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ABSTRACT

The uncrossing partially ordered set Pn is defined on the set of matchings on 2n

points on a circle represented with wires. The order relation is τ ′ ≤ τ in Pn if and

only if τ ′ is obtained by resolving a crossing of τ . I identify elements in Pn with affine

permutations of type (0, 2n). Using this identification, I adapt a technique in Reading

for finding recursions for the cd-indices of intervals in Bruhat order of Coxeter groups

to the uncrossing poset Pn. As a result, I produce recursions for the cd-indices of

intervals in the uncrossing poset Pn. I also obtain a recursion for the ab-indices of

intervals in the poset P̂n, the poset Pn with a unique minimum 0̂ adjoined.

Reiner-Stanton-White defined the cyclic sieving phenomenon (CSP) associated to

a finite cyclic group action on a finite set and a polynomial. Sagan observed the CSP

on the set of non-crossing matchings with the q-Catalan polynomial. Bowling-Liang

presented similar results on the set of k-crossing matchings for 1 ≤ k ≤ 3. In this

dissertation, I focus on the set of all matchings on [2n] := {1, 2, . . . , 2n}. I find the

number of matchings fixed by 2π
d

rotations for d|2n. I then find the polynomial Xn(q)

such that the set of matchings together with Xn(q) and the cyclic group of order 2n

exhibits the CSP.
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Chapter 1

INTRODUCTION

1.1 Matchings and the Uncrossing Partial Order on Matchings

A (complete) matching on [2n] is a partition of [2n] of type (2, 2, 2, . . . , 2). We

represent a matching by listing its n blocks, as {(i1, j1), (i2, j2), . . . , (in, jn)} where

ir < jr for all r ∈ [n]. Two blocks (ir, jr) and (is, js) form a crossing if ir < is < jr <

js. We also represent a matching by wires in a circle as follows. Label 1, 2, . . . , 2n in

cyclic order on a circle. For each block (ir, jr) in a matching, connect the boundary

points ir and jr with a wire. For example, Figure 1.1 shows a wire diagram for a

4-crossing matching {(1, 4), (2, 6), (3, 8), (5, 7)}.

3

1

5

7

2

46

8

Figure 1.1: A Wire Diagram of a 4-crossing Matching {(1, 4), (2, 6), (3, 8), (5, 7)}

Since there are
∏n−1

i=0

(
2n−2i

2

)
= (2n)!/2n ways to make n blocks if the order of the

blocks matters, the number of matchings on [2n] is (2n)!/(n!2n). On the other hand,

there are 2n − 1 choices for a partner of 1, say τ(1). There are 2n − 3 choices for a

partner of the smallest number in [2n]\{1, τ(1)}, and so forth. Thus, the number of

matchings on [2n] is also expressed as
∏n

i=1(2i− 1).
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The uncrossing partially ordered set Pn on matchings is defined on the set of

matchings on 2n points on a circle represented with wires, with an order relation:

τ ′ ≤ τ in Pn if and only if τ ′ is obtained by resolving a crossing of τ . For example, if

τ = {(1, 3), (2, 4)}, τ ′ = {(1, 2), (3, 4)} and τ ′′ = {(1, 4), (2, 3)} in P2 then τ ′ ≤ τ and

τ ′′ ≤ τ . Figure 1.2 shows the Hasse diagram of P2. Figure 2.13 in Chapter 2 shows

the Hasse diagram of P3.

Let c(τ) be the number of crossings of the matching τ . The poset Pn is graded

of rank
(
n
2

)
with rank function given by c(τ). The poset Pn has a unique maximum

element, namely {(1, n+1), (2, n+2), . . . , (n, 2n)}. There are Catalan number 1
n+1

(
2n
n

)
of minimal elements, which are the noncrossing matchings.

24

1

3
τ

τ ′

24

1

3

24

1

3

τ ′′

Figure 1.2: The Hasse Diagram of P2

The remaining sections in this chapter are brief summaries of Chapter 3 and

Chapter 4.
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1.2 Summary of Chapter 3

A graded poset P with a unique maximum and a unique minimum is Eulerian

if, for every non-trivial interval [x, y] in P , the number of elements of odd rank in

[x, y] is equal to the number of elements of even rank in [x, y]. One nice property

of Eulerian posets is their very simple Möbius functions µP (s, t) = (−1)`(s,t). An-

other nice property of Eulerian posets is that they have a cd-index. A cd-index is

a non-commutative generating function, which is an efficient way to encode the flag

enumeration of Eulerian posets. The cd-index arose from the work of Bayer and

Billera (1984) on flag f -vectors and flag h-vectors of Eulerian posets. Bayer and

Klapper (1991) and Stanley (1994) proved the existence of the cd-indices of Eulerian

posets. Ehrenborg and Readdy (1998) showed the way to obtain the cd-index of some

operations, for example, the cd-index of pyramid of P , the product of a poset P with

a chain of length one. Reading (2004) presented a recursive formula for the cd-indices

of intervals in the Bruhat order on a Coxeter group.

In Chapter 3 we first define an induced subposetMPn of affine permutations S̃2n

of type (0, 2n) in Definition 3.2 and Definition 3.5 in Chapter 3. Then we construct

an order-reversing bijection in Theorem 3.9 between Pn and MPn, and thus Theo-

rem 3.9 describes the elements in Pn with the elements in the induced subposetMPn.

Lam (2014) introduced a representation of matchings in Pn: to a matching τ ∈ Pn,

associate gτ : Z→ Z by

gτ (i) =

 τ(i) if i < τ(i)

τ(i) + 2n if i > τ(i).
(1.1)

Lam showed that this map τ 7→ gτ identifies Pn with an induced subposet of dual

Bruhat order of affine permutations of type (n, 2n) (see Lam (2014), Theorem 4.16).

However, we need a map to affine permutations of type (0, 2n) in order to apply a

3



technique in Reading (2004) for finding recursions for the cd-indices of intervals in

Bruhat order on Coxeter groups. We slightly modify Lam’s map τ 7→ gτ to adapt

Reading’s ideas to our situation.

The main result in Chapter 3 is recursive formulas in Theorem 3.17 for the cd-

indices of intervals in the uncrossing poset Pn.

Theorem 1.1 (Theorem 3.17). Let u,w ∈ MPn and let s = si and s′ = si+n for

some 0 ≤ i < 2n. Let u < sus′, w < sws′ and u ≤ w.

(1) If sus′ /∈ [u,w], then Φ[sus′,sws′] = Φ[u,w], and

Φ[u,sws′] = ΦPyr([u,w])

=
1

2

Φ[u,w] · c+ c · Φ[u,w] +
∑

v∈MPn
u<v<w

Φ[u,v] · d · Φ[v,w]

 .

(2) If sus′ ∈ [u,w], then

Φ[u,sws′] = ΦPyr([u,w]) −
∑

v∈MPn
u<v<w
svs′<v

Φ[u,v] · d · Φ[v,w]

=
1

2

Φ[u,w] · c+ c · Φ[u,w] +
∑

v∈MPn
u<v<w

σs(v)Φ[u,v] · d · Φ[v,w]

 .

Finally, using the cd-indices of intervals in Pn, we present a recursion in Theo-

rem 3.29 for the ab-indices of intervals in the poset P̂n where P̂n is a poset Pn with a

unique minimum element 0̂ adjoined.

Theorem 1.2 (Theorem 3.29). The ab-index of P̂n is recursively given by

ΨP̂n
(a, b) = (a− b)(

n
2) +

(n2)−1∑
i=0

(a− b)ib
∑

`(x)=2(n2)−2i

Ψ[e,x](a, b)

4



where x ∈ MPn. Let τ ∈ Pn such that c(τ) = k ≤
(
n
2

)
and φ(τ) = w ∈ MPn. The

ab-index of the interval [0̂, τ ] ⊂ P̂n is recursively given by

Ψ[0̂,τ ](a, b) = (a− b)k +
k−1∑
i=0

(a− b)ib
∑
x:x>w

`(x)=2(n2)−2i

Ψ[w,x](a, b).

1.3 Summary of Chapter 4

Reiner et al. (2004) defined the cyclic sieving phenomenon, CSP for short. To

define the CSP, we need: (1) a finite set X, (2) a cyclic group C generated by an

element c ∈ C of order n acting on X, (3) a polynomial X(q) with integer coefficients

in a variable q. We say the triple (X,X(q), C) exhibits the CSP if for all integers d,

|{x ∈ X : cd(x) = x}| = X(ζd)

where ζ = e
2πi
n is a nth-root of unity.

In many cases, we can take X(q) as the q-analog of the cardinality of the set

X. Let [m]!q := [m]q[m − 1]q . . . [2]q[1]q denote the q-binomial coefficient, and let

[m]q := 1 + q + q2 + · · · + qm−1 denote the q-analog of m. We present a couple of

examples.

Example 1.3. Let
(
[4]
2

)
be the set of 2-elements subsets of {1, 2, 3, 4}. Let C4 =

〈(1 2 3 4)〉 and let X(q) =
[
4
2

]
q

= 1 + q + 2q2 + q3 + q4. Figure 1.3 shows the

C4-orbits in
(
[4]
2

)
. For ζ = e

2πi
4 = i, we see that X(ζ0) = 6 and X(ζ2) = 2 and

X(ζ) = X(ζ3) = 0. Thus the triple
((

[4]
2

)
, X(q), C4

)
exhibits the CSP.

Example 1.4. Let NCM3 be the set of non-crossing matchings on [6]. Let C6 =

〈(1 2 3 4 5 6)〉 and let Cat3(q) = 1
[4]q

[
6
3

]
q

= 1 + q2 + q3 + q4 + q6. Figure 1.4 shows

the C6-orbits in NCM3. For ζ = e
2πi
6 = 1

2
+
√
3i
2

, we see that Cat3(ζ
0) = 5 and

5



{1, 2}

{1, 4} {2, 3}

{3, 4}

{1, 3}

{2, 4}
Figure 1.3: The C4-orbits in

(
[4]
2

)

Cat3(ζ
2) = Cat3(ζ

4) = 2 and Cat3(ζ
3) = 3 and Cat3(ζ) = Cat3(ζ

5) = 0. Thus the

triple (NCM3, Cat3(q), C6) exhibits the CSP.

Figure 1.4: The C6-orbits in NCM3

We mention that X(q) =
[
4
2

]
q

in Example 1.3 is the q-analog of the cardinality
(
4
2

)
of the set

(
[4]
2

)
, and Cat3(q) = 1

[4]q

[
6
3

]
q

in Example 1.4 is the q-analog of the cardinality

of the set NCM3.

Sagan (2011) observed the CSP on non-crossing matchings. Bowling and Liang

(2017) observed the CSP on the set of k-crossing matchings for k = 1, 2, 3. The CSP

polynomials in Bowling and Liang (2017) are the q-analog of the cardinality of the

set of k-crossing matchings.
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In Chapter 4, we mainly focus on the CSP on the whole set of matchings on [2n]

instead of the set of matchings of a certain number of crossing. We conjecture that

there exist CSP polynomials Xn(q) for the set of matchings on [2n]. Because the

number of matchings on [2n] is (2n)!/(2n · n!) or
∏n

i=1(2i− 1) = 1 · 3 · 5 · · · (2n− 1),

the possible candidates for CSP polynomials Xn(q) could be the q-analog of them:

Yn(q) =
[2n]!q

([2]q)n[n]q!
or Zn(q) = [1]q[3]q · · · [2n− 1]q.

Notice that Y2(q) = [4]q
[2]2q [2]q !

= (q2+1)(q2+q+1)
q+1

which is not a polynomial. Note also that

Z2(q) = [3]q = q2+q+1 6≡ q2+2 mod q4−1, and thus Z2(q) is not a CSP polynomial

by Example 4.8 in Chapter 4.

Thus we think of a different way to find the polynomials Xn(q). An equivalent

condition to the definition of the CSP is presented in Proposition 2.1 in Reiner et al.

(2004). We first prove that for given set X and a cyclic group C of order N , there is

a way, which is equivalent to Proposition 2.1 in Reiner et al. (2004), to construct a

polynomial f(q) for which the triple (X, f(q), C) exhibits the CSP in Proposition 4.17

and Proposition 4.19 in Chapter 4.

Proposition 1.5 (Proposition 4.17). Let X be a finite set. Let a cyclic group C = 〈c〉

act on X where |c| = N . Let ad be the number of elements of X fixed by cN/d for

d|N . Define bd by the equation

ad =
∑
d|r

N

r
br. (1.2)

Let f(q) be

f(q) =
∑
d|N

bd(q
N−d + qN−2d + · · ·+ qd + 1)

=
∑
d|N

bd
[N ]q
[d]q

.

Then, the evaluation f(ζd) is equal to the number of elements of X fixed by cd.

7



Proposition 1.6 (Proposition 4.19). The polynomial f(q) constructed in Proposi-

tion 4.17 together with X and C exhibits the CSP.

We then find the number ad,n of matchings on [2n] fixed by the action c2n/d for

divisors d of 2n in Proposition 4.28.

Proposition 1.7 (Proposition 4.28). If 2 divides d, then

ad,n = 1 + n
∑
i≥0

(2i+ 1)!

(i+ 1)!

(
2n
d
− 1

2i+ 1

)(
d

2

)i
. (1.3)

If d is not divisible by 2, then

ad,n =

n/d∏
i=1

(2i− 1)d. (1.4)

Finally we find the polynomials Xn(q) such that Pn together with C2n, the cyclic

group of order 2n, exhibits the CSP in Theorem 4.29.

Theorem 1.8 (Theorem 4.29). Let C2n = 〈c〉 where c = (1 2 . . . 2n). Let Xn(q) be

Xn(q) =
∑
d|2n

bd,n
[2n]q
[d]q

(1.5)

=
∑
d|2n

bd,n(q2n−d + q2n−2d + · · ·+ q2d + qd + 1) (1.6)

where the coefficients bd,n satisfy

ad,n =
∑
d|r

2n

r
br,n. (1.7)

Then, the triple (Pn, Xn(q), C2n) exhibits the CSP.
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Chapter 2

PRELIMINARIES

In this chapter we give background information on partially ordered sets, the

cd-index, affine permutations and Bruhat order. In Section 2.4, we introduce the

uncrossing posets. The definitions and notations in this chapter are mainly obtained

from Stanley (2012), Björner and Brenti (2005) and Lam (2014). Relatively less

well-known materials on these topics are presented in Chapter 3 and 4.

2.1 Partially Ordered Sets

A partially ordered set P , or for short poset, is a set together with a binary relation

denoted ≤, satisfying the following three axioms:

1. For all x ∈ P , x ≤ x (reflexivity),

2. x ≤ y and y ≤ x implies x = y (antisymmetry),

3. x ≤ y and y ≤ z implies x ≤ z (transitivity).

If x ≤ y and x 6= y then we write x < y. We say that y covers x, equivalently x is

covered by y, and denoted x l y, if x < y and there is no z such that x < z < y.

The Hasse diagram of a finite poset P is the graph whose vertices are the elements

of P , whose edges are the cover relations, and such that if x l y then y is drawn

above x. Figure 2.1 is the Hasse diagram of the poset of subsets of {a, b, c} ordered

by inclusion.

For two posets P and Q, a map φ : P → Q is called an order-preserving bijection

if x ≤ y in P if and only if φ(x) ≤ φ(y) in Q. Two posets P and Q are isomorphic,

denoted P ∼= Q, if there exists an order-preserving bijection φ : P → Q. The dual

poset P ∗ of a poset P is the poset on the same set of elements P such that for all x and
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{a, b, c}

{b, c} {a, c} {a, b}

{c} {b} {a}

∅
Figure 2.1: The Hasse Diagram of the Poset of Subsets of {a, b, c}

y, x ≤ y in P if and only if y ≤ x in P ∗. A map φ is called an order-reversing bijection

if φ is an order-preserving bijection between P and Q∗. By an induced subposet, or

for short subposet, of P , we mean a subset Q of P and the partial ordering on Q such

that for x, y ∈ Q we have x ≤ y in Q if and only if x ≤ y in P . For x ≤ y in P , a

(closed) interval [x, y] = {z ∈ P : x ≤ z ≤ y} is a subposet of P . Given two posets

P and Q, form their product P × Q on the set {(x, y) : x ∈ P, y ∈ Q} such that

(x1, y1) ≤ (x2, y2) in P ×Q if x1 ≤ x2 in P and y1 ≤ y2 in Q. The join x ∨ y of two

elements x and y is the unique minimal element in {z : x ≤ z, y ≤ z} if it exists. The

meet x ∧ y is the unique maximal element in {z : z ≤ x, z ≤ y} if it exists. A lattice

is a poset P such that every pair x, y ∈ P has a meet and a join.

