

The first set of equations in (C.2.5) are seen to be the same as the 2D case, and their
solutions are given by (B.1.7). The second group of equations in (C.2.5) is solved by
virtue of the Cayley-Hamilton theorem (seen in Appendix E), while the solution to
the last equation is computed directly. The roots of the characteristic polynomial for
the system using the Cayley-Hamilton theorem are obtained as σ1,2 = η ± α, where

α :=
√
λ2 + βγ. The matrix exponential takes the following form,

etA = s0(t)I + s1(t)A, (C.2.6)

where s0(t) and s1(t) are defined as,

s0(t) =
σ1e

σ2t − σ2e
σ1t

σ1 − σ2

s1(t) =
eσ1t − eσ2t

σ1 − σ2

.

(C.2.7)

For the XZ − Y Z system, the above result in,

s0(t) = eηt
(

coshαt− η

α
sinhαt

)
s1(t) =

eηt

α
sinhαt

(C.2.8)

Letting the initial conditions be represented by Ex2 for the x-variance, Exy for the
XY cross-variance term, Ey2 for the y-variance, etc., the solutions are given by the
following:

E[XZ] = Exze
ηt

(
cosh(ατ) +

λ

α
sinh(ατ)

)
+ Eyze

ηtβ

α
sinh(ατ)

E[Y Z] = Eyze
ηt

(
cosh(ατ)− λ

α
sinh(ατ)

)
+ Exze

ηt γ

α
sinh(ατ)

(C.2.9)

And the solution for E[Z2] is given as:

E[Z2] = Ez2e
2ητ +

κ

η

(
e2ητ − 1

)
. (C.2.10)
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In this appendix it will be shown how to obtain the analytic expression of the
moments for the decoupled-3D flow given by (7.3.12).

First-Order Moments

The generators for the first-order moments are given by:

A[X] = λX + βY

A[Y ] = γX − (λ+ η)Y

A[Z] = ηZ.

(D.1.1)

Using the same approach as in Appendix E, the first-order moments can be obtained
for the x and y terms. The functions sk(t), from (C.2.7), take the following values:

s0(t) = e
−ηt
2

(
cosh θt/2 +

η

θ
sinh θt/2

)
s1(t) =

2e
−ηt
2

θ
sinh θt/2.

(D.1.2)

With these functions, and a little integration, the resulting Jacobian is:

J =

e
−ηt
2

(
cosh θt/2 + η+2λ

θ
sinh θt/2

)
e
−ηt
2

2β
θ

sinh θt/2 0

e
−ηt
2

2γ
θ

sinh θt/2 e
−ηt
2

(
cosh θt/2− 2λ+η

θ
sinh θt/2

)
0

0 0 eηt

 ,
(D.1.3)

where θ :=
√
η2 + 4(λ2 + ηλ+ βγ). The first-order moments are obtained via E[X] =

JE[X0].

Second-Order Moments

The generators for the second-order moments are given as:

A[X2] = 2λX2 + 2βXY + 2κh

A[XY ] = γX2 − ηXY + βY 2

A[Y 2] = 2γXY − 2 (λ+ η)Y 2 + 2κh
A[XZ] = (λ+ η)XZ + βY Z

A[Y Z] = γXZ − λY Z
A[Z2] = 2ηZ2 + 2κv.

(D.2.1)
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From looking at the leading order terms of the above, it is seen that the integral
equations for second-order moments would result in 3 systems:

˙E[X2] = 2λE[X2] + 2βE[XY ] + 2κh
˙E[XY ] = γE[X2]− ηE[XY ] + βE[Y 2]

˙E[Y 2] = 2γE[XY ]− 2 (λ+ η)E[Y 2] + 2κh

˙E[XZ] = (λ+ η)E[XZ] + βE[Y Z]

˙E[Y Z] = γE[XZ]− λE[Y Z]

˙E[Z2] = 2ηE[Z2] + 2κv

(D.2.2)

From previous analysis in the 2D case (Appendix B and Appendix C), the solutions
to two of the above systems are immediately known. Letting the initial conditions be
represented by Ex2 for the x-variance, Exy for the XY cross-variance term, Ey2 for
the y-variance, etc., the solutions are given by the following:

E[XZ] = Exz

(
cosh(θτ/2) +

(
η + 2λ

θ

)
sinh(θτ/2)

)
eητ/2 + Eyz

2βλ

γθ
sinh(θτ/2)eητ/2

E[Y Z] = Eyz

(
cosh(θτ/2)−

(
η + 2λ

θ

)
sinh(θτ/2)

)
eητ/2 + Exz

2γ

θ
sinh(θτ/2)eητ/2

E[Z2] = Ez2e
2ητ +

κv
η

(
e2ητ − 1

)
.

.

(D.2.3)

For the remaining system, the following is system is used to compute the solution:

ż =


2λ 2βγ 0 −2βη 0 2β2

1 0 0 0 0 0
γ −γη 0 η2 β −βη
0 0 1 0 0 0
0 2γ2 0 −2γη −2(λ+ η) 2βγ
0 0 0 0 1 0

 z, (D.2.4)

where z =
[

˙E[X2] E[X2] ˙E[XY ] E[XY ] ˙E[Y 2] E[Y 2]
]T

. The solution to the

above is given as z(t) = M(t)z(0), where M(t) represents the matrix exponential of
the system. Noting that the second-order moments of interest come from multiplying
rows 2, 4, and 6 of M(t) with the initial condition vector z(0), the elements of these
rows are listed:
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M(2, 1) = (η5e−ητ (2 sinh θτ) + 2η4e−ητθ (2 cosh θτ) + 16ηλ4e−ητ (2 sinh θτ)

+ 8η4λe−ητ (2 sinh θτ) + η3e−ητθ2 (2 sinh θτ)

+ 32η2λ3e−ητ (2 sinh θτ) + 24η3λ2e−ητ (2 sinh θτ)

+ 2η2λe−ητθ2 (2 sinh θτ) + 8β2ηγ2e−ητ (2 sinh θτ)

+ 8ηλ3e−ητθ (2 cosh θτ) + 10η3λe−ητθ (2 cosh θτ)

+ 6βη3γe−ητ (2 sinh θτ) + 16η2λ2e−ητθ (2 cosh θτ) + 24βηγλ2e−ητ (2 sinh θτ)

+ 24βη2γλe−ητ (2 sinh θτ) + 6βη2γe−ητθ (2 cosh θτ)

+ 8βηγλe−ητθ (2 cosh θτ)− 4η4θ − 16ηλ3θ − 20η3λθ + 16β2γ2θ

− 32η2λ2θ − 16β2γ2e−ητθ − 12βη2γθ + 16βγλ2θ − 16βγλ2e−ητθ

− 16βηγλe−ητθ

/(8η(λ2 + ηλ+ βγ)θ3)
(D.2.5)

