
Design of Resistive Synaptic Devices and

Array Architectures for Neuromorphic Computing

by

Pai-Yu Chen

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved March 2018 by the

Graduate Supervisory Committee:

Shimeng Yu, Chair

Yu Cao

Jae-sun Seo

Chaitali Chakrabarti

ARIZONA STATE UNIVERSITY

May 2018

i

ABSTRACT

Over the past few decades, the silicon complementary-metal-oxide-semiconductor

(CMOS) technology has been greatly scaled down to achieve higher performance, density

and lower power consumption. As the device dimension is approaching its fundamental

physical limit, there is an increasing demand for exploration of emerging devices with

distinct operating principles from conventional CMOS. In recent years, many efforts have

been devoted in the research of next-generation emerging non-volatile memory (eNVM)

technologies, such as resistive random access memory (RRAM) and phase change memory

(PCM), to replace conventional digital memories (e.g. SRAM) for implementation of

synapses in large-scale neuromorphic computing systems.

Essentially being compact and “analog”, these eNVM devices in a crossbar array can

compute vector-matrix multiplication in parallel, significantly speeding up the

machine/deep learning algorithms. However, non-ideal eNVM device and array properties

may hamper the learning accuracy. To quantify their impact, the sparse coding algorithm

was used as a starting point, where the strategies to remedy the accuracy loss were proposed,

and the circuit-level design trade-offs were also analyzed. At architecture level, the parallel

“pseudo-crossbar” array to prevent the write disturbance issue was presented. The

peripheral circuits to support various parallel array architectures were also designed. One

key component is the read circuit that employs the principle of integrate-and-fire neuron

model to convert the analog column current to digital output. However, the read circuit is

not area-efficient, which was proposed to be replaced with a compact two-terminal

oscillation neuron device that exhibits metal-insulator-transition phenomenon.

ii

 To facilitate the design exploration, a circuit-level macro simulator “NeuroSim” was

developed in C++ to estimate the area, latency, energy and leakage power of various

neuromorphic architectures. NeuroSim provides a wide variety of design options at the

circuit/device level. NeuroSim can be used alone or as a supporting module to provide

circuit-level performance estimation in neural network algorithms. A 2-layer multilayer

perceptron (MLP) simulator with integration of NeuroSim was demonstrated to evaluate

both the learning accuracy and circuit-level performance metrics for the online learning

and offline classification, as well as to study the impact of eNVM reliability issues such as

data retention and write endurance on the learning performance.

iii

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my PhD advisor Dr. Shimeng

Yu for the continuous support of my PhD study, for his patience, motivation and immense

knowledge. His guidance helped me in all the time of research, and I have learned a lot

from him in the way of writing, communication and presentation. Besides my advisor, I

would like to thank the rest of my dissertation committee: Dr. Chaitali Chakrabarti, Dr. Yu

Cao and Dr. Jae-sun Seo, for their insightful comments and encouragement, but also for

the sharp questions which incented me to widen my research from various perspectives.

My sincere thanks also go to Dr. Arindam Mallik, for offering me the summer

internship opportunity at IMEC in Belgium and providing me direction on my research. I

am also grateful of Dr. Sarma Vrudhula and Dr. Jieping Ye, who guided me working on

our research projects for the first two years of my PhD study, and Dr. Dragica Vasileska,

who inspired me a lot in many of her courses and gave me a strong recommendation in my

scholarship application. Without all their precious supports, it would not be possible to

make my research path successful.

I would like to thank my fellows in ASU for the stimulating discussions, for the

sleepless nights we were working together before deadlines, and for all the fun we have

had in the last five years: Dr. Ligang Gao, Dr. Jiyong Woo, Runchen Fang, Rui Liu, Zhiwei

Li, Xiaoyu Sun, Bin Dong, Xiaochen Peng, Panni Wang, Dr. Naveen Suda, Dr. Zihan Xu,

Abinash Mohanty, Xiaocong Du, Deepak Kadetotad, Minkyu Kim, Xiaoyang Mi, Shihui

Yin, Manqing Mao, Dr. Wenhao Chen, Dr. Binbin Lin and Dr. Wei-Chieh Kao. Last but

not the least, I would like to thank my parents for supporting and encouraging me spiritually

throughout my life.

iv

TABLE OF CONTENTS

 Page

LIST OF FIGURES……………………………………………………………………... VI

LIST OF TABLES……………………………………………………………………….IX

CHAPTER

 INTRODUCTION……………………………………………………………... 1

1.1 Neuromorphic Computing for Artificial Intelligence 1

1.2 Emerging Non-volatile Memory for Synaptic Devices 7

1.3 Synaptic Crossbar Array Architecture .. 12

1.4 Overview of Contributions ... 15

 SYNAPTIC CROSSBAR ARRAY DESIGN FOR ON-CHIP SPARSE

DICTIONARY LEARNING………………………………………………….18

2.1 Sparse Coding Algorithm ... 18

2.2 Limited On-Chip Precision of SC ... 22

2.3 Realistic Device Properties and Mitigation Strategies in Synaptic Array

 …………………………………………………………………………23

2.4 Accuracy Improvement by Proposed Strategies 35

2.5 Summary ... 37

 DESIGN FOR IMPROVEMENT OF SYNAPTIC ARRAY AND NEURON

PERIPHERAL CIRCUITS…………………………………………………... 38

3.1 Reformation of Array Architecture ... 38

3.2 Design of Neuron Peripheral Circuits ... 43

3.3 Compact Oscillation Neuron Exploiting Metal-Insulator-Transition ... 47

v

CHAPTER Page

3.4 Summary ... 64

 NEUROSIM: DEVICE-CIRCUIT-ALGORITHM BENCHMARK

SIMULATOR FOR NEURO-INSPIRED ARCHITECTURES……………... 66

4.1 NeuroSim Architecture ... 66

4.2 Performance Estimation Models ... 80

4.3 Case Study by Using NeuroSim: Synaptic Array Partitioning 92

4.4 Summary ... 99

 INTEGRATED DEVICE-TO-ALGORITHM SIMULATION FRAMEWORK

WITH NEUROSIM………………………………………………………….101

5.1 Adapt MLP Network to Hardware .. 102

5.2 NeuroSim as a Supporting Module for MLP Simulator 104

5.3 Impact of Synaptic Device Properties on Accuracy 105

5.4 Benchmark Results and Discussions .. 107

5.5 Reliability Analysis ... 112

5.6 Summary ... 122

 CONCLUSION……………………………………………………………... 124

REFERENCES………………………………………………………………………… 126

vi

LIST OF FIGURES

Figure Page

1.1 Basic Artificial Neural Network (ANN) Structure. ... 3

1.2 Schematic of Different Synaptic Device Structures. ... 10

1.3 Reported Experimental Data of Weight Update in Different Synaptic Devices. 12

1.4 Weighted Sum in Synaptic Crossbar Array and Synaptic Cell’s RC Model. 14

1.5 Voltage Bias Scheme in the Write Operation of Crossbar Array. 15

2.1 Process Flow of the Sparse Coding Algorithm. .. 20

2.2 Handwritten MNIST Dataset. .. 21

2.3 Learning Accuracy as a Function of Z Dimension. ... 22

2.4 Learning Accuracy with Different Precision Bits of D and Z. 23

2.5 Learning Accuracy with Different Weight Update Nonlinearities. 25

2.6 Smart Programming Schemes for Reduction of Weight Update Nonlinearity. 27

2.7 Learning Accuracy with Device-to-Device Weight Update Variation. 29

2.8 Learning Accuracy with Cycle-to-Cycle Weight Update Variation. 30

2.9 Learning Accuracy with Weight Read Noise. ... 31

2.10 Multiple Cells as One Weight Element to Average out Variations. 32

2.11 Learning Accuracy with Different ON/OFF Ratios. ... 33

2.12 Dummy Column and Subtractors to Eliminate OFF-state Current. 34

2.13 Learning Accuracy with Different Wire Width. .. 35

2.14 Comparison of Accuracy with/without Mitigation Strategies. 36

3.1 1S1R Array Architecture and Its Weight Update Scheme. 39

3.2 I-V Characteristics of the Synaptic Device, MIEC Selector, and Both in Series. ... 41

vii

Figure Page

3.3 Transformation from Conventional 1T1R Array to Pseudo-crossbar Array. 42

3.4 Voltage Bias Scheme in the Write Operation of Pseudo-crossbar Array. 43

3.5 Circuit Block Diagram for the Crossbar/Pseudo-crossbar Array Architectures. 44

3.6 Circuit Diagram of the Crossbar WL Decoder. ... 45

3.7 BL Switch Matrix and Its Input Signal in the Weighted Sum Operation. 46

3.8 Read Circuit and Its Simulation Waveform. ... 47

3.9 MIT Device for the Oscillation Neuron. ... 50

3.10 Oscillation Frequency as a Function of the MIT’s Intrinsic Transition Time. 53

3.11 Oscillation Frequency as a Function of VDD and Weight. 54

3.12 Weighted Sum Operation with Oscillation Neuron in the Crossbar Array. 57

3.13 Interference of Oscillation Between Columns in the Crossbar Array. 58

3.14 Schematic of 2-transistor-1-resistor (2T1R) Array Architecture. 60

3.15 Calibration of Read Cycle Time Considering Oscillation Frequency Deviation. . 62

3.16 Deviation of Final Weighted Sum Accuracy with Different Read Cycle Time. ... 63

4.1 Circuit Block Diagram of Different Neuromorphic Hardware Accelerators. 68

4.2 Different Usage Scenarios for Neurosim... 77

4.3 Software Execution Flow of Sub-Circuit Module Functions. 81

4.4 Software Execution Flow at the Architecture Level. .. 83

4.5 Example Layout of the Analog eNVM Synaptic Core at FreePDK 45 nm. 91

4.6 Validation of Latency, Energy, and Leakage Power on Main Circuit Modules. 92

4.7 Partition of Large Synaptic Array into Small Ones with the Adder Tree. 94

4.8 Area of SRAM and eNVM Cores with Different Number of Partitions. 96

viii

Figure Page

4.9 Latency of SRAM and eNVM Cores with Different Number of Partitions. 97

4.10 Energy of SRAM and eNVM Cores with Different Number of Partitions. 98

4.11 Leakage of SRAM and eNVM Cores with Different Number of Partitions. 99

5.1 2-Layer MLP Neural Network and Its Hardware Block Diagram. 103

5.2 Neurosim as a Supporting Module to the MLP Simulator. 104

5.3 Impact of Different Non-ideal Device Properties in Learning and Classification. 107

5.4 General Assumptions of Retention Failure Modes.. 114

5.5 Impact of Unidirectional Conductance Drift on the Classification Accuracy. 115

5.6 Column Conductance Sum Deviation in Unidirectional Conductance Drift. 116

5.7 Impact of Random Conductance Drift on the Classification Accuracy. 117

5.8 Reported Retention Properties and Its Impact on the Classification Accuracy. 118

5.9 Endurance Degradation and Its Impact on the Learning Accuracy. 119

5.10 Distribution of Total Abs. Conductance Change in the First and Second Layer. 120

5.11 2D Color Map of Total Abs. Conductance Change in the First Layer. 121

5.12 2D Color Map of Total Abs. Conductance Change in the Second Layer. 122

ix

LIST OF TABLES

Table Page

3.1 Sub-circuit Level Benchmark. ... 64

3.2 Array Level Benchmark (1 Weighted Sum Task). .. 64

4.1 Simulation Parameters.. ... 95

5.1 Specs and Learning Performance of Analog eNVM Synapses 110

5.2 Specs and Learning Performance of Analog FeFET and Digital Synapses 111

5.3 Benchmark of Architecture with SRAM, Digital and Analog eNVM 112

1

 INTRODUCTION

Electronic devices are invented and developed to improve our life quality in many

aspects such as communication, entertainment, safety and healthcare. The way we live,

work and interact has been dramatically changed by the growth of modern microelectronics

since its emergence. Over the past few decades, Moore’s law has been the primary driving

factor for the advance of computing capability by continuously scaling down the devices

in size, bringing several advantages such as higher speed and lower cost and power

consumption. Gordon Moore’s observation was that the number of transistors in an

integrated circuit (IC) doubles approximately every two years, and David House further

predicted that the chip performance would double every 18 months due to more and faster

transistors. Although Moore’s prediction has been successful over 50 years, Today’s

silicon CMOS technology, however, is approaching its fundamental physical limits on the

size. Moore’s law has become progressively challenging and soon reached its end, meaning

that the performance gain cannot solely rely on the device scaling anymore. It is necessary

to discover new device technologies or new computing principles to meet the ever-

increasing demand for computing capability and high performance.

1.1 Neuromorphic Computing for Artificial Intelligence

The artificial intelligence (AI) is an area of computer science that was found in 1960s

and concerned with solving tasks that are easy for humans but hard for computers.

Traditional problems to which AI methods are applied include handwritten recognition (e.g.

MNIST dataset [1]), face recognition (e.g. Facebook’s DeepFace [2]), speech recognition

(e.g. Amazon’s Alexa [3], Apple’ Siri [4], Microsoft’s Cortana [5]), robotics (e.g. Robot

Operating System [6]), autonomous driving (e.g. Tartan Racing [7]), and even broad games

2

(e.g. Google’s AlphaGo [8]) and video games (e.g. Pac-mAnt [9]). Despite a wide variety

of applications, the development of AI has experienced several waves of ups and downs

during the past 60 years since its advent. However, just a few years ago AI suddenly

become the hottest field in technology industry. The resurgence of AI can be traced back

to an annual online contest at 2012 — the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), which contains over 1 million images and 1,000 object categories

and is more complex than other image datasets such as MNIST [1] and CIFAR-10/100 [10].

In 2010 and 2011, the winning system could correctly recognize ~72% and ~75% of the

images. In 2012, a team from the University of Toronto, achieved a nearly 10%

improvement in recognition accuracy to ~85%, convincingly demonstrating the power of

deep neural network (DNN). After this year, rapid improvements in the accuracy were

observed. In 2015, the winning system could achieve an accuracy of ~96%, surpassing

humans (~95% on average) for the first time.

The remarkable breakthrough in 2012 was widely considered to be the beginning of the

deep learning revolution of the 2010s. People across the entire technology industry started

to pay attention to this field. Deep learning is a class of machine learning algorithms that

are based on artificial neural networks (ANNs). These networks are biologically inspired

networks of artificial neurons or brain cells. In a biological brain, each connection between

artificial neurons relies on the synapse, which has a strength (weight) and can transmit the

signal from one neuron to another. The artificial neuron that receives the signal can process

it and then signal artificial neurons that are connected to it. Fig. 1.1 shows the basic ANN

structure. A simple ANN at least consists of an input and output layer of neurons, and

possibly one or more hidden layers of neurons in between. The input layer is where the

3

input data (e.g. image samples for training) can be fed into the network. Generally, the

input layer is not included when counting the number of layers in a network. After fed into

the input layer, the data will travel in a forward direction through the hidden layers and

finally come out at the output layer, which is called the feed forward (FF). Along the feed

forward path, each neuron is responsible for performing the weighted sum of data from all

the incoming synapses, and then controlling the firing of its output by an activation function.

Fig. 1.1 Basic artificial neural network (ANN) structure.

The most widely used learning method is supervised learning, where correct answers

(the labels) of data are provided to train the system. Examples include the image

recognition, speech recognition, e-mail spam filtering, etc. Typically, the training process

in the supervised learning has two phases. One is the aforementioned feed forward, and the

other one is the back propagation (BP). After the feed forward, the output result will be

compared with its correct answer to calculate its prediction error (the deviation). In back

propagation, this error is propagated backward from the output layer to adjust the weights

of each layer in a way that the prediction error is minimized. On the other hand,

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Hidden Layer

In
p

u
t

D
a
ta

O
u

tp
u

t
R

e
s
u

lt

Output LayerInput Layer

Activation Function
Weighted Sum

Neuron
Synapse

(Weight)

4

unsupervised learning does not have the answers (labels) to train the network, and the goal

of training is to extract the features and cluster similar examples, discovering the hidden

patterns of the data. One classic example of unsupervised learning is the sparse coding

algorithm, which will be introduced in Section 2.1.

In the early 1990s, some simple tasks such as recognizing handwritten digits had been

achievable with ANNs, but the results became completely unsatisfactory when it was

applied to a more complex task, which then requires a deeper neural network (many layers)

as it is capable of building up progressively more abstract representations of the input data

through each layer. Despite the immature algorithms and techniques, the major bottlenecks

that hinder the development of deep learning in earlier years were the lack of training data

and computing capability. Implementation of deep learning generally requires a huge

amount of unstructured data to be processed for extraction of useful information through

tens of layers, resulting in significant cost in time and computational resources. Today, the

explosive growth of Internet has made billions of documents, images and videos available

for training purposes, and the massively parallel computing power of graphical processing

units (GPUs) also provides much better learning performance over weakly parallel

computation with several CPUs. In 2005, the first implementation of ANN using GPU

reported a threefold speedup over their CPU baseline [11]. In 2007, NVIDIA released the

CUDA platform, allowing the use of a CUDA-enabled GPU for general purpose processing,

which is an approach called general-purpose computing on GPU (GPGPU). Essentially

making the parallel programming easier to use GPU resources, this offered an ideal

platform for parallelizing a neural network in GPU and it was then rapidly adopted by deep

5

learning researchers. In 2009, it had been reported that training a DNN with GPUs could

be 70 times faster than that with CPUs [12].

However, either CPU or GPU is a general-purpose computing platform based on the

sequential von Neumann architecture, which involves clear separation of the computing

unit and memory between a data bus path. Due to the requirement of high bandwidth and

power consumption for data communication via this data bus, traditional von Neumann

architecture is inadequate for implementing modern DNN architectures, which requires

intensive multiply-and-accumulate (MAC) operations with millions of parameters on

millions of data in the feed forward computation. This challenge in memory access is

recognized as the “von Neumann bottleneck” that degrades the overall efficiency and

performance of the system [13]. To fundamentally overcome this problem, the

neuromorphic computing has emerged in recent years as an attractive alternative to these

conventional computing architectures based on von Neumann systems. The term

“neuromorphic computing” is firstly coined by Carver Mead in 1990 [14]. It is a new

computing paradigm inspired by the cognitive functionality of brain. Unlike the

conventional CPUs/GPUs, a biological brain (e.g. mammalian brain) enables parallel

processing of a massive amount of information in a small area with high efficiency and

low power consumption. Therefore, the ultimate goal of neuromorphic computing is to

develop neuromorphic hardware accelerators that emulate highly efficient processing of

biological information to bridge this efficiency gap between the network and real brain

[15], which is believed to be the major driving force of the next AI revolution.

Generally, there are two design principles for the neuromorphic hardware accelerators.

One principle is inspired from the neuroscience that the hardware system emulates the brain

6

functionality based on biological learning rules, such as the spike-timing-dependent

plasticity (STDP). In this design, the information is typically encoded using spikes to

improve the area cost and energy efficiency [16], and thus the network is generally referred

to as the spiking neural network (SNN). Well-known examples include University of

Manchester’s SpiNNaker [17], Qualcomm’s Zeroth [18], Stanford’s Neurogrid [19],

IBM’s TrueNorth [20], etc. The other design principle is based on ANN with machine

learning algorithms, aiming at accelerating MAC operations while minimizing the energy

cost of data movement in hardware. As DNN is currently the hottest topic in the AI field,

more research and development has been focused on the digital implementation of DNN,

either with the field-programmable gate array (FPGA) or application-specific integrated

circuit (ASIC). Due to their reprogrammability, FPGAs offers higher flexibility, lower

development cost and shorter design time than ASICs. The most notable example with

FPGA is probably the one started as CNP [21], which was further improved and renamed

to NeuFlow [22] and later on to nn-X [23]. These designs could achieve 10’s to 100’s giga

operations per second (GOPS) with only <10 W power. On the other hand, ASIC

implementation could give higher performance than FPGA in terms of area, speed and

power. For a 90 nm technology, it has been reported that the ASIC implementations are 5×

faster, 14× higher in power and 35× smaller in area [24]. One classic example is a series of

ASIC designs called the “DianNao” family (DianNao [25], DaDianNao [26], PuDianNao

[27], ShiDianNao [28]), where the impact of memory buffer design on the performance

and energy was specifically emphasized. Another notable example is Google’s recently

developed tensor processing unit (TPU) [29], which has a performance of 180 tera floating

point operations per second (TFLOPS) with 4 chips on the board.

7

Although there are some design tradeoffs between FPGA and ASIC as mentioned

above, these platforms can generally achieve comparable or better performance with low

power consumption compared to GPU acceleration. However, both two still have limited

computing resources, memory and I/O bandwidths, thus it is impractical to implement a

DNN on a chip with similar complexity as a biological brain that has ~1013 synapses,

because the current silicon CMOS technology is not adequate to provide sufficient on-chip

memory resources. Even in ASIC, the smallest unit for the synaptic weight storage is to

use the static random access memory (SRAM), which consists of 6 to 8 transistors and

requires a cell size of 100F2~200F2 in total (F is the lithography feature size). To represent

the precision of a single weight value, multiple SRAM cells are further needed to form a

synapse, making it even more area-inefficient.

1.2 Emerging Non-volatile Memory for Synaptic Devices

It came to be realized that the “von Neumann bottleneck” problem in modern DNNs

cannot be fully addressed by the aforementioned acceleration platforms alone, especially

it is expected that the future DNNs will grow rapidly in network depth, model size and

computational complexity. In a sense that the number of synapses is far more than the

number of neurons (with a complexity of O(N2) and O(N), respectively), it is very crucial

to explore more compact synaptic devices at nanoscale level beyond the traditional silicon

CMOS technology, and exploit the analog properties of these synaptic devices rather than

use them as binary or multi-level on-chip storage memories. In this way, it can prevent the

tremendous hardware cost with CMOS based synapses, meanwhile potentially reducing

the computation complexity from O(N2) to O(1) for a fully parallel operation.

8

The current progress in nanotechnology is paving the way toward implementation of

compact synaptic devices using low cost and ultra-high density memory array [30]. In fact,

due to its maturity, the floating-gate memory technology has been successfully

implemented on a single chip as synapses for the neuromorphic computing [31]. To achieve

even higher integration density, faster speed and lower programming voltage, compact

synaptic devices based on emerging non-volatile memories (eNVM) are proposed for the

neuromorphic systems, including resistive random access memory (RRAM) [32-38] and

phase change memory (PCM) [39-41], etc. These eNVM devices are non-volatile and two-

terminal with cell size 4F2~12F2, and they use their conductance to represent the stored

synaptic weight. These eNVMs have long been considered as promising candidates for

future replacement of NAND/NOR FLASH in storage applications. Although they are still

not mature yet, some prototype chips have been demonstrated. For example, Samsung has

reported an 8-Gb PCM prototype chip at 20 nm that has a write bandwidth of 40 MB/s in

2012 [42], Micron/Sony has reported a 16Gb RRAM prototype chip at 27 nm that could

achieve a read/write bandwidth of 1GB/200 MB per sec in 2014 [43], etc. However, the

requirement for eNVM to be used as synaptic devices is more stringent. This is because

they also need to have the desired “analog” multi-level conductance states to represent the

weight and perform accurate computation in neuromorphic applications. Therefore, there

is an even larger design space with eNVM being exploited as a synaptic device for efficient

hardware implementations of DNNs.

Operation of eNVM devices is quite simple. The transition between conductance states

in eNVM devices is triggered by electrical inputs (voltage or current pulse). Generally, the

conductance is increased and decreased with positive and negative programming voltage

9

pulses, which is referred to as SET and RESET or weight increase and decrease,

respectively. The detailed conductance switching mechanism is different for different types

of eNVM devices. For RRAM devices, they can be either filamentary or non-filamentary

(homogeneous interface) depending on the switching mechanisms. The device structure of

filamentary RRAM is shown in Fig. 1.2(a). Operation of filamentary RRAM devices relies

on the voltage-driven conductance switching of the metal oxides (e.g. HfOx [44], AlOx [45],

WOx [46], TaOx [47] and TiOx [48]), which is generally attributed with the formation and

rupture of the conductive filament that consists of defects (i.e. oxygen vacancies in oxide).

Filamentary switching process is fast and low-power, and many of these aforementioned

materials are highly silicon CMOS fabrication process compatible, making filamentary

RRAM a promising candidate as embedded non-volatile memory technology. However,

its filament formation (SET) process is inherently abrupt, making weight increase

uncontrollable. The common solution in traditional memory application is to apply

compliance current through external circuitry to limit the filament growth, but this is not

feasible for analog conductance tuning with multilevel compliance current in

neuromorphic computing as the peripheral circuit design will become much more complex.

Thus, the use of RESET-only weight tuning was a more realistic approach [37]. Today,

making gradual SET is still an active research topic for filamentary RRAMs. Some bilayer

oxides structures have been proposed to prevent forming a single strong filament through

the tunneling gap distance as the primary variable to determine the conductance based on

an exponential relationship. They either allow the filament to grow in lateral size [36] or

form multiple weak filaments [49] to achieve a more gradual SET. However, they may

have larger variability due to stochastic filament formation.

