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ABSTRACT

The subliminal impact of framing of social, political and environmental issues such as

climate change has been studied for decades in political science and communications

research. Media framing offers an “interpretative package” for average citizens on how

to make sense of climate change and its consequences to their livelihoods, how to deal

with its negative impacts, and which mitigation or adaptation policies to support. A

line of related work has used bag of words and word-level features to detect frames

automatically in text. Such works face limitations since standard keyword based

features may not generalize well to accommodate surface variations in text when

different keywords are used for similar concepts.

This thesis develops a unique type of textual features that generalize<subject,verb,

object> triplets extracted from text, by clustering them into high-level concepts.

These concepts are utilized as features to detect frames in text. Compared to uni-gram

and bi-gram based models, classification and clustering using generalized concepts

yield better discriminating features and a higher classification accuracy with a 12%

boost (i.e. from 74% to 83% F-measure) and 0.91 clustering purity for Frame/Non-

Frame detection.

The automatic discovery of complex causal chains among interlinked events and

their participating actors has not yet been thoroughly studied. Previous studies

related to extracting causal relationships from text were based on laborious and in-

complete hand-developed lists of explicit causal verbs, such as “causes” and “results

in.” Such approaches result in limited recall because standard causal verbs may not

generalize well to accommodate surface variations in texts when different keywords

and phrases are used to express similar causal effects. Therefore, I present a system

that utilizes generalized concepts to extract causal relationships. The proposed algo-

rithms overcome surface variations in written expressions of causal relationships and
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discover the domino effects between climate events and human security. This semi-

supervised approach alleviates the need for labor intensive keyword list development

and annotated datasets. Experimental evaluations by domain experts achieve an av-

erage precision of 82%. Qualitative assessments of causal chains show that results are

consistent with the 2014 IPCC report illuminating causal mechanisms underlying the

linkages between climatic stresses and social instability.
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Chapter 1

INTRODUCTION

Climate change has provoked heated debates on global political and media arenas.

Media framing offers an “interpretative package” for average citizens on how to make

sense of climate change and its consequences to their livelihoods, how to deal with its

negative impacts, and which mitigation or adaptation policies to support (Chong and

Druckman, 2007; Nisbet, 2009; Shehata and Hopmann, 2012). News frames encour-

age salient interpretation of debated issues through the usage of rhetorical devices

(e.g. words, repetitive phrases, and metaphors). Increasingly, governments and inter-

national communities are concerned about the security implications of climate change

as empirical research has documented that climate change is linked to increased risk

of violent conflict (Barnett and Adger, 2007). For example, in May 2015, U.S. Pres-

ident Barack Obama asserted that extreme weather is a threat to national security

and elevates the risk of global instability and conflict. Some popular press adopted

security threat frames to gain public attention. Therefore, systematic detection of

news frames related to climate change offers better understanding of stakeholders and

their competing perspectives.

Politicians have used framing on hotly debated issues to shift public opinion, gain

support and pursue their agenda. A frame is the bundling of a component of oratory

to urge certain perceptions and to dishearten others (Alashri et al., 2015). Framing is

accomplished when a choice of words, expressions, subjects and other logical gadgets

support one understanding of an arrangement of realities, and debilitate other inter-

pretations. One of those framed issues is climate change. Internet created a public

space for politicians and stakeholders to frame climate change and related issues to
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push for their agenda. Online tools such as blogsphere, microblogging and social me-

dia streams have increased the availability of data on climate change related debate

and made it feasible for researchers to analyze them.

Framing research requires qualitative analysis of a number of texts by subject mat-

ter experts to identify and code a set of frames. This is a time consuming process that

does not scale well. In order to address the scalability problem, machine learning tech-

niques can be utilized to detect and classify frames. In this study we propose a system

for automatic detection of frames in sentences in a climate change related corpus, and

map them to one of four expert-identified frame categories: solution, problem threat,

cause, and motivation. Our problem here can be described as a multi-level multi-class

classification problem where we first classify each sentence as Frame or Non-Frame.

Then, the Frame sentences are further mapped into one of four predefined frame

categories. In particular, we show that if a sentence is <subject,verb,object> pat-

terned then using generalized concepts and relations as features produced significant

results compared to classical textual features (e.g. uni-grams and bi-grams) while

detecting and categorizing Frame/Non-Frame sentences. In the unsupervised frame

learning approach, we experimented with k-means (Arthur and Vassilvitskii, 2007)

and its results aligned with our development of the four frame categories using theories

discussed later in Section 4.3. In the supervised frame learning approach, we experi-

mented with SVM (Cortes and Vapnik, 1995), Random Forests (Breiman, 2001) and

Sparse Logistic Regression (Liu et al., 2009a) classifiers, and identified sparse logistic

regression as the best performing classifier for these tasks. Once we detect framed

sentences, we investigate the causality among actors/entities to discover the causal

relationships.

The generalized concepts approach extracts high-level information from text as

relationships and concepts forming a semantic network. It first uses shallow seman-

2



Figure 1.1 Example of Merging Two Related Concepts

tic parser to generate POS tags to obtain semantic triplets <subject,verb,object>

from text. Next, it utilizes a bottom-up agglomerative clustering approach to merge

and generalize those triplets into concepts. In NLP, shallow parsing is the task of

extracting the subjects, predicates or verb phrases, and objects. Figure 1.1 shows

how two related triplets could be merged into a higher level generalized concept. In

this figure, two extracted triplets: 〈action plan→build→sustainability〉 and 〈policy

→consolidate→sustainability〉 are merged to form a high level generalized concept

and relationship as: 〈{action plan, policy}→{build, consolidate}→

{sustainability}〉 by discovering contextual synonyms such as {action plan, policy}

and {build, consolidate}. Here the definition of contextual synonyms is not based on

the one in the traditional dictionary. Rather, they correspond to phrases that may

occur in similar semantic roles and associate with similar contexts. In Figure 1.1 the

two triplets share the same object {sustainability} and semantically similar verbs;

hence, we can merge their subjects {action plan,policy} as contextual synonyms.

“All reasonings concerning matter of fact seem to be founded on the relation

of Cause and Effect,” (Hume and Beauchamp, 1904). Causal relationships are cen-

tral to human reasoning for individuals (Riaz and Girju, 2014; Zhao et al., 2016;

Khemlani et al., 2014) and policy makers to address significant global problems that

pose threats to human security. Despite scientific evidence suggesting the potential
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linkages between climate change impacts and human security (Adger et al., 2014),

results from social and physical sciences offer ambivalent explanations of the causal

mechanisms. The domino effect describing linear or nonlinear relationships between

climate extremes and sociopolitical impacts is not well documented. Understand-

ing the security repercussions triggered by climate shocks and stresses can motivate

decision-makers to build adaptive capacity at global and local level. Therefore, there

is an urgent need to develop data intelligence system to demystify causes and conse-

quences of climate change risks in various sources of textual information. Enhancing

causality extraction is extremely helpful in detecting interlinked drivers for social

unrest and identifying opportunities for policy intervention. A recent meta-analysis

examining 50 quantitative studies demonstrated that warm temperature and extreme

precipitation increase the risk of violent conflict (Hsiang and Burke, 2014).

Causal relationships, defined as “the relationship between cause and effect,” 1 are

central to our life. Given the complex climate risks and human security interactions, it

is challenging for citizens and political leaders to grasp the indirect consequences of ex-

treme weather events on livelihoods efficiently. As a result, computational linguistics

researchers have proposed approaches to help automate this task. Such approaches

were developed for a variety of applications ranging from medicine (Khoo et al., 2000;

Vandenbroucke et al., 2016), to environmental science (Araúz and Faber, 2012), law

(Thagard, 2004), and question-answering systems in computer science (Girju, 2003;

Chang and Choi, 2004; Higashinaka and Isozaki, 2008).

The 2014 Intergovernmental Panel on Climate Change (IPCC) fifth assessment

report (Adger et al., 2014) firstly summarizes a systematic framework to reflect how

climate change poses risks to human safety and sociopolitical instability. The frame-

work discusses associations between climate stresses and potential impacts on human

1Oxford English dictionary online
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Figure 1.2 Causal Chains of the Relationship Between Climate Change and Human

Security

health, economic conditions, and violent conflicts intensifying global or regional insta-

bility (Scheffran et al., 2012a; Lu et al., 2016, 2017; Scheffran et al., 2012b). Guided

by the IPCC fifth assessment report, we use a set of novel algorithms for causality

identification to disentangle climate-security linkages from vast amounts of textual

data. Our approach is more robust for understanding the causal processes between

climate systems, natural resources, human security, and social instability. Figure 1.2

provides an illustrative overview of domino effect of climate change on key dimen-

sions of human security. Sea surface temperature or heat would lead to prolonged

droughts. Rainfall deficits cause hydrologic disruption, posing threats to basic needs.

Agricultural crop yields will be affected adversely. Food-price shocks increase the

likelihood of foot riots or conflict over resource scarcity (e.g., protest and migration).

One of the objectives of this thesis is to develop a series of computational models for

causality extraction to illustrate how climate stresses result in multifaceted threats

to economic, social and political outcomes essential to human security.

In contrast to previous studies, our generalized concepts approach discovers the

interlinked causal relationships in English texts by considering linguistic and contex-
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Figure 1.3 Multi-level Multi-class Classification

tual features. We investigate the interconnected processes in the context of climate

change and human security by analyzing causal connections between entities through

concept generalization techniques. An entity is defined as an extreme weather event,

human action or outcome.

1.1 Problem Definition

Given a set of documents {D1,...,DM} where each document contains one or more

paragraphs; first, we split documents into sentences {S1,...,SN}. Next, using sentences

as data points, we aim to resolve whether a sentence Si contains a frame or not. And,

if the sentence contains a frame, then we aim to identify its frame category, as one

of: {Solution, Problem Threat, Cause, Motivation}. Figure 1.3 shows our multi-level

multi-class problem for a given sentence. Next, we aim to mine climate-change related

6



Figure 1.4 Example of Causal Chain of Concepts

sentences to derive spatially and temporally tagged causal relationships among events,

effects, and impacts on actors. Figure 1.4 shows an example of this causal chain of

concepts.

1.2 Challenges

1. Incomplete sentences or informal English: When extracting generalized

concepts, the sentences have to be complete formal sentences so that <subject,verb,

object> can be extracted. In other words, it might not be possible to use informal

English dataset (such as Twitter) where users typically write in an informal way.

2. Small Dataset size: If the dataset is small, then the resultant generalized

concepts will be sparse. Using a 10,000 documents dataset would yield more gener-

alized concepts as compared to a 100 documents. The definition of “small” dataset

is subjective, and as a rule of thumb we suggest a minimum of 1,000 documents.
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1.3 The Contributions

Our unique contributions are threefold:

1. Extracting new textual features (Generalized Concepts) from large corpora and

utilizing them in document classification.

2. Starting with a seed set of causal verbs, we apply a concept generalization

technique to extract causal relationships and their participating actors automatically.

3. The ability to reveal the domino effect of climate change risks to human security

within large corpora.

