
Increasing the Effectiveness of Error Messages in a

Computer Programming and Simulation Tool

by

Siddhant Bapusaheb Tanpure

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2018 by the

Graduate Supervisory Committee:

Sohum Sohoni, Chair

Scotty D. Craig

Kevin A. Gary

ARIZONA STATE UNIVERSITY

May 2018

i

ABSTRACT

Each programming language has a compiler associated with it which helps to

identify logical or syntactical errors in the program. These compiler error messages play

important part in the form of formative feedback for the programmer. Thus, the error

messages should be constructed carefully, considering the affective and cognitive needs of

programmers. This is especially true for systems that are used in educational settings, as

the messages are typically seen by students who are novice programmers. If the error

messages are hard to understand then they might discourage students from understanding

or learning the programming language. The primary goal of this research is to identify

methods to make the error messages more effective so that students can understand them

better and simultaneously learn from their mistakes. This study is focused on

understanding how the error message affects the understanding of the error and the

approach students take to solve the error. In this study, three types of error messages were

provided to the students. The first type is Default type error message which is an

assembler centric error message. The second type is Link type error message which is a

descriptive error message along with a link to the appropriate section of the PLP manual.

The third type is Example type error message which is again a descriptive error message

with an example of the similar type of error along with correction step. All these error types

were developed for the PLP assembly language. A think-aloud experiment was designed

and conducted on the students. The experiment was later transcribed and coded to

understand different approach students take to solve different type of error message. After

analyzing the result of the think-aloud experiment it was found that student read the Link

type error message completely and they understood and learned from the error message

to solve the error. The results also indicated that Link type was more helpful compare to

other types of error message. The Link type made error solving process more effective

compared to other error types.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... iv

LIST OF TABLES...……………………... vi

LIST OF ABBREVATIONS………….. viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Motivation ………………………………………………………………………………….1

1.2 Related Work ……………………………………………………………………………..2

1.3 Prior Work at ASU……………………………………………………………………,…6

1.4 Problem Statement ……………………………………………………………………..7

1.5 Research Question ………………………………………………………………………8

2. IMPLEMENTATION …………………………………………………………………………………..9

3. METHODS ………………………………………………………………………………………………..16

3.1 Design ……………………………………………………………………………………….16

3.2 Procedure ………………………………………………………………………………….17

3.3 Materials …………………………………………………………………………………..18

3.4 Participants ………………………………………………………………………………20

3.5 Transcribe, Segment and Code Verbal Data …………………………………21

4. RESULTS …………………………………………………………………………………………………28

4.1 Student’s process model to resolve the errors…………………….…..……28

4.2 Error Message read…………………………………..…………………….…………31

4.3 Error message found confusing……………………….……………………….…32

4.4 Error message found helpful……………………………………………………...33

4.5 Detailed analysis of three error message types and their effects on

student’s problem-solving skills……………………………………………………35

iii

 Page

5. CONCLUSION and FUTURE WORK…………………………………………………….….50

REFERENCES ………………………………………………………………………………………………….52

APPENDIX………………………………………………………………………………………………………..54

A. Programs, Errors and Fixes ………………….………………………………………….....54

B. Demographic Survey Form……………………………………………………………….…67

C. Sample Transcribe, Segment and Coding ……………………….………………..…..70

D. Verbal, Blackboard and Slack Channel Announcement Script…………………75

E. Consent and Participants Recruitment Form …………………………….………....77

iv

LIST OF FIGURES

Figure Page

1. PLP Tool Interface ... 12

2. Example of Default Type Error .. 13

3. Example of Link Type Error .. 14

4. Example Type Error ... 15

5. Three Main Stages of the Experiment ... 16

6. Sample Coding .. 27

7. Process Model of Students for Solving the Error.. 30

8. Error Message Read ... 31

9. Number of Programs in Which Student Found Error Message Confusing 32

10. Error Message Helped .. 34

11. Detailed Student Process Model ... 36

12. Percentage Distribution of Default Type on Student's Process Model 40

13. Percentage Distribution of Link Type on Student's Process Model 43

14. Percentage Distribution of Example Type on Student's Process Model............... 47

15. Program 1 Label Program ... 55

16. Default Type Error Message for the Program 1 Label Program 56

17. Link Type Error Message for the Program 1 Label Program 56

18. Example Type Error Message for the Program 1 Label Program 56

19. Program 2 Label Program .. 57

20. Default Type Error Message for the Program 2 Label Program 57

21. Link Type Error Message for the Program 2 Label Program 57

22. Example Type Error Message for the Program 2 Label Program 58

23. Program 3 Instruction Program ... 59

v

Figure Page

24. Default Type Error Message for the Program 3 Instruction Program 59

25. Link Type Error Message for the Program 3 Instruction Program 59

26. Example Type Error Message for the Program 3 Instruction Program 60

27. Program 4 Instruction Program .. 61

28. Default Type Error Message for the Program 4 Instruction Program................... 61

29. Link Type Error Message for the Program 4 Instruction Program 62

30. Example Type Error Message for the Program 4 Instruction Program 62

31. Program 5 Register Program .. 63

32. Default Type Error Message for the Program 5 Register Program 64

33. Link Type Error Message for the Program 5 Register Program 64

34. Example Type Error Message for the Program 5 Register Program 64

35. Program 6 Register Program .. 65

36. Default Type Error Message for the Program 6 Register Program 65

37. Link Type Error Message for the Program 6 Register Program 66

38. Example Type Error Message for the Program 6 Register Program 66

vi

LIST OF TABLES

Tables Page

1. PLP Tool Interface .. 12

2. Example of Default Type Error ... 13

3. Example of Link Type Error ... 14

4. Example Type Error .. 15

5. Three Main Stages of the Experiment .. 16

6. Sample Coding ... 27

7. Process Model of Students for Solving the Error ... 30

8. Error Message Read ... 31

9. Number of Programs in Which Student Found Error Message Confusing 32

10. Error Message Helped ... 34

11. Detailed Student Process Model ... 36

12. Percentage Distribution of Default Type on Student's Process Model 40

13. Percentage Distribution of Link Type on Student's Process Model 43

14. Percentage Distribution of Example Type on Student's Process Model 47

15. Program 1 Label Program .. 55

16. Default Type Error Message for the Program 1 Label Program 56

17. Link Type Error Message for the Program 1 Label Program 56

18. Example Type Error Message for the Program 1 Label Program 56

19. Program 2 Label Program .. 57

20. Default Type Error Message for the Program 2 Label Program 57

21. Link Type Error Message for the Program 2 Label Program 57

22. Example Type Error Message for the Program 2 Label Program 58

23. Program 3 Instruction Program .. 59

vii

Tables Page

24. Default Type Error Message for the Program 3 Instruction Program 59

25. Link Type Error Message for the Program 3 Instruction Program 59

26. Example Type Error Message for the Program 3 Instruction Program 60

27. Program 4 Instruction Program .. 61

28. Default Type Error Message for the Program 4 Instruction Program................... 61

29. Link Type Error Message for the Program 4 Instruction Program 62

30. Example Type Error Message for the Program 4 Instruction Program 62

31. Program 5 Register Program .. 63

32. Default Type Error Message for the Program 5 Register Program 64

33. Link Type Error Message for the Program 5 Register Program 64

34. Example Type Error Message for the Program 5 Register Program 64

35. Program 6 Register Program .. 65

36. Default Type Error Message for the Program 6 Register Program 65

37. Link Type Error Message for the Program 6 Register Program 66

38. Example Type Error Message for the Program 6 Register Program 66

viii

LIST OF ABBREVATIONS

1. PLP – Progressive Learning Platform

2. IDE – Integrated Development Environment

3. IRB – Institutional Review Board

4. FPGA – Field Programmable Gate Array

5. GUI – Graphical User Interface

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 Writing programs without any syntax errors is a primary goal of every

programmer. To achieve this goal, many techniques and tools have been invented. Some

of these are visual effects, feedback mechanism, standard guidelines and programming

methods to understand and avoid errors. Despite this, programmers, especially novice

programmers, make mistakes and spend a considerable amount of time on correcting

them.

There are three main reasons because of which novice programmers make

mistakes (Traver, V. J. (2010)). The first one is lack of knowledge, a programmer who is

new to programming has very little understanding of the syntax. The second one is

incorrect understanding, sometimes programmer understands or learns concepts

incorrectly. The third one is the blunders, which programmers make because of lack of

attention.

Each programming language has a compiler associated with it. The compiler

converts the program from one programming language (high-level language) to another

programming language (low-level language). The compiler helps to identify errors in the

program and provides potential solutions to the errors using error messages. The main

purpose of these error messages is to help programmers to identify and correct these

errors.