10

Fig. 1.2 Schematic of (a)-(c) two-terminal emerging non-volatile memory (eNVM) and

(d) FeFET based synaptic device structures.

The device structure of non-filamentary RRAM is shown in Fig. 1.2(b). Different than

the filamentary RRAM, conductance switching in non-filamentary RRAM is attributed to

the field-induced change of the Schottky barrier or tunneling barrier at the interface

homogeneously over the entire device area [50], enabling gradual conductance tuning that

is highly suitable for implementation of analog synapse. Several RRAM synaptic devices

were reported on this type, such as Ag:a-Si [32], TaOx/TiO2 [33, 34], PCMO [35, 51].

Despite more gradual change in the conductance, the conductance tuning curve is quite

nonlinear and asymmetric due to nonlinear barrier change by defect movement, thus new

programming schemes such as non-identical pulse schemes that mitigate this issue may be

required. In addition, some of these non-filamentary RRAMs indeed suffer from the so-

called “voltage-time dilemma” [50], which describes the conflict between the fast

switching speed and long retention time (requiring low and high energy defect diffusion

barrier, respectively). Hence it can be found that the conductance tuning speed of some

reported non-filamentary RRAMs are much slower than the filamentary ones [34, 35].

On the other hand, PCM relies on the chalcogenide materials (e.g. Ge2Sb2Te5 [52]) to

switch between the crystalline phase (high conductance state) and the amorphous phase

Top electrode

Bottom electrode

Chalcogenide material

Amorphous
region

Insulator

(c) Phase Change
Memory

Bottom electrode

Top electrode

Metal
Oxide

Oxygen
vacancy

Oxygen
ion

(a) Filamentary
RRAM

Filament

Bottom electrode

Top electrode

Defect-rich region

(b) Non-filamentary
RRAM

N+ N+

P sub

(d) Ferroelectric FET

Ferro-
electric

Defect-poor region

11

(low conductance state). Its device structure is shown in Fig. 1.2(c). PCM also has the same

asymmetric conductance switching problem as the filamentary RRAM. Its SET process

can be made gradual with repetitive pulses, while its RESET process is abrupt because the

thermal melting and quench is required for crystalline to amorphous phase transition. To

address this issue, one of the architectural approach is to use two PCM devices as one

synapse [39, 41], where the gradual SET process is utilized in both devices, and the

differential read-out conductance is used to represent the weight increase and decrease.

Another approach is to use the non-identical pulse schemes that can be applied to general

eNVMs. As demonstrated in [40], the increasing pulse amplitude scheme helps alleviate

the conductance overshoot in the beginning and saturation in later stages. However, the

non-identical pulse scheme will make the peripheral circuit design complex, which will be

emphasized later in Section 2.3.1.

There is also another type of synaptic devices based on ferroelectric field-effect-

transistor (FeFET) [53, 54]. FeFET based synapses are three-terminal like a conventional

transistor, but with its gate dielectric replaced by a ferroelectric material that has multiple

domains of polarization. Its device structure is shown in Fig. 1.2(d). With programming

voltage pulses applied on the gate, part of the polarization direction can be changed,

enabling gradual tuning of the threshold voltage and thereby the channel conductance to

store the analog weights. Unfortunately, non-identical pulse schemes still cannot be

avoided to achieve a linear conductance tuning [53, 54].

No matter which type the synaptic device is based on, it has to exhibit desired synaptic

device behaviors in order to achieve the expected learning performance. The ideal synaptic

device behavior assumes that identical programming voltage pulses can tune the weight

12

linearly. As shown in Fig. 1.3, however the realistic devices reported in literature do not

follow such ideal trajectory, exhibiting “non-ideal” properties such as nonlinear and noisy

weight increase/decrease, limited precision and finite ON/OFF ratio. For example, Ag:a-

Si devices [32] show a nonlinear and noisy weight increase/decrease; though TaOx/TiO2

devices have been improved to exhibit a more linear and smooth weight increase/decrease

[34], the ON/OFF ratio is very limited (~2). Such non-ideal behaviors commonly exist in

today’s synaptic devices [32-36], possibly due to the inherent drift and diffusion dynamics

of the ions/vacancies in these materials. Detailed analysis of their impact on the

performance of different learning algorithms will be performed in Section 2.3 and 5.3.

Fig. 1.3 Reported measured experimental data of weight update in (a) PCMO [35], (b)

Ag:a-Si [32], (c) TaOx/TiO2 (Type A) [33], (d) TaOx/TiO2 (Type B) [34] and (e)

AlOx/HfO2 [36] based synaptic devices. © 2017 IEEE.

1.3 Synaptic Crossbar Array Architecture

A set of synapses that fully connects between two layers of neurons can be viewed as

a weight matrix. The most compact and simplest array structure for synaptic devices to

13

form this weight matrix is the crossbar array structure, where each synaptic device is

located at each cross point. The crossbar array structure can achieve a high integration

density of 4F2/cell. As shown in Fig. 1.4(a), if the input vector is encoded by read voltage

signals, the weighted sum operation (vector-matrix multiplication) can be performed in a

parallel fashion with synaptic crossbar array [55, 56]. The weighted sum result in terms of

the output currents are then obtained at the end of each column. Ideally, it can be expressed

in a matrix form:

(

I1

I2

⋮
In

) = (

G11 G12 ⋯ G1m

G21 G22 ⋯ G2m

⋮ ⋮ ⋱ ⋮
Gn1 Gn2 ⋯ Gnm

) (

V1

V2

⋮
Vm

) (1.1)

where each G element in the weight matrix is the conductance of the synaptic devices. Fig.

1.4(b) shows the equivalent RC model of a single cell in the crossbar array structure, which

can be duplicated to form the whole array. The wire parasitics (Rw and Cw) not only bring

extra latency and energy consumption in the array, but also causes IR drop (reduction of

access voltage) along the weighted sum path. Aggressive downscaling of the wire width

(W) will make the IR drop more severe. Hence the weighted sum current in Eq. (1.1) may

not be accurately obtained. Fortunately, the sneak path problem [57] of the unselected cells

in the array for conventional memory application does not exist in the weighted sum

operation, if all the cells are participating in the computation. It is preferred that the value

of input vector element is encoded by the number of identical voltage pulses, which causes

less distortion on the weighted sum compared to the analog encoding scheme with varying

voltage amplitude [56]. In the analog encoding scheme, it is also difficult to split the read

voltage (typically <1 V) into multi-levels due to noise consideration and practical bias

circuit design constraints.

14

Fig. 1.4 (a) Weighted sum operation in an eNVM based synaptic crossbar array structure.

(b) Equivalent RC model of a synaptic device. © 2018 IEEE.

For weight update operation, though a fully parallel write scheme has been proposed

[34], programming all the cells in the array may consume too much peak power that the

peripheral circuits can provide, and it also requires complex peripheral circuit design thus

the hardware cost will be tremendous. Therefore, row-by-row write scheme has to be used.

The voltage bias for the row-by-row write scheme in weight update is shown in Fig. 1.5.

As the weight increase and decrease need different programming voltage polarities, the

weight update process requires 2 steps with different voltage bias schemes. As there is no

isolation between cells, it is necessary to apply an intermediate voltage (V/2) at all the

unselected rows and columns to prevent the write disturbance on unselected cells during

weight update [58]. In this scheme, a lot of energy is consumed to charge up all unselected

rows and columns for every single operation. Therefore, the simple crossbar array

architecture is not energy-efficient in weight update. In Section 3.1, there will be

discussions on the design for improvement of synaptic array architectures that show better

performance on weighted sum or weight update operations.

G11

V1

∑G1jVj
j

G21 Gn1

G12 G22 Gn2

G1m G2m Gnm

V2

Vm

∑G2jVj
j

∑GnjVj
j

I1 I2 In

Synaptic Crossbar

Array (m×n)In
p

u
t

V
e

c
to

r

(a)

Cell

(b)

Rw

Cw

Cw

Rw

RrWire RC
Model

W

Synaptic
Cell

ModelCr

15

Fig. 1.5 Voltage bias scheme in the write operation of crossbar array. Two separate phases

for weight increase and decrease are required. In this example, the left cell of the selected

cells will be updated in phase 1, while the right one will be updated in phase 2.

1.4 Overview of Contributions

This dissertation aims at addressing the aforementioned design challenges of

neuromorphic computing system based on synaptic devices and array architectures. Firstly,

the sparse coding algorithm is used as a starting point. With the assumption of perfect linear

weight update on analog eNVM devices, the design methodologies for co-optimizing the

synaptic crossbar array with the sparse coding algorithm to implement on-chip learning.

By applying a set of reverse scaling rules, the output function error can be minimized at an

affordable expense of area, energy and latency [56]. As the output function error may not

accurately represent the real learning accuracy, the synaptic device behavioral model is

directly incorporated into the weight update operation in the algorithm. The impact of non-

ideal synaptic device properties on the learning accuracy of the sparse coding algorithm

can then be thoroughly analyzed, and mitigation strategies to remedy the accuracy loss are

proposed [59]. The discussions will be presented in Chapter 2.

VW/2

VW/2

VW/2

VW

VW/2

VW/2

VW/2

0

VW 0 0VW

VW/2 VW/2

Write Scheme of Crossbar Array

Weight increase
(phase 1)

Weight decrease
(phase 2)

Selected cells

16

Although the crossbar array architecture is simple, it suffers from the write disturbance

issue and large weight update energy. To reduce the energy consumption in weight update,

it is proposed to add a selector device in series with the eNVM to achieve nonlinear I-V

characteristics. With selector, the IR drop along interconnects can also be alleviated due to

higher cell resistance [58]. Another way to further reduce the energy is to modify the

existing conventional 1-transistor-1-resister (1T1R) array to the “pseudo-crossbar” array

by rotating the bit lines by 90o to enable weighted sum operation [60]. In the neuromorphic

hardware system, the peripheral circuits play important roles in supporting the synaptic

arrays, where one of the key component is the neuron analog-to-digital converter (ADC)

that converts weighted sum currents to digital outputs. Following the principle of the

integrate-and-fire neuron model, the read circuit is designed to integrate the weighted sum

current on the array column capacitance and fire output spikes once the voltage charges up

above a certain threshold [61]. However, the read circuit is complex and not area-efficient.

More aggressively, a novel design was proposed to replace the entire read circuit with a

compact two-terminal device that exhibits metal-insulator-transition (MIT) phenomenon,

where its voltage oscillation is utilized as an integrate-and-fire neuron’s output waveform

[62]. The results will be presented in Chapter 3.

To facilitate the design space exploration of on-chip learning, a circuit-level macro

simulator “NeuroSim” was developed in C++ to estimate the circuit-level performance

(such as the area, latency, energy consumption and leakage power) of neuromorphic

hardware accelerators with memory array based architectures [63]. Dedicated to support

neuromorphic hardware accelerators, the hierarchy of the simulator consists of different

levels of abstraction from the memory cell and transistor technology parameters, to the

17

gate-level sub-circuit modules and then to the SRAM and eNVM array architecture

including the peripheral circuits. As a case study, the simulator has been used to evaluate

the performance of partitioning a large weight matrix into SRAM and eNVM accelerators

[64]. The details will be described in Chapter 4.

One of the powerful features of NeuroSim is its ability to support neural network

learning algorithms by providing the circuit-level performance estimation, forming an

integrated device-to-algorithm simulation framework. To demonstrate this feature, a 2-

layer multilayer perceptron (MLP) simulator with integration of NeuroSim was constructed,

which is useful for investigating the impact of analog eNVM’s non-ideal device properties

and benchmarking the design trade-offs (both the learning accuracy and circuit-level

performance metrics) between SRAM, digital and analog eNVM based architectures for

online learning and offline classification [65, 66]. Besides the learning performance in

normal operations, the simulator was also used to study the impact of eNVM reliability

issues such as the data retention failure in offline classification and the write endurance

degradation in online learning [67]. The results will be presented in Chapter 5.

18

 SYNAPTIC CROSSBAR ARRAY DESIGN FOR ON-CHIP SPARSE

DICTIONARY LEARNING

The resistive crossbar array architecture has been proposed for on-chip implementation

of weighted sum and weight update operations in neuromorphic learning algorithms.

However, several limiting factors potentially hamper the learning accuracy, including the

nonlinearity and device variations in weight update, and the read noise, limited max/min

conductance ratio (ON/OFF ratio) and array parasitics in weighted sum. With unsupervised

sparse coding as a case study algorithm, this chapter will employ device-algorithm co-

design methodologies to quantify and mitigate the impact of these non-ideal properties on

the accuracy.

2.1 Sparse Coding Algorithm

Sparse coding (SC) algorithm [68] is selected as a starting point for on-chip

implementation with synaptic devices due to its simplicity. Despite of a simple network

with two layers of neurons and one weight synaptic matrix, it can still achieve reasonably

high learning accuracy with invariance for pattern’s spatial shift and rotation. The sparse

coding is found to be a bio-physiological plausible model: neurons in mammalian primary

visual cortex can form a sparse representation of natural scenes [69, 70], which is believed

to emerge from an unsupervised learning algorithm that attempts to find a factorial code of

independent features such as lines, edges and corners. For real-world applications, the

sparse coding algorithm has demonstrated its power in many domains such as audio

processing, text mining and image recognition. In this work, the goal is to evaluate and

optimize the synaptic device properties and crossbar architecture for fast and compact on-

chip sparse feature learning as a case study.

19

Fig. 2.1(a) shows the simplified process flow of the sparse coding algorithm (SC

module), which is obtained from [71] with optimization on the algorithm parameters. In

the training phase, with a given input vector set｛X｝(braces mean a collection of objects),

the corresponding feature vector set｛Z｝and the dictionary matrix (D) are trained

iteratively by minimizing the objective error function (E):

E = min ∑ (‖DZ - X‖2+λ‖Z‖1) (2.1)

As each X is a sparse linear combination of Z via D, the first term of Eq. (2.1) generally

measures how well the dictionary reconstructs the input data. The second term of Eq. (2.1)

imposes constraint of the sparsity of the feature vector. Since both D and Z are unknown,

the above optimization problem is a non-convex problem. It is proposed to alternatively

optimize Z with fixed D by the coordinate descent (CD) method and optimize D with fixed

Z by the stochastic gradient descent (SGD) method, which converts the problem into a

convex optimization problem. Compared to conventional full gradient descent, SGD is

more computation-efficient with large-scale dataset [71]. Using SGD, the D weight update

process can be expressed as:

D ← D - ηRZT (R=DZ - X) (2.2)

It can be seen that D is modulated by the product of ηRZT, where R is the reconstruction

error, and η is the learning rate, which is essentially the delta rule. For the ideal software

implementation of the algorithm, the exact value of ηRZT can be calculated and applied to

the update of D. However, the D update implemented on-chip needs to be translated to the

20

number of pulses applied on the synaptic devices, and the effect of the programming pulses

on the conductance of the devices may not represent the exact value of ηRZT due to the

realistic properties of synaptic devices as mentioned above. In this work, we model the

weight update curve and incorporate this model in the D update code in the SC algorithm.

Fig. 2.1 Process flow of (a) the sparse coding (SC) module and (b) the entire process

including the unsupervised feature extraction by sparse coding (SC) and the supervised

classification by support-vector-machine (SVM). © 2016 IEEE.

Fig. 2.1(b) describes the entire process flow that includes dictionary learning (training

phase) and classification (testing phase). In this work, the MNIST handwritten digits [1]

are used as the training and testing data set, where the raw images are densely sampled into

small patches with 10×10 pixels as X input vector with a dimension of 100, as shown in

Update Z (CD):

Zj← hλ[(Dj)
T
(X-DZ)+Zj]

Initialize Z for X

(Skip if Testing)

Update D (SGD):

D← D-η(DZ-X)Z
T

End of Iteration?
No

Yes

Training: Input {X} and initialize D

Testing: Input {X} and D

SC module

SC

(Testing)

Max

Pooling

Testing Patches

{Xtest}

Training

Patches {Xtrain}

{Ztest}

Max

Pooling

Dtrain

{Ztrain}

Testing

Labels
{Ztest}{Ztrain}

End of {X}?

Yes

Output D, {Z}

No

Next X

Next
Iteration

(a) (b)

Training

Labels

SVM

(Training)

Trained

Model

Classification

SC

(Training)

SVM

(Prediction)

Recognition

Accuracy

21

Fig. 2.2. In the later analyses, a set of 40k images is used for training and a different set of

5k images is used for testing, as we have found that using the entire 60k training images

does not have noticeable increase on the accuracy (only 1%) and its simulation will be

much slower.

Fig. 2.2 (a) Examples of handwritten MNIST data [1]. (b) Image patches (10×10 pixels)

are extracted for training. © 2016 IEEE.

Fig. 2.3 shows the learning accuracy as a function of Z vector dimension. The learning

accuracy does not increase much beyond a dimension of 200. In this work, we fix the Z

dimension to be 300, thus the size of the D matrix is 100×300 (X×Z). After the training

process, the trained dictionary Dtrain is used as a fixed D in the testing phase to generate the

testing features｛Ztest｝. Before the classification process, a simple maximum pooling

operation is employed on both the trained and testing features for each image to select the

most active neuron of each feature node:

Zi = max(Zi
1, …, Zi

k) (2.3)

Overlapped
Samples X

(10x10 pixels)

(a) (b)

22

where Zi
1, …, Zi

k are the ith elements of the feature vectors of total k small image patches

per image. The maximum pooling merges all the feature vectors of small image patches

into one feature vector per image by selecting the maximum value of each ith element.

Finally, to classify the 10 digits, the support vector machine (SVM) [72] is used. With the

input of testing labels, SVM performs classification and gives out the recognition accuracy.

Fig. 2.3 Learning accuracy as a function of Z dimension. © 2016 IEEE.

2.2 Limited On-Chip Precision of SC

For on-chip implementation of the SC algorithm, it is necessary to limit the precision

of D and Z in the algorithm as the chip cannot afford the floating-point computation. In the

crossbar array architecture, the values in the Z vector are stored on local memories in the

peripheral circuitry, and the values of the D matrix are represented by the synaptic weights

in the array. Fig. 2.4 shows the learning accuracy with different precisions by truncation of

the bits in the SC algorithm. It suggests that a 4-bit Z is sufficient for high learning accuracy

and the limited precision of D has more impact on the accuracy. For example, D should be

at least 6 bits to achieve an accuracy >95%. This requirement of a high precision in the

weight update for the learning is also reported in other recent works [73, 74]. As the training

23

of these algorithms are error-driven, thus high precision is required to preserve the error

information. Since the number of bits D is related to how many levels of conductance that

the synaptic device can achieve, a 6-bit D (64 levels) is chosen for later analysis based on

the number of multi-level states available in today’s synaptic devices (see Fig. 1.3).

Fig. 2.4 Learning accuracy with different precision bits of D and Z in the SC algorithm. ©

2016 IEEE.

2.3 Realistic Device Properties and Mitigation Strategies in Synaptic Array

As previously shown in Fig. 1.3, realistic synaptic behaviors include 1) the nonlinearity

and 2) device variations in weight update, and 3) the read noise 4) limited ON/OFF weight

ratio in weighted sum. The circuit model of synaptic device is also considered in the array-

level analysis. In this section, these realistic properties are modeled individually into the

sparse coding algorithm and their impact on the learning accuracy is studied. As a baseline,

the limited precision of the synaptic devices (64 levels) is considered.

2.3.1 Nonlinear Weight Update

To analyze the impact of nonlinear weight update on the learning, a general behavior

that models the conductance change of weight increase (GLTP) and decrease (GLTD) with

the number of pulses (P) is described with the following equations:

24

GLTP = B (1-e
(-

P
A

)) + Gmin (2.4)

GLTD = -B (1-e
(
P-Pmax

A
)) + Gmax (2.5)

B =
Gmax-Gmin

1-e
-Pmax

A

 (2.6)

where Gmax, Gmin and Pmax can be directly extracted from the experimental data, which

represents the maximum conductance, minimum conductance and the maximum pulse

number required to switch the device between the minimum and maximum conductance

states. A is the parameter that controls the nonlinear behavior of the weight update, and B

is simply a function of A that fits the functions within the range of Gmax, Gmin and Pmax. A

and B may be different in Eq. (2.4) and Eq. (2.5). A set of nonlinear weight increase and

decrease behaviors can be obtained by adjusting A as illustrated in Fig. 2.5(a), where each

nonlinear curve is labeled with a nonlinearity value from +6 to -6. Here the plus and minus

are merely the signs to label weight increase and decrease, respectively.

25

Fig. 2.5 (a) Different nonlinearities of the weight increase and decrease fit from +6 to -6.

(b) Learning accuracy with different weight update nonlinearities. Nonlinearities of the

reported synaptic devices from Fig. 1.3 are also shown. © 2016 IEEE.

Then, we apply these nonlinear functions into the weight update in the SC algorithm.

Fig. 2.5(b) shows that learning accuracy slightly decreases in the high nonlinearity region

of weight increase and decrease, and a relatively larger drop from ~96% to ~92% occurs

at maximum nonlinearities (+6/-6 curves). For today’s synaptic devices (Fig. 1.3), the

nonlinearities of weight increase and decrease are also labeled in the Fig. 2.5(b). It is shown

that the nonlinearity in the weight update has a moderate impact on the learning

performance.

To improve the nonlinearity, the programming scheme that updates the weight can be

smartly designed. Fig. 2.5(a) shows different programming schemes and Fig. 2.5(b) shows

the corresponding measured experimental weight update in TaOx/TiO2 (Type A) based

synaptic device. Scheme A uses a simple pulse train for both weight increase and decrease

with identical pulses, which leads to the largest nonlinearity. Scheme B is a reinforcement

of Scheme A, which splits a single voltage pulse into a pair of positive and negative pulse

with different amplitude and duration. It improves the linearity as the second negative pulse

26

can cancel some overshoot of first positive pulse at the beginning stages of weight update.

Scheme C is a more complicated extension of Scheme A, where the pulse duration varies

depending on the current conductance state of the synaptic device. The idea of Scheme B

and C is to slow down the weight update at the beginning stages of weight update. It is

observed that with identical pulses, the conductance changes very rapidly at the beginning

stages of the weight update and then it gradually saturates. The duration of programming

pulses can be adjusted in a way that a shorter pulse is applied at the beginning stages while

gradually wider pulses are applied at subsequent stages. For this scheme, an empirical

function to determine the pulse duration (PD) is required to program the device from

conductance state n to n+1 (n=0: minimum (maximum) conductance for weight increase

(decrease)) is expressed as:

PD(n→n+1) = Pi×e
(
m×n
50

)
 m= {

6, Weight increase

 4, Weight decrease
 (2.7)

where Pi is the initial pulse duration.

27

Fig. 2.6 (a) Different programming schemes and (b) the corresponding experimentally

measured data of conductance modulation in the TaOx/TiO2 (Type A) based synaptic

device. © 2015 IEEE.

We can see that with Scheme C, the weight update approaches the linear curve.

However, the trade-off is that Scheme C needs a read-before-write step to first identify the

conductance state and then apply the correct pulse duration to the device, which inevitably

increases the complexity of the peripheral circuitry design as well as the latency and energy

consumption. In particular, Scheme C cannot be applied with the parallel weight update

scheme [56] due to non-identical pulses. Instead, the weight matrix can only be updated in

a sequential row-by-row fashion. In contrast, Scheme B, although it uses a pulse pair as

one programming operation, it does not need the read-before-write step as the pulse pair

shape is independent of the conductance state. For quick estimation on the overhead of the

array, the latency and energy consumption are simply calculated by the applied pulse

widths and voltage amplitudes in these schemes. Assuming that the sparse Z vector has 5%

nonzero elements, a weight increase from the 30th back to 20th weight level gives ~7.5X

1 2

1 2

1

1

1

3

3

1

1

1

2 3

32

A. Identical Pulses

B. Identical Pulse Pairs

C. Non-identical Pulses

Weight Increase

Weight Decrease

10ms

5ms

5ms

10ms

3V

0

-2V
-3V

2V

2.8V

0

-2.5V

2ms

2ms

0.1ms

1ms

0

3V

-2.5V(a) (b)

Weight Decrease

Weight Decrease

Weight Increase

Weight Increase

28

latency for Scheme B and ~60X for Scheme C. The overhead of energy consumption will

be a bit less than that of latency as the root-mean-square (RMS) values of voltage in

Scheme B and C are smaller. From peripheral circuit design’s point of view, identical pulse

pairs of Scheme B can be realized by two pulse generators at the two ends of the array to

generate a pair of pulses with different polarities. On the other hand, Scheme C needs at

least an extra computing unit to calculate Eq. (2.7) and a special pulse generator to produce

non-identical pulses with fine-grained duration. Since the algorithm has resilience to the

moderate weight nonlinearity, Scheme B may be a better choice for a practical

implementation considering the overhead of Scheme C. However, given the accuracy loss

of ~4% at the maximum nonlinearities in the sparse coding algorithm, we think it is not

crucial to apply the smart programming schemes thus those overheads can be saved.

2.3.2 Device Variations

It is well known that the synaptic devices involving drift and diffusion of the

ions/vacancies show considerable variation from device to device, and even from pulse to

pulse within one device. Owing to the device-to-device weight update variation, different

devices in the array will follow different nonlinearity baselines. Owing to the cycle-to-

cycle weight update variation, there will be pulse to pulse noise on top of the nonlinearity

baseline. Owing to the read noise, the read-out current of a weight state will have some

temporal fluctuation.

