
Moving Target Defense for Web Applications

by

Marthony Taguinod

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2017 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Co-Chair
Adam Doupé, Co-Chair

Sik-Sang Yau

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

Web applications continue to remain as the most popular method of interaction for

businesses over the Internet. With it’s simplicity of use and management, they of-

ten function as the ”front door” for many companies. As such, they are a critical

component of the security ecosystem as vulnerabilities present in these systems could

potentially allow malicious users access to sensitive business and personal data.

The inherent nature of web applications enables anyone to access them anytime

and anywhere, this includes any malicious actors looking to exploit vulnerabilities

present in the web application. In addition, the static configurations of these web

applications enables attackers the opportunity to perform reconnaissance at their

leisure, increasing their success rate by allowing them time to discover information

on the system. On the other hand, defenders are often at a disadvantage as they do

not have the same temporal opportunity that attackers possess in order to perform

counter-reconnaissance. Lastly, the unchanging nature of web applications results in

undiscovered vulnerabilities to remain open for exploitation, requiring developers to

adopt a reactive approach that is often delayed or to anticipate and prepare for all

possible attacks which is often cost-prohibitive.

Moving Target Defense (MTD) seeks to remove the attackers’ advantage by re-

ducing the information asymmetry between the attacker and defender. This research

explores the concept of MTD and the various methods of applying MTD to secure

Web Applications. In particular, MTD concepts are applied to web applications

by implementing an automated application diversifier that aims to mitigate specific

classes of web application vulnerabilities and exploits. Evaluation is done using two

open source web applications to determine the effectiveness of the MTD implementa-

tion. Though developed for the chosen applications, the automation process can be

customized to fit a variety of applications.

i

To my parents

ii

Acknowledgements

I would first like to express my deepest gratitude to my co-chairs Dr. Gail-Joon

Ahn and Dr. Adam Doupé for providing me the opportunity to work on various cut-

ting edge research projects, as well as providing motivational support and guidance in

both educational and personal growth throughout my graduate career. I would like to

extend my gratitude to Dr. Sik-Sang Yau for serving on my committee and providing

valuable feedback on my thesis. My time at the laboratory for Security Engineering

for Future Computing (SEFCOM) has allowed me to connect with innovative and

highly motivated individuals, as such, I consider it an honor working with them and

am extremely grateful for their advice and motivational support. Special thanks to

Faris Bugra Kokulu for his assistance in completing various experiments. Lastly, and

most importantly, I would like to extend my sincere love and gratitude to my parents

and brother for being a constant source of motivation and support throughout my

academic career.

This work would have not been possible without the financial support from the

National Science Foundation, Scholarship for Service (NSF-SFS-1129561).

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Static System Configurations: Conventional System Configurations . 1

1.2 Research Approach . 2

1.3 Limitations . 2

1.4 Contributions . 2

2 MOVING TARGET DEFENSE BACKGROUND . 4

2.1 Introduction to Moving Target Defense . 4

2.2 Challenges in Moving Target Defense . 4

2.3 Related Work . 5

2.4 Dynamic Network Techniques. 7

2.4.1 Port Randomization . 8

2.4.2 Traffic Morphing . 8

2.4.3 Dynamic Network Address Translation . 9

2.4.4 Network Address Space Randomization . 9

2.5 Key Challenges to Moving Target Defense . 15

2.6 Moving Target Defense Framework . 16

3 WEB APPLICATIONS . 18

3.1 Web Applications: Individual and Commercial Front Doors 18

3.2 Dissecting Modern Web Applications . 20

3.3 Current Security Issues and Considerations . 22

4 MOVING TARGET DEFENSE FOR WEB APPLICATIONS 24

iv

CHAPTER Page

4.1 Current State of Moving Target Defense in Web Applications 24

4.2 Leveraging web application layers for MTD . 25

4.2.1 Logic Layer . 25

4.2.2 Storage Layer . 27

4.2.3 Presentation Layer . 28

4.2.4 Browsers . 29

5 IMPLEMENTATION . 30

5.1 Source Code language diversification . 30

5.2 Database dialect diversification . 36

6 EVALUATION AND RESULTS . 40

6.1 Application Functionality . 40

6.2 Translation and Randomization cost overhead . 41

6.3 Security Evaluation . 44

7 CONCLUSION . 45

REFERENCES . 46

APPENDIX

A RAW DATA . 50

v

LIST OF TABLES

Table Page

5.1 Comparison of MySQL and PostgreSQL Data Types. 39

vi

LIST OF FIGURES

Figure Page

2.1 OSI Layers . 10

2.2 MTD Framework proposed by Ge et al. (2014) . 11

2.3 NMTD components . 12

3.1 A Modern Web Application Architecture and Its Running Environments. 20

5.1 The Unparser . 32

6.1 Application functionality results of collab web application 41

6.2 Average time of changing configurations . 42

6.3 Translation time between all MTD variants . 43

6.4 Translation from one configuration to two other configurations (Same

language, different database dialect and different language, same database

dialect) . 43

A.1 PHP and PostgreSQL translated to Python and MySQL 53

A.2 PHP to Python translation with MySQL . 53

A.3 Python and MySQL translated to PHP and PostgreSQL 54

A.4 MySQL to PostgreSQL translation with Python . 54

A.5 Python and PostgreSQL translated to PHP and MySQL 55

A.6 Python to PHP translation with PostgreSQL . 55

A.7 PostgreSQL to MySQL Translation with Python . 56

A.8 Step one of uploading notes . 56

A.9 Step two of uploading notes. 57

A.10 Step three of uploading notes . 57

A.11 Step four of uploading notes . 58

A.12 Uploading note functionality post translation . 58

vii

Chapter 1

INTRODUCTION

1.1 Static System Configurations: Conventional System Configurations

Current approaches to security assume that a systems’ configuration remains static

over long periods of time. This enables the attacker to have two key advantages over

the defender: The ability to perform system reconnaissance over a period of time

undetected and the ability to develop exploits based on the information gathered

and execute them on their own time. Moving Target Defense seeks to remove this

advantage by changing system configurations over time. Chapter 2 discusses MTD

further, providing background and related work.

Web applications continue to be the most widely used method for businesses

to conduct services over the Internet. Too often, sensitive business and user data

is managed and processed by these web applications. As such, vulnerabilities in

these systems pose a serious threat to the confidentiality, integrity, and availability

of business and user data. Existing tools and techniques focus on identifying and

preventing these vulnerabilities. However, due to the increasing complexity of modern

web applications and their slow deployment time, they are often ineffective. To

address these issues, Moving Target Defense can be leveraged in order to provide

another layer of defense. Chapter 3 further discusses the modern web application

architecture and its vulnerabilities leading to Chapter 4, where a discussion of current

techniques followed by an exploration in related work of Moving Target Defense in

web applications is done.