We say P has a 1̂ if there exists an element 1̂ ∈ P such that x ≤ 1̂ for all x ∈ P .

Similarly, we say P has a 0̂ if there exists an element 0̂ ∈ P such that 0̂ ≤ x for

all x ∈ P . We call the elements 0̂ and 1̂, if exist, the minimum and the maximum

elements of P respectively. A subset C = {x1, x2, . . . , xn} of P is called a chain if

x1 < x2 < · · · < xn. A chain is called maximal if it is not contained in a larger chain

of P . The length `(C) of a finite chain is defined by `(C) = |C| − 1. If P is a poset
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such that all maximal chains have the same length n, then we say that P is graded of

rank n. In this case there is a unique rank function ρ : P → {0, 1, . . . , n} such that

ρ(x) = 0 if x is a minimal element of P , and ρ(y) = ρ(x) + 1 if x l y in P . If P is

graded of rank n and has pi elements of rank i, then the polynomial

F (P, q) =
n∑
i=0

piq
i =

∑
x∈P

qρ(x)

is called the rank-generating function of P . A graded poset P with a unique maximum

and a unique minimum is Eulerian if, for every interval [x, y] in P where x < y, the

number of elements of odd rank in [x, y] is equal to the number of elements of even

rank in [x, y].

2.2 Affine Permutatons and Bruhat Order

Let S̃kn, n ≥ 2 be the group of all bijections w of Z in itself such that

1. w(x+ n) = w(x) + n for all x ∈ Z and

2.
∑n

x=1w(x)− (1 + 2 + · · ·+ n) = nk,

with composition as group operation. This is the set of affine permutations of type

(k, n). We abbreviate S̃0
n by S̃n. The window notation of w ∈ S̃n is w = [a1, . . . , an] if

w(i) = ai for i ∈ [n]. As a set of generators for S̃n we take the set of periodic adjacent

transpositions S̃ = {s0, s1, . . . , sn−1} where

si := [1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for 1 ≤ i ≤ n− 1,

s0 := [0, 2, 3, . . . , n− 1, n+ 1].

Then, the pair (S̃n, S) is a Coxeter system and S̃n is the Coxeter group of affine

permutations of the integers.

There are several partial orders defined on S̃n. We need (strong) Bruhat order and

from now on, S̃n denotes the affine permutations, together with this order. For w ∈
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S̃n, a decomposition w = si1si2 . . . sik with letters in S is called a reduced decomposition

for w if k is minimal. The word i1i2 . . . ik is called a reduced word for w. We say k is

the length of w and denote it by `(w). Fix a reduced decomposition for w = t1t2 . . . tk

where ti ∈ S for all 1 ≤ i ≤ k. The Bruhat order is defined by v ≤B w if and only

if there is a reduced subword ti1ti2 . . . tij of t1t2 . . . tk for v such that 1 ≤ i1 < i2 <

· · · < ij ≤ k. We will write v ≤ w for v ≤B w if there is no possibility of confusion.

Figure 2.2 is an example of an interval in the Bruhat order on S̃2.

s0s1s0

s0s1 s1s0

s0 s1

e

Figure 2.2: The Hasse Diagram of the Interval [e, s0s1s0] in S̃2

2.3 The cd-index

The cd-index arises from the work of Bayer and Billera (1984) on flag f -vectors of

Eulerian posets. They extended the f -vector and the h-vector of a polytope ∆ to the

flag f -vector and the flag h-vector of the order complex ∆(P ) of a finite graded poset

P . A polytope is the convex hull of finitely many points in Rd. A hyperplane of Rd

is an affine subspace of dimension d− 1. A half-space is either of the two parts into

which a hyperplane divides an affine space. A supporting hyperplane of a polytope is

a hyperplane such that the polytope is contained in one of half-spaces. A face of a
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polytope is any intersection of a supporting hyperplane with the polytope. A simplex

is the convex hull of affinely independent points. A polytope is called simplicial if

each of its faces, except possibly the polytope itself, is a simplex.

Let ∆ be a finite (d − 1)-dimensional simplicial complex with fi i-dimensional

faces. The vector f(∆) = (f0, f1, . . . , fd−1) is called the f -vector of ∆. The vector

h(∆) = (h0, h1, . . . , hd), called the h-vector, is defined by the relation

d∑
i=0

fi−1(x− 1)d−i =
d∑
i=0

hix
d−i

where f−1 = 1 unless ∆ = ∅.

Let P be a graded poset, rank n, with a 0̂ and a 1̂. The order complex ∆(P ) of

P is defined as follows: the vertices of ∆(P ) are the elements of P − {0̂, 1̂}, and the

faces of ∆(P ) are the chains of P − {0̂, 1̂}. Then, ∆(P ) is a simplicial complex, and

Bayer and Billera (1984) enumerated faces of this order complex ∆(P ) as follows. For

a chain C in P − {0̂, 1̂}, define ρ(C) = {ρ(x) : x ∈ C}. Let [n] := {1, 2, . . . , n} and

let 2[n] be the set of all subsets of [n]. For any S ⊆ [n− 1], define

αP (S) = |{C ⊆ P : C is a chain such that ρ(C) = S}| .

We call the function αP : 2[n−1] → N the flag f-vector. We define

βP (S) =
∑
T⊆S

(−1)|S−T |αP (T ).

The function βP : 2[n−1] → N is called the flag h-vector of P . Then we can check for

the order complex ∆ = ∆(P )

fi(∆) =
∑
|S|=i+1

αP (S)

hi(∆) =
∑
|S|=i

βP (S).
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Thus the flag f -vector αP of the order complex ∆(P ) counts flags (or chains) of

P − {0̂, 1̂} by length, which are faces of ∆(P ) by dimension, as the f -vector counts

faces of a polytope by dimension. The flag h-vector βP plays a role as the h-vector

of a polytope.

Now we define ab-index of a poset and cd-index of an Eulerian poset. Define the

characteristic monomial uS of S ⊆ [n− 1] by uS = e1e2 . . . en−1, where

ei =


b if i ∈ S

a if i /∈ S.

Define a noncommutative polynomial ΨP (a, b), called the ab-index of P , by

ΨP (a, b) =
∑

S⊆[n−1]

βP (S)uS.

Thus ΨP (a, b) is a noncommutative generating function for the flag h-vector βP . By

definition of flag h-vector βP (S) =
∑

T⊆S(−1)|S−T |αP (T ), it is true that

ΨP (a+ b, b) =
∑

S⊆[n−1]

αP (S)uS

which is a generating function for the flag f -vector αP . By Bayer and Klapper (1991),

if P is an Eulerian poset of rank n, then there exists a polynomial ΦP (c, d) in the

noncommutative variables c and d such that ΨP (a, b) = ΦP (a + b, ab + ba). The

polynomial ΦP (c, d) is called the cd-index of P .

Example 2.1. Let us compute the cd-index of the interval [e, s0s1s0] in S̃2 presented

in Figure 2.2. There are 2 chains containing an element of rank 1 but no element

of rank 2, so the coefficient of ba is 2 in Ψ[e,s0s1s0](a + b, b). There are 4 chains

containing an element of rank 1 and an element of rank 2, so the coefficient of b2 is 4

in Ψ[e,s0s1s0](a+ b, b). Similarly, the coefficients of a2 and ab are 1 and 2 respectively.

Thus we have

Ψ[e,s0s1s0](a+ b, b) = a2 + 2ab+ 2ba+ 4b2.
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By replacing a by a− b, we get

Ψ[e,s0s1s0](a, b) = (a− b)2 + 2(a− b)b+ 2b(a− b) + 4b2

= a2 + ab+ ba+ b2.

By substituting c = a+ b and d = ab+ ba, we have the cd-index Φ[e,s0s1s0](c, d) = c2.

2.4 The Uncrossing Posets

In this section we introduce the circular planar electrical networks and the un-

crossing posets. The definitions and notations are mainly obtained from Lam (2014)

and Lam (2015). For more details for circular electrical planar networks, we refer

to Curtis et al. (1998) and Colin de Verdière et al. (1996). For more details for un-

crossing posets, we refer to Alman et al. (2015), Kenyon (2012), and Huang et al.

(2014).

2.4.1 The Circular Planar Electrical Networks

A circular planar electrical network, or for short an electrical network, is a finite

weighted undirected graph Γ embedded into a disk, with boundary vertices and inte-

rior vertices. Each edge represents a resistor and the weight of the edge represents

the conductance of the resistor. The electrical properties of Γ are encoded in a n× n

response matrix Λ(Γ) which sends a vector of voltages at the n boundary vertices

{v1, v2, . . . , vn}, to the vector of currents induced on the same vertices. Two electrical

networks Γ1 and Γ2 are electrically equivalent if they have the same response matrix.

For example, electrical networks Γ1 and Γ2 have the same response matrix

Λ(Γ1) = Λ(Γ2) =

 1/2 −1/2

1/2 −1/2

 .
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Γ1 =

1

1

v1

v2

Γ2 = 1
2

v1

v2

Figure 2.3: Equivalent Electrical Networks

In Colin de Verdière et al. (1996), four well-known electrically equivalent trans-

formations are introduced:

1. series and parallel transformations,

2. removing interior degree 1 vertices (pendant removal),

3. removing loops,

4. Y −∆ transformation.

a

b

←→ ab

a+ b
a b ←→ a+ b

Figure 2.4: Series and Parallel Transformations

←→ ←→

Figure 2.5: Removing a Pendant and a Loop
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a

c

b ←→ ac
a+b+c

ab
a+b+c

bc
a+b+c

Figure 2.6: Y −∆ Transformation

Colin de Verdière et al. (1996) showed that for any two circular planar electrical

networks Γ1 and Γ2 having the same response matrix, there is a sequence of electrically

equivalent transformations T1, . . . , Tk such that Γ2 = Tk . . . T1Γ1.

2.4.2 Medial Graphs

Let Γ be a unweighted electrical network. The medial graph M(Γ) of Γ is defined

as follows. Let v1, . . . , vn be the boundary vertices in a circular order. First for each

vi, place a vertex t2i−1 on left side of vi and another vertex t2i on the right side of vi

on the circle. Next add a vertex te for each edge e ∈ E(Γ). Join te with te′ if e and

e′ share a vertex and border the same face. Here, a face means a polygon enclosed

by edges. Since the networks are planar graphs, faces are well-defined. For boundary

vertices t2i−1 or t2i, we draw an edge to te if vi is an endpoint of e. If a vertex vi is

isolated, then join t2i−1 and t2i by an edge. Observe that each vertex te is of degree

4, and each vertex ti on the circle has degree 1. Finally, we form wires in M(Γ) in

the following way. Starting at each ti, draw a path tite1te2 . . . tektj so that the edges

tei−1
tei and teitei+1

separate the other two edges incident to tei .
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v1

v2

v3

v4

e

f

g

h

→

Γ: electrical network

v1

v2

v3

v4

te

tf

tg

th

t2t1

t3

t4

t8

t7

t6 t5

→

Place vertices ti’s and te’s

v1

v2

v3

v4

t2t1

t3

t4

t8

t7

t6 t5

Draw edges

t2t1

t3

t4

t8

t7

t6 t5

→

The medial graph M(Γ)

Figure 2.7: The Medial Graph M(Γ) of an Electrical Network Γ

Wires in medial graphs either join boundary vertices to boundary vertices or form

cycles inside the circle. A medial graph is called lensless if it satisfies the following

three conditions:

1. every wire begins and ends on the circle,

2. any two wires intersect at most once,

3. no wire has a self intersection.

A medial graph can be reduced to a lensless medial graph by removing bubbles

and loops.
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→ →

Figure 2.8: Removal of a Bubble and a Loop

A lensless medial graph induces a matching on the set [2n].

t2t1

t3

t4

t8

t7

t6 t5

−→

A medial graph M(Γ) with a bubble

21

3

4

8

7

6 5

A lensless medial graph

−→ {(1, 4), (2, 5), (3, 6), (7, 8)}

Figure 2.9: A Matching Obtained from a Lensless Medial Graph
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One may want to do electrically equivalent transformations first, then obtain the

same matching.

v1

v2

v3

v4 →

v1

v2

v3

v4 →

v1

v2

v3

v4

t2t1

t3

t4

t8

t7

t6 t5

→

v1

v2

v3

v4

t2t1

t3

t4

t8

t7

t6 t5

→

21

3

4

8

7

6 5

→ {(1, 4), (2, 5), (3, 6), (7, 8)}

Figure 2.10: The Same Matching Obtained from an Equivalent Network

Conversely, the electrical network Γ can be recovered from the medial graph M(Γ).

Note, however, that not all matchings on [2n] can arise from electrical networks. For

example, there is no electrical network Γ such that the medial graph Λ(Γ) induces

{(1, 2), (3, 8), (4, 7), (5, 6)}.
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21

3

4

8

7

6 5

Figure 2.11: A Matching Which Can’t Be Obtained from Any Electrical Network

Lam (2014) showed that by compactification of the space of electrical networks

all matchings on [2n] are obtained.

2.4.3 The Uncrossing Posets

We have seen that a matching τ on [2n] can be represented by a lensless medial

graph M(τ). Now resolve any crossing in M(τ) in either of two ways:

−→ or

Figure 2.12: Two Ways to Resolve a Crossing

This gives a new lensless medial graph M ′ = M(τ ′) for some matching τ ′ on [2n].

Then we define the partial order τ ′ ≤ τ on the set of matchings on [2n] if the lensless

medial graph M(τ ′) is obtained by resolving a crossing of the lensless medial graph

M(τ). Let c(τ) be the number of crossings of a lensless medial graph for τ . From now

let Pn denote the set of matchings on [2n] together with this order. We call Pn the

uncrossing partial order on matchings on [2n], the uncrossing poset for short. The

poset Pn is graded of rank
(
n
2

)
with rank function given by c(τ). The poset Pn has
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a unique maximum element, namely the matching {(1, n+ 1), (2, n+ 2), . . . , (n, 2n)},

and Catalan number 1
n+1

(
2n
n

)
of minimal elements, which are non-crossing matchings.

Figure 2.13 shows the Hasse diagram of P3.

Figure 2.13: The Hasse Diagram of P3 (Courtesy of Thomas Lam, Used with Per-
mission)

This partial order has been studied by Alman et al. (2015), Huang et al. (2014),

Kenyon (2012), Lam (2014) and Lam (2015). Let P̂n denote Pn with a unique mini-

mum element 0̂ adjoined, where we let c(0̂) = −1. The poset P̂n was conjectured to

be Eulerian by Alman et al. (2015), Huang et al. (2014), and Kim and Lee (2014),

and is proved to be so by Lam (2015).
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0̂

Figure 2.14: The Hasse Diagram of the Eulerian Poset P̂3

Theorem 2.2 (Lam (2015), Theorem 1). P̂n is an Eulerian poset.

Lam (2015) used the map τ 7→ gτ (see (1.1) in Chapter 1, Lam (2014)) as the

main tool for proving Theorem 2.2. Using this map, Lam showed that the number

of odd elements equals the number of even rank elements in intervals in P̂n. To be

specific, he first showed that the number of odd rank elements equals the number of
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even rank elements in any interval [τ, η] ⊂ Pn by descending induction on c(τ) + c(η).

Then he showed the number of odd rank elements equals the number of even rank

elements in any interval [0̂, η] ⊂ P̂n by establishing an involution σ 7→ si · σ on the

set {σ ∈ (0̂, η]|si · σ 6= σ}.

