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ABSTRACT 

Over the past few decades, the silicon complementary-metal-oxide-semiconductor 

(CMOS) technology has been greatly scaled down to achieve higher performance, density 

and lower power consumption. As the device dimension is approaching its fundamental 

physical limit, there is an increasing demand for exploration of emerging devices with 

distinct operating principles from conventional CMOS. In recent years, many efforts have 

been devoted in the research of next-generation emerging non-volatile memory (eNVM) 

technologies, such as resistive random access memory (RRAM) and phase change memory 

(PCM), to replace conventional digital memories (e.g. SRAM) for implementation of 

synapses in large-scale neuromorphic computing systems.  

Essentially being compact and “analog”, these eNVM devices in a crossbar array can 

compute vector-matrix multiplication in parallel, significantly speeding up the 

machine/deep learning algorithms. However, non-ideal eNVM device and array properties 

may hamper the learning accuracy. To quantify their impact, the sparse coding algorithm 

was used as a starting point, where the strategies to remedy the accuracy loss were proposed, 

and the circuit-level design trade-offs were also analyzed. At architecture level, the parallel 

“pseudo-crossbar” array to prevent the write disturbance issue was presented. The 

peripheral circuits to support various parallel array architectures were also designed. One 

key component is the read circuit that employs the principle of integrate-and-fire neuron 

model to convert the analog column current to digital output. However, the read circuit is 

not area-efficient, which was proposed to be replaced with a compact two-terminal 

oscillation neuron device that exhibits metal-insulator-transition phenomenon. 
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 To facilitate the design exploration, a circuit-level macro simulator “NeuroSim” was 

developed in C++ to estimate the area, latency, energy and leakage power of various 

neuromorphic architectures. NeuroSim provides a wide variety of design options at the 

circuit/device level. NeuroSim can be used alone or as a supporting module to provide 

circuit-level performance estimation in neural network algorithms. A 2-layer multilayer 

perceptron (MLP) simulator with integration of NeuroSim was demonstrated to evaluate 

both the learning accuracy and circuit-level performance metrics for the online learning 

and offline classification, as well as to study the impact of eNVM reliability issues such as 

data retention and write endurance on the learning performance. 
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 INTRODUCTION 

Electronic devices are invented and developed to improve our life quality in many 

aspects such as communication, entertainment, safety and healthcare. The way we live, 

work and interact has been dramatically changed by the growth of modern microelectronics 

since its emergence. Over the past few decades, Moore’s law has been the primary driving 

factor for the advance of computing capability by continuously scaling down the devices 

in size, bringing several advantages such as higher speed and lower cost and power 

consumption. Gordon Moore’s observation was that the number of transistors in an 

integrated circuit (IC) doubles approximately every two years, and David House further 

predicted that the chip performance would double every 18 months due to more and faster 

transistors. Although Moore’s prediction has been successful over 50 years, Today’s 

silicon CMOS technology, however, is approaching its fundamental physical limits on the 

size. Moore’s law has become progressively challenging and soon reached its end, meaning 

that the performance gain cannot solely rely on the device scaling anymore. It is necessary 

to discover new device technologies or new computing principles to meet the ever-

increasing demand for computing capability and high performance. 

1.1 Neuromorphic Computing for Artificial Intelligence 

The artificial intelligence (AI) is an area of computer science that was found in 1960s 

and concerned with solving tasks that are easy for humans but hard for computers. 

Traditional problems to which AI methods are applied include handwritten recognition (e.g. 

MNIST dataset [1]), face recognition (e.g. Facebook’s DeepFace [2]), speech recognition 

(e.g. Amazon’s Alexa [3], Apple’ Siri [4], Microsoft’s Cortana [5]), robotics (e.g. Robot 

Operating System [6]), autonomous driving (e.g. Tartan Racing [7]), and even broad games 
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(e.g. Google’s AlphaGo [8]) and video games (e.g. Pac-mAnt [9]). Despite a wide variety 

of applications, the development of AI has experienced several waves of ups and downs 

during the past 60 years since its advent. However, just a few years ago AI suddenly 

become the hottest field in technology industry. The resurgence of AI can be traced back 

to an annual online contest at 2012 — the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), which contains over 1 million images and 1,000 object categories 

and is more complex than other image datasets such as MNIST [1] and CIFAR-10/100 [10]. 

In 2010 and 2011, the winning system could correctly recognize ~72% and ~75% of the 

images. In 2012, a team from the University of Toronto, achieved a nearly 10% 

improvement in recognition accuracy to ~85%, convincingly demonstrating the power of 

deep neural network (DNN). After this year, rapid improvements in the accuracy were 

observed. In 2015, the winning system could achieve an accuracy of ~96%, surpassing 

humans (~95% on average) for the first time. 

The remarkable breakthrough in 2012 was widely considered to be the beginning of the 

deep learning revolution of the 2010s. People across the entire technology industry started 

to pay attention to this field. Deep learning is a class of machine learning algorithms that 

are based on artificial neural networks (ANNs). These networks are biologically inspired 

networks of artificial neurons or brain cells. In a biological brain, each connection between 

artificial neurons relies on the synapse, which has a strength (weight) and can transmit the 

signal from one neuron to another. The artificial neuron that receives the signal can process 

it and then signal artificial neurons that are connected to it. Fig. 1.1 shows the basic ANN 

structure. A simple ANN at least consists of an input and output layer of neurons, and 

possibly one or more hidden layers of neurons in between. The input layer is where the 
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input data (e.g. image samples for training) can be fed into the network. Generally, the 

input layer is not included when counting the number of layers in a network. After fed into 

the input layer, the data will travel in a forward direction through the hidden layers and 

finally come out at the output layer, which is called the feed forward (FF). Along the feed 

forward path, each neuron is responsible for performing the weighted sum of data from all 

the incoming synapses, and then controlling the firing of its output by an activation function. 

 
Fig. 1.1  Basic artificial neural network (ANN) structure. 

 

The most widely used learning method is supervised learning, where correct answers 

(the labels) of data are provided to train the system. Examples include the image 

recognition, speech recognition, e-mail spam filtering, etc. Typically, the training process 

in the supervised learning has two phases. One is the aforementioned feed forward, and the 

other one is the back propagation (BP). After the feed forward, the output result will be 

compared with its correct answer to calculate its prediction error (the deviation). In back 

propagation, this error is propagated backward from the output layer to adjust the weights 

of each layer in a way that the prediction error is minimized. On the other hand, 

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Hidden Layer

In
p

u
t 

D
a
ta

O
u

tp
u

t 
R

e
s
u

lt

Output LayerInput Layer

Activation Function
Weighted Sum

Neuron
Synapse 

(Weight)



4 

 

unsupervised learning does not have the answers (labels) to train the network, and the goal 

of training is to extract the features and cluster similar examples, discovering the hidden 

patterns of the data. One classic example of unsupervised learning is the sparse coding 

algorithm, which will be introduced in Section 2.1. 

In the early 1990s, some simple tasks such as recognizing handwritten digits had been 

achievable with ANNs, but the results became completely unsatisfactory when it was 

applied to a more complex task, which then requires a deeper neural network (many layers) 

as it is capable of building up progressively more abstract representations of the input data 

through each layer. Despite the immature algorithms and techniques, the major bottlenecks 

that hinder the development of deep learning in earlier years were the lack of training data 

and computing capability. Implementation of deep learning generally requires a huge 

amount of unstructured data to be processed for extraction of useful information through 

tens of layers, resulting in significant cost in time and computational resources. Today, the 

explosive growth of Internet has made billions of documents, images and videos available 

for training purposes, and the massively parallel computing power of graphical processing 

units (GPUs) also provides much better learning performance over weakly parallel 

computation with several CPUs. In 2005, the first implementation of ANN using GPU 

reported a threefold speedup over their CPU baseline [11]. In 2007, NVIDIA released the 

CUDA platform, allowing the use of a CUDA-enabled GPU for general purpose processing, 

which is an approach called general-purpose computing on GPU (GPGPU). Essentially 

making the parallel programming easier to use GPU resources, this offered an ideal 

platform for parallelizing a neural network in GPU and it was then rapidly adopted by deep 
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learning researchers. In 2009, it had been reported that training a DNN with GPUs could 

be 70 times faster than that with CPUs [12]. 

However, either CPU or GPU is a general-purpose computing platform based on the 

sequential von Neumann architecture, which involves clear separation of the computing 

unit and memory between a data bus path. Due to the requirement of high bandwidth and 

power consumption for data communication via this data bus, traditional von Neumann 

architecture is inadequate for implementing modern DNN architectures, which requires 

intensive multiply-and-accumulate (MAC) operations with millions of parameters on 

millions of data in the feed forward computation. This challenge in memory access is 

recognized as the “von Neumann bottleneck” that degrades the overall efficiency and 

performance of the system [13]. To fundamentally overcome this problem, the 

neuromorphic computing has emerged in recent years as an attractive alternative to these 

conventional computing architectures based on von Neumann systems. The term 

“neuromorphic computing” is firstly coined by Carver Mead in 1990 [14]. It is a new 

computing paradigm inspired by the cognitive functionality of brain. Unlike the 

conventional CPUs/GPUs, a biological brain (e.g. mammalian brain) enables parallel 

processing of a massive amount of information in a small area with high efficiency and 

low power consumption. Therefore, the ultimate goal of neuromorphic computing is to 

develop neuromorphic hardware accelerators that emulate highly efficient processing of 

biological information to bridge this efficiency gap between the network and real brain 

[15], which is believed to be the major driving force of the next AI revolution. 

Generally, there are two design principles for the neuromorphic hardware accelerators. 

One principle is inspired from the neuroscience that the hardware system emulates the brain 
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functionality based on biological learning rules, such as the spike-timing-dependent 

plasticity (STDP). In this design, the information is typically encoded using spikes to 

improve the area cost and energy efficiency [16], and thus the network is generally referred 

to as the spiking neural network (SNN). Well-known examples include University of 

Manchester’s SpiNNaker [17], Qualcomm’s Zeroth [18], Stanford’s Neurogrid [19], 

IBM’s TrueNorth [20], etc. The other design principle is based on ANN with machine 

learning algorithms, aiming at accelerating MAC operations while minimizing the energy 

cost of data movement in hardware. As DNN is currently the hottest topic in the AI field, 

more research and development has been focused on the digital implementation of DNN, 

either with the field-programmable gate array (FPGA) or application-specific integrated 

circuit (ASIC). Due to their reprogrammability, FPGAs offers higher flexibility, lower 

development cost and shorter design time than ASICs. The most notable example with 

FPGA is probably the one started as CNP [21], which was further improved and renamed 

to NeuFlow [22] and later on to nn-X [23]. These designs could achieve 10’s to 100’s giga 

operations per second (GOPS) with only <10 W power. On the other hand, ASIC 

implementation could give higher performance than FPGA in terms of area, speed and 

power. For a 90 nm technology, it has been reported that the ASIC implementations are 5× 

faster, 14× higher in power and 35× smaller in area [24]. One classic example is a series of 

ASIC designs called the “DianNao” family (DianNao [25], DaDianNao [26], PuDianNao 

[27], ShiDianNao [28]), where the impact of memory buffer design on the performance 

and energy was specifically emphasized. Another notable example is Google’s recently 

developed tensor processing unit (TPU) [29], which has a performance of 180 tera floating 

point operations per second (TFLOPS) with 4 chips on the board. 
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Although there are some design tradeoffs between FPGA and ASIC as mentioned 

above, these platforms can generally achieve comparable or better performance with low 

power consumption compared to GPU acceleration. However, both two still have limited 

computing resources, memory and I/O bandwidths, thus it is impractical to implement a 

DNN on a chip with similar complexity as a biological brain that has ~1013 synapses, 

because the current silicon CMOS technology is not adequate to provide sufficient on-chip 

memory resources. Even in ASIC, the smallest unit for the synaptic weight storage is to 

use the static random access memory (SRAM), which consists of 6 to 8 transistors and 

requires a cell size of 100F2~200F2 in total (F is the lithography feature size). To represent 

the precision of a single weight value, multiple SRAM cells are further needed to form a 

synapse, making it even more area-inefficient. 

1.2 Emerging Non-volatile Memory for Synaptic Devices 

It came to be realized that the “von Neumann bottleneck” problem in modern DNNs 

cannot be fully addressed by the aforementioned acceleration platforms alone, especially 

it is expected that the future DNNs will grow rapidly in network depth, model size and 

computational complexity. In a sense that the number of synapses is far more than the 

number of neurons (with a complexity of O(N2) and O(N), respectively), it is very crucial 

to explore more compact synaptic devices at nanoscale level beyond the traditional silicon 

CMOS technology, and exploit the analog properties of these synaptic devices rather than 

use them as binary or multi-level on-chip storage memories. In this way, it can prevent the 

tremendous hardware cost with CMOS based synapses, meanwhile potentially reducing 

the computation complexity from O(N2) to O(1) for a fully parallel operation. 
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The current progress in nanotechnology is paving the way toward implementation of 

compact synaptic devices using low cost and ultra-high density memory array [30]. In fact, 

due to its maturity, the floating-gate memory technology has been successfully 

implemented on a single chip as synapses for the neuromorphic computing [31]. To achieve 

even higher integration density, faster speed and lower programming voltage, compact 

synaptic devices based on emerging non-volatile memories (eNVM) are proposed for the 

neuromorphic systems, including resistive random access memory (RRAM) [32-38] and 

phase change memory (PCM) [39-41], etc. These eNVM devices are non-volatile and two-

terminal with cell size 4F2~12F2, and they use their conductance to represent the stored 

synaptic weight. These eNVMs have long been considered as promising candidates for 

future replacement of NAND/NOR FLASH in storage applications. Although they are still 

not mature yet, some prototype chips have been demonstrated. For example, Samsung has 

reported an 8-Gb PCM prototype chip at 20 nm that has a write bandwidth of 40 MB/s in 

2012 [42], Micron/Sony has reported a 16Gb RRAM prototype chip at 27 nm that could 

achieve a read/write bandwidth of 1GB/200 MB per sec in 2014 [43], etc. However, the 

requirement for eNVM to be used as synaptic devices is more stringent. This is because 

they also need to have the desired “analog” multi-level conductance states to represent the 

weight and perform accurate computation in neuromorphic applications. Therefore, there 

is an even larger design space with eNVM being exploited as a synaptic device for efficient 

hardware implementations of DNNs. 

Operation of eNVM devices is quite simple. The transition between conductance states 

in eNVM devices is triggered by electrical inputs (voltage or current pulse). Generally, the 

conductance is increased and decreased with positive and negative programming voltage 
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pulses, which is referred to as SET and RESET or weight increase and decrease, 

respectively. The detailed conductance switching mechanism is different for different types 

of eNVM devices. For RRAM devices, they can be either filamentary or non-filamentary 

(homogeneous interface) depending on the switching mechanisms. The device structure of 

filamentary RRAM is shown in Fig. 1.2(a). Operation of filamentary RRAM devices relies 

on the voltage-driven conductance switching of the metal oxides (e.g. HfOx [44], AlOx [45], 

WOx [46], TaOx [47] and TiOx [48]), which is generally attributed with the formation and 

rupture of the conductive filament that consists of defects (i.e. oxygen vacancies in oxide). 

Filamentary switching process is fast and low-power, and many of these aforementioned 

materials are highly silicon CMOS fabrication process compatible, making filamentary 

RRAM a promising candidate as embedded non-volatile memory technology. However, 

its filament formation (SET) process is inherently abrupt, making weight increase 

uncontrollable. The common solution in traditional memory application is to apply 

compliance current through external circuitry to limit the filament growth, but this is not 

feasible for analog conductance tuning with multilevel compliance current in 

neuromorphic computing as the peripheral circuit design will become much more complex. 

Thus, the use of RESET-only weight tuning was a more realistic approach [37]. Today, 

making gradual SET is still an active research topic for filamentary RRAMs. Some bilayer 

oxides structures have been proposed to prevent forming a single strong filament through 

the tunneling gap distance as the primary variable to determine the conductance based on 

an exponential relationship. They either allow the filament to grow in lateral size [36] or 

form multiple weak filaments [49] to achieve a more gradual SET. However, they may 

have larger variability due to stochastic filament formation. 
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Fig. 1.2  Schematic of (a)-(c) two-terminal emerging non-volatile memory (eNVM) and 

(d) FeFET based synaptic device structures. 

 

The device structure of non-filamentary RRAM is shown in Fig. 1.2(b). Different than 

the filamentary RRAM, conductance switching in non-filamentary RRAM is attributed to 

the field-induced change of the Schottky barrier or tunneling barrier at the interface 

homogeneously over the entire device area [50], enabling gradual conductance tuning that 

is highly suitable for implementation of analog synapse. Several RRAM synaptic devices 

were reported on this type, such as Ag:a-Si [32], TaOx/TiO2 [33, 34], PCMO [35, 51]. 

Despite more gradual change in the conductance, the conductance tuning curve is quite 

nonlinear and asymmetric due to nonlinear barrier change by defect movement, thus new 

programming schemes such as non-identical pulse schemes that mitigate this issue may be 

required. In addition, some of these non-filamentary RRAMs indeed suffer from the so-

called “voltage-time dilemma” [50], which describes the conflict between the fast 

switching speed and long retention time (requiring low and high energy defect diffusion 

barrier, respectively). Hence it can be found that the conductance tuning speed of some 

reported non-filamentary RRAMs are much slower than the filamentary ones [34, 35]. 

On the other hand, PCM relies on the chalcogenide materials (e.g. Ge2Sb2Te5 [52]) to 

switch between the crystalline phase (high conductance state) and the amorphous phase 
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(low conductance state). Its device structure is shown in Fig. 1.2(c). PCM also has the same 

asymmetric conductance switching problem as the filamentary RRAM. Its SET process 

can be made gradual with repetitive pulses, while its RESET process is abrupt because the 

thermal melting and quench is required for crystalline to amorphous phase transition. To 

address this issue, one of the architectural approach is to use two PCM devices as one 

synapse [39, 41], where the gradual SET process is utilized in both devices, and the 

differential read-out conductance is used to represent the weight increase and decrease. 

Another approach is to use the non-identical pulse schemes that can be applied to general 

eNVMs. As demonstrated in [40], the increasing pulse amplitude scheme helps alleviate 

the conductance overshoot in the beginning and saturation in later stages. However, the 

non-identical pulse scheme will make the peripheral circuit design complex, which will be 

emphasized later in Section 2.3.1. 

There is also another type of synaptic devices based on ferroelectric field-effect-

transistor (FeFET) [53, 54]. FeFET based synapses are three-terminal like a conventional 

transistor, but with its gate dielectric replaced by a ferroelectric material that has multiple 

domains of polarization. Its device structure is shown in Fig. 1.2(d). With programming 

voltage pulses applied on the gate, part of the polarization direction can be changed, 

enabling gradual tuning of the threshold voltage and thereby the channel conductance to 

store the analog weights. Unfortunately, non-identical pulse schemes still cannot be 

avoided to achieve a linear conductance tuning [53, 54]. 

No matter which type the synaptic device is based on, it has to exhibit desired synaptic 

device behaviors in order to achieve the expected learning performance. The ideal synaptic 

device behavior assumes that identical programming voltage pulses can tune the weight 
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linearly. As shown in Fig. 1.3, however the realistic devices reported in literature do not 

follow such ideal trajectory, exhibiting “non-ideal” properties such as nonlinear and noisy 

weight increase/decrease, limited precision and finite ON/OFF ratio. For example, Ag:a-

Si devices [32] show a nonlinear and noisy weight increase/decrease; though TaOx/TiO2 

devices have been improved to exhibit a more linear and smooth weight increase/decrease 

[34], the ON/OFF ratio is very limited (~2). Such non-ideal behaviors commonly exist in 

today’s synaptic devices [32-36], possibly due to the inherent drift and diffusion dynamics 

of the ions/vacancies in these materials. Detailed analysis of their impact on the 

performance of different learning algorithms will be performed in Section 2.3 and 5.3. 

 
Fig. 1.3  Reported measured experimental data of weight update in (a) PCMO [35], (b) 

Ag:a-Si [32], (c) TaOx/TiO2 (Type A) [33], (d) TaOx/TiO2 (Type B) [34] and (e) 

AlOx/HfO2 [36] based synaptic devices. ©  2017 IEEE. 