M(2, 2) = η6eτθ−ητ − 6η5θ − η6e−ητ−τθ − 32ηλ5eτθ−ητ

+ 6η5λeτθ−ητ + 32ηλ5e−ητ−τθ − 6η5λe−ητ−τθ

+ 32ηλ4θ − 16η4λθ − η4eτθ−ητθ2 + η4e−ητ−τθθ2

− 48η2λ4eτθ−ητ − 16η3λ3eτθ−ητ + 8η4λ2eτθ−ητ

+ 48η2λ4e−ητ−τθ + 16η3λ3e−ητ−τθ − 8η4λ2e−ητ−τθ

+ 64η2λ3θ + 16η3λ2θ + 8ηλ3eτθ−ητθ2 − 2η3λeτθ−ητθ2

− 8ηλ3e−ητ−τθθ2 + 2η3λe−ητ−τθθ2 + 32β2ηγ2θ

+ 4η2λ2eτθ−ητθ2 − 4η2λ2e−ητ−τθθ2 + 8β2η2γ2eτθ−ητ

− 8β2η2γ2e−ητ−τθ + 6βη4γeτθ−ητ − 6βη4γe−ητ−τθ

− 16βη3γθ + 8β2ηγ2eτθ−ητθ + 8β2ηγ2e−ητ−τθθ

− 48βηγλ3eτθ−ητ + 12βη3γλeτθ−ητ + 48βηγλ3e−ητ−τθ

− 12βη3γλe−ητ−τθ + 64βηγλ2θ + 64βη2γλθ

+ 4βη2γeτθ−ητθ2 − 4βη2γe−ητ−τθθ2 − 24βη2γλ2eτθ−ητ

− 16β2ηγ2λeτθ−ητ + 24βη2γλ2e−ητ−τθ + 16β2ηγ2λe−ητ−τθ

− 6βη3γeητθ − 6βη3γe−ητθ − 16βγλ3eητθ + 16βγλ3e−ητθ

+ 6βη3γeτθ−ητθ + 6βη3γe−ητ−τθθ − 24β2ηγ2eητθ

+ 8β2ηγ2e−ητθ − 16β2γ2λeητθ + 16β2γ2λe−ητθ − 40βηγλ2eητθ

− 28βη2γλeητθ + 24βηγλ2e−ητθ − 4βη2γλe−ητθ

+ 8βηγλ2eτθ−ητθ + 16βη2γλeτθ−ητθ + 8βηγλ2e−ητ−τθθ

+ 16βη2γλe−ητ−τθθ + 8βηγλeτθ−ητθ2

− 8βηγλe−ητ−τθθ2)/(2η(θ2 − 4η2)θ3)

(D.2.6)
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M(2, 3) = −(η7λe−ητ−τθ − η7λeτθ−ητ + 32η2λ6eτθ−ητ

+ 48η3λ5eτθ−ητ + 16η4λ4eτθ−ητ − 8η5λ3eτθ−ητ − 6η6λ2eτθ−ητ

− 32η2λ6e−ητ−τθ − 48η3λ5e−ητ−τθ − 16η4λ4e−ητ−τθ

+ 8η5λ3e−ητ−τθ + 6η6λ2e−ητ−τθ + η5λeτθ−ητθ2

− η5λe−ητ−τθθ2 + 64β3ηγ3θ + 64β3γ3λθ − 8η2λ4eτθ−ητθ2

− 4η3λ3eτθ−ητθ2 + 2η4λ2eτθ−ητθ2 + 8η2λ4e−ητ−τθθ2

+ 4η3λ3e−ητ−τθθ2 − 2η4λ2e−ητ−τθθ2 + 12β2η4γ2eτθ−ητ

+ 16β3η2γ3eτθ−ητ − 12β2η4γ2e−ητ−τθ − 16β3η2γ3e−ητ−τθ

− 32β2η3γ2θ + 128β2γ2λ3θ + 2βη6γeτθ−ητ − 2βη6γe−ητ−τθ

− 12βη5γθ + 64βγλ5θ + 256β2ηγ2λ2θ + 96β2η2γ2λθ + 10βη5γλeτθ−ητ

− 10βη5γλe−ητ−τθ + 64β2η2γ2λ2eτθ−ητ − 64β2η2γ2λ2e−ητ−τθ

− 12β2η3γ2eητθ + 12β2η3γ2e−ητθ − 64β2γ2λ3eητθ − 64β2γ2λ3e−ητθ

+ 192βηγλ4θ − 44βη4γλθ + 4βη4γeτθ−ητθ2 − 4βη4γe−ητ−τθθ2

+ 16β2η3γ2eτθ−ητθ + 16β2η3γ2e−ητ−τθθ + 80βη2γλ4eτθ−ητ

+ 88βη3γλ3eτθ−ητ + 36βη4γλ2eτθ−ητ − 80βη2γλ4e−ητ−τθ

− 88βη3γλ3e−ητ−τθ − 36βη4γλ2e−ητ−τθ − 32βγλ5eητθ

− 32βγλ5e−ητθ + 160βη2γλ3θ + 6βη5γeτθ−ητθ + 6βη5γe−ητ−τθθ

+ 40β2η3γ2λeτθ−ητ − 40β2η3γ2λe−ητ−τθ − 48β3ηγ3eητθ

− 16β3ηγ3e−ητθ − 32β3γ3λeητθ − 32β3γ3λe−ητθ − 112βηγλ4eητθ

− 12βη4γλeητθ − 80βηγλ4e−ητθ + 12βη4γλe−ητθ

− 8βη2γλ2eτθ−ητθ2 + 8βη2γλ2e−ητ−τθθ2 + 22βη4γλeτθ−ητθ

+ 22βη4γλe−ητ−τθθ − 136βη2γλ3eητθ − 68βη3γλ2eητθ

− 40βη2γλ3e−ητθ + 20βη3γλ2e−ητθ + 8βη2γλ3eτθ−ητθ

+ 24βη3γλ2eτθ−ητθ + 8βη2γλ3e−ητ−τθθ + 24βη3γλ2e−ητ−τθθ

− 160β2ηγ2λ2eητθ − 104β2η2γ2λeητθ − 96β2ηγ2λ2e−ητθ

− 8β2η2γ2λe−ητθ + 4βη3γλeτθ−ητθ2 − 4βη3γλe−ητ−τθθ2

+ 8β2η2γ2λeτθ−ητθ + 8β2η2γ2λe−ητ−τθθ)

/(4ηγ(λ2 + ηλ+ βγ)(θ2 − 4η2)θ3)

(D.2.7)
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M(2, 4) = −(η6eτθ−ητθ − η4eτθ−ητθ3 + η4e−ητ−τθθ3 − η6e−ητ−τθθ