1.4 Thesis Structure

This dissertation is structured into several chapters as follows:

Chapter 2: Literature Review

This chapter reviews related work in media framing, framing research in computer

science, and causal relationships.

Chapter 3: Methodology

In this chapter we show the components of our system: climate change corpus,

pre-processing, feature extraction, supervised and unsupervised frame learning, and

causal relationships extraction.

Chapter 4: Experimental Evaluation

After discussing our system, we show quantitative and qualitative evaluations. Sub-

ject matter experts analyzed the results and provided more insights.

Chapter 5: Conclusion and Future Work

Finally, we conclude the thesis and point out its limitations and directions for future

work.
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Chapter 2

LITERATURE REVIEW

2.1 Media Framing

Mainstream media serve as the main arena where international governments, so-

cial and political actors, scientists, social movement organizations interact and make

competing claims about climate change issues (Hilgartner and Bosk, 1988). Com-

munication surrounding climate change can inhibit or support science and policy

interactions, propagate consensus or disagreements (Hulme, 2009), and ultimately

facilitate social change (Boykoff, 2011; Moser and Dilling, 2006), depending on how

messages about climate change have been framed (Boykoff, 2011).

Media representation of climate change plays a vital role in shaping ongoing policy

discourse, public perception and attitudes. (Carvalho, 2007) suggests that prominent

political actors frame climate risk for their own purposes, and align frames with their

interests and perspectives through media feedback processes of representing climate

change risk. Studies have shown that the lay people learn about climate change

mainly through consuming mainstream media news (Brulle et al., 2012). Conse-

quently, (Nisbet, 2009) argued news media framing can catalyze public engagement

and help trigger collective concern of climate change. Put differently, media framing

is a powerful tool to highlight different aspects of the policy options, and promote

specific interpretations or evaluations that influence decision making (Entman, 1993).

Existing typologies of climate change framing, focusing on dichotomous categories,

are limited by their inability to link framing processes with movement interaction.

We argue that, in order to understand how the media reflect different organizations
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interests in addressing climate change as a social problem, it is necessary to sup-

plement the social movement focus on resource mobilization to framing processes of

collective action problems. To do that, this study develops a nuanced typology for

studying climate change framing and its adequacy for supporting social movements

that would be necessary to overcome the collective action problem. Our typology

provides a holistic map to evaluate how climate change media framing can enable

appropriate social and policy actions that ultimately can mitigate risks of social un-

rest. We apply this framework to examine framing of climate change in media and

social media texts collected from the Niger Basin region over seven months, from

August 2014 to February 2015, using a novel coding technique to assess diagnostic,

prognostic, and motivational framing described by (Benford and Snow, 2000) as the

keys to effective social movements.

2.2 Framing Research in Computer Science

Jang et al. (Jang and Hart, 2015) examined the role of media framing in shaping

public opinion expressed on twitter. In (Stalpouskaya and Baden, 2015), authors

went further to distill agenda from news and link them to actions. Content analysis

of frames in news is performed either by (1) manual frame coding by expert coders,

which is costly and not scalable, or by (2) utilizing machine learning techniques to

detect frames automatically after training a learning model (Burscher et al., 2014).

A line of related work has used word-level features to detect frames automatically

in text. Odijk et al. (Odijk et al., 2013) utilized bag of words, n-grams, and topic

models to classify news articles and map them to a set of frames. Others, employed

POS-tags (Baumer et al., 2015) and named entities (Finkel et al., 2005) as features to

detect and classify frames. However, such works face limitations since their features

may not generalize well to accommodate surface variations in text when different key-
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words are used for similar concepts. In (Ceran et al., 2012), they experimented with

triplet <subject,verb,object> based features to detect story paragraphs in extremists

corpus and showed how these features performed better in classification compared to

standard keyword based features. In (Ceran et al., 2015), they developed general-

ized concepts which outperformed their previous work in detecting story paragraphs.

In our work, we improved their generalized concepts and utilized them as features

to detect and categorize frames in climate change corpus. We worked on sentence

level classification and clustering compared to their paragraph level, which made the

extraction of triplets more challenging. Therefore, we developed triple-extraction

techniques where we can extract more features and incorporate a larger percentage

of sentences into the learning model (i.e. 80% of sentences compared to 40%). Next,

the extracted features are used in a multi-level multi-class learning model where we

first examine if a sentence contains a frame, and then we identify which category of

four frame categories it belongs to.

2.3 Causal Relationships

Previous studies on causality mining attempted to extract explicit cause-effect

relations from text using hand-coded patterns (Joskowicz et al., 1989; Kaplan and

Berry-Rogghe, 1991). Two main drawbacks of this approach should be noted. It

requires extensive human effort; it does not scale up for large corpora, limiting the

predictive ability of forecasting long-term impacts brought by climatic risks.

Recent studies (Girju et al., 2002; Chang and Choi, 2006) attempted to automate

the extraction of causal relations using lexico-syntactic patterns within one sentence

in the form of <NP-Cause, Verb, NP-effect>. Girju (Girju, 2003) proposed an en-

hancement of these patterns by searching causal verbs on the Internet and WordNet

(Miller, 1995); results showed a precision of 73.91% for causality extraction. Chang
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and Choi (Chang and Choi, 2006) replaced Girju (Girju, 2003) causal verbs approach

with “cue phrases” to link cause and effect events. They defined a cue phrase as “a

word, a phrase, or a word pattern which connects one event to the other with some

relation (e.g. caused by, because, as the result of ).” The “cue phrases” approach

showed a precision of 81% for extracting causality within one sentence. The limita-

tion of these approaches is that they only extracted relations based on explicit causal

verbs or phrases. Our system extracts both explicit and implicit causal relationships

across multiple sentences.

Extracting causal chains of events is understudied. To our knowledge, Sizov and

Öztürk (Sizov and Öztürk, 2013) made the first attempt to extract causal chains to

explain an isolated event, limiting its generalization to inform the public of a threat

multiplier that would cause substantial harm to basic needs and human security. The

authors aimed to fill the reasoning graphs from aviation investigation related reports

to understand the relationship between an aircraft incident and its root causes. In

their approach, they extracted structural relations, similarity relations, and causal

relations to derive a reasoning graph for a given incident. However, their approach

does not unpack the causal relations between different events. Rather, it constructs

the relations (Part of, Contains, Similar, and Cause) between different pieces of text,

i.e. pairs of sentences. Our focus in this paper is novel in not only understanding

entities involved in causing and being impacted by the inherent complexity of climate

change, but also unpacking the cascading causal relationships.
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Figure 3.1 System Architecture

Chapter 3

METHODOLOGY

3.1 Overall System Model

Figure 3.1 shows the main components of our system. The overall system con-

sists of documents collected from nearly 100 RSS feeds that are related to climate

change in the Niger Delta region. We also perform sentence splitting of documents,

identification of key frames and their categories by expert coders, feature extraction

(uni-grams, bi-grams, and generalized concepts), identification of discriminative fea-

tures, a predictive model to detect and identify the frame categories for sentences

containing frame references, and a causality discovery model to mine causal relation-

ships and construct their chains.
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Table 3.1 Distribution of Sentences per Frame Category

Cause Problem Threat Solution Motivation

2,542 7,595 4,509 1,404

3.2 Climate Change Corpus

Our climate change corpus is comprised of nearly 45, 054 sentences extracted from

news and social media websites, that are related to climate change topics in the Niger

Basin region over a seven month period from August, 1st 2014 to February, 15th 2015.

There are 16, 050 sentences coded as Frame sentences and 29, 004 coded as Non-Frame

sentences by domain experts. Frame sentences are further categorized into one of four

categories: Solution, Problem Threat, Cause, and Motivation. Table 3.1 summarizes

the distribution of sentences into the four categories.

3.3 Development of Four-class Typology of Media Framing

Existing typologies of climate change framing, focusing on dichotomous categories,

are limited by their inability to link framing processes with movement interaction.

We argue that, in order to understand how media reflect different organizations inter-

ests in addressing climate change as a social problem, it is necessary to supplement

the social movement focus on resource mobilization to framing processes of collective

action problems. To do that, this study develops a nuanced typology for studying

climate change framing and its adequacy for supporting social movements that would

be necessary to overcome the collective action problem. Our typology provides a

holistic map to evaluate how climate change media framing can enable appropriate

social and policy actions that ultimately can mitigate risks of social unrest. We ap-

ply this framework to examine framing of climate change in media and social media
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texts collected from the Niger Basin region, using a novel coding technique to assess

diagnostic, prognostic, and motivational framing described by (Benford and Snow,

2000) as the keys to effective social movements.

3.3.1 Media Framing, Collective Action, and Social Movements

In the field of social movement studies, framing has primarily been used to dis-

cuss challenges of strategy formation that implementation activists face (Knight and

Greenberg, 2011). Social movement scholars define framing as a process aimed at

aligning movement meanings with the ideological perspectives of relevant audiences,

including the general public, the media and policy makers (Benford and Snow, 2000)

in order to produce action in support of ideological goals. Understanding climate

change as a collective action problem makes a social movement approach to framing

relevant, as framing “plays a central role in the need to mobilize resources, recog-

nize and respond to opportunities and threats, and exercise pressure and influence by

means of communication” (Knight and Greenberg, 2011). This approach moves the

study of framing beyond the limits of previous research with its focus on dichotomies,

and highlights instead the potential impact of overarching framing strategies. As a

complex social issue requiring engagement with multiple stakeholders and audiences

(e.g. international organizations, local governments, NGOs, scientists, and the gen-

eral public), climate change in developing countries, such as West Africa, provides

fertile ground on which to explore the effectiveness of framing in propelling social

movements in response to collective action problems.

Benford and Snow (Benford and Snow, 2000) develop a typology of social move-

ment frames to explore signification strategies in the context of collective action. The

authors assert that the more central the framing is to the ideology of the targets
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of mobilization, the greater the hierarchical salience within their larger system of

belief (Snow and Benford, 1992). This hierarchy relies on the concept of narrative

fidelity (Fisher, 1984): The more a frame “rings true” to the audience, the greater

the salience of the frame, and the more potential it carries to influence collective

action. The authors argue that “frames help render events or occurrences meaningful

and thereby function to organize and guide action” (Benford and Snow, 2000). This

process occurs through the development, generation, elaboration, and contestation of

three types of collective action frames: diagnostic, prognostic, and motivational.

The first type, diagnostic framing, seeks to remedy or alter some problematic

situation or issue by identifying the source of causality, blame, and/or culpable agents

(Benford and Snow, 2000). The second type, prognostic framing, attempts provide

a solution or plan of attack for the identified problem. While the first two functions

seek to create a consensus in the audience, the third, motivational framing, is a call

to action. According to (Benford and Snow, 2000), motivational framing attempts to

engage the audience in ameliorative collective action. That is, motivational frames

supply the impetus for public actions that go beyond diagnosis and prognosis, and

include compelling vocabularies of severity, urgency, efficacy, and propriety (Benford,

1993). To engage the public in solving social problems, organizations need to establish

the severity of a particular situation, emphasize a sense of urgency of the threat, stress

the likelihood of change or efficacy of taking actions, or highlight moral responsibility.