 

1.3 Synaptic Crossbar Array Architecture 

A set of synapses that fully connects between two layers of neurons can be viewed as 

a weight matrix. The most compact and simplest array structure for synaptic devices to 
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form this weight matrix is the crossbar array structure, where each synaptic device is 

located at each cross point. The crossbar array structure can achieve a high integration 

density of 4F2/cell. As shown in Fig. 1.4(a), if the input vector is encoded by read voltage 

signals, the weighted sum operation (vector-matrix multiplication) can be performed in a 

parallel fashion with synaptic crossbar array [55, 56]. The weighted sum result in terms of 

the output currents are then obtained at the end of each column. Ideally, it can be expressed 

in a matrix form: 

(

I1

I2

⋮
In

) = (

G11 G12 ⋯ G1m

G21 G22 ⋯ G2m

⋮ ⋮ ⋱ ⋮
Gn1 Gn2 ⋯ Gnm

) (

V1

V2

⋮
Vm

) (1.1) 

where each G element in the weight matrix is the conductance of the synaptic devices. Fig. 

1.4(b) shows the equivalent RC model of a single cell in the crossbar array structure, which 

can be duplicated to form the whole array. The wire parasitics (Rw and Cw) not only bring 

extra latency and energy consumption in the array, but also causes IR drop (reduction of 

access voltage) along the weighted sum path. Aggressive downscaling of the wire width 

(W) will make the IR drop more severe. Hence the weighted sum current in Eq. (1.1) may 

not be accurately obtained. Fortunately, the sneak path problem [57] of the unselected cells 

in the array for conventional memory application does not exist in the weighted sum 

operation, if all the cells are participating in the computation. It is preferred that the value 

of input vector element is encoded by the number of identical voltage pulses, which causes 

less distortion on the weighted sum compared to the analog encoding scheme with varying 

voltage amplitude [56]. In the analog encoding scheme, it is also difficult to split the read 

voltage (typically <1 V) into multi-levels due to noise consideration and practical bias 

circuit design constraints. 
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Fig. 1.4  (a) Weighted sum operation in an eNVM based synaptic crossbar array structure. 

(b) Equivalent RC model of a synaptic device. ©  2018 IEEE. 

 

For weight update operation, though a fully parallel write scheme has been proposed 

[34], programming all the cells in the array may consume too much peak power that the 

peripheral circuits can provide, and it also requires complex peripheral circuit design thus 

the hardware cost will be tremendous. Therefore, row-by-row write scheme has to be used. 

The voltage bias for the row-by-row write scheme in weight update is shown in Fig. 1.5. 

As the weight increase and decrease need different programming voltage polarities, the 

weight update process requires 2 steps with different voltage bias schemes. As there is no 

isolation between cells, it is necessary to apply an intermediate voltage (V/2) at all the 

unselected rows and columns to prevent the write disturbance on unselected cells during 

weight update [58]. In this scheme, a lot of energy is consumed to charge up all unselected 

rows and columns for every single operation. Therefore, the simple crossbar array 

architecture is not energy-efficient in weight update. In Section 3.1, there will be 

discussions on the design for improvement of synaptic array architectures that show better 

performance on weighted sum or weight update operations. 
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Fig. 1.5  Voltage bias scheme in the write operation of crossbar array. Two separate phases 

for weight increase and decrease are required. In this example, the left cell of the selected 

cells will be updated in phase 1, while the right one will be updated in phase 2. 

 

1.4 Overview of Contributions 

This dissertation aims at addressing the aforementioned design challenges of 

neuromorphic computing system based on synaptic devices and array architectures. Firstly, 

the sparse coding algorithm is used as a starting point. With the assumption of perfect linear 

weight update on analog eNVM devices, the design methodologies for co-optimizing the 

synaptic crossbar array with the sparse coding algorithm to implement on-chip learning. 

By applying a set of reverse scaling rules, the output function error can be minimized at an 

affordable expense of area, energy and latency [56]. As the output function error may not 

accurately represent the real learning accuracy, the synaptic device behavioral model is 

directly incorporated into the weight update operation in the algorithm. The impact of non-

ideal synaptic device properties on the learning accuracy of the sparse coding algorithm 

can then be thoroughly analyzed, and mitigation strategies to remedy the accuracy loss are 

proposed [59]. The discussions will be presented in Chapter 2. 
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Although the crossbar array architecture is simple, it suffers from the write disturbance 

issue and large weight update energy. To reduce the energy consumption in weight update, 

it is proposed to add a selector device in series with the eNVM to achieve nonlinear I-V 

characteristics. With selector, the IR drop along interconnects can also be alleviated due to 

higher cell resistance [58]. Another way to further reduce the energy is to modify the 

existing conventional 1-transistor-1-resister (1T1R) array to the “pseudo-crossbar” array 

by rotating the bit lines by 90o to enable weighted sum operation [60]. In the neuromorphic 

hardware system, the peripheral circuits play important roles in supporting the synaptic 

arrays, where one of the key component is the neuron analog-to-digital converter (ADC) 

that converts weighted sum currents to digital outputs. Following the principle of the 

integrate-and-fire neuron model, the read circuit is designed to integrate the weighted sum 

current on the array column capacitance and fire output spikes once the voltage charges up 

above a certain threshold [61]. However, the read circuit is complex and not area-efficient. 

More aggressively, a novel design was proposed to replace the entire read circuit with a 

compact two-terminal device that exhibits metal-insulator-transition (MIT) phenomenon, 

where its voltage oscillation is utilized as an integrate-and-fire neuron’s output waveform 

[62]. The results will be presented in Chapter 3. 

To facilitate the design space exploration of on-chip learning, a circuit-level macro 

simulator “NeuroSim” was developed in C++ to estimate the circuit-level performance 

(such as the area, latency, energy consumption and leakage power) of neuromorphic 

hardware accelerators with memory array based architectures [63]. Dedicated to support 

neuromorphic hardware accelerators, the hierarchy of the simulator consists of different 

levels of abstraction from the memory cell and transistor technology parameters, to the 
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gate-level sub-circuit modules and then to the SRAM and eNVM array architecture 

including the peripheral circuits. As a case study, the simulator has been used to evaluate 

the performance of partitioning a large weight matrix into SRAM and eNVM accelerators 

[64]. The details will be described in Chapter 4. 

One of the powerful features of NeuroSim is its ability to support neural network 

learning algorithms by providing the circuit-level performance estimation, forming an 

integrated device-to-algorithm simulation framework. To demonstrate this feature, a 2-

layer multilayer perceptron (MLP) simulator with integration of NeuroSim was constructed, 

which is useful for investigating the impact of analog eNVM’s non-ideal device properties 

and benchmarking the design trade-offs (both the learning accuracy and circuit-level 

performance metrics) between SRAM, digital and analog eNVM based architectures for 

online learning and offline classification [65, 66]. Besides the learning performance in 

normal operations, the simulator was also used to study the impact of eNVM reliability 

issues such as the data retention failure in offline classification and the write endurance 

degradation in online learning [67]. The results will be presented in Chapter 5. 
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 SYNAPTIC CROSSBAR ARRAY DESIGN FOR ON-CHIP SPARSE 

DICTIONARY LEARNING 

The resistive crossbar array architecture has been proposed for on-chip implementation 

of weighted sum and weight update operations in neuromorphic learning algorithms. 

However, several limiting factors potentially hamper the learning accuracy, including the 

nonlinearity and device variations in weight update, and the read noise, limited max/min 

conductance ratio (ON/OFF ratio) and array parasitics in weighted sum. With unsupervised 

sparse coding as a case study algorithm, this chapter will employ device-algorithm co-

design methodologies to quantify and mitigate the impact of these non-ideal properties on 

the accuracy. 

2.1 Sparse Coding Algorithm 

Sparse coding (SC) algorithm [68] is selected as a starting point for on-chip 

implementation with synaptic devices due to its simplicity. Despite of a simple network 

with two layers of neurons and one weight synaptic matrix, it can still achieve reasonably 

high learning accuracy with invariance for pattern’s spatial shift and rotation. The sparse 

coding is found to be a bio-physiological plausible model: neurons in mammalian primary 

visual cortex can form a sparse representation of natural scenes [69, 70], which is believed 

to emerge from an unsupervised learning algorithm that attempts to find a factorial code of 

independent features such as lines, edges and corners. For real-world applications, the 

sparse coding algorithm has demonstrated its power in many domains such as audio 

processing, text mining and image recognition. In this work, the goal is to evaluate and 

optimize the synaptic device properties and crossbar architecture for fast and compact on-

chip sparse feature learning as a case study. 
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Fig. 2.1(a) shows the simplified process flow of the sparse coding algorithm (SC 

module), which is obtained from [71] with optimization on the algorithm parameters. In 

the training phase, with a given input vector set｛X｝(braces mean a collection of objects), 

the corresponding feature vector set｛Z｝and the dictionary matrix (D) are trained 

iteratively by minimizing the objective error function (E): 

E = min ∑ (‖DZ - X‖2+λ‖Z‖1)  (2.1) 

As each X is a sparse linear combination of Z via D, the first term of Eq. (2.1) generally 

measures how well the dictionary reconstructs the input data. The second term of Eq. (2.1) 

imposes constraint of the sparsity of the feature vector. Since both D and Z are unknown, 

the above optimization problem is a non-convex problem. It is proposed to alternatively 

optimize Z with fixed D by the coordinate descent (CD) method and optimize D with fixed 

Z by the stochastic gradient descent (SGD) method, which converts the problem into a 

convex optimization problem. Compared to conventional full gradient descent, SGD is 

more computation-efficient with large-scale dataset [71]. Using SGD, the D weight update 

process can be expressed as: 

D ← D - ηRZT   (R=DZ - X) (2.2) 

It can be seen that D is modulated by the product of ηRZT, where R is the reconstruction 

error, and η is the learning rate, which is essentially the delta rule. For the ideal software 

implementation of the algorithm, the exact value of ηRZT can be calculated and applied to 

the update of D. However, the D update implemented on-chip needs to be translated to the 
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number of pulses applied on the synaptic devices, and the effect of the programming pulses 

on the conductance of the devices may not represent the exact value of ηRZT due to the 

realistic properties of synaptic devices as mentioned above. In this work, we model the 

weight update curve and incorporate this model in the D update code in the SC algorithm. 

 
Fig. 2.1  Process flow of (a) the sparse coding (SC) module and (b) the entire process 

including the unsupervised feature extraction by sparse coding (SC) and the supervised 

classification by support-vector-machine (SVM). ©  2016 IEEE. 

 

Fig. 2.1(b) describes the entire process flow that includes dictionary learning (training 

phase) and classification (testing phase). In this work, the MNIST handwritten digits [1] 

are used as the training and testing data set, where the raw images are densely sampled into 

small patches with 10×10 pixels as X input vector with a dimension of 100, as shown in 
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Fig. 2.2. In the later analyses, a set of 40k images is used for training and a different set of 

5k images is used for testing, as we have found that using the entire 60k training images 

does not have noticeable increase on the accuracy (only 1%) and its simulation will be 

much slower. 

 
Fig. 2.2  (a) Examples of handwritten MNIST data [1]. (b) Image patches (10×10 pixels) 

are extracted for training. ©  2016 IEEE. 

 

Fig. 2.3 shows the learning accuracy as a function of Z vector dimension. The learning 

accuracy does not increase much beyond a dimension of 200. In this work, we fix the Z 

dimension to be 300, thus the size of the D matrix is 100×300 (X×Z). After the training 

process, the trained dictionary Dtrain is used as a fixed D in the testing phase to generate the 

testing features｛Ztest｝. Before the classification process, a simple maximum pooling 

operation is employed on both the trained and testing features for each image to select the 

most active neuron of each feature node: 

Zi = max(Zi
1, …, Zi

k) (2.3) 

Overlapped 
Samples X 

(10x10 pixels)

(a) (b)
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where Zi
1, …, Zi

k are the ith elements of the feature vectors of total k small image patches 

per image. The maximum pooling merges all the feature vectors of small image patches 

into one feature vector per image by selecting the maximum value of each ith element. 

Finally, to classify the 10 digits, the support vector machine (SVM) [72] is used. With the 

input of testing labels, SVM performs classification and gives out the recognition accuracy. 

 
Fig. 2.3  Learning accuracy as a function of Z dimension. ©  2016 IEEE. 

 

2.2 Limited On-Chip Precision of SC 

For on-chip implementation of the SC algorithm, it is necessary to limit the precision 

of D and Z in the algorithm as the chip cannot afford the floating-point computation. In the 

crossbar array architecture, the values in the Z vector are stored on local memories in the 

peripheral circuitry, and the values of the D matrix are represented by the synaptic weights 

in the array. Fig. 2.4 shows the learning accuracy with different precisions by truncation of 

the bits in the SC algorithm. It suggests that a 4-bit Z is sufficient for high learning accuracy 

and the limited precision of D has more impact on the accuracy. For example, D should be 

at least 6 bits to achieve an accuracy >95%. This requirement of a high precision in the 

weight update for the learning is also reported in other recent works [73, 74]. As the training 
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of these algorithms are error-driven, thus high precision is required to preserve the error 

information. Since the number of bits D is related to how many levels of conductance that 

the synaptic device can achieve, a 6-bit D (64 levels) is chosen for later analysis based on 

the number of multi-level states available in today’s synaptic devices (see Fig. 1.3). 

 
Fig. 2.4  Learning accuracy with different precision bits of D and Z in the SC algorithm. ©  

2016 IEEE. 

 

2.3 Realistic Device Properties and Mitigation Strategies in Synaptic Array  

As previously shown in Fig. 1.3, realistic synaptic behaviors include 1) the nonlinearity 

and 2) device variations in weight update, and 3) the read noise 4) limited ON/OFF weight 

ratio in weighted sum. The circuit model of synaptic device is also considered in the array-

level analysis. In this section, these realistic properties are modeled individually into the 

sparse coding algorithm and their impact on the learning accuracy is studied. As a baseline, 

the limited precision of the synaptic devices (64 levels) is considered. 

2.3.1 Nonlinear Weight Update 

To analyze the impact of nonlinear weight update on the learning, a general behavior 

that models the conductance change of weight increase (GLTP) and decrease (GLTD) with 

the number of pulses (P) is described with the following equations: 
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GLTP = B (1-e
(-

P
A

))  + Gmin (2.4) 

GLTD = -B (1-e
(
P-Pmax

A
))  + Gmax (2.5) 

B = 
Gmax-Gmin

1-e
-Pmax

A

 (2.6) 

where Gmax, Gmin and Pmax can be directly extracted from the experimental data, which 

represents the maximum conductance, minimum conductance and the maximum pulse 

number required to switch the device between the minimum and maximum conductance 

states. A is the parameter that controls the nonlinear behavior of the weight update, and B 

is simply a function of A that fits the functions within the range of Gmax, Gmin and Pmax. A 

and B may be different in Eq. (2.4) and Eq. (2.5). A set of nonlinear weight increase and 

decrease behaviors can be obtained by adjusting A as illustrated in Fig. 2.5(a), where each 

nonlinear curve is labeled with a nonlinearity value from +6 to -6. Here the plus and minus 

are merely the signs to label weight increase and decrease, respectively. 
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Fig. 2.5  (a) Different nonlinearities of the weight increase and decrease fit from +6 to -6. 

(b) Learning accuracy with different weight update nonlinearities. Nonlinearities of the 

reported synaptic devices from Fig. 1.3 are also shown. ©  2016 IEEE. 

 

Then, we apply these nonlinear functions into the weight update in the SC algorithm. 

Fig. 2.5(b) shows that learning accuracy slightly decreases in the high nonlinearity region 

of weight increase and decrease, and a relatively larger drop from ~96% to ~92% occurs 

at maximum nonlinearities (+6/-6 curves). For today’s synaptic devices (Fig. 1.3), the 

nonlinearities of weight increase and decrease are also labeled in the Fig. 2.5(b). It is shown 

that the nonlinearity in the weight update has a moderate impact on the learning 

performance. 

To improve the nonlinearity, the programming scheme that updates the weight can be 

smartly designed. Fig. 2.5(a) shows different programming schemes and Fig. 2.5(b) shows 

the corresponding measured experimental weight update in TaOx/TiO2 (Type A) based 

synaptic device. Scheme A uses a simple pulse train for both weight increase and decrease 

with identical pulses, which leads to the largest nonlinearity. Scheme B is a reinforcement 

of Scheme A, which splits a single voltage pulse into a pair of positive and negative pulse 

with different amplitude and duration. It improves the linearity as the second negative pulse 
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can cancel some overshoot of first positive pulse at the beginning stages of weight update. 

Scheme C is a more complicated extension of Scheme A, where the pulse duration varies 

depending on the current conductance state of the synaptic device. The idea of Scheme B 

and C is to slow down the weight update at the beginning stages of weight update. It is 

observed that with identical pulses, the conductance changes very rapidly at the beginning 

stages of the weight update and then it gradually saturates. The duration of programming 

pulses can be adjusted in a way that a shorter pulse is applied at the beginning stages while 

gradually wider pulses are applied at subsequent stages. For this scheme, an empirical 

function to determine the pulse duration (PD) is required to program the device from 

conductance state n to n+1 (n=0: minimum (maximum) conductance for weight increase 

(decrease)) is expressed as: 

PD(n→n+1) = Pi×e
(
m×n
50

)
        m= {

6,      Weight increase

 4,     Weight decrease
 (2.7) 

where Pi is the initial pulse duration. 
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Fig. 2.6  (a) Different programming schemes and (b) the corresponding experimentally 

measured data of conductance modulation in the TaOx/TiO2 (Type A) based synaptic 

device. ©  2015 IEEE. 

 

We can see that with Scheme C, the weight update approaches the linear curve. 

However, the trade-off is that Scheme C needs a read-before-write step to first identify the 

conductance state and then apply the correct pulse duration to the device, which inevitably 

increases the complexity of the peripheral circuitry design as well as the latency and energy 

consumption. In particular, Scheme C cannot be applied with the parallel weight update 

scheme [56] due to non-identical pulses. Instead, the weight matrix can only be updated in 

a sequential row-by-row fashion. In contrast, Scheme B, although it uses a pulse pair as 

one programming operation, it does not need the read-before-write step as the pulse pair 

shape is independent of the conductance state. For quick estimation on the overhead of the 

array, the latency and energy consumption are simply calculated by the applied pulse 

widths and voltage amplitudes in these schemes. Assuming that the sparse Z vector has 5% 

nonzero elements, a weight increase from the 30th back to 20th weight level gives ~7.5X 
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latency for Scheme B and ~60X for Scheme C. The overhead of energy consumption will 

be a bit less than that of latency as the root-mean-square (RMS) values of voltage in 

Scheme B and C are smaller. From peripheral circuit design’s point of view, identical pulse 

pairs of Scheme B can be realized by two pulse generators at the two ends of the array to 

generate a pair of pulses with different polarities. On the other hand, Scheme C needs at 

least an extra computing unit to calculate Eq. (2.7) and a special pulse generator to produce 

non-identical pulses with fine-grained duration. Since the algorithm has resilience to the 

moderate weight nonlinearity, Scheme B may be a better choice for a practical 

implementation considering the overhead of Scheme C. However, given the accuracy loss 

of ~4% at the maximum nonlinearities in the sparse coding algorithm, we think it is not 

crucial to apply the smart programming schemes thus those overheads can be saved. 

2.3.2 Device Variations 

It is well known that the synaptic devices involving drift and diffusion of the 

ions/vacancies show considerable variation from device to device, and even from pulse to 

pulse within one device. Owing to the device-to-device weight update variation, different 

devices in the array will follow different nonlinearity baselines. Owing to the cycle-to-

cycle weight update variation, there will be pulse to pulse noise on top of the nonlinearity 

baseline. Owing to the read noise, the read-out current of a weight state will have some 

temporal fluctuation. 

The effect of device-to-device variation can be analyzed by introducing the variation 

into the nonlinearity baseline for each synaptic device, as illustrated in Fig. 2.7(a). For 

example, if a synaptic device has a +100% device-to-device variation, there will be a +1 

deviation of the nonlinearity. As shown in Fig. 2.7(b), the learning accuracy is 
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insignificantly affected by the device-to-device variation with 30% standard deviation from 

the baseline. 

 
Fig. 2.7  (a) Illustration of the device-to-device weight update variation. Different devices 

in the array will follow different nonlinearity baselines. (b) Learning accuracy with 

different standard deviations of device-to-device weight update variation, which has almost 

no impact. ©  2016 IEEE. 