Error messages are one important way of understanding the problems in the

program. If the error messages are difficult to understand then it takes more time to

correct the errors (Prather, J., Pettit, R., McMurry, K. H., Peters, A., Homer, J., Simone,

N., & Cohen, M. (2017, August)). The error messages are written by the compiler designers.

2

Sometimes error messages appear simple for compiler designers but could be very cryptic

and uninformative to the students/novice programmers. Sometimes the error message

developer makes assumptions based on their knowledge of programming language, but

they forget that it might be ambiguous to students who are trying to learn the

programming language or are new to programming.

Students spend most of the time on correcting the errors in the program (McCall,

D., & Kölling, M. (2014, October); Pettit, R. S., Homer, J., & Gee, R. (2017, March);

Chabert, J. M., & Higginbotham, T. F. (1976, April)). Repeating same errors are common

mistakes students make while learning the programming language(McCall, D., & Kölling,

M. (2014, October); Pettit, R. S., Homer, J., & Gee, R. (2017, March); Chabert, J. M., &

Higginbotham, T. F. (1976, April); Becker, B. A. (2016, February)). It is a good indicator

for understanding where students are struggling the most. An effective error message will

provide critical feedback to the novice programmers.

This study is focused on understanding the effects of different types of error

messages on students while writing assembly language programs so that developers can

design effective error messages. A modified version of Progressive Learning Platform

(PLP) tool is used to provide three different types of error messages. Those types are

Default type, Link type and Example type to understand which error message type is

effective. The effective error messages will be easy to understand which will help novice

programmers fix them and avoid making the same mistakes repeatedly.

1.2 Related work

Most programmers will agree that error messages are sometimes difficult to

understand or uninformative. There are many studies available to understand the reason

behind the errors made by novice programmers (Hartmann, B., MacDougall, D., Brandt,

3

J., & Klemmer, S. R. (2010, April); Nienaltowski, M. H., Pedroni, M., & Meyer, B. (2008);

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003, February); Prather, J., Pettit, R.,

McMurry, K. H., Peters, A., Homer, J., Simone, N., & Cohen, M. (2017, August); McCall,

D., & Kölling, M. (2014, October)). These studies help us to understand problem-solving

methods, errors made and difficulty with understanding programming concepts by novice

programmers. To design effective error messages, it is very important to look at the

mistakes made by the novice programmer. Also, studying the prior work can also help in

understanding methods used by other authors to design effective error messages.

In the study conducted by Becker, B. A. (2016, February), an editor was designed

and implemented providing enhanced compiler error messages. The study was a

controlled empirical study on CS1 students who were trying to learn Java. The study found

that there were 10 most frequent errors which represented 79% of total errors. The study

designed a tool which analyzed the students' source code and error messages which are

then customized based on the offending code to create enhanced error messages. The

study also found that the number of errors repeated by the students reduced after

enhanced error message system. The study helped to understand that detail description of

the error message improves the performance of the students. Based on the results of this

study we designed detailed description of error messages for assembly language

programming.

In another study conducted by Radosevic, D., & Orehovacki, T. (2011, June), a

Verificator was created as a part of Tutor which is a C++ learning programming interface.

The purpose of Verificator was to explain students the causes of syntactic and certain

logical incorrectness in the program. The study was conducted on 154 students. The most

frequent errors occurred during the study were variable declaration and usage. The

4

research indicated that if we provide effective error messages then the performance of

student can be improved.

In study by Chabert, J. M., & Higginbotham, T. F. (1976, April), tabulated errors

based on type and frequency of error messages. In this study, 25 students ran 1531

programs and out of 3150 errors 539 contained syntax error of one or another type. The

programming language used in this study was IBM 370 (OS) Assembly Language. The

study helped to understand most common types of errors found in assembly language are

an undefined symbol, addressability error, Invalid delimiter, Invalid syntax, incorrect

specification of a register or mask field, invalid and undefined op code, invalid

displacement and end of data on Sysin.

In a study by Ebrahimi, A. (1994), indicated the problem novice programmers face

while programming. The study divided 80 students into four equal groups and each group

participated in two experiments. The two experiments were focused on language

constructs and plan composition. The language constructs experiment contained small

segments of the program to study input, output, loops, decision making and specific

features of the languages. In plan composition, students were asked to create a plan for a

common problem known as “rainfall”. The results of the study indicate that more

emphasis is necessary for error checking.

In the study by Munson, J. P., & Schilling, E. A. (2016), the authors created a

programming tool called as “Codework” and collected programming activities of 46

students in two sections. Total 5879 observations were made during this study from

graded assignments and two in-class timed quizzes. This study shows that students do

read error messages. This study also states, “We can understand a decrease in the

percentage of time the first error was addressed, as students discover that it is not easy to

5

know what action to take in response to a compiler error message and therefore cast

around blindly.” This proves that if student receives an error message which is confusing

then they tend to avoid reading compiler error messages. Similar observations were made

when students were provided “Example type” of error messages.

In the study by Barik, T., Witschey, J., Johnson, B., & Murphy-Hill, E. (2014), to

communicate error messages and their resolutions, authors have designed taxonomies

which can help to create vocabularies in more controlled and expressive ways. These

taxonomies also help to give consistent and unified semantics to error objects. The study

did not provide any experimental data which can prove if this approach works or not.

In the study by Traver, V. J. (2010), the author focused on the problem of cryptic

error messages from the perspective of human-computer interaction. Human-computer

interaction is the study of user interfaces to make them more efficient and effective. The

paper shows that error messages which are designed poorly affect novice programmers

more adversely than expert programmers. The paper also provides actual compiler error

messages as examples and some principles for compiler error message design. The paper

states that there are many techniques available to design complex software such as design

principles, visual programming techniques, and integrated environments. which are

proven useful. Yet not much has been done with compiler error messages. According to

the paper, error messages are difficult to interpret, which makes the error difficult to

resolve and prevent in the future. The paper provides three main reasons for bad error

message design by compiler designers. The first reason is concern about memory

requirements by compiler developers which limits their ability to record feedback about

the error messages. The second reason is that compiler developer uses their own

knowledge about the language to design the succinct description of the error. The third

reason is priorities: developers give more priority to other features than error messages.

6

The paper also discussed two approaches to resolve the cryptic error message problem:

compiler driven approaches and programmer driven approaches. The paper states that the

problem has been addressed previously and some interesting issues were identified. To

address these issues more study and experiments are necessary. The paper also shows

how error messages which are difficult to understand affect novice programmers and

decrease their productivity and learning progress. This paper helped to design

programmer centric error messages and helped to identify compiler centric error

messages. The study helps to confirm that error messages are cryptic for novice

programmers and needs to be studied and improved.

1.3 Prior work conducted at ASU

The study conducted by Kadekar, H. (2016), the author tried to understand the effects

of error messages on the students’ ability to resolve the error. The study analyzed the

students’ reaction to different types of error messages. The study answered two questions.

The first question was aspects of the error message helped the programmer to understand

the error. The second is understanding the aspects of the error message which helped to

fix the error. In this study, each student was provided three programs with three different

types of error messages and feedback questionnaires. The participants were chosen from

two different classes. One class was undergraduate level class and another class was

graduate level class. Each student was given 10 minutes to solve the program. Think aloud

protocol was used to record students’ thought process along with the screen. Each action

was recorded using Chi, M. T., 1997, paper into different steps. Total 13 participants data

were transcribed, coded and analyzed. The Cohen’s Kappa for basic steps coding was

0.8736 which showed near a perfect agreement and for expected and unwanted steps were

0.62 which showed moderate agreement. The result indicated the reduced number of

incorrect steps and better understanding in case of an error message with a hyperlink to a

7

relevant section in an online manual. The students took less time and steps to fix the error

in case of Link type error message. The study also stated that the students were more

confused in the Example type error message and in case of assembler-centric error

messages i.e. Default type error messages.

1.4 Problem Statement

The main goal of this research is to find a way so that compiler designers for tools

used in educational settings can write effective error messages. Effective error messages

will be easy to understand. They will also help programmers understand their mistakes

and prevent them from making same mistakes again and again. This will help to increase

the confidence level in novice programmers and they will be more focused on writing

good programs. This study will also help to understand the impact of different types of

error messages on students learning ability.

The three types of error messages that are designed and used in this study are:

1. Default – Default type errors are indicated use a short error description with the

line number indicating where the error occurred.

2. Link – Link type error messages are indicated use a detailed error description

along with a link to the online manual and the line number indicating where the

error occurred.

3. Example – Example type error messages use the same detailed error description

as in the Link type, but also provide an example of the similar type of error and

correction, along with the line number indicating where the error occurred.