− 16β2η3γ2e−ητ + 128β2γ2λ3e−ητ + 8ηλ3eτθ−ητθ3 − 32ηλ5eτθ−ητθ

− 2η3λeτθ−ητθ3 + 6η5λeτθ−ητθ − 8ηλ3e−ητ−τθθ3 + 32ηλ5e−ητ−τθθ

+ 2η3λe−ητ−τθθ3 − 6η5λe−ητ−τθθ − 6βη5γe−ητ + 64βγλ5e−ητ

+ 4η2λ2eτθ−ητθ3 − 48η2λ4eτθ−ητθ − 16η3λ3eτθ−ητθ + 8η4λ2eτθ−ητθ

− 4η2λ2e−ητ−τθθ3 + 48η2λ4e−ητ−τθθ + 16η3λ3e−ητ−τθθ − 8η4λ2e−ητ−τθθ

+ 32β3ηγ3e−ητ + 64β3γ3λe−ητ − 6βη3γeητθ2 − 16βγλ3eητθ2 + 96βη2γλ3e−ητ

− 16βη3γλ2e−ητ + 6βη3γeτθ−ητθ2 + 6βη3γe−ητ−τθθ2

+ 8β2η2γ2eτθ−ητθ − 8β2η2γ2e−ητ−τθθ − 24β2ηγ2eητθ2 − 16β2γ2λeητθ2

+ 192β2ηγ2λ2e−ητ + 32β2η2γ2λe−ητ + 8β2ηγ2eτθ−ητθ2 + 8β2ηγ2e−ητ−τθθ2

+ 4βη2γeτθ−ητθ3 + 6βη4γeτθ−ητθ − 4βη2γe−ητ−τθθ3 − 6βη4γe−ητ−τθθ

+ 160βηγλ4e−ητ − 28βη4γλe−ητ − 48βηγλ3eτθ−ητθ + 12βη3γλeτθ−ητθ

+ 48βηγλ3e−ητ−τθθ − 12βη3γλe−ητ−τθθ − 24βη2γλ2eτθ−ητθ

− 16β2ηγ2λeτθ−ητθ + 24βη2γλ2e−ητ−τθθ + 16β2ηγ2λe−ητ−τθθ − 40βηγλ2eητθ2

− 28βη2γλeητθ2 + 8βηγλ2eτθ−ητθ2 + 16βη2γλeτθ−ητθ2 + 8βηγλ2e−ητ−τθθ2

+ 16βη2γλe−ητ−τθθ2 + 8βηγλeτθ−ητθ3 − 8βηγλe−ητ−τθθ3)

/(2γ(−3θ2)
(
16β2γ2 + 8βη2γ + 32βηγλ+ 32βγλ2

+η4 + 8η3λ+ 24η2λ2 + 32ηλ3 + 16λ4)
)

(D.2.8)

M(2, 5) = (32ηλ6e−ητ (2 sinh θτ) + η6λe−ητ (2 sinh θτ) + 80η2λ5e−ητ (2 sinh θτ)

+ 80η3λ4e−ητ (2 sinh θτ) + 40η4λ3e−ητ (2 sinh θτ) + 10η5λ2e−ητ (2 sinh θτ)

− 8ηλ4θ2e−ητ (2 sinh θτ)− η4λθ2e−ητ (2 sinh θτ) + 8β3ηγ3e−ητ (2 sinh θτ)

− 12η2λ3θ2e−ητ (2 sinh θτ)− 6η3λ2θ2e−ητ (2 sinh θτ) + 6β2η3γ2e−ητ (2 sinh θτ)

+ βη5γe−ητ (2 sinh θτ) + 64βηγλ4e−ητ (2 sinh θτ) + 14βη4γλe−ητ (2 sinh θτ)

− βη3γθ2e−ητ (2 sinh θτ) + 2β2η2γ2θe−ητ (2 cosh θτ) + 104βη2γλ3e−ητ (2 sinh θτ)

+ 60βη3γλ2e−ητ (2 sinh θτ) + 40β2ηγ2λ2e−ητ (2 sinh θτ)

+ 32β2η2γ2λe−ητ (2 sinh θτ)− 8βηγλ2θ2e−ητ (2 sinh θτ)

− 6βη2γλθ2e−ητ (2 sinh θτ)− 16β3γ3θ + 16β3γ3θe−ητ − 4β2η2γ2θ − 16β2γ2λ2θ

+ 16β2γ2λ2θe−ητ − 16β2ηγ2λθ + 16β2ηγ2λθe−ητ )/(8ηγ2θ3(λ2 + λη + βγ))
(D.2.9)
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M(2, 6) = (βη6eτθ−ητ − βη6e−ητ−τθ − βη4eτθ−ητ (θ2) + βη4e−ητ−τθθ2 + 6β2η4γeτθ−ητ

− 6β2η4γe−ητ−τθ − 48βη2λ4eτθ−ητ − 16βη3λ3eτθ−ητ + 8βη4λ2eτθ−ητ + 48βη2λ4e−ητ−τθ

+ 16βη3λ3e−ητ−τθ − 8βη4λ2e−ητ−τθ + 8β3η2γ2eτθ−ητ − 8β3η2γ2e−ητ−τθ − 32βηλ5eτθ−ητ

+ 6βη5λeτθ−ητ + 32βηλ5e−ητ−τθ − 6βη5λe−ητ−τθ + 6β2η3γeτθ−ητθ + 8β3ηγ2eτθ−ητθ

+ 6β2η3γe−ητ−τθθ + 8β3ηγ2e−ητ−τθθ + 8βηλ3eτθ−ητθ2 − 2βη3λeτθ−ητθ2

− 8βηλ3e−ητ−τθθ2 + 2βη3λe−ητ−τθθ2 − 48β2ηγλ3eτθ−ητ + 12β2η3γλeτθ−ητ

− 16β3ηγ2λeτθ−ητ + 48β2ηγλ3e−ητ−τθ − 12β2η3γλe−ητ−τθ + 16β3ηγ2λe−ητ−τθ

+ 4β2η2γeτθ−ητθ2 − 4β2η2γe−ητ−τθθ2 + 4βη2λ2eτθ−ητθ2 − 4βη2λ2e−ητ−τθθ2

− 24β2η2γλ2eτθ−ητ + 24β2η2γλ2e−ητ−τθ − 6β2η3γeητθ − 24β3ηγ2eητθ − 6β2η3γe−ητθ

+ 8β3ηγ2e−ητθ − 16β2γλ3eητθ − 16β3γ2λeητθ + 16β2γλ3e−ητθ + 16β3γ2λe−ητθ

− 40β2ηγλ2eητθ − 28β2η2γλeητθ + 24β2ηγλ2e−ητθ − 4β2η2γλe−ητθ + 8β2ηγλ2eτθ−ητθ

+ 16β2η2γλeτθ−ητθ + 8β2ηγλ2e−ητ−τθθ + 16β2η2γλe−ητ−τθθ + 8β2ηγλeτθ−ητθ2

− 8β2ηγλe−ητ−τθθ2)/(2ηγ(−3θ2)(4βγ + 4ηλ+ η2 + 4λ2)3/2)
(D.2.10)