 

The cycle-to-cycle variation of the conductance occurs at every write pulse operation 

on the synaptic device, as illustrated in Fig. 2.8(a). The amount of cycle-to-cycle variation 

(σ) is expressed in terms of the percentage of entire weight range. As shown in Fig. 2.8(b), 

the learning accuracy degrades significantly with larger cycle-to-cycle weight update 

variation.  
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Fig. 2.8  (a) Illustration of the cycle-to-cycle weight update variation. There is pulse to 

pulse noise on top of the weight update curve. (b) Learning accuracy with different standard 

deviations of cycle-to-cycle weight update variation, which has significant degradation on 

the learning accuracy with both nonlinearity baselines (0, 0) and (6, -6). ©  2016 IEEE. 

 

2.3.3 Read Noise in Weighted Sum  

Similar to the cycle-to-cycle weight update variation, the read noise occurs at every 

read access to the synaptic device, but the average conductance state is not disturbed. As 

illustrated in Fig. 2.9(a), the read-out current fluctuates at different conductance states with 

different number of read pulses. Fig. 2.9(b) shows significant degradation of learning 

accuracy due to the read noise. The impact is even more critical with nonlinearity baseline 

(6, -6). We have measured a variation of ~2.89% in the read noise in our TaOx/TiO2 based 

synaptic device, which could cause the accuracy drop below 90% considering this read 

noise effect only. 
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Fig. 2.9  (a) Illustration of the weight read noise. There is read noise on top of each weight 

level. (b) Learning accuracy with different standard deviations of weight read noise, which 

causes significant degradation on the learning accuracy and is even severer at nonlinearity 

baseline (6, -6). ©  2016 IEEE. 

 

To alleviate the impact of device variations, we propose using multiple cells as one D 

weight element. This approach statistically averages out all the conductance variations of 

synaptic devices. If n cells are used as one weight element, the standard deviation of 

variations will be reduced by a factor of 1/√n  assuming that variations are normally 

distributed. Fig. 2.10 shows an example of the reduction on the variation using 9 cells 

compared to that using only 1 cell. This strategy is to have considerable improvement on 

the accuracy loss due to device read-out noise, and it does not have a large overhead in the 

array area as the area is determined by the pitch of the peripheral circuits in the logic design 

rule. For example, the array cell height should be aligned with the standard cell height of 

the array row driver. We estimate that the layout area of 9 resistive synaptic cells is 

increased by ~20% compared to that of 1 cell at 65nm technology node and 200nm wire 

width. It should be noted that part of the peripheral circuitry can be placed underneath the 

synaptic array to save the total area as the synaptic devices are integrated on top of the 
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CMOS circuits at the interconnect level. However, using multiple cells inevitably increases 

the energy consumption by n times. 

 
Fig. 2.10  Illustration of multiple cells as one weight element to average out the device 

variations or read-out noise. ©  2016 IEEE. 

 

2.3.4 Limited conductance ON/OFF ratio 

Ideally the D values in the SC algorithm are represented by a normalized conductance 

of synaptic devices, and the range of the D value is from 0 to 1. However, the minimum 

conductance can be regarded as D=0 only when the ratio between the maximum and 

minimum conductance (ON/OFF ratio) approaches infinity, which is not feasible in today’s 

synaptic devices. Fig. 2.11 shows the learning accuracy with different ON/OFF ratios. The 

learning accuracy dramatically decreases when the ON/OFF ratio shrinks below 25, 

because the calculations involved with small values of D in the algorithm will be 

significantly distorted. The Ag:a-Si device exhibits a largest ON/OFF ratio of ~15 among 

the devices in Fig. 1.3, while other devices show even smaller ON/OFF ratio. This means 

that without any optimization, none of these synaptic devices can achieve high recognition 

accuracy when used in on-chip implementation of sparse learning. 

j

i

i

j
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Fig. 2.11  Learning accuracy with different ON/OFF ratios at nonlinearity baselines (0, 0) 

and (6, -6). The synaptic devices in Fig. 1.3 have a maximum ratio about 15, which results 

in >10% accuracy loss. ©  2016 IEEE. 

 

One approach to remedy this situation is to eliminate the effect of the OFF-state current 

in every weight element with the aid of a dummy column. The crossbar array architecture 

with a dummy column is illustrated in Fig. 2.12. The synaptic devices in the dummy 

column remain in their minimum conductance states, such that the readout value at the 

output of dummy column represents the weighted sum of the Z vector and the OFF-state 

conductance. In the peripheral circuitry, we subtract the OFF-state weighted sum from all 

the partial weighted sums, DiZ, performed along the columns. Except for spatial variation 

between the synaptic devices in the same row, this virtually eliminates the effect of OFF-

state current in the sparse learning task. An additional column will give 1% overhead on 

the array area as there are totally 100 columns (X=100), and the area of subtractors is 

estimated to be ~7.84% of the array area with 9 cells at 65nm technology node and 200nm 

wire width. However, as the array is able to partially hide the subtractors, its area overhead 

can be further reduced. 
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Fig. 2.12  Crossbar array architecture with the dummy column and subtractors to eliminate 

the common OFF-state current. ©  2016 IEEE. 

 

2.3.5 Impact of Weighted Sum IR Drop in Crossbar Array 

To simulate the weighted sum operation in SPICE, we model the synaptic device as a 

resistor in parallel with a capacitor as shown in Fig. 1.4(b). The wire resistances and 

parasitic capacitances are also considered. The interconnect parameters are obtained from 

the ITRS table [75]. We extract statistical D, Z and R data at different learning stages from 

the SC algorithm run by software, and use these values to simulate the weighted sum DZ 

and DR (in the CD method in Fig. 2.1(a)) by SPICE. The deviation of weighted sum by 

SPICE is then calculated and incorporated back into the SC algorithm to evaluate its impact 

on the learning accuracy. Fig. 2.13 shows the learning accuracy with different wire widths. 

Wires with smaller width have larger wire resistance, thus the weighted sum becomes 

inaccurate and the learning accuracy is significantly reduced. To alleviate this, we propose 

reverse scaling on the wire’s geometrical dimension, preferably with a wire width larger 

than 100 nm. Such reverse scaling plus the redundant cells for reduction of device 

variations dramatically increase the array area, but this may be acceptable considering the 
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size of peripheral logic gates is complicated and it is thus comparable to the cell pitch of a 

synaptic cell in the array design. 

 
Fig. 2.13  Learning accuracy with different wire width. Smaller wire width will degrade 

the learning accuracy due to interconnect effect. ©  2016 IEEE. 

 

2.4 Accuracy Improvement by Proposed Strategies 

If we combine all the non-ideal device effects and array parasitics mentioned above, 

the learning accuracy of the system drops terribly low to ~30%. Now we implemented the 

proposed mitigation strategies into the SC algorithm. Specifically, it is assumed that the 

following improvements on the realistic properties are achieved: 1) the ON/OFF weight 

ratio is increased by 4X from 12.5 (within the range of the Ag:a-Si device) to 50, using a 

dummy column but assuming that the OFF-state current is not completely removed due to 

device-to-device variation; 2) 9 cells as a weight element is used to reduce the variation of 

read noise from ~2.89% to ~0.96%. It is also assumed that the nonlinearity is large ((4.7, -

4.7) for the TaOx/TiO2 (Type A) based synaptic device) and the array wire width is relaxed 

to be 200 nm. As shown in Fig. 2.14, the recognition accuracy of synaptic devices can 

closely approach that of the ideal algorithm, achieving an accuracy improvement of >65%. 

However, the proposed strategies will bring some overhead onto the chip area, latency and 
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energy. Compared to the design without strategies, the area overhead mainly comes from 

the redundant cells with relaxed wire width (~20% for 9 cells and 200nm wire). The area 

overhead of the subtractors can be smaller (<7.84%) if they are partially hidden underneath 

the array. The total latency of weighted sum operation will be similar if the weighted sum 

current readout is based on the principle of integrate-and-fire neuron model [61], where 

both the weighted sum current and parasitic column capacitance are increased by 9X and 

these two effects cancel out each other. The total latency of the weight update will also be 

similar because the 9 cells are physically wired together and being programmed 

simultaneously. However, the energy consumption of both the weighted sum and weight 

update will be increased by ~9X because 9 cells are used. 

 
Fig. 2.14  Comparison of the recognition accuracy of the MNIST handwritten digits trained 

by the sparse coding algorithm using the software approach running and implemented on 

the hardware architecture with realistic synaptic devices and arrays. With the proposed 

design methodologies, the recognition accuracy can approach the ideal value of the 

algorithm. ©  2016 IEEE. 
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2.5 Summary 

Synapses are the core elements of a neuromorphic system to establish communication 

between groups of neurons. Synaptic devices available today exhibit non-ideal device 

properties, e.g., the nonlinearity in weight update, device variations, read noise and limited 

ON/OFF weight ratio. The wire parasitics in nanoscale crossbar architecture also cannot 

be ignored. Sparse coding algorithm is used to provide a platform to evaluate the 

performance of unsupervised learning using realistic synaptic devices and arrays for image 

applications. It is found that the non-ideal synaptic device properties and the wire parasitics 

can lead to significant degradation on image recognition accuracy from ~96% to ~30%. 

The mitigation strategies to remedy this issue are proposed in this chapter, including 1) the 

use of multiple cells for each weight element to alleviate the impact of device variations 

and read noise; 2) a dummy column to eliminate the off-state current; 3) larger wire width 

to reduce the IR drop along interconnects thereby increase the accuracy of weighted sum. 

By applying these strategies with tolerable trade-offs on the chip area, latency and energy, 

the synaptic behavior is greatly improved and the recognition accuracy could come back 

to ~95%, viably enabling the synaptic devices for practical hardware implementation of 

the sparse learning algorithm on a chip. We believe that the device-algorithm co-design 

methodologies presented in this chapter can also be applied to other neuromorphic learning 

algorithms in general. 
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 DESIGN FOR IMPROVEMENT OF SYNAPTIC ARRAY AND NEURON 

PERIPHERAL CIRCUITS 

Traditional crossbar array architecture is a straightforward design to perform fully 

parallel weighted sum operation, but it suffers from the write disturbance issue and is not 

energy-efficient, as discussed in Section 1.3. Alternatively, we propose two array 

architectures, the 1-selector-1-resistor (1S1R) array architecture and pseudo-crossbar array 

architecture, to improve the current crossbar array design. In this chapter, the design of the 

neuron peripheral circuits is also discussed. It is found that a compact two-terminal device 

that exhibits metal-insulator-transition (MIT) phenomenon can potentially replace the 

existing CMOS integrate-and-fire neuron to achieve smaller area and better performance. 

3.1 Reformation of Array Architecture 

3.1.1 1S1R Array Architecture 

Fig. 3.1(a) shows the schematic of the proposed architecture of the 1S1R array 

architecture. There is one selector in series with one synaptic device at each cross-point. 

The selector introduces nonlinear I-V characteristics for the synaptic device and is helpful 

for weight update and/or weighted sum operations when there are unselected rows/columns, 

which will be discussed later in this section. Same as the traditional crossbar array, a read 

voltage (VR) is applied in parallel to each row to compute the weighted sum in the read 

operation. Because of the selector, the current at each cross-point is not exactly the 

multiplication of VR and the conductance of the synaptic device. Therefore, the resistance 

of the selector at VR must be much smaller compared to the resistance of the synaptic device.  

The weight update operation in 1S1R array resembles the one in traditional crossbar 

array, but the voltage biasing is a little bit more complicated. As shown in Fig. 3.1(b), the 
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write scheme to increase (decrease) the weight in the write operation is to select one row 

at a time with the write voltage (VW) (0 V) applied at the edge, while other unselected rows 

and columns are biased at an intermediate voltage VX to prevent the write disturbance. 

Then, the VX-0-VX negative (VX-VW-VX positive) write pulses are then applied to increase 

and decrease the weight in the selected cells, respectively. 

 
Fig. 3.1  (a) The proposed 1S1R array architecture. The selector is in series with the 

synaptic device. Read scheme is shown for performing the weighted sum in parallel, which 

is similar to the traditional crossbar array. (b) The weight update operation with weight 

increase and decrease phase. The selected row is biased at VW and 0 V, and VX-0-VX 

negative and VX-VW-VX positive write pulses are applied to increase and decrease the 

weight in the selected cells, respectively. ©  2016 IEEE. 

 

As mentioned in Section 1.3, the proposed weight update scheme suffers from the 

leakage problem, as the crossbar array is partially selected and the leakage paths exists in 

the half-selected cells on other unselected rows or columns. The half-selected cells can see 

a voltage drop of VX (weight increase) or VW-VX (weight decrease) during the weight 

update. Therefore, the selector is proposed to connect in series with the synaptic device to 

suppress the leakage current at these voltages. Fig. 3.2 shows the I-V characteristics of a 

TaOx/TiO2 (Type A) based synaptic device in ON state, the selector and the series of these 

G11

G12 G22

G21 Gn1

Gn2

GnmG1m G2m

V1

V2

Vm

∑G1jVj
j
 

∑G2jVj
j
 

∑GnjVj
j
 

I1 I2 I1nSynaptic 
Device

Selector

In
p

u
t 

v
e
c

to
r

Weight matrix

(a)

Weighted Sum

VX

VW 0

VX 0 VXVW

Write Scheme of 1S1R Array

Weight increase 
(phase 1)

Weight decrease 
(phase 2)

Selected cells

VX

VX VX VX VX

VX

VX

(b)



40 

 

two devices. In this study, we use the mixed-ionic-electronic-conduction (MIEC)-based 

selector with high nonlinearity (~85 mV/dec) [76] and set the original VW=2 V and VR=1 

V for a single synaptic device. Without the selector, VX is designed to be 1 V, which is the 

V/2 write scheme in traditional memory application [77]. With the selector, the overall cell 

resistance is increased, which reduces the IR drop along interconnects in weighted sum 

while only affecting little on the mapping from device conductance to weight values 

because the conductance of selector is relatively higher than the conductance range of 

synaptic device at 1 V. Also, the selector can reduce the leakage on the half-selected cells 

in weight update, and it does not affect the weight update because at sufficient large voltage 

it is already turned on. In this case, VW should be increased to 3 V and the VX for weight 

increase and decrease are then 1 V and 2 V, respectively.  It can ensure the voltage drop on 

the selected cells to be 2 V, which is the same as the original write condition for a single 

synaptic device. Also, the voltage drop on the half-selected cells will then be 1 V, where 

the leakage reduction is ~10X as shown in Fig. 3.2. Since most of the cells during the 

weight update are half-selected, the energy consumption is greatly reduced compared to 

the traditional V/2 write scheme in crossbar array where the voltage drop of half-selected 

cells are VW/2=1.5 V. 
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Fig. 3.2  The I-V characteristics of resistive synaptic device, MIEC selector [76] and the 

series of the above two devices. With selector, the cell resistance is increased to alleviate 

the IR drop along interconnects in the weighted sum and the leakage on the unselected cells 

(~10X reduction), without affecting the weight update. VW, VR and VX labeled here are the 

voltages for the original synaptic array without the selector. ©  2016 IEEE. 

 

3.1.2 Pseudo-crossbar Array Architecture 

The write disturbance problem in crossbar array architecture is also a concern in the 

conventional memory application. A common design solution is to add a access transistor 

in series with the eNVM device, forming the one-transistor one-resistor (1T1R) array 

architecture, as shown in Fig. 3.3(a). The word line (WL) controls the gate of the transistor, 

which can be viewed as a switch for the cell. The source line (SL) connects to the source 

of the transistor. The eNVM cell’s top electrode connects to the bit line (BL), while its 

bottom electrode connects to the drain of the transistor through a contact via. In such case, 

the cell area of 1T1R array is then determined by the transistor size, which is typically >6F2 

depending on the maximum current required to be delivered into the eNVM cell. Larger 

current needs larger transistor gate width/length (W/L). However, the conventional 1T1R 

array is not able to perform the weighted sum operation that follows Eq. (1.1). In this case, 
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we have to modify the conventional 1T1R array by rotating the BLs by 90o, which is named 

as the pseudo-crossbar array architecture [60]. In weighted sum operation, all the 

transistors will be transparent when all WLs are turned on. Thus, the input vector voltages 

are provided to the BLs, and the weighted sum currents are read out through SLs in parallel. 

It should be noted that the IR drop problem still exists in the pseudo-crossbar array, and 

the wire RC model in Fig. 1.4(b) can also be applied here to study the IR drop problem. 

 
Fig. 3.3  Transformation from (a) conventional 1T1R array to (b) pseudo-crossbar array by 

90o rotation of BL to enable weighted sum operation. ©  2018 IEEE. 

 

The voltage bias schemes for weight update is shown in Fig. 3.4. As the weight increase 

and decrease need different programming voltage polarities, the weight update process 

requires 2 steps with different voltage bias schemes, which is similar to the crossbar array. 

In weight update, the selected cells will be on the same row, and programming pulses or 

biases (if no update) are provided from the SL, allowing the selected cells to be tuned 

differently in parallel. To perform weight update for the entire array, a row-by-row 

operation is still necessary. Typically, the entire row will be selected at a time to ensure the 

maximum parallelism. With only the selected WL activated, the unselected cells at all other 

rows can be free from the write disturbance, meanwhile achieving significant reduction on 

the energy consumption in biasing these unselected rows. 

SL BL

WL

Cell

Conventional 1T1R array

eNVM

BL

WL

Cell

Pseudo-crossbar array

SL

(a) (b)



43 

 

 
Fig. 3.4  Voltage bias scheme in the write operation of pseudo-crossbar array. Two separate 

phases for weight increase and decrease are required. In this example, the left cell of the 

selected cells will be updated in phase 1, while the right one will be updated in phase 2. ©  

2018 IEEE. 

 

3.2 Design of Neuron Peripheral Circuits 

Besides the synaptic array, several neuron peripheral circuits are needed to construct a 

standalone weighted sum computation unit. Fig. 3.5 shows the circuit block diagrams for 

crossbar and pseudo-crossbar array architecture. In weighted sum operation, crossbar and 

pseudo-crossbar array need WL and BL switch matrix to pass the input vector voltages, 

and the weighted sum results will be read out through the multiplexer (Mux), read circuits 

and shift-add circuits. In weight update operation, both arrays need two switch matrixes 

implement the array write scheme such as Fig. 3.4. In this section, these key neuron 

peripheral circuits will be introduced in detail. 
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Fig. 3.5  Circuit block diagram for the (a) crossbar and (b) pseudo-crossbar array 

architectures. 

 

3.2.1 Crossbar WL Decoder 

The WL decoder is modified to be “crossbar WL decoder” in pseudo-crossbar array, 

which has an additional feature to activate all the WLs for making all the transistors 

transparent for weighted sum. Inspired from [78], the crossbar WL decoder is constructed 

by attaching the follower circuits to every output row of the traditional decoder, as shown 

in Fig. 3.6. If ALLOPEN=1, the output of the decoder will not be taken into account, and 

all the transmission gates in the follower circuits become open, which allows the input 

voltage (VIN) pass through all the transmission gates thus all the WLs are activated. If 

ALLOPEN=0, the crossbar WL decoder will function as a traditional WL decoder, which 

activates one WL at a time. It should be noted that the follower circuits are designed using 

transmission gates with VIN instead of digital logic gates with VDD as the WL voltage, 

because the WL voltage may have to be different for the weighted sum (read) and weight 

update (write) operation. 
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Fig. 3.6  Circuit diagram of the crossbar WL decoder. Follower circuit is attached to every 

row of the decoder to enable activation of all WLs when ALLOPEN=1. ©  2018 IEEE. 

 

3.2.2 Switch Matrix and Input Vector Encoding 

In both crossbar and pseudo-crossbar array architectures, switch matrixes are used for 

fully parallel voltage input to the array rows or columns. Fig. 3.7(a) shows the BL switch 

matrix for example. It consists of transmission gates that are connected to all the BLs, with 

control signals (B1 to Bn) of the transmission gates stored in the registers (not shown here). 

