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ABSTRACT

There is a growing need for interplanetary travel technology development. There

are hence plans to build deep space human habitats, communication relays, and fuel

depots. These can be classified as large space structures. To build large structures,

it is essential that these are modular in nature. With modularization of structures,

it becomes essential that interconnection of modules is developed. Docking systems

enable interconnection of modules. The state-of-the-art technology in docking systems

is the Power Data Grapple Fixture (PDGF), used on the International Space Station

by the Canadarm2 robotic arm to grapple, latch onto and provide power to the object

it has grappled. The PDGF is operated by highly skilled astronauts on the ISS and are

prone to human errors. Therefore, there is a need for autonomous docking. Another

issue with the PDGF is that it costs around 1 to 2 million US dollars to build the 26-

inch diameter docking mechanism. Hence, there is a growing need to build a lower cost

and scalable, smaller docking systems. Building scalable smaller docking systems will

hence enable testing them on small satellites. With the increasing need for small, low

cost, autonomous docking systems, this thesis has been proposed. This thesis focuses

on modeling and autonomous control of an electromagnetic probe and cone docking

mechanism. The electromagnetic docking system is known to be a highly nonlinear

system. Hence, this work discusses various control strategies for this docking system

using a levitation strategy.

i



ACKNOWLEDGMENTS

I would first like to thank my thesis advisor and mentor Dr. Jekanthan Thangave-

lutham, Assistant Professor, Department of Aerospace and Mechanical Engineering

at the University of Arizona. I was fortunate to be guided by him both for my thesis

as well as on other projects I took up under his guidance in the SpaceTREx labora-

tory. He has constantly motivated and steered me in the right direction whenever I

needed it.

I would also like to extend my gratitude towards my co-chair Dr. Hugh James

Barnaby, Assistant Professor, and Dr. Ashfaque Bin Shafique, Faculty Associate,

Arizona State University for consenting to be on my thesis committee and reviewing

my thesis.

I would also like to thank my fellow colleagues and current Ph.D. students at the

SpaceTREx laboratory, Himangshu Kalita for his support and helping me in designing

the simulation, Aman Chandra for guiding me in writing my thesis document, Ravi

Teja Nallapu for his constant help and support.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 CURRENT TECHNOLOGY AND RELATED WORK . . . . . . . . . . . . . . . . . 7

2.1 Spacecraft Docking Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Current Status of Small Satellite Docking . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Cubesat Missions on Small Satellite Docking . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 AAReST Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 CPOD Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 ARCADE-R2 Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Permanent Magnet Docking System . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Docking Mechanism Analysis Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 UDP on SPHERES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Other Probe and Cone Docking Mechanisms . . . . . . . . . . . . . . . 12

2.4.3 ARX Model for Electromagnetic Levitation . . . . . . . . . . . . . . . . 12

2.4.4 Feedback Linearization of Electromagnetic Levitation Systems 13

2.4.5 Mission Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 System Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Orbit Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Attitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



CHAPTER Page

3.4 Docking System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Docking Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Taylor Series Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Bandwidth and Robustness Controller Design . . . . . . . . . . . . . . 28

3.5.3 PID Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.4 Linear Quadratic Gaussian Controller Design . . . . . . . . . . . . . . 31

3.5.5 Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Simulation Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 MISSION CONCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 ConOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Docking System Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Discussion on the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iv



LIST OF TABLES

Table Page

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Orbital Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Docking System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Ziegler-Nichols Tuning Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Ziegler-Nichols Tuning Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 CARE and FARE Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Mission Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



LIST OF FIGURES

Figure Page

1.1 The Hubble Space Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The International Space Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Power Data Grapple Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The Docking System of Soyuz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The AAReST Mission MirrorSats with Docking System . . . . . . . . . . . . . . . 9

2.3 The CPOD Mission RPOD Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The ARCADE-R2 Mission Docking System . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Orbital Parameters [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Orbital Maneuvering Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Standard Form of a Feedback Control System with Plant as P(s) . . . . . . 29

3.4 Model Based Compensator for Combining LQR and Kalman Filter . . . . 34

4.1 Docking System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Satellite A (Probe) Docking System Interface Diagram. . . . . . . . . . . . . . . . 42

4.3 Satellite B (Cone) Docking System Interface Diagram . . . . . . . . . . . . . . . . 43

4.4 Concept of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Electromagnetic Docking System Nonlinear Model . . . . . . . . . . . . . . . . . . . 46

5.2 Taylor Series Linearized Nonlinear System with LQG Controller . . . . . . . 47

5.3 Bode Plot of the Taylor Series Linearized Nonlinear System . . . . . . . . . . . 48

5.4 Taylor Series Linearized Nonlinear System with Bandwidth and Ro-

bustness Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Taylor Series Linearized Nonlinear System with PID Controller Design . 50

5.6 Taylor Series Linearized Nonlinear System with LQG Controller Design

Theoretical Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



Figure Page

5.7 Taylor Series Linearized Nonlinear System with LQG Controller Design

Actual Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 Taylor Series Linearized Closed Loop System Output Comparison . . . . . 52

5.9 Taylor Series Linearized Closed Loop System Output Comparison . . . . . 52

5.10 Feedback Linearized Nonlinear System State Converter . . . . . . . . . . . . . . . 53

5.11 Feedback Linearized Nonlinear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12 Feedback Linearized Nonlinear System with LQG Controller . . . . . . . . . . 54

5.13 Feedback Linearized Closed Loop System Theoretical Step Response . . . 55

5.14 Feedback Linearized Closed Loop System Theoretical Output . . . . . . . . . 55

5.15 Feedback Linearized Closed Loop System Actual Output . . . . . . . . . . . . . 56

5.16 Feedback Linearized Closed Loop System Output Comparison . . . . . . . . . 57

5.17 Feedback Linearized Closed Loop System Actual States . . . . . . . . . . . . . . . 57

5.18 Feedback Linearized Closed Loop System Actual State ẏ . . . . . . . . . . . . . . 58
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Chapter 1

INTRODUCTION

Space was once a new frontier in human exploration. Development of technology

took astronomy into space, with the deployment of the Hubble Space Telescope (Fig-

ure 1.1). The Hubble Space Telescope, around 13 meters long and around 4 meters

wide had a defective primary mirror [2]. This is not the only problem it had [3].

The gyroscope, responsible for controlling the rotation of the spacecraft, to achieve

pointing, was also defective. About six months later, the second out of the third gyro

failed. There was also a memory failure in one of the flight computers. Thankfully,

it was built to be serviced in space. Astronauts from the Endeavor space shuttle

mission were able to rectify the mirror by adding corrective optics and add new gyros

in multiple stages. The Hubble Space Telescope was finally able to take crisp images.

The system was not perfect. As any other instruments, space structures have their

own lifespan. To keep it going, it has been serviced at least five times to date. The

Hubble Space Telescope is an example of the nature of human beings to explore the

boundless. It has outlived its expected lifespan and is no longer expected to be ser-

viced. The total telescope budget was around 4.7 billion USD, and it cost around 6

billion USD to service the spacecraft, totaling to about 10 billion USD for the whole

project. Servicing and repair can hence be considered an important aspect of space

technology development.

After the Hubble Telescope, the International Space Station (ISS) (Figure 1.2)

was the next step towards space technology development. The ISS is probably the

biggest structure assembled in space till date. The Russian module, Zarya, is the first

module of the ISS, which was launched in November 1998. The first crew members
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Figure 1.1: The Hubble Space Telescope

Figure 1.2: The International Space Station

reached the ISS in November 2000 [4]. Since then, it has been continually occupied

by rotating crews, as a joint effort by the participant countries. As of March 2018,

eighteen countries have been a part of the ISS project, for building, servicing as well

as providing astronauts. It was deemed to be ”complete” by 2011, but it continues to

get new modules and components. Some key technologies which made this possible

are in-space docking, docking mechanism designs, spacecraft modularity, and robotic

assembly.