M(4, 1) = (η4γe−ητ (2 sinh θτ) + η2θ2γe−ητ (2 sinh θτ) + 4βη2γ2e−ητ (2 sinh θτ)

+ 12η2γλ2e−ητ (2 sinh θτ) + 2η3γθe−ητ (2 cosh θτ) + 8ηγλ3e−ητ (2 sinh θτ)

+ 6η3γλe−ητ (2 sinh θτ) + 8βηγ2λe−ητ (2 sinh θτ) + 4βηγ2θe−ητ (2 cosh θτ)

+ 4ηγλ2θe−ητ (2 cosh θτ) + 6η2γλθe−ητ (2 cosh θτ)− 4η3γθ − 16γλ3θ − 32ηγλ2θ

− 20η2γλθ + 16γλ3e−ητθ − 16βηγ2θ − 16βγ2λθ + 8βηγ2e−ητθ + 16βγ2λe−ητθ

+ 24ηγλ2e−ητθ + 8η2γλe−ητθ)

/(8ηθ3(λ2 + ηλ+ βγ))
(D.2.11)
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M(4, 2) = −(η5γe−ητ−τθ − η5γeτθ−ητ + 6η4γθ − 32γλ4θ − 32β2γ3θ − 64ηγλ3θ

+ 16η3γλθ + η3γeτθ−ητθ2 − η3γe−ητ−τθθ2 − 4βη3γ2eτθ−ητ + 4βη3γ2e−ητ−τθ

+ 16η2γλ3eτθ−ητ − 16η2γλ3e−ητ−τθ − 3η4γeητθ − 3η4γe−ητθ + 16γλ4eητθ

+ 16γλ4e−ητθ + 16βη2γ2θ − 64βγ2λ2θ − 16η2γλ2θ + 32β2γ3eητθ + 16ηγλ4eτθ−ητ

− 4η4γλeτθ−ητ − 16ηγλ4e−ητ−τθ + 4η4γλe−ητ−τθ − 8βη2γ2eτθ−ητθ

− 8βη2γ2e−ητ−τθθ − 64βηγ2λθ − 4βηγ2eτθ−ητθ2 + 4βηγ2e−ητ−τθθ2

− 4ηγλ2eτθ−ητθ2 + 4ηγλ2e−ητ−τθθ2 + 16βηγ2λ2eτθ−ητ − 16βηγ2λ2e−ητ−τθ

+ 32ηγλ3eητθ − 8η3γλeητθ + 32ηγλ3e−ητθ − 8η3γλe−ητθ − 4βη2γ2eητθ

+ 4βη2γ2e−ητθ + 48βγ2λ2eητθ + 16βγ2λ2e−ητθ + 8η2γλ2eητθ + 8η2γλ2e−ητθ

+ 48βηγ2λeητθ + 16βηγ2λe−ητθ)

/(2η ∗ (−3θ2) ∗ (4βγ + 4ηλ+ η2 + 4λ2)3/2)
(D.2.12)

M(4, 3) = −(η6λe−ητ−τθ − η6λeτθ−ητ + 16η2λ5eτθ−ητ + 16η3λ4eτθ−ητ

− 4η5λ2eτθ−ητ − 16η2λ5e−ητ−τθ − 16η3λ4e−ητ−τθ + 4η5λ2e−ητ−τθ

− 32λ6eητθ + 32λ6e−ητθ + 64β3γ3θ + η4λeτθ−ητθ2 − η4λe−ητ−τθθ2

− 96ηλ5eητθ + 6η5λeητθ + 96ηλ5e−ητθ − 6η5λe−ητθ − 4η2λ3eτθ−ητθ2

+ 4η2λ3e−ητ−τθθ2 + 8β2η3γ2eτθ−ητ − 8β2η3γ2e−ητ−τθ − 64β3γ3eητθ

− 80η2λ4eητθ + 22η4λ2eητθ + 80η2λ4e−ητθ − 22η4λ2e−ητθ − 32β2η2γ2θ

+ 128β2γ2λ2θ + 2βη5γeτθ−ητ − 2βη5γe−ητ−τθ − 12βη4γθ + 64βγλ4θ

+ 8βη4γλeτθ−ητ − 8βη4γλe−ητ−τθ + 8β2η2γ2eητθ + 8β2η2γ2e−ητθ

− 160β2γ2λ2eητθ + 32β2γ2λ2e−ητθ + 128βηγλ3θ − 32βη3γλθ + 4βη3γeτθ−ητθ2

− 4βη3γe−ητ−τθθ2 + 8β2η2γ2eτθ−ητθ + 8β2η2γ2e−ητ−τθθ

+ 32βη2γλ3eτθ−ητ + 24βη3γλ2eτθ−ητ − 32βη2γλ3e−ητ−τθ − 24βη3γλ2e−ητ−τθ

+ 6βη4γeητθ − 6βη4γe−ητθ − 128βγλ4eητθ + 64βγλ4e−ητθ + 32βη2γλ2θ

+ 128β2ηγ2λθ + 6βη4γeτθ−ητθ + 6βη4γe−ητ−τθθ + 16β2η2γ2λeτθ−ητ

− 16β2η2γ2λe−ητ−τθ − 256βηγλ3eητθ + 24βη3γλeητθ + 128βηγλ3e−ητθ

− 8βη3γλe−ητθ + 8βη3γλeτθ−ητθ + 8βη3γλe−ητ−τθθ − 104βη2γλ2eητθ

− 160β2ηγ2λeητθ + 56βη2γλ2e−ητθ + 32β2ηγ2λe−ητθ + 8βη2γλ2eτθ−ητθ

+ 8βη2γλ2e−ητ−τθθ − 4βη2γλeτθ−ητθ2 + 4βη2γλe−ητ−τθθ2)

/(4η ∗ (λ2 + ηλ+ βγ) ∗ (−3θ2) ∗ (4βγ + 4ηλ+ η2 + 4λ2)3/2)
(D.2.13)
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M(4, 4) = (64λ6e−ητ − 3η6e−ητ + η3eτθ−ητθ3 − η5eτθ−ητθ − η3e−ητ−τθθ3