This process occurs within a multi-organizational realm that includes opponents,

audiences, media, bystanders, and within the organization itself.

We argue that messages encouraging collective action are most effective when they

combine these three types of frames. While Benford and Snow (Benford and Snow,

2000) do not address this issue, a story combining problem, solution, and motivation

touches all the elements of the narrative arc (Abbott, 2008), and is therefore more
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Figure 3.2 Four-class Typology

likely to be perceived as coherent (Fisher, 1984). Separating these elements in different

messages relies on the audience to integrate them from different sources, a process

vulnerable to effects of memory and involvement.

3.3.2 A Four-class Typology of Media Framing

Drawing from Benford and Snow (Benford and Snow, 2000) collective action

frames for social movements, Tsai et al. (Tsai et al., 2015) developed a four-class

typology of climate change framing to capture three functions: diagnostic, prognos-

tic, and motivational. As discussed earlier, those three functions of framing play an

essential role in social actors’ resource mobilization and participation in the political

processes. Guided by Benford and Snow’s framework, Tsai et al. (Tsai et al., 2015)
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also incorporated and modified a handful of common frames applicable to climate

change identified from prior research (e.g. (Nisbet, 2009), (ONeill et al., 2015)). To

ensure that the four-class typology captured a full spectrum of possible frames that

emerged from the West African media discourse, they further adopted an inductive

approach based on a preliminary scanning of relevant texts. The final typology con-

sisted of four framing classes and a set of twenty-five subcategories germane to climate

change impacts and solutions.

Figure 3.2 provides an overview of four-class typology. Though Benford and Snow

(Benford and Snow, 2000) identify three classes of frames, (Tsai et al., 2015) split

the diagnostic frame into two sub-classes, cause and problem threat to capture the

special diagnostic attention paid to causes in the climate change debate. Though West

African discourse is likely different from Western discourse in this regard, singling

out cause framing for special attention would provide maximum applicability of the

four-class typology to other geographic contexts, and maintain a future basis for

comparative analysis.

3.4 Feature Extraction

3.4.1 N-gram Features

As a baseline model, we experimented with both uni-gram and bi-gram features.

We run a simple term frequency - inverse document frequency (TF-IDF) (Hartigan

and Wong, 1979) based technique on the entire corpus to generate a large ranked

list of stopword-eliminated uni-grams and bi-grams, and we experimented with them

separately as features in our learning models.
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3.4.2 Generalized Concepts Features

In (Ceran et al., 2015), they extracted concepts from paragraphs where only 40%

of the paragraphs generated concepts. In this thesis, since we are working on sentence

level, we improved the concept extraction approach, by extracting more triplets by

utilizing a larger number of triplet extractors and pre-processing their output to

include about 80% of the sentences in our experimental evaluations.

Triplets Extraction

In order to extract <subject,verb,object> triplets, first we resolve co-references in

the entire corpus using four state-of-the-art pronoun resolvers (Raghunathan et al.,

2010), (Lee et al., 2011), (Lee et al., 2013), (Recasens et al., 2013). Since triplets ex-

traction is an ongoing research topic in NLP, we proceeded to use four state-of-the-art

triplets extraction tools: ClearNLP (Choi, 2012), Reverb (Fader et al., 2011), Everest

(EVE, 2013), AlchemyAPI (Alc, 2015) as complementary systems. Additionally, any

triplet slots with phrases were segmented into stopword-removed keywords, and their

Cartesian product were produced as additional triplets.

Concepts Generation

Triplets extraction algorithms typically produce noisy and sparse triplets. Therefore,

we apply a hierarchical bottom-up clustering algorithm that generalizes triplets into

more meaningful relationships. First, we apply a contextual synonyms algorithm

(Section 3.4.2) to create the initial set of concepts C0. Next, we cluster the concepts

along with triplets based on both syntactic and semantic criteria (Section 3.4.2) to

generalize them into high level concepts without drift.
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Contextual Synonyms We create the initial set of concepts C0 by finding three

separate pairwise contextual similarity matrices for subjects, verbs and objects based

on their co-occurrences with verb-object, subject-object, and subject-verb pairs re-

spectively. In algorithm 1, the first for-loop (lines 3–5) iterate over all <subject,verb,

object> triplets and create a list of unique <subject,verb>, <verb,object> and

<subject,object> pairs. The next three for-loops iteratively expand the concept

set C0 by adding a unique pair along with a set of all co-occurring words.

Algorithm 1 Find concepts with unique pairs

1: procedure Find concepts w/ unique pairs(T )

2: Csv, Cvo, Cso ← ∅

3: for all 〈si, vj, ok〉 ∈ T do

4: Find and add unique pairs to:

Csv ← Csv ∪ {〈si, vj〉}

Cvo ← Cvo ∪ {〈vj, ok〉}

Cso ← Cso ∪ {〈si, ok〉}

5: end for

6: for all 〈si, vj〉 ∈ Csv and 〈si, vj, ok〉 ∈ T do

7: C0 ← C0 ∪ {〈si, vj, O〉} where ok ∈ O.

8: end for

9: for all 〈vj, ok〉 ∈ Y and 〈si, vj, ok〉 ∈ T do

10: C0 ← C0 ∪ {〈S, vj, ok〉} where si ∈ S.

11: end for

12: for all 〈si, ok〉 ∈ Z and 〈si, vj, ok〉 ∈ T do

13: C0 ← C0 ∪ {〈si, V, ok〉} where vj ∈ V .

14: end for

15: end procedure
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Algorithm 2 Calculate contextual similarity

1: procedure Calculate contextual similarity(C0)

2: SimS, SimV , SimO ← 0

3: for all c ∈ C0 do

4: if c = 〈S, v, o〉 then

5: SimS(i, j)← SimS(i, j) + 1,∀si, sj ∈ S.

6: else if c = 〈s, V, o〉 then

7: SimV (i, j)← SimV (i, j) + 1, ∀vi, vj ∈ V .

8: else if c = 〈s, v, O〉 then

9: SimO(i, j)← SimO(i, j) + 1,∀oi, oj ∈ O.

10: end if

11: end for

12: end procedure

Next, we apply a corpus-based contextual similarity measure in algorithm 2 to

calculate pairwise contextual similarity for subjects, verbs and objects in C0. We

create similarity matrices SimS for subjects, SimV for verbs, and SimO for objects.

The similarity between a pair of words is defined as the number of common co-

occurring unique contexts, i.e. if any of the two subjects, verbs or objects appear

with the same verb-object, subject-object or subject-verb pair respectively, then we

increase similarity count between two words by one.

Clustering Concepts and Triplets In order for the information to propagate

between clusters of relations, we apply a hierarchical bottom-up clustering algorithm

(Kok and Domingos, 2008). High level concepts and relations are merged to form

clusters. In algorithm 3, each concept in C0 is compared with the rest in order to

create a set of candidates for merging based on the syntactic criteria described in the
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next section. Next, we process each candidate concept and prune the words that do

not satisfy the semantic criteria described in the following sections. Iteratively, we

expand our candidate concepts by adding the elements that satisfy both criteria.

Algorithm 3 Bottom-Up Clustering Algorithm

1: Cluster Concepts(T, SimS, SimV , SimO, C0)

2: C ← C0

3: while flag = 1 do

4: flag ← 0

5: for all c ∈ C0 do

6: Find related concepts Cr using Syntactic Criteria

7: if |Cr| ≥ 1 then

8: flag ← 1

9: for all r ∈ Cr do

10: {c} ← {c} ∪ {r}

11: Prune c using Semantic Criteria.

12: C ← C ∪ {c}

13: end for

14: end if

15: end for

16: end while

17: end

Syntactic Criteria: To allow for meaningful merging of related concepts, we

only merge concepts that have a common context in all semantic arguments (i.e.

subject, verb, object). For example, given two concepts C1 = 〈{s1, s2}, v1, o1〉 and

C2 = 〈s1, v1, {o1, o2}〉, we can merge them into a more generalized concept C3 =
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〈{s1, s2}, v1, {o1, o2}〉. To justify this merge: 1) C3 adds a new object, o2, to C1; thus,

C1 and C2 must have a common context, i.e. the intersection of C1 and C2 subject

and verb sets, {S1∩S2} and {V1∩V2}, is not empty, and 2) C3 adds a new subject, s2,

to c2 subject set; thus, the intersection of C1 and C2 verb and object sets, {V1 ∩ V2}

and {O1 ∩ O2}, should be not empty. In general, the syntactic criteria is defined as

follows:

Two concepts C1 = 〈S1, V1, O1〉 and C2 = 〈S2, V2, O2〉 are merged if the following

is satisfied:

• {S1 ∩ S2 = ∅} and {V1 ∩ V2 6= ∅} and {O1 ∩O2 6= ∅}

• {V1 ∩ V2 = ∅} and {S1 ∩ S2 6= ∅} and {O1 ∩O2 6= ∅}

• {O1 ∩O2 = ∅} and {S1 ∩ S2 6= ∅} and {V1 ∩ V2 6= ∅}

Semantic Criteria: We apply semantic criteria to ensure that only the most

similar candidate keywords can be added to the expanded concept. This would allow

the concepts to grow without drift. The criteria utilizes the contextual similarity

measure (algorithm 2) that relates subjects, verbs, and objects among themselves.

The semantic criteria is defined as follows:

We merge two concepts C1 = 〈S1, V1, O1〉 and C2 = 〈S2, V2, O2〉 into a third

concept C3 as follows:

• C3 initially contains the intersection of C1 and C2 (i.e. S3 = {S1 ∩ S2 }, V3 =

{V1 ∩ V2 }, O3 = {O1 ∩O2 } )

• we expand C3 by adding words from the complement of C2 and C3 that are

among the closest contextual synonyms of words in the initial intersection sets

(i.e. for C3 subjects we add from (S1 \ S2) ∪ (S2 \ S1) ), and similarly for C3

verbs and objects).
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3.5 Unsupervised Frame Learning

Unsupervised learning aims to draw inferences from given dataset where labels

(i.e. classes) are hidden or unknown. It focuses on how the model can learn to

represent particular input patterns in a way that reflects the statistical structure of

the dataset. We utilized this approach to assist in benchmarking different features:

generalized concepts, uni-grams and bi-grams in the clustering process. Our goal

is to investigate which feature set will produce the best clusters. In unsupervised

learning, comparing different features sets will give a hint about the best feature set

to be used in the classification task. Additionally, unsupervised learning will help us

in determining whether the rationale and theoretical background for the development

of four frame categories will align with our dataset or not. Utilizing k-means (Arthur

and Vassilvitskii, 2007) we cluster the entire dataset into two clusters to see if they

form Frame/Non-Frame clusters, and then the Frame sentences are clustered into

four clusters mimicking the four frame categories {Solution, Problem Threat, Cause,

and Motivation}.