In the weighted sum operation, the input vector signal is loaded to B1 to Bn, which decide 

the BLs to be connected to either the read voltage or ground. In this way, the read voltage 

that is applied at the input of transmission gates can pass to the BLs and the weighted sums 

are read out through SLs in parallel. If the input vector is not 1 bit, it should be encoded 

using multiple clock cycles. As mentioned earlier, the reason why we do not use analog 

voltage to represent the input vector precision is due to the I-V nonlinearity of eNVM, 

which will cause the weighted sum distortion or inaccuracy [56]. As shown in Fig. 3.7(b), 

B1 to Bn are a vector of bit streams. To obtain the final weighted result, the shift and add 

circuit in Fig. 3.5 will perform shift and add on the weighted sum results of all bit cycles. 
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Fig. 3.7  (a) Transmission gates of the BL switch matrix in the weighted sum operation. A 

vector of control signals (B1 to Bn) from the registers (not shown here) decide the BLs to 

be connected to either a voltage source or ground. (b) Control signals in a bit stream to 

represent the precision of the input vector. ©  2018 IEEE. 

 

3.2.3 Read Circuit as ADC 

To convert these analog weighted sum currents to digital outputs, we designed the read 

circuit [61] to employ the principle of the integrate-and-fire neuron model, as shown in Fig. 

3.8. The read circuit integrates the weighted sum current on the finite capacitance of the 

array column. Once the voltage charges up above a certain threshold, the read circuit fires 

an output pulse and the capacitance is discharged back. The counter after the read circuit 

then converts the number of output spikes to digital data. The precision required for this 

analog-to-digital conversion (ADC) determines the pulse width in each bit of the input 

vector. As the cell size in 1T1R array is much smaller compared to the ADC size, multiple 
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synaptic array columns may share one ADC through a Mux to improve the area efficiency. 

However, this inevitably increases the latency of weighted sum as time multiplexing is 

necessary because of the sharing. 

 
Fig. 3.8  (a) Read circuit that converts the analog column current to digital outputs. (b) The 

simulated integration-and-fire waveform of the read circuit. ©  2015 IEEE. 

 

3.3 Compact Oscillation Neuron Exploiting Metal-Insulator-Transition 

Today’s CMOS integrate-and-fire neuron typically requires tens of transistors. As 

shown in Fig. 3.8, such complex CMOS neuron causes the column pitch matching problem. 

As discussed in the previous section, multiple columns have to share one neuron, thereby 

reducing the parallelism as the time-multiplexing is needed to sequentially read out all the 

weighted sum from the array. In such context, we propose a compact oscillation neuron 

using the metal-insulator-transition (MIT) device in order to replace the CMOS neuron. 

Prior eNVM designs [79-81] mostly focused on the synaptic array core instead of the 
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peripheral neuron node. A recent experimental work demonstrated the oscillation neuron 

with small-scale synaptic array [82], however, how to design a large-scale synaptic array 

with oscillation neuron remains unexplored. In this section, we will analyze the impact of 

MIT device characteristics on the weighted sum accuracy, study the feasibility of 

oscillation neurons connected to the resistive synaptic array, and benchmark circuit-level 

performances with the CMOS neuron at both sub-circuit and array level. 

3.3.1 Metal-Insulator-Transition Phenomenon 

The metal-insulator-transition (MIT) phenomenon occurs in strongly correlated oxides, 

where the oxides switch between a metallic state and an insulating state under certain 

external excitation, thermally or electrically [83]. The MIT device shows a threshold 

switching I-V characteristics with hysteresis and theoretically 2-5 orders of magnitude 

ON/OFF ratio. For the Mott transition in strongly correlated oxides, the bandgap collapses 

when the carrier density in the materials is larger than the critical carrier density nc, 

resulting in the insulator-to-metal transition. Carrier density in the materials can be 

increased by either thermal injection or electric injection. Therefore, the threshold 

switching has a critical temperature (TC) or a critical threshold voltage (VTH). Among all 

the Mott oxides, the research in the literature extensively focused on VO2 as the 

representative material system for studying the physical mechanism. However, VO2 is not 

suitable for on-chip integration because its TC ~67 oC [84] is relatively low, and the 

threshold switching behavior disappears above TC. What makes the circuit design more 

challenging is the fact that the VTH of VO2 strongly depends on the environment 

temperature even below TC. For this reason, we select an emerging material NbO2 with an 
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extremely high TC ~808 oC [84] that has superior thermal stability. Recent experiments 

have shown the on-chip integration of NbO2 with the CMOS platform [85]. 

The MIT device has been listed as an emerging device candidate in the ITRS roadmap 

for logic switch [75], still lacking demonstrations to be competitive in practical applications. 

For example, the steep-slope field-effect transistor with strongly correlated oxides as the 

channel material suffers from the low carrier mobility [86]. The recent revival of MIT 

device is owing to its capability to serve as a two-terminal selector device for the crossbar 

memory array to suppress the sneak paths [85]. Different from these works, we propose to 

use MIT device as the oscillation neuron in neuromorphic computing. Using the coupled-

oscillators as phase encoding for the computation-hard optimization problems have been 

proposed [87-89], however here we take a different approach of using the oscillators: we 

utilize the oscillation as an integrate-and-fire neuron’s output waveform. 

Fig. 3.9(a) shows the hysteresis I-V characteristic of a typical MIT device [83]. We 

have built a Verilog-A behavior model to capture the switching characteristics with 

parameters such as the resistance in the ON/OFF state (RON/ROFF), the threshold voltage 

(VTH), and the hold voltage (VHOLD). The MIT device is initially in the OFF state, and it 

will switch to the ON state once the applied voltage exceeds VTH. When the applied voltage 

across the MIT device is smaller than VHOLD, it will switch back to the OFF state. Therefore, 

the resistive switching in the MIT device is essentially “volatile”, unlike the “non-volatile” 

resistive switching in the eNVM.  
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Fig. 3.9  (a) Hysteresis I-V characteristics of a MIT device. [83] (b) Circuit configuration 

of an oscillation neuron node with MIT device and eNVM synaptic weight. (c) SPICE 

simulation waveform of the oscillation neuron in (b). ©  2016 IEEE. 

 

The intrinsic transition time in the MIT device is defined as the time required to switch 

between RON and ROFF. To make the neuron node oscillate, we have to connect a resistor 

(e.g. an eNVM synapse) with the MIT device, as shown in Fig. 3.9(b). We assume the 

eNVM resistance (R) is between MIT device’s RON and ROFF, and there is parasitic 

capacitance at the neuron node. Initially when the voltage VDD is applied, the node voltage 

on the capacitor will be charged because most of the voltage drop should be on the MIT 

device (ROFF>R). Once the node voltage exceeds VTH, the MIT device switches to RON, 

and the capacitor starts discharging since the voltage drop on the MIT device becomes 

small (RON<R). Once the node voltage decreases below VHOLD, the MIT device switches 

to ROFF. This charging and discharging process repeats, thus the voltage of the neuron node 

oscillates between VHOLD and VTH. Fig. 3.9(c) shows the SPICE simulation waveform for 

the circuit configuration in Fig. 3.9(b). As the charging is through the eNVM and the 

discharging is through the MIT device at RON, the RC delay of the charging is larger than 

that of the discharging, making the voltage oscillation a triangular waveform. The 
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oscillation of the MIT device in such circuit configurations has been widely observed in 

various experiments [82, 90-93], showing its feasibility as the oscillation neuron. 

 By solving the Kirchhoff’s Law of Fig. 3.9(b), the analytical solution of the charging 

time trise from VHOLD to VTH can be obtained, which is expressed as  

trise = -RrC×log (
VTH-VDD

Rr

R

VHOLD-VDD
Rr

R

) (3.1) 

where Rr=(R||ROFF). Similarly, the discharging time from VTH to VHOLD can be calculated 

as: 

tfall = -RfC×log (
VHOLD-VDD

Rf

R

VTH-VDD
Rf

R

) (3.2) 

where  Rf=(R||RON). If we assume ROFF>>R>>RON, then Rr≈R and Rf≈RON, which makes 

trise proportional to eNVM resistance and tfall to be a constant much smaller than trise. We 

can obtain the ideal oscillation frequency f by using Eq. (1): 

f = 
W

C×log (
VHOLD-VDD

VTH-VDD
)
 

(3.3) 

where W=1/R is the weight of the eNVM synapse. f is then proportional to the eNVM 

weight. Therefore, the oscillation frequency represents a weighted sum if the MIT device 

connects to all the eNVM weights in one column. 

3.3.2 Design for Accurate Weighted Sum 

In this section, we will set up appropriate MIT device parameters, and then discuss the 

dependence of the oscillation frequency on applied voltage (VDD) and eNVM weight. The 

simulation is based on the circuit configuration of Fig. 3.9(b). 
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A. Setup of MIT Device Parameters 

Prior experimental study has shown that VHOLD is dependent on the electrode work 

function and can be as low as 0.5V, while VTH can be reduced to 1V with smaller oxide 

thickness [93]. In this case, the VDD is preferred to be 0.5V+1V=1.5V to make the voltage 

swing of oscillation centered at half VDD. However, this may disturb the eNVM resistance 

as the voltage across eNVM can reach 1V. In this work, we assume a VDD of 1.2V 

assuming that VTH can be further scaled down to 0.7V by device engineering towards 

smaller oxide thickness. We also assume a resistance ON/OFF ratio of 1000 can be 

achieved with RON=1kΩ and ROFF=1MΩ to support a wide range of eNVM weight in large-

scale arrays, where the parasitic capacitance of one column can be at least several 10’s fF 

and here we will use 100fF as a default parameter. It is noted that the ON/OFF ratio of MIT 

devices reported today are typically ~100, while the theoretical predicts in single-

crystalline phase it can be up to 105
 [83], or 106 if new material, e.g. SiTe, is used [94]. 

B. Effect of Intrinsic Transition Time 

As discussed earlier, the weighted sum will be proportional to the oscillation frequency 

if trise is much larger than tfall. However, this statement is under the assumption that the 

MIT’s intrinsic transition time is negligible. To investigate the impact of transition time, 

we simulate the oscillation frequency as a function of transition time at two different 

weights 10µS and 100µS, as shown in Fig. 3.10(a). Compared to the analytical results 

obtained by using Eq. (3.1) and (3.2), the deviation becomes more noticeable with 

increasing transition time larger than 10ps. Even if the oscillation frequency is small (<300 

MHz) with smaller eNVM weight 10µS, the need for fast transition ~10ps is not relaxed. 

The reason can be attributed to the voltage undershoot below VHOLD that leads to larger trise, 
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as shown in Fig. 3.10(b). If the transition time is comparable to the RC delay in the 

discharging phase, the discharging would not stop until the MIT device switches back to a 

resistance that is high enough to start charging the neuron node. Therefore, the transition 

time has to be smaller than the discharging RC time to avoid this undershoot issue. It has 

been reported that the oscillation frequency of MIT devices with the circuit configuration 

in Fig. 3.9(b) can be up to several 10’s to 100’s MHz [93, 95]. It is highly probable that the 

reported frequency is limited by the parasitic RC delay in the off-chip electrical 

measurement setup. Fortunately, it has been reported the intrinsic transition time in the 

MIT device can be as fast as picosecond or even in the femtosecond range, suggested by 

the optical laser pump-probe methods [84]. 

 
Fig. 3.10  (a) Oscillation frequency as a function of the MIT’s intrinsic transition time.  

Frequency deviates from the analytical value at larger transition times. (b) Undershoot of 

the voltage discharging below the hold voltage. The transition time needs to be smaller 

than discharging RC time to prevent the undershoot. ©  2016 IEEE. 

 

C. Effect of Applied Voltage Change 

Fig. 3.11(a) shows the oscillation frequency as a function of VDD for different weights. 

It can be seen that the onset of oscillation happens at VDD=VTH=0.7V. The frequency is 
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roughly proportional to VDD beyond ~1V. This simulation result can be directly verified 

by using Eq. (3.1) and (3.2). Varying VDD seems to be useful as an encoding scheme of 

the input vector for the weighted sum operation. However, this might not work in an array 

because there will be current leakage from one row to another when the row voltages are 

different. Moreover, VDD should not be large enough (~1.5V) to cause possible 

disturbance on the eNVM device as mentioned earlier. Within this limited range from 1V 

to 1.5V, it is difficult to split the VDD into multiple levels due to the noise consideration 

and practical bias circuit design constraints. Therefore, it is preferred that the input vector 

to be represented by digital pulses with the same VDD to avoid these issues. We will 

discuss this later where the oscillation neurons are integrated with the crossbar array and 

perform array-level operations. 

 
Fig. 3.11  (a) Oscillation frequency as a function of VDD with different weights. 

Oscillation will not occur when VDD is below VTH. (b) Oscillation frequency as a function 

of weight. The oscillation neuron has a limited linear weight range. ©  2016 IEEE. 

 

D. Effect of Weight Change 

The general criterion for the eNVM weight is that its resistance should be within the 

range of the MIT device resistance (from RON to ROFF) to make the neuron node oscillate. 
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It is also preferred that the resistance can satisfy the condition ROFF>>R>>RON to ensure 

an accurate weighted sum. Fig. 3.11(b) shows the frequency as a function of the eNVM 

weight. Since RON=1kΩ and ROFF=1MΩ, the oscillation would fail when the weight is 

approaching 1µS and 1mS. The linear region is located at weight values from ~10µS to 

100µS. This can be explained by the following: For small weights (large eNVM resistance), 

the eNVM resistance cannot be ignored compared to the large ROFF, thus the voltage drop 

on the MIT device is smaller than expected, leading to larger trise and lower oscillation 

frequency. For large weights (small eNVM resistance), the eNVM resistance cannot be 

ignored compared to the small RON, thus tfall becomes noticeable and the oscillation will 

slow down. In addition, the intrinsic transition time serves as a hard limit for the oscillation 

frequency, which will also have insignificant impact on large weights as the frequency is 

approaching this limit. 

3.3.3 Array Implementation for Weighted Sum Operation 

A. Crossbar Array Architecture 

As mentioned in Section 1.3, the resistive crossbar array architecture with synaptic 

devices has been proposed to perform the weighted sum operation in a neural network, 

where the crossbar array represents the weight matrix, with the algorithm weight values 

mapped to the eNVM device weight range. In this work, we assume the algorithm weight 

values are normalized between 0 and 1, corresponding to the eNVM minimum and 

maximum weight, respectively. Fig. 3.12 shows the weighted sum operation in the crossbar 

array architecture. The input vector is encoded into a digital number of pulses, which 

controls the transmission gates at each word line (WL) row. Each row will be connected to 

a fixed voltage if it is selected (Si=VS), otherwise the transmission gate is turned off and 
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the row becomes floating (unselected). Then, the total weight of a column is the sum of 

weights at the selected rows, where the equivalent circuit of a column becomes the 

configuration in Fig. 3.9(b). With the MIT device connected to the bit line (BL) column, 

each column can oscillate at different frequencies based on the total weight of the column. 

The inverter at each column helps restore the oscillation waveform to the rail-to-rail 

rectangle pulses (VDD to 0), and the ripple counter can convert the number of pulses into 

a digital value (in binary fashion). However, typically the resistance of a synaptic eNVM 

device with continuous weight tuning has a limited ON/OFF ratio <10 [33, 35], which 

makes the minimum eNVM weight not small enough thus it cannot represent a 0 value in 

the algorithm. To solve this problem, we add a dummy column with all the cells at the 

minimum weight to eliminate this weight offset, which is the same as the technique 

presented in Section 2.3.4. Eq. (3.3) shows that ideally the oscillation frequency is 

proportional to the weight, thus we can subtract the output value of the dummy column 

from that of the array column to obtain the accurate weighted sum. Finally, to complete the 

entire weighted sum task, we have to shift and add the weighted sum value at different 

input vector cycle and get the final weighted sum since the input vector is formed with 

digitized pulses using a binary representation. 
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Fig. 3.12  Weighted sum operation with the crossbar array architecture. The input vector is 

digitized into several read cycles. The dummy column with synapses at minimum weight 

is added to eliminate the OFF-state weight. The inverter and ripple counter together 

converts the number of oscillation cycles into digital value. The total weighted sum values 

are then obtained by subtracting the partial weighted sum value of the dummy column. ©  

2016 IEEE. 

 

Although the crossbar array has its simple structure to perform the weighted sum 

operation, it has the well-known sneak path problem that causes interference (or cross-talk) 

between cells. This problem can be found with the oscillation neuron as well. When the 

unselected rows are floating, they become the leakage paths between different columns as 

they have different oscillation frequencies, thus the frequency of each column can get 

disturbed by other columns. The worst case is when one column has a total weight W1, and 

the other columns have the same total weight W2 for each of them. Then, the voltage 

oscillation at W1 column may be significantly affected by the group oscillation behavior of 

all W2 columns. 
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Fig. 3.13  (a) Deviation of the number of output pulses (value after the ripple counter) 

within 30 ns of a column with total column weight W1, while each of the other 127 columns 

has a total column weight W2 (=nW1). Oscillation completely stops when W1 is low and 

W2>W1. (b) An example of failure case with W1=20μS and W2=80μS, where the oscillation 

behavior is interrupted by the W2 columns. ©  2016 IEEE. 

 

To conduct the array-level SPICE simulation, we set the array size to be 128×128, and 

the minimum and maximum value of a single eNVM weight are 0.4µS and 2µS (ON/OFF 

ratio=5), respectively. In this case, the total weight of a column can be easily added up to 

several 10’s to 100’s µS, which is within the resistance range of the MIT device from the 

earlier setup. We then simulate all the possible worst cases in the array with different values 

of W1 and W2 at the linear weight range to analyze how much interference can occur 

between columns, as shown in Fig. 3.13(a). The value of W2 is taken as n×W1, where n is 

from 1/5 to 5 because the eNVM weight ON/OFF ratio is 5. The weight difference between 

columns is at most 5 times with the same number of rows activated. We measure the 

number of pulses after the counter within 30 ns, and the results in Fig. 3.13(a) suggest that 

the deviation from the ideal number of output pulses is generally large at many 

combinations of W1 and W2. There are even extreme cases where no oscillation occurs at 
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low W1 with W2>W1. Low W1 could have more floating rows, leading to larger interference 

from W2 columns. In addition, if W2>W1, the faster oscillation of W2 can constantly 

interrupt the oscillation behavior of W1. An oscillation waveform of a failure case with 

W1=20µS and W2=80µS is shown in Fig. 3.13(b), where the MIT device never switches 

and the voltage just fluctuates with a small magnitude. 

B. 2-Transitor-1-Resistor (2T1R) Array Architecture 

To eliminate the sneak path current that causes interference between columns in the 

crossbar array, a transistor can be added in series with the eNVM device as in conventional 

1-transistor-1-resistor (1T1R) array architecture for memory applications. The 1T1R array 

architecture has been used for performing weighted sum operation with modification on 

the BL direction, making it to be the input row like the pseudo-crossbar array [60]. 

Similarly, the WL is in parallel with BL and it controls all the transistors on a row, thus 

there is no interference if the transistors on the entire row are turned off. However, in 1T1R 

array, different number of selected rows will affect the total parasitic capacitance on the 

source line (SL) column, which may hamper the weighted sum accuracy according to Eq. 

(3.3). The reason for this capacitance variation is due to the transistor drain capacitance, as 

it can be isolated from the SL column if the transistor is turned off, otherwise it will 

contribute to the parasitic capacitance of the SL column. To alleviate this effect, we extend 

the 1T1R array by adding one more transistor adjacent to the existing transistor, 

constructing a 2-transistor-1-resistor (2T1R) array architecture, as shown in Fig. 3.14. The 

additional transistor is controlled by the inverting WL signal with its drain floating. In this 

way, the additional transistor serves as a complementary parasitic capacitance for the SL 

column. Each cell will contribute one drain and two source parasitic capacitance 
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independent of WL signal as one of transistors will be turned on with the other one turned 

off. 

With a 2T1R array size of 128×128, the total SL column capacitance is measured to be 

~125 fF based on the transistors in a 65nm CMOS technology. Following the same 

simulation setup as in the previous section, we have simulated the deviation of number of 

output pulses across the wide range of weight values, and the results show that the 

maximum deviation is only ~2%, which is a significant improvement over the results in 

Fig. 3.13(a). Although the 2T1R architecture seems to have a larger overhead in the 

synapse array area compared to the simple crossbar architecture, it should be noted that the 

array area is determined by the pitch of the peripheral circuits in the logic design rule. For 

example, the array cell height should be aligned with the standard cell height of the WL 

driver, which is basically the height of two transistors. Therefore, the array area overhead 

with the 2T1R array can be considered negligible. 