The rank-generating function of Pn was discovered by Touchard (1950) and Rior-

dan (1975),

Theorem 2.3 (Touchard (1950), Riordan (1975)). The rank-generating function

F (Pn, q) is

F (Pn, q) =
1

(1− q)n
n∑

k=−n

(−1)kqk(k−1)/2
(

2n

n+ k

)
.
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Chapter 3

THE CD-INDICES OF INTERVALS IN THE UNCROSSING PARTIAL ORDER

ON MATCHINGS

In this chapter, we present a set of results on flag enumeration in intervals in the

uncrossing partial order on matchings. We produce recursions for the cd-indices of

intervals in the uncrossing poset Pn. In Section 3.1 we define an induced subposet

MPn of Bruhat order on affine permutations S̃2n of type (0, 2n). We prove that there

is an order-reversing bijection between Pn andMPn. With this bijection we are able

to explicitly describe the elements in Pn. In Section 3.2, we recall the recursive

formulas for the cd-indices of intervals in Bruhat order of a Coxeter group studied

by Reading (2004). In Section 3.3, we prove that there are recursive formulas for

the cd-indices of intervals in Pn. Furthermore, we present a recursive formula for the

ab-indices of intervals in the poset P̂n.

3.1 Modular Palindromic Permutations

Lam (2014) maps matchings τ ∈ Pn to affine permutations gτ of type (n, 2n) as

(1.1) in Chapter 1. Lam showed that this map τ 7→ gτ identifies Pn with an induced

subposet of dual Bruhat order of affine permutations of type (n, 2n) (Theorem 4.16 in

Lam (2014)), through Theorem 8.3.7 in Björner and Brenti (2005) which characterizes

affine Bruhat order in terms of a matrix which tracks inversions.

We notice that if we slightly modify Lam’s map it is possible to show that Pn is

identified with an induced subposet of dual Bruhat order of affine permutations S̃2n of

type (0, 2n) without Theorem 8.3.7 in Björner and Brenti (2005). We believe that this

identification is necessary to apply a technique in Reading (2004) for finding recursions
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for the cd-indices of intervals in Bruhat order on Coxeter groups. Moreover, we are

able to explicitly describe the elements in the induced subposet of affine permutations

as modular palindromic permutations (see Theorem 3.9).

For these reasons, we slightly modify Lam’s map τ 7→ gτ to define an injective

map φ : Pn → S̃2n as follows. For a matching τ ∈ Pn, define hτ : [2n]→ Z by

hτ (i) =


τ(i)− n if i < τ(i)

τ(i) + n if i > τ(i).

Now define φ : Pn → S̃2n by φ(τ) = [hτ (1), hτ (2), . . . , hτ (2n)] in the window notation

of the affine permutation group S̃2n.

Example 3.1. Let τ = {(1, 4), (2, 6), (3, 5)} and τ ′ = {(1, 3), (2, 6), (4, 5)} in P3.

The images of τ and τ ′ under Lam’s map are gτ = [gτ (i)]
6
i=1 = [4, 6, 5, 7, 9, 8] and

gτ ′ = [gτ ′(i)]
6
i=1 = [3, 6, 7, 5, 10, 8] in the window notation. On the other hands,

the images under the map φ are φ(τ) = [1, 3, 2, 4, 6, 5] = s2s5 ∈ S̃6 and φ(τ ′) =

[0, 3, 4, 2, 7, 5] = s2s0s3s5 ∈ S̃6.

With the map φ, we explicitly describe the subposet of S̃2n which is isomorphic

to the dual of Pn. First, we define a modular palindromic permutation and a subset

MPn of the affine permutation group S̃2n.

Definition 3.2. An affine permutation w ∈ S̃2n is modular palindromic if w has a

reduced decomposition w = si1si2 . . . si2k with |i2k+1−r − ir| = n for all r ∈ [k].

Example 3.3. Let τ = {(1, 4), (2, 6), (3, 5)} and τ ′ = {(1, 3), (2, 6), (4, 5)} in P3 as

in Example 3.1. Both φ(τ) = s2s5 and φ(τ ′) = s2s0s3s5 are modular palindromic

because |2 − 5| = |0 − 3| = 3. We also observe that φ reverses the order in P3; in

other words, τ ′ ≤ τ in P3 but φ(τ ′) ≥ φ(τ) in Bruhat order.
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τ ′

≤P3

1

2

34

5

6

τ

1

2

34

5

6

←→ φ(τ ′) = s2s0s3s5 ≥B s2s5 = φ(τ)

Figure 3.1: Matchings in P3 and Their Images under the Map φ

Example 3.4. Let n = 3. Let w = s0s5s1s4s2s3 ∈ S̃6. Notice that w is a modular

palindromic permutation because |0−3| = |5−2| = |1−4| = 3. The window notation

of the permutation is w = [2, 3, 7, 0, 4, 5]. Assume w = φ(τ) for some τ ∈ P3. Since

w(3) = 7, we must have hτ (3) = 7, but it is impossible because 1 ≤ hτ (3) ≤ 5. Thus

w 6∈ φ(P3).

The previous example shows that not all modular palindromic permutations are

images of matchings under the map φ. Which conditions are needed for modular

palindromic permutations to be in the image of the map φ? We need the following

definition.

Definition 3.5. The subsetMPn of S̃2n is the set of all modular palindromic permu-

tations w ∈ S̃2n such that no reduced word of w contains a subword of n consecutive

integers.

Remark 3.6. The consecutive integers in Definition 3.5 need not be in adjacent posi-

tions in the reduced word.

Now we use MPn as a poset, equipped with Bruhat order.

Example 3.7. Let n = 2. We see that MP2 contains e, s0s2 and s1s3. Notice that

all length four modular palindromic permutations, whose reduced words are 1023,

0132, 2130 and 3201 respectively, have a subword of 2-consecutive integers, and thus
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MP2 = {e, s0s2, s1s3}. Figure 3.2 shows the Hasse diagrams of P2 and the dual of

MP2, respectively.

P2

∼=

e

s1s3 s0s2

MP∗2
Figure 3.2: The Hasse Diagrams of P2 and MP∗2

Example 3.8 (revisited). Let n = 3. Let w = s0s5s1s4s2s3 ∈ S̃6 with a reduced word

051423. Notice that w is a modular palindromic permutation, which has a subword

543, a 3 consecutive integers. Thus w 6∈ MP3.

The following theorem is one of the main results in this dissertation.

Theorem 3.9. The map φ is an order-reversing bijection between Pn and MPn.

To prove this theorem, we first state and prove a lemma.

Lemma 3.10. The image of Pn under the map φ is contained in MPn. In other

words, φ(Pn) ⊆MPn.

Proof. Let τ ∈ Pn. We must show that φ(τ) is modular palindromic and no reduced

word for φ(τ) contains a subword of n consecutive integers. First, we prove that φ(τ)

is modular palindromic using decreasing induction on the ranks of τ ∈ Pn.

(i) Base case: the unique maximum element 1̂ = {(1, n+1), (2, n+2), . . . , (n, 2n)}.

Notice that φ(1̂) = e ∈MPn as required.
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(ii) Induction step: suppose τ ≤ 1̂ and φ(τ) ∈MPn. Choose a crossing generated

by a pair of wires (a, τ(a)) and (b, τ(b)) such that a < b < τ(a) < τ(b). We can

resolve the crossing in two ways.

Case 1: from {(a, τ(a)), (b, τ(b))} to {(a, τ(b)), (b, τ(a))}. Let τ ′ ∈ MPn be the

matching obtained by resolving the crossing this way.

a

b

τ(b)

τ(a)

−→

a

b

τ(b)

τ(a)

In window notation, we see that

. . . , a , . . . , b , . . . , τ(a) , . . . , τ(b) , . . .

φ(τ) = [. . . , τ(a)− n, . . . , τ(b)− n, . . . , a+ n, . . . , b+ n, . . . ]

φ(τ ′) = [. . . , τ(b)− n, . . . , τ(a)− n, . . . , b+ n, . . . , a+ n, . . . ].

Observe that φ(τ ′) is obtained from φ(τ) by swapping the numbers in the a-th spot

and b-th spot and swapping the numbers a+n and b+n. Thus, φ(τ ′) = ta+n,b+nφ(τ)ta,b

where ta,b = sasa+1 . . . sb−2sb−1sb−2 . . . sa+1sa is the periodic transposition of a and b.

Therefore, φ(τ ′) is modular palindromic.

Case 2: from {(a, τ(a)), (b, τ(b))} to {(a, b), (τ(a), τ(b))}.

a

b

τ(b)

τ(a)

−→

φ(τ)

a

b

τ(b)

τ(a)

φ(τ ′′)
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In window notation, we see that

. . . , a , . . . , b , . . . , τ(a) , . . . , τ(b) , . . .

φ(τ) = [. . . , τ(a)− n, . . . , τ(b)− n, . . . , a+ n , . . . , b+ n , . . . ]

φ(τ ′′) = [. . . , b− n , . . . , a+ n , . . . , τ(b)− n, . . . , τ(a) + n, . . . ].

Observe that φ(τ ′′) is obtained from φ(τ) by swapping the numbers in the b-th spot

and τ(a)-th spot and swapping the numbers b− n and τ(a)− n, which is equivalent

to changing the numbers b + n and τ(a) + n by periodicity of 2n. Thus, φ(τ ′′) =

tb+n,τ(a)+nφ(τ)tb,τ(a), and it is modular palindromic.

Secondly, we prove that there is no reduced word for φ(τ) which contains a sub-

word of n consecutive integers. For the sake of contradiction, suppose there is a

reduced word for φ(τ) containing a subword of n consecutive integers. Without loss

of generality, assume the consecutive integers are increasing. Take a maximal length

subword sa+1sa+2 . . . sa+m of φ(τ) where sa+i’s are periodic adjacent transpositions

and m ≥ n and the indices are taken modulo 2n if necessary. Then, observe that

φ(τ)(a + m + 1) = a + 1, which contradicts that i − n < φ(τ)(i) < i + n by the

definition of φ for all i.

Corollary 3.11. The map φ is order-reversing. In other words, τ ′ ≤ τ in Pn implies

φ(τ ′) ≥ φ(τ) in MPn or in S̃2n.

Proof. By the proof of the previous lemma, we see that if a matching τ ′ is obtained by

resolving a crossing of a matching τ , then φ(τ ′) = ta,bφ(τ)ta+n,b+n for some a, b ∈ [2n].

Since a reduced word of φ(τ) is a subword of a reduced word of φ(τ ′), we conclude

that φ(τ) ≤ φ(τ ′) as required.

The following lemma will be used when we prove Theorem 3.9; in particular, we

will use the lemma to show that the map φ is surjective.
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Lemma 3.12. Let p, q ∈ MPn such that q = sapsa+n and `(q) = `(p) + 2. Let

x, y ∈ [2n] such that p(x) ≡ a (mod 2n) and p(y) ≡ a+ 1 (mod 2n). Then,

(1) The numbers x, y, a+ n and a+ n+ 1 are distinct.

(2) q(i) = p(i) for all i ∈ [2n]\{a+ n, a+ n+ 1, x, y}.

(3) q(a + n) = p(a + n + 1), q(a + n + 1) = p(a + n), q(x) ≡ a + 1 (mod 2n), and

q(y) ≡ a (mod 2n).

Proof. (1) It is clear that x 6= y and a + n 6= a + n + 1. Since p ∈ MPn, we know

a < p(a+n) < a+ 2n and a+ 1 < p(a+n+ 1) < a+ 2n+ 1, and thus a+n 6= x and

a+n+1 6= y. Asume y = a+n, so that p(a+n) ≡ a+1 (mod 2n). Then any reduced

decomposition for p must contain a subword of the form sa+1sa+2 . . . sa+n−2sa+n−1.

Then any reduced decomposition for q = sapsa+n must contain a subword of n con-

secutive integers, which contradicts q ∈ MPn. Assume x = a + n + 1, so that

p(a + n + 1) ≡ a (mod 2n). Then any reduced decomposition for p must contain a

subword of the form sa+2n+1sa+2n . . . sa+n+2sa+n+1. Then any reduced decomposition

for q = sapsa+n must contain a subword of n consecutive integers, which contradicts

q ∈MPn.

(2) Let i ∈ [2n]\{a + n, a + n + 1, x, y}. Then it is clear that sa+n(i) = i. Note

that p(i) 6∈ {a, a+ 1} since i 6∈ {x, y}, and thus sa(p(i)) = p(i). Then we have

q(i) = (sapsa+n)(i) = sa(p(i)) = p(i).

(3) Since sa+n acts on the right of p by swapping numbers in the (a+ n)-th spot

and (a+n+ 1)-th spot and sa acts on the left of p by swapping numbers a and a+ 1,
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we have

q(a+ n+ 1) = sapsa+n(a+ n+ 1)

= sa(p(a+ n))

= p(a+ n).

Note that (a+n+ 1)−n < p(a+n+ 1) < (a+n+ 1) +n and a+n−n < q(a+n) <

a + n + n since p, q ∈ MPn, and equivalently a + 2 ≤ p(a + n + 1) ≤ a + 2n and

a+ 1 ≤ q(a+ n) ≤ a+ 2n− 1, which forces

q(a+ n) = sapsa+n(a+ n)

= sa(p(a+ n+ 1))

= p(a+ n+ 1).

Note that x−n < p(x) = a < x+n and x−n < q(x) < x+n since p, q ∈MPn, and

equivalently a− n+ 1 ≤ x ≤ a+ n− 1, which forces sa+n(x) = x. Then observe that

q(x) = (sapsa+n)(x)

= sa(p(x))

= sa(a)

= a+ 1 = p(y).

Similarly,

q(y) = (sapsa+n)(y)

= sa(p(y))

= sa(a+ 1)

= a = p(x).
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Proof of Theorem 3.9. By Lemma 3.10 and Corollary 3.11, we need to show that

the map φ is surjective to complete the proof. Let p ∈ MPn. By definition, no

reduced decomposition of p contains a subword of n consecutive integers, and thus

i− n < p(i) < i+ n for all i ∈ [2n]. Define τp by

τp(i) =

 p(i) + n if p(i) ≤ n

p(i)− n if p(i) ≥ n+ 1

for i ∈ [2n]. We claim that τp is a matching on [2n]. To show τp is a matching, we

need to show that τp is an involution with no fixed point. In other words, we must

show that τp(i) 6= i and τ 2p (i) = i for all i ∈ [2n]. Since i − n < p(i) < i + n, either

i < τp(i) < i+ 2n or i− 2n < τp(i) < i, and thus τp(i) 6= i. Observe that

τ 2p (i) =



p(p(i) + n) + n if p(i) ≤ n and p(p(i) + n) ≤ n

p(p(i) + n)− n if p(i) ≤ n and p(p(i) + n) ≥ n+ 1

p(p(i)− n) + n if p(i) ≥ n+ 1 and p(p(i)− n) ≤ n

p(p(i)− n)− n if p(i) ≥ n+ 1 and p(p(i)− n) ≥ n+ 1.

(3.1)

Since p is an affine permutation in S̃2n, we see that

p(p(i)− n) + n = p(p(i) + n− 2n) + n = p(p(i) + n)− n

and

p(p(i)− n)− n = p(p(i) + n− 2n)− n = p(p(i) + n)− 3n.

By this observation, we have τ 2p (i) ≡ p(p(i) + n) + n (mod 2n). Since 1 ≤ τp(i) ≤ 2n,

we can simplify (3.1) as follows.

τ 2p (i) ≡ p(p(i) + n) + n (mod 2n) and 1 ≤ τ 2p (i) ≤ 2n. (3.2)

Now we prove that τp is an involution by induction on `(p)/2.
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Base case: p = e. Observe that

e(e(i) + n) + n = e(i+ n) + n = (i+ n) + n = i+ 2n,

and τ 2e (i) = i for all i ∈ [2n] as desired.

Induction step: Suppose τ 2p (i) = i for all i ∈ [2n] for p ∈ MPn with `(p) < 2
(
n
2

)
.