+ η5e−ητ−τθθ + 192ηλ5e−ητ − 20η5λe−ητ − 3η4eητθ2 + 16λ4eητθ2 + 176η2λ4e−ητ

+ 32η3λ3e−ητ − 36η4λ2e−ητ + 32β2γ2eητθ2 + 8η2λ2eητθ2 + 16β2η2γ2e−ητ

+ 64β2γ2λ2e−ητ − 4ηλ2eτθ−ητθ3 + 16ηλ4eτθ−ητθ − 4η4λeτθ−ητθ

+ 4ηλ2e−ητ−τθθ3 − 16ηλ4e−ητ−τθθ + 4η4λe−ητ−τθθ − 8βη4γe−ητ

+ 128βγλ4e−ητ + 16η2λ3eτθ−ητθ − 16η2λ3e−ητ−τθθ + 32ηλ3eητθ2

− 8η3λeητθ2 − 4βη2γeητθ2 + 48βγλ2eητθ2 + 128βη2γλ2e−ητ + 64β2ηγ2λe−ητ

− 8βη2γeτθ−ητθ2 − 8βη2γe−ητ−τθθ2 − 4βηγeτθ−ητθ3 + 4βηγe−ητ−τθθ3

− 4βη3γeτθ−ητθ + 4βη3γe−ητ−τθθ + 256βηγλ3e−ητ + 16βηγλ2eτθ−ητθ

− 16βηγλ2e−ητ−τθθ + 48βηγλeητθ2)/
(
2(−3θ2)(16β2γ2 + 8βη2γ

+32βηγλ+ 32βγλ2 + η4 + 8η3λ+ 24η2λ2 + 32ηλ3 + 16λ4)
)

(D.2.14)

M(4, 5) = (16ηλ5e−ητ (2 sinh θτ) + η5λe−ητ (2 sinh θτ) + 32η2λ4e−ητ (2 sinh θτ)

+ 24η3λ3e−ητ (2 sinh θτ) + 8η4λ2e−ητ (2 sinh θτ)− 4ηλ3θ2e−ητ (2 sinh θτ)

− η3λθ2e−ητ (2 sinh θτ)− 4η2λ2θ2e−ητ (2 sinh θτ) + 4β2η2γ2e−ητ (2 sinh θτ)

+ βη4γe−ητ (2 sinh θτ) + 4β2ηγ2θe−ητ (2 cosh θτ) + 24βηγλ3e−ητ (2 sinh θτ)

+ 10βη3γλe−ητ (2 sinh θτ)− βη2γθ2e−ητ (2 sinh θτ) + 28βη2γλ2e−ητ (2 sinh θτ)

+ 8β2ηγ2λe−ητ (2 sinh θτ) + 4βηγλ2θe−ητ (2 cosh θτ) + 2βη2γλθe−ητ (2 cosh θτ)

− 4βηγλθ2e−ητ (2 sinh θτ) + 16β2γ2λθ + 16βγλ3θ + 16βηγλ2θ + 4βη2γλθ

− 16βγλ3θe−ητ − 8β2ηγ2θe−ητ − 16β2γ2λθe−ητ − 24βηγλ2θe−ητ − 8βη2γλθe−ητ )

/(8ηγθ3(λ2 + ηλ+ βγ)
(D.2.15)
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M(4, 6) = −(βη5e−ητ−τθ − βη5eτθ−ητ + 6βη4θ − 32βλ4θ − 32β3γ2θ + βη3eτθ−ητθ2

− βη3e−ητ−τθθ2 − 4β2η3γeτθ−ητ + 4β2η3γe−ητ−τθ + 16βη2λ3eτθ−ητ

− 16βη2λ3e−ητ−τθ − 3βη4eητθ − 3βη4e−ητθ + 16βλ4eητθ + 16βλ4e−ητθ

+ 16β2η2γθ − 16βη2λ2θ − 64β2γλ2θ + 32β3γ2eητθ + 16βηλ4eτθ−ητ − 4βη4λeτθ−ητ

− 16βηλ4e−ητ−τθ + 4βη4λe−ητ−τθ − 64βηλ3θ + 16βη3λθ − 8β2η2γeτθ−ητθ

− 8β2η2γe−ητ−τθθ − 64β2ηγλθ − 4β2ηγeτθ−ητθ2 + 4β2ηγe−ητ−τθθ2

− 4βηλ2eτθ−ητθ2 + 4βηλ2e−ητ−τθθ2 + 16β2ηγλ2eτθ−ητ − 16β2ηγλ2e−ητ−τθ

+ 32βηλ3eητθ − 8βη3λeητθ + 32βηλ3e−ητθ − 8βη3λe−ητθ − 4β2η2γeητθ

+ 4β2η2γe−ητθ + 8βη2λ2eητθ + 8βη2λ2e−ητθ + 48β2γλ2eητθ + 16β2γλ2e−ητθ

+ 48β2ηγλeητθ + 16β2ηγλe−ητθ)

/(2η(−3θ2)(4βγ + 4ηλ+ η2 + 4λ2)3/2)
(D.2.16)

M(6, 1) = (η3γ2e−ητ (2 sinh θτ) + 4ηγ2λ2e−ητ (2 sinh θτ) + 4η2γ2λe−ητ (2 sinh θτ)

+ 4βηγ3e−ητ (2 sinh θτ) + η2γ2θe−ητ (2 cosh θτ)− 8βγ3θ − 2η2γ2θ − 8γ2λ2θ

− 8ηγ2λθ + 8βγ3e−ητθ + 8γ2λ2e−ητθ + 8ηγ2λe−ητθ)/(4ηθ3(λ2 + ηλ+ βγ))
(D.2.17)

M(6, 2) = (γ ∗ (η4γeτθ−ητ − η4γe−ητ−τθ + 4βη2γ2eτθ−ητ

− 4βη2γ2e−ητ−τθ − 4η2γλ2eτθ−ητ + 4η2γλ2e−ητ−τθ

− η3γeητθ + 3η3γe−ητθ + 8γλ3eητθ − 8γλ3e−ητθ

− η3γeτθ−ητθ − η3γe−ητ−τθθ − 8ηγλ3eτθ−ητ

+ 2η3γλeτθ−ητ + 8ηγλ3e−ητ−τθ − 2η3γλe−ητ−τθ

− 8βηγ2λeτθ−ητ + 8βηγ2λe−ητ−τθ − 4βηγ2eητθ

− 4βηγ2e−ητθ + 8βγ2λeητθ − 8βγ2λe−ητθ + 4ηγλ2eητθ

− 2η2γλeητθ − 12ηγλ2e−ητθ + 2η2γλe−ητθ

+ 4βηγ2eτθ−ητθ + 4βηγ2e−ητ−τθθ + 4ηγλ2eτθ−ητθ

+ 4ηγλ2e−ητ−τθθ))