 
Fig. 3.14  Schematic of 2-transistor-1-resistor (2T1R) array architecture. The transistor in 

series with eNVM could cut off the interference paths between columns. The other 

transistor with floating drain helps eliminate the capacitance variation when different 

number of rows are activated (Si=VS). Here the dummy column and the readout circuitry 

are omitted. ©  2016 IEEE. 
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C. Simulation of Weighted Sum Operation in Array 

As the accuracy deviation due to the array architecture is largely resolved, we have to 

revisit the effect of eNVM weight change to optimize the weighted sum accuracy. Fig. 

3.15(a) shows the oscillation frequency as a function of weight similar to Fig. 3.11(b), but 

with a parasitic capacitance of 125fF as in the 2T1R array. From the algorithm perspective, 

it is expected that the weighted sum of one column in an 128×128 array should have a 

maximum value of 128 if all the inputs are 1 (Si=VS) and all the algorithm weight values 

are also 1. On the circuit side, we have to determine the read cycle time of input vector that 

can translate the oscillation frequency to the desired number of output pulses to match the 

value from the algorithm. Due to the nonlinearity in Fig. 3.15(a), the read cycle time has 

to be calibrated at the linear weight region with the corresponding algorithm value to 

prevent overestimation, since the actual frequency will slightly decrease outside of the 

linear region. For the array implementation, the calibration should be done with both the 

actual column and dummy column. Therefore, a better approach is to measure the deviation 

between the slope of the two curves (in log-log scale) in Fig. 3.15(a), as shown in Fig. 

3.15(b). We select two weights with the same deviation that can cancel out each other, and 

measure the read cycle time required for the corresponding algorithm weighted sum value. 

In this case, since the weight of real column (70µS) is 5× larger than the weight of dummy 

column (14µS), we have to calibrate the read cycle time that gives 70µS/2µS=35 pulses, 

and it is measured to be ~30ns. 
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Fig. 3.15  (a) Oscillation frequency as a function of weight at C=125 fF. (b) The deviation 

between the slope of oscillation frequency and the linear fit in (a). The linear region is 

centered at W~30μS. To improve weighted sum accuracy, the mapping from algorithm to 

real weighted sum result should be calibrated in a case where the slope deviation of array 

and dummy column can cancel out. The 5× means the maximum weight difference between 

columns. ©  2016 IEEE. 

 

Then, we run the Monte Carlo simulation with 12,800 weighted sum tasks in a 128×128 

2T1R array based on the calibrated read cycle time. We assume both the input vector and 

weights are 4-bit values in uniform distribution. As shown in Fig. 3.16, the weighted sum 

tasks with the calibrated read cycle time ~30ns has only a small weighted sum accuracy 

deviation (average is ~2.5%).  However, if the application can tolerate more accuracy 

deviation than this, we can accelerate the read process by using a shorter read cycle. If the 

read cycle is reduced by 2n times, then the final weighted sum result needs to be shifted by 

n bits toward the left to match the algorithm weighted sum range. Fig. 3.16 shows a clear 

tradeoff between the accuracy and the read cycle time. We also simulated the weighted 

sum tasks with doubled read cycle time (~60ns), however it does not show noticeable 

accuracy improvement over the 30ns case. 



63 

 

 
Fig. 3.16  Statistical deviation of final weighted sum accuracy with different read cycle 

time. As the array row size is 128 and the maximum value of an algorithm weight is 

normalized to 1, the weighted sum of a column should be 128, corresponding to a read 

cycle of ~30 ns. The read cycle time can be reduced with a tradeoff of lower accuracy of 

the final weighted sum. ©  2016 IEEE. 

 

Finally, the performance of the proposed oscillation neuron is benchmarked with that 

of the CMOS neuron [61] at the 65nm technology node. Table 3.1 shows the sub-circuit 

level benchmark results. To make a fair comparison, we follow the same simulation setup 

as [61]. The performance is evaluated within 8 integrate-and-fire cycles with eNVM weight 

to be ~53µS. Despite a ~40% increase in latency, the compact oscillation neuron circuit 

achieves tremendous reduction in area, energy and leakage power. Table 3.2 shows the 

array level benchmark results. The synaptic array size is set to be 128×128 and there are 4 

pulse cycles for the input vector. In practical array design, multiple columns usually share 

one neuron to improve the area efficiency. From the array’s point of view, the oscillation 

neuron does not gain much benefit in total area (synapse array area + peripheral neuron 

area) because the total area is still dominated by the array core. However, the oscillation 

neuron eventually outperforms the CMOS neuron in latency. As the oscillation neuron is 
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more compact, the number of columns shared by one neuron can be reduced from 8 to 4, 

thereby increasing the parallelism. 

Table 3.1  Sub-circuit Level Benchmark. ©  2016 IEEE. 

 CMOS Neuron [61] Oscillation Neuron Reduction 

Area 11.24 µm2 0.89 µm2 >12.5 X 

Latency 4.5 ns 6.2 ns -37.8% 

Energy Consumption 1.346 pJ 0.265 pJ >5 X 

Leakage Power 104.9 µW 35.84 nW ~3,000 X 

  

Table 3.2  Array Level Benchmark (1 Weighted Sum Task). ©  2016 IEEE. 

 
Array with CMOS 

Neuron [61] 

Array with 

Oscillation Neuron 
Reduction 

Area 36918 µm2 35571 µm2 ~4 % 

Latency 144 ns 99.2 ns >30 % 

Energy Consumption 693.2 pJ 139.5 pJ ~5 X 

Leakage Power 1.73 mW 44.12 µW ~40 X 

  

3.4 Summary 

In the array design, the selector is used to alleviate the IR drop along interconnects and 

the leakage power on the unselected cells, without affecting weight update. To further 

reduce the energy consumption and prevent write disturbance problem in weight update, 

conventional 1T1R array is modified to be pseudo-crossbar array, with BLs rotated by 90o 

to enable weighted sum operation. For the crossbar and pseudo-crossbar array, key neuron 

peripheral circuits are introduced in detail. To replace the existing complex read circuit, 

the MIT device has been proposed as an oscillation neuron for the parallel weighted sum 

operation in the eNVM synaptic array. In this work, we studied the impact of MIT device 
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parameters and provided design guidelines for future MIT device engineering. To enable 

weighted sum in large-scale arrays, a MIT device that has large ON/OFF resistance ratio 

is desired. The feasibility of the eNVM synaptic array with oscillation neurons is also 

studied. To prevent oscillation interference between array columns, the 2T1R array 

architecture is preferred over the crossbar architecture at negligible expense of array area. 

The read cycle is calibrated in the array design to improve the weighted sum accuracy. 

Monte Carlo simulation of weighted sum tasks shows the tradeoff between the weighted 

sum accuracy and the read latency. Compared to the CMOS neuron [61], oscillation neuron 

shows >12.5X reduction of area at single neuron node level, and shows a reduction of ~4% 

total area, >30% latency, ~5X energy and ~40X leakage power at 128×128 array level, 

demonstrating its advantage for neuro-inspired computing.   
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 NEUROSIM: DEVICE-CIRCUIT-ALGORITHM BENCHMARK SIMULATOR 

FOR NEURO-INSPIRED ARCHITECTURES 

In this chapter, NeuroSim was developed to be a circuit-level macro model that 

estimates the area, latency, dynamic energy and leakage power to facilitate the design space 

exploration of neuro-inspired architectures with mainstream and emerging device 

technologies. NeuroSim provides flexible interface and a wide variety of design options at 

the circuit and device level. Therefore, NeuroSim can be used by many neural network 

(NN) algorithms as a supporting tool to provide circuit-level performance evaluation. With 

NeuroSim, an integrated framework can be built with hierarchical organization from the 

device level (synaptic device properties) to the circuit level (array architectures) and then 

to the algorithm level (NN topology), enabling instruction-accurate evaluation on the 

learning accuracy as well as the circuit-level performance metrics at the run-time of 

learning. In this chapter, we will demonstrate the use of NeuroSim alone to evaluate the 

performance of partitioning a large weight matrix into several small SRAM and eNVM 

arrays. In the next chapter, we will demonstrate the use of NeuroSim to support the learning 

algorithm for circuit-level performance benchmark. 

4.1 NeuroSim Architecture 

4.1.1 Overview 

NeuroSim is a circuit-level macro model developed in C++ that can be used to estimate 

the area, latency, dynamic energy and leakage power of neuromorphic hardware 

accelerators with SRAM and eNVM based architectures to facilitate the design space 

exploration. The framework of NeuroSim follows the principles of CACTI [96] for SRAM 

cache and NVSim [97] for NVM. These simulators focus on the design for traditional 
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memory application, and do not support the memory design for neuromorphic computation. 

In contrast, NeuroSim is dedicated to support neuro-inspired architectures. The hierarchy 

of the simulator consists of different levels of abstraction from the memory cell parameters 

and transistor technology parameters, to the gate-level sub-circuit modules and then to the 

array architecture including the peripheral circuits. Fig. 4.1(a) shows an overview of the 

high-level architecture with neuromorphic hardware accelerator to implement NNs. NNs 

generally require multiple (or deep) layers for better learning performance, where each 

layer contains the synaptic core and neuron periphery. A synaptic core is specifically 

designed for weighted sum and weight update. It takes the digital input vector and gives 

out the weighted sum result in the digital format. Thus the digital communication is used 

between synaptic cores while any analog computation will just be done within the core 

only. The synaptic core further consists of the synaptic array and array periphery. The 

synaptic array (such as Fig. 1.4(a) or Fig. 3.3) is the core unit of weighted sum computation 

and the array periphery helps transform the results to be the digital format if necessary. 

NeuroSim supports various digital and analog synaptic cores, as shown in Fig. 4.1(b)-(e). 

On the other hand, the neuron periphery is responsible for nonlinear activation function 

and communication from one synaptic core to another. Currently, NeuroSim can 

implement nonlinear activation function using a SRAM/eNVM array based look-up table 

(LUT), while it also supports the low-precision activation function such as thresholding 

with step function. As the circuit implementation of neuron periphery is more flexible and 

can vary between different NNs, we will only show an example one in later case study. 
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Fig. 4.1  (a) Overview of high-level architecture with neuromorphic hardware accelerator. 

(b) Circuit block diagram of SRAM synaptic core. (c) Circuit block diagram of digital 

eNVM synaptic core with 1T1R array. (d)-(e) Circuit block diagram of analog eNVM and 

FeFET synaptic core with the pseudo-crossbar array, respectively. 
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4.1.2 Synaptic Core 

In this section, we introduce different synaptic core architectures, which are considered 

to be at one hierarchy level higher than the sub-circuit modules, as they consist of both 

memory array and peripheral circuits that are closely jointed to form a standalone weighted 

sum computation unit. Important parameters at this level include synaptic array types and 

sizes, operating modes of peripheral circuits, and the number of synapses that can be 

accessed in parallel during weighted sum and weight update, etc. 

A. SRAM Synaptic Core 

The circuit block diagram of SRAM synaptic core is shown in Fig. 4.1(b). As SRAM 

cells can only store binary bits, we group multiple SRAM cells along the row as one 

synapse to represent a higher weight precision. The weighted sum and weight update 

operation in the SRAM based synaptic core are essentially row-by-row based, which is 

similar to the read and write operation in a conventional SRAM memory.  

In the weighted sum operation, the input vector is encoded using multiple clock cycles 

to represent its precision. For each row, an input vector bit of 1 means the row will be 

selected for read, otherwise the row will be skipped. To select a row, the WL is activated 

through the WL decoder. To access all the cells on the selected row, the BLs are pre-

charged by the pre-charger and the write driver in weighted sum and weight update, 

respectively. After the memory data are read by the sense amplifier (S/A), the adder and 

register are used to accumulate the partial weighted sum in a row-by-row fashion. To make 

sure the overflow will not occur during the accumulation, the adder and register need to 

have a longer bit-width than the weight precision of a synapse. The adder and shift register 

pair at the bottom performs shift and add of the weighted sum result at each input vector 
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bit cycle to get the final weighted sum. The bit-width of the adder and shift register needs 

to be further extended depending on the precision of input vector. If the values in the input 

vector are only 1 bit, then the adder and shift register pair is not required. For the write 

operation, new weights will be provided from the input of the write driver. All the cells on 

the same row can be updated at the same time, thus the weight update operation is also 

row-by-row based. 

B. Digital eNVM Synaptic Core 

The circuit block diagram of digital eNVM synaptic core is shown in Fig. 4.1(c). By 

replacing the SRAM core memory with eNVM without much modification on the whole 

digital circuit architecture, we potentially get smaller synaptic core area. The way the 

digital eNVM synaptic core works is very similar to the SRAM one, thus it can just use the 

traditional 1T1R array as the synaptic array. Similarly, we have to group multiple binary 

1T1R cells along the row as one synapse to represent a higher weight precision. 

The weighted sum operation in digital eNVM synaptic core is also row-by-row based. 

After the memory data are read out by the voltage S/A, adder and register will perform 

accumulation on the partial weighted sum through row by row. One key difference 

compared to the SRAM synaptic core is the use of Mux. As the cell size in 1T1R array is 

much smaller, it will not be area-efficient to put all the read periphery circuits underneath 

the array. Therefore, it is necessary to use a Mux to share the read periphery circuits among 

synaptic array columns. However, this inevitably increases the latency of weighted sum as 

time multiplexing is needed because of the sharing. For the weight update, the column 

decoder can select a group of synapses at a time depending on the design, and the 
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programming voltages will be provided from the decoder driver. Two phases are required 

to program the cells to be ON and OFF because they need different WL voltages. 

C. Analog eNVM/FeFET Synaptic Core 

In NeuroSim, the analog eNVM synaptic core supports two types of the synaptic array 

architecture: the crossbar and the pseudo-crossbar array architectures, as described earlier 

in Section 3.2. In this chapter, we will only show the pseudo-crossbar array architecture 

(Fig. 4.1(d)-(e)). The details of pseudo-crossbar array architecture has been discussed in 

Section 3.2. Briefly speaking, the crossbar WL decoder is used to activate all the WLs 

during weighted sum, while activate one WL during weight update. The switch matrix can 

activate multiple rows or columns at a time, thus it enables parallel voltage inputs of a 

vector in weighted sum, and can realize the weight update scheme that requires different 

voltage biasing in selected/unselected rows and columns. To be general, ADC is labelled 

rather than the read circuit for the reason that other neuron circuit designs (such as the 

oscillation neuron in Section 3.3) can also be used. Similarly, the adder and shift register 

pair will perform shift and add on the weighted sum results of all input vector bit cycles to 

obtain the final weighted result. On the other hand, the analog FeFET synaptic core is only 

different than the eNVM one in the synaptic array structure, as shown in Fig. 4.1(e). It also 

has an access transistor for each cell to prevent programming on other unselected rows 

during row-by-row weight update. As FeFET is a three-terminal device, it needs two 

separate SLs for the weighted sum (SLS) and weight update (SLN), respectively. 

4.1.3 Transistor and Cell Models 

At the device level, NeuroSim is featured with various design options in transistor 

technologies and memory cells. The transistors can be configured to be high-performance 
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(HP) or low-standby-power (LSTP) type with different technology nodes from 130 nm 

down to 7 nm, where FinFET is used at 14 nm and beyond. The transistor models are 

calibrated based on Predictive Technology Model (PTM) [98]. Compared to industry 

transistor models, PTM is available to the public and it has a wide range of technology 

nodes, which is suitable for the design space exploration at the early design stage. 

Important parameters in transistor models include device W/L, the operating voltage (VDD), 

threshold voltage (VTH), gate and parasitic capacitance, and NMOS/PMOS saturation/off 

current density across different temperatures, etc. In particular, VTH is extracted at the gate 

voltage (VGS) where the drain current density (JDS) is 300 nA/μm under VDS=VDD. In bulk 

MOSFET, the total gate capacitance is the sum of ideal, fringe and overlap gate capacitance, 

while the total drain capacitance includes the capacitance in the diffusion region from 

junction to bottom, channel and the other three sidewalls. Based on these parameters, the 

area and intrinsic RC model of standard logic gates (INV, NAND, NOR, transmission gates, 

etc) can be calculated analytically thus the circuit-level performance metrics of each sub-

circuit module can be estimated. 

The design of SRAM and eNVM cells in NeuroSim is also flexible. We use 

conventional 6T SRAM (extendable to 8T SRAM), where all transistors’ W/L can be 

adjusted. The transistor technology defined for other digital circuits also applies to 

SRAM’s transistors. On the other hand, eNVM cells have parameters such as max/min 

conductance, read/write voltage and pulse width, number of conductance states (weight 

precision) and I-V nonlinearity degree, etc. These parameters play an important role in the 

array-level performance and will further affect the peripheral circuit design in the synaptic 

core. 
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4.1.4 Customization 

NeuroSim is designed to have as much flexibility as possible for customization, without 

increasing the workload for the users to do so. For the customization of modules, they can 

be discussed in three different levels as below: 

A. Architecture Level 

We define the architecture level to be the level between the algorithm and sub-circuit 

module level. Synaptic cores are at this level. The design of synaptic cores is not limited 

to the four types discussed in Section 4.1.2. They are more like standard templates and the 

users are always encouraged to build their own synaptic cores (or other computation units) 

following the hierarchical structure in NeuroSim. For a more complex design, the users 

may need to insert one or more hierarchical layers that uses the synaptic cores as building 

blocks, for example, when it comes to the partition strategy on the synaptic cores for 

performance optimization [64].  

In the top hierarchical layer, the user needs to make sure the interface is well defined 

and has the ability to communicate with the algorithm side. Additionally, considering the 

cases where the NN simulator has its own circuit/device-level configurations (e.g., the 

users have their own embedded synaptic array in the neural network), a hierarchical layer 

at the architecture level of NeuroSim should be able to link its configurations with the ones 

in the upper layer and provide this link to the lower layer as well. In this way, the 

configurations can be shared among all the layers of NeuroSim and the NN simulator, 

rather than just being duplicated to each of them. Therefore, if some of the configurations 

are modified in either NeuroSim or the NN simulator, these modifications will also be 

reflected in the other one. This is necessary in some design optimization cases where 
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complex interdependence of the configurations between these two simulators is 

unavoidable. 

B. Sub-circuit Module Level 

The sub-circuit modules included in NeuroSim are mostly shown in Fig. 4.1(b)-(e). If 

the users fail to find a sub-circuit module that serves their needs, they can create a new 

module and integrate it into NeuroSim. To do this, the user need to figure out the circuit 

components in terms of the standard logic gates, and develop the performance estimation 

model by either using analytical equations or simply providing the performance values that 

are obtained from SPICE simulation or measured from real hardware. The detailed 

structure of a sub-circuit module will be discussed in the next section. 

Sometimes, the users can just introduce a new mode in the existing module, without 

bothering to make similar modules with only minor modifications. For example, the 

decoder module currently has 4 modes (row/column + regular/Mux). As shown in Fig. 

4.1(b)-(e), it can be used as a regular row decoder (WL decoder) or a Mux row decoder. 

The difference of regular and Mux decoder lies in the output buffer, where the Mux decoder 

has the enable function to disable the Mux’s connectivity. It should be noted here that the 

crossbar WL decoder in Fig. 3.6 is just the combination of the decoder and the follower 

module. We think it is better to package the follower as an individual sub-circuit module 

instead of a new mode in the decoder due to its complexity and design flexibility. But no 

matter which way the users prefer, the sub-circuit modules need to be clearly defined in 

the interface, reducing the complexity and efforts to connect them at the architecture level. 
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C. Device Level 

As mentioned in Section 4.1.3, the device level covers from the transistor technology 

and memory devices up to the RC model of standard logic gates. The transistor parameters 

are pre-defined with different technology configurations. In the simulation, the only thing 

we need to do is to select a technology configuration. For memory devices, there may be 

cases where the devices need to be configured at the architecture or algorithm level if the 

users consider the memory device parameters are part of the design parameters in the NN 

(e.g., the weight precision of synapses required in the algorithm determines the number of 

conductance states in eNVM devices in NeuroSim), or if the users prefer to introduce the 

device properties from elsewhere to NeuroSim. 

Regarding the customization at the device level, we list a few possible situations as 

below: 

 New operating mode of transistor: Currently NeuroSim supports HP or LSTP 

transistors. If the users want to add a new operating mode, they have to provide 

relevant transistor parameters, such as VDD, VTH, gate and parasitic capacitance 

(per unit gate length), NMOS/PMOS saturation/off current density across 

different temperatures, etc. 