Then p(p(i) +n) +n ≡ i (mod 2n), or equivalently, p(p(i) +n) ≡ i+n (mod 2n). Let

q = sapsa+n ∈MPn with `(q) = `(p)+2. Let x, y ∈ [2n] such that p(x) ≡ a (mod 2n)

and p(y) ≡ a+ 1 (mod 2n). Let i ∈ [2n]\{a+ n, a+ n+ 1, x, y}. By Lemma 3.12, we

see p(i) + n 6≡ a+ n (mod 2n) and p(i) + n 6≡ a+ n+ 1 (mod 2n), and thus

q(q(i) + n) + n ≡ q(p(i) + n) + n

≡ (sapsa+n)(p(i) + n) + n

≡ sa(p(p(i) + n) + n

≡ sa(i+ n) + n

≡ i+ 2n,

where the last equality is due to i 6∈ {a + n, a + n + 1}, and hence τ 2q (i) = i for

i ∈ [2n]\{a+n, a+n+1, x, y}. We calculate q(q(i)+n)+n for i ∈ {a+n, a+n+1, x, y}

as follows. Since a + 1 < p(a + n + 1) < a + 2n + 1 and p(a + n + 1) 6≡ a (mod 2n),

we see that

q(q(a+ n) + n) + n ≡ q(p(a+ n+ 1) + n) + n

≡ (sapsa+n)(p(a+ n+ 1) + n) + n

≡ (sap)(p(a+ n+ 1) + n) + n

≡ sa(p(p(a+ n+ 1) + n)) + n

≡ sa(a+ n+ 1 + n) + n

≡ a+ 3n,
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and hence τ 2q (a+n) = a+n. Since a < p(a+n) < a+2n and p(a+n) 6≡ a+1 (mod 2n),

we see that

q(q(a+ n+ 1) + n) + n ≡ q(p(a+ n) + n) + n

≡ (sapsa+n)(p(a+ n) + n) + n

≡ (sap)(p(a+ n) + n) + n

≡ sa(p(p(a+ n) + n)) + n

≡ sa(a+ n+ n) + n

≡ a+ 3n+ 1,

and hence we have τ 2q (a+ n+ 1) = a+ n+ 1. Observe that

q(q(x) + n) + n ≡ q(a+ 1 + n) + n

≡ p(a+ n) + n

≡ p(p(x) + n) + n}

≡ x+ n+ n

≡ x+ 2n,

and thus we have τ 2q (x) = x. Observe that

q(q(y) + n) + n ≡ q(a+ n) + n

≡ p(a+ 1 + n) + n

≡ p(p(y) + n) + n

≡ y + n+ n

≡ y + 2n,

and thus we have τ 2q (y) = y. Hence by induction, τp is an involution and therefore τp
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is a matching on [2n]. By the construction of τp, observe that

φ(τp)(i) = hτp(i) =

 τp(i)− n = (p(i) + n)− n if i < τp(i)⇔ p(i) ≤ n

τp(i) + n = (p(i)− n) + n if i > τp(i)⇔ p(i) ≥ n+ 1

and thus φ(τp)(i) = p(i) for all i ∈ [2n], which shows that the map φ is surjective,

and the proof follows.

3.2 The cd-index of the Posets Pn

In the previous section, we saw that the poset Pn, without 0̂ adjoined, is isomor-

phic to a subposet of the dual Bruhat order of affine permutations. Reading (2004)

provided recursive formulas for the cd-indices of intervals in the Bruhat order on

a Coxeter group, and it looks promising to examine the recursions to compute the

cd-index of Pn.

The product of a poset P with a chain of length one is called the pyramid of P ,

and denoted by Pyr(P ). We will use the proposition from Ehrenborg and Readdy

(1998) which produces the cd-index of Pyr(P ) from the cd-index of P .

Proposition 3.13 (Ehrenborg and Readdy (1998), Proposition 4.2). Let P be an

Eulerian poset. Then Pyr(P ) is also Eulerian, and moreover the cd-index of Pyr(P )

is given by

ΦPyr(P ) =
1

2

Φp · c+ c · ΦP +
∑

x:0̂<x<1̂

Φ[0̂,x] · d · Φ[x,1̂]

 .

A zipper in a poset P is a triple of distinct elements x, y, z ∈ P such that {w :

w < x} = {w : w < y} and z = x ∨ y covers x and y but covers no other element.
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z· · · · · ·

x y

t u v w

...
...

...
...

−→

· · · · · ·

xy

t u v w

...
...

...
...

Figure 3.3: A Zipper {x, y, z} and Zipping the Zipper {x, y, z}

The operation zip of a zipper {x, y, z} ⊂ P is defined as follows. Let xy be a

single new element not in P , and define P ′ = (P − {x, y, z}) ∪ {xy}, with a binary

relation � on P ′, given by:

a � b if a ≤ b in P − {x, y, z}

xy � a if x ≤ a or if y ≤ a in P − {x, y, z}

a � xy if a ≤ x or (equivalently) if a ≤ y in P − {x, y, z}

xy � xy.

Figure 3.3 shows a zipper and the operation zip of the zipper. We can think of the

operation zip of a zipper {x, y, z} as deleting z and identifying x with y. According

to Reading (2004), the zip operation of a zipper produces a new poset and the zip

operation of an Eulerian poset is also Eulerian. Furthermore, the following theorem

provides a formula for the cd-index of the resulting poset in terms of the cd-index of

the initial Eulerian poset.

Theorem 3.14 (Reading (2004), Theorem 4.6). Let P ′ be the result of the operation

zip of a zipper in P . Then P ′ is a poset under the partial order �. If P is Eulerian
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then so is P ′. Moreover, P has a cd-index ΦP if and only if P ′ has a cd-index ΦP ′,

and

ΦP ′ = ΦP − Φ[0̂,x] · d · Φ[z,1̂].

The following theorem is a structural recursion for Bruhat intervals.

Theorem 3.15 (Reading (2004), Theorem 5.5). Let (W,S) be a Coxeter system. Let

w, u ∈ W and s ∈ S. Let ws > w, us > u and u ≤ w.

(1) If us /∈ [u,w] then [u,ws] ∼= [u,w]× [1, s] and [us, ws] ∼= [u,w].

(2) If us ∈ [u,w], then [u,ws] can be obtained from [u,w] × [1, s] by a sequence of

zippings.

From these two theorems, Reading (2004) produced recursions for the cd-indices

of Bruhat intervals. For v ∈ W and s ∈ S, define σs(v) := `(vs)− `(v) ∈ {−1, 1}.

Theorem 3.16 (Reading (2004), Theorem 6.1). Let (W,S) be a Coxeter system. Let

w, u ∈ W and s ∈ S. Let u < us, w < ws and u ≤ w.

(1) If us /∈ [u,w], then Φ[us,ws] = Φ[u,w], and

Φ[u,ws] = ΦPyr([u,w])

=
1

2

(
Φ[u,w] · c+ c · Φ[u,w] +

∑
v:u<v<w

Φ[u,v] · d · Φ[v,w]

)
.

(2) If us ∈ [u,w], then

Φ[u,ws] = ΦPyr([u,w]) −
∑

v:u<v<w
vs<v

Φ[u,v] · d · Φ[v,w]

=
1

2

(
Φ[u,w] · c+ c · Φ[u,w] +

∑
v:u<v<w

σs(v)Φ[u,v] · d · Φ[v,w]

)
.
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Even though MPn is not a Coxeter group, the order relation in MPn is Bruhat

order. Thus we consider an analogue of Theorem 3.16 for MPn. We find that

there are recurrence relations for the cd-indices of intervals in MPn, and also in

Pn. For s = si ∈ S define s′ = si+n ∈ S. For v ∈ MPn and s ∈ S, define

σs(v) := 1
2
[`(svs′)− `(v)] ∈ {−1, 1}.

Theorem 3.17. Let u,w ∈ MPn and let s = si and s′ = si+n for some 0 ≤ i < 2n.

Let u < sus′, w < sws′ and u ≤ w.

(1) If sus′ /∈ [u,w], then Φ[sus′,sws′] = Φ[u,w], and

Φ[u,sws′] = ΦPyr([u,w])

=
1

2

Φ[u,w] · c+ c · Φ[u,w] +
∑

v∈MPn
u<v<w

Φ[u,v] · d · Φ[v,w]

 .

(2) If sus′ ∈ [u,w], then

Φ[u,sws′] = ΦPyr([u,w]) −
∑

v∈MPn
u<v<w
svs′<v

Φ[u,v] · d · Φ[v,w]

=
1

2

Φ[u,w] · c+ c · Φ[u,w] +
∑

v∈MPn
u<v<w

σs(v)Φ[u,v] · d · Φ[v,w]

 .

Example 3.18. Let u = e and w = s1s2s5s4 in MP3. Figure 3.4 shows the Hasse

diagrams for intervals [u,w], [s3us0, s3ws0], [u, s3ws0] and [u, s2ws5].

(1) Let s = s3 and s′ = s0. Observe that u < sus′, w < sws′, u ≤ w and sus′ 6∈

[u,w]. We see that Φ[sus′,sws′] = Φ[s3s0,s3s1s2s5s4s0] = c = Φ[e,s1s2s5s4] = Φ[u,w].

Notice that the intervals [u,w] and [s3us0, s3ws0] are isomorphic to Boolean
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s1s2s5s4

s1s4 s2s5

e

s3s1s2s5s4s0

s3s1s4s0 s3s2s5s0

s3s0

s3s1s2s5s4s0

s3s1s4s0 s3s2s5s0 s1s2s5s4

s3s0 s1s4 s2s5

e

s2s1s2s5s4s5

s1s2s5s4 s2s1s4s5

s1s4 s2s5

e

Figure 3.4: The Intervals [u,w], [s3us0, s3ws0], [u, s3ws0] and [u, s2ws5] in MP3

lattice B2. The cd-index of B2 is ΦB2(c, d) = c. We also have

Φ[u,sws′] = Φ[e,s3s1s2s5s4s0]

=
1

2

(
Φ[e,s1s2s5s4] · c+ c · Φ[e,s1s2s5s4] +

∑
e<v<s1s2s5s4

Φ[e,v] · d · Φ[v,s1s2s5s4]

)

=
1

2

(
c · c+ c · c+ Φ[e,s1s4] · d · Φ[s1s4,s1s2s5s4] + Φ[e,s2s5] · d · Φ[s2s5,s1s2s5s4]

)
=

1

2
(c2 + c2 + d+ d) = c2 + d.

Note that the interval [u, s3ws0] is isomorphic to Boolean lattice B3. The cd-

index of B3 is ΦB3(c, d) = c2 + d. Observe that the number of maximal chains

in the interval [u, s3ws0] is ΦB3(2, 2) = 22 + 2 = 6.
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(2) Let s = s2 and s′ = s5. Observe that u < sus′, w < sws′, u ≤ w and

sus′ ∈ [u,w]. Note that σs2(s1s4) = 1
2
(4−2) = 1 and σs2(s2s5) = 1

2
(0−2) = −1.

We see that

Φ[u,sws′] = Φ[e,s2s1s2s5s4s5]

=
1

2

(
Φ[e,s1s2s5s4] · c+ c · Φ[e,s1s2s5s4] +

∑
e<v<w

σs2(v)Φ[e,v] · d · Φ[v,s1s2s5s4]

)

=
1

2

(
c · c+ c · c+ Φ[e,s1s4] · d · Φ[s1s4,s1s2s5s4] − Φ[e,s2s5] · d · Φ[s2s5,s1s2s5s4]

)
=

1

2
(c2 + c2 + d− d) = c2.

Observe that the interval [u, s2ws5] is isomorphic to Bruhat order of the symmet-

ric group S3. The cd-index of Bruhat order of S3 is ΦS3(c, d) = c2. Observe that

the number of maximal chains in the interval [u, s2ws5] is ΦS3(2, 2) = 22 = 4.

3.3 Proof of Theorem 3.17

In this section we let u,w ∈ MPn and let s = si ∈ S̃ and let s′ = si+n ∈ S̃.

All intervals in this section are induced subposets in MPn. Suppose u < sus′ and

w < sws′. We employ the map η in Reading (2004) to our situation. Define a map

η : [u,w]× [e, ss′]→ [u, sws′], as follows:

η(v, e) = v

η(v, ss′) =

 svs′ if svs′ > v

v if svs′ < v

The following proposition is known as Lifting Property of Bruhat order.

Proposition 3.19 (Björner and Brenti (2005), Proposition 1.2 (Lifting Property of

Bruhat order)). Let (W,S) be a Coxeter system. Let u,w ∈ W and s ∈ S. If w > ws

and us > u, then the following are equivalent:

(i) w > u
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(ii) ws > u

(iii) w > us.

We will need the following proposition, which is the analogue of Proposition 3.19

for MPn.

Proposition 3.20 (Lifting Property ofMPn). Let u,w ∈MPn and let s = si ∈ S̃.

Let s′ = si+n ∈ S̃. If w > sws′ and sus′ > u, then the following are equivalent:

(i) w > u

(ii) sws′ > u

(iii) w > sus′.

Proof. Since w > sws′, by transitivity (ii) implies (i). Since sus′ > u, by transi-

tivity (iii) implies (i). So assume (i) w > u. Choose a reduced decomposition for

sws′ = t1t2 . . . t2q where ti ∈ S̃ for all i ∈ [2q] such that the reduced word is modular

palindromic. Then w = st1t2 . . . t2qs
′ is also reduced and modular palindromic. There

is a reduced decomposition for u

u = ti1ti2 . . . ti2r

which is a subword of w = st1t2 . . . t2qs
′. Since sus′ > u, we have ti1 6= s and ti2r 6= s′,

and thus both (ii) sws′ > u and (iii) w > sus′ hold as desired.

We claim that the map η is well-defined. To show this, let v ∈ [u,w]. Because we

have assumed w < sws′ we know that v ∈ [u,w] ⊂ [u, sws′], so we may assume that

η(v, ss′) = svs′. In this case, v < svs′, thus we see u ≤ v < svs′ < sws′ where the

last inequality is due to the lifting property, and therefore η(v, ss′) ∈ [u, sws′]. The

following proposition and Proposition 5.1 in Reading (2004) are the same statement
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on different posets: Bruhat order of Coxeter groups and the induced subposetMPn.

Here, we show the order-preserving part of the statement on the induced subposet

MPn. For the proof of surjective part, see Proposition 5.1 in Reading (2004).

Proposition 3.21. If u < sus′ and w < sws′, then η : [u,w]× [e, ss′]→ [u, sws′] is

an surjective order-preserving map.

Proof. Suppose (v1, a1) ≤ (v2, a2) in [u,w] × [e, ss′]. Since e ≤ a1 ≤ a2 ≤ ss′, we

break into three cases.

Case 1: a1 = e and a2 = e. Then η(v1, a1) = v1 ≤ v2 = η(v2, a2).

Case 2: a1 = e and a2 = ss′. Then either η(v2, a2) = v2 with v2 > sv2s
′ or

η(v2, a2) = sv2s
′ with sv2s

′ > v2. In either case, we see that η(v2, a2) ≥ v1.

Case 3: a1 = ss′ and a2 = ss′. Then either η(v1, a1) = v1 with v1 > sv1s
′ or

η(v1, a1) = sv1s
′ with sv1s

′ > v1. We also have either η(v2, a2) = v2 with v2 > sv2s
′

or η(v2, a2) = sv2s
′ with sv2s

′ > v2. We break up this case into four subcases.

Subcase 3-1: η(v1, a1) = v1 and η(v2, a2) = v2. Then, η(v1, a1) ≤ η(v2, a2).

Subcase 3-2: η(v1, a1) = v1 and η(v2, a2) = sv2s
′. Then, η(v1, a1) = v1 ≤ v2 <

sv2s
′ = η(v2, a2).

Subcase 3-3: η(v1, a1) = sv1s
′ and η(v2, a2) = v2. Then, η(v1, a1) = sv1s

′ ≤ v2 =

η(v2, a2) by the lifting property.

Subcase 3-4: η(v1, a1) = sv1s
′ and η(v2, a2) = sv2s

′. Then, η(v1, a1) = sv1s
′ ≤

sv2s
′ = η(v2, a2) by the lifting property.

For every v ∈ [u,w] with svs′ < v, notice that the image of the elements (v, e),

(svs′, ss′), (v, ss′) under the map η is the single element v. From this observation,

we let v1, v2, . . . , vk be a linear ordering of the elements of the set Z = {v : u < v <

w, svs′ < v} such that the ranks (or lengths) of elements are weakly increasing, in

other words, `(v1) ≤ `(v2) ≤ · · · ≤ `(vk). Define posets Qi for 0 ≤ i ≤ k recursively
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as follows. Let Q0 = [u,w] × [e, ss′]. Let Qi to be the poset obtained by zipping

{(vi, e), (svis′, ss′), (vi, ss′)} in Qi−1. In the following proposition, we show that this

is indeed a proper zipping.

Proposition 3.22. The triples {(vi, e), (svis′, ss′), (vi, ss′)} in Qi−1 for 1 ≤ i ≤ k are

zippers.