1

1.2 Research Approach

A study was done on current Moving Target Defense techniques in order to gain

an understanding of its goals and challenges and identify the composition of Moving

Target Defense (What to Move, When to Move, Limitations, and evaluation tech-

niques). In order to develop a Moving Target Defense system applicable to Web

Applications, we dissect the structure of web application to identify its components

and the vulnerabilities possible for each component. Doing so allows for identifica-

tion of configurations that can be ‘moved‘, in addition to identifying the limitations of

applying Moving Target Defense in specific configurations. Furthermore, some work

was done in designing effective movement policies in order to maximize the security

of web applications

1.3 Limitations

The proposed technique is applicable to any language, but since we utilize application-

specific ’shims’ that have to be developed manually, scalability issues might arise de-

pending on the amount of ’shims’ to create. A collection of these existing ’shims’

might alleviate this problem but having such application specific code publicly avail-

able renders the technique ineffective as malicious users would also have the same

information available to them. The proposed method is also limited in prevention of

specific attacks and would best be used with other defense techniques in a layered

approach.

1.4 Contributions

In summary, the main contributions expected to be explained in this work are:

• A generalized MTD framework that can be applied to any web application to

2

any layer

• An implementation of an automated language and database translator that

enables source and dialect randomization for web applications.

• Application of MTD to open source web applications using source and dialect

randomization and their effectiveness.

3

Chapter 2

MOVING TARGET DEFENSE BACKGROUND

2.1 Introduction to Moving Target Defense

Moving Target Defense (MTD) seeks to level the asymmetric environment of at-

tacker and defender by negating any advantages the attacker has. In order to ac-

complish this goal, MTD seeks to control change across various system dimensions

to increase uncertainty, complexity, and cost for attackers Cyberspace (2011). With

the assumption that perfect security is difficult to obtain, MTD focuses on enabling

resilient, defensible systems that allow continued, safe operation in a compromised

environment rather than developing perfectly secure systems. In addition, MTD does

not remove vulnerabilities directly, rather, it reduces the attack window by limiting

the temporal exposure of vulnerabilities.

Two approaches in creating such a defensible system are: disrupting reconnais-

sance efforts of the attacker or disrupting on-going attacks. For both MTD ap-

proaches, they aim to invalidate any information on the system that an attacker had

managed to acquire previously.

2.2 Challenges in Moving Target Defense

There are several main challenges in developing efficient and effective MTD sys-

tems:

• Ensuring that legitimate users have continued access to the service

• Ensuring that the MTD technique introduces minimal cost (in terms of delay

and resource consumption) to the system

4

• Ensuring that the MTD technique provides benefit when introduced to the

system

2.3 Related Work

The idea and philosophy of MTD, which is to increase uncertainty and complexity

for attackers, has been proposed and studied for decades Avizienis and Chen (1977);

Ammann and Knight (1988); Pettis and Hansen (1990); Forrest et al. (1997).

Okhravi et al. surveyed techniques that applied the philosophy of MTD in different

cyber research domains Okhravi et al. (2013). According to them, existing techniques

can be categorized into five classes based on what component to move:

1. Changing the application environment Team (2003); Barrantes et al. (2003)

2. Changing application code dynamically or diversifying software Wartell et al.

(2012); Larsen et al. (2014)

3. Changing the representation of data Ammann and Knight (1988); Nguyen-

Tuong et al. (2008)

4. Changing the properties of platforms Williams et al. (2009); Salamat et al.

(2011)

5. Changing the network configurations Zhuang et al. (2013); Ge et al. (2014);

Jafarian et al. (2012)

Application environment randomization involves modifying the environment pre-

sented to the application by the system at run-time. These techniques modify config-

uration components such as data and instruction memory locations, heap/stack con-

figuration, and the application’s instruction set. Techniques that fall within this cate-

gory typically prevent injection-attacks that seek to control the application by inject-

5

ing malicious code or otherwise. Address Space Layout Randomization (ASLR) Team

(2003) and Instruction Set Randomization (ISR) are widely adopted instances of ap-

plication environment randomization in modern operating systems. Existing ASLR

mechanisms randomly arrange the address space positions of key data areas such as

the base executable memory location, application stack and heap, and any libraries it

requires. (what-to-move) of a process when it is launched (when-to-move), including

the base of the executable and the positions of the stack, heap, and libraries. As a

result, if an attacker manages to exploit some memory corruption vulnerability in the

application binary, i.e. a buffer overflow attack, it would be difficult for attackers to

transfer control flow to their injected code as they will be unable to accurately predict

the application’s memory layout.

Dynamic application code or code diversification involves techniques that change

the application code dynamically, for instance techniques include modifying project

instructions or having different, multiple versions of the application (hence diversity).

The authors in Okhravi et al. (2013) cite Proactive Obfuscation as one example

technique wherein they create multiple copies of the service randomized differently -

that is, semantically different but functionally equivalent applications. Whenever a

request to the service is issued, it is sent to each service replica and responses from

each are calculated and the majority vote is the response that is sent out.

Dynamic data representation is similar to dynamic application code or code di-

versification, but instead of having multiple variants of the application code being

analyzed, multiple variants of the application data is monitored instead. It does so

by having multiple copies of the application wherein each replica handles the data

passed differently - any variants or divergence among the services is then detected

and alerts the administrator of malicious behavior.

Dynamic platform techniques involve any change within the platform properties

6

of the system - OS version, CPU Architecture, OS Instance, etc. Multi variant

Execution is one example of this technique wherein multiple varieties of the service is

executed in lockstep. While the applications run identically in normal behavior, each

service replica operates differently while under attack. These inconsistencies are then

monitored and reported once detected in order to signify an ongoing attack.

Dynamic network techniques primarily involve changing the properties of the net-

work dynamically, some examples include protocols, ports, and addresses. Some well

known techniques include IP Randomization Jafarian et al. (2014, 2012) and Port

Randomization Luo et al. (2014). Dynamic network techniques often focus on dis-

rupting the reconnaissance effort of the attacker in that the IP address, traffic, or

open ports revealed are changed in order to delay their information gathering.

In all five of their proposed categories, each technique involves identifying anoma-

lous behavior and alerting the user or administrator of the suspected activity. How-

ever, determining if the action taken is anomalous or not is difficult due to the pos-

sibility of false positives and false negatives, compounded by the unpredictable and

ever-changing actions of human attackers. Therefore their exists the research chal-

lenge of developing an effective intrusion detection and anomaly detection system to

address the dynamically changing actions of attackers in order to separate legitimate

traffic from suspicious and malicious traffic.

2.4 Dynamic Network Techniques

Research in the area of Network-Based MTD techniques are plentiful and involve

techniques that modify the end-host communications to techniques that modify the

actual network infrastructure. As with any approach, they all involve trade-offs and

challenges. In network-based MTD, the difficulty of identifying legitimate and mali-

cious users become more prominent as traffic sent by both are similar to each other -

7

malicious actions being easily identified during the attack phase. In addition, intro-

ducing a MTD technique to the system may inadvertently cause a bottleneck, creating

an unintended weak point for Denial of Service attacks - denying legitimate users ac-

cess to the service itself. Finally, the problem of scalability becomes a greater focus

due to constantly changing business requirements and the varying network require-

ments of each organization. There are five general categories that existing network

based MTD techniques can fall under: Port Randomization, Traffic Morphing, Dy-

namic Network Address Translation, and Network Address Space Randomization.