8

1.5 Research Question

The relevant study indicated that error message affects the students’ ability to understand

and correct the errors. It is important to understand the effects of error messages on

students process of resolving the errors in details. The study tries to answer following

questions, given that this study is for an educational tool, and we would like the error

message to either directly help a student learn the cause of an error, or direct them to a

resource that will help them learn the cause of the error.

1. From the time students get an error message, to the time they fix the error, what

is their strategy for resolving that error, and what impact does the error message

type have on that strategy?

2. In what ways do the different error message types facilitate student learning, as

evidenced by students either understanding the cause of the error directly from

the error message, or students referring to resources to understand the cause of

the error?

The answer to above questions gathered from the experiment will also help us to

identify which error message type is more effective. Also, it will help us to understand do

the students read compiler error messages completely or partially and whether they

understand it or not.

9

CHAPTER 2

IMPLEMENTATION

This study is part of research and development on a simulation and visualization

educational tool called the Progressive Learning Platform (PLP). PLP tool is a tool

designed for use in multiple computer engineering courses, and has a number of facets to

it, including a Verilog description of a CPU, a custom assembly language designed for

teaching computer organization and embedded systems, and a simple Integrated

Development Environment (IDE) PLPTool. “Progressive learning platform is an FPGA

based computer architecture learning platform and was designed for students to anchor

their conceptual learning about microprocessors and computer architecture, and for them

to see the connections between assembly language and trade-offs in architecture” (Sohoni,

S., 2014, June).

 To conduct this study, modifications were made to the PLPTool. A separate module

was designed to display customized error messages. While parsing the program, whenever

the compiler detected errors, this custom module was called. The module contained three

parts. The first one is the description, which provided a programmer-centric description

of the error. The second one is Links, where links to the online PLP manual were stored.

The online PLP manual is divided into sections and only the section of manual which is

relevant to the error was given in the link. For example, if the error is due to an incorrect

instruction, then the link would take the user to the section of the manual that listed all

the valid instructions. If the error is related to register usage, then the link to the section

on registers was given. The third part was an example, in which example for each type of

error was stored. The example contained two parts, a “before correction” example and an

“after correction” example based on the research conducted by Hartmann, B.,

MacDougall, D., Brandt, J., & Klemmer, S. R., 2010, April.

10

 Based on the study of PLP assembly language and feedback from professors and

teaching assistants, errors were grouped into 4 categories. (Kadekar, H. (2016))

1. Invalid label – This error has two sub groups.

a. Duplicate label – This error occurs when the programmer tries to define

same label at two different location in the program.

b. Invalid target – This error occurs when the program tries to use a label

which is not defined.

2. Invalid token – This has two sub groups.

a. Invalid instruction type – This error typically occurs when a programmer

makes a spelling mistake.

b. Invalid label – This error occurs when the programmer forgets to put a

colon after the label.

3. Invalid number of tokens – This error occurs when the programmer tries to use an

invalid number of arguments or operands. It has two sub groups.

a. Missing tokens – This error occurs when the programmer provides fewer

arguments/operands than expected.

b. Extra tokens – This error occurs when the programmer provides more

number of arguments/operands than expected.

4. Invalid operand – This error occurs when the programmer gives an operand which

does not adhere to the PLP language rules. It has four sub groups.

a. Not Register – Occurs when the programmer provides value or invalid

register name where a valid register name is expected.

b. Not Number – Occurs when the programmer provides unexpected input to

the operand instead of a valid number.

11

c. Not String – Occurs when the programmer provides unexpected input to

the operand instead of a string.

d. Invalid address – Occurs when the programmer provides unexpected input

to the operand instead of the valid address.

Figure 1 shows the Graphical User Interface(GUI) of PLP Tool used for the

experiment. This is the tool which is used in class to teach assembly language

programming at Arizona State University (ASU).

12

Figure 1 - PLP Tool Interface

Figure 2 gives an example of Default type error message. Figure 3 shows an

example of Link type error message. Figure 4 shows an example of Example type error

message. Default type, Link type and Example type error message were programmed

based on number one, two and three respectively. By changing the number in the modified

module different type error message was provided to the students.

13

Figure 2- Example of Default Type Error

14

Figure 3- Example of Link Type error

15

Figure 4- Example type error

16

CHAPTER 3

METHODS

3.1 Design

The experiment consists of three main stages. The first one is the consent forms,

in which each student was provided one physical copy and one digital copy of the consent

form to sign. The second stage was demographic survey, in which students were asked

about their proficiency in programming. The third stage was 6 PLP programs, each one

followed by a feedback questionnaire form.

Figure 5- Three main stages of the experiment

The main components of the experiment are demographic survey, think-aloud

programming activity and the feedback questionnaires.

1. Demographic survey – After getting the participant’s consent, to understand the

background and abilities questions related to proficiency in the programming were

asked and the answers were recorded in the Qualtrics.

2. Think-aloud Programming Activity - Think-aloud activity helps in “obtaining a

real-time insight into the knowledge that a subject use and the mental process

applied while performing a process of interest” (Hughes, J., & Parkes, S., 2003). It

provides important information about the participant’s behavior. Though,

sometimes think-aloud puts a burden on participant but in our case, there was no

other way to understand the thinking process behind student actions (Van Den

Consent
Process

• (5 minutes)

Demographic Survey

• (5 minutes)

6 PLP programs (4 minutes each)

6 Feedback Questionnaires

(4 minutes each)

17

Haak, M., De Jong, M., & Jan Schellens, P. (2003). Each student solved total 6

programs and for each program students were given 4 minutes. The students were

informed that their performance is measured based on time, therefore, it is

important to complete the activity as quickly as possible.

3. Feedback questionnaires: After each program students were given questions

related to the program. These questions helped to understand the thinking process

of the students and how they interpreted each error message. Also, we asked them

if the error message from the previous program helped to correct the error message

in the latest program. This question was asked only after 2nd, 4th and 6th program.

3.2 Procedure

Demographic survey: The survey contained total five questions. These questions were

asked to decide the proficiency of the participant in the programming. The questions asked

about the proficiency in PLP assembly language, high-level programming language,

proficiency in the integrated development environment, and assembly language known to

the participant other than PLP. If the user selects MIPS for other known assembly

languages, then one more question was asked about their proficiency in the MIPS because

PLP assembly language is like MIPS.

Actual questions asked to the participant are present in the appendix.

Think-aloud Experiment: In this experiment the participants were informed that this is a

think-aloud activity. The students were instructed to verbally express all the thoughts

and actions they are performing. During the experiment their thinking process was

18

recorded. To understand the actions performed by the students their screen was

recorded along with voice.

Feedback Questionnaire: After completing each programming activity the participants

were provided the feedback questionnaires. The questions were mainly focused on

understanding how participants interpreted the error messages. Below are the actual

questions that were presented to the students. The fourth question was asked only after

completion of the 2nd program, 4th program, and 6th program. This question helped to

understand whether the previous error message had any impact on the current program.

This question gave us insight whether the error message in the previous program helped

in solving current program or not.

1. Could you explain in your own words what was the error in the program?

2. How did the error message help you to understand the error?

3. How did the error message help you to fix the error?

4. Please describe the impact, if any, that fixing the error in the previous program had

on fixing the error in this progr am (to be asked for the 2nd, 4th and 6th programs).

3.3 Materials

All the material used in this experiment was approved by the Institutional Review

Board (IRB). The consent form was designed according to the guidelines provided by IRB.

The demographic survey was to understand the participant's abilities. During the think-

aloud experiments, each participant was given 6 programs. Please refer to appendix A for

details regarding programs and error messages provided to the students. Each participant

was given following type of programs in the same order.

19

1. Label Program: Each student was provided two programs with incorrectly

labeled programs.

2. Instruction Program: Each student was provided with two programs with

incorrect instructions.

3. Register Program: Each student was provided with two programs which

contained incorrect register.

The experiment tested three types of error messages. These error messages were

provided in different order. Table 1 explains the design of the order of the programs

provided to the students.

Those three type of error messages are:

1. Default type: These are original error messages present in the PLP tool, which

are designed from the developer perspective than user perspective.

2. Link type: These error messages contained a detailed description of the error

along with a link to the online manual.

3. Example type: These error messages contained a detailed description of the

error along with an example of the similar type of error.

 Please refer appendix for actual programs given to the participants and the

corrections required to the program to solve it. The programs and error messages were

designed based on the feedback from the professors, teaching assistants review who has

taken assembly language class previously and from literature review. The professor and

TA provided the feedback that these are the most frequently occurring errors (Chabert, J.

M., & Higginbotham, T. F. (1976, April)).