Proof. First, we claim that (vi, e), (svis
′, ss′) and (vi, ss

′) are elements of Qi−1. The

element (vi, ss
′) has not been deleted yet, and we have not identified (vi, ss

′) with

any element because it is at a rank higher than we have yet made identifications.

The only elements ever deleted are of the form (x, ss′) where x > sxs′, so (vi, e) and

(svis
′, ss′) have not been deleted. The only identification one could make involving

(vi, e) and (svis, ss
′) is to identify them to each other, and that has not happened

yet, and thus the claim is proved.

(vi, ss
′)· · · · · ·

(vi, e) (svis
′, ss′)

· · · · · · · · · · · ·
Figure 3.5: The Triple {(vi, e), (svis′, ss′), (vi, ss′)} in Qi−1

Second, we check the conditions in the definition of a zipper. Suppose (x, a) <

(vi, e), so that x < vi and a = e. Then x < sxs′; otherwise the triple {(sxs′, e), (x, ss′),

(x, e)} is a zipper in Qi−1 with `(x) < `(vi) which is impossible. Then we have

x ≤ svis
′ by lifting property and thus (x, a) < (svis

′, ss′). Now suppose (x, a) <

(svis
′, ss′), so that either a = e or a = ss′. If a = e then (x, a) < (vi, e) since

x ≤ svis
′ < vi. Assume a = ss′. Then x < svis

′ which implies `(x) < `(svis
′) so x is
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not vr for any r ≤ i, and then x < sxs′. Then the triple {(x, ss′), (sxs′, e), (sxs′, ss′)}

is a zipper with `(sxs′) < `(vi) in Qi−1 which is impossible. Hence the triple satisfies

the first condition {(x, a) : (x, a) < (vi, e)} = {(x, a) : (x, a) < (svis
′, ss′)}. The

second condition is obvious because (vi, e)l(vi, ss
′) and (svis

′, ss′)l(vi, ss
′). Assume

(x, a) is covered by (vi, ss
′). If a = e then x = vi, so (x, a) = (vi, e). If a = ss′ then

x l vi. Since svis
′ < vi and x < sxs′, by lifting property x ≤ svis

′ which implies

x = svis
′. Hence (vi, ss

′) covers no other element than (vi, e) and (svis
′, ss′), and

thus the third condition holds. Therefore, the triple {(vi, e), (svis′, ss′), (vi, ss′)} is a

zipper in Qi−1.

In terms of zipper and operation zip, we can think of the image of [u,w]× [e, ss′]

under the map η as a sequence of zipping operations of the triples {(vi, e), (svis′, ss′),

(vi, ss
′)} for vi ∈ Z.

Example 3.23. Let u = e, w = s1s3s2s6s7s5 in MP4 and let s = s2 and s′ = s6.

Then, u < sus′, w < sws′ and u < w. Figure 3.6 shows the Hasse diagram of

[u,w]× [e, ss′]. We consider the map η : [u,w]× [e, ss′]→ [u, sws′]. We get the result

of zipping the zipper {(s2s6, e), (e, s2s6), (s2s6, s2s6)} as in Figure 3.7.

The following proposition is an analogue of Proposition 5.2 in Reading (2004).

Proposition 3.24. Let u < sus′ and w < sws′ and sus′ 6≤ w. Then svs′ > v for all

v ∈ [u,w], and η is an order-preserving bijection.

Proof. Suppose that there is a v ∈ [u,w] with svs′ < v. Since u < sus′ and u ≤ v,

by lifting property, sus′ ≤ v, and thus sus′ ≤ w, which is a contradiction. Therefore,

v < svs′ for all v ∈ [u,w].

In the Proposition 3.21, it is proved that the map η is order-preserving. Observe
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(s1s3s2s6s7s5, s2s6)

(s1s3s2s6s7s5, e) (s1s2s6s5, s2s6) (s1s3s7s5, s2s6) (s3s2s6s7, s2s6)

(s1s2s6s5, e) (s1s3s7s5, e) (s3s2s6s7, e) (s1s5, s2s6) (s2s6, s2s6) (s3s7, s2s6)

(s1s5, e) (s2s6, e) (s3s7, e) (e, s2s6)

(e, e)

Figure 3.6: The Interval [u,w]× [e, ss′]

that the inverse image of v ∈ [u, sws′] under the map η is

η−1(v) =

 {(v, e)} if v ∈ [u,w]

{(svs′, ss′)} if v ∈ [u, sws′]\[u,w],

and the inverse map η−1 is well-defined. Now suppose v1, v2 ∈ [u, sws′] with v1 ≤ v2.

We consider the following four cases:

Case 1: v1 ∈ [u,w] and v2 ∈ [u,w]. Then η−1(v1) = (v1, e) and η−1(v2) = (v2, e),

thus η−1(v1) = (v1, e) ≤ (v2, e) = η−1(v2).

Case 2: v1 ∈ [u,w] and v2 ∈ [u, sws′]\[u,w]. Then η−1(v1) = (v1, e) and η−1(v2) =

(sv2s
′, ss′), hence v1 < sv1s

′ and v2 > sv2s
′. Thus η−1(v1) = (v1, e) ≤ (sv2s

′, ss′) =

η−1(v2) by lifting property.

Case 3: v1 ∈ [u, sws′]\[u,w] and v2 ∈ [u, sws′]\[u,w]. Then η−1(v1) = (sv1s
′, ss′)

and η−1(v2) = (sv2s
′, ss′), hence v1 > sv1s

′ and v2 > sv2s
′. Thus η−1(v1) =
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s2s1s3s2s6s7s5s6

s1s3s2s6s7s5 s2s1s2s6s5s6 s2s1s3s7s5s6 s2s3s2s6s7s6

s1s2s6s5 s1s3s7s5 s3s2s6s7 s2s1s5s6 s2s3s7s6

s1s5 s2s6 s3s7

e

Figure 3.7: The Result of Zipping the Zipper {(s2s6, e), (e, s2s6), (s2s6, s2s6)}

(sv1s
′, ss′) ≤ (sv2s

′, ss′) = η−1(v2) by lifting property.

Case 4: v1 ∈ [u, sws′]\[u,w] and v2 ∈ [u,w]. This case is impossible because

v1 ≤ v2.

Proposition 3.24 directily implies the following corollary.

Corollary 3.25. Let u < sus′ and w < sws′ and sus′ 6≤ w. Then the map θ :

[u,w]→ [sus′, sws′] with θ(v) = svs′ is an order-preserving bijection.

In other words, if the condition in Corollary 3.25 holds, then the map θ makes a

copy [sus′, sws′] of the interval [u,w].

We have proven the following theorem which is an analogue of Theorem 5.5 in

Reading (2004).

Theorem 3.26. Let w < sws′ and u < sus′ and u ≤ w. If sus′ 6∈ [u,w] then

[u, sws′] ∼= [u,w]× [1, ss′] and [sus′, sws′] ∼= [u,w]. If sus′ ∈ [u,w], then [u, sws′] can

be obtained from [u,w]× [1, ss′] by a sequence of zippings.
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Now we are ready to prove Theorem 3.17. This proof is essentially the same

as the proof of Theorem 6.1 in Reading (2004). Here we reproduce this proof for

completeness.

Proof of Theorem 3.17. Part (1) follows from Proposition 3.24 and Corollary 3.25.

So we focus on part (2), in the case of sus′ ∈ [u,w]. Define the posets Qi as in

Proposition 3.22. By Theorem 3.14,

ΦQi−1
− ΦQi = Φ[(u,e),(vi,e)] · d · Φ[(vi,ss′),(w,ss′)].

where intervals in the right hand side are in Qi−1. Since Qk = [u, sws′], sum from

i = 1 to i = k to obtain

Φ[u,sws′] = ΦQ0 −
k∑
j=1

Φ[(u,e),(vj ,e)] · d · Φ[(vj ,ss′),(w,ss′)].

where intervals in right hand side are in Qj−1. Notice that the interval [(u, e), (vj, e)]

in Qj−1 is isomorphic to the interval [(u, e), (vj, e)] in Q0 which is also isomorphic to

[u, vj]. Similarly, the interval [(vj, ss
′), (w, ss′)] in Qj−1 is isomorphic to the interval

[(vj, ss
′), (w, ss′)] in Q0 which is isomorphic to [vj, w], and the second part of the

theorem is proved.

Therefore, we have recurrence relations for the cd-indices Φ(c, d) of intervals in

Pn, or equivalently, MPn. Then we also have recurrence relations for the ab-indices

Ψ(a, b) of the intervals by the relation Ψ(a, b) = Φ(a+b, ab+ba). Recall that poset P̂n

is Pn with a unique minimum element 0̂ adjoined. We prove the following proposition

which helps us compute ab-indices of intervals [0̂, τ ] in P̂n recursively.

Proposition 3.27. Let P be a graded poset of rank n with a unique maximum element

1̂ and multiple minimal elements such that every interval in P is Eulerian. Let P̂ be
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the poset P with a unique minimum element 0̂ adjoined, where ρ(0̂) = −1. If P̂ is

Eulerian, then the ab-index of P̂ is given by

ΨP̂ (a, b) = (a− b)n +
n−1∑
i=0

(a− b)ib
∑
ρ(x)=i

Ψ[x,1̂](a, b). (3.3)

Proof. By the definition of ab-index and the definition of flag f -vector and h-vector,

ΨP̂ (a+ b, b) =
∑

S⊆[n−1]∪{0}

αP (S)uS

=
∑

0̂<t1<···<tk−1<1̂

aρ(0̂,t1)−1baρ(t1,t2)−1b . . . baρ(tk−1,1̂)−1,

and thus

ΨP̂ (a, b) =
∑

0̂<t1<···<tk−1<1̂

(a− b)ρ(0̂,t1)−1b(a− b)ρ(t1,t2)−1b . . . b(a− b)ρ(tk−1,1̂)−1. (3.4)

We rearrange this summation in terms of t1, the lowest element in the chain except

0̂. If there is no t1 in the chain, then the summand will be (a − b)n. If ρ(t1) =

i ∈ {0, 1, , . . . , n − 1}, then the summand will be (a − b)ib[(a − b)ρ(t1,t2)−1b . . . b(a −

b)ρ(tk−1,1̂)−1]. By this observation, we can write (3.4) as

ΨP̂ (a, b) = (a− b)n +
n−1∑
i=0

(a− b)ib
∑

t1<···<tk−1<1̂

(a− b)ρ(t1,t2)−1b . . . b(a− b)ρ(tk−1,1̂)−1

= (a− b)n +
n−1∑
i=0

(a− b)ib
∑
ρ(t1)=i

Ψ[t1,1̂]
(a, b)

as desired.

Remark 3.28. If we are only interested in the number of maximal chains in P̂n, then

we plug in a = b = 1 in (3.3),

ΨP̂ (1, 1) =
∑
ρ(x)=0

Ψ[x,1̂](1, 1).

Proposition 3.27 directly implies the following theorem. We have a recursion for

the ab-indices of the poset P̂n and its intervals [0̂, τ ].
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Theorem 3.29. The ab-index of P̂n is recursively given by

ΨP̂n
(a, b) = (a− b)(

n
2) +

(n2)−1∑
i=0

(a− b)ib
∑

`(x)=2(n2)−2i

Ψ[e,x](a, b)

where x ∈ MPn. Let τ ∈ Pn such that c(τ) = k ≤
(
n
2

)
and φ(τ) = w ∈ MPn. The

ab-index of the interval [0̂, τ ] ⊂ P̂n is recursively given by

Ψ[0̂,τ ](a, b) = (a− b)k +
k−1∑
i=0

(a− b)ib
∑
x:x>w

`(x)=2(n2)−2i

Ψ[w,x](a, b).

Example 3.30. Figure 3.8 shows the Hasse diagram of the dual of MP3. There

are three x ∈ MP3 with `(x) = 2 such that the ab-index Ψ[e,x] = 1 because every

interval [e, x] is a length 1 chain. There are six x ∈MP3 with `(x) = 4 such that the

ab-index Ψ[e,x] = a+b because every interval [e, x] is isomorphic to Boolean lattice B2.

There are five x ∈ MP3 with `(x) = 6. For three of them, we see that the ab-index

Ψ[e,x] = (a+ b)2 because the intervals are isomorphic to Bruhat order S3. For two of

them, we see that the ab-index Ψ[e,x] = (a+ b)2 + (ab+ ba) because the intervals are

isomorphic to Boolean lattice B3. By Theorem 3.29 we compute the ab-index of P̂3

ΨP̂3
= (a− b)3 +

2∑
i=0

(a− b)ib
∑

`(x)=6−2i

Ψ[e,x]

= (a− b)3 + b
∑
`(x)=6

Ψ[e,x] + (a− b)b
∑
`(x)=4

Ψ[e,x] + (a− b)2b
∑
`(x)=2

Ψ[e,x]

= (a− b)3 + b[5(a+ b)2 + 2(ab+ ba)] + (a− b)b[6(a+ b)] + (a− b)2b[3 · 1]

= a3 + 2a2b+ 5aba+ 4ab2 + 4ba2 + 5bab+ 2b2a+ b3

= (a+ b)3 + (a+ b)(ab+ ba) + 3(ab+ ba)(a+ b).

Thus, the cd-index of P̂3 is

ΦP̂3
= c3 + cd+ 3dc.
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e

s1s4s2s5 s0s3

s0s1s4s3 s1s2s5s4 s0s2s5s3 s1s0s3s4 s2s1s4s5 s3s2s5s0

s0s2s1s4s5s3 s1s3s2s5s0s4 s1s2s1s4s5s4 s0s3s2s5s0s3 s0s1s0s3s4s3

0̂

Figure 3.8: The Hasse Diagram of the Dual of MP3

Moreover, we see that there are 23 + 2 · 2 + 3 · 2 · 2 = 24 maximal chains. Or by

Remark 3.28,

ΨP̂ (1, 1) =
∑
`(x)=6

Ψ[e,x](1, 1)

= 5(1 + 1)2 + 2(1 + 1) = 24.
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3.4 Future Work

Since we describe the elements in Pn with modular palindromic permutations in

MPn ⊂ S̃2n, we believe that it could be easier to see the structure of the poset Pn.

Then we could examine other properties of the poset Pn by exploring properties of

the poset MPn.

Problem 3.31. Enumerate objects in the poset Pn or equivalently inMPn, such as

intervals with respect to lengths, intervals isomorphic to particular posets, maximal

chains, and so forth.

The main results in this chapter are recurrence relations for the cd-indices and the

ab-indices. We produce recursions for the cd-indices of intervals in the poset Pn and

the ab-indices of intervals of the form [0̂, τ ] in the poset P̂n. Thus the most natural

problem would be the following.

Problem 3.32. Find a recursion for the cd-indices of intervals of the form [0̂, τ ] in

the poset P̂n. Find a closed formula for the cd-indices of intervals in the posets Pn

and P̂n.

We may pay attention to lower bounds on the coefficients of the cd-index of an

interval in MPn. The following problem is a special case of a conjecture by Stanley

(1994).

Problem 3.33. For any u ≤ w in MPn, prove that the coefficients of Φ[u,w] are

non-negative.
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Chapter 4

THE CYCLIC SIEVING PHENOMENON ON MATCHINGS

In this chapter, we present a set of results on the cyclic sieving phenomenon,

CSP for short, on matchings. For given set X and a cyclic group C of order N

which acts on X, we present a way to construct a polynomial f(q) for which the

triple (X, f(q), C) exhibits the CSP. From now we will abuse Pn to denote the set

of matchings on [2n] if there is no possibility of confusion. We find the number of

elements in Pn fixed by the action c2n/d for divisors d of 2n where c is the cyclic shift

of order 2n. Then we find the polynomials Xn(q) such that Pn together with C2n,

the cyclic group of order 2n, exhibits the CSP. In Section 4.1, we review definitions,

examples and previous results on the cyclic sieving phenomenon on matchings. In

Section 4.2, we find the polynomials Xn(q) for any prime n. In Section 4.3, we discuss

a general way to construct a CSP polynomial. In Section 4.4, we find the polynomials

Xn(q) for any n ∈ N. Since Section 4.2 is a special case of Section 4.4, readers may

skip Section 4.2. We keep Section 4.2 because we believe that it would be helpful to

understand Section 4.4.