3.6 Supervised Frame Learning

To classify each sentence as Frame/Non-Frame and identify its relevant frame

category we utilize sparse learning framework (Liu et al., 2009a), with the underlined

motivation to select a subset of discriminating concepts that can (1) identify sentences

containing frame references and (b) classify a sentence into a frame category. The

following steps describe our algorithm:

1. Generate features from the entire corpus

2. Filter the features × sentences matrix to include only resultant generalized

concepts/features
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3. Formulate the problem in a general sparse learning framework (Liu et al.,

2009a). In particular, the logistical regression formulation presented below fits

this application, since it is a dichotomous frame classification problem (i.e. each

sentence classified as Frame/Non-Frame), and multi-class classification problem

(i.e. each Frame sentence is further classified as one of four frames {Solution,

Problem Threat, Cause, and Motivation}):

minx

m∑
i=1

wi log(1 + exp(−yi(xtai + c))) + λ|x| (3.1)

In formula 3.1, ai is the vector representation of the ith sentence, wi is the weight

assigned to the ith sentence (wi = 1/m by default), and A = [a1, a2, . . . , am] is the fea-

tures × sentences matrix, yi is the label of each sentence, and the xj , the jth element

of x, is the unknown weight for each feature, (λ ≥ 0) is a regularization parameter

that controls the sparsity of the solution, |x|1 =
∑
|xi| is 1-norm of the x vector. We

used the SLEP (Liu et al., 2009b) sparse learning package that utilizes the gradient

descent approach to solve the above convex and non-smooth optimization problem.

The features with non-zero values on the sparse x vector yield the discriminant factors

for classifying a sentence.

3.7 Causality Discovery

3.7.1 Causal Relationship Extraction

Simple Causatives Model

Our baseline model for extracting causal relationships is based on “Simple Causatives.”

In linguistics, Nedjalkov and Silnickij (Nedjalkov and Silnickij, 1973) categorized

causative verbs into:
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Table 3.2 List of Simple Causative Verbs (Vsimple)

Simple Causatives Verbs

cause result in raise lead to

produce create bring about begin

originate engender spawn occasion

affect bring to bring on precipitate

prompt provoke kindle trigger

make spark touch off stir up

whip up induce inspire promote

increase foster generate

• Simple causatives : linking verbs that explicitly express causal links, typically

synonyms of “cause”. An example of simple causatives is: fossil-fuel causes

greenhouse gases.

• Resultative causatives : linking causal verbs that include resulting situations,

e.g. kill (cause death). Some examples from our data are: extreme weather

events kill more people each year.

• Instrumental causatives : linking causal verbs that include an event and its

result, e.g. poison (kill by poisoning). For example: heavy rainfall flooded

homes.

In the baseline model we use simple causative verbs 1 in table 3.2 to extract

explicit causal relationships.

1Oxford English dictionary online
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Figure 3.3 Main Components of the Concepts Based Model

Concepts Based Model

Figure 3.3 shows the main components of our system to extract causal relationships.

The system comprises of novel techniques to extract generalized concepts, identify con-

cepts with causal relationships, and lastly construct causal chains. We will describe

each component in detail.

In the baseline model we utilized only explicit causal verbs which could result in

limited recall because standard causal verbs may not generalize well to accommodate

surface variations in texts when different keywords and phrases are used to express

similar causal effects. Therefore, we apply our concepts generalization algorithm

(discussed in section 3.4.2) to extract generalized concepts and utilize them to mine

causal relationships. Our algorithm for the automatic discovery of causal relationships

and chains is based on the extraction of inter- and intra- sentential patterns of the

form <subjects,verbs,objects>. The proposed model is able to extract explicit and

implicit causal relationships from text.
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For each of the four frame categories we apply the following procedure:

1. Start with a seed set of simple causative verbs V=Vsimple to get all concepts

C={c1,c2,...,cq} that contain at least one simple causative verb.

2. Add to the set V the verbs {v1,v2,..., vk} that are in concept ci ∈ C.

3. Extract the concepts that contain verb vj ∈ V and add them to the set C.

4. Repeat 2 and 3 until no further verbs and concepts are added to their sets.

In the above algorithm, we start a seed set of simple causative verbs (table 3.2)

and iteratively expand it in step 2 by adding more verbs, and in step 3 we extract

more concepts based on these verbs. We repeat until the sets do not change. This

greedy algorithm has a worst case time complexity of O(n), where n is the number

of concepts. For all four frame categories, the algorithm requires less than 100 steps

of iterations to reach convergence.

Next, we evaluate the extracted concepts ci ∈ C to keep only causative related

ones based on algorithm 4. In this procedure, line 2 checks if a concept contains at

least one simple causative verb. If that criterion is met, the concept is retained. Oth-

erwise (lines 3 to 11), we evaluate its verbs to determine if any of them is semantically

similar to a simple causative verb with similarity score above 0.5 (range is in [0,1]).

When we set this threshold to higher values, results become more sparse. When we

use lower values threshold, results become more noisy. Similarity score is computed

using the UMBC Semantic Similarity measurement (Han et al., 2013). If none of the

verbs are similar to a simple causative, its concept is removed accordingly.
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Algorithm 4 Concepts Evaluation

1: procedure Concepts Evaluation(C)

2: for each ci ∈ C do:

3: if vi ∩ Vsimple 6= ∅ where vi ∈ ci, then, keep ci

4: else, evaluate each verb vij ∈ ci by applying the following Semantic Con-

straints:

5: Set FLAG=0

6: for each verb vij ∈ ci do:

7: find top N semantically similar verbs (VN) with similarity score > 0.5

8: if VN ∩ Vsimple 6= ∅, then FLAG=1, break

9: end if

10: end for

11: if FLAG=0, then remove concept ci from C

12: end if

13: end if

14: end for

15: end procedure
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3.7.2 Causal Chains Construction

Once we extract and evaluate the set of concepts C for each frame category, we

construct the causal chains (algorithm 5). In this iterative procedure, we start with

a concept Cs and connect it to the next concept Ct if the two conditions (lines 5 to

7) are satisfied: 1) the intersection of Objects set Os of Cs and Subjects set St of

Ct is not empty, and 2) their semantic similarity is the maximum compared to other

concepts other than Ct. As suggested above, the similarity between the two sets of

connected concepts (Os ,St) are measured by using UMBC Semantic Similarity (Han

et al., 2013).

Algorithm 5 Construct Causal Chains

1: procedure Causal Chains(C)

2: for each cs ∈ C do:

3: find all acyclic paths that start from cs:

4:
cs → ct → cb → . . . such that concept cs is connected to ct ∈ C - {cs}, if the

following is satisfied:

5: Os ∩ St 6= ∅

6: AND

7: maxs 6=t sim(Os,St)

8: end for

9: end procedure
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Chapter 4

EXPERIMENTAL EVALUATION

4.1 Sentence Annotation

Our experts developed four categories of climate change related frames as follows:

• Solution framing (prognostic): Covering the prognostic function of defining

what should be done about problems, solution framing refers to actions taken

to prevent further impact of climate change effects or further impact of the

causes of climate change, such as greenhouse gas emissions. Solutions can also

emphasize ongoing measures to deal with existing effects of climate change. Six

frames capture an array of mitigation and adaptation efforts: conservation, edu-

cation, investment, infrastructure and development, creation or implementation

of policy and programs, and goal.

• Problem Threat framing (diagnostic): This diagnostic framing class stresses

on how climate change or outcomes of climate change impact various actors,

industries, human health, and the environment. Eight codes capture negative

consequences and threats brought by climate change, including environmental

systems and ecosystem, public health, economic development, food security,

water scarcity, national security, social unrest, and general or multiple impacts.

Both cause framing and problem threat framing comprise the diagnostic function

in defining social problems.

• Cause framing: This group of diagnostic frames focus on attributing the

blame for causing climate change to either human activity, natural variation

31



or other reasons. Six subcategories captured different explanations for causal

attribution of climate change: (a) human activity, (b) natural variation, (c)

scientific uncertainty, (d) policy causes, (e) insufficient actions, and (f) human

disruption to mitigate climate change impact.

• Motivation framing (motivational): Motivational framing refers to state-

ments that explicitly call for definitive course(s) of action and explain why the

audience should make an effort to enact solutions (Benford and Snow, 2000). In

other words, motivational frames elaborate on the rationale for action that goes

beyond diagnosis and prognosis, and include vocabularies of severity, urgency,

efficacy, and propriety (Benford, 1993). We added a general category to analyze

statements that call for actions without providing readers with above-mentioned

reasons.

We assigned sentence annotation to three different expert coders. To evaluate the

agreement between coders we utilize Fleiss’ Kappa measure (Fleiss, 1971). We define

the following variables:

n= the number of sentences,

k= the number of frame categories,

m=the number of coders for each sentence.

For each sentence i=1,2,. . . ,n and frame category j= 1,2,. . . ,k, let xij the number

of coders that annotated sentence i with frame category j. The proportion of pairs

of coders that agree in their annotation of sentence i is defined as:

pi =

∑k
j=1 xij(xij − 1)

m(m− 1)
=

∑k
j=1 x

2
ij −

∑k
j=1 xij

m(m− 1)
=

∑k
j=1 x

2
ij −m

m(m− 1)
(4.1)

The average of pi is then,
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pa =
1

n

n∑
i=1

pi (4.2)

We calculate the error pe as follows:

pε =
k∑

j=1

q2j (4.3)

where qj =
1

mn

n∑
i=1

xij (4.4)

The Fleiss’ Kappa is therefore,

k =
pa − pε
1− pε

(4.5)

For Frame/Non-Frame annotation, the percentage of agreement is 0.93 and the

Fleiss’ Kappa value is 0.9, indicating strong (almost perfect) inter-coder agreement

(Landis and Koch, 1977). For the four frame categories Solution, Problem threat,

and Cause, the percentage of agreement is 0.87 and the Fleiss’ Kappa value is 0.8,

indicating substantial inter-coder agreement (Landis and Koch, 1977).

4.2 Unsupervised Frame Learning

Experimenting with unsupervised learning reveals dataset structure and can infer

relations among data points. In this experiment, we ignored labels and clustered our

dataset using three sets of features (i.e. uni-gram keywords, bi-gram terms, and gen-

eralized concepts) separately as features, and the k-means (Arthur and Vassilvitskii,

2007) as a clustering algorithm. We experimented with different k values and found

the best results when k=2 for the entire dataset, and k=4 for the Frame sentences.

To evaluate k-means clustering results, we utilized SSE (sum of squared error), purity,

precision, recall, and F-measure.
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Table 4.1 Clustering into Two Clusters

Method SSE Purity

Concepts 54,322.08 0.91

Bi-grams 720,044.21 0.71

Uni-grams 306,124.03 0.68

Table 4.2 Clustering into Four Clusters

Method SSE Purity

Concepts 34,397.75 0.98

Bi-grams 139,124.43 0.91

Uni-grams 292,812.30 0.51

Table 4.1 shows the SSE and purity for clustering the entire dataset into two

clusters using different features. Using generalized concepts as features, the resultant

SSE (54,322.08) and purity (0.91) outperform those with uni-grams, SSE (306,124.03)

and purity (0.68) as well as bi-grams, SSE (720,044.21) and purity (0.71).