Space science research is moving towards colonizing the Moon and Mars. Before

achieving colonization, it is essential that large structures are assembled in space like
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the ISS. Large space structures not only facilitate colonization but also astronomy.

The larger a telescope is, the larger is its light gathering capacity, and hence it can peer

deeper into the depths of space and time. The amount of rocket fuel consumed by a

rocket is directly linked to the weight of the payload. Larger spacecrafts require more

fuel. To build big space structures it is essential that they are modular. Modularity

will ensure that the structures could be assembled in space as well as repaired. Space

structures would have to be repaired in order to last long if we want these structures

deep in space.

Figure 1.3: The Power Data Grapple Fixture

To assemble large structures in space and to repair, it is essential that efficient

docking mechanisms are developed. Even though there are docking mechanisms like

the docking mechanism of the ISS and the Power Data Grapple Fixture (PDGF),

(Figure 1.3) of the robotic arms of the ISS, and the Soyuz docking system, these

docking mechanisms are costly and have not been designed for small spacecrafts.

Another major concern is that these are operated by astronauts and on June 25,

1997, during docking tests of manual control TORU, due to an astronaut error while

docking, the Russian supply vehicle Progress 234 collided with the Mir space station,
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rupturing it and nearly forcing the evacuation of the space station [5]. It is therefore

essential that docking mechanisms are automated, removing humans from the loop, as

even skilled astronauts are prone to errors and finding skilled astronauts is a concern.

Small satellites have revolutionized the space industry by enabling academic and

private institutions to test mission concepts and technology, thereby providing valu-

able experience as well as advancing space technology. Small satellite docking mecha-

nisms are still being ground tested and yet to be flown. With the growing popularity of

small satellite docking, it is essential that different docking mechanisms are explored.

Docking mechanisms not only provide the capability of in-space assembly and

repair, but also enable a myriad of applications swarm satellites can bring. For

example, a swarm of satellites can be deployed and can dock together to perform

data and power transfer. This can create a network of swarm satellites capable of

resource sharing, including exchange of information, power, processing capability,

sensor fusion to name a few. Docking systems could also enable small satellites to

share information and sensors with bigger satellites. Small satellites would be able to

repair faulty equipment in larger satellites and also provide redundancy to components

about to reach their shelf life. This would drastically increase the performance and

life time of a large satellite, thereby increasing the productivity vs. cost ratio or the

value for money. This can not only help repair of components, but also used for

reconnaissance on deep space missions. Small satellites could be deployed from large

mothership satellites and these satellites could perform the necessary task, come back

to the mothership, dock for both refueling and data power transfer, which can benefit

both ways.

To enable these multiple applications of autonomous docking systems for small

satellites, it is essential that this system is modularized so that this system can be

used on multiple small satellites and also on large satellites. These modules can be
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attached, detached and modified as docking technology for small satellites progresses.

To fulfill this growing need for autonomous small satellite docking systems, this thesis

has been presented.

1.1 Thesis Statement

The need for big space structures has driven the development in-space assembly

and repair of spacecrafts. In-space assembly and repair are possible, primarily due

to the docking mechanism. Docking of large spacecrafts has been demonstrated on

numerous occasions with humans in the loop. The same is not true for small satellites.

Hence, the development of an autonomous docking mechanism for nanosatellites is

essential for the small satellite community. This thesis focuses on modeling and

control of a general electromagnetic docking system for nanosatellites. Some key

techniques in modeling an electromagnetic docking system and control of the docking

system have been presented.

1.2 Thesis Document Organization

This document is organized into eight chapters. This chapter provided an in-

troduction to the topic of in-orbit assembly, repair, and spacecraft docking, while

motivating the thesis objective. First, applications of large space structures were dis-

cussed. Then, in-space assembly of these structures is discussed, followed by space-

craft docking. The idea was then modified to fit a small satellite. The motivation

behind the end goal of data and power transfer was also discussed and concluded with

the advantage of modularity of the docking mechanism. chapter 2 introduces the cur-

rent technologies in the field of docking mechanisms. Docking system classification

is presented followed by the ISS Docking system. Later, the current state of small

spacecraft docking and related work in the field is discussed. Here, missions related
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to the technology demonstration of docking mechanisms for small spacecrafts is dis-

cussed followed by research papers explaining various docking mechanisms. chapter 3

provides a detailed description of the design strategy of the thesis. The simulation of

the system is presented followed by the design of the orbit propagator. The model

of the docking system is explained in detail, followed by the design of the controllers

for docking. The integration of the entire system follows this. With the system de-

sign completed, a mission concept, along with the mission and subsystem objectives

are discussed in chapter 4. Results are discussed in chapter 5. Various graphs of

the controller docking system are presented followed by the simulation figures. Some

discussion explaining the results follows this. The document ends with the Conclu-

sion and Future Work in chapter 6. A summary of the entire work is presented and

concluded by a discussion on future hardware testing and possible mission proposals.
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Chapter 2

CURRENT TECHNOLOGY AND RELATED WORK

2.1 Spacecraft Docking Mechanisms

Docking mechanisms for spacecrafts are can mainly be used for two purposes,

berthing or data and power transfer. Docking mechanisms which are used for berthing

can also provide data and power transfer, along with the main purpose of crew trans-

fer. The docking systems developed for berthing the ISS are tested on big spacecrafts

like for the Gemini, Apollo, Soyuz (Figure 2.1), [6]. Most docking systems which

have been designed are probe and cone based systems. Probe and cone, also known

as probe and drogue systems, consist of a probe, which will fit into a hollow cone.

Other docking systems are considered a hybrid, like the Russian Hybrid interface

mechanism [6, p. 20] which are also a modified version of the probe and cone docking

mechanism.

(a) Probe (b) Drogue

Figure 2.1: The Docking System of Soyuz
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2.2 Current Status of Small Satellite Docking

Currently, docking systems have been tested extensively for big spacecrafts. Dock-

ing system designs have improved over the years, but largely remain the same. The

same design strategy can be proposed for small satellites, but have yet to be proved

in practice. Various designs for docking small satellites have been researched, but

not tested. Cubesat missions for small satellite docking have been proposed, however

have not been flown as of March 2018. The technology readiness level (TRL) for

small satellite docking can be set at 4 or 5, indicating technology development and

early stages of technology demonstration.

2.3 Cubesat Missions on Small Satellite Docking

Various cubesat missions for technology demonstration have been proposed. This

section lists some of these missions.

2.3.1 AAReST Mission

Underwood et al. [7] have proposed a cubesat mission to demonstrate the concept

of Autonomous Assembly of Reconfigurable Space Telescope (AAReST). The mission

proposes a 15U cubesat which will demonstrate in-space assembly of the MirrorSats,

Figure 2.2. To perform in-space assembly, the rendezvous and docking system has

been designed as a probe and cone docking system with electromagnets and atti-

tude control strategies for coarse docking, a Microsoft Kinect based array of sensors,

LIDAR and Camera RDV sensors, a differential GPS for relative navigation. The au-

thors have described tests that have been performed to dock the cubesats using the

electromagnetic docking mechanism. According to Eckersley et al. [8], the AAReST

mission is set to be launched in 2018 or later.
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Figure 2.2: The AAReST Mission MirrorSats with Docking System

2.3.2 CPOD Mission

Bowen et al. [9] have proposed a Cubesat based rendezvous, Proximity Operations,

and Docking (CPOD) mission, previously known as the Proximity Operations Nano-

Satellite Flight Demonstrator, PONSFD [10] solely to test small satellite docking.