4.1 Cyclic Sieving Phenomenon

The cyclic sieving phenomenon was defined by Reiner et al. (2004). Let X be a

finite set. Let C be a cyclic group generated by an element c ∈ C of order n acting

on X. Let X(q) be a polynomial with integer coefficients in a variable q.

Definition 4.1 (Reiner et al. (2004)). The triple (X,X(q), C) exhibits the cyclic

sieving phenomenon (CSP) if for all integers d, the number of elements of X fixed by

cd equals the evaluation X(ζd) where ζ = e
2πi
n is a nth-root of unity.
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In particular, since X(1) = |X|, the polynomial X(q) can be thought of as a gen-

erating function for the set X. Reiner-Stanton-White (Reiner et al. (2004), Theorem

1.1) proved that (X,X(q), Cn) exhibits the CSP with the collectionX of all k-elements

subsets of [n] := {1, 2, . . . , n}, the cyclic group Cn = 〈c〉 where c = (1 2 . . . n), and

q-binomial coefficients

X(q) =

[
n

k

]
q

:=
[n]!q

[k]!q · [n− k]!q

where [m]!q := [m]q[m− 1]q . . . [2]q[1]q and [m]q := 1 + q + q2 + · · ·+ qm−1.

Example 4.2. Take n = 4 and k = 2, and let C4 = 〈c〉 where c = (1 2 3 4) and let

X(q) =
[
4
2

]
q

= 1 + q + 2q2 + q3 + q4. For ζ = e
2πi
4 = i, we see that X(ζ0) = 6, and

it means all 2-subsets are fixed by the identity. We also check that X(ζ2) = 2, and

we interpret two 2-subsets, namely {1, 3}, {2, 4}, are fixed by c2 = (1 3)(2 4), and

X(ζ) = X(ζ3) = 0 which means no 2-subset is fixed by c = (1 2 3 4) or c3 = (1 4 3 2).

{1, 2}

{1, 4} {2, 3}

{3, 4}

{1, 3}

{2, 4}
Figure 4.1: The C4-orbits in

(
[4]
2

)

The CSP is observed on the set of non-crossing matchings on [2n].

Theorem 4.3 (Sagan (2011), Theorem 8.1). Let X be the collection of non-crossing

matchings on [2n]. Let C2n = 〈c〉 where c = (1 2 . . . 2n). Let Catn(q) be the n-th

q-Catalan number,

Catn(q) =
1

[n+ 1]q

[
2n

n

]
q

.
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Then the triple (X,Catn(q), C2n) exhibits the CSP.

Example 4.4. Let NCM3 be the set of non-crossing matchings on [6]. Let C6 =

〈(1 2 3 4 5 6)〉 and let Cat3(q) = 1
[4]q

[
6
3

]
q

= 1 + q2 + q3 + q4 + q6. Figure 1.4 shows

the C6-orbits in NCM3. For ζ = e
2πi
6 = 1

2
+
√
3i
2

, we see that Cat3(ζ
0) = 5 and

Cat3(ζ
2) = Cat3(ζ

4) = 2 and Cat3(ζ
3) = 3 and Cat3(ζ) = Cat3(ζ

5) = 0. Thus the

triple (NCM3, Cat3(q), C6) exhibits the CSP.

Figure 4.2: The C6-orbits in NCM3

This result is found in a survey of CSP by Sagan (2011). This is a special case,

when m = 2, of Theorem 1.3 in Rhoades (2010).

Theorem 4.5 (Rhoades (2010), Theorem 1.3). Let λ = (n, n, . . . , n) ` mn be a

rectangular partition and let X = SY T (λ) be the set of standard Young tableaux of

shape λ. Let C = Z/mnZ act on X by jeu-de-taquin promotion. Then the triple

(X,C,X(q)) exhibits the CSP, where X(q) is the q-analog of the hook length formula

X(q) = fλ(q) :=
[mn]!q∏

(i,j)∈λ[hij]q
.

There is a bijection between standard Young tableaux in SY T (n, n) and non-

crossing matchings. For T ∈ SY T (n, n), form a corresponding sequence of paren-
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theses by placing a left parenthesis under each number in the first row and a right

parenthesis under each number in the second row. Then match the parentheses.

Example 4.6. Let n = 3 and T ∈ SY T (3, 3) as in Figure 4.3.

T =
1 3 4

2 5 6
7→

1 2 3 4 5 6

( ) ( ( ) )
7→ {(1, 2), (3, 6), (4, 5)}.

Figure 4.3: An Example of the Bijection Between SY T (n, n) and Matchings on [2n]

Applying this bijection to Theorem 4.5 gives the matching description of jeu-de-

taquin promotion. As stated in Petersen et al. (2009), Dennis White discovered this

interpretation of promotion, although never published. We see that the hook length

formula is reduced to the q-Catalan number when λ = (n, n). Thus the bijection by

Dennis White and Theorem 4.5 directly imply Theorem 4.3.

Motivated by the previous result, the CSP on the non-crossing matchings, Bowling

and Liang (2017) showed that the CSP is observed on the set of k-crossing matchings

for k = 1, 2, 3 in Pn. Bowing-Liang first found that the number of one-crossing, two-

crossing, and three-crossing matchings on [2n] are
(

2n
n−2

)
, n+3

2

(
2n
n−3

)
, and 1

3

(
n+5
2

)(
2n
n−4

)
+(

2n
n−3

)
respectively. Then they set fk(q) to be the q-analog of the number of k-crossing

matchings. Next they enumerated the number of k-crossing matchings fixed by cd

for k = 1, 2, 3. They finished their proof by showing that the evaluation fk(ζ
d) is the

number of k-crossing matchings fixed by cd for k = 1, 2, 3.

Theorem 4.7 (Bowling and Liang (2017), Theorem 2, Theorem 3, Theorem 4). Let

Xk be the collection of k-crossing matchings on [2n] for k = 1, 2, 3. Let C2n = 〈c〉
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where c = (1 2 . . . 2n). Let

f1(q) =

[
2n

n− 2

]
q

f2(q) =
[n+ 3]q

[2]q

[
2n

n− 3

]
q

f3(q) =
1

[3]q

[
n+ 5

2

]
q

[
2n

n− 4

]
q

+

[
2n

n− 3

]
q

Then the triple (Xk, fk(q), C2n) exhibits the CSP for k = 1, 2, 3.

Both Theorem 4.3 and Theorem 4.7 establish the CSP on the set of matchings of

a particular number of crossings. One could keep working on the set of elements of a

certain number of crossings, but we change our focus to the whole set Pn of matchings

on [2n]. After writing code in SAGE (Stein et al. (2016)) to compute the number of

elements of Pn fixed by cd with respect to the number of crossings (see Appendix), we

found some patterns. We conjectured that there exist polynomials Xn(q) for X = Pn

and C2n = 〈c〉 where c = (1 2 . . . 2n) such that the triple (Pn, Xn(q), C2n) exhibits

the CSP. Because |Pn| = (2n)!/(2n · n!) or |Pn| = 1 · 3 · 5 · · · (2n − 3) · (2n − 1), the

first possible candidates for Xn(q) could be the q-analog of |Pn|:

X ′n(q) =
[2n]!q

([2]q)n[n]q!
or X ′′n(q) = [1]q[3]q · · · [2n− 1]q.

Notice that X ′2(q) = [4]q
[2]2q [2]q !

= (q2+1)(q2+q+1)
q+1

which is not a polynomial. Note also

that X ′′2 (q) = [3]q = q2 + q + 1 6≡ q2 + 2 mod q4 − 1, and thus X ′′2 (q) is not a CSP

polynomial by Example 4.8.

4.2 The CSP on Pn for a Prime n

In the previous section, we see that our candidates for Xn(q) do not work. Thus,

we try to construct a CSP polynomial, and first we assume n is a prime number

because it could be a good point to start. We first examine when n = 2.
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Example 4.8. Let X2(q) = Cat2(q)+f1(q) = q2+2 by Theorem 4.3 and Theorem 4.7.

Let C4 = 〈c〉 where c = (1 2 3 4). Then we claim that the triple (P2, X2(q), C4)

exhibits the CSP. Observe that there is one element in P2 fixed by c and c3, which is

{(1, 3), (2, 4)}. Observe also that all three elements in P2 are fixed by c0 and c2. Thus

if we let ζ = e
2πi
4 = i be a fourth-root of unity, then we see that X2(1) = X2(−1) = 3

and X2(i) = X2(−i) = 1, and this shows the triple (P2, X2(q), C4) exhibits the CSP.

1

2

3

4

1

2

3

4

1

2

3

4

{(1, 2), (3, 4)} {(1, 3), (2, 4)} {(1, 4), (2, 3)}

Figure 4.4: Elements in P2

Let us see one more example.

Example 4.9. Let X3(q) = Cat3(q)+f1(q)+f2(q)+f3(q) = q6+q5+3q4+2q3+3q2+

q + 4. Let C6 = 〈c〉 where c = (1 2 3 4 5 6). Then the triple (P3, X3(q), C6) exhibits

the CSP. To check this, first observe that the number of elements in P3 fixed by cd for

d = 0, 1, 2, 3, 4, and 5 is the row sum of (d+ 1)-th row of A3 in Appendix B, namely

15,1,3,7,3, and 1 respectively. One could check this in Figure 2.13 in Chapter 2. Thus

if we let ζ = e
2πi
6 = 1

2
+
√
3
2
i be a sixth-root of unity, then we see that

X3(1) = 15

X3(−1) = 7

X3(ζ) = X3(ζ
5) = 1

X3(ζ
2) = X3(ζ

4) = 3,
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and this shows the triple (P3, X3(q), C6) exhibits the CSP.

Wire diagrams on 2n points on a circle are a good visualization of matchings on

[2n]. If d divides 2n, then the action of c2n/d on matchings can be interpreted as the

2π/d rotation of corresponding wire diagrams. We state and prove following lemmas.

Lemma 4.10. Define a sequence tn (n ≥ 1) by tn = tn−1 + (2n− 2)tn−2 and t1 = 1,

t2 = 3. Then the number of elements in Pn fixed by cn = (1 2 . . . 2n)n = (1 n +

1)(2 n+ 2) . . . (n 2n), the 180 degree rotation, is tn.

Proof. We will count the number of ways to construct τ ∈ Pn which is fixed by cn.

Let τ(n) denote the partner of n in τ , then τ(n) ∈ [2n]\{n}. Assume τ(n) = m 6= 2n.

Since τ is fixed by 180 degree rotation, τ(2n) = m + n where modulo 2n is taken

if necessary. Thus τ contains the pairs (n,m) and (2n,m + n). There are (2n − 2)

choices for the value of m. Once the value of m is determined, the number of unpaired

numbers in τ is |[2n]\{n, 2n,m,m+n}| = 2n−4, and there are tn−2 ways to construct

τ . Now assume τ(n) = 2n. Then τ contains the pair (n, 2n). Since there are

|[2n]\{n, 2n}| = 2n − 2 unpaired numbers in τ , there are tn−1 ways to construct τ .

Thus, tn satisfies the recursion tn = tn−1 + (2n − 2)tn−2. It is clear that t1 = 1 and

t2 = 3, and the proof follows.

Remark 4.11. The sequence tn is A047974 in the OEIS (Sloane (2003)).

Remark 4.12. Lemma 4.10 is true for not only primes but also for any natural num-

bers, but the following lemma is only true for odd primes.

Lemma 4.13. For a prime n ≥ 3, the number of elements in Pn fixed by cd for

d ∈ {1, 3, 5, . . . , 2n − 1}\{n} is 1. The number of elements in Pn fixed by cd for

d ∈ {2, 4, 6, . . . , 2n− 2} is n.
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Proof. Suppose d ∈ {1, 3, 5, . . . , 2n− 1}\{n}. Since d and 2n are relatively prime, cd

is a generator of the cyclic group C2n. Let τ ∈ Pn be fixed by cd. Then τ is fixed by c.

Thus the matching τ is determined by τ(1), the partner of 1 in τ , because all pairs in

τ will be of the form (1+x, τ(1)+x) for all 0 ≤ x ≤ 2n−1. Since τ is a matching, we

have τ(1) = n+ 1. Thus τ is the matching {(1, n+ 1), (2, n+ 2), . . . , (n, 2n)}, and the

number of elements fixed by cd for d ∈ {1, 3, 5, . . . , 2n − 1}\{n} is 1. Now suppose

d ∈ {2, 4, 6, . . . , 2n − 2}. Let τ ∈ Pn be fixed by cd. Since gcd(d, 2n) = 2 where

gcd stands for the greatest common divisor, τ is fixed by c2. Hence the matching τ

contains the pairs (1, τ(1)), (3, τ(1) + 2), (5, τ(1) + 4), . . . , (2n− 1, τ(1) + 2n− 2), and

thus τ(1) = m for some m ∈ {2, 4, . . . , 2n}, and the value of m determines τ . Thus

the number of elements fixed by cd for d ∈ {2, 4, 6, . . . , 2n− 2} is n.

The following lemma will be used to prove that the coefficients of Xn(q) are

integers in Theorem 4.15.

Lemma 4.14. Let αn = 1
2n

(
(2n)!
2n·n! − tn − n+ 1

)
and βn = tn−1

n
. For any prime n ≥ 3,

both αn and βn are integers.

Proof. We will show that tn = a2,n = 1 + n
∑

i≥0
(2i+1)!
(i+1)!

(
n−1
2i+1

)
in (4.7) in Proposi-

tion 4.28. Then we see that βn = (tn− 1)/n =
∑

i≥0
(2i+1)!
(i+1)!

(
n−1
2i+1

)
is an integer. Notice

that (2n)!
2n·n! = 1 · 3 · · · · · (2n − 1) is the product of first n odd numbers, and it is

divisible by n. Thus we see that (2n)!
2n·n! − n is divisible by 2n. We also observe that

tn − 1 = n
∑

i≥0
(2i+1)!
(i+1)!

(
n−1
2i+1

)
is divisible by 2n because

(
n−1
2i+1

)
is even for all i ≥ 0.

Thus αn is an integer.

We also prove Lemma 4.14 by an exponential generating function argument.

Proof of Lemma 4.14 using EGF. First, we show the function f(x) = ex+x
2

is an
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exponential generating function for the sequence tn. Define T (x) by

T (x) =
∑
n≥0

tnx
n

n!

= 1 +
t1x

1!
+
t2x

2

2!
+
∑
n≥0

[tn−1 + 2(n− 1)tn−2]x
n

n!
.

Differentiate both sides, to see that

T ′(x) = 1 + 3x+
∑
n≥3

tn−1x
n−1

(n− 1)!
+ 2x

∑
n≥3

tn−2x
n−2

(n− 2)!

= 1 + 3x+ [T (x)− 1− x] + 2x[T (x)− 1]

= (1 + 2x)T (x).

Solving this separable differential equation with initial condition T (0) = 1, we have

T (x) = ex+x
2
. Second, we prove αn and βn are integers. Consider a function B(x) =

ex(ex
2 − 1). We see that

B(x) = ex
2+x − ex

=
∑
n≥0

(tn − 1)xn

n!

=
∑
n≥0

nβnx
n

n!
.

Thus nβn, the coefficient of xn/n! inB(x) = ex(ex
2−1) =

(∑
n≥0 x

n/n!
) (∑

n≥1 x
2n/n!

)
,

is
n−1
2∑

k=1

n!

(2k − 1)!
(
n−2k+1

2

)
!
.

We see that

βn =

n−1
2∑

k=1

(n− 1)!

(2k − 1)!
(
n−2k+1

2

)
!

= (n− 1)

n−1
2∑

k=1

(n− 2)!

(2k − 1)!
(
n−2k+1

2

)
!

= (n− 1)

n−1
2
−1∑

k=1

(n− 2)!

(2k − 1)!
(
n−2k+1

2

)
!

+ 1
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is an even integer because (n− 1) is even and (2k− 1) +
(
n−2k+1

2

)
= n−1

2
+ k ≤ n− 2

for 1 ≤ k ≤ n−1
2
− 1. Notice that (2n)!

2n·n! = 1 · 3 · · · · · (2n− 1) is the product of first n

odd numbers, and it is divisible by n. Since tn− 1 = nβn which is divisible by 2n, we

have αn = 1
2n

(
(2n)!
2n·n! − nβn − n

)
is an integer.

In the following theorem, we present the polynomials Xn(q) for any odd prime n.