Table 4.2 presents the SSE and purity for clustering the frame sentences into four

clusters using different features. Using generalized concepts as features, the resultant

SSE (34,397.75) and purity (0.98) outperform those with uni-grams, SSE (292,812.30)

and purity (0.51) as well as bi-grams, SSE (139,124.43) and purity (0.91).
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Since we know the labels, the unsupervised frame learning can also be evaluated

using precision, recall, and F-measure. According to (Zafarani et al., 2014), in clus-

tering, precision is defined as the fraction of pairs that were correctly assigned to the

same cluster. Recall is defined as the fraction of pairs that were assigned to the same

cluster among the pairs that should be in the same cluster. To compute Precision,

Recall, and F-measure for Frame/Non-Frame clustering (i.e. clustering the entire

dataset into two clusters) we compute TP, FP, FN, and TN based on the proposed

method in (Zafarani et al., 2014) as follows:

Clustering the entire dataset into two clusters using concepts yielded the following

clusters. In cluster 1, there are 14,591 sentences labeled as Frame sentences, and 2,611

sentences labeled as Non-Frame sentences. In cluster 2, there are 26,393 sentences

labeled as Non-Frame sentences and 1,459 sentences labeled as Frame sentences.

To compute TP, we calculate the number of pairs that have the same label and

are clustered in the same cluster:

TP =
((14591

2

)
+

(
2611

2

))
︸ ︷︷ ︸

cluster 1

+
((26393

2

)
+

(
1459

2

))
︸ ︷︷ ︸

cluster 2

= 459, 194, 339

To compute FP, we calculate the number of dissimilar pairs that are in the same

cluster:

FP =
(
14591 ∗ 2611

)︸ ︷︷ ︸
cluster 1

+
(
26393 ∗ 1459

)︸ ︷︷ ︸
cluster 2

= 76, 604, 488

To compute FN, we calculate the similar labels that are in different clusters:

FN =
(
14591 ∗ 1459

)︸ ︷︷ ︸
Frame label

+
(
26393 ∗ 2611

)︸ ︷︷ ︸
Non-Frame label

= 90, 200, 392

For TN, we calculate the number of dissimilar pairs in different clusters:

TN =
(
14591 ∗ 26393

)
+
(
2611 ∗ 1459

)︸ ︷︷ ︸
clusters 1 and 2

= 388, 909, 712

35



Table 4.3 Clustering into Two Clusters: Precision, Recall, and F-measure

Method Precision Recall F-measure

Concepts 0.86 0.83 0.85

Bi-grams 0.62 0.58 0.60

Uni-grams 0.60 0.57 0.58

Next, we compute precision, recall , and F-measure for clustering the entire dataset

into two clusters as follows:

Precision =
TP

TP + FP
= 0.86

Recall =
TP

TP + FN
= 0.83

F −measure = 2.
P.R

P +R
= 0.85

Table 4.3 presents the precision, recall and F-measure for clustering the entire

dataset into two clusters using different features. Using generalized concepts as fea-

tures, the resultant F-measure of 85% outperforms those with uni-grams (58%) and

bi-grams (60%), respectively.

Similarly, table 4.4 reports the precision, recall and F-measure for clustering the

frame sentences into four clusters using different features. Using generalized concepts

as features, the resultant F-measure of 97% outperforms those with uni-grams (37%)

and bi-grams (89%), respectively.
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Table 4.4 Clustering into Four Clusters: Precision, Recall, and F-measure

Method Precision Recall F-measure

Concepts 0.98 0.96 0.97

Bi-grams 0.85 0.94 0.89

Uni-grams 0.38 0.36 0.37

Figure 4.1 Clustering All Sentences into Two Clusters Using Concepts

Figures 4.1, 4.2, and 4.3 show the resultant clusters of the entire dataset into two

clusters using concepts, bi-grams, uni-grams as features, respectively. In these fig-

ures we have the ground truth (i.e. which sentence belongs to which label) by using

sentence id in x-axis and the corresponding label in y-axis. Cluster 1 corresponds

to Non-Frame sentences, and cluster 2 represents Frame sentences. From these fig-

ures, we can see that clustering using concepts yielded better and more pure clusters

compared to bi-grams and uni-grams.
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Figure 4.2 Clustering All Sentences into Two Clusters Using Bi-grams

Figure 4.3 Clustering All Sentences into Two Clusters Using Uni-grams
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Figure 4.4 Clustering Frame Sentences into Four Clusters Using Concepts

Figures 4.4, 4.5, and 4.6 show the resultant clusters of frame sentences using

concepts, bi-grams, uni-grams as features, respectively. Clustering frame sentences

using concepts yielded better and more pure clusters compared to bi-grams and uni-

grams. In figure 4.4 the three clusters (1,2,3) corresponding to frames Solution,

Problem threat, and Cause are well clustered in terms of purity. The Motivation

frame in cluster 4 is a mixture of the other three clusters (1,2,3). Our interpretation

for this impurity is that in motivational framing, typically people show the cause of a

problem and propose a solution. As a result, a sentence belonging to motivation frame

category could carry other frame categories Solution, Problem threat, and Cause.
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Figure 4.5 Clustering Frame Sentences into Four Clusters Using Bi-grams

Figure 4.6 Clustering Frame Sentences into Four Clusters Using Uni-grams
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Figure 4.7 Elbow Method for Determining the Number of Clusters

Determining the number of clusters when using K-means is one of the most chal-

lenging problems in unsupervised learning. To overcome this problem, we used the

Elbow method (Thorndike, 1953), which uses the percentage of variance as a func-

tion of the number of clusters K. For each K, it calculates the SSE and plots a line

chart. For example, figure 4.7 shows how Elbow method can help to find the optimal

K for clustering the Frame sentences using different features (Concepts, Bi-grams,

Uni-grams). Experimenting with different K values {1,2,3,. . . ,8}, we found that clus-

tering by using concepts as features is optimal at K=4, due to lower SSE. We also

found that clustering using Bi-grams or Uni-grams can have K as 4. Larger values of

K (≥5) show marginal return on reducing SSE.

41



Figure 4.8 Experimenting Different Values of K

Additionally, we show how the purity changes when experimenting with different

K values. In figure 4.8, using concepts as features on the Frame sentences yielded the

highest purity of 0.98 when K=4, which aligns with the development of the four frame

categories {Solution, Problem Threat, Cause, and Motivation} discussed in Section

4.1.

Appendix B provides additional visualizations for clustering the dataset into

Frame/Non-Frame as well as clustering the Frame sentences into four categories.
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4.3 Supervised Frame Learning

4.3.1 Quantitative Evaluation

In this approach, we use the labeled dataset. Once sentences are labeled as

Frame/Non-Frame and categorized with their corresponding frame category, we uti-

lize uni-gram keywords, bi-gram terms, and generalized concepts separately as fea-

tures and the sparse logistical regression classifier SLEP (Liu et al., 2009b) to identify

weighted discriminative features and classify sentences. We experimented with three

different classifiers: SVM (Cortes and Vapnik, 1995), SLEP (Liu et al., 2009b), Ran-

dom Forests (Breiman, 2001); and found that SLEP outperformed both these other

classifiers. Using different types of features generated from the entire corpus, we

perform ten-fold cross-validation for measuring the classifier’s predictive accuracy to

detect Frame/Non-Frame sentences. Next, using features generated from frame sen-

tences only, we train a multi-class model to classify sentences into their corresponding

frame category. We report precision, recall, and F-measure as quantitative evalua-

tion metrics. In the subsequent tables we report the results of SLEP classifier, and in

appendix C we report the results of other classifiers (i.e. SVM and Random Forests).

Qualitative analysis of the identified discriminating concepts is also presented in the

next section.

Table 4.5 presents the accuracies for detecting Frame/Non-Frame sentences using

different features. Using the generalized concepts approach as features, the resultant

average accuracy (F-measure of 83%) outperforms both accuracies with uni-grams

(74%) and bi-grams (68%) features by 12% and 22%, respectively.
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Table 4.5 Frame/Non-Frame Classification

Method Class Label Precision Recall F-measure

Concepts

Frame 0.80 0.88 0.84

Non-Frame 0.87 0.77 0.82

Average 0.83 0.83 0.83

Bi-grams

Frame 0.75 0.42 0.54

Non-Frame 0.74 0.92 0.82

Average 0.74 0.67 0.68

Uni-grams

Frame 0. 75 0.48 0.59

Non-Frame 0.76 0.91 0.89

Average 0.75 0.70 0.74

Table 4.6 shows the accuracies for identifying the corresponding frame category.

Using generalized concepts, these accuracies vary between 73% and 83% (F-measure)

for different categories. In this table, utilizing generalized concepts yields slightly

better performance compared to both uni-grams and bi-grams with an overall average

accuracy (F-measure) of 79%.
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Table 4.6 Frame Classification into Four Categories

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.75 0.93 0.83

Problem Threat 0.77 0.84 0.79

Cause 0.85 0.77 0.80

Motivation 0.89 0.62 0.73

Average 0.82 0.79 0.79

Bi-grams

Solution 0.87 0.77 0.81

Problem Threat 0.84 0.77 0.80

Cause 0.86 0.73 0.76

Motivation 0.90 0.58 0.71

Average 0.87 0.71 0.77

Uni-grams

Solution 0.78 0.87 0.82

Problem Threat 0.81 0.81 0.81

Cause 0.83 0.62 0.82

Motivation 0.85 0.57 0.64

Average 0.82 0.72 0.77

In the previous two tables, the best performance for Frame/Non-Frame classifica-

tion using concepts is achieved when λ=0.0001 (λ is a regularization parameter that

controls the sparsity of the solution, 0 ≤ λ ≤ 1). For the four frame classification

using concepts, the best performance is achieved when λ=0.03.
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In the following table (table 4.7) we show how accurcies change when using differ-

ent λ values to classify sentences into Frame/Non-Frame using generalized concepts

as features.