/(η ∗ (−3θ2) ∗ (4βγ + 4ηλ+ η2 + 4λ2)3/2)

(D.2.18)
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M(6, 3) = −(6η4γλθ − 64ηγλ4θ − 32γλ5θ + 2βη4γ2eτθ−ητ − 2βη4γ2e−ητ−τθ

+ 8η2γλ4eτθ−ητ + 4η3γλ3eτθ−ητ − 2η4γλ2eτθ−ητ − 8η2γλ4e−ητ−τθ

− 4η3γλ3e−ητ−τθ + 2η4γλ2e−ητ−τθ + 16γλ5eητθ + 16γλ5e−ητθ − 64βγ2λ3θ

− 32β2γ3λθ − 16η2γλ3θ + 16η3γλ2θ + 8β2η2γ3eτθ−ητ − 8β2η2γ3e−ητ−τθ

− η5γλeτθ−ητ + η5γλe−ητ−τθ + 4βη3γ2eτθ−ητθ + 4βη3γ2e−ητ−τθθ

− 4η2γλ3eτθ−ητθ − 4η2γλ3e−ητ−τθθ + 4βη3γ2λeτθ−ητ

− 4βη3γ2λe−ητ−τθ + 24ηγλ4eητθ − 2η4γλeητθ + 40ηγλ4e−ητθ

− 6η4γλe−ητθ − 64βηγ2λ2θ + 16βη2γ2λθ + η4γλeτθ−ητθ

+ η4γλe−ητ−τθθ + 16βη2γ2λ2eτθ−ητ − 16βη2γ2λ2e−ητ−τθ − 2βη3γ2eητθ

− 8β2ηγ3eητθ − 6βη3γ2e−ητθ + 8β2ηγ3e−ητθ + 32βγ2λ3eητθ + 16β2γ3λeητθ

+ 32βγ2λ3e−ητθ + 16β2γ3λe−ητθ + 4η2γλ3eητθ − 6η3γλ2eητθ

+ 20η2γλ3e−ητθ − 10η3γλ2e−ητθ + 16βηγ2λ2eητθ − 12βη2γ2λeητθ

+ 48βηγ2λ2e−ητθ + 4βη2γ2λe−ητθ − 4βη2γ2λeτθ−ητθ − 4βη2γ2λe−ητ−τθθ)

/(2η ∗ (λ2 + ηλ+ βγ) ∗ (−3θ2) ∗ (4βγ + 4ηλ+ η2 + 4λ2)3/2)
(D.2.19)

M(6, 4) = (32γλ5e−ητ − 3η5γe−ητ + η3γeτθ−ητθ2 + η3γe−ητ−τθθ2 − η4γeτθ−ητθ

+ η4γe−ητ−τθθ + 80ηγλ4e−ητ − 14η4γλe−ητ + η3γeητθ2 − 8γλ3eητθ2

− 8βη3γ2e−ητ + 16β2ηγ3e−ητ + 64βγ2λ3e−ητ + 32β2γ3λe−ητ + 48η2γλ3e−ητ

− 8η3γλ2e−ητ − 4βη2γ2eτθ−ητθ + 4βη2γ2e−ητ−τθθ + 4βηγ2eητθ2

+ 4η2γλ2eτθ−ητθ − 4η2γλ2e−ητ−τθθ − 8βγ2λeητθ2 − 4ηγλ2eητθ2

+ 2η2γλeητθ2 + 96βηγ2λ2e−ητ + 16βη2γ2λe−ητ − 4βηγ2eτθ−ητθ2

− 4βηγ2e−ητ−τθθ2 − 4ηγλ2eτθ−ητθ2 − 4ηγλ2e−ητ−τθθ2 + 8ηγλ3eτθ−ητθ

− 2η3γλeτθ−ητθ − 8ηγλ3e−ητ−τθθ + 2η3γλe−ητ−τθθ + 8βηγ2λeτθ−ητθ

− 8βηγ2λe−ητ−τθθ)/
(
(−3θ2)(16β2γ2 + 8βη2γ + 32βηγλ

+32βγλ2 + η4 + 8η3λ+ 24η2λ2 + 32ηλ3 + 16λ4)
)

(D.2.20)
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M(6, 5) = −(−8ηλ4e−ητ (2 sinh θτ)− η4λe−ητ (2 sinh θτ)− 12η2λ3e−ητ (2 sinh θτ)

− 6η3λ2e−ητ (2 sinh θτ)− 4β2ηγ2e−ητ (2 sinh θτ) + 4ηλ3θe−ητ (2 cosh θτ)

+ η3λθe−ητ (2 cosh θτ)− βη3γe−ητ (2 sinh θτ) + 4η2λ2θe−ητ (2 cosh θτ)

− 12βηγλ2e−ητ (2 sinh θτ)− 8βη2γλe−ητ (2 sinh θτ) + βη2γθe−ητ (2 cosh θτ)

+ 4βηγλθe−ητ (2 cosh θτ)− 8ηλ3θ − 2η3λθ − 8β2γ2θ − 8η2λ2θ + 8β2γ2θe−ητ

− 2βη2γθ − 8βγλ2θ − 16βηγλθ + 8βγλ2θe−ητ + 8βηγλθe−ητ )

/(4ηθ3(λ2 + ηλ+ βγ))
(D.2.21)

M(6, 6) = (16ηλ4θ − 3η5θ − 8η4λθ + 32η2λ3θ + 8η3λ2θ + 16β2ηγ2θ

+ 4β2η2γ2eτθ−ητ − 4β2η2γ2e−ητ−τθ + βη4γeτθ−ητ − βη4γe−ητ−τθ − 8βη3γθ

+ 4β2ηγ2eτθ−ητθ + 4β2ηγ2e−ητ−τθθ − 8βηγλ3eτθ−ητ + 2βη3γλeτθ−ητ

+ 8βηγλ3e−ητ−τθ − 2βη3γλe−ητ−τθ + 32βηγλ2θ + 32βη2γλθ

− 4βη2γλ2eτθ−ητ − 8β2ηγ2λeτθ−ητ + 4βη2γλ2e−ητ−τθ

+ 8β2ηγ2λe−ητ−τθ − βη3γeητθ + 3βη3γe−ητθ + 8βγλ3eητθ

− 8βγλ3e−ητθ − βη3γeτθ−ητθ − βη3γe−ητ−τθθ − 4β2ηγ2eητθ

− 4β2ηγ2e−ητθ + 8β2γ2λeητθ − 8β2γ2λe−ητθ + 4βηγλ2eητθ

− 2βη2γλeητθ − 12βηγλ2e−ητθ + 2βη2γλe−ητθ + 4βηγλ2eτθ−ητθ

+ 4βηγλ2e−ητ−τθθ)/(η(−3θ2)(4βγ + 4ηλ+ η2 + 4λ2)3/2)