Theorem 4.15. Let n ≥ 3 be a prime number. Let C2n = 〈c〉 where c = (1 2 . . . 2n).

Let Xn(q) be the polynomial

Xn(q) = αn[2n]q + βn ·
[2n]q
[2]q

+
n− 1

2
· [2n]q

[n]q
+ 1

= αn

2n−1∑
i=0

qi + βn

n−1∑
i=0

q2i +
n− 1

2
(1 + qn) + 1

where αn = 1
2n

(
(2n)!
2n·n! − tn − n+ 1

)
and βn = tn−1

n
. Then, the triple (Pn, Xn(q), C2n)

exhibits the CSP.

Proof. By Lemma 4.14, the polynomial Xn(q) is with integral coefficients. Let ζ =

e2πi/2n be a (2n)-th root of unity. By Lemma 4.10 and Lemma 4.13, we need to check:

Xn(ζd) = 1 for d ∈ {1, 3, 5, . . . , 2n− 1}\{n}

Xn(ζd) = n for d ∈ {2, 4, 6, . . . , 2n− 2}

Xn(ζ0) = Xn(1) = |Pn| =
(2n)!

2n · n!

Xn(ζn) = Xn(−1) = tn.

For d ∈ {1, 3, 5, . . . , 2n − 1}\{n}, since ζd 6= 1 and (ζd)2 6= 1 and (ζd)n = −1, thus

we have Xn(ζd) = 1. For d ∈ {2, 4, 6, . . . , 2n − 2}, since ζd 6= 1 and (ζd)2 6= 1 and

(ζd)n = 1, thus we have Xn(ζd) = n. We compute that

Xn(1) = αn · 2n+
tn − 1

n
· n+

n− 1

2
· 2 + 1 =

(2n)!

2n · n!

Xn(−1) =
tn − 1

n
· n+ 1 = tn

as desired.
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Example 4.16 (revisited). Let n = 3. By Theorem 4.15,

X3(q) = [6]q + 2
[6]q
[2]q

+
[6]q
[3]q

+ 1

= (q5 + q4 + q3 + q2 + q + 1) + 2(q4 + q2 + 1) + (q3 + 1) + 1

since t3 = t2 + 4t1 = 7 and α3 = 1
6
(15 − t3 − 3 + 1) = 1. Thus, we have X3(q) =

q5+3q4+2q3+3q2+q+5 which is congruent to X3(q) = q6+q5+3q4+2q3+3q2+q+4

in Example 4.9 under modulo q6 − 1.

4.3 Construction of a CSP Polynomial in General

Inspired by the work presented in the previous section, we continue to try to

construct a CSP polynomial in a general setting. In this section, all propositions

hold for not only a set of matchings but also any finite sets. We state and prove the

following proposition.

Proposition 4.17. Let X be a finite set. Let a cyclic group C = 〈c〉 act on X where

|c| = N . Let ad be the number of elements of X fixed by cN/d for d|N . Define bd by

the equation

ad =
∑
d|r

N

r
br. (4.1)

Let f(q) be

f(q) =
∑
d|N

bd(q
N−d + qN−2d + · · ·+ qd + 1)

=
∑
d|N

bd
[N ]q
[d]q

.

Then, the evaluation f(ζd) is equal to the number of elements of X fixed by cd.

Proof. First, we prove that for k|N the evaluation f(ζk) is equal to aN/k, the number

of elements of X fixed by ck. Note that

qN−r + qN−2r + · · ·+ qr + 1
∣∣
q=ζk

=
qN − 1

qr − 1

∣∣∣∣
q=ζk

= 0
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unless N |kr. If N |kr or equivalently N
k
|r, we have

br(q
N−r + qN−2r + · · ·+ qr + 1)

∣∣
q=ζk

= br(1 + 1 + · · ·+ 1) = br
N

r
.

Thus we see that

f(ζk) =
∑
N
k
|r

N

r
br = aN/k.

Next, we prove that for j - N the evaluation f(ζj) is equal to the number of

elements of X fixed by cj. We claim that for j - N the number of elements of X

fixed by cj is equal to the number of elements of X fixed by ck if gcd(N, j) = k.

Assume x ∈ X is fixed by cj. By the Euclidean algorithm there are a, b ∈ Z such that

aN + bj = k. Then we see that x is fixed by ck since ck ·x = caN+bj ·x = caN(cbj ·x) =

e · x = x. Now assume x is fixed by ck. Since j is a multiple of k, the element x is

fixed by cj. Thus our claim is proved. Hence we must show that the evaluation f(ζj)

is equal to f(ζk) = aN/k. Notice that

qN−r + qN−2r + · · ·+ qr + 1
∣∣
q=ζj

=
qN − 1

qr − 1

∣∣∣∣
q=ζj

= 0

unless N |jr. Suppose N |jr, then N
k
|r because gcd(N, j) = k. We see that

br(q
N−r + qN−2r + · · ·+ qr + 1)

∣∣
q=ζj

= br(1 + 1 + · · ·+ 1) = br
N

r
.

Hence we have

f(ζj) =
∑
N
k
|r

N

r
br = aN/k,

as required.

Moreover, we claim that the triple (X, f(q), C) exhibits the CSP. Since elements

within a C-orbit share the same stabilizer subgroup, whose cardinality we call the

stabilizer-order for the orbit. Recall Proposition 2.1 in Reiner et al. (2004).
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Proposition 4.18 (Proposition 2.1 in Reiner et al. (2004)). Let X be a finite set.

Let a cyclic group C = 〈c〉 act on X where |c| = N . Let X(q) be a polylnomial with

nonnegative coefficients. Then the following are equivalent conditions for a triple

(X,X(q), C).

1. For every 0 ≤ d ≤ N − 1,

[X(q)]q=ζd = |{x ∈ X : cd(x) = x}|.

2. The coefficient α` defined uniquely by the expansion

X(q) ≡
N−1∑
`=0

α`q
` mod qN − 1

has the following interpretation: α` counts the number of C-orbits on X for

which the stabilizer-order divides `. In particular, α0 counts the total number

of C-orbits on X, and α1 counts the number of free C-orbits on X.

By the second part of Proposition 4.18, for given set X and cyclic group C there is

always a unique polynomial X(q) of degree less than n making the triple (X,X(q), C)

the CSP triple. This observation implies the following proposition.

Proposition 4.19. Let X be a finite set. Let a cyclic group C = 〈c〉 act on X where

|c| = N . Then the polynomial f(q) constructed in Proposition 4.17 together with X

and C exhibits the CSP.

Proof. By Proposition 4.18, there exists a unique polynomial X(q) of degree at most

N − 1 such that (X,X(q), C) exhibits the CSP. Then X(ζd) counts the number of

elements of X fixed by cd for all 0 ≤ d ≤ N − 1. Let F (q) := f(q) −X(q), then we

notice that F (q) is a polynomial in Q[q] of degree at most N − 1. By construction

of f(q), for a N -th root of unity ζ we have F (ζd) = f(ζd) − X(ζd) = 0 for all

0 ≤ d ≤ N − 1. Thus F (q) should have factors q − ζd for 0 ≤ d ≤ N − 1. Then
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F (q) is divisible by
∏N−1

d=0 (q − ζd) = qN − 1, which forces F (q) to be identically zero.

Therefore, we conclude that f(q) = X(q), and the triple (X, f(q), C) exhibits the

CSP.

Remark 4.20. Proposition 4.19 (together with Proposition 4.17) is equivalent to the

second condition in Proposition 4.18. We use Proposition 4.17 to construct a CSP

polynomial.

We have seen that the coefficients ad’s and bd’s are related by ad =
∑

d|r
N
r
br in

(4.1). The following proposition shows how to express the coefficients bd’s in terms

of ad’s.

Proposition 4.21. Suppose the coefficients ad’s and bd’s are as in Proposition 4.17.

Let N = |c|. Let P = {p1, p2, . . . , pm} be the set of primes that divide N/d. Then

bd =
d

N

∑
S⊆P

(−1)|S|ad∏p∈S p

=
d

N
[ad − (adp1 + · · ·+ adpm) + · · ·+ (−1)madp1p2...pm ] .

(4.2)

Proof. Let DN be the poset on the set of all divisors of N partially ordered by i ≤ j

if and only if j is divisible by i. Let g(d) = ad and f(d) = N
d
bd. The equation (4.1)

can be written as g(d) =
∑

r:d≤r f(r). By the dual form of Möbius inversion formula

(Proposition 3.7.2 in Stanley (2012)), we have f(d) =
∑

d≤r µ(d, r)g(r). Since

µ(d, r) =


(−1)t if r/d is a product of t distinct primes

0 otherwise

(see Example 3.8.4 in Stanley (2012)) and the proof follows.

The following proposition explains how the coefficients α`’s and bd’s are related to

each other.
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Proposition 4.22. The coefficients α`’s and bd’s are related by

α` =
∑
d|`

bd, (4.3)

or equivalently for the set Q := {p1, . . . , pl} of prime divisors of d,

bd =
∑
S⊆Q

(−1)|S|αd/∏p∈S p

= αd − (αd/p1 + · · ·+ αd/pl) + · · ·+ (−1)mαd/(p1p2...pl).

(4.4)

Proof. Since α` is the coefficient of q`, for divisors d of N such that N − kd = ` for

some k or equivalently d|` we have α` =
∑

d|` bd. By using Möbius inversion formula,

the proof follows.

Remark 4.23. The coefficient bd counts the number of C-orbits on X for which the

stabilizer-order is exactly d. Or equivalently, the coefficient bd count the number of

C-orbits on X of order N/d.

The previous remark implies the following corollary.

Corollary 4.24. The coefficients bd’s are nonnegative integers.

4.4 The CSP on Pn for Any n ∈ N

In this section we use the results presented in the previous section to construct a

CSP polynomial Xn(q) on Pn. We first examine when n = 6.

Example 4.25. Let X6(q) = 837q11+889q10+842q9+893q8+837q7+897q6+837q5+

893q4 +842q3 +889q2 +837q+902. Let C12 = 〈c〉 where c = (1 2 . . . 11 12). Then the

triple (P6, X6(q), C12) exhibits the CSP. To check this, first observe that the number

of elements in P6 fixed by cd for d = 0, 1, 2, . . . , 11 is the row sum of (d + 1)-th row

of A6 in Appendix B. Thus if we let ζ = e
2πi
12 =

√
3
2

+ 1
2
i be a 12th-root of unity, then
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we see that

X6(1) = 10395

X6(−1) = 331

X6(ζ) = X6(ζ
5) = X6(ζ

7) = X6(ζ
11) = 1

X6(ζ
4) = X6(ζ

8) = 27

X6(ζ
2) = X6(ζ

10) = 7

X6(ζ
3) = X6(ζ

9) = 13,

and this shows the triple (P6, X6(q), C12) exhibits the CSP.

For all n ≥ 1, we want to find the polynomials Xn(q) for which the triple

(Pn, Xn(q), C2n) exhibits the CSP. Suppose d divides 2n. First, we want to count

the number of elements in Pn fixed by 2π/d rotation. Let ad,n be the number of such

elements in Pn. For example, Lemma 4.10 tells us that a2,n = a2,n−1 + (2n− 2)a2,n−2

with a2,1 = 1 and a2,2 = 3.

Proposition 4.26. Suppose 2n = dk for some k ∈ Z. Then the sequence ad,n satisfies

the following recurrence relations depending on the parity of d.

1. If 2 divides d, then

ad,n = ad,n− d
2

+ (2n− d)ad,n−d (4.5)

with the initial condition ad, d
2

= 1 and ad,d = d+ 1.

2. If d is not divisible by 2, then

ad,n = (2n− d)ad,n−d (4.6)

with the initial condition ad,d = d.

Proof. We first show the recurrence relations.
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(2|d) Suppose 2 divides d. We will count the number of ways to construct τ ∈ Pn

which is fixed by 2π/d rotation. First assume τ(2n) = n. Then τ should

contain the pairs (k, n + k), (2k, n + 2k), . . . , (n − k, 2n − k), (n, 2n) because

τ is fixed by 2π/d rotation. We see that the number of unpaired numbers

in τ is 2n − |{k, 2k, . . . , 2n − k, 2n}| = 2n − d. There is a bijection between

ways to pair up 2n − d unpaired numbers in τ onto matchings fixed by 2π/d

rotation in Pn− d
2
. For instance, see Example 4.27. Thus there are ad,n− d

2
ways

to construct τ . Now assume τ(2n) 6= n. Observe that τ(2n) 6= k, otherwise

both pairs (2n, k) and (k, 2k) are in τ , which contradicts τ is a matching. For

the same reason, it is obvious that τ(2n) 6∈ {k, 2k, . . . , 2n− k}. Thus τ(n) = m

for some m ∈ [2n]\{k, 2k, . . . , 2n − k}, and there are 2n − d choices for the

value of m. Once the value of m is determined, τ should contains the pairs

(k,m+k), (2k,m+2k), . . . , (2n,m) where modulo 2n is taken if necessary. Since

the number of unpaired numbers in τ is 2n−|({k, 2k, . . . , 2n−k, 2n}∪{m,m+

k, . . . ,m+ 2n− k})| = 2n− 2d, there are (2n− d) · ad,n−d ways to construct τ .

Hence, we have the recurrence relation ad,n = ad,n− d
2

+ (2n− d)ad,n−d.

2n
k

2k

...

n− 2k

n− knn+ k

n+ 2k

...

2n− 2k

2n− k 2n
k

...

n− 2k

n− knn+ k

...

2n− 2k

2n− k
m

m+ k

Figure 4.5: The Case of 2|d

(2 - d) Suppose d is not divisible by 2. Then k is divisible by 2. First assume τ(2n) = n.
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Note that n 6∈ kZ and n + k
2
∈ kZ and n − k

2
∈ kZ since n = dk

2
and d is odd.

Then τ should contain the pairs (k
2
, n + k

2
), (k, n + k), (3k

2
, n + 3k

2
), . . . , (n −

k
2
, 2n − k

2
), (n, 2n). Note that the number of unpaired numbers in τ is 2n −

|{k
2
, k, . . . , 2n − k

2
, 2n}| = 2n − 2d, and there are ad,n−d ways to construct τ

when τ(2n) = n. Now, assume τ(2n) 6= n. Then τ(2n) = m for some m ∈

[2n]\({k, 2k, . . . , 2n − k, 2n} ∪ {n}), and we have 2n − d − 1 choices for the

value of m. Once the value of m is determined, τ should contain the pairs

(k,m+k), (2k,m+2k), . . . , (2n−k,m+2n−k), (2n,m) where modulo 2n is taken

if necessary. Since the number of unpaired numbers in τ is 2n−|{k, 2k, . . . , 2n−

k} ∪ {m,m + k, . . . ,m + 2n − k}| = 2n − 2d, there are (2n − d − 1) · ad,n−d

ways to construct τ when τ(2n) 6= n. Hence, we have the recurrence relation

ad,n = ad,n−d + (2n− d− 1)ad,n−d = (2n− d)ad,n−d.

2n

k

n− k
2

n+ k
2

2n− k

k
2

n− k

n

n+ k

2n− k
2

...
...

2n

k

n− k
2

n+ k
2

2n− k

m

m+ k

...

...

Figure 4.6: The Case of 2 - d

Next we show the initial conditions.

(2|d) Suppose 2 divides d. Assume 2n = d. Let τ ∈ Pn = P d
2

be an element fixed by

2π/d rotation. Since there are d points on the circle, the matching τ should be

τ = {(1, n+ 1), (2, n+ 2), . . . , (n, 2n)}. Thus ad, d
2

= 1. Now assume n = d. Let

σ ∈ Pn = Pd be an element fixed by 2π/d rotation. Then σ(1) = m for some
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m ∈ {2, 4, . . . , 2d} ∪ {d + 1}. Since σ(1) determines the matching σ, we have

ad,d = d+ 1 as desired.

(2 - d) Suppose d is not divisible by 2. Let n = d. Let τ ∈ Pn = Pd be an element

fixed by 2π/d rotation. Then τ(1) = m for some m ∈ {2, 4, . . . , 2d}. Notice

that d + 1 is even, so it is in the set {2, 4, . . . , 2d}. Since τ(1) determines the

matching τ , we have ad,d = d as desired.