Table 4.7 Different λ Values for Frame/Non-Frame Classification Using Concepts

λ Class Label Precision Recall F-measure

0.00
Frame 0.79 0.87 0.83

Non-Frame 0.87 0.77 0.82

0.0001
Frame 0.80 0.88 0.84

Non-Frame 0.87 0.77 0.82

0.001
Frame 0.79 0.88 0.83

Non-Frame 0.87 0.77 0.82

0.03
Frame 0.78 0.88 0.83

Non-Frame 0.86 0.77 0.81

0.1
Frame 0.78 0.88 0.83

Non-Frame 0.86 0.76 0.81

0.25
Frame 0.78 0.87 0.83

Non-Frame 0.86 0.76 0.81

0.5
Frame 0.77 0.87 0.82

Non-Frame 0.86 0.75 0.80

1.00
Frame 0.75 0.89 0.81

Non-Frame 0.86 0.69 0.77

Table 4.8 (next page) reports how accurcies change when using different λ values

to classify sentences into one of the four frame categories using generalized concepts

as features.
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Table 4.8 Different λ Values for Four Frame Classification Using Concepts

λ Frame Category Precision Recall F-measure

0.00

Solution 0.72 0.94 0.82

Problem Threat 0.66 0.94 0.77

Cause 0.91 0.64 0.75

Motivation 0.89 0.51 0.64

0.0001

Solution 0.71 0.95 0.82

Problem Threat 0.65 0.94 0.76

Cause 0.91 0.64 0.75

Motivation 0.89 0.49 0.63

0.001

Solution 0.71 0.94 0.81

Problem Threat 0.65 0.92 0.76

Cause 0.92 0.61 0.73

Motivation 0.87 0.55 0.67

0.03

Solution 0.75 0.93 0.83

Problem Threat 0.77 0.84 0.79

Cause 0.85 0.77 0.80

Motivation 0.89 0.62 0.73

0.1

Solution 0.70 0.95 0.81

Problem Threat 0.66 0.95 0.78

Cause 0.93 0.60 0.72

Motivation 0.96 0.47 0.63

0.25

Solution 0.68 0.97 0.80

Problem Threat 0.64 0.97 0.77

Cause 0.95 0.55 0.69

Motivation 0.95 0.46 0.62

0.5

Solution 0.67 0.98 0.80

Problem Threat 0.63 0.98 0.76

Cause 0.97 0.53 0.68

Motivation 0.96 0.41 0.57

1.00

Solution 0.59 0.99 0.75

Problem Threat 0.58 0.98 0.73

Cause 0.96 0.34 0.50

Motivation 0.96 0.29 0.44
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4.3.2 Qualitative Analysis of Resultant Concepts

Table 4.10 shows top five discreminative concepts for each frame category. Our

team of experts explored the highly significant generalized concepts germane to four-

class framing in media discourse surrounding climate change across West African RSS

feeds and provided qualitative evaluations as follows:

Table 4.10 Top Five Generated Concepts for Each Frame Category

Cause Problem

Threat

Solution Motivation

{Greenhouse,

Emissions,

Gases}

↓

{Cause,Attribute

to}

↓

{Global

warming}

{Flood}

↓

{Associate,

Create}

↓

{Poverty,

Disease}

{Action plan,

Policy}

↓

{Build,

Consolidate}

↓

{Sustainability,

Resilience

future}

{International,

Community}

↓

{Urge,Warn}

↓

{Threat}
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{Industry,

Anthropogenic}

↓

{Raise}

↓

{Earth

temperature,

CO2, CO5}

{Heavy rainfall,

Torrential rain}

↓

{Create, Bring,

Increase}

↓

{Flooding,

Disaster,

Landslide}

{Development,

Sustainability,

National

program}

↓

{Enhance}

↓

{Community}

{Agreement,

Leaders, World}

↓

{Help}

↓

{Future,Hope}

{Fossil fuel}

↓

{Impact,Harm}

↓

{Planet,

Environment,

Weather}

{Drought}

↓

{Cause, Impact,

Reduce}

↓

{Food-shortage,

Food-

production,

Crop}

{Brown}

↓

{Sign}

↓

{Local

legislation, CA

groundwater,

Management

framework}

{USA, EU,

China}

↓

{Recognize,

Reduce}

↓

{Emissions}
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{Coal

combustion,

Diesel,

Man-Made}

↓

{Create}

↓

{Extreme

weather,

Temperature-

up}

{Sea-level rise}

↓

{Result in,

Cause}

↓

{Tsunami,

Damage, Flood}

{Sustainability,

Energy}

↓

{Can help,

Improve}

↓

{Food security,

Households}

{Africa}

↓

{Need,

Implement}

↓

{Policy,

Awareness,

Partnership}

{Truck, Car}

↓

{Rise}

↓

{Carbon

pollution,

Pollute}

{Extreme

Weather,

Hailstorm}

↓

{Cause, Affect}

↓

{Mudslide,

Floods,

Farming}

{Smart

agriculture,

Africa

countries}

↓

{Meet, Breathe}

↓

{Life}

{Nigerian}

↓

{Apply, Take}

↓

{Measures,

Renewable

Energy, Policy}

Cause Framing

Causal responsibility of climate change and its effects was often attributed to anthro-

pogenic activities, particularly man-made greenhouse gas emissions, human-induced

pollution, and fossil fuel use. Carbon dioxide and greenhouse gas emission emerged
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as highly significant concepts, as indicated by high weight value. Media texts often

associated global warming with carbon dioxide emissions using the following triplets

to construct a cohesive story:

• Scientific research indicates that atmospheric carbon dioxide increases to ever

higher levels.

• Cars and trucks were major sources of air pollution and carbon dioxide emis-

sions, which directly increased local temperature.

Problem Threat Framing

Next, we turned our attention to identify the dominant concepts representing the

problem and threat framing of climate change. Media texts tended to highlight dev-

astating environmental impacts caused by climate change, such as floods, prolonged

drought, loss of landmass and soil, desertification, sea-level rise, storm surge, heat

waves, and more. Flooding, in particular, is a severe concern as nine out of sixteen

triplets of high weight values explicitly mentioned the negative impacts of heavy or

torrential rainfall. Consequently, economic conditions and food insecurity were influ-

enced, infrastructure was damaged, and diseases were exacerbated by the increased

intensity and frequency of floods.

Solution Framing

The most representative discourse of solution framing is discussed next in the Visu-

alizing Concepts section.
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Motivation Framing

When discussing motivation for why policy actors and citizens should act upon the

most salient concepts emphasized that international communities (e.g. U.S., EU, and

China) should negotiate a legal agreement to reduce greenhouse gas emissions at the

end of 2015. There is little attention to stating specific reasons for offering localized

adaptation strategies that people can undertake. Although the awareness of climate

change impacts among African government officials was generally high, the prevailing

generalized concept of calling for international actions on mitigation from mainstream

media discourse reflected a lack of effective national and local polices.

Visualizing Concepts

To visualize the generalized concept and relation clusters, we utilize a semantic net-

work (Quillian, 1968) of nodes (V) and edges (E) to describe the semantic space of the

underlying texts. Circle nodes represent subjects/objects and square nodes represent

verbs. Edges represent relations between concepts. In such a network, distinct com-

binations of actors (subjects) perform or recommend various sets of actions (verbs)

on distinct combinations of targets (objects). The sample semantic network in Figure

4.9 illustrates how sustainability emerges as a concept that is central to addressing

climate change impacts. The semantic network represents the contextual relation-

ships between generalized triplets relating to strategies for sustainable adaptation.

In the media discourse, sustainable adaptation is predominantly framed as an effec-

tive solution to reduce impacts of climate change and contribute to social, economic,

and environmental development. As shown in Figure 4.9, developing sustainable na-

tional programs (or actions) can enhance local community resilience. According to

the IPCC (Intergovernmental Panel on Climate Change) report, majority of rural
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Figure 4.9 A Sample Semantic Network of Frame Concepts

communities rely on rain-fed agriculture to sustain their livelihoods in West Africa,

the region worst affected by climate change. With changing rainfall patterns, pro-

longed droughts and flooding, sustainable systems for developing agriculture-smart

technologies can help improve food security at the household level. Interestingly, the

African media discussed that California Governor Jerry Brown has signed the most

significant framework for regulating underground water resources to achieve sustain-

able development in September, 2014.
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4.4 Causality Discovery

Next, we present the results of causal relationships extraction as well as the resul-

tant causal chains. To evaluate the results, we present two types of evaluation: quan-

titative evaluation of accuracy and qualitative evaluation to examine if top extracted

causal chains yield meaningful linkages between climate events and sociopolitical in-

stability.

4.4.1 Quantitative Evaluation

Domain experts evaluated manually the extracted causal relationships from the

two approaches: the baseline model (simple causatives) and concepts based model for

each frame category. Quantitative evaluation of the causal relationships extraction

performance is expressed in terms of true positive, false positive, and overall precision.

Table 4.11 reports the accuracies of our causality mining approaches. The baseline

model yielded higher overall average precision of 88% compared to overall average

precision of 82%. However, the baseline model extracted only 1,714 causal relation-

ships compared to 3,307 causal relationships extracted by the concepts based model.

This indicates that the concepts based model outperformed the baseline model in

terms of recall (93% boost). Quantitative results from our system successfully out-

performed the precision of 73.91% reported in (Girju, 2003) and the precision of 81%

reported in (Chang and Choi, 2006). Additionally, using the concepts based model,

our system extracts both implicit and explicit causal relationships. Table 4.12 shows

a list of resultant implicit causal verbs. In this list, there are corpus-based implicit

causal verbs that were extracted using the generalized concepts approach. As we

discussed in section 3.7.1, Nedjalkov and Silnickij (Nedjalkov and Silnickij, 1973)

categorized causative verbs into: simple causatives, resultative causatives, and instru-
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mental causatives. The last two categories are implicit causatives and our approach

was able to extract them. Examples of resultative causatives from table 4.12 are:

kill, warm, and displace. Examples of instrumental causatives from our results

are: erode, burn, and pollute. Previous work on causal relationships extraction

focused on simple causatives or hand-coded patterns which may not generalize well

and produce results with limited recall. The proposed approach overcomes these lim-

itations and produces more comprehensive results. However, it is worth mentioning

that some resultant causal verbs are ambiguous. Table 4.13 shows a list of such verbs.

Next, we provide qualitative assessments of the top resultant causal chains to better

understand this approach’s strengths and weaknesses.

Table 4.11 Accuracies of Extracted Causal Relationships

Approach Frame Category TP FP Precision

Simple Causatives

Solution 0.83 0.17 0.83

Problem Threat 0.92 0.08 0.92

Cause 0.88 0.12 0.88

Motivation 0.90 0.10 0.90

Average 0.88 0.12 0.88

Concepts

Solution 0.77 0.23 0.77

Problem Threat 0.86 0.13 0.87

Cause 0.80 0.20 0.80

Motivation 0.83 0.16 0.83

Average 0.82 0.18 0.82
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Table 4.12 Example of Extracted Implicit Causal Verbs

Implicit Causal Verbs

Drive Worsen Kill Endanger

Displace Erode Destroy Pollute

Entail Escalate Damage Contribute to

Stave off Associate Stem Emit

Account for Trap Degrade Strengthen

Reduce Enable Provide Deliver

Havoc Prevent Drive Lift

Accelerate Limit Impact Activate

Hit Devastate Attribute to Force

Warm Threaten Grapple Inundate

Brace Mitigate Hinder Rise

Exacerbate Remove Burn Mobilize

Contaminate Linked to

Table 4.13 Example of Extracted Ambiguous Verbs

Ambiguous Verbs

Set Add Cut Cover

Compile Feed Assure Move

Warn Mirror Stimulate Determine

Put Blame Implicate Coordinate

React Knock Strike Melt

Employ Encompass Experience
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4.4.2 Qualitative Analysis

We supplement quantitative evaluations with a qualitative analysis of the top

identified causal chains for each frame category. The goal of qualitative analysis is

to evaluate the practical validity of top extracted causal chains. We consider that a

meaningful causal chain should explicitly explain the role of climate change risks in

generating cascading effects on human security and societal instability. Qualitative

assessments should provide evidence for the framework suggested by the IPCC fifth

assessment report (Adger et al., 2014) and Scheffran et al. (Scheffran et al., 2012a).