The effect of device-to-device variation can be analyzed by introducing the variation

into the nonlinearity baseline for each synaptic device, as illustrated in Fig. 2.7(a). For

example, if a synaptic device has a +100% device-to-device variation, there will be a +1

deviation of the nonlinearity. As shown in Fig. 2.7(b), the learning accuracy is

29

insignificantly affected by the device-to-device variation with 30% standard deviation from

the baseline.

Fig. 2.7 (a) Illustration of the device-to-device weight update variation. Different devices

in the array will follow different nonlinearity baselines. (b) Learning accuracy with

different standard deviations of device-to-device weight update variation, which has almost

no impact. © 2016 IEEE.

The cycle-to-cycle variation of the conductance occurs at every write pulse operation

on the synaptic device, as illustrated in Fig. 2.8(a). The amount of cycle-to-cycle variation

(σ) is expressed in terms of the percentage of entire weight range. As shown in Fig. 2.8(b),

the learning accuracy degrades significantly with larger cycle-to-cycle weight update

variation.

30

Fig. 2.8 (a) Illustration of the cycle-to-cycle weight update variation. There is pulse to

pulse noise on top of the weight update curve. (b) Learning accuracy with different standard

deviations of cycle-to-cycle weight update variation, which has significant degradation on

the learning accuracy with both nonlinearity baselines (0, 0) and (6, -6). © 2016 IEEE.

2.3.3 Read Noise in Weighted Sum

Similar to the cycle-to-cycle weight update variation, the read noise occurs at every

read access to the synaptic device, but the average conductance state is not disturbed. As

illustrated in Fig. 2.9(a), the read-out current fluctuates at different conductance states with

different number of read pulses. Fig. 2.9(b) shows significant degradation of learning

accuracy due to the read noise. The impact is even more critical with nonlinearity baseline

(6, -6). We have measured a variation of ~2.89% in the read noise in our TaOx/TiO2 based

synaptic device, which could cause the accuracy drop below 90% considering this read

noise effect only.

31

Fig. 2.9 (a) Illustration of the weight read noise. There is read noise on top of each weight

level. (b) Learning accuracy with different standard deviations of weight read noise, which

causes significant degradation on the learning accuracy and is even severer at nonlinearity

baseline (6, -6). © 2016 IEEE.

To alleviate the impact of device variations, we propose using multiple cells as one D

weight element. This approach statistically averages out all the conductance variations of

synaptic devices. If n cells are used as one weight element, the standard deviation of

variations will be reduced by a factor of 1/√n assuming that variations are normally

distributed. Fig. 2.10 shows an example of the reduction on the variation using 9 cells

compared to that using only 1 cell. This strategy is to have considerable improvement on

the accuracy loss due to device read-out noise, and it does not have a large overhead in the

array area as the area is determined by the pitch of the peripheral circuits in the logic design

rule. For example, the array cell height should be aligned with the standard cell height of

the array row driver. We estimate that the layout area of 9 resistive synaptic cells is

increased by ~20% compared to that of 1 cell at 65nm technology node and 200nm wire

width. It should be noted that part of the peripheral circuitry can be placed underneath the

synaptic array to save the total area as the synaptic devices are integrated on top of the

32

CMOS circuits at the interconnect level. However, using multiple cells inevitably increases

the energy consumption by n times.

Fig. 2.10 Illustration of multiple cells as one weight element to average out the device

variations or read-out noise. © 2016 IEEE.

2.3.4 Limited conductance ON/OFF ratio

Ideally the D values in the SC algorithm are represented by a normalized conductance

of synaptic devices, and the range of the D value is from 0 to 1. However, the minimum

conductance can be regarded as D=0 only when the ratio between the maximum and

minimum conductance (ON/OFF ratio) approaches infinity, which is not feasible in today’s

synaptic devices. Fig. 2.11 shows the learning accuracy with different ON/OFF ratios. The

learning accuracy dramatically decreases when the ON/OFF ratio shrinks below 25,

because the calculations involved with small values of D in the algorithm will be

significantly distorted. The Ag:a-Si device exhibits a largest ON/OFF ratio of ~15 among

the devices in Fig. 1.3, while other devices show even smaller ON/OFF ratio. This means

that without any optimization, none of these synaptic devices can achieve high recognition

accuracy when used in on-chip implementation of sparse learning.

j

i

i

j

33

Fig. 2.11 Learning accuracy with different ON/OFF ratios at nonlinearity baselines (0, 0)

and (6, -6). The synaptic devices in Fig. 1.3 have a maximum ratio about 15, which results

in >10% accuracy loss. © 2016 IEEE.

One approach to remedy this situation is to eliminate the effect of the OFF-state current

in every weight element with the aid of a dummy column. The crossbar array architecture

with a dummy column is illustrated in Fig. 2.12. The synaptic devices in the dummy

column remain in their minimum conductance states, such that the readout value at the

output of dummy column represents the weighted sum of the Z vector and the OFF-state

conductance. In the peripheral circuitry, we subtract the OFF-state weighted sum from all

the partial weighted sums, DiZ, performed along the columns. Except for spatial variation

between the synaptic devices in the same row, this virtually eliminates the effect of OFF-

state current in the sparse learning task. An additional column will give 1% overhead on

the array area as there are totally 100 columns (X=100), and the area of subtractors is

estimated to be ~7.84% of the array area with 9 cells at 65nm technology node and 200nm

wire width. However, as the array is able to partially hide the subtractors, its area overhead

can be further reduced.

34

Fig. 2.12 Crossbar array architecture with the dummy column and subtractors to eliminate

the common OFF-state current. © 2016 IEEE.

2.3.5 Impact of Weighted Sum IR Drop in Crossbar Array

To simulate the weighted sum operation in SPICE, we model the synaptic device as a

resistor in parallel with a capacitor as shown in Fig. 1.4(b). The wire resistances and

parasitic capacitances are also considered. The interconnect parameters are obtained from

the ITRS table [75]. We extract statistical D, Z and R data at different learning stages from

the SC algorithm run by software, and use these values to simulate the weighted sum DZ

and DR (in the CD method in Fig. 2.1(a)) by SPICE. The deviation of weighted sum by

SPICE is then calculated and incorporated back into the SC algorithm to evaluate its impact

on the learning accuracy. Fig. 2.13 shows the learning accuracy with different wire widths.

Wires with smaller width have larger wire resistance, thus the weighted sum becomes

inaccurate and the learning accuracy is significantly reduced. To alleviate this, we propose

reverse scaling on the wire’s geometrical dimension, preferably with a wire width larger

than 100 nm. Such reverse scaling plus the redundant cells for reduction of device

variations dramatically increase the array area, but this may be acceptable considering the

+ ++

DICTIONARY ARRAY

D
U

M
M

Y
 C

O
L

U
M

N

-+ + + --

Z

INPUT

Di-1Z DiZ Di+1Z

Devices with

Minimum

Conductance

35

size of peripheral logic gates is complicated and it is thus comparable to the cell pitch of a

synaptic cell in the array design.

Fig. 2.13 Learning accuracy with different wire width. Smaller wire width will degrade

the learning accuracy due to interconnect effect. © 2016 IEEE.

2.4 Accuracy Improvement by Proposed Strategies

If we combine all the non-ideal device effects and array parasitics mentioned above,

the learning accuracy of the system drops terribly low to ~30%. Now we implemented the

proposed mitigation strategies into the SC algorithm. Specifically, it is assumed that the

following improvements on the realistic properties are achieved: 1) the ON/OFF weight

ratio is increased by 4X from 12.5 (within the range of the Ag:a-Si device) to 50, using a

dummy column but assuming that the OFF-state current is not completely removed due to

device-to-device variation; 2) 9 cells as a weight element is used to reduce the variation of

read noise from ~2.89% to ~0.96%. It is also assumed that the nonlinearity is large ((4.7, -

4.7) for the TaOx/TiO2 (Type A) based synaptic device) and the array wire width is relaxed

to be 200 nm. As shown in Fig. 2.14, the recognition accuracy of synaptic devices can

closely approach that of the ideal algorithm, achieving an accuracy improvement of >65%.

However, the proposed strategies will bring some overhead onto the chip area, latency and

36

energy. Compared to the design without strategies, the area overhead mainly comes from

the redundant cells with relaxed wire width (~20% for 9 cells and 200nm wire). The area

overhead of the subtractors can be smaller (<7.84%) if they are partially hidden underneath

the array. The total latency of weighted sum operation will be similar if the weighted sum

current readout is based on the principle of integrate-and-fire neuron model [61], where

both the weighted sum current and parasitic column capacitance are increased by 9X and

these two effects cancel out each other. The total latency of the weight update will also be

similar because the 9 cells are physically wired together and being programmed

simultaneously. However, the energy consumption of both the weighted sum and weight

update will be increased by ~9X because 9 cells are used.

Fig. 2.14 Comparison of the recognition accuracy of the MNIST handwritten digits trained

by the sparse coding algorithm using the software approach running and implemented on

the hardware architecture with realistic synaptic devices and arrays. With the proposed

design methodologies, the recognition accuracy can approach the ideal value of the

algorithm. © 2016 IEEE.

37

2.5 Summary

Synapses are the core elements of a neuromorphic system to establish communication

between groups of neurons. Synaptic devices available today exhibit non-ideal device

properties, e.g., the nonlinearity in weight update, device variations, read noise and limited

ON/OFF weight ratio. The wire parasitics in nanoscale crossbar architecture also cannot

be ignored. Sparse coding algorithm is used to provide a platform to evaluate the

performance of unsupervised learning using realistic synaptic devices and arrays for image

applications. It is found that the non-ideal synaptic device properties and the wire parasitics

can lead to significant degradation on image recognition accuracy from ~96% to ~30%.

The mitigation strategies to remedy this issue are proposed in this chapter, including 1) the

use of multiple cells for each weight element to alleviate the impact of device variations

and read noise; 2) a dummy column to eliminate the off-state current; 3) larger wire width

to reduce the IR drop along interconnects thereby increase the accuracy of weighted sum.

By applying these strategies with tolerable trade-offs on the chip area, latency and energy,

the synaptic behavior is greatly improved and the recognition accuracy could come back

to ~95%, viably enabling the synaptic devices for practical hardware implementation of

the sparse learning algorithm on a chip. We believe that the device-algorithm co-design

methodologies presented in this chapter can also be applied to other neuromorphic learning

algorithms in general.

38

 DESIGN FOR IMPROVEMENT OF SYNAPTIC ARRAY AND NEURON

PERIPHERAL CIRCUITS

Traditional crossbar array architecture is a straightforward design to perform fully

parallel weighted sum operation, but it suffers from the write disturbance issue and is not

energy-efficient, as discussed in Section 1.3. Alternatively, we propose two array

architectures, the 1-selector-1-resistor (1S1R) array architecture and pseudo-crossbar array

architecture, to improve the current crossbar array design. In this chapter, the design of the

neuron peripheral circuits is also discussed. It is found that a compact two-terminal device

that exhibits metal-insulator-transition (MIT) phenomenon can potentially replace the

existing CMOS integrate-and-fire neuron to achieve smaller area and better performance.

3.1 Reformation of Array Architecture

3.1.1 1S1R Array Architecture

Fig. 3.1(a) shows the schematic of the proposed architecture of the 1S1R array

architecture. There is one selector in series with one synaptic device at each cross-point.

The selector introduces nonlinear I-V characteristics for the synaptic device and is helpful

for weight update and/or weighted sum operations when there are unselected rows/columns,

which will be discussed later in this section. Same as the traditional crossbar array, a read

voltage (VR) is applied in parallel to each row to compute the weighted sum in the read

operation. Because of the selector, the current at each cross-point is not exactly the

multiplication of VR and the conductance of the synaptic device. Therefore, the resistance

of the selector at VR must be much smaller compared to the resistance of the synaptic device.

The weight update operation in 1S1R array resembles the one in traditional crossbar

array, but the voltage biasing is a little bit more complicated. As shown in Fig. 3.1(b), the

39

write scheme to increase (decrease) the weight in the write operation is to select one row

at a time with the write voltage (VW) (0 V) applied at the edge, while other unselected rows

and columns are biased at an intermediate voltage VX to prevent the write disturbance.

Then, the VX-0-VX negative (VX-VW-VX positive) write pulses are then applied to increase

and decrease the weight in the selected cells, respectively.

Fig. 3.1 (a) The proposed 1S1R array architecture. The selector is in series with the

synaptic device. Read scheme is shown for performing the weighted sum in parallel, which

is similar to the traditional crossbar array. (b) The weight update operation with weight

increase and decrease phase. The selected row is biased at VW and 0 V, and VX-0-VX

negative and VX-VW-VX positive write pulses are applied to increase and decrease the

weight in the selected cells, respectively. © 2016 IEEE.

As mentioned in Section 1.3, the proposed weight update scheme suffers from the

leakage problem, as the crossbar array is partially selected and the leakage paths exists in

the half-selected cells on other unselected rows or columns. The half-selected cells can see

a voltage drop of VX (weight increase) or VW-VX (weight decrease) during the weight

update. Therefore, the selector is proposed to connect in series with the synaptic device to

suppress the leakage current at these voltages. Fig. 3.2 shows the I-V characteristics of a

TaOx/TiO2 (Type A) based synaptic device in ON state, the selector and the series of these

G11

G12 G22

G21 Gn1

Gn2

GnmG1m G2m

V1

V2

Vm

∑G1jVj
j

∑G2jVj
j

∑GnjVj
j

I1 I2 I1nSynaptic
Device

Selector

In
p

u
t

v
e
c

to
r

Weight matrix

(a)

Weighted Sum

VX

VW 0

VX 0 VXVW

Write Scheme of 1S1R Array

Weight increase
(phase 1)

Weight decrease
(phase 2)

Selected cells

VX

VX VX VX VX

VX

VX

(b)

40

two devices. In this study, we use the mixed-ionic-electronic-conduction (MIEC)-based

selector with high nonlinearity (~85 mV/dec) [76] and set the original VW=2 V and VR=1

V for a single synaptic device. Without the selector, VX is designed to be 1 V, which is the

V/2 write scheme in traditional memory application [77]. With the selector, the overall cell

resistance is increased, which reduces the IR drop along interconnects in weighted sum

while only affecting little on the mapping from device conductance to weight values

because the conductance of selector is relatively higher than the conductance range of

synaptic device at 1 V. Also, the selector can reduce the leakage on the half-selected cells

in weight update, and it does not affect the weight update because at sufficient large voltage

it is already turned on. In this case, VW should be increased to 3 V and the VX for weight

increase and decrease are then 1 V and 2 V, respectively. It can ensure the voltage drop on

the selected cells to be 2 V, which is the same as the original write condition for a single

synaptic device. Also, the voltage drop on the half-selected cells will then be 1 V, where

the leakage reduction is ~10X as shown in Fig. 3.2. Since most of the cells during the

weight update are half-selected, the energy consumption is greatly reduced compared to

the traditional V/2 write scheme in crossbar array where the voltage drop of half-selected

cells are VW/2=1.5 V.

41

Fig. 3.2 The I-V characteristics of resistive synaptic device, MIEC selector [76] and the

series of the above two devices. With selector, the cell resistance is increased to alleviate

the IR drop along interconnects in the weighted sum and the leakage on the unselected cells

(~10X reduction), without affecting the weight update. VW, VR and VX labeled here are the

voltages for the original synaptic array without the selector. © 2016 IEEE.

3.1.2 Pseudo-crossbar Array Architecture

The write disturbance problem in crossbar array architecture is also a concern in the

conventional memory application. A common design solution is to add a access transistor

in series with the eNVM device, forming the one-transistor one-resistor (1T1R) array

architecture, as shown in Fig. 3.3(a). The word line (WL) controls the gate of the transistor,

which can be viewed as a switch for the cell. The source line (SL) connects to the source

of the transistor. The eNVM cell’s top electrode connects to the bit line (BL), while its

bottom electrode connects to the drain of the transistor through a contact via. In such case,

the cell area of 1T1R array is then determined by the transistor size, which is typically >6F2

depending on the maximum current required to be delivered into the eNVM cell. Larger

current needs larger transistor gate width/length (W/L). However, the conventional 1T1R

array is not able to perform the weighted sum operation that follows Eq. (1.1). In this case,

42

we have to modify the conventional 1T1R array by rotating the BLs by 90o, which is named

as the pseudo-crossbar array architecture [60]. In weighted sum operation, all the

transistors will be transparent when all WLs are turned on. Thus, the input vector voltages

are provided to the BLs, and the weighted sum currents are read out through SLs in parallel.

It should be noted that the IR drop problem still exists in the pseudo-crossbar array, and

the wire RC model in Fig. 1.4(b) can also be applied here to study the IR drop problem.

Fig. 3.3 Transformation from (a) conventional 1T1R array to (b) pseudo-crossbar array by

90o rotation of BL to enable weighted sum operation. © 2018 IEEE.

The voltage bias schemes for weight update is shown in Fig. 3.4. As the weight increase

and decrease need different programming voltage polarities, the weight update process

requires 2 steps with different voltage bias schemes, which is similar to the crossbar array.

In weight update, the selected cells will be on the same row, and programming pulses or

biases (if no update) are provided from the SL, allowing the selected cells to be tuned

differently in parallel. To perform weight update for the entire array, a row-by-row

operation is still necessary. Typically, the entire row will be selected at a time to ensure the

maximum parallelism. With only the selected WL activated, the unselected cells at all other

rows can be free from the write disturbance, meanwhile achieving significant reduction on

the energy consumption in biasing these unselected rows.

SL BL

WL

Cell

Conventional 1T1R array

eNVM

BL

WL

Cell

Pseudo-crossbar array

SL

(a) (b)

43

Fig. 3.4 Voltage bias scheme in the write operation of pseudo-crossbar array. Two separate

phases for weight increase and decrease are required. In this example, the left cell of the

selected cells will be updated in phase 1, while the right one will be updated in phase 2. ©

2018 IEEE.

3.2 Design of Neuron Peripheral Circuits

Besides the synaptic array, several neuron peripheral circuits are needed to construct a

standalone weighted sum computation unit. Fig. 3.5 shows the circuit block diagrams for

crossbar and pseudo-crossbar array architecture. In weighted sum operation, crossbar and

pseudo-crossbar array need WL and BL switch matrix to pass the input vector voltages,

and the weighted sum results will be read out through the multiplexer (Mux), read circuits

and shift-add circuits. In weight update operation, both arrays need two switch matrixes

implement the array write scheme such as Fig. 3.4. In this section, these key neuron

peripheral circuits will be introduced in detail.

SL

WLVWL

0

0

0

0

VW 0

SL

WLVWL

0
0

0

0

0

0

0VW

VW

VW

VW 0

Weight increase (phase 1)

Selected cells

BL BL

Weight decrease (phase 2)

44

Fig. 3.5 Circuit block diagram for the (a) crossbar and (b) pseudo-crossbar array

architectures.

3.2.1 Crossbar WL Decoder

The WL decoder is modified to be “crossbar WL decoder” in pseudo-crossbar array,

which has an additional feature to activate all the WLs for making all the transistors

transparent for weighted sum. Inspired from [78], the crossbar WL decoder is constructed

by attaching the follower circuits to every output row of the traditional decoder, as shown

in Fig. 3.6. If ALLOPEN=1, the output of the decoder will not be taken into account, and

all the transmission gates in the follower circuits become open, which allows the input

voltage (VIN) pass through all the transmission gates thus all the WLs are activated. If

ALLOPEN=0, the crossbar WL decoder will function as a traditional WL decoder, which

activates one WL at a time. It should be noted that the follower circuits are designed using

transmission gates with VIN instead of digital logic gates with VDD as the WL voltage,

because the WL voltage may have to be different for the weighted sum (read) and weight

update (write) operation.

C
ro

s
s
b

a
r

W
L

D
e
c
o
d

e
r

SL Switch Matrix

Mux

Read Circuit

SL

BL

WL

B
L
 S

w
it
c
h
 M

a
tr

ix

Pseudo-crossbar Array

Shift-Add Circuit

W
L
 S

w
it
c
h
 M

a
tr

ix

BL Switch Matrix

Mux

Read Circuit

WL

BL

Crossbar

Array

Shift-Add Circuit(a) (b)

45

Fig. 3.6 Circuit diagram of the crossbar WL decoder. Follower circuit is attached to every

row of the decoder to enable activation of all WLs when ALLOPEN=1. © 2018 IEEE.

3.2.2 Switch Matrix and Input Vector Encoding

In both crossbar and pseudo-crossbar array architectures, switch matrixes are used for

fully parallel voltage input to the array rows or columns. Fig. 3.7(a) shows the BL switch

matrix for example. It consists of transmission gates that are connected to all the BLs, with

control signals (B1 to Bn) of the transmission gates stored in the registers (not shown here).

In the weighted sum operation, the input vector signal is loaded to B1 to Bn, which decide

the BLs to be connected to either the read voltage or ground. In this way, the read voltage

that is applied at the input of transmission gates can pass to the BLs and the weighted sums

are read out through SLs in parallel. If the input vector is not 1 bit, it should be encoded

using multiple clock cycles. As mentioned earlier, the reason why we do not use analog

voltage to represent the input vector precision is due to the I-V nonlinearity of eNVM,

which will cause the weighted sum distortion or inaccuracy [56]. As shown in Fig. 3.7(b),

B1 to Bn are a vector of bit streams. To obtain the final weighted result, the shift and add

circuit in Fig. 3.5 will perform shift and add on the weighted sum results of all bit cycles.

WL[0]

ALLOPEN VIN

WL[2
n
-1]

n:2
n

Decoder

ADDR[0]
ADDR[1]

ADDR[n-1]

Follower

46

Fig. 3.7 (a) Transmission gates of the BL switch matrix in the weighted sum operation. A

vector of control signals (B1 to Bn) from the registers (not shown here) decide the BLs to

be connected to either a voltage source or ground. (b) Control signals in a bit stream to

represent the precision of the input vector. © 2018 IEEE.

3.2.3 Read Circuit as ADC

To convert these analog weighted sum currents to digital outputs, we designed the read

circuit [61] to employ the principle of the integrate-and-fire neuron model, as shown in Fig.

3.8. The read circuit integrates the weighted sum current on the finite capacitance of the

array column. Once the voltage charges up above a certain threshold, the read circuit fires

an output pulse and the capacitance is discharged back. The counter after the read circuit

then converts the number of output spikes to digital data. The precision required for this

analog-to-digital conversion (ADC) determines the pulse width in each bit of the input

vector. As the cell size in 1T1R array is much smaller compared to the ADC size, multiple

B1

B1

B1

BL1

VREAD

GND

B2

B2

B2

BL2

Bn

Bn

Bn

BLn

≈

≈

Digitized Input Vector

V

0

V

0

≈

V

0

B1[0] B1[k-1]B1[1] B1[2]

B2[0] B2[1] B2[2] B2[k-1]

Bn[0] Bn[1] Bn[2] Bn[k-1]

(a) (b)

47

synaptic array columns may share one ADC through a Mux to improve the area efficiency.

However, this inevitably increases the latency of weighted sum as time multiplexing is

necessary because of the sharing.

Fig. 3.8 (a) Read circuit that converts the analog column current to digital outputs. (b) The

simulated integration-and-fire waveform of the read circuit. © 2015 IEEE.

3.3 Compact Oscillation Neuron Exploiting Metal-Insulator-Transition

Today’s CMOS integrate-and-fire neuron typically requires tens of transistors. As

shown in Fig. 3.8, such complex CMOS neuron causes the column pitch matching problem.

As discussed in the previous section, multiple columns have to share one neuron, thereby

reducing the parallelism as the time-multiplexing is needed to sequentially read out all the

weighted sum from the array. In such context, we propose a compact oscillation neuron

using the metal-insulator-transition (MIT) device in order to replace the CMOS neuron.

Prior eNVM designs [79-81] mostly focused on the synaptic array core instead of the

Vreset

Vspike

Ir,i (or IZ,j)
(0 – 8 μA) D Q

R
D Q

R

8-bit spike counter

Q[5]

Q[7]

RE

Q[0]

Ccol

(Crow)

D Q
R

D Q
R

Q[6] Q[7]

Vin

Vspike

Vspike

Vp

Vp

Vp

Vspike

(a)

(b)

48

peripheral neuron node. A recent experimental work demonstrated the oscillation neuron

with small-scale synaptic array [82], however, how to design a large-scale synaptic array

with oscillation neuron remains unexplored. In this section, we will analyze the impact of

MIT device characteristics on the weighted sum accuracy, study the feasibility of

oscillation neurons connected to the resistive synaptic array, and benchmark circuit-level

performances with the CMOS neuron at both sub-circuit and array level.