Example 4.27. Let n = 10 and d = 4, then 2n = 20 and k = 2n/d = 5. Let τ ∈ P10

be fixed by 2π/d = π/2 rotation. Suppose τ(20) = 10, then it forces τ(5) = 15. So,

there are 2n− d = 16 unpaired numbers in τ . Let T be the set of unpaired numbers

in τ , namely T = [20]\{5, 10, 15, 20}. Consider a map T → [16] by

i 7→ i if 1 ≤ i ≤ 4

i 7→ i− 1 if 6 ≤ i ≤ 9

i 7→ i− 2 if 11 ≤ i ≤ 14

i 7→ i− 3 if 16 ≤ i ≤ 19.

20 1
2

3

4

5

6

7
8

91011
12

13

14

15

16

17
18

19 16 1
2

3

4

5

6
789

10

11

12

13

14
15

Figure 4.7: A Way to Pair up Elements in T and a Matching in P8
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The image of a way to pair up elements in T under this map is a matching fixed by

π/2 rotation in P8.

We find a formula for ad,n in the following proposition.

Proposition 4.28. If 2 divides d, then

ad,n = 1 + n
∑
i≥0

(2i+ 1)!

(i+ 1)!

(
2n
d
− 1

2i+ 1

)(
d

2

)i
. (4.7)

If d is not divisible by 2, then

ad,n =

n/d∏
i=1

(2i− 1)d. (4.8)

Proof. Suppose 2 divides d. Let un = 1 + n
∑

i≥0
(2i+1)!
(i+1)!

( 2n
d
−1

2i+1

) (
d
2

)i
. Observe that

ud/2 = 1 and ud = d+ 1. Then we calculate that

un− d
2

+ (2n− d)un−d

= 1 +

(
n− d

2

)∑
i≥0

(2i+ 1)!

(i+ 1)!

(
2n
d
− 2

2i+ 1

)(
d

2

)i
+ (2n− d)

[
1 + (n− d)

∑
i≥0

(2i+ 1)!

(i+ 1)!

(
2n
d
− 3

2i+ 1

)(
d

2

)i]

= 1 +

(
n− d

2

)∑
i≥0

(2i+ 1)!

(i+ 1)!

(
2n
d
− 2

2i+ 1

)(
d

2

)i
+ (2n− d)

[
1 + (n− d)

∑
i≥1

(2i− 1)!

i!

(
2n
d
− 3

2i− 1

)(
d

2

)i−1]

= 1 +

(
n− d

2

)(
2n

d
− 2

)
+ (2n− d)

+
∑
i≥1

[
(2i+ 1)!

(i+ 1)!

(
n− d

2

)(
2n
d
− 2

2i+ 1

)(
d

2

)i
+(2n− d)(n− d)

(2i− 1)!

i!

(
2n
d
− 3

2i− 1

)(
d

2

)i−1]
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= 1 +
2n

d

(
2n

d
− 1

)(
d

2

)
+
∑
i≥1

[(
d

2

)
(2n
d
− 1)!

(i+ 1)!(2n
d
− 2i− 3)!

(
d

2

)i
+ 2

(
d

2

)2 (2n
d
− 1)!

i!(2n
d
− 2i− 2)!

(
d

2

)i−1]

= 1 + n

(
2n

d
− 1

)
+
∑
i≥1

(2n
d
− 1)!

i!(2n
d
− 2i− 3)!

[
1

i+ 1
+

2
2n
d
− 2i− 2

](
d

2

)i+1

= 1 + n

(
2n

d
− 1

)
+
∑
i≥1

2n
d

!

(i+ 1)!(2n
d
− 2i− 2)!

(
d

2

)i+1

= 1 + n

(
2n

d
− 1

)
+ n

∑
i≥1

(2i+ 1)!

(i+ 1)!

(
2n
d
− 1

2i+ 1

)(
d

2

)i
= 1 + n

∑
i≥0

(2i+ 1)!

(i+ 1)!

(
2n
d
− 1

2i+ 1

)(
d

2

)i
= un.

Thus if 2|d, we have ad,n = un as required.

Now suppose d is not divisible by 2. Let vn =
∏n/d

i=1(2i− 1)d. Notice that vd = d.

We compute that

(2n− d)vn−d = (2n− d)

n/d−1∏
i=1

(2i− 1)d

=

n/d∏
i=1

(2i− 1)d = vn.

Thus if 2 - d, we have ad,n = vn as required.

We also prove the case of 2|d by using exponential generating functions.

proof of (4.7) in Proposition 4.28 using EGF. For a fixed even number d, let ci =

ad, d
2
(i+1). Then ci satisfies ck = ck−1 + dkck−2 with initial conditions c0 = 1 and

c1 = d + 1. Let y =
∑

k≥0
ckx

k

k!
be an exponential generating function for ck and let
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Y =
∑

k≥0
ckx

k+1

(k+1)!
be an antiderivative of y. By usual EGF methods, we see that

y =
∑
k≥0

ckx
k

k!

= 1 + (d+ 1)x+
∑
k≥2

ck−1x
k

k!
+ dx

∑
k≥2

ck−2x
k−1

(k − 1)!

= 1 + (d+ 1)x+ [Y − x+ C1] + dx[Y + C2]

= 1 + C1 + (1 + C2)dx+ (1 + dx)Y.

By comparing the constant term and x term in both sides, we have C1 = C2 = 0, and

thus y = 1 + dx+ (1 + dx)Y . By solving this differential equation, we get

y = (1 + dx)ex+
dx2

2 .

Hence, ck is the coefficient of xk/k! in (1 + dx)ex+
dx2

2 , which is

ck =
∑

i+2j=k

k!

i!j!

(
d

2

)j
+ d

∑
i+2j=k−1

k!

i!j!

(
d

2

)j
.

Suppose k is even. Then we see that

ck =
∑

0≤j≤ k
2

k!

(k − 2j)!j!

(
d

2

)j
+

∑
0≤j≤ k

2
−1

k!

(k − 2j − 1)!j!

(
d

2

)j+1

· 2

= 1 +
∑

1≤j≤ k
2

k!

(k − 2j)!j!

(
d

2

)j
+

∑
0≤j≤ k

2
−1

k!

(k − 2j − 1)!j!

(
d

2

)j+1

· 2

= 1 +
∑

0≤j≤ k
2
−1

k!

(k − 2j − 2)!(j + 1)!

(
d

2

)j+1

+
∑

0≤j≤ k
2
−1

k!

(k − 2j − 1)!j!

(
d

2

)j+1

· 2
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= 1 +
∑

0≤j≤ k
2
−1

k!

(k − 2j − 2)!j!

(
d

2

)j+1(
1

j + 1
+

2

k − 2j − 1

)

= 1 +
∑

0≤j≤ k
2
−1

k!

(k − 2j − 2)!j!

(
d

2

)j+1
k + 1

(k − 2j − 1)(j + 1)

= 1 +
∑

0≤j≤ k
2
−1

(k + 1) · k!

(k − 2j − 1)!(j + 1)!

(
d

2

)j+1

= 1 +
∑

0≤j≤ k
2
−1

(k + 1) · k!

(k − 2j − 1)!(j + 1)!

(2j + 1)!

(2j + 1)!

(
d

2

)j+1

= 1 +
∑

0≤j≤ k
2
−1

(k + 1) · (2j + 1)!

(j + 1)!

(
k

2j + 1

)(
d

2

)j+1

.

Thus, we have

ad,n = c 2n
d
−1

= 1 +
∑

0≤j≤n
d
− 3

2

2n
d
· (2j + 1)!

(j + 1)!

(
2n
d
− 1

2j + 1

)(
d

2

)j+1

= 1 + n
∑
j≥0

(2j + 1)!

(j + 1)!

(
2n
d
− 1

2j + 1

)(
d

2

)j
.

Now suppose k is odd. Then we see that

ck =
∑

0≤j≤ k−1
2

k!

(k − 2j)!j!

(
d

2

)j
+

∑
0≤j≤ k−1

2

k!

(k − 2j − 1)!j!

(
d

2

)j+1

· 2

= 1 +
∑

1≤j≤ k−1
2

k!

(k − 2j)!j!

(
d

2

)j
+

∑
0≤j≤ k−1

2

k!

(k − 2j − 1)!j!

(
d

2

)j+1

· 2

= 1 +
∑

1≤j≤ k−3
2

k!

(k − 2j − 2)!(j + 1)!

(
d

2

)j+1

+
∑

0≤j≤ k−1
2

k!

(k − 2j − 1)!j!

(
d

2

)j+1

· 2
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= 1 +
∑

0≤j≤ k−3
2

k!

(k − 2j − 2)!j!

(
d

2

)j+1(
1

j + 1
+

2

k − 2j − 1

)
+

k!(
k−1
2

)
!

(
d

2

) k+1
2

· 2

= 1 +
∑

0≤j≤ k−3
2

(k + 1) · (2j + 1)!

(j + 1)!

(
k

2j + 1

)(
d

2

)j+1

+
k!(
k−1
2

)
!

(
d

2

) k+1
2

· 2

= 1 +
∑

0≤j≤ k−1
2

(k + 1) · (2j + 1)!

(j + 1)!

(
k

2j + 1

)(
d

2

)j+1

.

Thus, we have

ad,n = c 2n
d
−1

= 1 +
∑

0≤j≤n
d
−1

2n
d
· (2j + 1)!

(j + 1)!

(
2n
d
− 1

2j + 1

)(
d

2

)j+1

= 1 + n
∑
j≥0

(2j + 1)!

(j + 1)!

(
2n
d
− 1

2j + 1

)(
d

2

)j
.

Now we are ready to find the polynomials Xn(q) such that the set Pn of matchings

on [2n] with Xn(q) and the cyclic group C2n exhibits the CSP.

Theorem 4.29. Let C2n = 〈c〉 where c = (1 2 . . . 2n). Let Xn(q) be

Xn(q) =
∑
d|2n

bd,n
[2n]q
[d]q

(4.9)

=
∑
d|2n

bd,n(q2n−d + q2n−2d + · · ·+ q2d + qd + 1) (4.10)

where the coefficients bd,n satisfy

ad,n =
∑
d|r

2n

r
br,n. (4.11)

Then, the triple (Pn, Xn(q), C2n) exhibits the CSP.

Proof. By Proposition 4.17 and Proposition 4.19 and Proposition 4.28 the proof fol-

lows.
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Example 4.30 (revisited). Let n = 6. The cyclic sieving phenomenon polynomial is

X6(q) = b1,6[12]q +
b2,6[12]q

[2]q
+
b3,6[12]q

[3]q
+
b4,6[12]q

[4]q
+
b6,6[12]q

[6]q
+
b12,6[12]q

[12]q
.

By (4.2), we get

12b1,6

6b2,6

4b3,6

3b4,6

2b6,6

b12,6


=



1 −1 −1 0 1 0

0 1 0 −1 −1 1

0 0 1 0 −1 0

0 0 0 1 0 −1

0 0 0 0 1 −1

0 0 0 0 0 1





a1,6

a2,6

a3,6

a4,6

a6,6

a12,6


=



10395− 331− 27 + 7

331− 13− 7 + 1

27− 7

13− 1

7− 1

1


Here we get the last equality by Proposition 4.26, and we get the polynomial

X6(q) = X6(q) = 837[12]q +
52[12]q

[2]q
+

5[12]q
[3]q

+
4[12]q
[4]q

+
3[12]q
[6]q

+
1[12]q
[12]q

.

= 837q11 + 889q10 + · · ·+ 837q + 902

as in Example 4.25.

4.5 Future Work

In this chapter, we constructed CSP polynomials for the set of matchings on [2n]

by counting matchings fixed by c2n/d. In this way our CSP polynomials are expressed

as a linear combination of [2n]q/[d]q for d|2n, which are polynomials of degree less

than 2n. Even though we constructed CSP polynomials, we count directly matchings

fixed by c2n/d. If we find CSP polynomials without direct counting, it would be much

more interesting.

Problem 4.31. Find an expression of the cardinality of the set of matchings on [2n]

such that the q-analog of the expression are CSP polynomials.
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The CSP is observed on the set of non-crossing matchings in Sagan (2011) and

the set of one-, two- and three-crossing matchings in Bowling and Liang (2017). We

tried to construct a polynomial for four-crossing matchings in the same way we use

in Section 4.4. The way we obtain a recurrence relation in Section 4.4 is by breaking

cases down into (1) τ(2n) = n or (2) τ(2n) = m 6= n. It is not easy to find a

recurrence relation for the number of four-crossing matchings fixed by c2n/d. This is

because in either case when we pair up the unpaired numbers it is difficult to control

the number of crossings. Thus we will work on the set of k-crossing matchings.

Problem 4.32. For 3 < k <
(
n
2

)
find polynomials Xn,k(q) such that the set of

k-crossing matchings together with Xn,k(q) and C2n exhibits the CSP.

The set Cn of chains in the uncrossing poset Pn could be an interesting object that

we may observe the CSP.

Problem 4.33. Let Cn be the set of chains in the uncrossing poset Pn. Find a

polynomial fn(q) such that Cn together with fn(q) and C2n exhibits the CSP.

We may also investigate the homomesy phenomenon defined by Propp and Roby

(2015), which is another interesting example of dynamical algebraic combinatorics.

See also the surveys by Roby (2016) and by Striker (2017) for more recent works and

examples.

Definition 4.34 (Propp and Roby (2015)). A group action on a set of combinatorial

objects, along with a statistic, exhibits homomesy if the average of the statistic on

each orbit is the same as the average of the statistic over the whole set.

Problem 4.35. For a group action on the set Pn of matchings, not necessarily cyclic

shifts, find a statistic such that the average value of the statistic on every orbit is the

same as the average of the statistic over Pn.
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APPENDIX A

SAGE CODE FOR THE CSP ON MATCHINGS
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We wrote code in SAGE (Stein et al. (2016)) to compute the number of elements
of Pn fixed by cd with respect to the number of crossings. The following is the code
for n = 7.

n=7
a=range (2∗n)
b=range (2∗n)
c=range (2∗n)
d=range (2∗n)
D=matrix (2∗n , binomial (n ,2)+1)
M=PerfectMatchings (2∗n)
m=f a c t o r i a l (2∗n )/( f a c t o r i a l (n)∗2ˆn)
f o r i in range (2∗n ) :

d [ i ]=0
f o r i in range (2∗n ) :

i f i==2∗n−1:
a [ i ]=1

e l s e :
a [ i ]= i+2

f o r i in range (2∗n ) :
i f i ==0:

b [ i ]=Permutation ( a )
e l s e :

b [ i ]=b [ i −1] . l e f t a c t i o n p r o d u c t (b [ 0 ] )
f o r i in range (2∗n ) :

i f i ==0:
c [ i ]=b [2∗n−1]

e l s e :
c [ i ]=b [ i −1]

f o r i in range (2∗n ) :
f o r k in range (m) :

i f M[ k ] . conjugate by permutat ion ( c [ i ])==M[ k ] :
D[ i ,M[ k ] . number o f c ro s s ing s () ]=D[ i ,M[ k ] . number of cro
s s i n g s () ]+1

D
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APPENDIX B

THE SAGE DATA
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We present the data we obtained. Let An be the 2n × (
(
n
2

)
+ 1) matrix whose

(i, j) entry An(i, j) is the number of (j− 1)-crossing elements in Pn fixed by ci−1. For
2 ≤ n ≤ 6 we present the matrices An.

A2 =

2 1
0 1
2 1
0 1



A3 =


5 6 3 1
0 0 0 1
2 0 0 1
3 0 3 1
2 0 0 1
0 0 0 1



A4 =



14 28 28 20 10 4 1
0 0 0 0 0 0 1
2 0 0 0 2 0 1
0 0 0 0 0 0 1
6 4 4 4 2 4 1
0 0 0 0 0 0 1
2 0 0 0 2 0 1
0 0 0 0 0 0 1



A5 =



42 120 180 195 165 117 70 35 15 5 1
0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 2 0 0 0 0 1
10 0 20 5 15 5 10 5 5 5 1
2 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1



A6 =



132 495 990 1430 1650 1617 1386 1056 726 451 252 126 56 21 6 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 1
0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1
6 0 0 8 0 0 6 0 0 4 0 0 2 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 15 30 30 30 45 26 36 18 27 12 18 8 9 6 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 8 0 0 6 0 0 4 0 0 2 0 0 1
0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1
2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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