They propose the use of a Universal Docking Port (UDP) [11], a semi-androgynous

docking mechanism used in SPHERES [12]. The CPOD mission proposes 4 docking

sensors in the Remote Proximity Operations and Docking (RPOD) module (Fig-

ure 2.3) which are, near and wide field visible range cameras and near and wide field

IR cameras. This mission is said to demonstrate the capability of the UDP. According

to the authors, the CPOD mission is also set to launch in 2018 or later.

9



Figure 2.3: The CPOD Mission RPOD Module

2.3.3 ARCADE-R2 Mission

Barbetta et al. [13] have proposed an Autonomous Rendezvous, Control and

Docking Experiment - Reflight 2 (ARCADE-R2). This mission was proposed as a

technology demonstrator experiment to prove the feasibility of small satellite dock-

ing. On October 10, 2013, it flew on board the BEXUS-17 stratospheric balloon,

successfully performing the docking procedures. The docking system (Figure 2.4)

design is again a probe and cone based system with IR LEDs and IR LDR sensors

to assist in the docking. The actuation was performed using the on-board attitude

control system.

2.3.4 Permanent Magnet Docking System

Pei et al. [14] have proposed an autonomous rendezvous and docking system using

permanent magnet docking mechanism. The mission acts as a technology demonstra-

tor for a permanent magnet docking mechanism. The authors propose an attitude

and position control using relative position navigation with the help of Continuous

10



Figure 2.4: The ARCADE-R2 Mission Docking System

Differential GPS (CDGPS) and the on-board Attitude Determination and Control

System (ADCS). The authors also describe in detail the capabilities, limitations, and

the design of the permanent magnet docking system. One important claim is that

this docking system reduces the usage of propellants used for position control in any

coarse docking system.

2.4 Docking Mechanism Analysis Papers

Apart from cubesat mission proposals, research papers on the design and analysis

of docking mechanisms also help in raising the TRL of small satellite docking systems.

Some of these papers have been discussed along with research papers dealing with

the modeling of electromagnetic levitation systems.
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2.4.1 UDP on SPHERES

The Universal Docking Port [11], designed for the SPHERES facility on-board the

ISS is a semi-androgynous docking port designed to provide data and power transfer.

The authors describe in detail the complete docking system design and its testing

on the SPHERES facility on the ISS. The UDP uses a camera sensor to perform

docking in space and has been tested on the SPHERES robots, which are three flying

satellites used to test algorithms or other systems. The SPHERES facility with the

UDP has also been tested by Miller et al. [15], who proposed an experiment to perform

Assembly of a Large Modular Optical Telescope (ALMOST), which was tested while

on-board the ISS.

2.4.2 Other Probe and Cone Docking Mechanisms

McCormick et al. [16] propose a robotic manipulator with probe and cone end

effectors to demonstrate docking of small satellite clusters. Ye et al. [17] propose an

attitude control based probe and cone docking system and discuss the modeling of

forces. Zhang et al. [18] also discusses the force modeling of a probe and cone docking

system.

2.4.3 ARX Model for Electromagnetic Levitation

Qin et al. [19] propose modeling an electromagnetic levitation system as a Gaus-

sian Radial Basis Function (RBF) Autoregressive (ARX) model. The authors discuss

a neural networks based model for the electromagnetic levitation system with a PID

controller to control the identified system.
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2.4.4 Feedback Linearization of Electromagnetic Levitation Systems

Gandhi et al. [20] and Romero et al. [21] discuss a comparison of feedback

linearization of electromagnetic levitation systems and design of various controllers

to maintain the ball levitation system in a suspended state.

2.4.5 Mission Comparison

The AAReST mission uses electromagnetic docking system, but with bulky Kinect

camera based sensor system, and hasn’t been tested in space yet. The CPOD mis-

sion uses just a probe and cone docking mechanism, with 4 cameras sensors and an

integrated attitude controller strategy, and hasnt been tested in space yet. And the

ARCADE-R2 mission used just a probe and cone docking mechanism, with IR LEDs

and IR LDR sensors and an integrated attitude controller strategy, but only been

tested in the upper atmosphere, but not in space.
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Chapter 3

IMPLEMENTATION

This chapter discusses the electromagnetic docking mechanism modeling, control, and

simulation. Table 3.1 lists all the objectives and requirements of this thesis work.

Table 3.1: Requirements

Orbit propagator

1.0 The orbit propagator shall include J2 orbital dynamics of satellites

2.0 The orbit propagator shall be capable of propagating multiple satellites

Docking system modeling

1.0 The dynamics of an electromagnetic docking system shall be modeled.

Docking system controller

1.0 Various controller designs for the docking system shall be compared.

2.0 The final docking controller shall be capable of fine docking two small

satellites from a given relative distance

3.0 The final docking controller shall have little to no overshoot in the closed

loop step response

Docking system simulation

1.0 The simulation shall demonstrate orbit propagation of two small satel-

lites

2.0 The simulation shall demonstrate docking of two small satellites in orbit
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3.1 System Simulation Design

The simulation consists of two parts. The orbit propagator and the docking mech-

anism. The orbit propagator consists of two satellites going around the Earth in a

LEO orbit. The attitude controller is responsible for keeping both the satellites in

orbit. It is assumed that the attitude controller has been designed and can get the

satellites close enough to dock so that the docking controller can take over and per-

form fine docking of the satellites. Matlab is chosen to simulate the docking of the

two satellites and model the docking mechanism and design a controller for docking.

The 3d and 2d animations are generated using Matlab’s OpenGL interface, VRML,

and the Mapping Toolbox.

3.2 Orbit Propagator

The orbit propagator is responsible for simulating the mechanics of orbit propaga-

tion of a general satellite around the Earth in an elliptical orbit. Orbital mechanics is

the basis of orbit propagation of any satellite around the Earth. It is divided mainly

into orbital kinematics and orbital dynamics [22]. Orbital kinematics deals with the

time derivative of a parametrization of the rotation matrix as a function of the angu-

lar velocity of the satellite. This implies that the kinematics deals with torques and

forces which act on satellites. Orbital mechanics, however, deals with the differential

equation for the angular velocity of a satellite, which is derived from Euler’s moment

equation. Euler’s moment equation (Equation 3.1) or rigid body dynamics is a part

of classical mechanics which defines the relationship between the angular velocity, ω,

torques, M and moment of inertia of a rigid body, I.

Iω̇ + ω × (Iω) = M (3.1)

For our orbit propagator, it is sufficient to consider orbital dynamics. The basis
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of this are the conservation of Energy (Equation 3.2), the conservation of angular

momentum (Equation 3.3), and Newton’s universal law of gravitation (Equation 3.5).

Conservation of energy states that energy can neither be created nor destroyed,

but can be converted from one form to another. Hence, the total energy of a system is

constant. In our system, kinetic energy is equal to the gravitational potential energy,

which is shown in Equation 3.2.

E =
1

2
mv2 − GmME

r
(3.2)

Conservation of angular momentum states that the angular momentum of a spinning

body is always constant, where L is the total angular momentum, and Fc is the

centripetal force, and Fg is the gravitational force.

L = mrv (3.3)

Fc =
mv2c
r

(3.4)

FG =
GmME

r2
(3.5)

For a satellite orbiting the Earth, the Gravitational force is equal to the centripetal

force. Hence, the centripetal orbital velocity, vc can be computed as follows.

Fc = FG (3.6)

mv2c
r

=
GmME

r2
(3.7)

v2c =
GME

r
(3.8)

Applying Newton’s second law of motion and Newton’s law of universal gravity, the

differential equation governing the satellite then becomes,

m~̇v = −~FG + ~Fdrag (3.9)

The orbit of a satellite is completely defined by these Keplerian orbital elements [23],
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Figure 3.1: Orbital Parameters [1]

Semi-major axis a is one half of the major axis and represents the mean distance

from the primary.