3.3.1 Metal-Insulator-Transition Phenomenon

The metal-insulator-transition (MIT) phenomenon occurs in strongly correlated oxides,

where the oxides switch between a metallic state and an insulating state under certain

external excitation, thermally or electrically [83]. The MIT device shows a threshold

switching I-V characteristics with hysteresis and theoretically 2-5 orders of magnitude

ON/OFF ratio. For the Mott transition in strongly correlated oxides, the bandgap collapses

when the carrier density in the materials is larger than the critical carrier density nc,

resulting in the insulator-to-metal transition. Carrier density in the materials can be

increased by either thermal injection or electric injection. Therefore, the threshold

switching has a critical temperature (TC) or a critical threshold voltage (VTH). Among all

the Mott oxides, the research in the literature extensively focused on VO2 as the

representative material system for studying the physical mechanism. However, VO2 is not

suitable for on-chip integration because its TC ~67 oC [84] is relatively low, and the

threshold switching behavior disappears above TC. What makes the circuit design more

challenging is the fact that the VTH of VO2 strongly depends on the environment

temperature even below TC. For this reason, we select an emerging material NbO2 with an

49

extremely high TC ~808 oC [84] that has superior thermal stability. Recent experiments

have shown the on-chip integration of NbO2 with the CMOS platform [85].

The MIT device has been listed as an emerging device candidate in the ITRS roadmap

for logic switch [75], still lacking demonstrations to be competitive in practical applications.

For example, the steep-slope field-effect transistor with strongly correlated oxides as the

channel material suffers from the low carrier mobility [86]. The recent revival of MIT

device is owing to its capability to serve as a two-terminal selector device for the crossbar

memory array to suppress the sneak paths [85]. Different from these works, we propose to

use MIT device as the oscillation neuron in neuromorphic computing. Using the coupled-

oscillators as phase encoding for the computation-hard optimization problems have been

proposed [87-89], however here we take a different approach of using the oscillators: we

utilize the oscillation as an integrate-and-fire neuron’s output waveform.

Fig. 3.9(a) shows the hysteresis I-V characteristic of a typical MIT device [83]. We

have built a Verilog-A behavior model to capture the switching characteristics with

parameters such as the resistance in the ON/OFF state (RON/ROFF), the threshold voltage

(VTH), and the hold voltage (VHOLD). The MIT device is initially in the OFF state, and it

will switch to the ON state once the applied voltage exceeds VTH. When the applied voltage

across the MIT device is smaller than VHOLD, it will switch back to the OFF state. Therefore,

the resistive switching in the MIT device is essentially “volatile”, unlike the “non-volatile”

resistive switching in the eNVM.

50

Fig. 3.9 (a) Hysteresis I-V characteristics of a MIT device. [83] (b) Circuit configuration

of an oscillation neuron node with MIT device and eNVM synaptic weight. (c) SPICE

simulation waveform of the oscillation neuron in (b). © 2016 IEEE.

The intrinsic transition time in the MIT device is defined as the time required to switch

between RON and ROFF. To make the neuron node oscillate, we have to connect a resistor

(e.g. an eNVM synapse) with the MIT device, as shown in Fig. 3.9(b). We assume the

eNVM resistance (R) is between MIT device’s RON and ROFF, and there is parasitic

capacitance at the neuron node. Initially when the voltage VDD is applied, the node voltage

on the capacitor will be charged because most of the voltage drop should be on the MIT

device (ROFF>R). Once the node voltage exceeds VTH, the MIT device switches to RON,

and the capacitor starts discharging since the voltage drop on the MIT device becomes

small (RON<R). Once the node voltage decreases below VHOLD, the MIT device switches

to ROFF. This charging and discharging process repeats, thus the voltage of the neuron node

oscillates between VHOLD and VTH. Fig. 3.9(c) shows the SPICE simulation waveform for

the circuit configuration in Fig. 3.9(b). As the charging is through the eNVM and the

discharging is through the MIT device at RON, the RC delay of the charging is larger than

that of the discharging, making the voltage oscillation a triangular waveform. The

VDD

C

V(t)

(a) (b) (c)

MIT device

Weighted
sum current

51

oscillation of the MIT device in such circuit configurations has been widely observed in

various experiments [82, 90-93], showing its feasibility as the oscillation neuron.

 By solving the Kirchhoff’s Law of Fig. 3.9(b), the analytical solution of the charging

time trise from VHOLD to VTH can be obtained, which is expressed as

trise = -RrC×log (
VTH-VDD

Rr

R

VHOLD-VDD
Rr

R

) (3.1)

where Rr=(R||ROFF). Similarly, the discharging time from VTH to VHOLD can be calculated

as:

tfall = -RfC×log (
VHOLD-VDD

Rf

R

VTH-VDD
Rf

R

) (3.2)

where Rf=(R||RON). If we assume ROFF>>R>>RON, then Rr≈R and Rf≈RON, which makes

trise proportional to eNVM resistance and tfall to be a constant much smaller than trise. We

can obtain the ideal oscillation frequency f by using Eq. (1):

f =
W

C×log (
VHOLD-VDD

VTH-VDD
)

(3.3)

where W=1/R is the weight of the eNVM synapse. f is then proportional to the eNVM

weight. Therefore, the oscillation frequency represents a weighted sum if the MIT device

connects to all the eNVM weights in one column.

3.3.2 Design for Accurate Weighted Sum

In this section, we will set up appropriate MIT device parameters, and then discuss the

dependence of the oscillation frequency on applied voltage (VDD) and eNVM weight. The

simulation is based on the circuit configuration of Fig. 3.9(b).

52

A. Setup of MIT Device Parameters

Prior experimental study has shown that VHOLD is dependent on the electrode work

function and can be as low as 0.5V, while VTH can be reduced to 1V with smaller oxide

thickness [93]. In this case, the VDD is preferred to be 0.5V+1V=1.5V to make the voltage

swing of oscillation centered at half VDD. However, this may disturb the eNVM resistance

as the voltage across eNVM can reach 1V. In this work, we assume a VDD of 1.2V

assuming that VTH can be further scaled down to 0.7V by device engineering towards

smaller oxide thickness. We also assume a resistance ON/OFF ratio of 1000 can be

achieved with RON=1kΩ and ROFF=1MΩ to support a wide range of eNVM weight in large-

scale arrays, where the parasitic capacitance of one column can be at least several 10’s fF

and here we will use 100fF as a default parameter. It is noted that the ON/OFF ratio of MIT

devices reported today are typically ~100, while the theoretical predicts in single-

crystalline phase it can be up to 105
 [83], or 106 if new material, e.g. SiTe, is used [94].

B. Effect of Intrinsic Transition Time

As discussed earlier, the weighted sum will be proportional to the oscillation frequency

if trise is much larger than tfall. However, this statement is under the assumption that the

MIT’s intrinsic transition time is negligible. To investigate the impact of transition time,

we simulate the oscillation frequency as a function of transition time at two different

weights 10µS and 100µS, as shown in Fig. 3.10(a). Compared to the analytical results

obtained by using Eq. (3.1) and (3.2), the deviation becomes more noticeable with

increasing transition time larger than 10ps. Even if the oscillation frequency is small (<300

MHz) with smaller eNVM weight 10µS, the need for fast transition ~10ps is not relaxed.

The reason can be attributed to the voltage undershoot below VHOLD that leads to larger trise,

53

as shown in Fig. 3.10(b). If the transition time is comparable to the RC delay in the

discharging phase, the discharging would not stop until the MIT device switches back to a

resistance that is high enough to start charging the neuron node. Therefore, the transition

time has to be smaller than the discharging RC time to avoid this undershoot issue. It has

been reported that the oscillation frequency of MIT devices with the circuit configuration

in Fig. 3.9(b) can be up to several 10’s to 100’s MHz [93, 95]. It is highly probable that the

reported frequency is limited by the parasitic RC delay in the off-chip electrical

measurement setup. Fortunately, it has been reported the intrinsic transition time in the

MIT device can be as fast as picosecond or even in the femtosecond range, suggested by

the optical laser pump-probe methods [84].

Fig. 3.10 (a) Oscillation frequency as a function of the MIT’s intrinsic transition time.

Frequency deviates from the analytical value at larger transition times. (b) Undershoot of

the voltage discharging below the hold voltage. The transition time needs to be smaller

than discharging RC time to prevent the undershoot. © 2016 IEEE.

C. Effect of Applied Voltage Change

Fig. 3.11(a) shows the oscillation frequency as a function of VDD for different weights.

It can be seen that the onset of oscillation happens at VDD=VTH=0.7V. The frequency is

54

roughly proportional to VDD beyond ~1V. This simulation result can be directly verified

by using Eq. (3.1) and (3.2). Varying VDD seems to be useful as an encoding scheme of

the input vector for the weighted sum operation. However, this might not work in an array

because there will be current leakage from one row to another when the row voltages are

different. Moreover, VDD should not be large enough (~1.5V) to cause possible

disturbance on the eNVM device as mentioned earlier. Within this limited range from 1V

to 1.5V, it is difficult to split the VDD into multiple levels due to the noise consideration

and practical bias circuit design constraints. Therefore, it is preferred that the input vector

to be represented by digital pulses with the same VDD to avoid these issues. We will

discuss this later where the oscillation neurons are integrated with the crossbar array and

perform array-level operations.

Fig. 3.11 (a) Oscillation frequency as a function of VDD with different weights.

Oscillation will not occur when VDD is below VTH. (b) Oscillation frequency as a function

of weight. The oscillation neuron has a limited linear weight range. © 2016 IEEE.

D. Effect of Weight Change

The general criterion for the eNVM weight is that its resistance should be within the

range of the MIT device resistance (from RON to ROFF) to make the neuron node oscillate.

55

It is also preferred that the resistance can satisfy the condition ROFF>>R>>RON to ensure

an accurate weighted sum. Fig. 3.11(b) shows the frequency as a function of the eNVM

weight. Since RON=1kΩ and ROFF=1MΩ, the oscillation would fail when the weight is

approaching 1µS and 1mS. The linear region is located at weight values from ~10µS to

100µS. This can be explained by the following: For small weights (large eNVM resistance),

the eNVM resistance cannot be ignored compared to the large ROFF, thus the voltage drop

on the MIT device is smaller than expected, leading to larger trise and lower oscillation

frequency. For large weights (small eNVM resistance), the eNVM resistance cannot be

ignored compared to the small RON, thus tfall becomes noticeable and the oscillation will

slow down. In addition, the intrinsic transition time serves as a hard limit for the oscillation

frequency, which will also have insignificant impact on large weights as the frequency is

approaching this limit.

3.3.3 Array Implementation for Weighted Sum Operation

A. Crossbar Array Architecture

As mentioned in Section 1.3, the resistive crossbar array architecture with synaptic

devices has been proposed to perform the weighted sum operation in a neural network,

where the crossbar array represents the weight matrix, with the algorithm weight values

mapped to the eNVM device weight range. In this work, we assume the algorithm weight

values are normalized between 0 and 1, corresponding to the eNVM minimum and

maximum weight, respectively. Fig. 3.12 shows the weighted sum operation in the crossbar

array architecture. The input vector is encoded into a digital number of pulses, which

controls the transmission gates at each word line (WL) row. Each row will be connected to

a fixed voltage if it is selected (Si=VS), otherwise the transmission gate is turned off and

56

the row becomes floating (unselected). Then, the total weight of a column is the sum of

weights at the selected rows, where the equivalent circuit of a column becomes the

configuration in Fig. 3.9(b). With the MIT device connected to the bit line (BL) column,

each column can oscillate at different frequencies based on the total weight of the column.

The inverter at each column helps restore the oscillation waveform to the rail-to-rail

rectangle pulses (VDD to 0), and the ripple counter can convert the number of pulses into

a digital value (in binary fashion). However, typically the resistance of a synaptic eNVM

device with continuous weight tuning has a limited ON/OFF ratio <10 [33, 35], which

makes the minimum eNVM weight not small enough thus it cannot represent a 0 value in

the algorithm. To solve this problem, we add a dummy column with all the cells at the

minimum weight to eliminate this weight offset, which is the same as the technique

presented in Section 2.3.4. Eq. (3.3) shows that ideally the oscillation frequency is

proportional to the weight, thus we can subtract the output value of the dummy column

from that of the array column to obtain the accurate weighted sum. Finally, to complete the

entire weighted sum task, we have to shift and add the weighted sum value at different

input vector cycle and get the final weighted sum since the input vector is formed with

digitized pulses using a binary representation.

57

Fig. 3.12 Weighted sum operation with the crossbar array architecture. The input vector is

digitized into several read cycles. The dummy column with synapses at minimum weight

is added to eliminate the OFF-state weight. The inverter and ripple counter together

converts the number of oscillation cycles into digital value. The total weighted sum values

are then obtained by subtracting the partial weighted sum value of the dummy column. ©

2016 IEEE.

Although the crossbar array has its simple structure to perform the weighted sum

operation, it has the well-known sneak path problem that causes interference (or cross-talk)

between cells. This problem can be found with the oscillation neuron as well. When the

unselected rows are floating, they become the leakage paths between different columns as

they have different oscillation frequencies, thus the frequency of each column can get

disturbed by other columns. The worst case is when one column has a total weight W1, and

the other columns have the same total weight W2 for each of them. Then, the voltage

oscillation at W1 column may be significantly affected by the group oscillation behavior of

all W2 columns.

WL

B
L

V

V

S1

S1

Sm

Sm

D
u

m
m

y
 C

o
lu

m
n

Ripple
Counter

Ripple
Counter

Weighted Sum

-
+

Crossbar
Synapse Array

(m×n)

Si[0]Si[k] Si[1]

Wmin

Wmin

Wmin

W11 W12 W1n

W21 W22 W2n

Wm1 Wm2 Wmn

Si[2]

≈

≈

Digitized Input

Vector

VS

0

VS

0

58

Fig. 3.13 (a) Deviation of the number of output pulses (value after the ripple counter)

within 30 ns of a column with total column weight W1, while each of the other 127 columns

has a total column weight W2 (=nW1). Oscillation completely stops when W1 is low and

W2>W1. (b) An example of failure case with W1=20μS and W2=80μS, where the oscillation

behavior is interrupted by the W2 columns. © 2016 IEEE.

To conduct the array-level SPICE simulation, we set the array size to be 128×128, and

the minimum and maximum value of a single eNVM weight are 0.4µS and 2µS (ON/OFF

ratio=5), respectively. In this case, the total weight of a column can be easily added up to

several 10’s to 100’s µS, which is within the resistance range of the MIT device from the

earlier setup. We then simulate all the possible worst cases in the array with different values

of W1 and W2 at the linear weight range to analyze how much interference can occur

between columns, as shown in Fig. 3.13(a). The value of W2 is taken as n×W1, where n is

from 1/5 to 5 because the eNVM weight ON/OFF ratio is 5. The weight difference between

columns is at most 5 times with the same number of rows activated. We measure the

number of pulses after the counter within 30 ns, and the results in Fig. 3.13(a) suggest that

the deviation from the ideal number of output pulses is generally large at many

combinations of W1 and W2. There are even extreme cases where no oscillation occurs at

59

low W1 with W2>W1. Low W1 could have more floating rows, leading to larger interference

from W2 columns. In addition, if W2>W1, the faster oscillation of W2 can constantly

interrupt the oscillation behavior of W1. An oscillation waveform of a failure case with

W1=20µS and W2=80µS is shown in Fig. 3.13(b), where the MIT device never switches

and the voltage just fluctuates with a small magnitude.

B. 2-Transitor-1-Resistor (2T1R) Array Architecture

To eliminate the sneak path current that causes interference between columns in the

crossbar array, a transistor can be added in series with the eNVM device as in conventional

1-transistor-1-resistor (1T1R) array architecture for memory applications. The 1T1R array

architecture has been used for performing weighted sum operation with modification on

the BL direction, making it to be the input row like the pseudo-crossbar array [60].

Similarly, the WL is in parallel with BL and it controls all the transistors on a row, thus

there is no interference if the transistors on the entire row are turned off. However, in 1T1R

array, different number of selected rows will affect the total parasitic capacitance on the

source line (SL) column, which may hamper the weighted sum accuracy according to Eq.

(3.3). The reason for this capacitance variation is due to the transistor drain capacitance, as

it can be isolated from the SL column if the transistor is turned off, otherwise it will

contribute to the parasitic capacitance of the SL column. To alleviate this effect, we extend

the 1T1R array by adding one more transistor adjacent to the existing transistor,

constructing a 2-transistor-1-resistor (2T1R) array architecture, as shown in Fig. 3.14. The

additional transistor is controlled by the inverting WL signal with its drain floating. In this

way, the additional transistor serves as a complementary parasitic capacitance for the SL

column. Each cell will contribute one drain and two source parasitic capacitance

60

independent of WL signal as one of transistors will be turned on with the other one turned

off.

With a 2T1R array size of 128×128, the total SL column capacitance is measured to be

~125 fF based on the transistors in a 65nm CMOS technology. Following the same

simulation setup as in the previous section, we have simulated the deviation of number of

output pulses across the wide range of weight values, and the results show that the

maximum deviation is only ~2%, which is a significant improvement over the results in

Fig. 3.13(a). Although the 2T1R architecture seems to have a larger overhead in the

synapse array area compared to the simple crossbar architecture, it should be noted that the

array area is determined by the pitch of the peripheral circuits in the logic design rule. For

example, the array cell height should be aligned with the standard cell height of the WL

driver, which is basically the height of two transistors. Therefore, the array area overhead

with the 2T1R array can be considered negligible.

Fig. 3.14 Schematic of 2-transistor-1-resistor (2T1R) array architecture. The transistor in

series with eNVM could cut off the interference paths between columns. The other

transistor with floating drain helps eliminate the capacitance variation when different

number of rows are activated (Si=VS). Here the dummy column and the readout circuitry

are omitted. © 2016 IEEE.

WL

S
L

BL

WL

V

S1

S1

Sm
Sm

W11

Wm1

W1n

Wmn

2T1R Synapse
Array (m×n)

V

61

C. Simulation of Weighted Sum Operation in Array

As the accuracy deviation due to the array architecture is largely resolved, we have to

revisit the effect of eNVM weight change to optimize the weighted sum accuracy. Fig.

3.15(a) shows the oscillation frequency as a function of weight similar to Fig. 3.11(b), but

with a parasitic capacitance of 125fF as in the 2T1R array. From the algorithm perspective,

it is expected that the weighted sum of one column in an 128×128 array should have a

maximum value of 128 if all the inputs are 1 (Si=VS) and all the algorithm weight values

are also 1. On the circuit side, we have to determine the read cycle time of input vector that

can translate the oscillation frequency to the desired number of output pulses to match the

value from the algorithm. Due to the nonlinearity in Fig. 3.15(a), the read cycle time has

to be calibrated at the linear weight region with the corresponding algorithm value to

prevent overestimation, since the actual frequency will slightly decrease outside of the

linear region. For the array implementation, the calibration should be done with both the

actual column and dummy column. Therefore, a better approach is to measure the deviation

between the slope of the two curves (in log-log scale) in Fig. 3.15(a), as shown in Fig.

3.15(b). We select two weights with the same deviation that can cancel out each other, and

measure the read cycle time required for the corresponding algorithm weighted sum value.

In this case, since the weight of real column (70µS) is 5× larger than the weight of dummy

column (14µS), we have to calibrate the read cycle time that gives 70µS/2µS=35 pulses,

and it is measured to be ~30ns.

62

Fig. 3.15 (a) Oscillation frequency as a function of weight at C=125 fF. (b) The deviation

between the slope of oscillation frequency and the linear fit in (a). The linear region is

centered at W~30μS. To improve weighted sum accuracy, the mapping from algorithm to

real weighted sum result should be calibrated in a case where the slope deviation of array

and dummy column can cancel out. The 5× means the maximum weight difference between

columns. © 2016 IEEE.

Then, we run the Monte Carlo simulation with 12,800 weighted sum tasks in a 128×128

2T1R array based on the calibrated read cycle time. We assume both the input vector and

weights are 4-bit values in uniform distribution. As shown in Fig. 3.16, the weighted sum

tasks with the calibrated read cycle time ~30ns has only a small weighted sum accuracy

deviation (average is ~2.5%). However, if the application can tolerate more accuracy

deviation than this, we can accelerate the read process by using a shorter read cycle. If the

read cycle is reduced by 2n times, then the final weighted sum result needs to be shifted by

n bits toward the left to match the algorithm weighted sum range. Fig. 3.16 shows a clear

tradeoff between the accuracy and the read cycle time. We also simulated the weighted

sum tasks with doubled read cycle time (~60ns), however it does not show noticeable

accuracy improvement over the 30ns case.

63

Fig. 3.16 Statistical deviation of final weighted sum accuracy with different read cycle

time. As the array row size is 128 and the maximum value of an algorithm weight is

normalized to 1, the weighted sum of a column should be 128, corresponding to a read

cycle of ~30 ns. The read cycle time can be reduced with a tradeoff of lower accuracy of

the final weighted sum. © 2016 IEEE.

Finally, the performance of the proposed oscillation neuron is benchmarked with that

of the CMOS neuron [61] at the 65nm technology node. Table 3.1 shows the sub-circuit

level benchmark results. To make a fair comparison, we follow the same simulation setup

as [61]. The performance is evaluated within 8 integrate-and-fire cycles with eNVM weight

to be ~53µS. Despite a ~40% increase in latency, the compact oscillation neuron circuit

achieves tremendous reduction in area, energy and leakage power. Table 3.2 shows the

array level benchmark results. The synaptic array size is set to be 128×128 and there are 4

pulse cycles for the input vector. In practical array design, multiple columns usually share

one neuron to improve the area efficiency. From the array’s point of view, the oscillation

neuron does not gain much benefit in total area (synapse array area + peripheral neuron

area) because the total area is still dominated by the array core. However, the oscillation

neuron eventually outperforms the CMOS neuron in latency. As the oscillation neuron is

64

more compact, the number of columns shared by one neuron can be reduced from 8 to 4,

thereby increasing the parallelism.

Table 3.1 Sub-circuit Level Benchmark. © 2016 IEEE.

 CMOS Neuron [61] Oscillation Neuron Reduction

Area 11.24 µm2 0.89 µm2 >12.5 X

Latency 4.5 ns 6.2 ns -37.8%

Energy Consumption 1.346 pJ 0.265 pJ >5 X

Leakage Power 104.9 µW 35.84 nW ~3,000 X

Table 3.2 Array Level Benchmark (1 Weighted Sum Task). © 2016 IEEE.

Array with CMOS

Neuron [61]

Array with

Oscillation Neuron
Reduction

Area 36918 µm2 35571 µm2 ~4 %

Latency 144 ns 99.2 ns >30 %

Energy Consumption 693.2 pJ 139.5 pJ ~5 X

Leakage Power 1.73 mW 44.12 µW ~40 X

3.4 Summary

In the array design, the selector is used to alleviate the IR drop along interconnects and

the leakage power on the unselected cells, without affecting weight update. To further

reduce the energy consumption and prevent write disturbance problem in weight update,

conventional 1T1R array is modified to be pseudo-crossbar array, with BLs rotated by 90o

to enable weighted sum operation. For the crossbar and pseudo-crossbar array, key neuron

peripheral circuits are introduced in detail. To replace the existing complex read circuit,

the MIT device has been proposed as an oscillation neuron for the parallel weighted sum

operation in the eNVM synaptic array. In this work, we studied the impact of MIT device

65

parameters and provided design guidelines for future MIT device engineering. To enable

weighted sum in large-scale arrays, a MIT device that has large ON/OFF resistance ratio

is desired. The feasibility of the eNVM synaptic array with oscillation neurons is also

studied. To prevent oscillation interference between array columns, the 2T1R array

architecture is preferred over the crossbar architecture at negligible expense of array area.

The read cycle is calibrated in the array design to improve the weighted sum accuracy.

Monte Carlo simulation of weighted sum tasks shows the tradeoff between the weighted

sum accuracy and the read latency. Compared to the CMOS neuron [61], oscillation neuron

shows >12.5X reduction of area at single neuron node level, and shows a reduction of ~4%

total area, >30% latency, ~5X energy and ~40X leakage power at 128×128 array level,

demonstrating its advantage for neuro-inspired computing.

66

 NEUROSIM: DEVICE-CIRCUIT-ALGORITHM BENCHMARK SIMULATOR

FOR NEURO-INSPIRED ARCHITECTURES

In this chapter, NeuroSim was developed to be a circuit-level macro model that

estimates the area, latency, dynamic energy and leakage power to facilitate the design space

exploration of neuro-inspired architectures with mainstream and emerging device

technologies. NeuroSim provides flexible interface and a wide variety of design options at

the circuit and device level. Therefore, NeuroSim can be used by many neural network

(NN) algorithms as a supporting tool to provide circuit-level performance evaluation. With

NeuroSim, an integrated framework can be built with hierarchical organization from the

device level (synaptic device properties) to the circuit level (array architectures) and then

to the algorithm level (NN topology), enabling instruction-accurate evaluation on the

learning accuracy as well as the circuit-level performance metrics at the run-time of

learning. In this chapter, we will demonstrate the use of NeuroSim alone to evaluate the

performance of partitioning a large weight matrix into several small SRAM and eNVM

arrays. In the next chapter, we will demonstrate the use of NeuroSim to support the learning

algorithm for circuit-level performance benchmark.