(D.2.22)

Further, assuming a delta-function type initial condition, the initial vector be-

comes z(0) =
[
2κ 0 0 0 2κ 0

]T
, the second-order moments are simply found by

a combination of the first and fifth elements of their respective rows. The second-order
moments can then be seen as:

E[X2] =
κe−ητ

θ2(λ2 + ηλ+ βγ)

(
θ sinh θτ

(
(η + λ) (η + 2λ) + βγ + β2

))
+

κe−ητ

θ2(λ2 + ηλ+ βγ)
cosh θτ

(
θ2 (η + λ) + βη (β − γ)

)
− κ (η + λ)

(λ2 + ηλ+ βγ)
− κβ (β − γ) η

θ2(λ2 + ηλ+ βγ)
− 4κβ (β − γ)

θ2η

(
1− e−ητ

)
(D.2.23)

E[XY ] =
κe−ητ

θ2(λ2 + ηλ+ βγ)
θ sinh θτ

(
γ (η + λ)− βλ

)
+
κe−ητ (cosh θτ − 1)

θ2(λ2 + ηλ+ βγ)

(
(β + γ)

(
λ (η + 2λ) + 2βγ

)
+ γη (η + 2λ)

)
+

κλ

η(λ2 + ηλ+ βγ)
(β − γ)

(
1− e−ητ

)
− γκ

(λ2 + ηλ+ βγ)

(
1− e−ητ

)
(D.2.24)
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E[Y 2] =
κe−ητ

θ2(λ2 + ηλ+ βγ)

(
θ sinh θτ

(
λ (η + 2λ) + γ (γ + β)

))
+

κe−ητ

θ2(λ2 + ηλ+ βγ)
cosh θτ

(
ηγ (γ − β)− λθ2

)
+

κλ

(λ2 + ηλ+ βγ)
+

κγ (β − γ) η

θ2(λ2 + ηλ+ βγ)
+

4κγ (β − γ)

θ2η

(
1− e−ητ

)
(D.2.25)

Convergence to 2D moments

In the limit as η → 0 the second-order moments are given as:

E[X2] =
κ

2α3

(
λ2 + α2 + β2

)
sinh θτ +

κλ

α2
(cosh θτ − 1)− βκ (β − γ) τ

α2

E[XY ] =
κ(γ + β)

2α2

(
cosh(2ατ)− 1

)
+
κλ(γ − β)

2α3
sinh(2ατ)− κ (γ − β)λτ

α2

E[Y 2] =
κ

2α3

((
λ2 + α2 + γ2

)
sinh(2ατ)

)
− κλ

α2

(
cosh(2ατ)− 1

)
+
γκ (β − γ) τ

α2

(D.2.26)

These expressions for the second-order moments are seen to be the same as the
results found for the 2D case.
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APPENDIX E

MATRIX EXPONENTIAL

184



General

The matrix exponential can be expressed as,

eAt =
n−1∑
k=0

skA
k, (E.1.1)

where A is an n-dimensional matrix, and the functions sk come from the following
relation:

eλit =
n−1∑
k=0

skλ
k
i , (E.1.2)

where λi are the roots of the characteristic polynomial.

2D Case

Looking at the 2D case, the above expressions become,

eAt = s0I + s1A, (E.2.1)

where s0 = αeβt−βeηt
α−β and s1 = eαt−eβt

α−β . Here α and β represent the two solutions to the

characteristic equation. Further, by defining s := α+β
2

and q := α−β
2

, the expressions
for s0,1 become:

s0(t) = est
(

cosh qt− ssinh qt

q

)
s1(t) = est

sinh qt

q
.

(E.2.2)

Example

For the 2D linear incompressible flow given by A =

[
λ β
γ −λ

]
the values of s and

q are found to be 0 and α, respectively. The resulting matrix exponential is given as
follows:

eAt = coshαtI +
sinhαt

α
A =

[
coshαt+ λ sinhαt

α
β sinhαt

α
γ sinhαt

α
coshαt− λ sinhαt

α

]
. (E.2.3)

The result is equivalent to (6.1.18).
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APPENDIX F

SECOND-ORDER MOMENTS FOR THE INERTIAL-GRAVITY-WAVE FLOW
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The expressions for the second-order moments of the IGW flow are given in Tang
et al. (2010), and are restated here. Since the second-order moments are seen to been
dependent on the first-order moments, these are presented here as well for complete-
ness. The mean values are given as follows:

X̄ = EX +
UE2

2π

πD − e−2π2Dτ (πD cos 2πτ − sin 2πτ)

1 + π2D2

+
UE1

2π

1− e−2π2Dτ (cos 2πτ + πD sin 2πτ)

1 + π2D2
,

Ȳ = EY −
UE2

2π

1− e−2π2Dτ (cos 2πτ + πD sin 2πτ)

1 + π2D2

+
UE1

2π

πD − e−2π2Dτ (πD cos 2πτ − sin 2πτ)

1 + π2D2
,

Z̄ = EZ −
UE2

2π

πD − e−2π2Dτ (πD cos 2πτ − sin 2πτ)

1 + π2D2

− UE1

2π

1− e−2π2Dτ (cos 2πτ + πD sin 2πτ)

1 + π2D2
,

(F.1.1)

where D = Dh +Dv, E1 = E {sin Φ0}, and E2 = E {cos Φ0}. EX , EY , and EZ denote
the means of the initial coordinates of the tracer.

E[XeiΦ] = EXiΦe
µτ − U

2µ

(
1− eµτ − µE2iΦ

(µ′ − µ)

(
eµ
′τ − eµτ

))
+ 2πiDhEiΦτe

µτ

E[Y eiΦ] = EY iΦe
µτ − Ui

2µ

(
1− eµτ +

µE2iΦ

(µ′ − µ)

(
eµ
′τ − eµτ

))
E[ZeiΦ] = EZiΦe

µτ +
U

2µ

(
1− eµτ − µE2iΦ

(µ′ − µ)

(
eµ
′τ − eµτ

))
+ 2πiDvEiΦτe

µτ

(F.1.2)
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Given F.1.1 the second-order moments are written as:

V ar(X) = EX2 − X̄2 +Dhτ + U<
{

2EXiΦ
µ

(eµτ − 1)− Uτ

µ
+
U

µ2
(eµτ − 1)

+
UE2iΦ

µ′ − µ

(
eµ
′τ − 1

µ′
− eµτ − 1

µ

)
+ 4πiDhEiΦ

(
τeµτ

µ
− eµτ

µ2
+

1

µ2

) ,

V ar(Y ) = EY 2 − Ȳ 2 +Dhτ + U=
{

2EY iΦ
µ

(eµτ − 1)− Uiτ

µ
+
Ui

µ2
(eµτ − 1)