Eccentricity e is the ratio of the foci to the length of the major axis.

Inclination i is the angular distance between a satellite’s orbital plane and the

equation of its primary.

Argument of Perigee ω is the angular distance between the ascending node, the

points where an orbital plane crosses from south to north, the equatorial plane, and

the perigee, the furthest point from the Earth in the orbit.

Time of Perigee Passage T is the time at which the satellite moves through the

perigee.

Right Ascension of Ascending Node (RAAN) Ω is the longitude measured

in degrees counter-clockwise to the ascending node from zero longitude being in the

direction of the vernal equinox, the place where the sun crosses the Earth’s equator,

making night and day of approximately equal length all over the Earth.
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Time period P is the time required for a satellite to complete one orbit around

the Earth.

Mean anomaly M is the angular distance between the perigee and the imagined

position of the satellite since the elapsed time, for a circular orbit of the same time

period.

Eccentric anomaly E is the angular distance between the perigee and the actual

position of the satellite in orbit, measured from the center of the elliptical orbit.

Eccentric anomaly must be computed numerically as a function of the mean anomaly

and the eccentricity.

M = E − e sinE (3.10)

True anomaly f is the angular distance between the perigee and the actual position

of the satellite in the direction of motion, measured from the Earth. It is computed

as a function of the mean anomaly and the Eccentricity.

tan
f

2
=

√
1 + e

(1− e) tan E
2

(3.11)

Mean motion M is the angular speed required for a body to complete one orbit,

assuming constant speed in a circular orbit of the same time period.

The Keplerian orbital elements computed have to be converted into an Earth

Centered Inertial (ECI) Cartesian coordinate form.
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vec1 =


cosΩ cos ω − sinΩ sin ω cos i

sinΩ cos ω + cosΩ sin ω cos i

sin ω sin i

 (3.12)

vec2 =


− cosΩ sin ω − sinΩ cos ω cos i

sinΩ sin ω + cosΩ cos ω cos i

cos ω sin i

 (3.13)

r =
( a (1− e2)

1 + e cos f

)
×
(
cos f vec1 + sin f vec2

)
(3.14)

v =

(√
GM

a (1− e2)

)
×
(
− sin f vec1 + (e+ cos f) vec2

)
(3.15)

Using these equations, Equation 3.14 is computed for every time instant, as the

true anomaly changes over time. Effects of other forces like drag are then computed

as in Equation 3.16.

r = r + ṙ (t− tp) (3.16)

v = v + v̇ (t− tp) (3.17)

ṙ and v̇ are computed for drag force as shown in Equation 3.18. The drag force

depends upon ρ, the atmospheric density, CD, the drag coefficient,A, the area of the

satellite in the direction of motion, and m, the mass of the satellite.

~Fdrag

m
=

1

2
ρ

(
CDA

m

)
v ~v (3.18)

v̇ =
~Fdrag

m
(3.19)

ṙ = v (3.20)
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The orbital parameters used for the simulation are summarized in Table 3.2.

Table 3.2: Orbital Parameters

Parameter Value

a 6784773.25

e 0.0002623

i 51.34069

ω 120.5358

Ω 233.32704

f0 201.77697

ρ 1

A 0.03

Cd 2.2

3.3 Attitude Controller

The attitude control system (ACS) of a satellite is responsible for controlling the

position and orientation of a satellite and can include de-tumbling the satellite post

deployment, pointing the satellite in any given direction, and also performing coarse

positioning, ie, bringing the satellites close together in orbit. A standard cubesat

ACS will also be accompanied with an attitude determination system (ADS) to sense

the attitude of the spacecraft at any given instant of time. Together, they make

up the Attitude Determination and Control System (ADCS) [24]. The ADS can

consist of various sensors like GPS, star trackers, limb sensors, rate gyros and inertial

measurement units. The ACS can consist of actuators like reaction wheels, control

moment gyros, magnetic torque rods, and thrusters.

One of the best ways to control the attitude of a spacecraft is to look at torque
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control. The disturbances which can affect the attitude of a spacecraft which the

ADCS has to deal with are gravity gradient, aerodynamic drag, magnetic torques,

solar radiation pressure, mass expulsion, and internal disturbance torques. There

are different ways of controlling the attitude of the spacecraft. One such is Passive

Attitude Control, where the spacecraft is designed so as to take advantage of the

physics of some forces and reduce the effect of others. An example of one such design

is Spin Stabilized Spacecrafts, which spin on a particular axis so as to have a stable

attitude. Another way of controlling the attitude of a spacecraft is Active Attitude

Control, or 3 axis stabilization design. Here, the attitude data from the ADS is used

by the ACS to provide the necessary torque commands to the actuators in order to

maintain a certain attitude or change it as required. In the case of nanosatellites, and

especially in the case of docking, it is best to have 3 axis stabilization.

To perform 3 axis stabilization, we need to know the magnitude of the disturbance

torques and the type of sensors and actuators to use and their capabilities. For LEO

orbits and nanosatellites, magnetic torques (caused by the Earth), gravity gradient are

more significant than atmospheric drag and solar radiation pressure. While magnetic

torques and gravity gradient can be of the order of 10−5 or 10−6, atmospheric drag and

solar radiation pressure can be of the order 10−7. In the case of docking systems, it

is essential that the position of the spacecraft is controllable. Thrusters, being one of

the most efficient actuators capable of position manipulation in orbit, will have to be

used. Thrusters require propellants, which invariably increase the mass and volume

of the satellite. Other alternatives can hence be considered but is beyond the scope

of this thesis. The ADCS is also responsible for providing coarse positioning. To

provide positional control, the satellite has to be equipped with a propulsion system.

Thrusters will therefore be used as the actuator to control the position of the satellite

in space, to perform orbital maneuvers, shown in Figure 3.2. Orbital maneuvers in
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Figure 3.2: Orbital Maneuvering Example

our case includes increasing and decreasing of the eccentricity of the orbit at various

points such that the satellites come close to each other in an orbit which can be

explained using an example as follows. Consider an scenario where Satellite A and B

have a time period PA and are at an initial distance of x1m from each other in the same

orbit (measured using the range sensor from the docking system). We know that we

want to perform coarse positioning such that the distance between the two satellites

is to be reduced to x2m. To do this, Satellite A will fire the thrusters controlled

by the ADCS to increase the eccentricity and hence the period of the satellite to

PB > PA. Satellite A will stay in this period for a pre-calculated time, textra, so that

it accumulates more distance than Satellite B. After time textra, Satellite A will fire

the thrusters, this time to decrease the eccentricity of the orbit, such that it regains

the time period PA, and reducing the distance between the satellites to x2.

Reducing the distance between the two satellites solves one part of the coarse posi-

tioning problem. The next part is to align the satellites so that the docking controller

can take over from the ADCS. This can be performed by knowing an approximate

position of the satellites. Satellite A, knowing the approximate position of Satellite
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B, can use a smart camera or a range sensor which will scan the surroundings and

detect the satellite. This will accurately calculate the position of Satellite B, which

can then be aligned with the help of the 3-axis stabilization of the ADCS to point in

the required direction.