 New technology node: The users have to provide the parameters for the existing 

operating modes (HP and LSTP) in the new technology node, and it should be 

noted that FinFET is used at 14 nm and beyond. There are a few differences in the 

parameters and layout of bulk MOSFET and FinFET. 

 New transistor technology: If the users propose to explore the design with novel 

transistor technologies other than the conventional MOSFET (e.g. tunnel-FET, 
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negative-capacitance FET, etc.), the users need to come up with an equivalent 

transistor model and provide relevant parameters. It would not be recommended 

to consider a new transistor with its structure completely different than MOSFET, 

because the design principle of gate-level logics is still based on conventional 

CMOS technology. 

 New memory device: To make the most effective use of NeuroSim, the users are 

strongly encouraged to introduce new types of memory devices (especially analog 

eNVM) for performance benchmark. In NeuroSim, conductance states of analog 

eNVM devices is assumed to be tuned by the number of voltage pulses. Equations 

on dynamic performance metrics need to be modified if the new device uses a 

different programming strategy. 

4.1.5 Usage of NeuroSim 

As a circuit-level macro model, NeuroSim does not incorporate the learning algorithms, 

and it estimates the circuit-level performance of a synaptic core by taking either the data 

patterns of the input vector and weight matrix from the algorithm, or the average 

parameters of these patterns to have a good approximation of performance evaluation. For 

the latter one, for example, we can assume the activity of the input vector is 0.5 (50% 1 

and 0 in the vector), but not exact the data pattern of the input vector. At the device level, 

it may assume an average conductance of the synaptic devices and an average number of 

pulses for the weight update operation in analog eNVM synaptic core, but not the 

conductance pattern or programming pulse information for the entire synaptic array. To 

illustrate how NeuroSim works, we have considered three different usage scenarios as 

shown in Fig. 4.2, and they are described below. 
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A. NeuroSim for Architectural Performance Estimation 

In this scenario, NeuroSim alone is used to estimate the circuit-level performance 

metrics of neuro-inspired architectures. As mentioned earlier, a synaptic core in NeuroSim 

takes weighted sum or weight update instruction with specified data pattern or average 

parameters to calculate the circuit-level performance per instruction, and it will quickly 

show the performance breakdown results from the synaptic core to its subcomponents. 

Thus, using NeuroSim alone is very handy for quick circuit-level performance benchmark 

without the need to run a full SPICE simulation. 

 
Fig. 4.2  Different usage scenarios for NeuroSim. ©  2018 IEEE. 
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B. NeuroSim as a Supporting Tool for NN 

In this scenario, NeuroSim is used as a supporting module to provide circuit-level 

performance estimation for NN simulators, which is helpful for NN researchers to explore 

the design space of NN architectures at early design stage. This scenario can be done in 

two ways. The first way is that the NN simulator calls NeuroSim routines at every weighted 

sum and weight update operation, which makes the performance evaluation instruction-

accurate. However, this approach may not be applicable if the NN simulator is not 

compatible with C++ NeuroSim interface. The second way is that NeuroSim takes the trace 

of data patterns that are recorded during the run-time of the NN simulator, which is 

essentially a trace-based simulation. This approach is much simpler than the first one and 

has no limitation on the platform, but it is much less efficient and requiring more simulation 

time to fetch the data from a trace file as it can be very large in size. 

C. NeuroSim as a Supporting Tool for NN+Device 

This scenario is very similar to the second one, except the difference that part of the 

circuit-level performance estimation that NeuroSim provides may only be on the array 

peripherals, because the NN simulator has already incorporated a more complex synaptic 

array and device behavioral model. In this example, the NN simulator can estimate the 

energy consumption of the synaptic array more precisely and efficiently with its device 

model, thus NeuroSim is only responsible for the energy consumption on the array 

peripherals. For other performance metrics, NeuroSim still provides the estimation based 

on the whole architecture because they are more at the scope of architecture or circuit level. 

In fact, several works [39, 59, 99] published by the device community have demonstrated 

such an NN+device framework for evaluation of learning accuracy with various synaptic 
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array and device characteristics, but they cannot address the circuit-level performance. 

Thus, we believe that NeuroSim can be a good supporting tool to fill up the gap between 

the algorithm and device for these frameworks as well as enabling the co-optimization of 

circuit and device for the device engineers. 

4.1.6 Limitations of NeuroSim 

Despite that NeuroSim features a wide variety of design options for the usage/support 

of circuit-level performance benchmark in neuro-inspired architectures, there are still 

several aspects that NeuroSim has not incorporated yet, leaving the room for future 

improvement. These include 1) the ability to automatically map NN to several partitions of 

synaptic core and neuron periphery; 2) the interconnection, routing and network topology 

of synaptic cores at the architecture level; 3) the overhead of off-chip memory access; 4) a 

complete set of modules in support of machine learning NNs, such as convolutional NN 

(CNN) or recurrent NN (RNN); 5) the ability to adapt other neural network types, such as 

spiking NN (SNN). 

For 1), currently the users have to manually instantiate the synaptic cores by providing 

the synaptic array sizes that equal to the weight matrix sizes of the algorithm, thus only 

custom design is supported. The automatic mapping of the weight matrix sizes to arbitrary 

synaptic array sizes is to be developed for reconfigurable design. For 2), the overhead of 

latency and energy due to interconnection or routing between synaptic cores may become 

noticeable as the synaptic array size scales up. This will be the issue to solve after 1) is 

done. For 3), the overhead of off-chip memory access cannot be ignored if only part of the 

weights are stored on-chip. NeuroSim may have to be integrated with some third-party 

C++ DRAM modules (e.g. DRAMSim2 [100]) to take this overhead into account. For 4), 
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currently NeuroSim partially supports CNN but more modules are still under development. 

For example, it has the module for the convolutional kernel and average pooling but no 

maximum pooling or batch normalization. On the other hand, RNN requires a different 

type of synaptic core that can achieve recurrent connections, which is not included in 

NeuroSim yet. Therefore, the users may have to bring their own design to NeuroSim if 

there is no existing module available there. For 5), the synaptic core and other sub-circuit 

modules in NeuroSim are designed to support the key operations in machine learning NNs 

in a synchronous fashion. Event-driven asynchronous SNN works in a different way that 

the key operations rely on the timing between spikes to encode information, which 

NeuroSim cannot implement with its current form. Considering the limitations listed above 

are more at the algorithm and architecture level, at the current stage we would like to 

position NeuroSim as a circuit-level macro model that is most suitable for the device 

engineers to quickly benchmark various synaptic devices and neuro-inspired architectures 

with a basic NN algorithm. 

4.2 Performance Estimation Models 

As a circuit-level estimation tool, NeuroSim is beneficial in exploring the design space 

of neuro-inspired architectures at early design stage. Typical circuit-level performance 

metrics include the area, latency, dynamic energy and leakage power. Compared to the 

time-consuming SPICE simulation, NeuroSim provides fast estimation of the performance 

metrics using analytical models or pre-defined values provided by the user with reasonable 

accuracy. In this section, we introduce the performance estimation models in NeuroSim. 
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Fig. 4.3  Software execution flow of sub-circuit module functions to estimate the 

performance metrics. ©  2018 IEEE. 
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performance metrics, etc., are also declared. In the initialization step, functionality of the 

sub-circuit module is outlined. The module interface, operating modes and logic gates with 

sizing information (transistor W/L) need to be defined in this step. In general, we pre-define 

the transistor W/L for the logic gates in sub-circuit modules according to the drivability 

that are needed. Specifically, we design the transistor W/L for the transmission gates that 

drives the array, such as the ones in the decoder driver, switch matrix and Mux of the 

eNVM based synaptic array. We consider the worst case where the synaptic array has all 

its eNVM at the lowest resistance, and calculate the maximum effective resistance of the 

transmission gates (RTG) under a coefficient of IR drop tolerance (IR_DROP_TOL): 

RTG ≤ RWORST_ROW/COL × IR_DROP_TOL (4.1) 

where RWORST_ROW/COL is the total resistance of all eNVM cells in parallel in a row or 

column depending on either the transmission gate connects to the array row or column. By 

setting up a small IR_DROP_TOL (0.1 by default), we can make sure the input voltage can 

be delivered into the array without noticeable degradation in most cases. 

At the architecture level, the flow is similar to the one for sub-circuit modules. We 

show the execution flow of a synaptic core as a basic example of architecture in Fig. 4.4. 

In the initialization step of synaptic core, initialization of all sub-circuit modules that 

belong to this synaptic will be performed. The same organization is also applied for the 

rest of performance estimation functions. In this way, a well-defined nested hierarchy from 

sub-circuits to architectures can be constructed, enabling bottom-up level-by-level 

performance estimation. 
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Fig. 4.4  Software execution flow of performance estimation functions at the architecture 

level (a synaptic core for example). ©  2018 IEEE. 
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quantized value when calculating the layout height. In FinFET, the area estimation model 

becomes a little bit different because the number of fins need to be an integer.  

In general, we use the same cell layout height for most of the logic gates in sub-circuit 

modules, and calculate its cell layout width depending on its transistor W/L. For the 

synaptic array, the layout dimensions of a memory cell can be pre-defined by the user. If 

the transistor size of the 1T1R or pseudo-crossbar array is estimated (using the same 

method as Eq. (4.1)) to be larger than the pre-defined memory cell size, NeuroSim will 

report an error and request a larger pre-defined size. Considering the array row or column 

pitch may be smaller compared to the peripheral circuits, NeuroSim also provides an option 

to relax the memory cell size to match with the minimum layout dimensions of a logic cell. 

This may increase the area efficiency as well as the total area of synaptic core, but it can 

prevent some extreme cases where the synaptic array only has a few rows or columns that 

cannot even accommodate a single periphery circuit unit. 

After the synaptic array dimensions are determined, NeuroSim will estimate the layout 

dimensions of sub-circuit modules. There are three input arguments for the area estimation 

function of sub-circuit modules, as shown in Fig. 4.3. The first two arguments, 

assignedHeight and assignedWidth, are the constraints on the layout height and width, 

respectively. If one of them is provided, the logic gates at the same stage may need to be 

placed in multiple rows or columns based on this constraint, and the other dimension can 

then be estimated to obtain the total area. If neither of these two arguments is provided, 

there will be no constraint on the layout dimensions and the logic gates will be placed in 

the most straightforward way for total area estimation. The third input argument, 
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AreaModifyOption, can be specified for special adjustment of area after the area estimation, 

which has the following options: 

 NONE: This option is the regular one, indicating no further adjustment after 

the area estimation. When choosing this option, the users have to make sure at 

most one of the first two input arguments assignedHeight and assignedWidth 

can be specified. 

 MAGIC: In this option, the logic gates are pre-placed in the most 

straightforward way just for quick estimation on the total area. Then, if either 

of the two constraints assignedHeight or assignedWidth is given, the other 

dimension can be obtained by simply dividing this total area with the given 

constraint. It is assumed that the layout of sub-circuit module can be 

“magically” folded into any shape while conserving its total area, guaranteeing 

no waste of area. This option is designed for simple estimation because it does 

not need to consider the folding of circuit, but it will give the most optimistic 

estimation result. This option also does not allow both input constraints to be 

specified. 

 OVERRIDE: In this option, the estimated layout dimensions will be just 

overridden by the input arguments assignedHeight and assignedWidth for the 

total area, thus both arguments need to be provided. This option is designed 

for the users to provide their own layout dimensions, or for the cases where 

both layout dimensions need to be constrained. 

In the sub-circuit module’s area calculation function, the capacitance at logic gate level 

is estimated at the last step (Fig. 4.3) because the total drain capacitance is dependent on 
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the layout structure of logic gate. For example, logic gates with different number of folding 

have different area and sidewall length of diffusion region.  

At the architecture level, NeuroSim provides two different total area estimations, as 

shown in Fig. 4.4. The first one is to estimate the bounding box area that encloses the entire 

layout of architecture, which is the total box height × total box width. The other one is to 

directly sum up the area of array and sub-circuit modules, which may be optimistic but it 

actually reflects the real case where the layout is always optimized to save chip cost. For 

the area results in this and the next chapter, we use the latter one (the optimized one). 

4.2.3 Latency Estimation 

Once the capacitances at logic gate level are all known, the latency and dynamic energy 

consumption can then be estimated based on RC analyses. We follow the same methods of 

estimation in CACTI [96] and NVSim [97]. For digital logic gates, the latency is defined 

as the time required for the output voltage to reach the switching voltage threshold after 

the input voltage reaches it. We use Horowitz equation to calculate the latency in digital 

logic gates: 

Latency = τf√ln(vs)2+
2

rampInput×τf

β(1-vs) (4.2) 

where vs is the normalized switching voltage threshold (typically 0.5). rampInput is the 

input voltage ramp rate, and 1/rampInput represents the rise time of the input voltage signal. 

β=1/(gmR) is the reciprocal of the normalized input transconductance gm times the output 

resistance R. τf=RC is the total RC time constant at the output node (assuming a step input), 

which not only includes the intrinsic output RC time constant of an individual logic gate, 

but also counts the input capacitance of the logic gates at the next stage. If the output node 
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is connected to the array, an equivalent lumped RC model of the total wire resistance and 

capacitance will be involved in the calculation of output RC time constant. After the latency 

estimation, the output ramp rate of digital logic gates rampOutput will also be evaluated: 

.rampOutput =(1-vs)/Latency (4.3) 

which can be provided as the rampInput to the next stage of the digital logic gate. For 

transmission gates used to pass analog voltage signals, we use 2.3RC (0-90% voltage rise 

time) instead of Eq. (4.2) to estimate the latency. The latency estimation at all levels always 

considers the worst-case scenario. For example, the worst-case input pattern for a NAND 

logic’s evaluation to be 1 is when only one input is 1 because there is only one PMOS 

pulling up the output node. Under the worst-case input pattern, the latency of a sub-circuit 

module can then be obtained by summing up the latency of each logic gate along the critical 

path. Generally, there are three input arguments to the latency calculation function of a 

sub-circuit module, as shown in Fig. 4.3. rampInput determines the voltage ramp rate to 

the input of the sub-circuit module. capLoad is the load capacitance at the output node of 

sub-circuit module. rampInput and capLoad are required for the critical path latency 

calculation. The third argument, numOp, is the number of repeated operations considered 

in the latency calculation, which is designed for the convenience of the higher levels that 

may need multiple times of access to a single sub-circuit module. The total latency of a 

sub-circuit module can then be regarded as the critical path latency multiplied by numOp.  

At the architecture level, the total latency can be calculated as the sum of latency of the 

sub-circuit modules, as shown in Fig. 4.4. For the weighted sum operation of an eNVM 

synaptic core, the array RC is considered as the load parameters for the sub-circuit modules 
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that drives the array. For the weight update operation of an eNVM synaptic core, the 

latency of device weight tuning is included in the latency calculation of switch matrixes. 

This write pulse information does not need to be specified as input arguments because it 

has been already known by all sub-circuit modules upon constructed (Fig. 4.3). 

4.2.4 Power Estimation 

In the power estimation function of sub-circuit modules, the dynamic energy 

consumption and leakage power are calculated, as shown in Fig. 4.3. Dynamic energy 

consumption tells how much of the energy is consumed due to charge/discharge of the 

capacitance during circuit operation, which is expressed as CVDD
2. Since all the 

capacitances at logic gate level are known, the dynamic energy consumption of sub-circuit 

module can then be calculated by summing up the CVDD
2 at all nodes. Similarly, if the 

input argument numOp is given, the total dynamic energy consumption in a number of 

operations can be obtained.  

In eNVM synaptic array, the energy consumption is mainly static energy consumption 

(i.e. the current flow through eNVM cells), as shown in Fig. 4.4. The energy consumption 

on the selected analog eNVM cell at weight increase/decrease phase can be simply written 

as: 

Ecell=VW
2 GNTPULSE (4.4) 

In Eq. (4.4), G is the conductance of a cell. VW is the write voltage for weight 

increase/decrease. N is the number of applied write pulses and TPULSE is the pulse width. 

Besides the eNVM cell, the dynamic energy consumption on the array wire capacitance as 

well as SRAM cells (for SRAM architecture) will also be calculated. Then, the total energy 
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consumption for a synaptic core can be estimated as the sum of the dynamic/static energy 

consumption of array and the dynamic energy consumption of sub-circuit modules. 

On the other hand, leakage power represents the power consumption due to 

subthreshold leakage current (Ileak) in the transistor channel when the transistor is turned 

off. The simplest form of expressing the leakage power is VDDIleak. For a simple logic like 

INV, Ileak is just the average of NMOS and PMOS off current (obtained from the transistor 

technology configuration). For a NAND or NOR logic that has more than one input, Ileak 

will be the PMOS or NMOS off current multiplied by the number of inputs, respectively, 

for the worst case. However, it is preferred to estimate the leakage current based on the 

average case. Thus, an additional pre-defined ratio will be applied to the leakage power 

calculation result. For example, the leakage of a NAND3 can be expressed as: 

LeakageNAND3=VDDIoff,PMOS×3×AR_LEAK
NAND3

 (4.5) 

where AR_LEAKNAND3 represents the average ratio for leakage current in a NAND3 logic. 

In the synaptic array, the total leakage power will be simply the sum of leakage of SRAM 

cells (for SRAM architecture) and all sub-circuit modules, as shown in Fig. 4.4. eNVM 

cells do not need power to maintain their data thus they do not have leakage. 

In fact, since leakage power does not have to do with the capacitance in the estimation 

model, the power estimation function can be directly called after the initialization step 

without going through the area estimation step if the users only want to estimate the leakage 

power. It should also be noted that there is no execution order for the performance 

estimation functions at the architecture level, as shown in Fig. 4.4. This is unlike the flow 

of sub-circuit modules in Fig. 4.3, where all capacitances need to be calculated in the area 
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estimation function before they are ready to be used in the latency and power estimation 

functions. 

4.2.5 Validation 

NeuroSim offers a wide variety of design options for benchmarking neuro-inspired 

architectures. Being the essential bases for the entire simulation framework, the parameters 

in sub-circuit modules, memory cell and transistor models should be accurate enough to 

support the validity of NeuroSim. In such context, we have performed SPICE and layout-

level calibration of sub-circuit modules to validate the analytical models. As mentioned in 

Section 4.1.3, the transistor model parameters are calibrated based on PTM. The area 

estimation, including logic gates and sub-circuits, is based on generic design rules. As 

shown in Fig. 4.5, we have calibrated the area estimation of an analog eNVM synaptic core 

with an array size of 256×256 at 45 nm technology node by comparing to its layout using 

FreePDK45 process design kit [101]. As is shown in the layout, the peripheral circuits (i.e. 

switch matrix) take substantial area due to the requirement of relaxing W/L for 

transmission gate for minimizing the IR drop to maintain good accuracy in the analog 

computation in the synaptic array. The entire layout area is measured to be 15,810 μm2, 

with a cell size of 0.0324 μm2 (4F×4F), while the area estimation by NeuroSim (optimized) 

is 15,454 μm2, achieving an error rate of -2.5%. 
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Fig. 4.5  Example layout of the analog eNVM synaptic core (256×256 array size) at 

FreePDK 45 nm. ©  2017 IEEE. 

 

For latency, dynamic energy and leakage power consumption, we pick the 

representative modules for validation, such as the decoder, adder, Mux and switch matrix. 

As shown in Fig. 4.6, we calibrated the analytical equations in these performance 

estimation models at different synaptic array sizes from 8×8 to 256×256 with SPICE 

simulation based on PTM at 22 nm, 32 nm and 45 nm. In Fig. 4.6, the latency of the decoder 

is more like a staircase function with respect to the array size. This is because the decoder 

has two stages and every two address bits will be pre-decoded, thus the decoder structure 

will have less changes from 2N-1 to 2N address bits where N is an even number. On the 

other hand, the latency of Mux and switch matrix does not increase with larger array size, 

because all the signal paths are independent and parallel. In Fig. 4.6, the leakage power of 

Mux is not shown, because it only has transmission gates where the subthreshold leakage 

current does not exist and the gate leakage current can be negligible. In Fig. 4.6, the average 

absolute error rates of the sub-circuit modules at these technology nodes are ~14.86%, 

~10.51% and ~13.96% for the latency, dynamic energy and leakage power, respectively. 

The validation results are reasonably accurate considering these performance metrics are 
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modeled by simplified analytical equations as described earlier in Section 4.2, which we 

believe is sufficient for a quick estimation of the circuit-level performance at early design 

stage. 