2.4.1 Port Randomization

Port Hopping Luo et al. (2014, 2015) is a technique that constantly modifies the

port number in order to prevent reconnaissance attacks on a service. It allows one to

hide service identities thereby confuses attackers to the real location of each service.

However, the data contained in relevant work shows that Port Hopping is effective

mostly in systems that contain few vulnerabilities and a large number of ports. In

addition, port hopping seems to be only effective during the reconnaissance phase of

attacks, as once an attacker manages to get in the system, changing the port would

not matter as much due to being able to keep track of changes.

2.4.2 Traffic Morphing

Traffic Morphing Li et al. (2014) is a technique that involves hiding the intended

packet within typical network traffic in order to prevent successful traffic analysis.

The technique is primarily used by Cyber-Physical Messages in order to satisfy the

real-time constraints of Cyber Physical Systems. Experimental results of the research

reveal that the proposed technique achieves moderate overhead to the system while

successfully morphing the messages with typical network traffic during real-time.

8

2.4.3 Dynamic Network Address Translation

Dynamic Network Address Translation Kewley et al. (2001); Michalski et al.

(2002) works by hiding/obfuscating the hosts’ identity located with each packet

header when it is sent over the public Internet. This delays and introduces con-

fusion to the attacker by hiding what is occurring within the network, however not

all applications can work with address translation, in addition to the overhead costs

that get added to each connection.

2.4.4 Network Address Space Randomization

Network Address Space Randomization Antonatos et al. (2005) primarily involves

hosts forcibly changing their IP addresses by requesting to requesting a new address

from the DHCP server. This technique is supported by different desktops and operat-

ing systems. However, the technique requires constant resource requests and changes

to the OS on each end host, thereby increasing the deployment cause.

To address the issue of service availability to legitimate users, Crosb et. al. Crosby

et al. (2013) analyzed the the network interdependencies of Moving Target Defense

Systems and proposed a layered approach in viewing interdependencies between layers

in order to develop tools and techniques that allow continuous service to legitimate

users. In their layered approach, they suggested to make ’corrections’ or changes to

the same layer or a higher layer where the randomization occurs to perform mitigation.

For example in Figure 2.1, if IP randomization, Layer 3, was the chosen MTD

technique to deploy, the mitigation strategy for legitimate users should be done at

a higher level such as Layer 7. At the same time however, any changes done at any

layer might have an effect on the lower layer dependencies.

9

Figure 2.1: OSI Layers

In order to support the idea of network-based MTD solutions, Ge et. al. Green

et al. (2015) proposed a generic framework for MTD by introducing a service layer

between users and servers in order to avoid exposure of actual servers. Figure 2.2

shows their proposed MTD framework, wherein a proxy server authenticates users

and assigns each legitimate user to a proxy node. The proxy node then maps and

relays communication between the users and the actual servers. In this way, the

servers true identity is not revealed to the users due the proxy nodes functioning as

communication relays. In addition, only authenticated users would be allowed access

to the proxy nodes, reducing the chance of unauthorized access to the services.

They also identify several seven key properties that are common to network based

MTD techniques that ensures their effectiveness in addition to identifying common

components among the approaches. According to them, there are four main compo-

nents in network-based MTD:

• Clients are hosts that are trying to access the service that is protected by the

10

Figure 2.2: MTD Framework proposed by Ge et al. (2014)

MTD system. They are divided into two types:

– Trusted Clients are clients that are not deemed malicious and follow typical

actions toward the service.

– Untrusted Clients are clients that have not been granted access to the

service.

A client can be considered trusted once it has been granted access to the service.

• Target is the service or destination that is protected by the MTD system.

• Sink is destination for untrusted clients which can be an unroutable destination

or simply a honeypot for monitoring.

11

Figure 2.3: NMTD components

• Mapping System is the component that identifies and classifies clients as au-

thorized or not.

Figure 2.3 from Green et. al illustrates the components of network MTDs and how

they interact with each other.

In order to accomplish the goals of MTD, three main properties have been iden-

tified:

• Moving Property which forces clients to follow the mapping system component

in order to reach the protected target and limits the attack surface of any

untrusted clients. Three additional sub-properties have been identified in order

to fulfill this property:

– Unpredictability, which guarantees that the MTD system moves the targets

in an unpredictable fashion in such a way that clients are unable to guess

the location of any target unless they are authorized to do so.

– Vastness, which guarantees that the movement space of the MTD system

12

is large enough such that it would be difficult for clients to exhaustively

search the entire space.

– Periodicity, which guarantees that the targets are moved regularly in such

a way that any information gleaned by untrusted clients are rendered void

quickly.

• Access Control Property requires that clients are only able to reach their target

if and only if they are authorized by the mapping system. Three additional

sub-properties have been identified to fulfill this property:

– Uniqueness guarantees that every client is authorized individually and in

such a way that authorization is restricted to that client.

– Availability guarantees that each client authorized to a target will be able

to successfully reach the target when required - the MTD technique must

ensure that no DoS vulnerabilities are introduced.

– Revocability ensures that the mapping system component is capable of

termination or revoking any prior authorization to a client with affecting

other clients or system components.

• Distinguishability Property ensures that the MTD system is capable of identi-

fying trustworthy clients vs. untrustworthy clients. In order to do so, charac-

teristics unique to trustworthy clients must be identified in order to determine

which clients to authorize.

As observed from the techniques categorized above, Network-Based MTD tech-

niques seem to be effective during the reconnaissance phase of attackers due to the

nature of network configurations - IP Addresses and Port Numbers, in comparison to

13

Application-Based MTD approaches where dynamic randomization is possible in or-

der to thwart ongoing attacks, for example introducing randomness to SQL queries in

such a way that attackers are unable to correct guess the syntax of the query. In order

to be truly effective, Network-Based MTD should be incorporated into the Defense-In-

Depth approach of current Network Security practices. Furthermore, Network-Based

MTD approaches are restricted in the ’moving’ aspect of MTD due to the reliance

on two components: Intrusion/Anomaly detection in order to identify anomalous or

suspicious traffic and reliance on an authentication service in order to identify users

or hosts that are authorized to access the service.

Intrusion detection and anomaly detection is a problematic approach due to the

fact that it is restricted in scope. For instance, anomaly-based and signature-based

detection systems are often prone to misclassification of data and high error rates. In

addition, most successful attacks are sophisticated and complex in that they do not

follow a predetermined pattern or that the malicious operator behind it modifies the

attack in such a way that previously known patterns will fail. In the time it takes

to update the information on the exploit, attackers would have already attempted

and executed the exploit - making any response taken against attackers a reactive

approach rather than MTD’s fundamental concept of proactive approch. The use of

authenticated users and hosts is also disadvantageous primarily due to its inflexible

approach - although keeping track of each user and restricting access to those that

have been authenticated reduces the probability of unauthorized access, scaling such

MTD techniques to use larger networks, i.e. public internet access, is difficult due

the large number of potential users. In addition, there is still the possibility of insider

attacks or malicious users impersonating authenticated users.