To simulate the second part of coarse positioning, an experiment could be set up,

using two robotic arms simulating the ADCS subsystem of the satellites. The robotic

arm which is simulating the ADCS of Satellite A will have a camera mounted on

it. This can then be used to test the second part of the coarse positioning, while

also simulating the docking system. This was demonstrated in a previous work on a

smart camera system for tracking meteors [25]. The smart camera system consisted

of a camera mounted on a robotic arm, controlled by a Raspberry Pi and a display

attached to a computer, which displayed a simulation of random meteor entry events,

which is tracked by the robotic arm-camera system. The main components of the

system were the meteor tracking system and the meteor simulation system. The

meteor tracking system further consisted of the Raspberry Pi, the robotic arm, and the

camera, while the meteor simulation system consisted of the meteor simulation control

and the meteor simulation itself. The demonstration simulated random meteor entry

events. A physics model based simulation of the meteor entry events was displayed

on a monitor. The camera mounted on the robotic arm perceived this and image

thresholding was performed to detect these meteor events and isolate them from the

noise, like lights from the Earth and stars. After this, the trajectory of the meteor

was predicted using a predictive model, based on curve fitting based on the trajectory

history. Once trajectory prediction was performed, the smart camera system tracked

the meteor entry events using the robotic arm. The smart camera system therefore

simulated a scaled down, bare minimum version of the tracking system integrated with

the ADCS. This smart camera system can be extended to the proposed experimental
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setup, by replacing the meteor tracking system with a simulated satellite tracking

system and extend the ADCS simulation to the two robotic arms.

For the purpose this thesis, we can assume that the attitude controller has been

designed to stabilize the spacecraft and perform coarse positioning.

3.4 Docking System Model

The docking system consists of two parts. It is modeled after the probe and cone

docking mechanism. The probe is installed on satellite B, which will dock with the

cone installed on satellite A, which is deployed first.

The probe consists of an electromagnetic solenoid wrapped around a core, whose

docking end is flat. The docking end of the probe is flat to facilitate a clean docking

of the cone. The cone has a latching magnet with sufficient surface area to increase

the contact point force while docking so that the need for multiple docking ports

is eliminated. The cone is made of a magnetic material so that the probe feels an

outward ’pull’ and ’push’ when it comes close to the cone.

The electromagnetic docking system is modeled as a magnetic levitation system,

considering only one axis to control, leaving the alignment to the attitude controller.

The electromagnetic docking system is modeled using first principles as in Equa-

tion 3.21 and Equation 3.27. Here, i(t) is current flowing through the circuit, u(t) is

the voltage input, R is the resistance of the electromagnetic circuit, N is the number

of turns of the electromagnetic coil, L1 = N2

Rl
is the self-inductance of the electromag-

netic coil, L(y) is the mutual inductance of the probe and cone system, which is a

function of y, the distance between them, Rl is the reluctance of the electromagnetic

circuit, µ0 is the permeability of free space, A is the effective area of the solenoid

core of the probe influencing the cone, m is the mass of the satellite, and Fext is the

external force, either gravitational or other forces.
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di

dt
=

1

L1

u(t) − R

L1

i (3.21)

d2y

dt2
= −F (y, i)

m
+

Fext

m
(3.22)

F (y, i) = − d

dt

[
1

2
L(y) i2(t)

]
(3.23)

L(y) =
µ0N

2A

2y(t)
(3.24)

F (y, i) =
µ0N

2A

l

[
i(t)

y(t)

]2
(3.25)

F (y, i) = k

[
i(t)

y(t)

]2
(3.26)

d2y

dt2
= − k

m

[
i(t)

y(t)

]2
+

Fext

m
(3.27)

The docking mechanism is converted into a state space model as in Equation 3.28

with states x1 = y, x2 = ẏ, x3 = i(t), and y as the output of the system.

ẋ1 = x2

ẋ2 = − k
m

[
x3
x1

]2
+

Fext

m

ẋ3 = − R
L1

x3 +
1

L1

u

y = x1


(3.28)

This system is of the form,

ẋ = f(x) + g(x)u (3.29)

y = h(x) (3.30)

The values of the parameters considered are summarized in Table 3.3.
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Table 3.3: Docking System Parameters

Parameter Value

m 3

R 4.2

N 4500

µ0 1.26× 10−6

A 0.00785

l 0.1

L1 0.02

Fext 2.058

d 1

3.5 Docking Controller Design

Various controller design techniques are discussed in this section. In order to

control the dynamics of the docking mechanism using linear controls, we need to

make sure the system is linear. The docking mechanism system is considered as our

plant which has nonlinear dynamics. We would therefore need to linearize the plant

first. This section discusses two linearization techniques and multiple linear controller

designs which are explained in detail.

3.5.1 Taylor Series Linearization

The first technique is to linearize the plant around the equilibrium point, using

Taylor series expansion method.
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The system is defined to be of the form,

ẋ = f(x) + g(x)u = F (x, u) (3.31)

y = h(x) (3.32)

Let us consider the equilibrium conditions at states xe and derive a Taylor series ex-

pansion of the system at the equilibrium conditions to linearize it. At the equilibrium

point, there is no change in the states of a system.

i.e., ẋ = 0 or, F (xe, ue) = 0 (3.33)

ẋ1 = x2 = 0 (3.34)

ẋ2 = − k
m

[
x3
x1

]2
+

Fext

m
= 0 (3.35)

ẋ3 = − R
L1

x3 +
1

L1

u = 0 (3.36)

x3 =
u

R
(3.37)

x1 =
u

R

√
k

Fext

(3.38)

Let x1 = d (3.39)

u = Rd

√
Fext

k
(3.40)

x3 = d

√
Fext

k
(3.41)

xe =


x1

x2

x3

 =


d

0

d
√

Fext

k


and, ue = Rd

√
Fext

k


(3.42)
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Now that we have found the equilibrium points,

∆ẋ =���
���:0

F (xe, ue) + ∆x
∂F (x, u)

∂x

∣∣∣∣x=xe,
u=ue

+ ∆u
∂F (x, u)

∂u

∣∣∣∣x=xo,
u=uo

(3.43)

∆y = ∆x
∂h(x)

∂x

∣∣∣∣x=xe,
u=ue

(3.44)

(3.45)

The ∆x in the then replaced by x and will be of the form,

ẋ = Ax+Bu (3.46)

y = Cx (3.47)

3.5.2 Bandwidth and Robustness Controller Design

Now that we have linearized the system, we can design various controllers to con-

trol the separation distance, y of the system. One such controller design is Bandwidth

and Robustness Controller design [26]. In this technique, we first decide the required

bandwidth and phase margin of the open loop system, which includes the plant and

the controller, where the electromagnetic docking system is considered as the plant.

Figure 3.3 shows the block diagram of a standard control system. The controller can

be replaced by the designed BW and robustness controller or PID or LQG. In the

figure, the pre-filter, W , is used to attenuate the overshoot in the system caused by

the zeros in the controller, and is represented as W (s) = zeros in the controller
factor to make the gain of W unity

.

Phase margin, PM of a system is the phase of the system at the gain crossover

frequency. The gain crossover frequency, ωg , is that frequency at which the magnitude

of the system is unity. The bandwidth, or the closed loop bandwidth of a system is

proportional to the inverse of the rise time of the step response of the closed loop

system. Sometimes, it can be considered as 35 % of the inverse of the rise time. The
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Figure 3.3: Standard Form of a Feedback Control System with Plant as P(s)

rise time of a system is the time required for the response to rise from 10 % to 90%

of its final value or the steady state value.

To design any controller, we have to first check for reference command following.

This is governed by the Internal Model Principle, which states that, for the output

to follow a signal, its model has to be in the forward path, and that for the output to

reject a signal, its model has to be present outside the forward path, somewhere in

the feedback loop. We want the system to follow step commands, hence, we should

include an integrator in the forward path of the closed loop feedback system. If the

plant has a transfer function P0(s), we have to append an integrator, 1
s

before the

system and the new plant will be P (s) = P0(s)
s

.

In the bandwidth and robustness controller design, we assume the structure of

a controller as in Equation 3.48. Then, the number of zeros is calculated for the

system, considering that only 60◦ is contributed by one zero. Then, using the phase

∠P (jωg) of the plant P at ωg, we can compute the zero, z. For this, we assume that

the pseudo-pole of the controller, τ is 4% of the inverse of ωg, by common rule of

thumb (As τ is half the sampling time and the sampling time should be considered

as 8% of the inverse of the bandwidth). After this, the gain, g is calculated using the
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fact that |L(jωg)| = 1, where L is the open loop transfer function of the system.