 
Fig. 4.6  Validation of latency, dynamic energy, and leakage power on main circuit 

modules (decoder, switch matrix, adder, mux) with different synaptic array sizes at 22 nm, 

32 nm and 45 nm technology node. ©  2017 IEEE. 

 

4.3 Case Study by Using NeuroSim: Synaptic Array Partitioning 

The neural network generally consists of a massive number of synapses that connect 

between groups of neurons, thus the weight matrix size is large. For instance, unsupervised 

sparse coding algorithm needs a dictionary array size 100×500 to achieve reasonable 

learning accuracy [56]. For deep convolutional neural network (CNN), the number of 

synapses required for the convolution process of the first layer could reach to 121×3025 if 
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all the kernels are grouped into one array, and the last fully connected classification layer 

could reach to 2048×2048 [102]. If such large weight matrix is stored on the digital SRAM 

or analog eNVM arrays, accessing to such architecture may be slow and consumes a lot of 

energy. Partitioning the array architecture into multiple smaller synaptic arrays is then 

attractive to improve the overall system performance with an increased computation 

parallelism. On the other hand, an excessively large number of small arrays is highly area 

inefficient. Therefore, we analyze the problem of how to efficiently partition the weight 

matrix using the SRAM and analog eNVM based synaptic cores in this case study. With 

NeuroSim, we investigate the partition strategy required for performance optimization and 

its associated trade-offs and overhead. 

4.3.1 Partition Scheme and Simulation Setup 

As shown in Fig. 4.7(a), we propose to partition the large synaptic array into N×N small 

arrays in a hierarchical fashion. The partitioning could speed up the weight update 

operation as the weight elements in different small arrays can be updated in parallel. For 

the weighted sum operation, the vector and matrix are distributed into these array partitions 

and computed in parallel, but the results from all small arrays must be collected and 

summed up. We use multi-stage adders and registers (A&Rs) to obtain the final weighted 

sum. As shown in Fig. 4.7(b), the summation flow is similar to a binary tree structure for 

each array column. Each A&R is placed between two small arrays, and the results will be 

added and passed toward the center A&R of each array column stage by stage. The circuit 

block diagram of A&R is illustrated in Fig. 4.7(c). The A&R consists of multiple adders 

and registers depending on the number of adders and read circuits in a SRAM and eNVM 
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array, respectively. It should be noted that the adders have 1 bit increment in the bit-width 

stage by stage to account for the summation overflow. 

 
Fig. 4.7  (a) Large synaptic array can be partitioned into small ones and form multiple 

arrays. (b) In the macro level, multi-stage adders and registers (A&R) are shared between 

small arrays to accumulate the partial weighted sums from all small arrays. (c) The circuit 

block diagram of A&R. ©  2016 IEEE. 

 

The summary of simulation parameters is listed in Table I. We consider the activity 

factor in the weighted sum and weight update operation for both synaptic cores. For 

example, if the read activity for rows is assumed to be 50%, it means 50% of the rows will 

be read out. In the eNVM synaptic core, we limit the sharing of read circuit to be 8 columns 

per read circuit to preserve the height/width ratio in the layout to be <~5. In the weight 

update operation, we assume the weight of each cell is updated by 8 levels in average, 

which requires 8 write pulses and each pulse is 5 ns. Although sub 10-ns pulse write has 
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not been demonstrated yet in any synaptic device, we think 5 ns is the best expected pulse 

width in eNVM for digital memory application. 

Table 4.1  Simulation Parameters. ©  2016 IEEE. 

Parameters Values 

Read activity for rows/columns 50% / 100% 

Write activity for rows/columns 50% / 50% 

Number of bits for the input vector 4 

Number of bits per weight element 4 

Technology node (F) 32 nm 

Clock frequency 2 GHz 

6T SRAM cell area 146 F2 (F= tech node) 

Pseudo-crossbar eNVM cell area 16 F2 (F= tech node) 

eNVM resistance 100 kΩ – 10 MΩ (Avg: 1 MΩ) 

eNVM read/write voltage 1 V / 2 V 

Number of columns per eNVM read circuit 8 

Avg/max number of eNVM write pulses 8 / 16 

Duration of one eNVM write pulse 5 ns 

  

4.3.2 Simulation Results and Discussion 

A. Area 

In this case study, the total area of the macro is defined as the bounding box of the 

whole architecture, which may leave some space unused at the corners. Fig. 4.8 shows the 

occupied and unused area of SRAM and eNVM synaptic cores with different number of 

partitions. Here the number of partitions (N) means the array is divided into N×N sub-

arrays. The SRAM synaptic core generally has a larger area because the SRAM cell area 

(6 transistors) is much larger and it also uses multiple cells to represent one weight element. 
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With more partitions into the small arrays, both synaptic cores need more space for multiple 

copies of the peripheral circuits and A&Rs. 

  
Fig. 4.8  The area of SRAM and eNVM synaptic cores with different number of partitions 

on a 256 kb (512×512) array. Grey labels are the array sizes of the partitioned sub-arrays. 

The eNVM synaptic core can achieve much smaller area with small cell size and multiple 

bits per cell, while the unused space will dominate the macro area as more partitions are 

applied. ©  2016 IEEE. 

 

B. Latency 

The weighted sum and weight update latency of SRAM and eNVM synaptic cores with 

different number of partitions are shown in Fig. 4.9. Without partitioning applied, SRAM 

is slower in read due to row-by-row access, but faster in write because many write pulses 

are needed for eNVM to tune its conductance, and each pulse is 5 ns. With more partitions, 

it is expected that more partial weighted sums can be processed in parallel to reduce the 

weighted sum and weight update latency. For eNVM, partitioning could relax the precision 

requirement of the partial weighted sum in each sub-array thus sub-array latency can be 

smaller. However, it requires more stages of A&R for the weighted sum operation thus the 

latency of A&R accumulate. The results of eNVM suggest that the sum of weighted sum 
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latency for all A&R stages eventually becomes greater than the array weighted sum latency. 

To this point, the partitioning is no longer an effective way to reduce the weighted sum 

latency. In addition, due to the time-multiplexing required for the eNVM synaptic core in 

the weighted sum operation, the overall weighted sum latency of eNVM can be larger than 

that of SRAM beyond the partition point of 16×16. 

 
Fig. 4.9  The weighted sum and weight update latency per operation for the SRAM and 

eNVM synaptic cores with different number of partitions on a 256 kb (512×512) array. 

Partitioning introduces parallelism for the weighted sum and weight update operation, but 

A&R may become the critical path when more stages are used, especially in the eNVM 

weighted sum operation with time-multiplexing applied on the A&Rs as well. ©  2016 

IEEE. 

 

C. Energy Consumption 

Fig. 4.10 shows the weighted sum and weight update energy consumption for SRAM 

and eNVM synaptic cores with different number of partitions. The energy consumption 

refers to the dynamic energy consumption per weighted sum and weight update operation. 

The results have a similar trend with the latency, where the SRAM synaptic core consumes 

more energy in the weighted sum operation and less in the weight update operation. The 

reason can be attributed to the row-by-row based read and digital weight update in SRAM. 
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The results also reveal that there is a minimum weighted sum energy consumption for the 

eNVM synaptic core at a partition point of 8×8, indicating energy from A&Rs will 

dominate beyond this point. 

 
Fig. 4.10  The weighted sum and weight update energy consumption per operation for the 

SRAM and eNVM synaptic cores with different number of partitions on a 256 kb 

(512×512) array. Reduction of energy consumption with more partitions is not as clear as 

that of latency because A&R is rather power-consuming. The result suggests that 8×8 (or 

an array size of 64×64) may be a suitable partition point for the eNVM synaptic core. ©  

2016 IEEE. 

 

D. Leakage Power Consumption 

The leakage power consumption is calculated in the standby mode of the circuits. As 

shown in Fig. 4.11, the leakage power of SRAM is much larger than that of eNVM, 

primarily because eNVM cells are non-volatile. The leakage power consumption of eNVM 

synaptic core comes from the peripheral circuits, which is small compared with that of the 

SRAM array as the SRAM cells are the major contributor of leakage power. 
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Fig. 4.11  The leakage power consumption of the SRAM and eNVM synaptic cores with 

different number of partitions on a 256 kb (512×512) array. The SRAM synaptic core has 

much larger leakage power because the power supply is needed for all SRAM cells to 

maintain the data. ©  2016 IEEE. 

 

4.4 Summary 

In this chapter, we have introduced the synaptic array architectures, circuit modules, 

memory device/transistor models, functions and features in NeuroSim with detailed 

description. As a circuit-level macro model, NeuroSim alone can be a handy tool to 

estimate the circuit-level performance metrics of neuro-inspired architectures by taking 

trace of data patterns or average parameters. With clear abstractions of all hierarchical 

layers and well-defined interfaces of modules, NeuroSim can also be used as a supporting 

module to provide circuit-level performance estimation in neural network learning 

algorithms.  

In the case study, NeuroSim was used to evaluate the performance of SRAM and 

eNVM synaptic core for weighted sum and weight update in the learning algorithms. The 

eNVM synaptic core outperforms the SRAM in the area and leakage and is suitable for 

read-intensive applications. The results of partitioning suggest that the SRAM synaptic 

core with more partitions and finer granularity can achieve significant reduction on the 

latency and energy consumption due to computation parallelism, with trade-off of the area 
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and leakage overhead. In the weighted sum operation, eNVM synaptic core does not gain 

as much benefit as the SRAM from the partitioning, due to the latency and energy 

consumption of multi-stage A&Rs in the finer granularity.  
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 INTEGRATED DEVICE-TO-ALGORITHM SIMULATION FRAMEWORK 

WITH NEUROSIM 

Neuromorphic hardware architectures based on synaptic memory arrays have been 

proposed for on-chip acceleration of weighted sum and weight update in machine/deep 

learning algorithms. Implementation of these architectures requires co-design of device, 

circuit and algorithm to achieve high learning performance while reducing the hardware 

cost. Many prior works [39, 59, 99] have studied the impact of several non-ideal eNVM 

synaptic device properties on the learning accuracy, but they could not address the impact 

on the circuit-level performance (e.g. area, latency, dynamic energy and leakage power) 

because they just incorporated the device behavioral model directly to the algorithm’s code. 

On the other hand, some reported architectural simulator platforms (e.g.  PRIME [103] and 

Harmonica [104]) have demonstrated powerful capability and flexibility at the system-

level design, but they have limited considerations at the aforementioned non-ideal device 

properties (they only considered the weight precision and/or variation). MNSIM [78] is a 

circuit-level macro model of neuro-inspired architecture, but the accuracy in this model is 

the output error of weighted sum (vector-matrix multiplication), which is just one step of 

the algorithms thus it lacks the run-time learning accuracy of the entire algorithms. In such 

context, it is crucial to develop a simulation platform that is hierarchically organized from 

the device level, circuit level up to the algorithm level, where each level covers a wide 

variety of design options. 

In this chapter, following the 3rd usage scenario in Section 4.1.5, we use NeuroSim as 

a supporting tool for a 2-layer MLP neural network with MNIST handwritten digits [105] 

as the training and testing dataset to implement online learning and offline classification. 
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The impact of the “analog” eNVM’s non-ideal device properties will be analyzed and 

architectures of analog and digital synapses will be benchmarked. Reliability issues due to 

data retention and write endurance failures will also be investigated. 

5.1 Adapt MLP Network to Hardware 

The network topology is 400(input layer)-100(hidden layer)-10(output layer). 400 

neurons of input layer correspond to 20×20 MNIST image (edge cropped), and 10 neurons 

of output layer correspond to 10 classes of digits. Such simple 2-layer MLP can achieve 

96~97% in the software baseline. In online learning, the MLP simulator emulates hardware 

to train the network with images randomly picked from the training dataset (60k images) 

and classify the testing dataset (10k images). In offline classification, the network is pre-

trained by software, and the MLP simulator only emulates hardware to classify the testing 

dataset. For the hardware implementation, the MNIST input images are converted to black 

and white (1-bit) data to reduce the complexity of input encoding, as shown in Fig. 5.1(a). 

For design simplicity, the neuron node is modularized to take the weighted sum of 1-bit 

input data and truncate it to 1-bit output value through a low-precision activation function 

(Heaviside step function, e.g. a simple comparator circuit) for the input of next neuron node, 

as shown in Fig. 5.1(b). In this way, offline classification, which is purely feed forward 

(FF), can be realized in 1-bit. However, the computation on the back propagation (BP) of 

weight update generally needs higher precision to update the small errors. 

Fig. 5.1(c) shows the circuit block diagram for hardware implementation of the 2-layer 

MLP network. The weighted sum operation is performed using the synaptic cores. 

However, the weights used in a regular synaptic array can only represent positive values 
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(WH=0~1), while the weights in algorithm can be either positive or negative values (WA=-

1~1). The algorithm’s weighted sum is then expressed as 

WAV = (2WH - J)V = 2WHV - JV (5.1) 

where V is the input vector and J is the matrix of all ones that has the same dimension as 

WA and WH. In this equation, WHV is the weighted sum output from the synaptic core. 

Therefore, we squeeze WA from (-1~1) to the range of WH (0~1): i.e. -1 is mapped to 0, 0 

is mapped to 0.5, and 1 is mapped to 1. To reconstruct WAV, we have to perform a two-

step read from the array: first, we read out WHV, and then multiply WHV by 2 using a 1-bit 

left-shift, and then subtract JV (basically the sum of vector) from WHV through the adder 

at the periphery. The MSB (sign bit in 2’s complement notation) of the adder output will 

be the 1-bit output of the low-precision activation function. It should be noted that we only 

consider the main sub-circuit modules for the neuron periphery at current stage of this work. 

 
Fig. 5.1  (a) The 2-layer MLP neural network. (b) Schematic of a neuron node. (c) Circuit 

block diagram for hardware implementation of the 2-layer MLP network. ©  2018 IEEE. 
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5.2 NeuroSim as a Supporting Module for MLP Simulator 

The MLP simulator is shown in Fig. 5.2. It has a hierarchical organization from the 

algorithm level down to the device level with consideration of synaptic array and realistic 

device properties in detail, and it can be regarded as a standalone functional simulator that 

is able to evaluate the learning accuracy and the circuit-level performance for the synaptic 

array only during learning. To form a complete framework, NeuroSim is needed to provide 

circuit-level performance estimation. 

 
Fig. 5.2  NeuroSim as a supporting module to the MLP simulator. At the run-time of NN, 

the weighted sum and weight update instructions will be given to both the synaptic 

array/device model and NeuroSim for evaluation of computation error and circuit-level 

performances, respectively. ©  2018 IEEE. 

 

At the run-time of NN, the MLP simulator iteratively performs FF and BP, which 

contains a series of weighted sum and weight update operations, respectively. Whenever a 

weighted sum or weight update instruction is given, the instruction will be passed to the 

synaptic array and device behavioral model for calculation of computation error, as well as 

passed to NeuroSim for evaluation of circuit-level performances. As mentioned in the 3rd 
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usage scenario in Section 4.1.5, NeuroSim can be just responsible for the dynamic energy 

calculation of the array peripherals because the MLP simulator can better handle that of 

the synaptic array by itself. 

5.3 Impact of Synaptic Device Properties on Accuracy 

To quantify the impact of the aforementioned non-ideal device properties in Section 

2.3, we performed sensitivity analyses in online learning and offline classification. Fig. 

5.3(a) shows the requirement of weight precision. Because the memory resources are 

limited on-chip, we have to truncate the synapse weights into finite precisions. The result 

suggests that 6-bit weight is required for online learning, while 2-bit weight is needed for 

offline classification (at least for MNIST dataset) and 1-bit weight introduces slight 

degradation. Fig. 5.3(b) shows the learning accuracy with different conductance ON/OFF 

ratios. Limited ON/OFF ratio<50 will degrade the accuracy of offline classification. The 

network may adapt itself to this limited ON/OFF ratio during learning thus the online 

learning can tolerate more (ON/OFF ratio>10 is needed). However, the accuracy drop in 

online learning is sharper, which is probably because the network will deviate more from 

its correct form with both erroneous weighted sum and weight update results. Fig. 5.3(c) 

shows the impact of nonlinearity with different polarities of nonlinearity for the 

potentiation (P) and depression (D). The result shows that high nonlinearity can be 

tolerated if P/D has the same polarity. However, for common situations where P/D is 

positive/negative, the impact of nonlinearity on the online learning accuracy is very critical. 

High accuracy can only be achieved with small nonlinearity (<1). For offline classification, 

there is no nonlinearity issue as the cell conductance can be iteratively programmed to the 

desired value [106]. 
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Variation sensitivity analyses are performed with different nonlinearities (P/D: 

positive/negative) in online learning. Fig. 5.3(d) shows the impact of conductance variation 

on the learning accuracy. We added the variation (with standard deviation (σ) in terms of 

percentage) on the highest conductance state (ON state) as it changes the conductance 

range most. The result shows that the conductance variation does not degrade the learning 

accuracy. Instead, it remedies the accuracy loss due to high nonlinearity. However, an 

opposite trend can be observed for the device-to-device variation, as shown in Fig. 5.3(e). 

The amount of device-to-device variation is defined as the nonlinearity baseline’s standard 

deviation (σ) respect to 1 step of 6 steps, which is similar to the definition in Section 2.3.2. 

At low nonlinearity (<1), the accuracy slightly decreases with larger variation. For the 

nonlinearity>1, the impact becomes much more prominent. On the other hand, the amount 

of cycle-to-cycle variation (σ) is expressed in terms of the percentage of entire weight range, 

which is also similar to the definition in Section 2.3.2. As shown in Fig. 5.3(f), small cycle-

to-cycle variation (<2%) can alleviate the degradation of learning accuracy by high 

nonlinearity. The reason may be attributed to the random disturbance that aids convergence 

of the weights to an optimal weight pattern (i.e. to help the system jump out of local 

minima). Thus, synaptic devices with nonlinear weight update behavior may perform better 

than expected if they exhibit a little noisy weight update. However, too large variation 

(>2%) overwhelms the deterministic weight update amount defined by the algorithm thus 

is harmful to the learning accuracy. 
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Fig. 5.3  The impact of (a) weight precision, (b) conductance ON/OFF ratio, (c) weight 

update nonlinearity, (d) conductance variation, (e) device-to-device variation and (f) cycle-

to-cycle variation in online learning and/or offline classification. 

 

5.4 Benchmark Results and Discussions 

Table 5.1 and Table 5.2 survey representative analog eNVM and FeFET devices in 

literature with extracted aforementioned device properties such as number of conductance 

states, weight update nonlinearity, ON-state resistance (RON), ON/OFF ratio, programing 

pulse condition, and weight update variation, etc. Based on these parameters, NeuroSim 

was used to evaluate the system-level performance metrics such as learning accuracy, area, 

latency, energy and leakage power for online learning with 1 million MNIST images being 

trained. The benchmark results show that all analog eNVM devices fail to achieve a good 

accuracy>90%. The cause of degradation can be largely attributed to the devices’ poor 

ON/OFF ratio. It is observed that for ON/OFF ratio<10, the devices cannot perform well 

in the learning no matter how good other parameters are. This agrees with the results in 
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Fig. 5.3(b). The second critical parameter is the nonlinearity. Even the PCMO device has 

slightly better ON/OFF ratio than the AlOx/HfO2 one, its high nonlinearity restrains itself 

from converging to the desired conductance during weight update, leading to a poor 

accuracy of 10%. In contrast, the learning accuracy of both FeFET devices is much better 

(~90%), owing to their large ON/OFF ratio. Even though their nonlinearities are not small, 

the degradation can be less critical if both potentiation and depression have the same 

nonlinearity polarity, as observed in Fig. 5.3(c). 

Benchmark results of digital synapses are also included in Table 5.2 for comparison, 

where a digital eNVM with RON/ROFF=200kΩ/10MΩ and 2.5V/10ns programming pulse is 

assumed. It can be observed that SRAM is better than digital eNVM in the latency and 

energy efficiency, but much worse in the area and leakage power. Despite that both these 

digital synapses can achieve better accuracy (~94%) than all analog synapses, they 

typically require 2.5X-10X area and >30X leakage power consumption (if SRAM). 