14

Static and Dynamic MTD techniques In addition to the 5 classes of MTD

techniques, each class can be further categorized. For instance, MTD mechanisms for

programs can be categorized into two classes depending on if a program is running

(dynamic) or not (static) at the time when moving happens. For instance, existing

ASLR approaches are static, because the positions of code and data areas are only

moved at the launch of a program but not when a program is running. On the other-

hand, dynamic MTD techniques offer a wider option of choices for when-to-move,

in exchange for being more difficult to implement due to other considerations: i.e.

overhead cost and downtime during movement.

2.5 Key Challenges to Moving Target Defense

We have identified three key challenges in developing MTD systems, a brief ex-

planation of each is provided below.

Ensure availability to legitimate users while disrupting attackers A big

challenge in developing MTD systems is to ensure system availability to legitimate

users while disrupting attackers. When changing system configurations or moving

components, services to users should be undisturbed. Malicious users on the other

hand, often attempt to use or access the system in unintended methods by exploiting

vulnerabilities present. By changing the system configuration, legitimate users would

still have unimpeded access to the service as they continue to use it in its intended

way; on the other hand, malicious users attempts to exploit vulnerabilities would be

disrupted as they rely on the previous system configuration.

System design must provide the intended security benefits (attack sur-

face must reduced) In developing MTD systems, specific exploits are prevented

15

by changing certain components such that vulnerabilities leading to the exploits are

unavailable. However, in doing so, developers must be careful that changing configu-

rations does not introduce new vulnerabilities

Development of secure control system that handles Moving Target Defense

system In complex MTD systems, the main logic handler needs to be secure. If

MTD logic is compromised, the entire system is rendered null as malicious users will

have knowledge of the new configuration as soon as it is available resulting in any

configuration changes inefficient in increasing uncertainty for the attacker.

Scalability of MTD Technique As with most security techniques, MTD should

be practical to use and therefore easy to scale with most systems.

2.6 Moving Target Defense Framework

Four components have been identified in defining MTD systems:

1. MTD Technique (What-to-Move), which identifies the component(s) to be mod-

ified in order to introduce complexity to attackers. These components can vary

from identities within networks to physical devices.

2. MTD Approach (When-to-Move), which describes the logic used in deciding

when and how often to modify the configuration. Various methods have been

proposed ranging from pseudo-random to game-theoretic approaches to nature-

inspired algorithms.

3. Applications of MTD, which identifies the area the MTD system is applicable

to - hindering reconnaissance efforts or protect against unwanted modification

and analysis.

16

4. Evaluation methods, which defines the methods used to determine whether the

technique is ’effective’ - researchers have proposed differing definitions of effec-

tiveness such as successfully defending against a specific attack vs. hindering

or disrupting reconnaissance efforts of an attacker.

17

Chapter 3

WEB APPLICATIONS

3.1 Web Applications: Individual and Commercial Front Doors

Web applications continue to remain as the most popular method for businesses

to conduct services over the Internet. As the number of web applications that are

accessible increase, so too does the amount of sensitive business and user data that is

managed and processed by web applications. Because of their continuously increasing

popularity and their inherent nature, vulnerabilities that are present in these web

applications put both businesses and end-users’ security and privacy at risk.

This is not an abstract risk, as the JPMorgan Chase breach in 2014 affected

76 million US households Silver-Greenberg et al. (2014). Bloomberg reported that

the hackers “exploited an overlooked flaw in one of the bank’s websites” Robertson

and Riley (2014). Therefore, web applications serve as the “front door” for many

companies and ensuring their security is of paramount importance.

Current techniques and tools focus primarily on prevention and discovery of these

vulnerabilities. For instance, many techniques and tools using static analysis (white-

box) or dynamic analysis (black-box) approaches have been proposed and developed

to discover the vulnerabilities of web applications Balzarotti et al. (2008); Felmetsger

et al. (2010); Jovanovic et al. (2010); Doupé et al. (2012, 2013), so that the vulnerabil-

ities can be removed before attackers discover and exploit them. However, the efforts

of discovering and fixing vulnerabilities are not enough to protect web applications

for many reasons:

1. The increasing complexity of modern web applications brings inevitable risks

18

that cannot be fully mitigated in the process of web application development

and deployment

2. Attackers are able to take their time in understanding the target web applica-

tion’s functionality and underlying technology stack before executing an attack.

We believe that a defense-in-depth approach is best in securing web applications.

Therefore, to complement the aforementioned vulnerability analysis techniques, we

propose to use the ideas of Moving Target Defense to create a novel and proactive

approach that adds an additional layer of defense to web applications. At a high

level, a Moving Target Defense dynamically configures and shifts systems over time

to increase the uncertainty and complexity for attackers to perform probing and at-

tacking Cui and Stolfo (2011); Zhuang et al. (2014). While a system’s availability is

preserved to legitimate users, the system components are changed in unpredictable

ways to the attackers. Therefore, the attacker’s window of attack opportunities de-

crease and the costs of attack increase. Even if an attacker succeeds in finding a

vulnerability at one point, the vulnerability could be unavailable as the result of

shifting the underlying system, which makes the environment more resilient against

attacks.

To best apply the MTD ideas to protect web applications, there are two high-level

decisions:

• Deciding what web application component to move

• Choosing the optimal frequency of randomization of the chosen components

To assist in answering these questions, we first dissect the architecture of a modern

web application - both client and server as well as their running environments, in

order to explore the possible application of MTD at different layers. We hope our

19

Client side Server side

Presentation Layer

Browser

Storage Layer

Communication
Channel

Local Storage

Operating System Application
Layer

Logic Layer

Web Server Layer

Operating System

Infrastructure

HTTP/1.1, HTTP/2

Cookies, IndexedDB,
localStorage, File API

Figure 3.1: A Modern Web Application Architecture and Its Running Environments.

analysis provides insights into the trade-offs among the different places to apply MTD

to web applications.

We also discuss our first steps in applying MTD techniques to protect web applica-

tions. The first technique changes the server-side language used in a web application

by automatically translating server-side web application code to another language in

order to prevent Code Injection exploits. The second technique shifts the database

used in a web application by transforming the backend SQL database into differ-

ent implementations that speak different dialects in order to prevent SQL Injection

exploits.

3.2 Dissecting Modern Web Applications

In order to properly understand how to apply the ideas of moving target defense to

web applications, we first describe a typical web application followed by a discussion

on the ideas behind using moving target defense. As shown in Figure 3.1, a web

application follows a distributed application structure, with components running on

both server and the client systems. When requesting a web resource, the client first

20

issues a request to the server-side component over its communication channels - this

is typically the HTTP protocol and its derivative protocols such as HTTPS, SPDY,

and HTTP/2. The server receives the request and processes it using the application’s

logic and returns the requested resource. If data stored in an external database is

requested, the server passes the relevant user-input as a query and processes the

result. The server side typically includes the following layers from top to bottom 1 :

• The server-side logic layer implements the application business logic using high-

level programming languages, such as Java, PHP, or Python.

• The web server layer receives the HTTP request from the client, parses the

HTTP request, and passes the request to the appropriate server-side program.

Examples include Apache web server, Windows IIS, or Nginx.

• The data storage layer stores the web application state and user data. Popular

data storage systems are traditional SQL databases, which include MySQL,

PostgreSQL, or MSSQL.