K =
g(s+ z)n

s(τs+ 1)
(3.48)

L = PK (3.49)

PM = 180◦ + ∠L(jωg) (3.50)

∠Zerototal = PM− 90 + tan−1(τωg) (3.51)

n = max(
∠Zerototal

60
) (3.52)

z =
ωg

tan(∠Zerototal
n

)
(3.53)

|L(jωg)| = |K(jωg)||P (jωg)| (3.54)

g =
ωg

|P (jωg)|

√
ω2
gτ

2 + 1

(ω2
g + z2)n

(3.55)

3.5.3 PID Controller Design

The next type of controller design is the standard PID controller as in Equa-

tion 3.56. One common way of designing this is to use Ziegler-Nichols (ZN) tuning.

We use the second method out of the two ZN tuning methods. Both the methods use

the step response of the system. The first method uses the open loop step response to

compute the slope R and delay L of the response, in order to compute the Kp, Ki, Kd

values. The second method however uses the closed loop step response to compute

the ultimate gain Ku and period of oscillations Pu in order to compute the Kp, Ki, Kd

values. Here, the ultimate gain is that gain at which the closed loop step response of

the system becomes oscillatory and the period of oscillations is as the name suggests.

The relationship between the gains and the parameters is summarized in Table 3.4

and Table 3.5.

K = Kp +
Ki

s
+

Kds

τs+ 1
(3.56)
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Table 3.4: Ziegler-Nichols Tuning Method 1

Controller Kp Ki Kd

P 1
RL

- -

PI 0.9
RL

0.27
RL2 -

PID 1.2
RL

0.6
RL2

0.5
R

Table 3.5: Ziegler-Nichols Tuning Method 2

Controller Kp Ki Kd

P 0.5Ku - -

PI 0.45Ku
0.54Ku

Pu
-

PID 0.6Ku
1.2Ku

Pu
0.075KuPu

PID No overshoot 0.2Ku
0.1Ku

Pu
0.2KuPu

3.5.4 Linear Quadratic Gaussian Controller Design

The next type of controller design is the Linear Quadratic Gaussian(LQG) con-

troller. This is a combination of the Linear Quadratic Regulator (LQR) and the

Kalman Filter (KF). The LQR controller is designed by solving the Control Alge-

braic Riccati Equation (CARE). The LQR guarantees that the closed loop system

is asymptotic stable. It also guarantees that the feedback law is the optimal control

minimizing the cost function,

J(u) =
1

2

∫ ∞
0

{xTQx+ uTRu} dt (3.57)

where x is the state vector, u is the input vector, Q = CTC, where C is the output

matrix of the plant, R = ρI regulates how much control is to be used to control

the system, either cheap control or expensive control, regulated by ρ. The LQR also
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guarantees that the downward gain margin of the system will be less than half, the

upward gain margin of the system will be infinity, and that the phase margin of the

system will be greater than or equal to 60◦.

The CARE equation is shown in Equation 3.58, where we solve for K, which

is a symmetric matrix, and A & B are the state and input matrices of the plant

respectively. Using K from the solution to CARE, we can compute G, which is the

control gain matrix.

0 = KA+ ATK +MTM −KBG (3.58)

M = Q
1
2 (3.59)

G = R−1BTK (3.60)

The Kalman Filter is realised by solving the Filter Algebraic Riccati Equation

(FARE) Equation 3.61. FARE is analogous to CARE, and hence can be realised as

a modified version of CARE Table 3.6. H is the state estimation matrix.

0 = ΣAT + AΣ + LLT −HCΣ (3.61)

H = ΣCTΘ−1 (3.62)
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Table 3.6: CARE and FARE Analogies

CARE FARE

A AT

B CT

M LT

R ΘT

ρ µ

K ΣT

G HT

Using the computed values for G and H, we can define our controller, K of the

form Equation 3.63. A block diagram representing this transformation for a model

based compensator is shown in Figure 3.4.

K = Ck(sI − Ak)−1Bk (3.63)

ẋ = Akx+Bke (3.64)

u = Ckx (3.65)

where,

Ak = A−BG−H(C −DG) (3.66)

Bk = −H (3.67)

Ck = −G (3.68)
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Figure 3.4: Model Based Compensator for Combining LQR and Kalman Filter

3.5.5 Feedback Linearization

We have looked at Taylor Series Linearization, which assumes that the operating

point of the system is near the equilibrium point. This does not work well with highly

nonlinear systems, like the docking mechanism. Let us recap the type of plant we
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have.

ẋ = f(x) + g(x)u (3.69)

y = h(x) (3.70)

where,

f(x) =


x2

− k
m

(
x3

x1

)2
+ Fext

m

− R
L1
x3

 (3.71)

g(x) =


0

0

1
L1

 (3.72)

h(x) =


x1

0

0

 (3.73)

For such a plant, we can perform feedback linearization [27] to design a con-

trol law of the form Equation 3.74, where v is the new transformed input. There

are two kinds of feedback linearization, input-output linearization and state-space

linearization. The premise of feedback linearization is that the input is nonlinear

transformed, which leaves the modified states linear. However, the premise of input-

output linearization method is that the plant can be expressed in terms of states which

are nonlinear, but linear in the input-output relation. We will discuss input-output

linearization alone. Similar theory can then be applied to state-space linearization.

u = a(x) + b(x)v (3.74)

The first step in feedback linearization is to find the Lie derivatives L()() of h(x)
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and g(x) with respect to f(x).

Lfh(x) =
∂h(x)

∂x
f(x) (3.75)

Lfh(x) =

[
∂h

∂x1

∂h

∂x2

∂h

∂x3

]
f1(x)

f2(x)

f3(x)

 (3.76)

Lfh(x) =
[
1 0 0

]


x2

− k
m

(
x3

x1

)2
+ Fext

m

− R
L1
x3

 (3.77)

Lfh(x) = x2 (3.78)

LfLfh(x) = L2
fh(x) =

∂Lfh(x)

∂x
f(x) (3.79)

L2
fh(x) =

[
0 1 0

]


x2

− k
m

(
x3

x1

)2
+ Fext

m

− R
L1
x3

 (3.80)

L2
fh(x) = f2(x) = − k

m

(x3
x1

)2
+

Fext

m
(3.81)

LgLfh(x) =
∂Lfh(x)

∂x
g(x) (3.82)

LgLfh(x) =
[
0 1 0

]


0

0

1
L1

 (3.83)

LgLfh(x) = 0 (3.84)
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L3
fh(x) =

∂L2
fh(x)

∂x
f(x) (3.85)

L3
fh(x) =

[
2kx23
mx31

0 − 2kx3
mx21

]
x2

− k
m

(
x3

x1

)2
+ Fext

m

− R
L1
x3

 (3.86)

L3
fh(x) =

2kx23
mx21

(x2
x1

+
R

L1

)
(3.87)

LgL
2
fh(x) =

∂L2
fh(x)

∂x
g(x) (3.88)

LgL
2
fh(x) =

[
2kx23
mL1x31

0 − 2kx3
mL1x21

]
0

0

1
L1

 (3.89)

LgL
2
fh(x) = − 2kx3

mL1x21
(3.90)

We compute till the third degree of Lie derivative as the relative degree of the

system r is 3. The relative degree of a nonlinear system is the smallest integer r for

which LgL
r−1
f h(x) 6= 0 and LgL

r−2
f h(x) = 0 ∀ x in the neighborhood of the defined

operating point x0.