20

 Program

Question

1 & 2

Program

Question

3 & 4

Program

Question

 5 & 6

Description

Subject

1

P1 with M1

P2 with M1

P3 with M2

P4 with M2

P5 with M3

P6 with M3

For programming question 1 & 2,

errors will be displayed using

Message Type 1. For programming

question 3 & 4, errors will be

displayed using Message Type 2.

For programming question 5 & 6,

errors will be displayed using

Message Type 3.

Subject

2

P1 with M1

P2 with M1

P3 with M2

P4 with M2

P5 with M3

P6 with M3

For programming question 1 & 2,

errors will be displayed using

Message Type 1. For programming

question 3 & 4, errors will be

displayed using Message Type 2.

For programming question 5 & 6,

errors will be displayed using

Message Type 3.

Subject

3

P1 with M1

P2 with M1

P3 with M2

P4 with M2

P5 with M3

P6 with M3

For programming question 1 & 2,

errors will be displayed using

Message Type 1. For programming

question 3 & 4, errors will be

displayed using Message Type 2.

For programming question 5 & 6,

errors will be displayed using

Message Type 3.

Table 1- Treatment Groups

3.4 Participants

To understand the effects of error messages on students it was important to select

participants who have used the PLP tool before. If the participants didn’t know how to use

the tool, then it could have put an additional burden of understanding the tool. To avoid

this, we chose participants from CSE 230 class. The students were using PLP tool to

complete the assignments. To recruit the students, we made announcements on the slack

21

channel and on the blackboard with the help professor. Also, I went to the class and read

the verbal announcement script. The students were informed that the experiment won’t

affect their grade in any way in any class. Also, it was informed that no extra credits will

be given if they choose to participate in the study and on completion of the experiment 10$

target gift card will be given. The students were informed that they can stop participating

at any time they want, and they have right to not answer questions which they do not want

to answer. I received total 4 students for the study. Each student first signed the consent

form and then also signed a digital consent form. After which they completed the

demographic survey, programming activities and questionnaires.

3.5 Transcribe, Segment and Code verbal data

To analyze the steps taken by the student while solving the error in a program it

was important to code them. The code part helped to understand the action performed

by the students. Steps as prescribed by Chi, M. T., 1997, were followed for coding verbal

data. Those steps are:

1. Reducing or sampling the protocols

2. Segmenting the reduced protocols

3. Developing a coding scheme

4. Operationalizing evidence in the coded protocols that constitute a mapping to

some chosen formalism

5. Seeking pattern(s) in the mapped formalism

6. Interpreting the pattern(s)

7. Repeating the whole process, perhaps coding at a different grain size.

22

To understand the steps performed by the students each activity performed by

the student was coded using below tables. This helped to get an insight of metal model of

the students while solving problems in PLP tool.

Table 2 shows the basic steps used for coding the recorded data. The step was coded

as “Examine” whenever student tried to understand the program or error message. Like at

the beginning of each program there was a program description, if a student starts to read

it then that was marked as examine step. Also, after assembling button if the program

throws an error and the student started to read and understand it, it was marked as

examine. Another instance where the step was marked as examine was when a student

tries to understand the code. The “Examine” activity is the one which occurred the most

in the coding part.

23

Code Definition Examples

Examine

Step where a student trying to

read the description of the

program or trying to

understand program or error

message

“so this problem is

asking me to

perform addition

and subtraction

operation so the

result of addition

should be stored in

s1 then result of

subtraction should

be stored in s2..”

Explore

Step where student opens

online PLP manual or Quick

reference section from help

section of the PLP tool or

opened Link to the online

manual in the Link type error

message

“I think It should be

okay so lets just look

at s1 okay so first its

gonna increment so

I should get 70 in s1

which I do so that's

good okay”

Hypothesize
Step where student trying to

assume or guess

“so umm I guess one

solution is just to

line 28 we can just

write a0 since we are

at the end of the

program & see how

that works”

Repair
Step where student perform

changes to the program

“I am gonna use s6

instead, So I am just

gonna change that”

Evaluate

Step where student checked

the program after making

changes to the program to

validate the program

“ok..it’s running...I

am gonna watch

first s1.. just wanna

make sure I did

everything

right…ok...I am

gonna right...it

should decrement it

result 50 so that is

right ...if t1 is

actually 0 result is

70..”

Table 2- Basic Steps Code

The step was coded as “Explore” when students tried to open the online PLP

manual, the quick help reference section or clicked on the link provided to the PLP manual

in the Link type error message. The explore step indicated that student is trying to

24

understand the problem with the help of material available and not by just assuming or

using his previous experience.

Whenever student assumed something or tried to guess based on the behavior of

the program or error message that activity was marked as “Hypothesize”. Hypothesize

shows the gap in understanding or it shows that student is trying to understand based on

her experience. The hypothesis was either correct hypothesis or incorrect hypothesis, but

both were marked as hypothesize.

The activity was marked as “Repair” only when the student tried to make changes

to the code. The changes could be either on line where the error occurred or at some other

place in both cases it was marked as repair.

After solving the error if student decided to check the results or decided to verify

whether the error is gone or not that step was marked as “Evaluate”.

The examine steps are coded as program description, code, error message or search

information. Table 3 provides the definition and example for the codes. The step was

marked as “Program Description” when the student read the problem statement provided

in the program. The step was marked as “Code” when student made changes to the

program. Whenever student received an error message that step was marked as “Error

Message”. The step was marked as search information whenever student tried to search

on PLP online manual or PLP quick help section of PLP tool.

25

Code Definition Examples

Program Description

Step where student read the

problem statement given at the

start of each program

“The program will turn on the

LED least significant bit

position & LED at most

significant bit position in LED

array”

Code
Step where student make

changes to the program

Added colon after the addition.

Error message
Step where student received

error message

ohh it is saying subui doesn't

exist because its subu which

then gives error register not

recognized

Search Information

Step where student investigated

the online manual or quick help

reference section on PLP tool

“umm register PLP… online

PLP manual”

Table 3- Examine Step Codes

During the think-aloud experiment while speaking loudly each student

performed actions which are recorded in screen recording. To understand the behavior

of the students, each action performed by them further coded using the Table 4. The

action was recorded as “Expected” when the student acted which was expected by us. The

action was termed as “Gaming” only when the student performed an action without

understanding the error message or the results of the action. The action was termed as

“T&E” when the student understood the error message but not sure about the correct

step. “Correct Independent” action was those when the student performed correct action,

but it was not dependent on his understanding. The “Incorrect Interpretation” was used

to indicate the action performed by the student because of wrong interpretation. The

action which is incorrect and independent of the error message was marked as “Incorrect

Independent”. The actions which are incorrect because of lack of attention was marked

as “Silly Mistakes”.

26

Code Definition

Expected
Correct action performed by the student based on correct

understanding

Gaming Action performed by the student without understanding

T&E
Random action performed by the student with understanding

the error message

Correct Independent
Correct action performed by the student without

understanding the error message

Incorrect Interpretation
Wrong action performed by the student because of wrong

understanding

Incorrect Independent
Wrong action performed by the student independent of

understanding

Silly Mistake
Wrong action performed by the student because of not giving

sufficient attention

Table 4- Correct and Incorrect Steps Code

Table 5 provided information related to the status of error message read by the

student. An error message is a statement which provides information regarding the error

present in the program. It was important to understand whether the student read the error

message completely, partially, or Ignored it. The step was marked as a “Complete” when

the student read the error message completely. The step was marked as partial when the

student only read part of the error message. The step was marked as “Ignored” when

student ignored the error message went directly to the program to understand and correct

the error.

Code Definition

Complete Student read the given error message completely

Partial Student read only some part of the given error message

Ignore
Student ignored the error message completely or scrolled up and down in the

error message window

Table 5- Read Error Message Code

Figure 6 shows a sample coding of student 23. Similar to these all 24 programs

were coded for analysis.

27

Figure 6- Sample coding

Speak Screen

Comple

te

Partial

Ignore

Expected

Gaming

Incorrect

Interpretation

T&E

Correct Independent

Incorrect

Independent

Silly Mistake

Examine

Explore

Hypothesis

Repair

Evaluate

Program

Description

Code

Error Message

Search

Information

Okay so addition & subtraction

the addition should be stored in

register s1 the result should be $s2 Expected Examine

Program

Description

okay so then we have t1 t2 t3 we

add t2 & t3 and stored in s1 we

subtract t3 t2 stored in there Expected Examine

okay lets say compile & there is an

error somewhere so

Clicked on assemble

button. Expected Examine

Received error message of

example type Ignored Error Message

umm so okay we have check the

register I guess t1 look good t2 t3

s1 t2 t3 s2 t3 t2 umm exit and

then jump to exit Expected Examine

umm exit is blue again meaning

now add colon

Added colon on line 18

after exit Correct Independent Repair Code

press compile again

Clicked on assemble

button. Expected Examine

works then open up inspector

menu to see addition so then we

have s1 it has value 105 that

makes sense s2 has value 15 it

seems like it is working example Expected Evaluate

28

Chapter 4

RESULTS

This chapter is divided into five parts. The first section contains students’ process

model which is generated based on qualitative study of coded data. Each time students

received an error message was treated as an instance, i.e. one student may have multiple

such instances for a single program. Based on the total number of instances, the second

section explains percentage of times student ignored or read the error message completely

or partially for different types of error messages. The third section explains which type of

error message helped students to resolve the error. The fourth section explains which type

of error message student found confusing. The fifth section provides insight on which error

message is more effective and why, based on the process model.