• The operating system layer that provides the running environment for the web

server layer and database storage layer.

• The infrastructure layer that runs the operating systems. An infrastructure

could be a physical machine or a virtualization platform which manages multiple

virtual machines.

The client receives the HTTP response from the server-side component and converts

the HTML contained in the HTTP response into a graphical interface for the user.

The client consists of the following components:

1Of course, modern web application stacks can become increasingly complex, with caches, external
requests, or other services, however we restrict our discussion to this abstracted model.

21

• The client-side logic layer, usually known as the presentation layer. The logic

code here is usually composed of a combination of HTML, CSS, and JavaScript,

with JavaScript providing a way for the server-side code to execute application

logic on the client.

• The browser, which retrieves the presentation layer code from the server (typi-

cally HTML), interprets it, and presents it as a graphical interface to the user.

• The storage layer, that the presentation layer code uses to store data. Available

storage methods include cookies, localStorage, IndexedDB, and File APIs.

• The operating system layer, which the browser runs on.

3.3 Current Security Issues and Considerations

Based on our proposed definition of a web application’s structure in Figure 3.1,

if a layer is compromised, the upper layers are not trustworthy. For instance, if

the server’s operating system is compromised, then the data storage, web server,

and server-side logic are also compromised due to the interconnected nature of web

applications. In addition to this, if the communication channel is also compromised

- i.e. Man in the Middle attack; the client side presentation layer also gets affected,

as attackers are able to manipulate the information being seen by users. In order

to attack a layer in Figure 3.1, adversaries often utilize interfaces exposed to the

upper layers. For instance, in a heap spraying attack executed on the client browser

layer Ratanaworabhan et al. (2009), an attacker allocates malicious objects using

JavaScript in the presentation layer in order to coerce the browser into spraying

objects in the heap, increasing the success rate of an exploit where a vulnerability is

exploited by jumping to the location within the heap. In this example, the attacker

leverages a vulnerability located in the presentation layer - lack of input validation; to

22

exploit a vulnerability in the browser layer that leads to arbitrary code execution in

the browser’s address space. The arbitrary code that was injected can in turn exploit

a vulnerability found on the client operating system in order to escalate a malicious

user’s privilege and further infect the client machine. Furthermore, vulnerabilities

are not isolated within each system. For example, malicious JavaScript code could

be delivered by an attacker by exploiting a vulnerability in the server-side logic layer,

using a reflected or stored cross-site scripting (XSS) vulnerability.

23

Chapter 4

MOVING TARGET DEFENSE FOR WEB APPLICATIONS

4.1 Current State of Moving Target Defense in Web Applications

Current techniques and approaches to web vulnerabilities focus on detection,

patching, and prevention. In addition to these traditional approaches, recent at-

tempts have been made to apply the moving target defense concept to web applica-

tions. Huang et al. proposed to create and rotate between a set of virtual servers,

each of which is configured with a unique software mix, to move the attack surface for

web surfaces Huang and Ghosh (2011). Their work also explored the various opportu-

nities of diversification in the web application software stack, providing a higher-level

overview of the attack surface. Our work builds on this by further analyzing the

components in each layer and defining what randomization in each layer entails; in

addition to attempting to automate diversification of the components located in the

logic and storage layer. Aiming to prevent SQL injection attacks, Boyd et al. proposed

to create instances of unpredictable database query languages and to translate them

to standard SQL using an intermediary proxy Boyd and Keromytis (2004). Although

their approach also aims to prevent SQL injections, our proposed diversification ap-

proach aims to prevent a broader range of vulnerabilities—specifically unpatched

vulnerabilities, zero day exploits, and mass-attacks targeting specific database im-

plementations. Portner et al. proposed to defend against cross-site scripting (XSS)

attacks by mutating the symbols in JavaScript in such a way that maliciously injected

JavaScript code fails to execute due to incorrect version compatibility, and identify-

ing such malicious programs Portner et al. (2014). Their work aims to prevent a

24

different class of vulnerabilities, specifically located at the presentation layer on the

client side. On the other hand, our proposed approach is aimed at applying MTD

ideas on the server side of the web application architecture - specifically the logic and

storage layers. Despite these differences, we envision such techniques, located in each

layer, to cooperate together to provide a defense-in-depth approach in defending web

applications.

4.2 Leveraging web application layers for MTD

The core idea of moving target defense (MTD) can be applied to each layer of web

applications and their running components. The key consideration to ensure however,

is that the “movement,” done successfully prevents the intended vulnerability or

exploit, while preserving the application functionality. In this section, we discuss the

different components that are available for moving at each layer of the web application.

Specifically, we focus on the layers that play a major role in web applications and

those that are often targeted: the logic layer, storage layer, and presentation layer,

and browsers. For a discussion on layers that are common to other applications, which

include the operating system layer and the infrastructure layer, we refer the interested

reader to research in these areas Team (2003); Barrantes et al. (2003); Larsen et al.

(2014); Wartell et al. (2012); Williams et al. (2009); Salamat et al. (2011); Vikram

et al. (2013); Dunlop et al. (2011); Carvalho and Ford (2014); Li et al. (2014).

4.2.1 Logic Layer

At the logic layer of web applications, there exist at least two ways of applying

MTD by changing it’s implementation. The first approach is based on the idea of

software diversity Larsen et al. (2014), changing and modifying the code at state-

ment, function, or object levels. This technique is widely used in lower level lan-

25

guages, and is typically used to prevent memory corruption vulnerabilities - specifi-

cally return-oriented programming (ROP) exploits, that take advantage of previously

known code-layouts by hijacking the program control flow and executing malicious

code. This automated diversity MTD technique can be done statically or dynami-

cally. Web applications however, are typically written in higher level languages such

as Java, Python, and Ruby - offering them some degree of immunity to memory cor-

ruption vulnerabilities. As a result, most vulnerabilities found in web applications

are a inherent in the code itself - for instance, XSS attacks, where server-side web

application code is able to modify or create HTML from user input that is unsanitized

and untrusted. In such a case, software diversity will be ineffective as the problem

lies within the logic of the web application.

Another possible MTD approach at the logic layer is similar to software diversifi-

cation, with the concept of extending ’diversification’ to a higher level. By switching a

web application’s implementation from one language to another, one could eliminate

some language- or framework-specific vulnerabilities, due to some vulnerability classes

being specific to certain programming languages. For instance, an application that is

developed with Ruby on Rails 3.0.5 may introduce execution-after-redirect vulnera-

bilities, while its counterpart developed with Python and Django 1.2.5 is impervious

to this class of vulnerabilities, primarily due to the different implementations of the

underlying framework Doupé et al. (2011). As with software diversity, changing the

web application’s implementation language could be static or dynamic. In a static

implementation language switch, the translation of the original application is done

prior to launch and allows the web server to simply launch another instance of the the

application that is written in a different implementation language. To automate the

process, web application developers need only develop the application once in their

preferred language followed by feeding their original code to a translator program to

26

translate the code into functionally equivalent code in another web application lan-

guage. The process of translation between languages is difficult due to several reasons.