Findings of causal chains delineate the dynamic interactions between the climate con-

ditions and social instability, and indirect environmental impacts on natural resources

and human security, which in turn can amplify the probability of violent actions.

We adopt the definition of cascading effects inherent during natural disasters

(Pescaroli and Alexander, 2016). Cascading effects represent the processes in which

physical events (e.g., hurricanes, flooding) generate a sequence of events in human

subsystems, thereby causing disruption to social and economic conditions. Three

contributing factors determine the linear and non-linear path of a cascade: the inter-

dependent nature of the human-environment systems, the context, and a triggering

event. According to the 2014 IPCC report (Adger et al., 2014), threats to human

security systems can be attributed to climate-related events, impacts on material

aspects of livelihood such as food, water, and energy, and disruption to damaged

infrastructure. All of these negative impacts lead to migration and armed conflicts

(Figure 4.10).
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Figure 4.10 Causal Chains of the Relationship Between Climate Change and Human

Security

Figure 4.11 presents the resultant causal chains for Cause framing of climate

change. In this figure and subsequent figures, each large box numbered in red is a

chain, and each chain is represented by grey boxes. Arrows are used to explain the

cascading mechanisms (domino effect) through which one causal concept contributes

to next interlinked concepts in the subsequent grey squares. Findings support the

direct impacts linking human activities to environmental consequences and damaged

natural resources. In Cause framing chains, examples show how human activities such

as burning fossil fuels accounted for greenhouse gas emissions, which not only caused

warming temperatures but also brought destruction to the natural ecosystems. Ad-

ditionally, global warming temperatures escalated global environmental degradation

and caused droughts in drier regions.
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Figure 4.11 Example of Extracted Causal Chains from the Cause Frame
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As illustrated in Figure 4.12, the Problem Threat framing chains explain the causal

relationships between climate change and intensification of natural disasters. Heat

absorption in the atmosphere leads to higher temperatures, which results in powerful

hurricanes and storm surge. Intense hurricanes cause large scale flooding in coastal

communities. These causal chains of contextually-related concepts exemplify complex

pathways of how human activities change the climate system and ultimately cause

negative consequences in the natural resources system.
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Figure 4.12 Example of Extracted Causal Chains from the Problem Threat Frame
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To demonstrate the linkages between climate variability, natural resources, and

dimensions of human security, top causal chains provide evidence that warming tem-

peratures bring the greatest threats to biodiversity, thereby leading to inequitable

distribution of drier and wetter regions. Moreover, these causal chains extracted

from Problem Threat framing explicitly stress the direct impacts of extreme weather

events causing disruption to social, health, and economic conditions. To explain, pow-

erful hurricanes and storm surge result in coastal flooding. Flooding associated with

dramatic amounts of rainfall increases the spread of malaria epidemics, affects crop

yields in agriculture, causes food shortages and ultimately disrupts economic growth.

These chains show how one extreme weather event can trigger cascading effects and

affect human security through erosion of livelihood assets and infrastructure.

In this dataset, we found relatively scarce evidence to support the direct links be-

tween climate change and violent conflict. Examples extracted from intra and inter

sentences focus on the security implications of natural disasters and heavy flooding.

For instance, representative causal chains in Problem Threat framing (Figure 4.12)

show that coastal flooding would cause food supply shortages, increase food insecu-

rity, and elevate regional instability without explicitly suggesting that climate change

contributes to violent conflict.
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Figure 4.13 Example of Extracted Causal Chains from the Solution Frame

In response to threats to human security, international and domestic governments

increasingly focus on building resilience and adaptive capacity at the local level. As

summarized in Figure 4.13, causal chains extracted from Solution framing highlight

intergovernmental efforts to respond to threats to human safety. For instance, the

2015 Paris agreement sparked a sense of optimism among international leaders in

moving forward with cooperation, and setting goals for reducing carbon emissions

to prevent rising temperature. In line with the UN’s sustainable development goals,

developed countries pledged to help African countries. Local governments planned

to develop smart agriculture systems to help local farmers grow food, thereby con-

tributing to environmental suitability.
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Lastly, we examine top causality extraction from 1,404 sentences coded into Mo-

tivation framing (Figure 4.14). Findings reveal three major actors involved in calling

for mitigation and adaptation efforts to address global climate change: grassroots

organizations, Former U.S. President Obama, and local governments. Environmental

movement groups placed the blame on large oil companies and called for international

organizations to donate funding to help communities heavily impacted by natural dis-

asters (flooding, hurricanes). Former President Obama called for international col-

laboration to combat rising temperatures and sea levels, and addressed the impacts

of climate extremes on increasing precipitation and coastal flooding. In terms of local

response, media discourse called for Nigerian policy makers to invest in affordable

clean energy, public transportation systems, and renewable solutions. These efforts

can help reduce carbon emissions.

64



Figure 4.14 Example of Extracted Causal Chains from the Motivation Frame
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Chapter 5

CONCLUSION AND FUTURE WORK

Climate change framing has pervasive influence, and this thesis presents a new

computational approach based on generalized concepts to identify popular media

frames and map them to different categories: solution, problem threat, cause, and

motivation. A line of related work has used bag of words and word-level features to

detect frames automatically in text. Such work face limitations since standard key-

word based features may not generalize well to accommodate surface variations in text

when different keywords are used for similar concepts. In this thesis, we developed

a unique type of textual features that generalize <subject,verb,object> triplets ex-

tracted from text, by clustering them into high-level concepts. Compared to uni-gram

and bi-gram based models, frame classification and clustering using our generalized

concepts yielded better discriminating features with a 12% boost in accuracy (i.e.

from 74% to 83% in f-measure) and 0.91 clustering purity for Frame/Non-Frame

detection.

With more frequent and intense extreme events happening across the globe in

recent years, identifying mitigation and adaptation strategies for coping with threats

climate change poses to human security becomes the top priory for policy makers.

We present a novel approach to extract causal relations and construct causal chains

from large text corpora. The semi-supervised approach yields an average precision of

82%.
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In contrast to previous work that mainly focuses on implicit lexical pattern match-

ing our concepts-based approach extracts both explicit and implicit relations using

syntactic and semantic criteria that are based on the corpus. It also extracts and clus-

ters related actors across different news story documents that report significant effects

of changing climatic conditions. The proposed approach can be utilized to construct

causal chains of events in any text corpora. More importantly, in line with scientific

studies of climate change impacts and human security, the qualitative evaluation of

causal chains from the four categories of climate change framing lends strong support

for the direct and indirect impacts of climate events on natural resources and eco-

nomic conditions, which in turn can amplify the likelihood of sociopolitical instability

and violent conflict. Top causal chains show meaningful linkages to enhance decision

makers’ understanding of the causes and cascading effects in the human-environment

interaction.

As noted by Zhao et al. (Zhao et al., 2016), constructing automatic recognition

of causal relations is a fundamental and challenging task. Based on quantitative and

qualitative assessments, our approach not only demonstrates improved performance,

but also generates interpretable causal chains mostly consistent with the 2014 IPCC

report (Adger et al., 2014).

This thesis has several limitations that need to be acknowledged. First, we ana-

lyzed RSS feeds that are related to climate change, thus they are not fully reflective

of the entirety of media outlets. Second, the proposed algorithms work on formal En-

glish with complete sentences and it might not be possible to apply informal English

dataset (such as Twitter); where users typically write in an informal way. Addition-

ally, if the dataset is small, then the resultant generalized concepts will be sparse

and less meaningful. Lastly, in this thesis we are studying post-hoc analysis of data.

Therefore, an analysis model of future activities is needed.
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Following the promising results presented in this thesis, we intend to extend this

work and build a predictive model of causal chains of events. Predictions of cascading

effects will allow researchers to provide evidence to further establish the direct or

indirect relationships between risks associated with climate change and sociopolitical

instability.
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APPENDIX A

CONVERGENCE PLOTS FOR EXTRACTING CAUSAL CONCEPTS
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Cause Frame

Figures A.1 and A.2 show the convergence curves for Cause frame concepts. The
algorithm reached convergence at the 66th iteration where the number of concepts
and verbs did not change.

Figure A.1 Convergence of Extracting Cause Causal Concepts as a Function of
Iteration Number and Number of Concepts
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Figure A.2 Convergence of Extracting Cause Causal Concepts as a Function of
Iteration Number and Number of Verbs
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Problem Threat Frame

Figures A.3 and A.4 show the convergence curves for for ProblemThreat frame
concepts. The algorithm reached convergence at the 57th iteration where the number
of concepts and verbs did not change.

Figure A.3 Convergence of Extracting Problem Threat Causal Concepts as a
Function of Iteration Number and Number of Concepts
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Figure A.4 Convergence of Extracting Problem Threat Causal Concepts as a
Function of Iteration Number and Number of Verbs
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Solution Frame

Figures A.5 and A.6 show the convergence curves for Solution frame concepts.
The algorithm reached convergence at the 48th iteration where the number of concepts
and verbs did not change.

Figure A.5 Convergence of Extracting Solution Causal Concepts as a Function of
Iteration Number and Number of Concepts
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Figure A.6 Convergence of Extracting Solution Causal Concepts as a Function of
Iteration Number and Number of Verbs
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Motivation Frame

Figures A.7 and A.8 show the convergence curves for Motivation frame concepts.
The algorithm reached convergence at the 35th iteration where the number of concepts
and verbs did not change.

Figure A.7 Convergence of Extracting Motivation Causal Concepts as a Function of
Iteration Number and Number of Concepts
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Figure A.8 Convergence of Extracting Motivation Causal Concepts as a Function of
Iteration Number and Number of Verbs
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APPENDIX B

CLUSTERS VISUALIZATION
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We experimented with t-Distributed Stochastic Neighbor Embedding (t-SNE) di-
mensionality reduction technique (Maaten, 2009) to visualize the clusters in a better
way and to examine if this method would produce better results.

Frame/Non-Frame Clusters

Figures B.1, B.2, B.3 show the resultant clusters after applying t-SNE to cluster
the entire dataset into two clusters (Frame/Non-Frame) using different features (i.e.
concepts, bi-grams, uni-grams). In these figures, we can see that clustering based on
concepts is more pure compared to bi-grams and uni-grams.
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Figure B.1 Resultant Two Clusters after Applying t-SNE Using Concepts as
Features
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Figure B.2 Resultant Two Clusters after Applying t-SNE Using Bi-grams as
Features
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Figure B.3 Resultant Two Clusters after Applying t-SNE Using Uni-grams as
Features
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Four Frames Clusters

Figures B.4, B.5, B.6 show the resultant clusters after applying t-SNE to cluster
the Frame sentences into four clusters (Solution, Problem Threat, Cause, Motivation)
using different features (i.e. concepts, bi-grams, uni-grams). Clustering based on
concepts produces more pure clusters compared to bi-grams and uni-grams.
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Figure B.4 Resultant Four Clusters after Applying t-SNE Using Concepts as
Features

90



Figure B.5 Resultant Four Clusters after Applying t-SNE Using bi-grams as
Features
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Figure B.6 Resultant Four Clusters after Applying t-SNE Using Uni-grams as
Features
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APPENDIX C

OTHER CLASSIFIERS PERFORMANCE
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SVM

In this section we show the results of experimenting SVM (Cortes and Vapnik,
1995) classifier using different kernels: Linear, Radial basis function, and Polynomial.
Kernel function specifies how the dot product is projected into higher feature space,
without necessarily knowing that space.