4.1 NeuroSim Architecture

4.1.1 Overview

NeuroSim is a circuit-level macro model developed in C++ that can be used to estimate

the area, latency, dynamic energy and leakage power of neuromorphic hardware

accelerators with SRAM and eNVM based architectures to facilitate the design space

exploration. The framework of NeuroSim follows the principles of CACTI [96] for SRAM

cache and NVSim [97] for NVM. These simulators focus on the design for traditional

67

memory application, and do not support the memory design for neuromorphic computation.

In contrast, NeuroSim is dedicated to support neuro-inspired architectures. The hierarchy

of the simulator consists of different levels of abstraction from the memory cell parameters

and transistor technology parameters, to the gate-level sub-circuit modules and then to the

array architecture including the peripheral circuits. Fig. 4.1(a) shows an overview of the

high-level architecture with neuromorphic hardware accelerator to implement NNs. NNs

generally require multiple (or deep) layers for better learning performance, where each

layer contains the synaptic core and neuron periphery. A synaptic core is specifically

designed for weighted sum and weight update. It takes the digital input vector and gives

out the weighted sum result in the digital format. Thus the digital communication is used

between synaptic cores while any analog computation will just be done within the core

only. The synaptic core further consists of the synaptic array and array periphery. The

synaptic array (such as Fig. 1.4(a) or Fig. 3.3) is the core unit of weighted sum computation

and the array periphery helps transform the results to be the digital format if necessary.

NeuroSim supports various digital and analog synaptic cores, as shown in Fig. 4.1(b)-(e).

On the other hand, the neuron periphery is responsible for nonlinear activation function

and communication from one synaptic core to another. Currently, NeuroSim can

implement nonlinear activation function using a SRAM/eNVM array based look-up table

(LUT), while it also supports the low-precision activation function such as thresholding

with step function. As the circuit implementation of neuron periphery is more flexible and

can vary between different NNs, we will only show an example one in later case study.

68

Fig. 4.1 (a) Overview of high-level architecture with neuromorphic hardware accelerator.

(b) Circuit block diagram of SRAM synaptic core. (c) Circuit block diagram of digital

eNVM synaptic core with 1T1R array. (d)-(e) Circuit block diagram of analog eNVM and

FeFET synaptic core with the pseudo-crossbar array, respectively.

W
L

 D
e

c
o

d
e

r

B
L

B
L
B

S/A

Adder

Register

S/A S/A

Register

WL

S/A

n SRAM cells
as one synapse

SRAM Array

Adder

Adder

Shift
Register

Adder

Shift
Register

Write driver

Precharger

C
ro

s
s
b

a
r

W
L

 D
e

c
o

d
e

r

S
L BL

WL

Mux

ADC

B
L

 S
w

it
c
h

 M
a

tr
ix

SL Switch Matrix

ADC

Synapse

eNVM

Pseudo-crossbar Array

Adder

Shift
Register

Adder

Shift
Register

M
u
x

D
e

c
o
d
e
r

Digital SRAM Synaptic Core

Analog eNVM Synaptic Core

(a)

(b)

(d)

W
L

 D
e

c
o

d
e

r

SL BL

WL

Mux

VSA

Column Decoder

eNVM

1T1R Array

M
u
x
 D

e
c
o
d
e
r

Decoder Driver

VSA

Adder

Register

Adder

Shift Register

n cells as one synapse

VSA VSA

Adder

Register

Adder

Shift Register

VSA VSA

Adder

Register

Adder

Shift Register

Digital eNVM Synaptic Core

(c)

(e)

C
ro

s
s
b

a
r

W
L

 D
e

c
o

d
e

r

S
L
S

BL

WL

Mux

ADC

B
L

 S
w

it
c
h

 M
a

tr
ix

SL Switch Matrix

ADC

Synapse

Adder

Shift
Register

Adder

Shift
Register

M
u
x

D
e

c
o
d
e
r

FeFET

Pseudo-crossbar Array

S
L
N

Analog FeFET Synaptic Core

Neuron Periphery
▪ Activation Func.
▪ Buffer

Synaptic Core
▪ Synaptic Array
▪ Array Periphery

Neuromorphic Hardware Accelerator

Neuron
Periphery

Synaptic
Core

Many layers

69

4.1.2 Synaptic Core

In this section, we introduce different synaptic core architectures, which are considered

to be at one hierarchy level higher than the sub-circuit modules, as they consist of both

memory array and peripheral circuits that are closely jointed to form a standalone weighted

sum computation unit. Important parameters at this level include synaptic array types and

sizes, operating modes of peripheral circuits, and the number of synapses that can be

accessed in parallel during weighted sum and weight update, etc.

A. SRAM Synaptic Core

The circuit block diagram of SRAM synaptic core is shown in Fig. 4.1(b). As SRAM

cells can only store binary bits, we group multiple SRAM cells along the row as one

synapse to represent a higher weight precision. The weighted sum and weight update

operation in the SRAM based synaptic core are essentially row-by-row based, which is

similar to the read and write operation in a conventional SRAM memory.

In the weighted sum operation, the input vector is encoded using multiple clock cycles

to represent its precision. For each row, an input vector bit of 1 means the row will be

selected for read, otherwise the row will be skipped. To select a row, the WL is activated

through the WL decoder. To access all the cells on the selected row, the BLs are pre-

charged by the pre-charger and the write driver in weighted sum and weight update,

respectively. After the memory data are read by the sense amplifier (S/A), the adder and

register are used to accumulate the partial weighted sum in a row-by-row fashion. To make

sure the overflow will not occur during the accumulation, the adder and register need to

have a longer bit-width than the weight precision of a synapse. The adder and shift register

pair at the bottom performs shift and add of the weighted sum result at each input vector

70

bit cycle to get the final weighted sum. The bit-width of the adder and shift register needs

to be further extended depending on the precision of input vector. If the values in the input

vector are only 1 bit, then the adder and shift register pair is not required. For the write

operation, new weights will be provided from the input of the write driver. All the cells on

the same row can be updated at the same time, thus the weight update operation is also

row-by-row based.

B. Digital eNVM Synaptic Core

The circuit block diagram of digital eNVM synaptic core is shown in Fig. 4.1(c). By

replacing the SRAM core memory with eNVM without much modification on the whole

digital circuit architecture, we potentially get smaller synaptic core area. The way the

digital eNVM synaptic core works is very similar to the SRAM one, thus it can just use the

traditional 1T1R array as the synaptic array. Similarly, we have to group multiple binary

1T1R cells along the row as one synapse to represent a higher weight precision.

The weighted sum operation in digital eNVM synaptic core is also row-by-row based.

After the memory data are read out by the voltage S/A, adder and register will perform

accumulation on the partial weighted sum through row by row. One key difference

compared to the SRAM synaptic core is the use of Mux. As the cell size in 1T1R array is

much smaller, it will not be area-efficient to put all the read periphery circuits underneath

the array. Therefore, it is necessary to use a Mux to share the read periphery circuits among

synaptic array columns. However, this inevitably increases the latency of weighted sum as

time multiplexing is needed because of the sharing. For the weight update, the column

decoder can select a group of synapses at a time depending on the design, and the

71

programming voltages will be provided from the decoder driver. Two phases are required

to program the cells to be ON and OFF because they need different WL voltages.

C. Analog eNVM/FeFET Synaptic Core

In NeuroSim, the analog eNVM synaptic core supports two types of the synaptic array

architecture: the crossbar and the pseudo-crossbar array architectures, as described earlier

in Section 3.2. In this chapter, we will only show the pseudo-crossbar array architecture

(Fig. 4.1(d)-(e)). The details of pseudo-crossbar array architecture has been discussed in

Section 3.2. Briefly speaking, the crossbar WL decoder is used to activate all the WLs

during weighted sum, while activate one WL during weight update. The switch matrix can

activate multiple rows or columns at a time, thus it enables parallel voltage inputs of a

vector in weighted sum, and can realize the weight update scheme that requires different

voltage biasing in selected/unselected rows and columns. To be general, ADC is labelled

rather than the read circuit for the reason that other neuron circuit designs (such as the

oscillation neuron in Section 3.3) can also be used. Similarly, the adder and shift register

pair will perform shift and add on the weighted sum results of all input vector bit cycles to

obtain the final weighted result. On the other hand, the analog FeFET synaptic core is only

different than the eNVM one in the synaptic array structure, as shown in Fig. 4.1(e). It also

has an access transistor for each cell to prevent programming on other unselected rows

during row-by-row weight update. As FeFET is a three-terminal device, it needs two

separate SLs for the weighted sum (SLS) and weight update (SLN), respectively.

4.1.3 Transistor and Cell Models

At the device level, NeuroSim is featured with various design options in transistor

technologies and memory cells. The transistors can be configured to be high-performance

72

(HP) or low-standby-power (LSTP) type with different technology nodes from 130 nm

down to 7 nm, where FinFET is used at 14 nm and beyond. The transistor models are

calibrated based on Predictive Technology Model (PTM) [98]. Compared to industry

transistor models, PTM is available to the public and it has a wide range of technology

nodes, which is suitable for the design space exploration at the early design stage.

Important parameters in transistor models include device W/L, the operating voltage (VDD),

threshold voltage (VTH), gate and parasitic capacitance, and NMOS/PMOS saturation/off

current density across different temperatures, etc. In particular, VTH is extracted at the gate

voltage (VGS) where the drain current density (JDS) is 300 nA/μm under VDS=VDD. In bulk

MOSFET, the total gate capacitance is the sum of ideal, fringe and overlap gate capacitance,

while the total drain capacitance includes the capacitance in the diffusion region from

junction to bottom, channel and the other three sidewalls. Based on these parameters, the

area and intrinsic RC model of standard logic gates (INV, NAND, NOR, transmission gates,

etc) can be calculated analytically thus the circuit-level performance metrics of each sub-

circuit module can be estimated.

The design of SRAM and eNVM cells in NeuroSim is also flexible. We use

conventional 6T SRAM (extendable to 8T SRAM), where all transistors’ W/L can be

adjusted. The transistor technology defined for other digital circuits also applies to

SRAM’s transistors. On the other hand, eNVM cells have parameters such as max/min

conductance, read/write voltage and pulse width, number of conductance states (weight

precision) and I-V nonlinearity degree, etc. These parameters play an important role in the

array-level performance and will further affect the peripheral circuit design in the synaptic

core.

73

4.1.4 Customization

NeuroSim is designed to have as much flexibility as possible for customization, without

increasing the workload for the users to do so. For the customization of modules, they can

be discussed in three different levels as below:

A. Architecture Level

We define the architecture level to be the level between the algorithm and sub-circuit

module level. Synaptic cores are at this level. The design of synaptic cores is not limited

to the four types discussed in Section 4.1.2. They are more like standard templates and the

users are always encouraged to build their own synaptic cores (or other computation units)

following the hierarchical structure in NeuroSim. For a more complex design, the users

may need to insert one or more hierarchical layers that uses the synaptic cores as building

blocks, for example, when it comes to the partition strategy on the synaptic cores for

performance optimization [64].

In the top hierarchical layer, the user needs to make sure the interface is well defined

and has the ability to communicate with the algorithm side. Additionally, considering the

cases where the NN simulator has its own circuit/device-level configurations (e.g., the

users have their own embedded synaptic array in the neural network), a hierarchical layer

at the architecture level of NeuroSim should be able to link its configurations with the ones

in the upper layer and provide this link to the lower layer as well. In this way, the

configurations can be shared among all the layers of NeuroSim and the NN simulator,

rather than just being duplicated to each of them. Therefore, if some of the configurations

are modified in either NeuroSim or the NN simulator, these modifications will also be

reflected in the other one. This is necessary in some design optimization cases where

74

complex interdependence of the configurations between these two simulators is

unavoidable.

B. Sub-circuit Module Level

The sub-circuit modules included in NeuroSim are mostly shown in Fig. 4.1(b)-(e). If

the users fail to find a sub-circuit module that serves their needs, they can create a new

module and integrate it into NeuroSim. To do this, the user need to figure out the circuit

components in terms of the standard logic gates, and develop the performance estimation

model by either using analytical equations or simply providing the performance values that

are obtained from SPICE simulation or measured from real hardware. The detailed

structure of a sub-circuit module will be discussed in the next section.

Sometimes, the users can just introduce a new mode in the existing module, without

bothering to make similar modules with only minor modifications. For example, the

decoder module currently has 4 modes (row/column + regular/Mux). As shown in Fig.

4.1(b)-(e), it can be used as a regular row decoder (WL decoder) or a Mux row decoder.

The difference of regular and Mux decoder lies in the output buffer, where the Mux decoder

has the enable function to disable the Mux’s connectivity. It should be noted here that the

crossbar WL decoder in Fig. 3.6 is just the combination of the decoder and the follower

module. We think it is better to package the follower as an individual sub-circuit module

instead of a new mode in the decoder due to its complexity and design flexibility. But no

matter which way the users prefer, the sub-circuit modules need to be clearly defined in

the interface, reducing the complexity and efforts to connect them at the architecture level.

75

C. Device Level

As mentioned in Section 4.1.3, the device level covers from the transistor technology

and memory devices up to the RC model of standard logic gates. The transistor parameters

are pre-defined with different technology configurations. In the simulation, the only thing

we need to do is to select a technology configuration. For memory devices, there may be

cases where the devices need to be configured at the architecture or algorithm level if the

users consider the memory device parameters are part of the design parameters in the NN

(e.g., the weight precision of synapses required in the algorithm determines the number of

conductance states in eNVM devices in NeuroSim), or if the users prefer to introduce the

device properties from elsewhere to NeuroSim.

Regarding the customization at the device level, we list a few possible situations as

below:

 New operating mode of transistor: Currently NeuroSim supports HP or LSTP

transistors. If the users want to add a new operating mode, they have to provide

relevant transistor parameters, such as VDD, VTH, gate and parasitic capacitance

(per unit gate length), NMOS/PMOS saturation/off current density across

different temperatures, etc.

 New technology node: The users have to provide the parameters for the existing

operating modes (HP and LSTP) in the new technology node, and it should be

noted that FinFET is used at 14 nm and beyond. There are a few differences in the

parameters and layout of bulk MOSFET and FinFET.

 New transistor technology: If the users propose to explore the design with novel

transistor technologies other than the conventional MOSFET (e.g. tunnel-FET,

76

negative-capacitance FET, etc.), the users need to come up with an equivalent

transistor model and provide relevant parameters. It would not be recommended

to consider a new transistor with its structure completely different than MOSFET,

because the design principle of gate-level logics is still based on conventional

CMOS technology.

 New memory device: To make the most effective use of NeuroSim, the users are

strongly encouraged to introduce new types of memory devices (especially analog

eNVM) for performance benchmark. In NeuroSim, conductance states of analog

eNVM devices is assumed to be tuned by the number of voltage pulses. Equations

on dynamic performance metrics need to be modified if the new device uses a

different programming strategy.

4.1.5 Usage of NeuroSim

As a circuit-level macro model, NeuroSim does not incorporate the learning algorithms,

and it estimates the circuit-level performance of a synaptic core by taking either the data

patterns of the input vector and weight matrix from the algorithm, or the average

parameters of these patterns to have a good approximation of performance evaluation. For

the latter one, for example, we can assume the activity of the input vector is 0.5 (50% 1

and 0 in the vector), but not exact the data pattern of the input vector. At the device level,

it may assume an average conductance of the synaptic devices and an average number of

pulses for the weight update operation in analog eNVM synaptic core, but not the

conductance pattern or programming pulse information for the entire synaptic array. To

illustrate how NeuroSim works, we have considered three different usage scenarios as

shown in Fig. 4.2, and they are described below.

77

A. NeuroSim for Architectural Performance Estimation

In this scenario, NeuroSim alone is used to estimate the circuit-level performance

metrics of neuro-inspired architectures. As mentioned earlier, a synaptic core in NeuroSim

takes weighted sum or weight update instruction with specified data pattern or average

parameters to calculate the circuit-level performance per instruction, and it will quickly

show the performance breakdown results from the synaptic core to its subcomponents.

Thus, using NeuroSim alone is very handy for quick circuit-level performance benchmark

without the need to run a full SPICE simulation.

Fig. 4.2 Different usage scenarios for NeuroSim. © 2018 IEEE.

NeuroSim
Basic device

properties

pulses

Gmax

Gmin

Instruction
(weighted

sum/weight
update)

Circuit-level

performance

results per

instruction

NN

Peripherals

Synaptic
array

NeuroSim
Basic device

properties

pulses

Gmax

Gmin

Peripherals

Synaptic
array

Way 1: NN calls
NeuroSim routines

Trace

file

Way 2: NeuroSim takes
traces from NN

NN

Detailed device
properties

pulses

Gmax

Gmin

Peripherals

NeuroSimNN w/ Device Models

Energy
(peripherals)

Scenario 1: NeuroSim for architectural performance estimation

Scenario 2: NeuroSim as a supporting tool for NN

Scenario 3: NeuroSim as a supporting tool for NN + device

Area, Latency
Leakage

78

B. NeuroSim as a Supporting Tool for NN

In this scenario, NeuroSim is used as a supporting module to provide circuit-level

performance estimation for NN simulators, which is helpful for NN researchers to explore

the design space of NN architectures at early design stage. This scenario can be done in

two ways. The first way is that the NN simulator calls NeuroSim routines at every weighted

sum and weight update operation, which makes the performance evaluation instruction-

accurate. However, this approach may not be applicable if the NN simulator is not

compatible with C++ NeuroSim interface. The second way is that NeuroSim takes the trace

of data patterns that are recorded during the run-time of the NN simulator, which is

essentially a trace-based simulation. This approach is much simpler than the first one and

has no limitation on the platform, but it is much less efficient and requiring more simulation

time to fetch the data from a trace file as it can be very large in size.

C. NeuroSim as a Supporting Tool for NN+Device

This scenario is very similar to the second one, except the difference that part of the

circuit-level performance estimation that NeuroSim provides may only be on the array

peripherals, because the NN simulator has already incorporated a more complex synaptic

array and device behavioral model. In this example, the NN simulator can estimate the

energy consumption of the synaptic array more precisely and efficiently with its device

model, thus NeuroSim is only responsible for the energy consumption on the array

peripherals. For other performance metrics, NeuroSim still provides the estimation based

on the whole architecture because they are more at the scope of architecture or circuit level.

In fact, several works [39, 59, 99] published by the device community have demonstrated

such an NN+device framework for evaluation of learning accuracy with various synaptic

79

array and device characteristics, but they cannot address the circuit-level performance.

Thus, we believe that NeuroSim can be a good supporting tool to fill up the gap between

the algorithm and device for these frameworks as well as enabling the co-optimization of

circuit and device for the device engineers.

4.1.6 Limitations of NeuroSim

Despite that NeuroSim features a wide variety of design options for the usage/support

of circuit-level performance benchmark in neuro-inspired architectures, there are still

several aspects that NeuroSim has not incorporated yet, leaving the room for future

improvement. These include 1) the ability to automatically map NN to several partitions of

synaptic core and neuron periphery; 2) the interconnection, routing and network topology

of synaptic cores at the architecture level; 3) the overhead of off-chip memory access; 4) a

complete set of modules in support of machine learning NNs, such as convolutional NN

(CNN) or recurrent NN (RNN); 5) the ability to adapt other neural network types, such as

spiking NN (SNN).

For 1), currently the users have to manually instantiate the synaptic cores by providing

the synaptic array sizes that equal to the weight matrix sizes of the algorithm, thus only

custom design is supported. The automatic mapping of the weight matrix sizes to arbitrary

synaptic array sizes is to be developed for reconfigurable design. For 2), the overhead of

latency and energy due to interconnection or routing between synaptic cores may become

noticeable as the synaptic array size scales up. This will be the issue to solve after 1) is

done. For 3), the overhead of off-chip memory access cannot be ignored if only part of the

weights are stored on-chip. NeuroSim may have to be integrated with some third-party

C++ DRAM modules (e.g. DRAMSim2 [100]) to take this overhead into account. For 4),

80

currently NeuroSim partially supports CNN but more modules are still under development.

For example, it has the module for the convolutional kernel and average pooling but no

maximum pooling or batch normalization. On the other hand, RNN requires a different

type of synaptic core that can achieve recurrent connections, which is not included in

NeuroSim yet. Therefore, the users may have to bring their own design to NeuroSim if

there is no existing module available there. For 5), the synaptic core and other sub-circuit

modules in NeuroSim are designed to support the key operations in machine learning NNs

in a synchronous fashion. Event-driven asynchronous SNN works in a different way that

the key operations rely on the timing between spikes to encode information, which

NeuroSim cannot implement with its current form. Considering the limitations listed above

are more at the algorithm and architecture level, at the current stage we would like to

position NeuroSim as a circuit-level macro model that is most suitable for the device

engineers to quickly benchmark various synaptic devices and neuro-inspired architectures

with a basic NN algorithm.

4.2 Performance Estimation Models

As a circuit-level estimation tool, NeuroSim is beneficial in exploring the design space

of neuro-inspired architectures at early design stage. Typical circuit-level performance

metrics include the area, latency, dynamic energy and leakage power. Compared to the

time-consuming SPICE simulation, NeuroSim provides fast estimation of the performance

metrics using analytical models or pre-defined values provided by the user with reasonable

accuracy. In this section, we introduce the performance estimation models in NeuroSim.

81

Fig. 4.3 Software execution flow of sub-circuit module functions to estimate the

performance metrics. © 2018 IEEE.

4.2.1 Model Setup

Fig. 4.3 shows the basic execution flow of sub-circuit module functions to obtain the

performance results of sub-circuit modules. Before performance estimation, the sub-circuit

module has to be constructed and initialized. Upon constructed, the sub-circuit module

links its transistor and memory cell configurations with the ones from the upper level, and

the general properties of a circuit unit, such as the layout height and width, read/write

func. Initialize(...)
▪ Circuit module interface
▪ Operation modes
▪ Logic gates and sizing info.

Sub-circuit Module Constructor:
▪ Transistor technology configuration
▪ Memory cell configuration
▪ General properties of a circuit unit

func. CalculateArea(assignedHeight,
assignedWidth, AreaModifyOption)
▪ Logic gate dimensions
▪ Circuit layout based on input arguments
▪ Capacitance calculation of logic gates

func. CalculateLatency(
rampInput, capLoad, numOp)
▪ Critical path delay

calculation using Horowitz
Approx. or RC delay given
rampInput and capLoad

▪ Total latency = critical path
latency × numOp

func. CalculatePower(numOp)
▪ Dynamic energy calculation

(CVDD
2
) of all logic gates in a

single operation
▪ Total dynamic energy =

dynamic energy × numOp
▪ Leakage power calculation

(VDDIleak) of all logic gates

82

performance metrics, etc., are also declared. In the initialization step, functionality of the

sub-circuit module is outlined. The module interface, operating modes and logic gates with

sizing information (transistor W/L) need to be defined in this step. In general, we pre-define

the transistor W/L for the logic gates in sub-circuit modules according to the drivability

that are needed. Specifically, we design the transistor W/L for the transmission gates that

drives the array, such as the ones in the decoder driver, switch matrix and Mux of the

eNVM based synaptic array. We consider the worst case where the synaptic array has all

its eNVM at the lowest resistance, and calculate the maximum effective resistance of the

transmission gates (RTG) under a coefficient of IR drop tolerance (IR_DROP_TOL):

RTG ≤ RWORST_ROW/COL × IR_DROP_TOL (4.1)

where RWORST_ROW/COL is the total resistance of all eNVM cells in parallel in a row or

column depending on either the transmission gate connects to the array row or column. By

setting up a small IR_DROP_TOL (0.1 by default), we can make sure the input voltage can

be delivered into the array without noticeable degradation in most cases.

At the architecture level, the flow is similar to the one for sub-circuit modules. We

show the execution flow of a synaptic core as a basic example of architecture in Fig. 4.4.

In the initialization step of synaptic core, initialization of all sub-circuit modules that

belong to this synaptic will be performed. The same organization is also applied for the

rest of performance estimation functions. In this way, a well-defined nested hierarchy from

sub-circuits to architectures can be constructed, enabling bottom-up level-by-level

performance estimation.

83

Fig. 4.4 Software execution flow of performance estimation functions at the architecture

level (a synaptic core for example). © 2018 IEEE.

4.2.2 Area Estimation

Once the transistors’ sizing in each logic gate is known, the logic gates’ layout height

or width can then be calculated given the other dimension fixed. For example, if the driver

has a large transistor W/L and its layout height is constrained by the array row pitch, then

NeuroSim will try to find the minimum layout width of the driver that can accommodate

this W/L. Typically transistor with large W/L needs be folded, which makes the layout

width a quantized value. Thus, even if the layout width of a logic gate is given or

constrained, NeuroSim will still adjust the width by rounding it down to the nearest

Synaptic Core Constructor:
▪ Transistor technology configuration
▪ Memory cell configuration

func. Initialize(...)
▪ Array structures, layout dimensions and interconnects
▪ Initialize(...) of sub-circuit modules

func. CalculateArea()
▪ CalculateArea(...) of sub-circuit

modules with array layout
dimensions as constraints

▪ Total area (bounding box) = total
layout height× total layout width

▪ Total area (optimized) = array
area + ∑(area) of sub-circuits

func. CalculateLatency()
▪ CalculateLatency(...) of

sub-circuit modules with
array RC as load parameters

▪ Total latency = ∑(latency)
of sub-circuits that are
needed in a single operation

func. CalculatePower()
▪ CalculatePower(...) of sub-circuit modules for dynamic energy

and leakage
▪ Calculation of array static energy (current flow through eNVM

cells), array dynamic energy (SRAM or charge/discharge on array
wire capacitance) and array leakage (SRAM only)

▪ Total energy = array dynamic/static energy + ∑(dynamic energy)
of sub-circuits in a single operation

▪ Total leakage = array leakage (SRAM only) + ∑(leakage) of sub-
circuits in a single operation

84

quantized value when calculating the layout height. In FinFET, the area estimation model

becomes a little bit different because the number of fins need to be an integer.