The primary issue being that the original language the code is written in might have

some features that the target language does not offer. In a dynamic implementation

language switch, in addition to the translation issues in the static approach, resources

must be managed properly when switching - for example, executing the translation

while managing ongoing requests and responses, as well as ensuring that the states of

the running web application is maintained or transformed in order for the program

to understand once translation is completed. In Section 5.1 we further discuss our

implementation of this automated implementation language switch idea.

4.2.2 Storage Layer

The primary challenge that the storage layer of web applications face are often

database injection attacks wherein, user data retrieved from the logic layer is inter-

preted as SQL statements by the application’s database management systems. In

order to successfully perform these SQL injection attacks, malicious users need to

carefully craft their input to overcome injection prevention techniques by utilizing

reversed tokens in the target SQL syntax and modify the logic layer’s intended SQL

statement.

While SQL itself is standard, there exist different SQL database implementations

that utilize slightly different SQL syntaxes (also called dialects). By leveraging this

information, one can switch the database implementation used in a web application

in order to defeat targeted SQL injection exploits aimed at specific SQL dialects.

For instance, when using a database that uses MySQL’s dialect, both single (’’) and

double ("") quotations are used for identifying values—on the other-hand, switching a

database that contains the same data written in PostgreSQL’s dialect results in single

27

quotations being restricted for values and double quotations used when identifying

field names, table names, etc.

Similar to the logic layer implementation randomization, static MTD for databases

can be realized by exporting the data from one database implementation prior to

execution and then importing it into a different database implementation. Dynamic

MTD for the storage layer is also possible to achieve by translating the database

at intervals and swapping the currently running instance with the target instance.

However, both databases need to be kept synchronized while allowing for continuous

external interaction. In Section 5.2 we discuss our implementation of this idea.

4.2.3 Presentation Layer

The client side presentation layer primarily contains technologies that are most

directly accessible to the user - they provide information to the browser that allows

users to view their requested resource. Some examples of technologies found in this

layer are: client-side JavaScript code running some of the web application’s logic, the

HTML DOM containing the web page layout and provides a way for users to interact

with the application through forms, radio buttons, and hyper-links, and CSS that

manages the web page style and layout. At this layer, the most direct threat to user

data is found through XSS attacks wherein malicious scripts are injected into the web

application in order to steal information from users.

Several MTD approaches have been proposed to prevent against such attacks.

One technique is to introduce a degree of randomness to the underlying HTML form

fields by adding tags to each field in order to obfuscate or hide their real values against

web bots looking to automate attacks Vikram et al. (2013). Another approach was

proposed to introduce randomness to the JavaScript code by mutating tokens in

such a way that malicious JavaScript code injected by attackers will fail to execute as

28

their input does not match the version running on the application. In addition to this

random token, multiple versions of the website utilizing varying JavaScript versions

are also deployed to further confuse attackers Portner et al. (2014).

4.2.4 Browsers

Most modern web browsers have modularized architectures that typically include

rendering engines, JavaScript interpreters, and XML parsers Reis et al. (2009). By

moving and modifying these components, vulnerabilities present within the compo-

nents of the browser can also be mitigated. By doing so, the browser itself, as well as

the underlying system it is running on can be defended. For example, the Cheetah

browser and the 360 browser can change their rendering engines between WebKit and

Trident. By doing so, remote code executions and memory corruption exploits can

be prevented.

In addition to defending browsers against exploits, user privacy can also be pro-

tected by modifying browser configurations. Each browser instance has its own unique

configurations: System fonts, Browser plugins and versions, cookie enabled flags, and

user agents just to name a few. Using these information, web applications are able to

uniquely fingerprint a browser in order to track users and their web movements Ecker-

sley (2010). By diversifying the configuration components, a browser can be prevented

from being fingerprinted, thereby protecting the web user’s privacy Laperdrix et al.

(2015); Nikiforakis et al. (2015, 2013).

29

Chapter 5

IMPLEMENTATION

5.1 Source Code language diversification

In order to apply the concept of MTD onto the server side logic layer, we aim to

change the underlying language implementation of the web application while ensuring

that the main functionalities and front facing interface remain unchanged. This is to

keep the idea of misleading potential attackers by hiding underlying changes while

keeping things consistent for legitimate users. We modify the source code in such a

way to prevent certain categories of vulnerabilities from being effectively exploited —

for instance, remote code injection exploits would become ineffective due to a) pay-

loads developed by an attacker would rely on information before code-manipulation,

potentially rendering them invalid; or b) malicious code that an attacker manages to

inject into the application logic would be ineffective, as again, it would rely on pre-

viously known system information. In addition, because of the method of changing

the underlying code, undiscovered or unpatched vulnerabilities (zero-day exploits)

present in the original language of the web application would be protected against

exploits.

We first describe our implementation of a static MTD mechanism for the logic

layer. In order to simplify the translation process, we choose to narrow down to

two languages to convert between. PHP and Python were selected as the base code

languages after sampling different open source web applications and production-ready

web applications, both widely used as web application code bases that include Google,

YouTube, Pinterest, and Bing. In order achieve a MTD system applicable to web

30

applications, we automate the process of converting a Python web application to PHP

and vice-versa. The first step to achieve this MTD system is to convert the original

source code into a syntactically valid output in the target language. In the case of our

chosen languages, to translate between PHP and Python requires further refinement

of Python web applications as there exist varying web application frameworks for

Python (Django, web2py, and Flask to name a few) while PHP remains primarily

suited for web development and web application creation. We choose to focus on

Python applications developed using cg-lib however, the translation and automation

process can be extended to other frameworks in the future.

The functionality of our translator is similar to a compiler, as such, to trans-

late from Python to PHP, we chose to leverage existing functionality as the initial

step—specifically, we utilize the built-in parsing and unparsing modules in Python

2.7 to construct an Abstract Syntax Tree (AST) of the input Python program. The

unparsing module creates the leaves and parsing module gets it back together. Dur-

ing this process, we were able to manipulate each leaf according to the destination

language’s grammar requirement. After feeding the web application’s code into this

parser, it creates a tree of objects representing the grammar. This tree is then sent

to the unparsing module to be reversed back in to code. This module reads the tree

and recursively calls print code to output the original code back again. The unpars-

ing module is shown in Figure 5.1 and illustrates the a function call in Python with

modulus operator. Once the AST of the original code is generated and translated,

we convert the AST back to readable Python code using Python’s unparse module

- we develop a new library based on this module to generate PHP code instead of

Python code. It is important to note that we did not modify the original intent of

these modules - to take a full parse tree and print back the equivalent source code;

instead, we simply modify the output of printing back readable source code. The core

31

def Pr in t (s e l f , t) :

s e l f . f i l l (” p r i n t ”)

do comma = False

i f t . des t :

s e l f . wr i t e (”>>”)

s e l f . d i spatch (t . des t)

do comma = True

for e in t . va lue s :

i f do comma : s e l f . wr i t e (” , ”)

else : do comma=True

s e l f . d i spatch (e)

i f not t . n l :

s e l f . wr i t e (” , ”)

Listing 5.1: Original Print in unparse to generate Python code.

idea of our implementation is that the parser creates the AST and sends it to the

unparsing module and the unparsing module prints out the translated code instead

of the original code that was fed.