SVM with Linear Kernel

Table C.1 Frame/Non-Frame Classification Using SVM with Linear Kernel

Method Class Label Precision Recall F-measure

Concepts

Frame 0.51 0.73 0.60

Non-Frame 0.78 0.61 0.69

Average 0.64 0.67 0.64

Bi-grams

Frame 0.45 0.56 0.50

Non-Frame 0.68 0.71 0.69

Average 0.56 0.63 0.59

Uni-grams

Frame 0.38 0.60 0.47

Non-Frame 0.61 0.66 0.63

Average 0.49 0.63 0.55
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Table C.2 Frame Classification into Four Categories Using SVM with Linear Kernel

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.63 0.65 0.64

Problem Threat 0.69 0.66 0.67

Cause 0.58 0.64 0.61

Motivation 0.61 0.49 0.54

Average 0.63 0.61 0.62

Bi-grams

Solution 0.69 0.61 0.65

Problem Threat 0.64 0.69 0.67

Cause 0.61 0.50 0.55

Motivation 0.53 0.35 0.42

Average 0.62 0.54 0.57

Uni-grams

Solution 0.59 0.63 0.61

Problem Threat 0.67 0.62 0.64

Cause 0.48 0.52 0.50

Motivation 0.37 0.48 0.42

Average 0.53 0.56 0.54
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SVM with Radial Basis Function Kernel (RBF)

Using SVM with radial basis function (RBF) kernel yielded the best perfor-
mance compared to other kernels. For Frame/Non-Frame classification the RBF-SVM
yielded an average F-measure of 72% using concepts as features. This indicates that
the dataset is non-linearly separable. For four frame classification, the RBF-SVM
with concepts as features yielded an average F-measure of 67%.

Table C.3 Frame/Non-Frame Classification Using SVM with RBF Kernel

Method Class Label Precision Recall F-measure

Concepts

Frame 0.71 0.74 0.72

Non-Frame 0.77 0.69 0.73

Average 0.74 0.71 0.72

Bi-grams

Frame 0.73 0.59 0.65

Non-Frame 0.71 0.75 0.74

Average 0.72 0.67 0.69

Uni-grams

Frame 0.70 0.55 0.62

Non-Frame 0.73 0.78 0.75

Average 0.71 0.66 0.68
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Table C.4 Frame Classification into Four Categories Using SVM with RBF Kernel

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.71 0.67 0.69

Problem Threat 0.77 0.72 0.74

Cause 0.68 0.62 0.65

Motivation 0.65 0.57 0.61

Average 0.70 0.64 0.67

Bi-grams

Solution 0.64 0.70 0.67

Problem Threat 0.68 0.61 0.64

Cause 0.58 0.49 0.53

Motivation 0.51 0.42 0.46

Average 0.60 0.56 0.58

Uni-grams

Solution 0.61 0.58 0.59

Problem Threat 0.63 0.69 0.66

Cause 0.56 0.52 0.54

Motivation 0.45 0.48 0.46

Average 0.56 0.57 0.57
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SVM with Polynomial Kernel

Table C.5 Frame/Non-Frame Classification Using SVM with Polynomial Kernel

Method Class Label Precision Recall F-measure

Concepts

Frame 0.65 0.71 0.68

Non-Frame 0.79 0.64 0.71

Average 0.72 0.67 0.69

Bi-grams

Frame 0.70 0.64 0.67

Non-Frame 0.67 0.73 0.70

Average 0.68 0.68 0.68

Uni-grams

Frame 0.65 0.63 0.64

Non-Frame 0.74 0.76 0.75

Average 0.70 0.69 0.70
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Table C.6 Frame Classification into Four Categories Using SVM with Polynomial
Kernel

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.67 0.65 0.66

Problem Threat 0.71 0.74 0.73

Cause 0.63 0.67 0.65

Motivation 0.60 0.54 0.57

Average 0.65 0.65 0.65

Bi-grams

Solution 0.70 0.62 0.66

Problem Threat 0.73 0.69 0.71

Cause 0.52 0.58 0.55

Motivation 0.44 0.42 0.43

Average 0.60 0.58 0.59

Uni-grams

Solution 0.63 0.57 0.60

Problem Threat 0.61 0.74 0.67

Cause 0.59 0.55 0.57

Motivation 0.39 0.49 0.44

Average 0.55 0.59 0.57
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Random Forests

In this section we show the results of experimenting the Random Forests (Breiman,
2001) classifier using different numbers of trees: 10, 20, 50, and 100. In Random
Forests, as the number of trees grows, the computation time grows exponentially. It
took a total of 38 hours to calculate the results for 100 trees. After experimenting with
different numbers of trees, we found that the best performance in terms of F-measure
is achieved when we set the number of trees to 50 trees.

Random Forests with 10 Trees

Table C.7 Frame/Non-Frame Classification Using Random Forests with 10 Trees

Method Class Label Precision Recall F-measure

Concepts

Frame 0.49 0.60 0.54

Non-Frame 0.57 0.62 0.59

Average 0.53 0.61 0.57

Bi-grams

Frame 0.36 0.47 0.41

Non-Frame 0.41 0.54 0.47

Average 0.38 0.50 0.44

Uni-grams

Frame 0.55 0.48 0.51

Non-Frame 0.59 0.62 0.60

Average 0.57 0.55 0.56
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Table C.8 Frame Classification into Four Categories Using Random Forests with 10
Trees

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.63 0.55 0.59

Problem Threat 0.69 0.61 0.65

Cause 0.64 0.55 0.59

Motivation 0.61 0.51 0.56

Average 0.64 0.55 0.60

Bi-grams

Solution 0.53 0.61 0.57

Problem Threat 0.57 0.64 0.60

Cause 0.52 0.48 0.50

Motivation 0.46 0.37 0.41

Average 0.52 0.53 0.52

Uni-grams

Solution 0.55 0.52 0.53

Problem Threat 0.58 0.60 0.59

Cause 0.51 0.54 0.52

Motivation 0.48 0.50 0.49

Average 0.53 0.54 0.53
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Random Forests with 20 Trees

Table C.9 Frame/Non-Frame Classification Using Random Forests with 20 Trees

Method Class Label Precision Recall F-measure

Concepts

Frame 0.53 0.62 0.57

Non-Frame 0.59 0.63 0.61

Average 0.56 0.62 0.59

Bi-grams

Frame 0.41 0.48 0.44

Non-Frame 0.44 0.56 0.50

Average 0.42 0.52 0.47

Uni-grams

Frame 0.56 0.48 0.52

Non-Frame 0.62 0.60 0.61

Average 0.59 0.54 0.56
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Table C.10 Frame Classification into Four Categories Using Random Forests with 20
Trees

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.66 0.61 0.63

Problem Threat 0.73 0.64 0.68

Cause 0.67 0.58 0.62

Motivation 0.65 0.56 0.60

Average 0.68 0.60 0.64

Bi-grams

Solution 0.58 0.62 0.60

Problem Threat 0.59 0.67 0.63

Cause 0.55 0.49 0.52

Motivation 0.48 0.40 0.44

Average 0.55 0.54 0.55

Uni-grams

Solution 0.56 0.59 0.57

Problem Threat 0.61 0.63 0.62

Cause 0.55 0.57 0.56

Motivation 0.51 0.54 0.52

Average 0.56 0.58 0.57
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Random Forests with 50 Trees

Table C.11 Frame/Non-Frame Classification Using Random Forests with 50 Trees

Method Class Label Precision Recall F-measure

Concepts

Frame 0.61 0.72 0.66

Non-Frame 0.67 0.64 0.65

Average 0.64 0.68 0.65

Bi-grams

Frame 0.44 0.49 0.46

Non-Frame 0.47 0.57 0.52

Average 0.45 0.53 0.49

Uni-grams

Frame 0.57 0.49 0.53

Non-Frame 0.62 0.65 0.63

Average 0.59 0.57 0.58
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Table C.12 Frame Classification into Four Categories Using Random Forests with 50
Trees

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.72 0.67 0.69

Problem Threat 0.78 0.70 0.74

Cause 0.71 0.65 0.68

Motivation 0.68 0.61 0.64

Average 0.72 0.66 0.69

Bi-grams

Solution 0.63 0.65 0.64

Problem Threat 0.66 0.68 0.67

Cause 0.59 0.51 0.55

Motivation 0.51 0.45 0.48

Average 0.60 0.57 0.58

Uni-grams

Solution 0.61 0.65 0.63

Problem Threat 0.62 0.67 0.64

Cause 0.58 0.60 0.59

Motivation 0.53 0.57 0.55

Average 0.58 0.62 0.60
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Random Forests with 100 Trees

Table C.13 Frame/Non-Frame Classification Using Random Forests with 100 Trees

Method Class Label Precision Recall F-measure

Concepts

Frame 0.59 0.70 0.64

Non-Frame 0.66 0.64 0.65

Average 0.62 0.67 0.64

Bi-grams

Frame 0.43 0.45 0.44

Non-Frame 0.48 0.52 0.50

Average 0.45 0.48 0.47

Uni-grams

Frame 0.51 0.46 0.48

Non-Frame 0.56 0.60 0.58

Average 0.53 0.53 0.53
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Table C.14 Frame Classification into Four Categories Using Random Forests with
100 Trees

Method Frame Category Precision Recall F-measure

Concepts

Solution 0.70 0.66 0.68

Problem Threat 0.75 0.64 0.69

Cause 0.68 0.64 0.66

Motivation 0.65 0.56 0.60

Average 0.69 0.62 0.66

Bi-grams

Solution 0.61 0.59 0.60

Problem Threat 0.64 0.65 0.64

Cause 0.58 0.50 0.54

Motivation 0.48 0.46 0.47

Average 0.58 0.55 0.56

Uni-grams

Solution 0.57 0.61 0.59

Problem Threat 0.60 0.64 0.62

Cause 0.52 0.58 0.55

Motivation 0.50 0.52 0.51

Average 0.55 0.59 0.57

107



Discussion of Classifiers Performance

When we compare the results of SVM and Random Forests, we found that SVM
with radial basis function (RBF) kernel outperformed Random Forests for Frame/Non-
Frame classification with an average F-measure of 72% using concepts as features.

However, for four frame classification, the Random Forests (with 50 trees) out-
performed SVM (regardless of the used kernel). Random forests scored an overall
average F-measure of 69% using concepts as features.

Lastly, using concepts as features typically yields higher average F-measure com-
pared to uni-grams and bi-grams.
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