In general, we use the same cell layout height for most of the logic gates in sub-circuit

modules, and calculate its cell layout width depending on its transistor W/L. For the

synaptic array, the layout dimensions of a memory cell can be pre-defined by the user. If

the transistor size of the 1T1R or pseudo-crossbar array is estimated (using the same

method as Eq. (4.1)) to be larger than the pre-defined memory cell size, NeuroSim will

report an error and request a larger pre-defined size. Considering the array row or column

pitch may be smaller compared to the peripheral circuits, NeuroSim also provides an option

to relax the memory cell size to match with the minimum layout dimensions of a logic cell.

This may increase the area efficiency as well as the total area of synaptic core, but it can

prevent some extreme cases where the synaptic array only has a few rows or columns that

cannot even accommodate a single periphery circuit unit.

After the synaptic array dimensions are determined, NeuroSim will estimate the layout

dimensions of sub-circuit modules. There are three input arguments for the area estimation

function of sub-circuit modules, as shown in Fig. 4.3. The first two arguments,

assignedHeight and assignedWidth, are the constraints on the layout height and width,

respectively. If one of them is provided, the logic gates at the same stage may need to be

placed in multiple rows or columns based on this constraint, and the other dimension can

then be estimated to obtain the total area. If neither of these two arguments is provided,

there will be no constraint on the layout dimensions and the logic gates will be placed in

the most straightforward way for total area estimation. The third input argument,

85

AreaModifyOption, can be specified for special adjustment of area after the area estimation,

which has the following options:

 NONE: This option is the regular one, indicating no further adjustment after

the area estimation. When choosing this option, the users have to make sure at

most one of the first two input arguments assignedHeight and assignedWidth

can be specified.

 MAGIC: In this option, the logic gates are pre-placed in the most

straightforward way just for quick estimation on the total area. Then, if either

of the two constraints assignedHeight or assignedWidth is given, the other

dimension can be obtained by simply dividing this total area with the given

constraint. It is assumed that the layout of sub-circuit module can be

“magically” folded into any shape while conserving its total area, guaranteeing

no waste of area. This option is designed for simple estimation because it does

not need to consider the folding of circuit, but it will give the most optimistic

estimation result. This option also does not allow both input constraints to be

specified.

 OVERRIDE: In this option, the estimated layout dimensions will be just

overridden by the input arguments assignedHeight and assignedWidth for the

total area, thus both arguments need to be provided. This option is designed

for the users to provide their own layout dimensions, or for the cases where

both layout dimensions need to be constrained.

In the sub-circuit module’s area calculation function, the capacitance at logic gate level

is estimated at the last step (Fig. 4.3) because the total drain capacitance is dependent on

86

the layout structure of logic gate. For example, logic gates with different number of folding

have different area and sidewall length of diffusion region.

At the architecture level, NeuroSim provides two different total area estimations, as

shown in Fig. 4.4. The first one is to estimate the bounding box area that encloses the entire

layout of architecture, which is the total box height × total box width. The other one is to

directly sum up the area of array and sub-circuit modules, which may be optimistic but it

actually reflects the real case where the layout is always optimized to save chip cost. For

the area results in this and the next chapter, we use the latter one (the optimized one).

4.2.3 Latency Estimation

Once the capacitances at logic gate level are all known, the latency and dynamic energy

consumption can then be estimated based on RC analyses. We follow the same methods of

estimation in CACTI [96] and NVSim [97]. For digital logic gates, the latency is defined

as the time required for the output voltage to reach the switching voltage threshold after

the input voltage reaches it. We use Horowitz equation to calculate the latency in digital

logic gates:

Latency = τf√ln(vs)2+
2

rampInput×τf

β(1-vs) (4.2)

where vs is the normalized switching voltage threshold (typically 0.5). rampInput is the

input voltage ramp rate, and 1/rampInput represents the rise time of the input voltage signal.

β=1/(gmR) is the reciprocal of the normalized input transconductance gm times the output

resistance R. τf=RC is the total RC time constant at the output node (assuming a step input),

which not only includes the intrinsic output RC time constant of an individual logic gate,

but also counts the input capacitance of the logic gates at the next stage. If the output node

87

is connected to the array, an equivalent lumped RC model of the total wire resistance and

capacitance will be involved in the calculation of output RC time constant. After the latency

estimation, the output ramp rate of digital logic gates rampOutput will also be evaluated:

.rampOutput =(1-vs)/Latency (4.3)

which can be provided as the rampInput to the next stage of the digital logic gate. For

transmission gates used to pass analog voltage signals, we use 2.3RC (0-90% voltage rise

time) instead of Eq. (4.2) to estimate the latency. The latency estimation at all levels always

considers the worst-case scenario. For example, the worst-case input pattern for a NAND

logic’s evaluation to be 1 is when only one input is 1 because there is only one PMOS

pulling up the output node. Under the worst-case input pattern, the latency of a sub-circuit

module can then be obtained by summing up the latency of each logic gate along the critical

path. Generally, there are three input arguments to the latency calculation function of a

sub-circuit module, as shown in Fig. 4.3. rampInput determines the voltage ramp rate to

the input of the sub-circuit module. capLoad is the load capacitance at the output node of

sub-circuit module. rampInput and capLoad are required for the critical path latency

calculation. The third argument, numOp, is the number of repeated operations considered

in the latency calculation, which is designed for the convenience of the higher levels that

may need multiple times of access to a single sub-circuit module. The total latency of a

sub-circuit module can then be regarded as the critical path latency multiplied by numOp.

At the architecture level, the total latency can be calculated as the sum of latency of the

sub-circuit modules, as shown in Fig. 4.4. For the weighted sum operation of an eNVM

synaptic core, the array RC is considered as the load parameters for the sub-circuit modules

88

that drives the array. For the weight update operation of an eNVM synaptic core, the

latency of device weight tuning is included in the latency calculation of switch matrixes.

This write pulse information does not need to be specified as input arguments because it

has been already known by all sub-circuit modules upon constructed (Fig. 4.3).

4.2.4 Power Estimation

In the power estimation function of sub-circuit modules, the dynamic energy

consumption and leakage power are calculated, as shown in Fig. 4.3. Dynamic energy

consumption tells how much of the energy is consumed due to charge/discharge of the

capacitance during circuit operation, which is expressed as CVDD
2. Since all the

capacitances at logic gate level are known, the dynamic energy consumption of sub-circuit

module can then be calculated by summing up the CVDD
2 at all nodes. Similarly, if the

input argument numOp is given, the total dynamic energy consumption in a number of

operations can be obtained.

In eNVM synaptic array, the energy consumption is mainly static energy consumption

(i.e. the current flow through eNVM cells), as shown in Fig. 4.4. The energy consumption

on the selected analog eNVM cell at weight increase/decrease phase can be simply written

as:

Ecell=VW
2 GNTPULSE (4.4)

In Eq. (4.4), G is the conductance of a cell. VW is the write voltage for weight

increase/decrease. N is the number of applied write pulses and TPULSE is the pulse width.

Besides the eNVM cell, the dynamic energy consumption on the array wire capacitance as

well as SRAM cells (for SRAM architecture) will also be calculated. Then, the total energy

89

consumption for a synaptic core can be estimated as the sum of the dynamic/static energy

consumption of array and the dynamic energy consumption of sub-circuit modules.

On the other hand, leakage power represents the power consumption due to

subthreshold leakage current (Ileak) in the transistor channel when the transistor is turned

off. The simplest form of expressing the leakage power is VDDIleak. For a simple logic like

INV, Ileak is just the average of NMOS and PMOS off current (obtained from the transistor

technology configuration). For a NAND or NOR logic that has more than one input, Ileak

will be the PMOS or NMOS off current multiplied by the number of inputs, respectively,

for the worst case. However, it is preferred to estimate the leakage current based on the

average case. Thus, an additional pre-defined ratio will be applied to the leakage power

calculation result. For example, the leakage of a NAND3 can be expressed as:

LeakageNAND3=VDDIoff,PMOS×3×AR_LEAK
NAND3

 (4.5)

where AR_LEAKNAND3 represents the average ratio for leakage current in a NAND3 logic.

In the synaptic array, the total leakage power will be simply the sum of leakage of SRAM

cells (for SRAM architecture) and all sub-circuit modules, as shown in Fig. 4.4. eNVM

cells do not need power to maintain their data thus they do not have leakage.

In fact, since leakage power does not have to do with the capacitance in the estimation

model, the power estimation function can be directly called after the initialization step

without going through the area estimation step if the users only want to estimate the leakage

power. It should also be noted that there is no execution order for the performance

estimation functions at the architecture level, as shown in Fig. 4.4. This is unlike the flow

of sub-circuit modules in Fig. 4.3, where all capacitances need to be calculated in the area

90

estimation function before they are ready to be used in the latency and power estimation

functions.

4.2.5 Validation

NeuroSim offers a wide variety of design options for benchmarking neuro-inspired

architectures. Being the essential bases for the entire simulation framework, the parameters

in sub-circuit modules, memory cell and transistor models should be accurate enough to

support the validity of NeuroSim. In such context, we have performed SPICE and layout-

level calibration of sub-circuit modules to validate the analytical models. As mentioned in

Section 4.1.3, the transistor model parameters are calibrated based on PTM. The area

estimation, including logic gates and sub-circuits, is based on generic design rules. As

shown in Fig. 4.5, we have calibrated the area estimation of an analog eNVM synaptic core

with an array size of 256×256 at 45 nm technology node by comparing to its layout using

FreePDK45 process design kit [101]. As is shown in the layout, the peripheral circuits (i.e.

switch matrix) take substantial area due to the requirement of relaxing W/L for

transmission gate for minimizing the IR drop to maintain good accuracy in the analog

computation in the synaptic array. The entire layout area is measured to be 15,810 μm2,

with a cell size of 0.0324 μm2 (4F×4F), while the area estimation by NeuroSim (optimized)

is 15,454 μm2, achieving an error rate of -2.5%.

91

Fig. 4.5 Example layout of the analog eNVM synaptic core (256×256 array size) at

FreePDK 45 nm. © 2017 IEEE.

For latency, dynamic energy and leakage power consumption, we pick the

representative modules for validation, such as the decoder, adder, Mux and switch matrix.

As shown in Fig. 4.6, we calibrated the analytical equations in these performance

estimation models at different synaptic array sizes from 8×8 to 256×256 with SPICE

simulation based on PTM at 22 nm, 32 nm and 45 nm. In Fig. 4.6, the latency of the decoder

is more like a staircase function with respect to the array size. This is because the decoder

has two stages and every two address bits will be pre-decoded, thus the decoder structure

will have less changes from 2N-1 to 2N address bits where N is an even number. On the

other hand, the latency of Mux and switch matrix does not increase with larger array size,

because all the signal paths are independent and parallel. In Fig. 4.6, the leakage power of

Mux is not shown, because it only has transmission gates where the subthreshold leakage

current does not exist and the gate leakage current can be negligible. In Fig. 4.6, the average

absolute error rates of the sub-circuit modules at these technology nodes are ~14.86%,

~10.51% and ~13.96% for the latency, dynamic energy and leakage power, respectively.

The validation results are reasonably accurate considering these performance metrics are

123.6545 µm

1
2

7
.8

5
9

 µ
m

SL Switch MatrixSL Switch Matrix

BL

Switch

Matrix

Pseudo-

crossbar

Array

(256x256)

Pseudo-

crossbar

Array

(256x256)

Mux w/

Decoder

Mux w/

Decoder

AdderAdder

ADC
Shift

Register

Crossbar

WL

Decoder

Crossbar

WL

Decoder

eNVM
SL

WL

BL

0.18 µm

0
.1

8
 µ

m

92

modeled by simplified analytical equations as described earlier in Section 4.2, which we

believe is sufficient for a quick estimation of the circuit-level performance at early design

stage.

Fig. 4.6 Validation of latency, dynamic energy, and leakage power on main circuit

modules (decoder, switch matrix, adder, mux) with different synaptic array sizes at 22 nm,

32 nm and 45 nm technology node. © 2017 IEEE.

4.3 Case Study by Using NeuroSim: Synaptic Array Partitioning

The neural network generally consists of a massive number of synapses that connect

between groups of neurons, thus the weight matrix size is large. For instance, unsupervised

sparse coding algorithm needs a dictionary array size 100×500 to achieve reasonable

learning accuracy [56]. For deep convolutional neural network (CNN), the number of

synapses required for the convolution process of the first layer could reach to 121×3025 if

93

all the kernels are grouped into one array, and the last fully connected classification layer

could reach to 2048×2048 [102]. If such large weight matrix is stored on the digital SRAM

or analog eNVM arrays, accessing to such architecture may be slow and consumes a lot of

energy. Partitioning the array architecture into multiple smaller synaptic arrays is then

attractive to improve the overall system performance with an increased computation

parallelism. On the other hand, an excessively large number of small arrays is highly area

inefficient. Therefore, we analyze the problem of how to efficiently partition the weight

matrix using the SRAM and analog eNVM based synaptic cores in this case study. With

NeuroSim, we investigate the partition strategy required for performance optimization and

its associated trade-offs and overhead.

4.3.1 Partition Scheme and Simulation Setup

As shown in Fig. 4.7(a), we propose to partition the large synaptic array into N×N small

arrays in a hierarchical fashion. The partitioning could speed up the weight update

operation as the weight elements in different small arrays can be updated in parallel. For

the weighted sum operation, the vector and matrix are distributed into these array partitions

and computed in parallel, but the results from all small arrays must be collected and

summed up. We use multi-stage adders and registers (A&Rs) to obtain the final weighted

sum. As shown in Fig. 4.7(b), the summation flow is similar to a binary tree structure for

each array column. Each A&R is placed between two small arrays, and the results will be

added and passed toward the center A&R of each array column stage by stage. The circuit

block diagram of A&R is illustrated in Fig. 4.7(c). The A&R consists of multiple adders

and registers depending on the number of adders and read circuits in a SRAM and eNVM

94

array, respectively. It should be noted that the adders have 1 bit increment in the bit-width

stage by stage to account for the summation overflow.

Fig. 4.7 (a) Large synaptic array can be partitioned into small ones and form multiple

arrays. (b) In the macro level, multi-stage adders and registers (A&R) are shared between

small arrays to accumulate the partial weighted sums from all small arrays. (c) The circuit

block diagram of A&R. © 2016 IEEE.

The summary of simulation parameters is listed in Table I. We consider the activity

factor in the weighted sum and weight update operation for both synaptic cores. For

example, if the read activity for rows is assumed to be 50%, it means 50% of the rows will

be read out. In the eNVM synaptic core, we limit the sharing of read circuit to be 8 columns

per read circuit to preserve the height/width ratio in the layout to be <~5. In the weight

update operation, we assume the weight of each cell is updated by 8 levels in average,

which requires 8 write pulses and each pulse is 5 ns. Although sub 10-ns pulse write has

A
d

d
e

r

A&R

Large
Array

A
d

d
e

r

Register

A
d

d
e

r

Partition

(a)

(b)(c) Q<..><..>

Small
Array

Register

Register

Array

Array

95

not been demonstrated yet in any synaptic device, we think 5 ns is the best expected pulse

width in eNVM for digital memory application.

Table 4.1 Simulation Parameters. © 2016 IEEE.

Parameters Values

Read activity for rows/columns 50% / 100%

Write activity for rows/columns 50% / 50%

Number of bits for the input vector 4

Number of bits per weight element 4

Technology node (F) 32 nm

Clock frequency 2 GHz

6T SRAM cell area 146 F2 (F= tech node)

Pseudo-crossbar eNVM cell area 16 F2 (F= tech node)

eNVM resistance 100 kΩ – 10 MΩ (Avg: 1 MΩ)

eNVM read/write voltage 1 V / 2 V

Number of columns per eNVM read circuit 8

Avg/max number of eNVM write pulses 8 / 16

Duration of one eNVM write pulse 5 ns

4.3.2 Simulation Results and Discussion

A. Area

In this case study, the total area of the macro is defined as the bounding box of the

whole architecture, which may leave some space unused at the corners. Fig. 4.8 shows the

occupied and unused area of SRAM and eNVM synaptic cores with different number of

partitions. Here the number of partitions (N) means the array is divided into N×N sub-

arrays. The SRAM synaptic core generally has a larger area because the SRAM cell area

(6 transistors) is much larger and it also uses multiple cells to represent one weight element.

96

With more partitions into the small arrays, both synaptic cores need more space for multiple

copies of the peripheral circuits and A&Rs.

Fig. 4.8 The area of SRAM and eNVM synaptic cores with different number of partitions

on a 256 kb (512×512) array. Grey labels are the array sizes of the partitioned sub-arrays.

The eNVM synaptic core can achieve much smaller area with small cell size and multiple

bits per cell, while the unused space will dominate the macro area as more partitions are

applied. © 2016 IEEE.

B. Latency

The weighted sum and weight update latency of SRAM and eNVM synaptic cores with

different number of partitions are shown in Fig. 4.9. Without partitioning applied, SRAM

is slower in read due to row-by-row access, but faster in write because many write pulses

are needed for eNVM to tune its conductance, and each pulse is 5 ns. With more partitions,

it is expected that more partial weighted sums can be processed in parallel to reduce the

weighted sum and weight update latency. For eNVM, partitioning could relax the precision

requirement of the partial weighted sum in each sub-array thus sub-array latency can be

smaller. However, it requires more stages of A&R for the weighted sum operation thus the

latency of A&R accumulate. The results of eNVM suggest that the sum of weighted sum

97

latency for all A&R stages eventually becomes greater than the array weighted sum latency.

To this point, the partitioning is no longer an effective way to reduce the weighted sum

latency. In addition, due to the time-multiplexing required for the eNVM synaptic core in

the weighted sum operation, the overall weighted sum latency of eNVM can be larger than

that of SRAM beyond the partition point of 16×16.

Fig. 4.9 The weighted sum and weight update latency per operation for the SRAM and

eNVM synaptic cores with different number of partitions on a 256 kb (512×512) array.

Partitioning introduces parallelism for the weighted sum and weight update operation, but

A&R may become the critical path when more stages are used, especially in the eNVM

weighted sum operation with time-multiplexing applied on the A&Rs as well. © 2016

IEEE.

C. Energy Consumption

Fig. 4.10 shows the weighted sum and weight update energy consumption for SRAM

and eNVM synaptic cores with different number of partitions. The energy consumption

refers to the dynamic energy consumption per weighted sum and weight update operation.

The results have a similar trend with the latency, where the SRAM synaptic core consumes

more energy in the weighted sum operation and less in the weight update operation. The

reason can be attributed to the row-by-row based read and digital weight update in SRAM.

98

The results also reveal that there is a minimum weighted sum energy consumption for the

eNVM synaptic core at a partition point of 8×8, indicating energy from A&Rs will

dominate beyond this point.

Fig. 4.10 The weighted sum and weight update energy consumption per operation for the

SRAM and eNVM synaptic cores with different number of partitions on a 256 kb

(512×512) array. Reduction of energy consumption with more partitions is not as clear as

that of latency because A&R is rather power-consuming. The result suggests that 8×8 (or

an array size of 64×64) may be a suitable partition point for the eNVM synaptic core. ©

2016 IEEE.

D. Leakage Power Consumption

The leakage power consumption is calculated in the standby mode of the circuits. As

shown in Fig. 4.11, the leakage power of SRAM is much larger than that of eNVM,

primarily because eNVM cells are non-volatile. The leakage power consumption of eNVM

synaptic core comes from the peripheral circuits, which is small compared with that of the

SRAM array as the SRAM cells are the major contributor of leakage power.

99

Fig. 4.11 The leakage power consumption of the SRAM and eNVM synaptic cores with

different number of partitions on a 256 kb (512×512) array. The SRAM synaptic core has

much larger leakage power because the power supply is needed for all SRAM cells to

maintain the data. © 2016 IEEE.

4.4 Summary

In this chapter, we have introduced the synaptic array architectures, circuit modules,

memory device/transistor models, functions and features in NeuroSim with detailed

description. As a circuit-level macro model, NeuroSim alone can be a handy tool to

estimate the circuit-level performance metrics of neuro-inspired architectures by taking

trace of data patterns or average parameters. With clear abstractions of all hierarchical

layers and well-defined interfaces of modules, NeuroSim can also be used as a supporting

module to provide circuit-level performance estimation in neural network learning

algorithms.

In the case study, NeuroSim was used to evaluate the performance of SRAM and

eNVM synaptic core for weighted sum and weight update in the learning algorithms. The

eNVM synaptic core outperforms the SRAM in the area and leakage and is suitable for

read-intensive applications. The results of partitioning suggest that the SRAM synaptic

core with more partitions and finer granularity can achieve significant reduction on the

latency and energy consumption due to computation parallelism, with trade-off of the area

100

and leakage overhead. In the weighted sum operation, eNVM synaptic core does not gain

as much benefit as the SRAM from the partitioning, due to the latency and energy

consumption of multi-stage A&Rs in the finer granularity.

101

 INTEGRATED DEVICE-TO-ALGORITHM SIMULATION FRAMEWORK

WITH NEUROSIM

Neuromorphic hardware architectures based on synaptic memory arrays have been

proposed for on-chip acceleration of weighted sum and weight update in machine/deep

learning algorithms. Implementation of these architectures requires co-design of device,

circuit and algorithm to achieve high learning performance while reducing the hardware

cost. Many prior works [39, 59, 99] have studied the impact of several non-ideal eNVM

synaptic device properties on the learning accuracy, but they could not address the impact

on the circuit-level performance (e.g. area, latency, dynamic energy and leakage power)

because they just incorporated the device behavioral model directly to the algorithm’s code.

On the other hand, some reported architectural simulator platforms (e.g. PRIME [103] and

Harmonica [104]) have demonstrated powerful capability and flexibility at the system-

level design, but they have limited considerations at the aforementioned non-ideal device

properties (they only considered the weight precision and/or variation). MNSIM [78] is a

circuit-level macro model of neuro-inspired architecture, but the accuracy in this model is

the output error of weighted sum (vector-matrix multiplication), which is just one step of

the algorithms thus it lacks the run-time learning accuracy of the entire algorithms. In such

context, it is crucial to develop a simulation platform that is hierarchically organized from

the device level, circuit level up to the algorithm level, where each level covers a wide

variety of design options.

In this chapter, following the 3rd usage scenario in Section 4.1.5, we use NeuroSim as

a supporting tool for a 2-layer MLP neural network with MNIST handwritten digits [105]

as the training and testing dataset to implement online learning and offline classification.

102

The impact of the “analog” eNVM’s non-ideal device properties will be analyzed and

architectures of analog and digital synapses will be benchmarked. Reliability issues due to

data retention and write endurance failures will also be investigated.

5.1 Adapt MLP Network to Hardware

The network topology is 400(input layer)-100(hidden layer)-10(output layer). 400

neurons of input layer correspond to 20×20 MNIST image (edge cropped), and 10 neurons

of output layer correspond to 10 classes of digits. Such simple 2-layer MLP can achieve

96~97% in the software baseline. In online learning, the MLP simulator emulates hardware

to train the network with images randomly picked from the training dataset (60k images)

and classify the testing dataset (10k images). In offline classification, the network is pre-

trained by software, and the MLP simulator only emulates hardware to classify the testing

dataset. For the hardware implementation, the MNIST input images are converted to black

and white (1-bit) data to reduce the complexity of input encoding, as shown in Fig. 5.1(a).

For design simplicity, the neuron node is modularized to take the weighted sum of 1-bit

input data and truncate it to 1-bit output value through a low-precision activation function

(Heaviside step function, e.g. a simple comparator circuit) for the input of next neuron node,

as shown in Fig. 5.1(b). In this way, offline classification, which is purely feed forward

(FF), can be realized in 1-bit. However, the computation on the back propagation (BP) of

weight update generally needs higher precision to update the small errors.

Fig. 5.1(c) shows the circuit block diagram for hardware implementation of the 2-layer

MLP network. The weighted sum operation is performed using the synaptic cores.

However, the weights used in a regular synaptic array can only represent positive values

103

(WH=0~1), while the weights in algorithm can be either positive or negative values (WA=-

1~1). The algorithm’s weighted sum is then expressed as

WAV = (2WH - J)V = 2WHV - JV (5.1)

where V is the input vector and J is the matrix of all ones that has the same dimension as

WA and WH. In this equation, WHV is the weighted sum output from the synaptic core.