4.1. Student’s process model to resolve the errors:

In this study, 4 students participated, and each student was given 6 programs. Each

program contained errors and participants were informed that they had to fix the error

within 4 minutes. They were also informed that the time taken to fix the error will be

monitored and used as an indicator of performance. Each participant received two

programs with the same type of error and same category of error message. After each

program students were asked questions about the error message to understand their

thoughts and reactions to the process of reading the error message and solving the error.

After the experiment, each student’s activity was coded as explained in the previous

section, resulting in codes for 24 programs, and qualitative analysis was performed on the

data to understand impact of each type of error message.

29

Figure 7 shows the process model generated by transcribing, coding and analyzing

the steps performed by the students. Based on the steps coded and feedback which is

presented in the following sections the process model was generated. This model helped

categorize different actions performed by the students and impact of different types of

error messages on student’s ability to understand and resolve the error. Students

performed two main actions after each time they assembled the program. The first action

was examining the error message and the second to choose a method to resolve the error.

30

Figure 7- Process model of students for solving the error

31

4.2. Error Message Read

Figure 8- Error message read

 Ignored Partial Complete

Default Type 11.11111 11.11111 77.77778

Link Type 21.42857 21.42857 57.14286

Example Type 46.15385 53.84615 0

Table 6- Number times error messages were read

Table 6 shows percentage of instances in which student read the error message

completely, partially and ignored. Each time student received an error message was

counted as an instance. Sometimes students did not read the message loudly, in which

case the determination was made based on the feedback and screen capture. In case of

“Example type” no one read the error message completely. In case of “Default type”

highest percentage of students read the error message.

0

20

40

60

80

100

120

Default Type Link Type Example Type

Ignored Partial Complete

32

4.3. Error message found confusing:

The feedback part from the questionnaire and students’ steps were analyzed to

understand if the students found the error message confusing or not. Table 7 shows the

number of programs in which students found the error message confusing.

Figure 9-Number of programs in which student found error message confusing

Table 7 shows that student did not find the “Link type” error message confusing.

On the other hand, students found “Example type” confusing.

 Yes No

Default Type 5 3

Link Type 0 8

Example Type 7 1

Table 7- Number of programs in which student found error message confusing

In case of Default type, in 5 programming activities they found it confusing.

Students provided feedback that the error message is too short and did not understand the

5

0

7

3

8

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E1 E2 E3

Found Confusing

Yes No

33

error in the program based on the error message. In three cases where students found the

Default type error message helpful used their experience from previous assignments to

solve the error. One student provided feedback that “The error message was poor. The

syntax highlighting was more helpful.” for Default type error. In case of Link type error

students found the error message neatly written explaining what is wrong with the

program and where to look. One of the student provided the feedback that “The error

message helped to confirm to me that what I thought was an error really was an error. If I

did not have the error message, I would not be as confident that the only error was the

subiu token.” for Link type error. In case of Example type students found it very confusing.

The students were confused by the example. One of the student provided feedback that

“The error message was excessively verbose. It told me that there was an invalid register

name, then provided a bunch of unhelpful nonsense after the actual error. This was

confusing as it did not relate to the problem I was having.” for Example type.

4.4. Error message found helpful:

The feedback part from the questionnaire and students’ steps were analyzed to

understand if the error message helped or not. In the feedback questionnaire the third

question was how the error message helped you to fix the error. The student explained in

it how it helped them and what part of the error message they found unhelpful.

34

Figure 10 - Error message helped

 Yes No

Default Type 37.5% 62.5%

Link Type 87.5% 12.5%

Example Type 25% 75%

Table 8-Error message helped

Table 8 shows highest percentage of times student found the “Link type” error

message helpful. One student provided feedback that “The error message helped me to

understand the error because as I read further down the error lines, I saw that there was a

problem around the addu word. I found in the program where the addu word was, and

found the problem described above and made the necessary changes to the program.” The

students found “Default type” and “Example type” unhelpful. One student provided

feedback that “It did not help since it provided no information about the error except that

it existed.” for that Example type error message. Similarly, another student provided

feedback for Default type is that “The only thing useful was the line number.”

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Default Type Link Type Example Type

Yes No

35

4.5. Detailed analysis of three error message types and their effects

on student’s problem-solving skills:

a. Detail description of Student’s process model:

Figure 11 was designed using coded data. It shows the thinking process of the

students participated in the study. It was observed that once the compiler generates some

error message, students either read the error message completely or they read the error

message partially, or they completely ignored the error message.

36

Figure 11 - Detailed Student process model

1. The students read the complete error message in two cases:

a. When the error message was short.

b. When the error message was easy to understand.

37

2. The students read error messages partially in two cases:

a. When the students understood the error while reading it in that case the

rest of the error message was ignored, and they directly went to the part

where the error occurred.

b. When the students found the error message confusing, they ignored the

rest of the error message and went directly to the program to understand

and resolve the error.

3. The students ignored the error message in two cases:

a. When the students found the error message very long.

b. When the students solved it while reading the program.

After examining the error message, based on the situation, students chose one of

the four methods to resolve the error. Those methods and situations are given below.

1. Quick reference or online manual – Students used this method in three

situations.

a. When students did not understand the error.

b. When students understood the error, but the concepts were not clear.

c. When students understood the error and decided to confirm the

understanding or concepts from the online manual or quick reference.

2. Previous experience: Students used their previous experience in three situations.

a. When students understood the error and they had similar type of error

while doing the assignments.

b. When students got the same error message which they had seen

previously.

c. Resolved the error while they were trying to understand the program.

38

3. Learned from the error: this method was observed when students understood

and corrected the error from the error message.

4. Trial & Error: student opted for this method in three situations.

a. When they read the error message but did not find helpful.

b. When students understood the error message but did not know how to fix

it.

c. When students found the error message confusing or tedious.

Based on the coded data, it was observed that students who understood the error

message and learned from it were more confident at the end. This model also helped to

understand the effects different types of error message had on students.

39

b. Effects of different error message types on students’

process model:

Figure 12 shows the effects of Default type error message on the students’ ability

to understand and resolve the error. It shows that 78% times students read the complete

error message and 58% times they chose to use trial & error approach. Table 9 shows

percentage of times students chose 4 methods to resolve the error after receiving Default

type error message. Table 10 shows steps performed, and feedback provided by all the

students for Default type. After giving the Default type error message to the students, the

highest percentage of times students opted for Trial & Error method. The reason for that

could be observed from the Table 10 feedback column. The main reason for this was

students did not understand the error. One student provided feedback that “It was similar

to the previous error (“Default type”). It did not help me to identify the problem on my

own but led me to a similar solution to the previous program”. When the Default type

error message was given to the students, they tried to guess or assume the answers instead

of understanding the error.

40

Figure 12- Percentage distribution of Default type on Student's process model

41

Quick

reference

Previous

Experience

Learned from the

error

Trial &

Error

1 2 1 5

11.11111111 22.22222222 11.11111111 55.55555556

Table 9- Percentage distribution of Default type error message

Student Steps Feedback

11

Solved while reading the

program

Even though I did notice the error message, I did not

read it. I just looked through the program to identify

the error.

11

..okay I see the problem

the exit statement

doesn't have semicolon.

The error message helped me to fix the error by telling

me what line in the program I needed to go to in order

to fix the error.

23

so I assume & we have

to use s7 because s is

probably stop at 7

It told me that the register is invalid. This led me to

believe that the $s does not go past 7.

23

so umm I guess one

solution is just to line

28 we can just write a0

since we are at the end

of the program & see

how that works

It barely helped since I knew I needed to use a different

register but had no idea which one to use. I forgot what

registers were safe to use with jump and link. Since I

could not remember what register I could use I re

purposed an existing register instead. I know there is

probably a better way but I always have to consult my

notes on what each register is for. I knew what the

problem was but had no good way of solving it.

36

s8 i guess invalid

register

It was similar to the previous error. It did not help me

to identify the problem on my own, but led me to a

similar solution to the previous program.