However, some analog synapses such as AlOx/HfO2 and GST PCM have less advantage in 

area due to their small RON, where the transistor W/L in peripheral circuits (such as Mux 

and switch matrixes) needs to be larger to prevent noticeable IR drop. On the other hand, 

it is found in analog synapses that most of the latency and energy are dominated by the 

weight update, and they are far too large compared to those in SRAM, making analog 

synapses not favorable for the online learning [66]. This is because we have used a naïve 

scheme for the weight update, where all cells in each operation need to go through the full 

number of pulse cycles (essentially the worst case) no matter the cells have to be updated 

(have a ΔW) or not. To optimize this scheme, we propose to use the maximum ΔW’s 

number of cycles in each weight update operation. If all the cells in an operation do not 
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need an update (ΔW=0), this operation can even be skipped. Table 5.1 and Table 5.2 show 

the latency and energy with both the naïve and optimized schemes. In the optimized scheme, 

the latency in analog synapses are significantly reduced, indicating ΔW are often small or 

zero. In TaOx/TiO2 (Type B) and PCMO devices, the reduction ratios are extremely large 

because these devices basically learn nothing (almost no ΔW). Similarly, the energy can 

also be greatly reduced in the optimized scheme because skipping an operation saves the 

dynamic energy in charging the array wires and circuits. The only exceptions are 

AlOx/HfO2 and GST PCM. Their energy reduction is much less because their RON is small 

thus the array static energy (consumed by cells) dominates rather than the dynamic energy. 

All in all, if the programming pulse is further reduced (<20 ns), and if the peripheral circuit 

design can be made simpler for generating non-identical programming pulses, the analog 

synapses can be superior to digital synapses in nearly every aspect of the circuit-level 

performance with the optimized weight update scheme, as observed from the results of 

HfZrO (HZO) based FeFET. 
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Table 5.1  Specs and Online Learning Performance of Different Analog eNVM Synapses 

 Analog eNVM synapses 

Device type Ag:a-Si [32] TaOx/TiO2 

(Type B) 

[34] 

PCMO 

[35] 

AlOx/HfO2 

[36] 

GST 

PCM 

[40] 

# of conductance 

states 

97 102 50 40 100-120 

Nonlinearity 

(weight 

increase/decrease) 

2.4/-4.88 1.85/-1.79 3.68/-6.76 1.94/-0.61 0.105/2.4 

RON (ON-state 

resistance) 

26 MΩ 5 MΩ 23 MΩ 16.9 kΩ 4.71 kΩ 

ON/OFF ratio 12.5 2 6.84 4.43 19.8 

Weight increase 

pulse 

3.2V/300µs 3V/40ms -2V/1ms 0.9V/100µs 0.7V 

(avg.)/ 

6µs 

Weight decrease 

pulse 

-2.8V/300µs -3V/10ms 2V/1ms -1V/100µs 3V 

(avg.)/ 

125ns 

Cycle-to-cycle 

variation (σ) 

3.5% <1% <1% 5% 1.5% 

Online learning 

accuracy 

~73% ~10% 10% ~41% ~87% 

Area 1072.0 µm2 1071.3 

µm2 

1071.3 

µm2 

3657.2 µm2 7233.0 

µm2 

Latency (naïve) 4.20E8 s 3.57E10 s 7.00E8 s 5.60E7 s 4.39E6 s 

Energy (naïve) 87.94 mJ 65.86 mJ 29.4 mJ 150 mJ  1.52 J 

Latency 

(optimized) 

64200 s 0.2845 s 5.2507 s 4439.8 s 413.0 s 

Energy 

(optimized) 

14.81 mJ 0.17 mJ 0.17 mJ 146.19 mJ 1.34 J 

Leakage power 35.29 µW 35.29 µW 35.29 µW 35.29 µW 35.29 

µW 
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Table 5.2  Specs and Online Learning Performance of Different Analog FeFET and 

Digital Synapses 

 Analog FeFET synapses Digital synapses 

Device type HZO FeFET 

[53] 

HZO FeFET 

[54] 

6-bit SRAM 6-bit digital 

(binary) eNVM 

# of conductance 

states 

32 32 -- 2 

Nonlinearity 

(weight 

increase/decrease) 

2.53/1.83 1.545/1.755 -- -- 

RON (ON-state 

resistance) 

559.28 kΩ 500 kΩ -- 200 kΩ 

ON/OFF ratio 45 ~1300 -- 50 

Weight increase 

pulse 

3.65V 

(avg.)/ 75ns 

2.17V (avg.)/ 

50µs 

-- 2.5V/10 ns 

Weight decrease 

pulse 

-2.95V 

(avg.)/ 75ns 

-1.62V (avg.)/ 

50µs 

-- -2.5V/10 ns 

Cycle-to-cycle 

variation (σ) 

<1% <1% -- -- 

Online learning 

accuracy 

~90% ~90% ~94% ~94% 

Area 1190.4 µm2 1193.5 µm2 10311 µm2 2681.9 µm2 

Latency (naïve) 3.36E4 s 2.24E7 s 7.76 s 162.3 s 

Energy (naïve) 98.01 mJ 38.39 mJ 6.98 mJ 47.7 mJ 

Latency 

(optimized) 

1.2924 s 479.6 s 0.5217 s 1.8677 s 

Energy 

(optimized) 

0.28 mJ 0.21 mJ 2.2 mJ 1.6 mJ 

Leakage power 35.29 µW 35.29 µW 1.1 mW 25.17 µW 
 

 

 

 



112 

 

For offline classification, accuracy>93% can be achieved using either 2-bit SRAM or 

digital eNVM (equivalently Fig. 5.3(a)) or 2-bit analog eNVM with sufficiently large 

ON/OFF ratio=50. Table 5.3 shows the circuit-level performance benchmark results of 

SRAM, digital and analog eNVM based architectures for offline classification on the entire 

testing dataset of 10k images. Without any training process, the analog eNVM based 

architecture can be superior to the other two designs in terms of latency and energy. 

Table 5.3  Benchmark of Architecture with SRAM, Digital and Analog eNVM 

Based Synaptic Core for Offline Classification. ©  2018 IEEE. 

 2-bit SRAM 2-bit digital eNVM 2-bit analog eNVM 

Area 4450.8 μm2 1071.2 μm2 1247.3 μm2 

Latency 32.997 ms 10.39 ms 0.25 ms 

Dynamic Energy 16.939 μJ 7.30 μJ 3.38 μJ 

Leakage Power 475.67 μW 22.89 μW 35.29 μW 

   

5.5 Reliability Analysis 

Besides the non-ideal device properties studied in the previous section, reliability issues 

such as data retention and write endurance could also be harmful to the learning 

performance of neural networks. In this section, we investigate the impact of data retention 

and write endurance with generic assumptions of all possible failure mechanisms by 

incorporating the retention and endurance models into the MLP simulator. Since the 

emphasis is on the reliability, we set the synaptic weight to be 6-bit (64 levels) and assumes 

linear conductance tuning without variation in all the simulations. 

5.5.1 Data Retention 

Data retention refers to the ability of memory device to retain its programmed state 

over a long period of time. Typical retention specification for NVM in memory application 
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is more than 10 years at 85oC. Many binary eNVM devices have been able to meet this 

requirement. However, there are no reported data for analog eNVM that shows such 

retention, which can be attributed to the instability of intermediate conductance states [107]. 

To be general, we consider four scenarios of conductance drift for the retention analysis. 

As shown in Fig. 5.4(a)-(c), the conductance can either drift toward its maximum, 

minimum or intermediate states. These three scenarios have ever been reported in the 

retention measurement of binary eNVMs [108-110]. In addition, we also consider random 

conductance drift towards its maximum or minimum state with equal probability, as shown 

in Fig. 5.4(d). The formula for modeling the conductance drift behavior is assumed to 

follow the one that is widely used in PCM [111, 112], which can be described as 

G=G0 (
t

t0
)

v

 (5.2) 

where G0 is the initial conductance, t is the retention time, v is the drift coefficient and t0 is 

the time constant which is assumed to be 1 second in this work. In the retention analyses, 

the offline classification is used with the conductance ON/OFF ratio set to be 50, which is 

a sufficiently large ratio, in order to still capture the conductance drift at the lowest 

conductance state. 
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Fig. 5.4  General assumptions of retention failure modes: conductance drifting towards its 

(a) maximum state, (b) minimum state, (c) intermediate state, or (d) maximum/minimum 

state with randomness. ©  2018 IEEE. 

 

Fig. 5.5(a) shows the degradation of classification accuracy over retention time at a 

fixed drift coefficient of 0.01 with different final weight states that the conductance drifts 

to. It can be simply calculated that the conductance change is ~20% over 10 years under 

such drift coefficient, and it leads to degradation of accuracy <90% for all final weight 

states. On the other hand, the result suggests that the final state either be at the maximum 

or minimum conductance has the poorest accuracy. To have a quantitative comparison 

between different final weight states, we measure the maximum drift coefficient of all 

states that still give an accuracy >90% at a retention time of 10 years. As shown in Fig. 
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5.5(b), the final weight at 0.6 can tolerate up to a maximum drift coefficient of ~0.012, 

which corresponds to ~25% of the conductance change at 10 years. 

 
Fig. 5.5  (a) Classification accuracy as a function of retention time with conductance 

drifting toward different final weight states. (b) The maximum drift coefficient as a 

function of final weights for achieving >90% accuracy at 10 years. ©  2018 IEEE. 

 

The reason why intermediate final weight states (Fig. 5.4(c)) have less accuracy 

degradation than either the maximum or minimum ones (Fig. 5.4(a)-(b)) can be attributed 

to the deviation of weighted sum after retention degradation. This can be easily observed 

from the distribution of the absolute difference of column conductance sum before and 

after retention degradation, as shown in Fig. 5.6 for the first and second layer of MLP NN. 

The difference (ΔW) is measured between the array conductance patterns before and after 

a retention of 10 years, and a small drift coefficient of 0.001 is used to ensure that most of 

the conductance have not reached their final states at 10 years. As all the conductance will 

drift in the same direction to the maximum or minimum final weight state, a larger 

deviation of weighted sum is expected, and the high inverse correlation between Fig. 5.6 
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and Fig. 5.5(b) confirms that the accuracy degradation is strongly affected by the amount 

of weighted sum deviation. 

 
Fig. 5.6  Distribution of the absolute difference of column conductance sum before and 

after 10 years (drift coefficient=0.001) in the (a) first and (b) second layer of MLP NN. 

Both results are highly correlated with Fig. 5.5(b). ©  2018 IEEE. 

 

The above argument can be further substantiated by the analysis of random 

conductance drift in Fig. 5.4(d), where its impact on the classification accuracy is shown 

in Fig. 5.7. With the same drift coefficient of 0.01, the accuracy degradation is much less 

severe than the ones in other drift scenarios (Fig. 5.5(a)), even we select the worst result in 

Fig. 5.7 for comparison. The reason is because the weighted sum deviation will be averaged 

out by this randomness. It can be expected that if either drifting towards maximum or 

minimum conductance is much more probable, the accuracy degradation will be as severe 

as that of W=0 or W=1 in Fig. 5.5(a). 
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Fig. 5.7  Monte Carlo simulation on the accuracy with conductance randomly drifting 

toward its maximum or minimum states. Under the same drift coefficient, the randomness 

behavior does not lead to radical change in weighted sum thus the impact on the accuracy 

is much smaller compared to other conductance drift scenarios. ©  2018 IEEE. 

 

In fact, the only experimental work so far that reported the retention properties in 

analog RRAM suggests that its behavior can be due to multiple hops of oxygen vacancies 

over long retention time [107], which is analogous to Brownian Motion. It also shows that 

the read current distribution of each conductance level follows a normal distribution, where 

its standard deviation (σ) increases with retention time. In other words, the retention 

behavior can be modeled as an increasing conductance variation over time, which is 

illustrated in Fig. 5.8(a). From [107], its σ is described as 

σ=λ√t+θ (5.3) 

where λ and θ are fitting parameters. Since these fitting parameters can vary in different 

devices, conductance states and even temperatures, we rather evaluate the impact of this 

retention behavior based on σ. As shown in Fig. 5.8(b), a σ of ~0.2 will lead to a significant 

degradation on the accuracy. It can be calculated that given θ=0, λ should be smaller than 

~7e-6 for the accuracy to remain >90% at 10 years. 
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Fig. 5.8  (a) The retention model proposed in [107] suggesting the an increasing 

conductance variation over time. (b) The impact of conductance variation on the 

classification accuracy. ©  2018 IEEE. 

 

5.5.2 Write Endurance 

In memory application, the write endurance specifies the number of times that a 

memory device can be programmed (written) before the write failure occurs. Typical 

binary eNVM devices can achieve >106 write cycles (between the highest and lowest 

conductance states). However, the analog eNVM endurance definition should be different 

as it has only incremental conductance change by each write pulse. So far, there is no prior 

work discussing the endurance behavior of analog eNVM for neuromorphic computing. 

To study the endurance effect in this work, we assume that the strength of conductance 

tuning (ΔG) decreases over write pulse cycles, which is expressed as 

ΔG=ΔG0(1-r)(#pulses) (5.4) 

where ΔG0 is the ideal conductance change without considering endurance degradation, r 

is the reduction ratio, #pulses means the cumulative number of pulses that has been applied 

to the device. As illustrated in Fig. 5.9(a), the conductance will eventually be unchangeable 

Sqrt(t)

G

G variation 
increases over time

(a) (b)
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after an excessive number of cycles. To analyze its impact, we apply the endurance 

property in the online learning of the MLP NN. As shown in Fig. 5.9(b), the learning 

accuracy degradation begins to be noticeable as we gradually increase r to be >0.01. We 

also apply variations of 10% and 20% on the ratio, and it does not really either significantly 

alleviate or worsen the degradation. 

 
Fig. 5.9  (a) Endurance degradation in weight update of synaptic devices. Strength of 

conductance tuning decreases over pulse cycles. (b) The impact of ΔG reduction ratio (with 

10% and 20% variation) on the learning accuracy. 10 device samples are measured for each 

data point. ©  2018 IEEE. 

 

In the endurance analysis, we assume the maximum conductance of the device is 100 

nS. It can be calculated that the required cumulative number of pulses to reduce the strength 

of conductance tuning by 50% and 90% are ~70 and ~230 under r=0.01, respectively. Fig. 

5.10(a)-(b) shows the distribution of the sum of absolute conductance change in the first 

and second layer of MLP NN without endurance effect to achieve the targeted learning 

accuracy. The conductance changes with 70 and 230 write pulses are also labeled. Given 

only the results of Fig. 5.10(a)-(b), we may easily conclude that r=0.01 is too large thus 

there will be a significant accuracy degradation, because most of the devices require far 

Δ
G

# Pulses(a) (b)

Strength of G tuning 
reduces over pulses

ΔG=ΔG0(1-r)(#pulses)
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more pulses than these two numbers to achieve >90% accuracy. However, the accuracy 

with r=0.01 in Fig. 5.9(b) disproves this argument. 

 
Fig. 5.10  Distribution of the sum of absolute conductance change in the (a) first and (b) 

second layer without endurance effect, and (c) first and (d) second layer of MLP NN with 

endurance effect (r=0.01). The network can adapt itself to this endurance degradation by 

activating other synaptic devices whose conductance are still tunable. ©  2018 IEEE. 

 

In fact, the network has the ability to adapt itself to this endurance degradation by 

relying on other devices whose conductance is still tunable. As shown in Fig. 5.10(c)-(d), 

the conductance cannot be further tuned beyond a certain amount of total conductance 

change (~150 nS), and the network will keep activating other inactive devices to take over 

the responsibility of learning during the entire learning process. To see this effect more 

clearly, 2D color maps of the total absolute conductance change in the first and second 

layer are shown in Fig. 5.11 and Fig. 5.12, respectively. Without endurance degradation, 

the training in the network only relies on the conductance change in some of the active 
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eNVM devices to achieve the 90% accuracy. With endurance degradation, most of the 

devices have to participate in the training to achieve the 90% accuracy, thus it can be 

observed that the entire color map almost ends up being filled with the same color (which 

means the conductance tuning limit). Besides the network’s ability to adapt the endurance 

degradation from algorithm’s point of view, analog eNVM devices were also demonstrated 

to have >103 write pulses of conductance tuning [34, 40]. Therefore, the endurance issue 

may not be as critical as estimated. 

 

Fig. 5.11  2D color map of the total absolute conductance change in the first layer. 

 



122 

 

 

Fig. 5.12  2D color map of the total absolute conductance change in the second layer. 

 

5.6 Summary 

We have developed an integrated device-to-algorithm framework that connects circuit-

level macro model NeuroSim to NNs to evaluate the learning performance of neuro-

inspired architectures. We have used this framework to analyze the impact of non-ideal 

device properties and benchmark several representative analog synapses in a 2-layer MLP 

NN. The results suggest that degradation of learning accuracy is mainly due to small 

ON/OFF ratio and large nonlinearity with different polarities in potentiation and depression. 

The optimized weight update scheme is also proposed to minimize the latency and energy 

overhead by skipping redundant pulse cycles and even operations during training. With 

this scheme, analog synapses can be potentially better in hardware performance than 

SRAM synapses, while achieving >90% online learning accuracy. For read-intensive 

applications such as the offline classification, analog eNVM is the most suitable synaptic 

device due to its capability of parallel weighted sum operation. 
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Impact of important reliability properties for synaptic devices such as data retention 

and write endurance are also investigated. It is observed that there is a strong correlation 

between the degradation of classification accuracy and the weighted sum deviation, thus 

retention behaviors which causes less deviation will have smaller impact on the accuracy. 

The analysis also includes the existing retention model based on conductance variation, 

enabling estimation of the model parameters based on targeted performance. In contrast, 

the endurance issue defined in this work is considered to be less critical than estimated 

because the network is able to alleviate it by making use of other devices whose 

conductance are still tunable. 
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 CONCLUSION 

The crossbar array architecture with resistive synaptic devices has been proposed for 

on-chip implementation of weighted sum and weight update operations in the 

neuromorphic learning algorithms. It is crucial to explore the design methodologies for 

practical hardware implementation of the resistive cross-point array architecture, where we 

have recognized possible non-ideal device properties that are detrimental to the learning 

performance. Using sparse coding algorithm as a benchmark platform, we developed 

design strategies at both circuit and device levels to mitigate the impact of these non-ideal 

properties. By applying these strategies with tolerable trade-offs on chip area, latency and 

energy, it is shown that the synaptic behavior is greatly improved and the recognition 

accuracy can return from ~30% to ~95%. 

Array design for performance improvement is also proposed. The 1S1R array 

architecture can reduce the weight update energy consumption compared to the crossbar 

array architecture. Alternatively, the “pseudo-crossbar” array architecture is even better in 

terms of the write disturbance and energy efficiency in weight update, which directly turns 

off the unselected rows. Besides the array, the peripheral circuits in crossbar and pseudo-

crossbar are also discussed. As the read circuit is complex and not area-efficient, the MIT 

device is introduced as the oscillation neuron to replace the entire read circuit. To address 

the interference issue of oscillation between columns in simple crossbar array, the 2T1R 

array architecture is proposed at negligible increase in array area. In circuit-level 

benchmark, it is shown that the oscillation neuron not only saves a lot of area on chip, but 

also improves the latency and energy due to less sharing of neuron peripheral circuits by 

array columns. 
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As today’s neuromorphic computing system is at early design stage, there can be a 

variety of design choices from the algorithm level to the device level, such as neural 

network topology, eNVM array architecture, peripheral circuit design and eNVM device 

engineering. Therefore, we developed NeuroSim platform that is beneficial in exploring 

the design space of neuro-inspired architectures at such early design stage. In the case study 

of array partitioning problem, we have demonstrated that NeuroSim alone can provide 

circuit-level performance estimation of neuro-inspired architectures thus the partition 

strategy can be simply envisioned. 

For a more complex case, the role of NeuroSim can be a supporting tool. To explore 

the feasibility of different synaptic devices for neuromorphic computing, we integrated 

NeuroSim with a 2-layer multilayer perceptron (MLP) neural network to build an 

integrated device-to-algorithm simulation framework. The framework has shown its power 

in evaluating the performance of learning as well as other hardware metrics such as area, 

latency, dynamic energy and leakage for neuromorphic architectures. We believe that 

MLP+NeuroSim framework can be a handy and flexible tool to perform design 

optimization for on-chip implementation of learning with various mainstream and 

emerging synaptic device technologies. The source code of MLP+NeuroSim framework is 

publically available at [113] for other researchers to download. To support the more 

advanced learning algorithms such as convolutional neural network (CNN), recurrent 

neural network (RNN) and/or spiking neural network (SNN), which could be the future 

work for extension. 
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