Therefore, we squeeze WA from (-1~1) to the range of WH (0~1): i.e. -1 is mapped to 0, 0

is mapped to 0.5, and 1 is mapped to 1. To reconstruct WAV, we have to perform a two-

step read from the array: first, we read out WHV, and then multiply WHV by 2 using a 1-bit

left-shift, and then subtract JV (basically the sum of vector) from WHV through the adder

at the periphery. The MSB (sign bit in 2’s complement notation) of the adder output will

be the 1-bit output of the low-precision activation function. It should be noted that we only

consider the main sub-circuit modules for the neuron periphery at current stage of this work.

Fig. 5.1 (a) The 2-layer MLP neural network. (b) Schematic of a neuron node. (c) Circuit

block diagram for hardware implementation of the 2-layer MLP network. © 2018 IEEE.

20x20 Cropped
Handwritten Digits

B
la

c
k
 &

 W
h

it
e

D
a

ta

400 Input
Elements 100 Hidden

Neurons 10 Output
Neurons

WIH

WHO

∑

Neuron

W

Computation
of weight
update

FF
output

BP
errors

Low-precision
Activation Function

ΔW

Values
from

previous
layer

(a)

(b)

Adders

Mux

Registers

Synaptic
Core
(WIH)

In
p

u
t

v
e

c
to

r

Adders

Mux

Registers

Synaptic
Core
(WHO)

+- +

v
e

c
to

r

Weight update with other
hardware control logics

MSB

∑
×2 ×2

Predicted
result

MSB

∑

-

Neuron
Periphery

(c)

High-precision
Activation Function

N
e

u
ro

n
 n

o
d

e
s
 a

t
p

re
v
io

u
s
 l
a

y
e
r

104

5.2 NeuroSim as a Supporting Module for MLP Simulator

The MLP simulator is shown in Fig. 5.2. It has a hierarchical organization from the

algorithm level down to the device level with consideration of synaptic array and realistic

device properties in detail, and it can be regarded as a standalone functional simulator that

is able to evaluate the learning accuracy and the circuit-level performance for the synaptic

array only during learning. To form a complete framework, NeuroSim is needed to provide

circuit-level performance estimation.

Fig. 5.2 NeuroSim as a supporting module to the MLP simulator. At the run-time of NN,

the weighted sum and weight update instructions will be given to both the synaptic

array/device model and NeuroSim for evaluation of computation error and circuit-level

performances, respectively. © 2018 IEEE.

At the run-time of NN, the MLP simulator iteratively performs FF and BP, which

contains a series of weighted sum and weight update operations, respectively. Whenever a

weighted sum or weight update instruction is given, the instruction will be passed to the

synaptic array and device behavioral model for calculation of computation error, as well as

passed to NeuroSim for evaluation of circuit-level performances. As mentioned in the 3rd

NN setup

FF

BP
Analog eNVM

NeuroSim

Weighted
sum

Weight
update

Classify

Dynamic energy
(peripherals only)

Area/leakage power

Latency

Initialization

MLP
simulator

NeuroSim setup

Feedback

Different memory types

105

usage scenario in Section 4.1.5, NeuroSim can be just responsible for the dynamic energy

calculation of the array peripherals because the MLP simulator can better handle that of

the synaptic array by itself.

5.3 Impact of Synaptic Device Properties on Accuracy

To quantify the impact of the aforementioned non-ideal device properties in Section

2.3, we performed sensitivity analyses in online learning and offline classification. Fig.

5.3(a) shows the requirement of weight precision. Because the memory resources are

limited on-chip, we have to truncate the synapse weights into finite precisions. The result

suggests that 6-bit weight is required for online learning, while 2-bit weight is needed for

offline classification (at least for MNIST dataset) and 1-bit weight introduces slight

degradation. Fig. 5.3(b) shows the learning accuracy with different conductance ON/OFF

ratios. Limited ON/OFF ratio<50 will degrade the accuracy of offline classification. The

network may adapt itself to this limited ON/OFF ratio during learning thus the online

learning can tolerate more (ON/OFF ratio>10 is needed). However, the accuracy drop in

online learning is sharper, which is probably because the network will deviate more from

its correct form with both erroneous weighted sum and weight update results. Fig. 5.3(c)

shows the impact of nonlinearity with different polarities of nonlinearity for the

potentiation (P) and depression (D). The result shows that high nonlinearity can be

tolerated if P/D has the same polarity. However, for common situations where P/D is

positive/negative, the impact of nonlinearity on the online learning accuracy is very critical.

High accuracy can only be achieved with small nonlinearity (<1). For offline classification,

there is no nonlinearity issue as the cell conductance can be iteratively programmed to the

desired value [106].

106

Variation sensitivity analyses are performed with different nonlinearities (P/D:

positive/negative) in online learning. Fig. 5.3(d) shows the impact of conductance variation

on the learning accuracy. We added the variation (with standard deviation (σ) in terms of

percentage) on the highest conductance state (ON state) as it changes the conductance

range most. The result shows that the conductance variation does not degrade the learning

accuracy. Instead, it remedies the accuracy loss due to high nonlinearity. However, an

opposite trend can be observed for the device-to-device variation, as shown in Fig. 5.3(e).

The amount of device-to-device variation is defined as the nonlinearity baseline’s standard

deviation (σ) respect to 1 step of 6 steps, which is similar to the definition in Section 2.3.2.

At low nonlinearity (<1), the accuracy slightly decreases with larger variation. For the

nonlinearity>1, the impact becomes much more prominent. On the other hand, the amount

of cycle-to-cycle variation (σ) is expressed in terms of the percentage of entire weight range,

which is also similar to the definition in Section 2.3.2. As shown in Fig. 5.3(f), small cycle-

to-cycle variation (<2%) can alleviate the degradation of learning accuracy by high

nonlinearity. The reason may be attributed to the random disturbance that aids convergence

of the weights to an optimal weight pattern (i.e. to help the system jump out of local

minima). Thus, synaptic devices with nonlinear weight update behavior may perform better

than expected if they exhibit a little noisy weight update. However, too large variation

(>2%) overwhelms the deterministic weight update amount defined by the algorithm thus

is harmful to the learning accuracy.

107

Fig. 5.3 The impact of (a) weight precision, (b) conductance ON/OFF ratio, (c) weight

update nonlinearity, (d) conductance variation, (e) device-to-device variation and (f) cycle-

to-cycle variation in online learning and/or offline classification.

5.4 Benchmark Results and Discussions

Table 5.1 and Table 5.2 survey representative analog eNVM and FeFET devices in

literature with extracted aforementioned device properties such as number of conductance

states, weight update nonlinearity, ON-state resistance (RON), ON/OFF ratio, programing

pulse condition, and weight update variation, etc. Based on these parameters, NeuroSim

was used to evaluate the system-level performance metrics such as learning accuracy, area,

latency, energy and leakage power for online learning with 1 million MNIST images being

trained. The benchmark results show that all analog eNVM devices fail to achieve a good

accuracy>90%. The cause of degradation can be largely attributed to the devices’ poor

ON/OFF ratio. It is observed that for ON/OFF ratio<10, the devices cannot perform well

in the learning no matter how good other parameters are. This agrees with the results in

108

Fig. 5.3(b). The second critical parameter is the nonlinearity. Even the PCMO device has

slightly better ON/OFF ratio than the AlOx/HfO2 one, its high nonlinearity restrains itself

from converging to the desired conductance during weight update, leading to a poor

accuracy of 10%. In contrast, the learning accuracy of both FeFET devices is much better

(~90%), owing to their large ON/OFF ratio. Even though their nonlinearities are not small,

the degradation can be less critical if both potentiation and depression have the same

nonlinearity polarity, as observed in Fig. 5.3(c).

Benchmark results of digital synapses are also included in Table 5.2 for comparison,

where a digital eNVM with RON/ROFF=200kΩ/10MΩ and 2.5V/10ns programming pulse is

assumed. It can be observed that SRAM is better than digital eNVM in the latency and

energy efficiency, but much worse in the area and leakage power. Despite that both these

digital synapses can achieve better accuracy (~94%) than all analog synapses, they

typically require 2.5X-10X area and >30X leakage power consumption (if SRAM).

However, some analog synapses such as AlOx/HfO2 and GST PCM have less advantage in

area due to their small RON, where the transistor W/L in peripheral circuits (such as Mux

and switch matrixes) needs to be larger to prevent noticeable IR drop. On the other hand,

it is found in analog synapses that most of the latency and energy are dominated by the

weight update, and they are far too large compared to those in SRAM, making analog

synapses not favorable for the online learning [66]. This is because we have used a naïve

scheme for the weight update, where all cells in each operation need to go through the full

number of pulse cycles (essentially the worst case) no matter the cells have to be updated

(have a ΔW) or not. To optimize this scheme, we propose to use the maximum ΔW’s

number of cycles in each weight update operation. If all the cells in an operation do not

109

need an update (ΔW=0), this operation can even be skipped. Table 5.1 and Table 5.2 show

the latency and energy with both the naïve and optimized schemes. In the optimized scheme,

the latency in analog synapses are significantly reduced, indicating ΔW are often small or

zero. In TaOx/TiO2 (Type B) and PCMO devices, the reduction ratios are extremely large

because these devices basically learn nothing (almost no ΔW). Similarly, the energy can

also be greatly reduced in the optimized scheme because skipping an operation saves the

dynamic energy in charging the array wires and circuits. The only exceptions are

AlOx/HfO2 and GST PCM. Their energy reduction is much less because their RON is small

thus the array static energy (consumed by cells) dominates rather than the dynamic energy.

All in all, if the programming pulse is further reduced (<20 ns), and if the peripheral circuit

design can be made simpler for generating non-identical programming pulses, the analog

synapses can be superior to digital synapses in nearly every aspect of the circuit-level

performance with the optimized weight update scheme, as observed from the results of

HfZrO (HZO) based FeFET.

110

Table 5.1 Specs and Online Learning Performance of Different Analog eNVM Synapses

 Analog eNVM synapses

Device type Ag:a-Si [32] TaOx/TiO2

(Type B)

[34]

PCMO

[35]

AlOx/HfO2

[36]

GST

PCM

[40]

of conductance

states

97 102 50 40 100-120

Nonlinearity

(weight

increase/decrease)

2.4/-4.88 1.85/-1.79 3.68/-6.76 1.94/-0.61 0.105/2.4

RON (ON-state

resistance)

26 MΩ 5 MΩ 23 MΩ 16.9 kΩ 4.71 kΩ

ON/OFF ratio 12.5 2 6.84 4.43 19.8

Weight increase

pulse

3.2V/300µs 3V/40ms -2V/1ms 0.9V/100µs 0.7V

(avg.)/

6µs

Weight decrease

pulse

-2.8V/300µs -3V/10ms 2V/1ms -1V/100µs 3V

(avg.)/

125ns

Cycle-to-cycle

variation (σ)

3.5% <1% <1% 5% 1.5%

Online learning

accuracy

~73% ~10% 10% ~41% ~87%

Area 1072.0 µm2 1071.3

µm2

1071.3

µm2

3657.2 µm2 7233.0

µm2

Latency (naïve) 4.20E8 s 3.57E10 s 7.00E8 s 5.60E7 s 4.39E6 s

Energy (naïve) 87.94 mJ 65.86 mJ 29.4 mJ 150 mJ 1.52 J

Latency

(optimized)

64200 s 0.2845 s 5.2507 s 4439.8 s 413.0 s

Energy

(optimized)

14.81 mJ 0.17 mJ 0.17 mJ 146.19 mJ 1.34 J

Leakage power 35.29 µW 35.29 µW 35.29 µW 35.29 µW 35.29

µW

111

Table 5.2 Specs and Online Learning Performance of Different Analog FeFET and

Digital Synapses

 Analog FeFET synapses Digital synapses

Device type HZO FeFET

[53]

HZO FeFET

[54]

6-bit SRAM 6-bit digital

(binary) eNVM

of conductance

states

32 32 -- 2

Nonlinearity

(weight

increase/decrease)

2.53/1.83 1.545/1.755 -- --

RON (ON-state

resistance)

559.28 kΩ 500 kΩ -- 200 kΩ

ON/OFF ratio 45 ~1300 -- 50

Weight increase

pulse

3.65V

(avg.)/ 75ns

2.17V (avg.)/

50µs

-- 2.5V/10 ns

Weight decrease

pulse

-2.95V

(avg.)/ 75ns

-1.62V (avg.)/

50µs

-- -2.5V/10 ns

Cycle-to-cycle

variation (σ)

<1% <1% -- --

Online learning

accuracy

~90% ~90% ~94% ~94%

Area 1190.4 µm2 1193.5 µm2 10311 µm2 2681.9 µm2

Latency (naïve) 3.36E4 s 2.24E7 s 7.76 s 162.3 s

Energy (naïve) 98.01 mJ 38.39 mJ 6.98 mJ 47.7 mJ

Latency

(optimized)

1.2924 s 479.6 s 0.5217 s 1.8677 s

Energy

(optimized)

0.28 mJ 0.21 mJ 2.2 mJ 1.6 mJ

Leakage power 35.29 µW 35.29 µW 1.1 mW 25.17 µW

112

For offline classification, accuracy>93% can be achieved using either 2-bit SRAM or

digital eNVM (equivalently Fig. 5.3(a)) or 2-bit analog eNVM with sufficiently large

ON/OFF ratio=50. Table 5.3 shows the circuit-level performance benchmark results of

SRAM, digital and analog eNVM based architectures for offline classification on the entire

testing dataset of 10k images. Without any training process, the analog eNVM based

architecture can be superior to the other two designs in terms of latency and energy.

Table 5.3 Benchmark of Architecture with SRAM, Digital and Analog eNVM

Based Synaptic Core for Offline Classification. © 2018 IEEE.

 2-bit SRAM 2-bit digital eNVM 2-bit analog eNVM

Area 4450.8 μm2 1071.2 μm2 1247.3 μm2

Latency 32.997 ms 10.39 ms 0.25 ms

Dynamic Energy 16.939 μJ 7.30 μJ 3.38 μJ

Leakage Power 475.67 μW 22.89 μW 35.29 μW

5.5 Reliability Analysis

Besides the non-ideal device properties studied in the previous section, reliability issues

such as data retention and write endurance could also be harmful to the learning

performance of neural networks. In this section, we investigate the impact of data retention

and write endurance with generic assumptions of all possible failure mechanisms by

incorporating the retention and endurance models into the MLP simulator. Since the

emphasis is on the reliability, we set the synaptic weight to be 6-bit (64 levels) and assumes

linear conductance tuning without variation in all the simulations.

5.5.1 Data Retention

Data retention refers to the ability of memory device to retain its programmed state

over a long period of time. Typical retention specification for NVM in memory application

113

is more than 10 years at 85oC. Many binary eNVM devices have been able to meet this

requirement. However, there are no reported data for analog eNVM that shows such

retention, which can be attributed to the instability of intermediate conductance states [107].

To be general, we consider four scenarios of conductance drift for the retention analysis.

As shown in Fig. 5.4(a)-(c), the conductance can either drift toward its maximum,

minimum or intermediate states. These three scenarios have ever been reported in the

retention measurement of binary eNVMs [108-110]. In addition, we also consider random

conductance drift towards its maximum or minimum state with equal probability, as shown

in Fig. 5.4(d). The formula for modeling the conductance drift behavior is assumed to

follow the one that is widely used in PCM [111, 112], which can be described as

G=G0 (
t

t0
)

v

 (5.2)

where G0 is the initial conductance, t is the retention time, v is the drift coefficient and t0 is

the time constant which is assumed to be 1 second in this work. In the retention analyses,

the offline classification is used with the conductance ON/OFF ratio set to be 50, which is

a sufficiently large ratio, in order to still capture the conductance drift at the lowest

conductance state.

114

Fig. 5.4 General assumptions of retention failure modes: conductance drifting towards its

(a) maximum state, (b) minimum state, (c) intermediate state, or (d) maximum/minimum

state with randomness. © 2018 IEEE.

Fig. 5.5(a) shows the degradation of classification accuracy over retention time at a

fixed drift coefficient of 0.01 with different final weight states that the conductance drifts

to. It can be simply calculated that the conductance change is ~20% over 10 years under

such drift coefficient, and it leads to degradation of accuracy <90% for all final weight

states. On the other hand, the result suggests that the final state either be at the maximum

or minimum conductance has the poorest accuracy. To have a quantitative comparison

between different final weight states, we measure the maximum drift coefficient of all

states that still give an accuracy >90% at a retention time of 10 years. As shown in Fig.

Log(t)

L
o

g
(G

)

Max G

Log(t)

L
o

g
(G

)

Min G

Log(t)

L
o

g
(G

)

Mid G

(a) (b)

(c) (d) Log(t)

L
o

g
(G

)

Initial G

Randomly to
max/min G

Possible Retention Failure Modes

115

5.5(b), the final weight at 0.6 can tolerate up to a maximum drift coefficient of ~0.012,

which corresponds to ~25% of the conductance change at 10 years.

Fig. 5.5 (a) Classification accuracy as a function of retention time with conductance

drifting toward different final weight states. (b) The maximum drift coefficient as a

function of final weights for achieving >90% accuracy at 10 years. © 2018 IEEE.

The reason why intermediate final weight states (Fig. 5.4(c)) have less accuracy

degradation than either the maximum or minimum ones (Fig. 5.4(a)-(b)) can be attributed

to the deviation of weighted sum after retention degradation. This can be easily observed

from the distribution of the absolute difference of column conductance sum before and

after retention degradation, as shown in Fig. 5.6 for the first and second layer of MLP NN.

The difference (ΔW) is measured between the array conductance patterns before and after

a retention of 10 years, and a small drift coefficient of 0.001 is used to ensure that most of

the conductance have not reached their final states at 10 years. As all the conductance will

drift in the same direction to the maximum or minimum final weight state, a larger

deviation of weighted sum is expected, and the high inverse correlation between Fig. 5.6

116

and Fig. 5.5(b) confirms that the accuracy degradation is strongly affected by the amount

of weighted sum deviation.

Fig. 5.6 Distribution of the absolute difference of column conductance sum before and

after 10 years (drift coefficient=0.001) in the (a) first and (b) second layer of MLP NN.

Both results are highly correlated with Fig. 5.5(b). © 2018 IEEE.

The above argument can be further substantiated by the analysis of random

conductance drift in Fig. 5.4(d), where its impact on the classification accuracy is shown

in Fig. 5.7. With the same drift coefficient of 0.01, the accuracy degradation is much less

severe than the ones in other drift scenarios (Fig. 5.5(a)), even we select the worst result in

Fig. 5.7 for comparison. The reason is because the weighted sum deviation will be averaged

out by this randomness. It can be expected that if either drifting towards maximum or

minimum conductance is much more probable, the accuracy degradation will be as severe

as that of W=0 or W=1 in Fig. 5.5(a).

117

Fig. 5.7 Monte Carlo simulation on the accuracy with conductance randomly drifting

toward its maximum or minimum states. Under the same drift coefficient, the randomness

behavior does not lead to radical change in weighted sum thus the impact on the accuracy

is much smaller compared to other conductance drift scenarios. © 2018 IEEE.

In fact, the only experimental work so far that reported the retention properties in

analog RRAM suggests that its behavior can be due to multiple hops of oxygen vacancies

over long retention time [107], which is analogous to Brownian Motion. It also shows that

the read current distribution of each conductance level follows a normal distribution, where

its standard deviation (σ) increases with retention time. In other words, the retention

behavior can be modeled as an increasing conductance variation over time, which is

illustrated in Fig. 5.8(a). From [107], its σ is described as

σ=λ√t+θ (5.3)

where λ and θ are fitting parameters. Since these fitting parameters can vary in different

devices, conductance states and even temperatures, we rather evaluate the impact of this

retention behavior based on σ. As shown in Fig. 5.8(b), a σ of ~0.2 will lead to a significant

degradation on the accuracy. It can be calculated that given θ=0, λ should be smaller than

~7e-6 for the accuracy to remain >90% at 10 years.

118

Fig. 5.8 (a) The retention model proposed in [107] suggesting the an increasing

conductance variation over time. (b) The impact of conductance variation on the

classification accuracy. © 2018 IEEE.

5.5.2 Write Endurance

In memory application, the write endurance specifies the number of times that a

memory device can be programmed (written) before the write failure occurs. Typical

binary eNVM devices can achieve >106 write cycles (between the highest and lowest

conductance states). However, the analog eNVM endurance definition should be different

as it has only incremental conductance change by each write pulse. So far, there is no prior

work discussing the endurance behavior of analog eNVM for neuromorphic computing.

To study the endurance effect in this work, we assume that the strength of conductance

tuning (ΔG) decreases over write pulse cycles, which is expressed as

ΔG=ΔG0(1-r)(#pulses) (5.4)

where ΔG0 is the ideal conductance change without considering endurance degradation, r

is the reduction ratio, #pulses means the cumulative number of pulses that has been applied

to the device. As illustrated in Fig. 5.9(a), the conductance will eventually be unchangeable

Sqrt(t)

G

G variation
increases over time

(a) (b)

119

after an excessive number of cycles. To analyze its impact, we apply the endurance

property in the online learning of the MLP NN. As shown in Fig. 5.9(b), the learning

accuracy degradation begins to be noticeable as we gradually increase r to be >0.01. We

also apply variations of 10% and 20% on the ratio, and it does not really either significantly

alleviate or worsen the degradation.

Fig. 5.9 (a) Endurance degradation in weight update of synaptic devices. Strength of

conductance tuning decreases over pulse cycles. (b) The impact of ΔG reduction ratio (with

10% and 20% variation) on the learning accuracy. 10 device samples are measured for each

data point. © 2018 IEEE.

In the endurance analysis, we assume the maximum conductance of the device is 100

nS. It can be calculated that the required cumulative number of pulses to reduce the strength

of conductance tuning by 50% and 90% are ~70 and ~230 under r=0.01, respectively. Fig.

5.10(a)-(b) shows the distribution of the sum of absolute conductance change in the first

and second layer of MLP NN without endurance effect to achieve the targeted learning

accuracy. The conductance changes with 70 and 230 write pulses are also labeled. Given

only the results of Fig. 5.10(a)-(b), we may easily conclude that r=0.01 is too large thus

there will be a significant accuracy degradation, because most of the devices require far

Δ
G

Pulses(a) (b)

Strength of G tuning
reduces over pulses

ΔG=ΔG0(1-r)(#pulses)

120

more pulses than these two numbers to achieve >90% accuracy. However, the accuracy

with r=0.01 in Fig. 5.9(b) disproves this argument.

Fig. 5.10 Distribution of the sum of absolute conductance change in the (a) first and (b)

second layer without endurance effect, and (c) first and (d) second layer of MLP NN with

endurance effect (r=0.01). The network can adapt itself to this endurance degradation by

activating other synaptic devices whose conductance are still tunable. © 2018 IEEE.

In fact, the network has the ability to adapt itself to this endurance degradation by

relying on other devices whose conductance is still tunable. As shown in Fig. 5.10(c)-(d),

the conductance cannot be further tuned beyond a certain amount of total conductance

change (~150 nS), and the network will keep activating other inactive devices to take over

the responsibility of learning during the entire learning process. To see this effect more

clearly, 2D color maps of the total absolute conductance change in the first and second

layer are shown in Fig. 5.11 and Fig. 5.12, respectively. Without endurance degradation,

the training in the network only relies on the conductance change in some of the active

121

eNVM devices to achieve the 90% accuracy. With endurance degradation, most of the

devices have to participate in the training to achieve the 90% accuracy, thus it can be

observed that the entire color map almost ends up being filled with the same color (which

means the conductance tuning limit). Besides the network’s ability to adapt the endurance

degradation from algorithm’s point of view, analog eNVM devices were also demonstrated

to have >103 write pulses of conductance tuning [34, 40]. Therefore, the endurance issue

may not be as critical as estimated.

Fig. 5.11 2D color map of the total absolute conductance change in the first layer.

122

Fig. 5.12 2D color map of the total absolute conductance change in the second layer.

5.6 Summary

We have developed an integrated device-to-algorithm framework that connects circuit-

level macro model NeuroSim to NNs to evaluate the learning performance of neuro-

inspired architectures. We have used this framework to analyze the impact of non-ideal

device properties and benchmark several representative analog synapses in a 2-layer MLP

NN. The results suggest that degradation of learning accuracy is mainly due to small

ON/OFF ratio and large nonlinearity with different polarities in potentiation and depression.

The optimized weight update scheme is also proposed to minimize the latency and energy

overhead by skipping redundant pulse cycles and even operations during training. With

this scheme, analog synapses can be potentially better in hardware performance than

SRAM synapses, while achieving >90% online learning accuracy. For read-intensive

applications such as the offline classification, analog eNVM is the most suitable synaptic

device due to its capability of parallel weighted sum operation.

123

Impact of important reliability properties for synaptic devices such as data retention

and write endurance are also investigated. It is observed that there is a strong correlation

between the degradation of classification accuracy and the weighted sum deviation, thus

retention behaviors which causes less deviation will have smaller impact on the accuracy.

The analysis also includes the existing retention model based on conductance variation,

enabling estimation of the model parameters based on targeted performance. In contrast,

the endurance issue defined in this work is considered to be less critical than estimated

because the network is able to alleviate it by making use of other devices whose

conductance are still tunable.