36

why would v2 be an

invalid register

It didn't help particularly much since I couldn't recall if

it was that there was no register with the name $v2 or if

it was some issue with declaration that didn't let me

store information for some reason.

42 Missing colon on line 20

The error message was poor. The syntax highlighting

was more helpful.

42 Added colon The only thing useful was the line number.

Table 10- Steps and feedback from the student for the Default type error
message

42

Figure 13 shows the effects of Link type error message on the students’ ability to

understand and resolve the error. It shows that 58% times students read the complete

error message and 50% times they chose to use trial & error approach. Table 11 shows

percentage of times students chose 4 methods to resolve the error after receiving Link type

error message. Table 12 and Table 13 shows steps performed, and feedback provided by all

the students for “Link type”. After giving the Link type error message to the students, the

highest percentage of times students learned from the error. The reason for that could be

observed from Table 12 and Table 13 feedback column. The main reason for this was

students understood what the error is and where it occurred on the line. One student

provided feedback that “The error message helped me to understand the error because as

I read further down the error lines, I saw that there was a problem around the addu word.

I found in the program where the addu word was, and found the problem described above

and made the necessary changes to the program.”. Similar feedback was provided by

another student “This error message was better. Instead of a parse error, the assembler

issued an error that stated that the opcode did not exist. After playing with a few logical

ways or rephrasing the mnemonic, I used the instruction set reference, which reminded

me that this instruction was not implemented. I then used a complementary instruction

to complete the task.”

43

Figure 13- Percentage distribution of Link type on Student's process model

44

Quick

reference

Previous

Experience

Learned from the

error

Trial &

Error

1 1 7 5

7.142857143 7.142857143 50 35.71428571

Table 11- Percentage distribution of error solving method used in Link Type

Student Steps Feedback

11

ohh I think the problem let me ran

it the problem might be the

subtraction I don't think you have

subiu I don't think you have

immediate there...okay yeah the

error at line 14 it say error occured

around subiu...

The error message helped to confirm to me

that what I thought was an error really was an

error. If I did not have the error message, I

would not be as confident that the only error

was the subiu token.

11

..ohh because we are trying to add

immediate value I need addiu…

The error message helped me to understand

the error because as I read further down the

error lines, I saw that there was a problem

around the addu word. I found in the program

where the addu word was, and found the

problem described above and made the

necessary changes to the program.

23

ohh it is saying subui doesn't exist

because its subu which then gives

error register not recognized

It pointed to the line and said what part was

making an error. It also helped by saying what

the function expected to receive. That helped

by showing me what kind of number it

wanted. It did not help try to figure out what

function I meant to use and I had to

remember that subu is used for subtraction.

23

umm press compile just to check

wrong instruction line 22 addui

instruction was not defined in plp

umm error occured around word

addui addui doesn't exist

It did not help much since the main issue was

trying to remember what function adds a

number to a register. Spelling the function was

the hard part.

Table 12-Steps and feedback from the student for the Link type error message

45

Figure 14 shows the effects of Example type error message on the students’ ability

to understand and resolve the error. It shows that 46% times students chose to ignore the

error message which is highest of all the error message types. Also 56% times students

Table 13- Steps and feedback from the students for the Link type error message
(Continued)

Student

Read

Error

Message Steps Feedback

36 Complete

oh addition didn't have

colon so it wasn't reading

it as a lable It pointed out the missing colon.

36 Ignored

I caught the error before

assembling. There was a

jump to exit label within

the exit label. The exit

label was entirely

redundant. In addition

the exit label was missing

a colon that would have

prevented it from

assembling.

I did not have an error message

because I fixed the program before

running it.

42 Complete

This thing doesn't have

immediate subtract. This

architecture doesn't have

an immediate subtract.

This error message was better. Instead

of a parse error, the assembler issued

an error that stated that the opcode did

not exist. After playing with a few

logical ways or rephrasing the

mnemonic, I used the instruction set

reference, which reminded me that this

instruction was not implemented. I

then used a complementary instruction

to complete the task.

42 Complete That's addiu

It gave me the line number and let me

know that the opcode was incorrect.

Once I knew the type of error, fixing it

in this case was trivial.

46

read the error message partially and they never read the error message completely. Table

14 shows percentage of times students chose 4 methods to resolve the error after receiving

Example type error message. Table 15 and Table 16 shows steps performed, and feedback

provided by all the students for “Example type”. After giving the Example type error

message to the students, the highest percentage of times students used Trial & Error

method to resolve the error. The reason for that could be observed from the Table 15 and

Table 16 feedback column. The main reason for this was students got confused after

reading the example part of the error message. One student provided feedback that “It did

not help since it provided no information about the error except that it [sic]exsisted.”.

Similar feedback was provided by another student “It partially didn't. It suggested using

sub instead, which would require the use of another register. If someone wants to use a

subiu it implies they are using an immediate, which does not require a register. Therefore,

recommending addiu but using the inverse of the immediate would be more useful.”. One

student while doing the think-aloud said that “So it says, well first thing it says is before

correction and after correction. I am not sure about that. Line 28 register not recognized”

which shows that the student got confused with the example.

47

Figure 14- Percentage distribution of Example type on Student's process model

48

Quick

reference

Previous

Experience

Learned from the

error

Trial &

Error

1 4 2 6

7.692307692 30.76923077 15.38461538 46.15384615

Table 14-Percentage distribution o Example type error message

Student Steps Feedback

11

So it says,well first thing it says is

before correction and after

correcction. I am not sure about

that. Line 28 register not recognised

.

The error message helped me to understand

what line the error was on, and what the

problem was with that line. Specifically, it told

me that there was something wrong around

the $v2 register, which I understood to mean

there was something wrong with using $v2 in

that specific line of code.

11

so it says the error is on 24

something around safe word..s8 is

not recognized I am guessing its

kind of similar problem s8 is not a

register

The error message helped me to see what line

the error was at, but I did not really need to

see what register specifically was causing the

problem, it just helped confirm to me what I

thought the problem already was. I had come

to this conclusion based on what I have

learned in class about the PLPTool and invalid

registers, and that there was a problem with

an invalid register in the last program.

23

but yeah it need to say something to

go that zero t or s or v so that would

be

It did not help since it provided no

information about the error except that it

exsisted.

23

umm so okay we have check the

register I guess t1 look good t2 t3 s1

t2 t3 s2 t3 t2 umm exit and then

jump to exit

It provided no hint as to what was the

problem. It just said it existed.

Table 15- Steps and feedback from the student for the Example type error message

49

Student Steps Feedback

36

what is it there

is not sub

immediate in

plp

It partially didn't. It suggested using sub instead, which would

require the use of another register. If someone wants to use a

subiu it implies they are using an immediate, which does not

require a register. Therefore recommending addiu but using the

inverse of the immediate would be more useful.

36

does not have

oh its typo It reccommended addiu instead

42

Stayed silent

for 45 seconds

then changed

v2 to v1

The error message was excessively verbose. It told me that there

was an invalid register name, then provided a bunch of

unhelpful nonsense after the actual error. This was confusing as

it did not relate to the problem i was having.

42

Ohh okay there

are only seven

s registers

It helped me to understand that the register was incorrect. It

had a lot of extraneous information that was confusing and

made the program more difficult to debug by scrolling other

errors out of the limited error window. This added at least 30

seconds to the amount of time required to fix the program.

Table 16- Steps and feedback from the student for the Example type error
message (Continued)

50

Chapter 5

CONCLUSION and FUTURE WORK

This study used think-aloud protocol to understand the process used by the

students to resolve the errors in assembly language programming. The experiment

conducted on four students helped to design student’s process model. The process model

helped to understand different strategies used by students to resolve the errors.

Based on the analysis of feedbacks and steps taken by the students, it shows the

impact error message types had on the students process to resolve the error, the study

shows that the Link type error message was more helpful and engaging than Default type

and Example type. The Link type error also helped to increase confidence level in the

students. The study shows that Default type error message was too short and did not help

students to resolve the error. On the other hand, the Example type was too lengthy, and

students avoided to read the complete error message. In case of, Default type and Example

type students prefer to use trial & error method to resolve the error, instead of

understanding the error. The default type and Example type did not facilitate learning as

evidenced from the feedback and steps coded. In case of Link type error message students

understood the error which not only helped then to fix it but also helped them to learn

from it, which indicates that the Link type facilitated learning from understand the error

message. The study also shows that in case of Example type error message student were

more confused by the example in the error message. Though the detailed description of

the error was similar in Link type and Example type, the study shows that because

Example type was lengthy students avoided to read the error message.