The system equation can then be represented as,

y = h(x) (3.91)

ẏ = Lfh(x) (3.92)

ÿ = L2
fh(x) (3.93)

...
y = L3

fh(x) + LgL
2
fh(x) (3.94)
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We can then define a nonlinear state transformation as follows.

z = T (x) (3.95)

z =


z1(x)

z2(x)

z3(x)

 =


y

ẏ

ÿ

 (3.96)

z =


x1

x2

− k
m

(
x3

x1

)2
+ Fext

m

 (3.97)

ż =


ż1

ż2

ż3

 (3.98)

ż =


x2

− k
m

(
x3

x1

)2
+ Fext

m

2kx2
3

mx2
1

(
x2

x1
+ R

L1

)
+


0

0

− 2kx3

mL1x2
1

u (3.99)

Here, z is the new state vector. And if ż3 = v, then v = −Kz becomes the new

state feedback control law. The input-output feedback transformation then can be

represented in terms of the relation between u and v as,

u =
1

LgL2
fh(x)

(
− L3

fh(x) + v
)

(3.100)

u =
−1
2kx3

mL1x2
1

(
− 2kx23
mx21

(x2
x1

+
R

L1

)
+ v
)

(3.101)

u = x3

[
x2L1

x1
+R

]
− mL1x

2
1

2kx3
v (3.102)

Using the transformation in Equation 3.102 and Equation 3.95, we can design a

38



linear system of the form,

PLin = Cl(sI − Al)
−1Bl (3.103)

ż = Alz +Blv (3.104)

y = Clz (3.105)

where,

Al =


0 1 0

0 0 1

0 0 0

 (3.106)

Bl =


0

0

1

 (3.107)

Cl =

[
1 0 0

]
(3.108)

PLin from Equation 3.103 can then be controlled either by a full state feedback of

the form v = −Kz or an LQG Controller as in Equation 3.63. LQG controller will be

a more robust controller than just full state feedback. Hence, LQG is implemented

after feedback linearization.

3.6 Simulation Integration

The satellite orbit propagator and the docking system were independently de-

signed, considering appropriate values for various parameters. The attitude control

system is integrated with the orbit propagator and is assumed that the simulation

starts when the two satellites which need to be docked are de-tumbled and perform

attitude corrections, in order for satellite B to get close enough to satellite A for the

fine docking system, the docking controller to takeover.
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To complete the system, the orbit propagator simulation has to be combined with

the output docking system, which takes a feedback of the relative distance between

the satellites. The completed simulation includes a real-time 3d and 2d visualization

of the satellites orbiting the Earth, and a real-time docking of the two satellites in

orbit.
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Chapter 4

MISSION CONCEPT

Mission Statement This work proposes a cubesat mission with two 3U cubesats,

Satellite A having the probe part of the docking system and Satellite B having the

cone part of the docking system. Satellite A is responsible for docking with Satellite

B. This mission serves as a demonstration for future in-space assembly and repair

missions for cubesats by developing an electromagnetic probe and cone docking sys-

tem. This docking system will have coarse positioning provided by the ADCS of the

small satellite and fine docking provided by the docking controller.

4.1 System Architecture

Figure 4.1 shows how the preliminary version docking system will look like. Fig-

ure 4.2 and Figure 4.3 show how the docking system interfaces with the rest of the

cubesat. The docking system can be considered as an add-on module pair which will

have to be installed on the satellites. The probe docking system will be installed on

Satellite A and the cone docking system will be installed on Satellite B.
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Figure 4.1: Docking System Architecture

Figure 4.2: Satellite A (Probe) Docking System Interface Diagram
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Figure 4.3: Satellite B (Cone) Docking System Interface Diagram

4.2 ConOps

The concept of operations of the mission is shown in Figure 4.4. The mission has

2 main stages, the coarse positioning stage which will be performed by the ADCS

and the fine docking stage which will be performed by the docking system.

Figure 4.4: Concept of Operations
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4.3 Objectives

The primary and secondary mission objectives are enumerated in Table 4.1. Ta-

ble 4.2 lists the requirements of the subsystems which pertain to this thesis, the ADCS

subsystem and the docking system.

Table 4.1: Mission Objectives

Primary Objectives

1.0 Perform docking of two small satellites in space

2.0 Demonstrate the capability of the docking controller to fine dock two

small satellites

Secondary Objectives

3.0 Demonstrate the capability of the ADCS to coarse position two small

satellites

4.0 Demonstrate the capability of data and power transfer between the

small satellites
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Table 4.2: System Requirements

ADCS requirements

1.0 Both the small satellites will be capable of attitude determination

and control

2.0 Both the small satellites will be capable of detumbling after deploy-

ment

3.0 Both the small satellites will be capable of pointing

4.0 Satellite A will be capable of determining the position of Satellite B

at any given time

5.0 Satellite A will be capable of position control

6.0 Satellite A will be capable of performing coarse positioning from an

initial separation to up to TBD meter relative distance between the

two satelites

Docking system requirements

1.0 Satellite A will be capable of sensing the relative distance between

the two small satellites

2.0 Satellite A will be capable of performing fine docking to get from an

initial separation to perfectly dock with Satellite B

3.0 There will be little to no force exerted by Satellite A when it docks

Satellite B
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Chapter 5

RESULTS

5.1 Docking System Plots

Figure 5.1: Electromagnetic Docking System Nonlinear Model
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Figure 5.2: Taylor Series Linearized Nonlinear System with LQG Controller
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Figure 5.3: Bode Plot of the Taylor Series Linearized Nonlinear System

The simulink block diagram of the nonlinear plant is shown in Figure 5.1 and its

Taylor series linearized implementation with a controller in the closed loop is shown

in Figure 5.2. An integrator is included in the closed loop system before the plant

to facilitate reference command following according to the internal model principle.

page 48 shows the frequency response of the Taylor series linearized plant.

48



Figure 5.4: Taylor Series Linearized Nonlinear System with Bandwidth and Robust-

ness Controller Design

The step response of the first type of controller design is shown in Figure 5.4. It is

seen that even the closed loop linearized system is unstable. A bandwidth of 5.2×103

and a phase margin of 60◦ is considered for the design, which can be picked from the

bode plot of the plant.

Since BW and Robustness controller design did not work for the system, a PID

controller design is looked at. Figure 5.5 shows the step response of the system with

a PID controller. It is seen from the response that this too is unstable due to the

fragile stability of the closed loop system.

The next controller design considered is the LQG controller design, the step re-

sponse of which is shown in Figure 5.6. The response indicates that the closed loop

system is stable and has good reference command following properties. However,

when the same controller is tested with the actual nonlinear system in the loop, the

closed loop system becomes unstable, as shown in Figure 5.7.
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Figure 5.5: Taylor Series Linearized Nonlinear System with PID Controller Design

Figure 5.6: Taylor Series Linearized Nonlinear System with LQG Controller Design

Theoretical Output
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Figure 5.7: Taylor Series Linearized Nonlinear System with LQG Controller Design

Actual Output

The step response of the theoretical linearized system with the actual non linear

system with the LQG controller is shown in Figure 5.8 and Figure 5.9. While the for-

mer shows the magnitude of variation between the theoretical and the actual system,

the latter gives a clear comparison of how soon the actual system deviates from the

theoretical linearized model.
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Figure 5.8: Taylor Series Linearized Closed Loop System Output Comparison

Figure 5.9: Taylor Series Linearized Closed Loop System Output Comparison
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The next few figures show Feedback Linearization is implemented for the nonlinear

system and how the system performs. Figure 5.10 shows the implementation of the

state conversion from x to z. Figure 5.11 shows the input conversion from u to v,

so that input-output linearization is performed. It is important to note the voltage

saturation block in this figure, set to ±10V . Figure 5.12 shows the implementation of

the complete closed loop system with an LQG controller and a comparison between

the theoretical feedback linearized system and the actual nonlinear system with input

output linearization.