Figure 5.1: The Unparser

For instance, when translating a simple print statement in Python to the PHP

equivalent of echo, we modify the _Print function in the unparse module as shown

in Listing 5.1.

32

def Pr in t (s e l f , t) :

s e l f . f i l l (” echo ”)

do comma = False

i f t . des t :

s e l f . wr i t e (”>>”)

s e l f . d i spatch (t . des t)

do comma = True

for e in t . va lue s :

i f do comma : s e l f . wr i t e (” , ”)

else : do comma=True

s e l f . d i spatch (e)

i f not t . n l :

s e l f . wr i t e (” , ”)

s e l f . wr i t e (” ; ”)

Listing 5.2: Modified Print in unparse to generate PHP code.

For this example, we replace the print Python keyword with the echo PHP

keyword and ensure that the instruction is terminated with a semicolon as shown in

Listing 5.2.

Once this step is completed, we have web application code that is in a syntactically

valid PHP form. However, it does not have the same semantics as the original Python

program nor is a semantically valid PHP application. As such, it needs to be further

modified in order to satisfy these two conditions. This modification is necessary as

there may not be a one-to-one translation of every feature from Python to PHP

or vice-versa. To illustrate this problem, suppose we have a Python instruction to

terminate and exit the program using the following code snippet:

sys . e x i t (0)

Once the initial syntactic translation is completed and a valid PHP output is gener-

ated, we have the following:

sys−>exit (0) ;

This is now valid PHP code as it uses the correct notation for function calls and is

33

<?php

c l a s s sys {

pub l i c s t a t i c func t i on exit Wrapper PHP ($command){

exit ($command) ;

}

}

?>

Listing 5.3: sys class in PHP

correctly terminated with a semicolon. However, when executed, PHP sees this line of

code as a call to some sys object with an call to an internal function exit(0), which

does not exist in PHP by default. The Python sys.exit(0) function call however

does have a direct equivalent in PHP—the exit($status) function. We therefore

leverage these direct equivalent function calls by implementing them as code shims

in order to match the new function calls. To this end, because the syntax of the code

is known to us after the initial translation is completed, we develop a PHP library

that contains an object called sys with a function call to exit(status) as shown in

Listing 5.3. This PHP library shim can be included in the translated application in

order for the function call to remain semantically valid.

Shims Most, if not all programming languages include libraries that contain

predefined functions that are called whenever a specific function call is used. When

translated using our method, the target language will often have different libraries and

corresponding functions to the original language; causing a mismatch in functionality

in the syntactically matched output. Furthermore, developers have the capability to

create and use custom libraries in addition to the standard, predefined ones - some

overwriting/overloading the default functions. In such cases, these custom functions

must be investigated thoroughly and the translator adjusted in order to ensure similar

functionality to the original application intent.

34

One solution to this problem is to create shims for each of these predefined or

custom functions. As described above, shims are simply custom-built libraries that

have the ability to behave as if it is the library that was originally called by the

application without affecting the flow of the application. For our implementation,

we have created several PHP and Python shims that emulate built-in and developer-

specified functions and libraries in the target language. Some samples of shims that we

have implemented are: a CGI shim that allows the ability to emulate the CGI module

from Python in PHP, a Time shim which allows the use of Python localtime()

function in PHP and return an array of time variables in the order of Python’s

localtime().

The creation of these shims can be extended to include other popular libraries;

for instance, MySQLdb is a Python specified library for MySQL functionality that

is required to be imported within the application code. Once the application is run

through he syntactic converter, this library needs to call predefined PHP MySQL

functions as a shim in order to ensure similar functionality to the original Python

application. Some example MySQLdb functions that were translated and shimmed

are connect, used to connect to the database and rowcount, used to display number

of affected rows.

Context-Sensitive Approach As mentioned previously, simply translating be-

tween languages is not enough due to differing syntax and semantics. Furthermore,

data structure differences between PHP and Python require specific handling of code

based on its context - so called context- sensitive translations. One such in-

stance is the use of the % operand in Python in order to perform string formatting.

This operand can take different types of variables as input; once converted however,

there is no direct counterpart in PHP. In order to handle the multi-variable ability of

35

the Python operation, the tool should be able to detect if such an operation is called

and modify the Python code to output PHP code that handles the specific operation

in that line.

Using this approach, we recursively run the tool on the Python functions that

the original program calls, and convert them as well. If, for instance, the original

program is written in C, we must create the equivalent function for that code in the

target language.

5.2 Database dialect diversification

To enable the MTD concept in the server side storage layer, we propose to use the

same method done in the logic layer by modifying the underlying database dialect of

the web application. An integral part of this methodology is to ensure that at any

time during this movement mechanism, the integrity and availability of data is pre-

served. Using this randomization technique, we anticipate that certain vulnerability

and exploit categories will be rendered ineffective—specifically, we seek to protect

against SQL injection exploits by leveraging the syntactical differences between var-

ious SQL dialect. By translating between different database dialects, the system

could be potentially protected against database-specific exploits as well as unpatched

or undiscovered vulnerabilities by rendering the information an attacker has about

the system invalid due to differing web application configurations. We have identified

two considerations to be made when performing the database translations:

• No alterations must be made to the data content —that is, at the end of the

translation process, end-users must be able to see the same information stored

regardless of the underlying database dialect.

• Access to the database and the data stored within must be available anytime

36

the application logic issues a request while keeping the translation process trans-

parent to the user.

These two properties ensure that the web application service is undisturbed and the

MTD mechanism is hidden to malicious users.

Similar to our source language translation methodology, we refine the selections of

database dialects to two widely popular database dialects, MySQL and PostgreSQL.

These two were chosen due to their high popularity rankings and the large enough

differences in syntax - anticipating them to be the target of wide-spread database

exploits. In addition, both dialects are used by well known entities as their back-end

- Facebook, Google, Amazon, U.S. Dept of labor, U.S. State Department, and Sun

Microsystemsto name a few.

As previously mentioned, we want to leverage the syntactical differences between

SQL dialects in our MTD mechanism. In particular, some of the differences between

MySQL and PostgreSQL syntaxes that we are interested in leveraging include the

following:

• When starting comments in MySQL, the # or -- (A space after the -- is re-

quired) is utilized. On the other hand, to begin a comment in PostgreSQL, the

-- (the space is not required) is used.

• To identify values in MySQL, the single (’’) quotes or double ("") quotes are

used. When using PostgreSQL, single (’’) quotes are used in identifying values

while double ("") quotes are reserved in identifying field names, table names,

etc.

• When doing string comparisons in MySQL, case-sensitivity is not taken into

consideration. However, when string comparison is done in PostgreSQL, they

are done in a case-sensitive manner, i.e. john != JOHN != John.

37

Each one of these syntax differences affect the SQL injection payloads written

in order to take advantage of a web application’s SQL injection vulnerability. If an

attacker assumes that the web application is using a particular database backend;

for instance, if the attacker scans the entire web for web applications that utilize a

specific version of MySQL that has a injection exploit using their value identification

method, changing the dialect to PostgreSQL will cause the MySQL payload to fail.