The impact of error messages on student learning is an extremely important and

interesting topic to explore. To gauge this impact, however, a study needs to be conducted

at a much larger scale, with longitudinal follow up. Ideally, students in three sections of

51

the assembly programming course will be presented with three different version of PLP-

one with the default error message, one with the example type, and one with the link type

error messages. Class averages on various projects, quizzes and exams, can serve as data

points throughout the semester, and the study can gauge if there are trends associated

with an error message type. For example, do students in one section achieve project

milestones quicker, or score more on an average than students in another section. Focus

group interviews can determine students’ usage of resources like the quick reference and

the manual, to see if one of the error message types drives more or better usage of these

resources. The study can provide data on why students might learn better through one of

the error message types.

52

REFERENCES

Becker, B. A. (2016, February). An effective approach to enhancing compiler error
messages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (pp. 126-131). ACM.

Chabert, J. M., & Higginbotham, T. F. (1976, April). An investigation of novice
programmer errors in IBM 370 (OS) assembly language. In Proceedings of the 14th
annual Southeast regional conference (pp. 319-323). ACM.

Munson, J. P., & Schilling, E. A. (2016). Analyzing novice programmers' response to
compiler error messages. Journal of Computing Sciences in Colleges, 31(3), 53-61.

Barik, T., Smith, J., Lubick, K., Holmes, E., Feng, J., Murphy-Hill, E., & Parnin, C. (2017,
May). Do developers read compiler error messages?. In Proceedings of the 39th
International Conference on Software Engineering (pp. 575-585). IEEE Press.

Pettit, R. S., Homer, J., & Gee, R. (2017, March). Do Enhanced Compiler Error Messages
Help Students?: Results Inconclusive. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (pp. 465-470). ACM.

McCall, D., & Kölling, M. (2014, October). Meaningful categorisation of novice
programmer errors. In Frontiers in Education Conference (FIE), 2014 IEEE (pp. 1-8).
IEEE.

Prather, J., Pettit, R., McMurry, K. H., Peters, A., Homer, J., Simone, N., & Cohen, M.
(2017, August). On Novices' Interaction with Compiler Error Messages: A Human
Factors Approach. In Proceedings of the 2017 ACM Conference on International
Computing Education Research (pp. 74-82). ACM.

Barik, T., Witschey, J., Johnson, B., & Murphy-Hill, E. (2014). Compiler Error
Notifications Revisited.

Traver, V. J. (2010). On compiler error messages: what they say and what they mean.
Advances in Human-Computer Interaction, 2010.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003, February). Identifying and
correcting Java programming errors for introductory computer science students. In ACM
SIGCSE Bulletin (Vol. 35, No. 1, pp. 153-156). ACM.

53

Nienaltowski, M. H., Pedroni, M., & Meyer, B. (2008). Compiler error messages: What
can help novices?. ACM SIGCSE Bulletin, 40(1), 168-172.

Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S. R. (2010, April). What would
other programmers do: suggesting solutions to error messages. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 1019-1028). ACM.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan
composition. International Journal of Human-Computer Studies, 41(4), 457-480.

Radosevic, D., & Orehovacki, T. (2011, June). An analysis of novice compilation behavior
using Verificator. In Information Technology Interfaces (ITI), Proceedings of the ITI
2011 33rd International Conference on (pp. 325-330). IEEE.

Van Den Haak, M., De Jong, M., & Jan Schellens, P. (2003). Retrospective vs. concurrent
think-aloud protocols: testing the usability of an online library catalogue. Behaviour &
information technology, 22(5), 339-351.

Chi, M. T. (1997). Quantifying qualitative analyses of verbal data: A practical guide. The
journal of the learning sciences, 6(3), 271-315.

Sohoni, S. (2014, June). Making the hardware-software connection with PLP.
In Proceedings of the 2014 conference on Innovation & technology in computer science
education (pp. 324-324). ACM.

Kadekar, H. (2016). Effects of error messages on a student’s ability to understand and fix

programming errors. ASU.

54

APPENDIX A

PROGRAMS, ERRORS AND FIXES

55

 As part of this study, six programs were used in the experiments. In this

appendix, all the programs, their errors and how those errors can be fixed are provided.

1. Label Program:

a. First label program:

This was the first program given to the participant in the experiment. The program

performs addition or subtraction based on the value in register $t1 and stores the result in

register $s1. Figure 15 shows the program. This program has an error at line number 20.

Here word ‘addition’ is a label. It is missing a ‘:’ to declare it as label.

Figure 15- Program 1 label program

56

Figure 16 shows the error provided as a Default type to the participants. Figure 17

shows Link type error provided for the first program to the participants. Figure 18 shows

the error message provided to the participant as Example type. To fix this error it was

important to add a ‘:’ after the label addition.

Figure 16- Default type Error Message for the Program 1 Label Program

Figure 17- Link type Error Message for the Program 1 Label Program

Figure 18- Example Type Error Message for the Program 1 Label Program

b. Second label program

 Figure 19 shows the second program given to the participants. This program

performs addition and subtraction operations. The result of the addition is stored in

register $s1 and the result of the subtraction is stored in $s2. This program has an error at

line number 18. Here the word ‘exit’ is a label. It is missing a ‘:’ to declare it as the label.

57

Figure 20 shows the error message as displayed using the Default type. Figure 21 shows

the error message as displayed using the Link type and Figure 22 gives the error message

as displayed using the Example type. The correct way to fix this error is to place a ‘:’ at the

end of line 18 to make word exit as the label. So, line 18 will have ‘exit:’ after error

correction.

Figure 19-Program 2 label program

Figure 20-Default type Error Message for the Program 2 Label Program

Figure 21-Link type Error Message for the Program 2 Label Program

58

Figure 22-Example Type Error Message for the Program 2 Label Program

2. Instruction Program:

a. First Instruction program:

This third program provided to the participant was an instruction program.

Figure 23 shows the exact program provided to the participants. The program contains an

invalid instruction on line 14. PLP instruction set does not contain an instruction “subiu”.

There is no instruction available which does the immediate value subtraction. To fix this

issue there were two ways. The first one is to use “subu” with an additional register. In this

method, the participant must create a new register with value 10 and use that register with

“subu” instruction. Another way of solving this problem was to use “addiu” instruction

with value -10. Figure 25 shows the Default type error displayed for the program. Figure

26 shows the link type error displayed for the program. Figure 26 shows the Example type

error displayed for the program.

59

Figure 23- Program 3 Instruction Program

Figure 24- Default type Error Message for the Program 3 Instruction Program

Figure 25- Link Type Error Message for the Program 3 Instruction Program

60

Figure 26- Example Type Error Message for the Program 3 Instruction Program

b. Second Instruction program:

 This was the fourth program given to participants during the experiment.

Figure 27 gives the Instruction program. This program has an error on line 22. Here

program’s intention is to increment value 10 from the register $t3 and store back the result

into register $s1. For unsigned operations, we do have an addition instruction in PLP

which is “addiu”. So “addui” is not an instruction in PLP. Figure 28 gives the Default type

error message displayed for the program. Figure 29 gives the Link type error message

displayed for the program and Figure 30 gives the error message displayed for Example

type error message.

61

Figure 27-Program 4 Instruction Program

Figure 28-Default type Error Message for the Program 4 Instruction Program

62

Figure 29-Link Type Error Message for the Program 4 Instruction Program

Figure 30-Example Type Error Message for the Program 4 Instruction Program

3. Register Program:

a. First register program:

Figure 31 shows the fifth program given to the participants. The intent of

the program is to perform addition, subtraction, and multiplication on two registers $a0

and $a1. The values stored in the register $a0 is 100 and the value stored in the register

$a1 is 200. The error is present on line 28. The register used in the program $v2 is not

present in the PLP register set. To correct this error, it is very important to have good

knowledge about the register sets present in the PLP assembly language. The solution to

this error is the use of any valid register for example from register set s or v. In this

program if v type register is used then it will overwrite the previous result which makes

the program logically incorrect.

63

The Default type error message for this program is given in the Figure 32. The Link type

error provided to the participants is given in the Figure 33 and Example type error

message provided to the participants is given in the Figure 34.

Figure 31- Program 5 Register Program

64

Figure 32- Default type Error Message for the Program 5 Register Program

Figure 33- Link Type Error Message for the Program 5 Register Program

Figure 34- Example Type Error Message for the Program 5 Register Program

b. Second register program:

 The sixth and last program provided to the participant is given in the Figure

35. The intent of the program is to turn on the LED at the least significant bit position and

then the LED at the most significant bit position in the LED array. The error is present on

line 23 and 24 in this program. The program is trying to use register $s8 which is not

present in the register set in PLP. To correct this error, it is important to have a good

understanding of the registers present in the register set. After changing $s8 with valid

saved temporaries register the error disappears from the program. Figure 36 shows the

Default type error presented to the students. Figure 37 shows the Link type error presents

to the students. Figure 38 shows Example type error given to the students.