Figure 5.10: Feedback Linearized Nonlinear System State Converter

Figure 5.11: Feedback Linearized Nonlinear System
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Figure 5.12: Feedback Linearized Nonlinear System with LQG Controller
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Figure 5.13: Feedback Linearized Closed Loop System Theoretical Step Response

Figure 5.14: Feedback Linearized Closed Loop System Theoretical Output
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Figure 5.15: Feedback Linearized Closed Loop System Actual Output

Figure 5.13 shows the step response of the closed loop feedback linearized system

with LQG controller. Figure 5.14 to Figure 5.16 show the step response of the feedback

linearized system with an initial relative distance of y = 1m between the satellites

and how the LQG controller docks the two satellites. Figure 5.14 shows theoretically

how the closed loop system is intended to behave, while Figure 5.15 shows the actual

system output. A comparison can be found in Figure 5.16, with a comparison of the

states in Figure 5.17.
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Figure 5.16: Feedback Linearized Closed Loop System Output Comparison

Figure 5.17: Feedback Linearized Closed Loop System Actual States
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Figure 5.18: Feedback Linearized Closed Loop System Actual State ẏ

Figure 5.19: Feedback Linearized Closed Loop System Actual State i

5.2 Simulation

This section shows the results of the orbital simulation. Three types of results, a

3d simulation of the satellites going around the Earth, a close-up ground trace view
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of the docking system in action, and the ground trace of the satellites are shown.

Satellite A, which has the probe part of the docking system is represented by a red

star marker with a red tail indicating its path history. Satellite B, which has the

cone part of the docking system is represented by a cyan square marker with a cyan

tail indicating its path. It is important to note that the cyan tail is not visible as

the satellites are shown after the docking is performed. Figure 5.20, Figure 5.21, and

Figure 5.22 indicate the position of the satellites at arbitrary time samples.

Figure 5.20: Satellite in Orbit at Time t1
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Figure 5.21: Satellite in Orbit at Time t2
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Figure 5.22: Satellite in Orbit at Time t3
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Figure 5.23 to Figure 5.28 shows the actual docking progress. These figures show a

top view of the satellites projected onto the Earth. Hence, this view can be considered

as a close-up ground trace of the satellites. Satellite A follows the same step response

pattern as shown in Figure 5.15. Satellite A starts out at 1m from satellite B, and

moves away to a distance of approximately 2m before closing down to dock (0m).

The relative distance ∆y is indicated on the bottom left corner of every figure. It was

found that the force while docking was as low as 1.15× 10−5N .

Figure 5.23: Docking of the Satellites in Orbit at Time tdock1
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Figure 5.24: Docking of the Satellites in Orbit at Time tdock2

Figure 5.25: Docking of the Satellites in Orbit at Time tdock3
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Figure 5.26: Docking of the Satellites in Orbit at Time tdock4

Figure 5.27: Docking of the Satellites in Orbit at Time tdock5
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Figure 5.28: Docking of the Satellites in Orbit at Time tdock6

Figure 5.29 ,Figure 5.30 , and Figure 5.31 show the ground trace of the satellites

at arbitrary time samples after docking, with the red tail indicating the path history

of the docked satellites.
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Figure 5.29: Satellite in Orbit at Time t4

Figure 5.30: Satellite in Orbit at Time t5
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Figure 5.31: Satellite in Orbit at Time t6

5.3 Discussion on the Results

Some key results related to the electromagnetic docking system modeling, lin-

earization of the system and integration with an orbit propagator were presented in

this chapter. We saw that neither the controller designs based on bandwidth and

robustness, nor the PID controller design could stabilize the Taylor series linearized

system. Various bandwidth parameters were tested out, ranging from 0.01 rad
s

to

105 rad
s

for the former, and both Ziegler-Nichols methods for PID tuning for the lat-

ter. None of these designs could stabilize the system due to the subtle changes in

bandwidth and phase margin which affected the system. This can be seen in the re-

sponse of the LQR controller design, the exact bandwidth and phase margin required

range required for stabilizing the system. However, when the LQG controller was

implemented on the actual system, it failed. This is because the Taylor series lin-

earization assumes that the system states lie close to the equilibrium states, and the
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high degree of nonlinearity of the system makes it move away from the equilibrium

states.

In the case of feedback linearization, the LQG controller is successful in control-

ling both the linearized system, as well as the actual nonlinear system, as feedback

linearization is built into the resulting closed-loop system. The response of the re-

sulting system deviates from the linearized system considerably, even after including

the initial condition of the controller, removing the delay. This is because, the LQG

controller designed for a feedback linearized system will be of a standard controllable

canonical form, which does not model the type of nonlinearity present in the sys-

tem. This nonlinearity is however transformed into a nonlinear input v. Hence, the

deviation in the response of the system.

It is important to note that docking system is limited by the voltage capacity of

the small satellites. Even the feedback linearized system is susceptible to errors. The

reduce on the voltage saturation limit to say, 5V could make the system unstable for

the same initial conditions. The main initial condition is the initial docking distance.

It is shown that the controller design depends on the system parameters, and for a

given set of parameters, the controller has a certain maximum initial distance it can

reduce. Hence, this limit will change with the system parameters and the voltage

saturation limits. Despite these limitations, the results show that it is possible to

perform fine docking of small satellites with an electromagnetic docking system purely

by feedback linearization and designing a linear controller like the LQG, without the

bulky sensors like cameras, while producing very low docking forces of the order of

10−5N .
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Chapter 6

CONCLUSION AND FUTURE WORK

Docking mechanisms not only enable assembly of large space structures, but also in

repair. The current docking systems like the PDGF are costly and big. On top of

that, they are operated by humans who are prone to errors. This thesis work on

small satellite electromagnetic docking system ensures that docking mechanisms are

smaller, cost effective, while being autonomous. Docking of these systems need to

be fine, therefore an electromagnetic docking mechanism was considered. Inspiration

was drawn from the electromagnetic levitation system and a model for the docking

system was derived from first principles. This electromagnetic docking system is

highly nonlinear in nature and using a single camera in the feedback loop to control

the fine docking is prone to failure and is inefficient. Introducing multiple cameras

will increase the system complexity and therefore the system efficiency. Hence, vari-

ous control strategies without the camera in the loop were discussed. To control this

system, two linearization techniques, namely Taylor Series Linearization and Feed-

back Linearization were performed. After Taylor Series linearization, various linear

controller design methods like Bandwidth and Robustness design, PID controller de-

sign using Ziegler-Nichols tuning, and LQG design were discussed. It was concluded

by the step responses of the systems that the closed loop system will be unstable

as there is a large magnitude of deviation from the equilibrium states to the actual

system states. Hence, Feedback Linearization was discussed in detail for the system,

particularly Input-Output Linearization where the system is linearized from input to

output. After feedback linearization, an LQG controller was designed to control the

system. Finally, this system was integrated with an orbit propagator and a simula-
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tion of the docking system was generated. Appropriate results related to the docking

system modeling, control and simulation were shown and discussed in detail.

It is worth emphasizing that small satellite docking technology in general has not

been tested in space and is still in the ground testing stage. Hence, a cubesat mission

which can demonstrated this thesis work has been proposed and was discussed in fair

detail. Supporting this, a hardware-in-the-loop testing of the fine docking mechanism

would reinforce the results generated. Work is underway to perform hardware testing

in order to advance this mission concept.

To conclude this, a reiteration of the capabilities this thesis work has been pro-

vided. The proposed docking system, enables assembly of large space structures with

multiple small structures, eliminates humans from the loop by automating the dock-

ing process, and provides a fine docking controller which replaces cameras which are

prone to failure.
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