124

 CONCLUSION

The crossbar array architecture with resistive synaptic devices has been proposed for

on-chip implementation of weighted sum and weight update operations in the

neuromorphic learning algorithms. It is crucial to explore the design methodologies for

practical hardware implementation of the resistive cross-point array architecture, where we

have recognized possible non-ideal device properties that are detrimental to the learning

performance. Using sparse coding algorithm as a benchmark platform, we developed

design strategies at both circuit and device levels to mitigate the impact of these non-ideal

properties. By applying these strategies with tolerable trade-offs on chip area, latency and

energy, it is shown that the synaptic behavior is greatly improved and the recognition

accuracy can return from ~30% to ~95%.

Array design for performance improvement is also proposed. The 1S1R array

architecture can reduce the weight update energy consumption compared to the crossbar

array architecture. Alternatively, the “pseudo-crossbar” array architecture is even better in

terms of the write disturbance and energy efficiency in weight update, which directly turns

off the unselected rows. Besides the array, the peripheral circuits in crossbar and pseudo-

crossbar are also discussed. As the read circuit is complex and not area-efficient, the MIT

device is introduced as the oscillation neuron to replace the entire read circuit. To address

the interference issue of oscillation between columns in simple crossbar array, the 2T1R

array architecture is proposed at negligible increase in array area. In circuit-level

benchmark, it is shown that the oscillation neuron not only saves a lot of area on chip, but

also improves the latency and energy due to less sharing of neuron peripheral circuits by

array columns.

125

As today’s neuromorphic computing system is at early design stage, there can be a

variety of design choices from the algorithm level to the device level, such as neural

network topology, eNVM array architecture, peripheral circuit design and eNVM device

engineering. Therefore, we developed NeuroSim platform that is beneficial in exploring

the design space of neuro-inspired architectures at such early design stage. In the case study

of array partitioning problem, we have demonstrated that NeuroSim alone can provide

circuit-level performance estimation of neuro-inspired architectures thus the partition

strategy can be simply envisioned.

For a more complex case, the role of NeuroSim can be a supporting tool. To explore

the feasibility of different synaptic devices for neuromorphic computing, we integrated

NeuroSim with a 2-layer multilayer perceptron (MLP) neural network to build an

integrated device-to-algorithm simulation framework. The framework has shown its power

in evaluating the performance of learning as well as other hardware metrics such as area,

latency, dynamic energy and leakage for neuromorphic architectures. We believe that

MLP+NeuroSim framework can be a handy and flexible tool to perform design

optimization for on-chip implementation of learning with various mainstream and

emerging synaptic device technologies. The source code of MLP+NeuroSim framework is

publically available at [113] for other researchers to download. To support the more

advanced learning algorithms such as convolutional neural network (CNN), recurrent

neural network (RNN) and/or spiking neural network (SNN), which could be the future

work for extension.

126

REFERENCES

[1] Y. LeCun, and C. Cortes, “The MNIST database of handwritten digits,” 1998.

[2] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “Deepface: Closing the gap to

human-level performance in face verification,” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1701-1708, 2014.

[3] Amazon Alexa, http://alexa.amazon.com/

[4] Apple Siri personal assistant, http://www.apple.com/ios/siri/

[5] Microsoft Cortana personal assistant, http://www.microsoft.com/en-

us/mobile/experiences/cortana/

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.

Y. Ng, “ROS: an open-source Robot Operating System,” ICRA workshop on open

source software, pp. 5, 2009.

[7] C. Urmson, J. A. Bagnell, C. R. Baker, M. Hebert, A. Kelly, R. Rajkumar, P. E.

Rybski, S. Scherer, R. Simmons, and S. Singh, “Tartan racing: A multi-modal

approach to the DARPA Urban Challenge,” Technical report, Carnegie Mellon

University, 2007.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot, “Mastering the

game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587,

pp. 484-489, 2016.

[9] M. Emilio, M. Moises, R. Gustavo, and S. Yago, “Pac-mAnt: Optimization based

on ant colonies applied to developing an agent for Ms. Pac-Man,” IEEE Symposium

on Computational Intelligence and Games (CIG), pp. 458-464, 2010.

[10] The CIFAR-10 and CIFAR-100 dataset,

https://www.cs.toronto.edu/~kriz/cifar.html

[11] D. Steinkraus, I. Buck, and P. Simard, “Using GPUs for machine learning

algorithms,” International Conference on Document Analysis and Recognition

(ICDAR), pp. 1115-1120, 2005.

[12] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning

using graphics processors,” International Conference on Machine Learning

(ICML), pp. 873-880, 2009.

[13] J. Von Neumann, “The principles of large-scale computing machines,” Annals of

the History of Computing, vol. 3, no. 3, pp. 263-273, 1981.

http://alexa.amazon.com/
http://www.apple.com/ios/siri/
http://www.microsoft.com/en-us/mobile/experiences/cortana/
http://www.microsoft.com/en-us/mobile/experiences/cortana/
https://www.cs.toronto.edu/~kriz/cifar.html

127

[14] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78,

no. 10, pp. 1629-1636, 1990.

[15] D. B. Strukov, “Nanotechnology: smart connections,” Nature, vol. 476, no. 7361,

pp. 403-405, 2011.

[16] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous real-world

inputs can open up alternative accelerator designs,” International Symposium on

Computer Architecture (ISCA), pp. 1-12, 2013.

[17] X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple, and S. Furber, “Modeling

spiking neural networks on SpiNNaker,” Computing in Science & Engineering, vol.

12, no. 5, pp. 91-97, 2010.

[18] S. Kumar, “Introducing qualcomm zeroth processors: Brain-inspired computing,”

2013.

[19] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.

Bussat, R. Alvarez-Icaza, J. V. Arthur, P. Merolla, and K. Boahen, “Neurogrid: A

mixed-analog-digital multichip system for large-scale neural simulations,”

Proceedings of the IEEE, vol. 102, no. 5, pp. 699-716, 2014.

[20] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,

B. L. Jackson, N. Imam, C. Guo, and Y. Nakamura, “A million spiking-neuron

integrated circuit with a scalable communication network and interface,” Science,

vol. 345, no. 6197, pp. 668-673, 2014.

[21] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An fpga-based processor

for convolutional networks,” International Conference on Field Programmable

Logic and Applications (FPL), pp. 32-37, 2009.

[22] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,

“NeuFlow: A runtime reconfigurable dataflow processor for vision,” IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pp. 109-116, 2011.

[23] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 G-ops/s

mobile coprocessor for deep neural networks,” IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pp. 682-687, 2014.

[24] I. Kuon, and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), vol. 26, no. 2, pp. 203-215, 2007.

[25] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning,”

128

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pp. 269-284, 2014.

[26] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, and N.

Sun, “DaDianNao: A machine-learning supercomputer,” IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 609-622, 2014.

[27] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y.

Chen, “PuDianNao: A polyvalent machine learning accelerator,” International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pp. 369-381, 2015.

[28] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.

Temam, “ShiDianNao: Shifting vision processing closer to the sensor,”

International Symposium on Computer Architecture (ISCA), pp. 92-104, 2015.

[29] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.

Bhatia, N. Boden, and A. Borchers, “In-datacenter performance analysis of a tensor

processing unit,” International Symposium on Computer Architecture (ISCA), pp.

1-12, 2017.

[30] D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and

applications,” Nanotechnology, vol. 24, no. 38, pp. 382001, 2013.

[31] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. Wunderlich, A. Basu, and B.

Degnan, “A learning-enabled neuron array IC based upon transistor channel models

of biological phenomena,” IEEE Transactions on Biomedical Circuits and Systems,

vol. 7, no. 1, pp. 71-81, 2013.

[32] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale

memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no.

4, pp. 1297-1301, 2010.

[33] I.-T. Wang, Y.-C. Lin, Y.-F. Wang, C.-W. Hsu, and T.-H. Hou, “3D synaptic

architecture with ultralow sub-10 fJ energy per spike for neuromorphic

computation,” IEEE International Electron Devices Meeting (IEDM), pp. 665-668,

2014.

[34] L. Gao, I.-T. Wang, P.-Y. Chen, S. Vrudhula, J. Seo, Y. Cao, T.-H. Hou, and S. Yu,

“Fully parallel write/read in resistive synaptic array for accelerating on-chip

learning,” Nanotechnology, vol. 26, no. 45, pp. 455204, 2015.

[35] S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B. R. Lee, B. H. Lee,

and H. Hwang, “Neuromorphic speech systems using advanced ReRAM-based

synapse,” IEEE International Electron Devices Meeting (IEDM), pp. 625-628,

2013.

129

[36] J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, and H. Hwang, “Improved

synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for

neuromorphic systems,” IEEE Electron Device Letters, vol. 37, no. 8, pp. 994-997,

2016.

[37] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H. S. P. Wong, “A low energy oxide‐

based electronic synaptic device for neuromorphic visual systems with tolerance to

device variation,” Advanced Materials, vol. 25, no. 12, pp. 1774-1779, 2013.

[38] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B.

Strukov, “Training and operation of an integrated neuromorphic network based on

metal-oxide memristors,” Nature, vol. 521, no. 7550, pp. 61-64, 2015.

[39] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R. S. Shenoy,

P. Narayanan, K. Virwani, and E. U. Giacometti, “Experimental demonstration and

tolerancing of a large-scale neural network (165 000 Synapses) using phase-change

memory as the synaptic weight element,” IEEE Transactions on Electron Devices,

vol. 62, no. 11, pp. 3498-3507, 2015.

[40] D. Kuzum, R. G. Jeyasingh, B. Lee, and H.-S. P. Wong, “Nanoelectronic

programmable synapses based on phase change materials for brain-inspired

computing,” Nano letters, vol. 12, no. 5, pp. 2179-2186, 2011.

[41] M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C.

Gamrat, and B. DeSalvo, “Phase change memory as synapse for ultra-dense

neuromorphic systems: Application to complex visual pattern extraction,” IEEE

International Electron Devices Meeting (IEDM), pp. 79-82, 2011.

[42] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon,

and J. Sunwoo, “A 20nm 1.8 V 8Gb PRAM with 40MB/s program bandwidth,”

International Solid-State Circuits Conference (ISSCC), pp. 46-48, 2012.

[43] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard,

K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush, “A 16Gb ReRAM with

200MB/s write and 1GB/s read in 27nm technology,” International Solid-State

Circuits Conference (ISSCC), pp. 338-339, 2014.

[44] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin,

F. Chen, C. H. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching

with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEEE

International Electron Devices Meeting (IEDM), pp. 1-4, 2008.

[45] Y. Wu, B. Lee, and H.-S. P. Wong, “Ultra-low power Al2O3-based RRAM with

1μA reset current,” International Symposium on VLSI Technology Systems and

Applications (VLSI-TSA), pp. 136-137, 2010.

130

[46] C. Ho, E. Lai, M. Lee, C. Pan, Y. Yao, K. Hsieh, R. Liu, and C.-Y. Lu, “A highly

reliable self-aligned graded oxide WOx resistance memory: conduction

mechanisms and reliability,” IEEE Symposium on VLSI Technology (VLSI-T), pp.

228-229, 2007.

[47] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii,

K. Katayama, and M. Iijima, “Highly reliable TaOx ReRAM and direct evidence of

redox reaction mechanism,” IEEE International Electron Devices Meeting (IEDM),

pp. 1-4, 2008.

[48] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J.-S. Zhao, and C. S. Hwang,

“Identification of a determining parameter for resistive switching of TiO2 thin

films,” Applied Physics Letters, vol. 86, no. 26, pp. 262907, 2005.

[49] W. Wu, H. Wu, B. Gao, N. Deng, S. Yu, and H. Qian, “Improving Analog

Switching in HfOx-Based Resistive Memory With a Thermal Enhanced Layer,”

IEEE Electron Device Letters, vol. 38, no. 8, pp. 1019-1022, 2017.

[50] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox‐based resistive switching

memories–nanoionic mechanisms, prospects, and challenges,” Advanced materials,

vol. 21, no. 25-26, pp. 2632-2663, 2009.

[51] S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, K. Seo, J. Park, S. Kim, and

W. Lee, “RRAM-based synapse for neuromorphic system with pattern recognition

function,” IEEE International Electron Devices Meeting (IEDM), pp. 231-234,

2012.

[52] R. Pandian, B. J. Kooi, J. L. Oosthoek, P. van den Dool, G. Palasantzas, and A.

Pauza, “Polarity-dependent resistance switching in GeSbTe phase-change thin

films: The importance of excess Sb in filament formation,” Applied Physics Letters,

vol. 95, no. 25, pp. 252109, 2009.

[53] M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric

FET analog synapse for acceleration of deep neural network training,” IEEE

International Electron Devices Meeting (IEDM), pp. 139-142, 2017.

[54] S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, and H. Hwang,

“HfZrOx-Based Ferroelectric Synapse Device With 32 Levels of Conductance

States for Neuromorphic Applications,” IEEE Electron Device Letters, vol. 38, no.

6, pp. 732-735, 2017.

[55] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of BSB recall function

using memristor crossbar arrays,” Design Automation Conference (DAC), pp. 498-

503, 2012.

[56] P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, J. Seo,

Y. Cao, and S. Yu, “Technology-design co-optimization of resistive cross-point

131

array for accelerating learning algorithms on chip,” Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 854-859, 2015.

[57] J. Liang, and H.-S. P. Wong, “Cross-point memory array without cell selectors -

device characteristics and data storage pattern dependencies,” IEEE Transactions

on Electron Devices, vol. 57, no. 10, pp. 2531-2538, 2010.

[58] P.-Y. Chen, L. Gao, and S. Yu, “Design of Resistive Synaptic Array for

Implementing On-Chip Sparse Learning,” IEEE Transactions on Multi-Scale

Computing Systems, vol. 2, no. 4, pp. 257-264, 2016.

[59] P.-Y. Chen, B. Lin, I. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-s. Seo, Y. Cao, and

S. Yu, “Mitigating effects of non-ideal synaptic device characteristics for on-chip

learning,” ACM/IEEE International Conference on Computer-Aided Design

(ICCAD), pp. 194-199, 2015.

[60] S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, “Scaling-up resistive

synaptic arrays for neuro-inspired architecture: Challenges and prospect,” IEEE

International Electron Devices Meeting (IEDM), pp. 451-454, 2015.

[61] D. Kadetotad, Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrudhula, S. Yu,

Y. Cao, and J.-s. Seo, “Parallel architecture with resistive crosspoint array for

dictionary learning acceleration,” IEEE Journal on Emerging and Selected Topics

in Circuits and Systems (JETCAS), vol. 5, no. 2, pp. 194-204, 2015.

[62] P.-Y. Chen, J. Seo, Y. Cao, and S. Yu, “Compact oscillation neuron exploiting

metal-insulator-transition for neuromorphic computing,” International Conference

on Computer-Aided Design (ICCAD), 2016.

[63] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model for

benchmarking neuro-inspired architectures in online learning,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2018.

[64] P.-Y. Chen, and S. Yu, “Partition SRAM and RRAM based synaptic arrays for

neuro-inspired computing,” IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 2310-2313, 2016.

[65] P.-Y. Chen, X. Peng, and S. Yu, “System-level benchmark of synaptic device

characteristics for neuro-inspired computing,” IEEE SOI-3D-Subthreshold

Microelectronics Technology Unified Conference (S3S), pp. 1-2, 2017.

[66] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: an integrated device-to-algorithm

framework for benchmarking synaptic devices and array architectures,” IEEE

International Electron Devices Meeting (IEDM), pp. 135-138, 2017.

132

[67] P.-Y. Chen, and S. Yu, “Reliability perspective of resistive synaptic devices on the

neuromorphic system performance,” IEEE International Reliability Physics

Symposium (IRPS), 2018.

[68] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,”

Advances in neural information processing systems, pp. 801-808, 2006.

[69] D. H. Hubel, and T. N. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat's visual cortex,” The Journal of physiology, vol.

160, no. 1, pp. 106-154, 1962.

[70] B. A. Olshausen, “Emergence of simple-cell receptive field properties by learning

a sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607-609, 1996.

[71] B. Lin, Q. Li, Q. Sun, M.-J. Lai, I. Davidson, W. Fan, and J. Ye, “Stochastic

coordinate coding and its application for drosophila gene expression pattern

annotation,” CoRR abs/1407.8147, 2014.

[72] C.-C. Chang, and C.-J. Lin, “LIBSVM: a library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, pp.

27, 2011.

[73] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu,

“Robustness of spiking Deep Belief Networks to noise and reduced bit precision of

neuro-inspired hardware platforms,” Frontiers in Neuroscience, vol. 9, no. 222,

2015.

[74] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to +1 or -1,” arXiv preprint arXiv:1602.02830v3, 2016.

[75] International Technology Roadmap for Semiconductors (ITRS),

http://www.itrs2.net/

[76] P. Narayanan, G. Burr, R. Shenoy, K. Virwani, and B. Kurdi, “Circuit-level

benchmarking of access devices for resistive nonvolatile memory arrays,” IEEE

International Electron Devices Meeting (IEDM), pp. 705-708, 2014.

[77] A. Chen, “Comprehensive methodology for the design and assessment of crossbar

memory array with nonlinear and asymmetric selector devices,” IEEE International

Electron Devices Meeting (IEDM), pp. 746-749, 2013.

[78] L. Xia, B. Li, T. Tang, P. Gu, X. Yin, W. Huangfu, P.-Y. Chen, S. Yu, Y. Cao, and

Y. Wang, “MNSIM: Simulation platform for memristor-based neuromorphic

computing system,” ACM/IEEE Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 469-474, 2016.

http://www.itrs2.net/

133

[79] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, “Training itself: Mixed-signal

training acceleration for memristor-based neural network,” Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 361-366, 2014.

[80] D. Chabi, Z. Wang, W. Zhao, and J.-O. Klein, “On-chip supervised learning rule

for ultra high density neural crossbar using memristor for synapse and neuron,”

International Symposium on Nanoscale Architectures (NANOARCH), pp. 7-12,

2014.

[81] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor

crossbar-based neuromorphic computing system: A case study,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 10, pp. 1864-

1878, 2014.

[82] K. Moon, E. Cha, J. Park, S. Gi, M. Chu, K. Baek, B. Lee, S. Oh, and H. Hwang,

“High density neuromorphic system with Mo/Pr0.7Ca0.3MnO3 synapse and NbO2

IMT oscillator neuron,” IEEE International Electron Devices Meeting (IEDM), pp.

464-466, 2015.

[83] Y. Zhou, and S. Ramanathan, “Mott memory and neuromorphic devices,”

Proceedings of the IEEE, vol. 103, no. 8, pp. 1289-1310, 2015.

[84] Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-

insulator transitions,” Annual Review of Materials Research, vol. 41, pp. 337-367,

2011.

[85] S. G. Kim, T. J. Ha, S. Kim, J. Y. Lee, K. W. Kim, J. H. Shin, Y. T. Park, S. P.

Song, B. Y. Kim, and W. G. Kim, “Improvement of characteristics of NbO2 selector

and full integration of 4F2 2x-nm tech 1S1R ReRAM,” IEEE International Electron

Devices Meeting (IEDM), pp. 249-252, 2015.

[86] Y. Zhou, and S. Ramanathan, “Correlated electron materials and field effect

transistors for logic: a review,” Critical Reviews in Solid State and Materials

Sciences, vol. 38, no. 4, pp. 286-317, 2013.

[87] T. Wang, and J. Roychowdhury, “Design tools for oscillator-based computing

systems,” Design Automation Conference (DAC), pp. 1-6, 2015.

[88] N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V. Narayanan, H. Wen, Z.

Cai, V. Gopalan, and R. Engel-Herbert, “Synchronized charge oscillations in

correlated electron systems,” Scientific reports, vol. 4, 2014.

[89] S. P. Levitan, Y. Fang, J. A. Carpenter, C. N. Gnegy, N. S. Janosik, S. Awosika-

Olumo, D. M. Chiarulli, G. Csaba, and W. Porod, “Associative processing with

coupled oscillators,” International Symposium on Low Power Electronics and

Design (ISLPED), pp. 235-235, 2013.

134

[90] Y. W. Lee, B.-J. Kim, J.-W. Lim, S. J. Yun, S. Choi, B.-G. Chae, G. Kim, and H.-

T. Kim, “Metal-insulator transition-induced electrical oscillation in vanadium

dioxide thin film,” Applied Physics Letters, vol. 92, no. 16, 2008.

[91] M. D. Pickett, and R. S. Williams, “Sub-100 fJ and sub-nanosecond thermally

driven threshold switching in niobium oxide crosspoint nanodevices,”

Nanotechnology, vol. 23, no. 21, pp. 215202, 2012.

[92] M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, “A scalable neuristor built

with Mott memristors,” Nature Materials, vol. 12, no. 2, pp. 114-117, 2013.

[93] A. Sharma, T. Jackson, M. Schulaker, C. Kuo, C. Augustine, J. Bain, H.-S. Wong,

S. Mitra, L. Pileggi, and J. Weldon, “High performance, integrated 1T1R oxide-

based oscillator: Stack engineering for low-power operation in neural network

applications,” IEEE Symposium on VLSI Technology (VLSI-T), pp. T186-T187,

2015.

[94] Y. Koo, K. Baek, and H. Hwang, “Te-based amorphous binary OTS device with

excellent selector characteristics for x-point memory applications,” IEEE

Symposium on VLSI Technology (VLSI-T), pp. 1-2, 2016.

[95] S. Li, X. Liu, S. K. Nandi, D. K. Venkatachalam, and R. G. Elliman, “High-

endurance megahertz electrical self-oscillation in Ti/NbOx bilayer structures,”

Applied Physics Letters, vol. 106, no. 21, pp. 212902, 2015.

[96] S. J. Wilton, and N. P. Jouppi, “CACTI: An enhanced cache access and cycle time

model,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 677-688, 1996.

[97] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level performance,

energy, and area model for emerging nonvolatile memory,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994-

1007, 2012.

[98] Predictive Technology Model (PTM), http://ptm.asu.edu/

[99] S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A. Cox, C. D.

James, and M. J. Marinella, “Resistive memory device requirements for a neural

algorithm accelerator,” International Joint Conference on Neural Networks

(IJCNN), pp. 929-938, 2016.

[100] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate

memory system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1, pp.

16-19, 2011.

[101] FreePDK45, https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

http://ptm.asu.edu/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

135

[102] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Advances in neural information processing

systems (NIPS), pp. 1097-1105, 2012.

[103] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,

“PRIME: A Novel Processing-In-Memory Architecture for Neural Network

Computation in ReRAM-based Main Memory,” ACM/IEEE International

Symposium on Computer Architecture (ISCA), pp. 27-39, 2016.

[104] X. Liu, M. Mao, B. Liu, B. Li, Y. Wang, H. Jiang, M. Barnell, Q. Wu, J. Yang, H.

Li, and Y. Chen, “Harmonica: A Framework of Heterogeneous Computing Systems

With Memristor-Based Neuromorphic Computing Accelerators,” IEEE

Transactions on Circuits and Systems I (TCAS-I), vol. 63, no. 5, pp. 617-628, 2016.

[105] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,

1998.

[106] L. Gao, P.-Y. Chen, and S. Yu, “Programming protocol optimization for analog

weight tuning in resistive memories,” IEEE Electron Device Letters, vol. 36, no.

11, pp. 1157-1159, 2015.

[107] M. Zhao, H. Wu, B. Gao, Q. Zhang, W. Wu, S. Wang, Y. Xi, D. Wu, N. Deng, S.

Yu, H.-Y. Chen, and H. Qian, “Investigation of statistical retention of filamentary

analog RRAM for neuromophic computing,” IEEE International Electron Devices

Meeting (IEDM), pp. 872-875, 2017.

[108] S. H. Jo, K.-H. Kim, T. Chang, S. Gaba, and W. Lu, “Si memristive devices applied

to memory and neuromorphic circuits,” IEEE International Symposium on Circuits

and Systems (ISCAS), pp. 13-16, 2010.

[109] Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N.

Raghavan, S. Clima, L. Zhang, and A. Belmonte, “Improvement of data retention

in HfO2/Hf 1T1R RRAM cell under low operating current,” IEEE International

Electron Devices Meeting (IEDM), pp. 252-255, 2013.

[110] A. Prakash, D. Jana, and S. Maikap, “TaOx-based resistive switching memories:

prospective and challenges,” Nanoscale research letters, vol. 8, no. 1, pp. 418, 2013.

[111] R. A. Cobley, C. D. Wright, and J. A. V. Diosdado, “A model for multilevel phase-

change memories incorporating resistance drift effects,” IEEE Journal of the

Electron Devices Society, vol. 3, no. 1, pp. 15-23, 2015.

[112] S. Kim, B. Lee, M. Asheghi, F. Hurkx, J. P. Reifenberg, K. E. Goodson, and H.-S.

P. Wong, “Resistance and threshold switching voltage drift behavior in phase-

change memory and their temperature dependence at microsecond time scales

136

studied using a micro-thermal stage,” IEEE Transactions on Electron Devices, vol.

58, no. 3, pp. 584-592, 2011.

[113] MLP simlator (+NeuroSim) version 1.0,

https://github.com/neurosim/MLP_NeuroSim

https://github.com/neurosim/MLP_NeuroSim