65

Figure 35-Program 6 register program

Figure 36-Default type Error Message for the Program 6 Register Program

66

Figure 37-Link Type Error Message for the Program 6 Register Program

Figure 38-Example Type Error Message for the Program 6 Register Program

67

APPENDIX B

DEMOGRAPHIC SURVEY FORM

68

In the demographic survey, following questions were asked:

1. Please select your proficiency in the PLP assembly language.

0 - No proficiency

1 - Elementary proficiency

2 - Limited working proficiency

3 - Full professional proficiency

2. Please select your proficiency in programming language other than assembly.

[Example – High level language like C, C++, Java, Python]

0 - No proficiency

1 - Elementary proficiency

2 - Limited working proficiency

3 - Full professional proficiency

3. Please select your proficiency in using an Integrated Development Environment

(IDE).

0 - No proficiency

1 - Elementary proficiency

2 - Limited working proficiency

3 - Full professional proficiency

69

4. Please select the assembly language you have used other than PLP

none

MIPS

Other (Example – x86/Motorola/ARM)

For this question if user selects MIPS then following question were asked:

5. Please select your proficiency in MIPS assembly language

0 - No proficiency

1 - Elementary proficiency

2 - Limited working proficiency

3 - Full professional proficiency

70

APPENDIX C

SAMPLE TRANSCRIBING, SEGMENTING AND CODING

71

 The table 17 shows sample coding of student 11 for the Default type error

message. The steps were coded as Examine, Explore, Hyporhesize, Repair and Evaluate.

Speaker Audio Screen Examine

Explore

Hypothesize

Repair

Evaluate

so this problem is asking me

to perform addition and

subtraction operation so the

result of addition should be

stored in s1 then result of

subtraction should be stored

in s2

 Examine

okay I have three load

immediate operations the

result being stored in t1 and

45 in t2 60 in t3

 Examine

I do not see any error

messages right now I am

going to try to run it see what

happens.

 Examine

Clicked on Assemble button.

asm:18 Unable to process token exit

so error message it say main

18 unable to processes token

exit.

 Examine

okay I see the problem the

exit statement doesn't have

semicolon.

 Examine

so I am gonna add semicolon

and make sure everything else

look okay...okay it should

work

Added semicolon at end of exit label

Repair

yes result addition stored in s1

and result subtraction stored

s2 so perform exit.

 Examine

Clicked on Simulate button. No

error reported.

so I simulate it and there are

no problems. I think I am

done.

 Evaluate

Table 17- Sample Coding for Basic Steps

72

Speaker Audio Screen Expected

Gaming

T&E

Incorrect-

Interpretation

Incorrect-

Independent

Correct-

Independent

Silly Mistake

Okay based on register t1

increment by 10 or decrement

by 10 so adding or subtracting

10

 Expected

currently it is set to

decrement umm let’s see so

equals if t1 is zero increment

otherwise takes immediate

subtract 10 exit nop exit

works

 Expected

extra exit here Deleted j exit loop statement Incorrect

Interpretation

increment has nothing wrong

here

 Expected

Clicked on Assemble button Expected

error caused due to wrong

instruction name instruction

not on after correction

Received error of type example

Expected

except the problem with this

subi cause subu is not what

we are looking for either

 Incorrect

Interpretation

Changed subiu to subi T&E

Received Example type error

Changed subi to subu Gaming

register is not recognized

subu is expected

Received error of type example

Incorrect

Interpretation

Opened the online PLP manual

what is it there is not sub

immediate in PLP

 Correct

Independent

alright I will just use add

immediate

Changed to addiu from sub

Correct

Independent

okay it assembles.

Table 18- Sample Coding for Expected and Unwanted Steps

73

Speaker Audio Screen Program-

Description

Error-Message

Code

Search-

Information

So problem is to either do

addition or subtraction final

result should be stored 0 1

addition subtraction

 Program

Description

so load 0 45 60 branch equal 1

0 so its saying 1 is equal 0 it

will go to addition branch

okay so first branch is acting

as if statement for addition or

subtraction depending on

what loaded in t1 determines

addition or subtraction subu

so it gets stored in s1 t3 minus

t2 jump exit addition

umm I don't think there is an

error

Clicked on assemble button.

Let’s try to caused due to

missing colon after addition

Received Link Type error

Error Message

Added colon after addition label Code

oh addition didn't have colon

so it wasn't reading it as a

label

Clicked on assemble button.

 umm okay let's see alright so I

have completed the first one

Table 19- Sample Coding for Examine Steps

74

Speaker Audio Screen Complete

Partial

Ignore

Based on value in register

increment by 10 or multiply

by 10

this time branch equals

increment nop increments

same as before multiplying t1

t3 t4

does not have oh its typo Received Example type error. Ignored

doesn't look like any more

assembly errors

Changed addui to addiu

oops oh wrong one

Clicked on assemble button. Clicked

on step button.

start its going infinite loop Removed j exit statement

then run Clicked on simulation and then run

button

Table 20- Sample Coding for Complete, Partial, Ignore

75

APPENDIX D

VERBAL, BLACKBOARD AND SLACK CHANNEL ANNOUNCEMENT SCRIPT

76

My name is Siddhant Tanpure and I’m currently undertaking a research study to

investigate the effects of error messages in PLP (Progressive Learning Platform)

language on student’s ability to understand and fix errors in programs. The total amount

of time you would participate for is approximately 1 hour.

Your participation will involve demographic survey; think-aloud programming

exercise consisting of six PLP (Progressive Learning Platform) programs and feedback

questionnaires about the PLP programs. You have the right not to answer any question,

and to stop participation at any time. The computer monitor will be recorded (commonly

referred to as screen recording). Entire session will be audio recorded. The recordings will

be stored in secure password protected ASU dropbox with access only to research team.

The recordings will be kept for a period of 5 years.

Your participation in this study is voluntary. If you choose not to participate or to

withdraw from the study at any time, there will be no penalty. Your participation in this

study will not affect your grade in CSE 230. You must be 18 or older to participate in the

study.

Your participation in this study will in no way affect your grade in class [CSE 230].

Data collected during the study will be anonymous and confidential. Results will only be

shared in the aggregate form. The results of this study may be used in reports,

presentations, or publications but your name or other identifiable information will not be

used.

If you are interested in participating in the study, you may email me at sbtanpur@asu.edu.

mailto:sbtanpur@asu.edu

77

APPENDIX E

CONSENT AND PARTICIPANT RECRUITMENT FORM

78

Increasing the effectiveness of error messages in a computer programming

and simulation tool

Welcome to the research study!

 I am a graduate student under the direction of Dr. Sohum Sohoni in the

Department of Engineering at Arizona State University. I am conducting a research study

to examine the effects different forms of error messages in PLP (Progressive Learning

Platform) language on student’s ability to understand and fix errors in programs.

I am inviting your participation, which will involve demographic survey, think-

aloud programming exercise consisting of six PLP (Progressive Learning Platform)

programs and feedback questionnaires about the six PLP programs. The study should take

you around 1 hour to complete. You have the right not to answer any question, and to stop

participation at any time.

Your participation in this study is voluntary. You must be 18 or older to participate

in the study. If you choose not to participate or to withdraw from the study at any time,

there will be no penalty. Your participation in this study will not affect your grade in CSE

230. You have the right to withdraw at any point during the study, for any reason, and

without any prejudice.

You will receive $10 worth of gift cards for your participation. There are no

foreseeable risks or discomforts to your participation.

Your name and other identifiable information will not be collected. Results will

only be shared in the aggregate form. The results of this study may be used in reports,

presentations, or publications but your name or other identifiable information will not be

used.

79

I would like to audio record this session. Everything visible to you on the computer

monitor will be recorded (commonly referred to as screen recording). The screen and

audio recording will not take place without your permission. Please let me know if you do

not want the screen or audio to be recorded; you also can change your mind after the

recording starts, just let me know.

If you have any questions concerning the research study, please contact the

research team: Dr. Sohum Sohoni at (405) 338-8317 or Sohum.Sohoni@asu.edu,

Siddhant Tanpure at (480) 570-9991 or sbtanpur@asu.edu . If you have any questions

about your rights as a subject/participant in this research, or if you feel you have been

placed at risk, you can contact the Chair of the Human Subjects Institutional Review

Board, through the ASU Office of Research Integrity and Assurance, at (480) 965-6788.

By clicking the button below, you acknowledge that your participation in the

study is voluntary, you are 18 years of age, and that you are aware that you may choose to

terminate your participation in the study at any time and for any reason.