− UiE2iΦ

µ′ − µ

(
eµ
′τ − 1

µ′
− eµτ − 1

µ

) ,

V ar(Z) = EZ2 − Z̄2 +Dvτ + U<
{
−2EZiΦ

µ
(eµτ − 1)− Uτ

µ
+
U

µ2
(eµτ − 1)

+
UE2iΦ

µ′ − µ

(
eµ
′τ − 1

µ′
− eµτ − 1

µ

)
− 4πiDvEiΦ

(
τeµτ

µ
− eµτ

µ2
+

1

µ2

) ,

Cov(X, Y ) = EXY − X̄Ȳ + U<
{
EY iΦ
µ

(eµτ − 1)

}
+ U=

{
EXiΦ
µ

(eµτ − 1)

}

+ U=

UE2iΦ

µ′ − µ

(
eµ
′τ − 1

µ′
− eµτ − 1

µ

)
+ 2πiDhEiΦ

(
τeµτ

µ
− eµτ

µ2
+

1

µ2

) ,

Cov(X,Z) = EXZ − X̄Z̄ + U<
{
EZiΦ − EXiΦ

µ
(eµτ − 1)

}
+ U<

{
Uτ

µ
− U

µ2
(eµτ − 1)

−UE2iΦ

µ′ − µ

(
eµ
′τ − 1

µ′
− eµτ − 1

µ

)
+ 2πi(Dv −Dh)EiΦ

(
τeµτ

µ
− eµτ

µ2
+

1

µ2

) ,

Cov(Y, Z) = EY Z − Ȳ Z̄ + U=
{
EZiΦ
µ

(eµτ − 1)

}
− U<

{
EY iΦ
µ

(eµτ − 1)

}

+ U=

−UE2iΦ

µ′ − µ

(
eµ
′τ − 1

µ′
− eµτ − 1

µ

)
+ 2πiDvEiΦ

(
τeµτ

µ
− eµτ

µ2
+

1

µ2

) ,

(F.1.3)

where µ = −(2π2D + 2πi), and µ′ = −(8π2D + 4πi). All the definitions for the
parameters are same as in Tang et al. (2010), this includes that: EX2 , EY 2 , EZ2 ,
EXY , EXZ , EY Z , EXiΦ, EY iΦ, and EZiΦ are the expectations of X2, Y 2, Z2, XY ,
XZ, Y Z, XeiΦ, Y eiΦ, and ZeiΦ, at time τ = 0, respectively. Further, EiΦ and E2iΦ

are given by: EiΦ = E1 + iE2, and E2iΦ = E {sin 2Φ0}+ iE {cos 2Φ0}.
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The 2D shear-flow is given as:

A =

[
λ β
0 −λ

]
. (G.1.1)

For this system, the second-order generators are given by:

A[X2] = 2λX2 + 2βXY + 2κ

A[XY ] = βY 2

A[Y 2] = −2λY 2 + 2κ

(G.1.2)

The resulting second-order moments are obtained as:

E[Y 2] = Ey2e
−2λτ +

κ

λ

(
1− e−2λτ

)
E[XY ] = Exy +

βκτ

λ
+
βκ

2λ2

(
e−2λτ − 1

)
+
βEy2

2λ

(
1− e−2λτ

)
E[X2] = Ex2e

2λτ +

(
κ

λ
+
βExy
λ

)(
e2λτ − 1

)
+
β2Ey2

2λ2
(cosh 2λτ − 1)

+
β2κ

2λ3
sinh 2λτ − β2κτ

λ2

(G.1.3)

The introduction of drift terms is seen in the E[XY ] and E[X2] expressions. It is
seen that when β = 0, the above moments converge to those obtained in Appendix
A.

A =

λ β 0
0 −(λ+ η) 0
0 0 η

 (G.1.4)

The second-order moments are defined as:

˙E[X2] = 2λE[X2] + 2βE[XY ] + 2κ

˙E[XY ] = βE[Y 2]− ηE[XY ]

˙E[Y 2] = −2 (λ+ η)E[Y 2] + 2κ

˙E[XZ] = (λ+ η)E[XZ] + βE[Y Z]

˙E[Y Z] = −λE[Y Z]

˙E[Z2] = 2ηE[Z2] + 2κ

(G.1.5)
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The first 3 full moments are then given by:

E[Y 2] = Ey2e
−2(λ+η)τ +

κ

λ+ η

(
1− e−2(λ+η)τ

)
E[XY ] = Exye

−ητ +
βEy2

2λ+ η

(
e−ητ − e−2(λ+η)τ

)
+

κβ

η (λ+ η)

(
1− e−ητ

)
+

κβ

(λ+ η) (η + 2λ)

(
e−2(η+λ)τ − e−ητ

)
E[X2] = Ex2e

2λτ − 2βExy
η + 2λ

(
e−ητ − e2λτ

)
+

β2Ey2

(η + 2λ)2

(
e−2(η+λ)τ − e2λτ

)
−

2β2Ey2

(η + 2λ)2

(
e−ητ − e2λτ

)
− β2κ

ηλ (η + λ)

(
1− e2λτ

)
+

2β2κ

η (λ+ η) (η + 2λ)

(
e−ητ − e2λτ

)
− β2κ

(λ+ η) (η + 2λ)2

(
e−2(η+λ)τ − e2λτ

)
+

2β2κ

(λ+ η) (η + 2λ)2

(
e−ητ − e2λτ

)
− κ

λ

(
1− e2λτ

)
(G.1.6)

Taking the limit as η goes to 0, it is seen that the moments converge to the
following expressions.

E[Y 2] = Ey2e
−2λτ +

κ

λ

(
1− e−2λτ

)
E[XY ] = Exy +

βEy2

2λ

(
1− e−2λτ

)
+
κβ

2λ2

(
e−2λτ − 1

)
+
βκτ

λ

E[X2] = Ex2e
2λτ +

(
κ

λ
+
βExy
λ

)(
e2λτ − 1

)
+
β2Ey2

2λ2
(cosh 2λτ − 1)

+
β2κ

2λ3
sinh 2λτ − β2κτ

λ2

(G.1.7)

Using the series expansion of the exponential function in the following term in the
E[XY ] equation κβ

η(λ+η)

(
1− e−ητ

)
, and similar terms in the E[X2] eqaution, leads to

the same moments obtained for the 2D shear system.
Assuming a delta-function type initial condition, the above equations reduce to

the following:

E[Y 2] =
κ

λ

(
1− e−2λτ

)
E[XY ] =

κβ

2λ2

(
e−2λτ − 1

)
E[X2] =

κ

λ

(
e2λτ − 1

)
+
β2κ

2λ3
sinh 2λτ − β2κτ

λ2

(G.1.8)
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