Similar to the source code language diversification approach, we choose to develop

a tool that can automate the conversion or translation between database dialects. In

order to convert from PostgreSQL to MySQL, we modified an existing open-source

tool created by Lightbox that originally functions to convert PostgreSQL to MySQL—

although we are able to simply create a database dump from PostgreSQL, using the

resulting code is insufficient as there are still differences between the database syn-

taxes and data types that must be resolved. In order to acquire the initial database

dump, specific run-time options must be enabled when dumping the database. Post-

greSQL database dumps need to created while enabling insert statements by using

the --inserts flag enabled to properly include the data stored while MySQL needs to

have the --compatible=postgresql flag to properly include PostgreSQL keywords

in the output file. To resolve the syntax mismatch during translation, we modify

the code to process the original database dump by parsing through the input file

(the source database dump) and replacing any PostgreSQL keywords and data-types

into corresponding MySQL keywords and data types. In translating between different

database data types, some considerations need to be made. For instance PostgreSQL’s

BYTEA can be equivalent to any of the MySQL data types shown in Table 5.1. When

choosing what data type to convert to, it needs to be generic enough in such a way

that it covers the possible data value found in the original database, while attempting

to be as performant as possible. To handle conversion in the reverse direction, from

38

MySQL PostgreSQL

BINARY(n) BYTEA

VARBINARY(n) BYTEA

TINYBLOB BYTEA

BLOB BYTEA

MEDIUMBLOB BYTEA

LONGBLOB BYTEA

Table 5.1: Comparison of MySQL and PostgreSQL Data Types.

MySQL to PostgreSQL, we simply re-purposed the code by reversing the process—

that is, we parse through the dump file looking for MySQL keywords and data-types

converting them to the corresponding PostgreSQL keywords and data-types. Similar

to translating the language constructs of a web application, database translations

may be costly as well depending on the size and complexity of the database—for in-

stance optimizations done on the original implementation of the database will become

invalid once converted.

39

Chapter 6

EVALUATION AND RESULTS

6.1 Application Functionality

In order to ensure system availability is preserved through the translation process,

we compare the application functions to ensure that the same input returns the same

output before and after the translation. In order to accurately quantify the results, we

utilize Selenium to automate to the testing process. First, manual navigation of the

web application is done in order to keep track of the main application functionality. In

addition, this step also keeps track of the actions and input a regular user must take in

order to complete each function as well as identifying the input form field names that

is used on each page in the test automation process. Once a test suite is completed

for the original application functions, the MTD technique proceeds to translate it into

other target language - at this point, the underlying language has changed but the

front-end of the application remains unchanged to users. The selenium test suite is run

on this translated application using the same input as before; application functionality

is preserved if the resulting output is similar to the output before translation. The

MTD technique should be transparent to legitimate users, meaning the output should

be the same to them no matter what. The results for the basic functionality of the

collab application is show in Figure 6.1. Pre-translation output is done using the

original configuration of the web application that uses Python and MySQL as the

backend while post-translation output is shown using PHP and MySQL.

Results show that translating the web application leaves the interface unchanged

to the user. Functionality is kept consistent through the use of code shims as illus-

40

Figure 6.1: Application functionality results of collab web application

trated by having the same output before and after changing the underlying language

of the web application using the same input.

6.2 Translation and Randomization cost overhead

To measure translation time overhead, a simple timer is used in the script when a

configuration change starts and ends. For example, when a database change is invoked

a timer starts in the script prior to calling the database translator and stops when

the translation is done. This isolates the translation of each configuration change

during each ’movement’. The measurements were taken using virtual machines from

Oracle VirtualBox 5.1.18, four instances each running a unique configuration of the

web application source language and database dialect on Ubuntu 12.04.5 with 1GB

of memory. The combination for each system is as follows:

• 192.168.1.101 : PHP/MySQL

41

• 192.168.1.102 : PHP/PostgreSQL

• 192.168.1.103 : Python/MySQL

• 192.168.1.104 : Python/PostgreSQL

In addition, a fifth virtual machine was also set up to handle the request routing

to the appropriate application configuration as well as handle the database of the

application.

Figure 6.2 shows the average time it takes to completely change configuration from

one variant to another. Similar colored cells signify that the configuration change is

identical with the following colors corresponding to the configuration change - pink:

same source language, differing database dialect, orange: differing source language,

same database dialect, and green: differing source language and differing database

dialect. Three data-sets were collected that differ in how long each test were run.

Figure 6.2: Average time of changing configurations

Figure6.3 shows the various translation times between each MTD variants among

all three datasets: database-only variants, source-code only variants, and database

and source code variants.

Several data points appear further from the average translation times due to

hardware issues while running the experiment, the virtual machines were running on

42

Figure 6.3: Translation time between all MTD variants

an unused laptop running an i7-4710 and 8GB of RAM. A closer view of the data set

of one configuration translated to the other two is found in Figure6.4

Figure 6.4: Translation from one configuration to two other configurations (Same
language, different database dialect and different language, same database dialect)

From the data collected, it would seem that changing database configurations take

less time than changing source language configurations. This can be attributed to

the complexity in rebuilding the source-code to match the target language - most

43

languages are inherently different in code structure and semantics, requiring line by

line translation to achieve the correct output. Database translation on the other hand

is simpler as our chosen dialects both follow the ANSI/ISO SQL standard - the largest

difference being differences in syntax rather than semantics.

6.3 Security Evaluation

To evaluate the security benefits of our MTD technique, we simply run the orig-

inal application using a malicious payload to verify that the vulnerability is present

and run the same payload after changing the configuration to verify that the MTD

technique renders the payload invalid.

44

Chapter 7

CONCLUSION

In this thesis, I explored the feasibility of applying MTD concepts to web applica-

tions in order to introduce another layer of defense. A study was done on existing

MTD techniques to identify the components and considerations in MTD. Using this

knowledge, an analysis of the modern web application stack was done in order to

understand how and where MTD can be applied. I developed an automated tool that

assists in translating between source-code languages and database dialects in order

to mitigate several classes of web application vulnerabilities. Current results show

that employing the proposed MTD technique can defend against specified exploits

when an exploit is launched enmasse against a specific technology (ex. mass attacks

against postgres database web applications). When used to defend against targeted

attacks, the MTD technique may not be as effective, as malicious users can even-

tually discover the simplistic configuration change pattern.However, implementing

the source or database randomization with other MTD techniques such as network

randomization can introduce another layer of complexity that an attacker must go

through. The automated tool introduced can be extended to apply to any source

language - however, the number of shims that need to be developed in order to have

semantically equivalent web application may be take considerable amount of time

as each application could potentially contain multiple custom functions. Providing

a central repository for these code shims may reduce the amount of code repetition

needed, this solution is infeasible however as having a public collection of these shims

also enables easy access to malicious users. Further work is needed to develop a more

generalized method of translating between languages in a more effective manner.

45

REFERENCES

Ammann, P. E. and J. C. Knight, “Data diversity: An approach to software fault
tolerance”, Computers, IEEE Transactions on 37, 4, 418–425 (1988).

Antonatos, S., P. Akritidis, E. P. Markatos and K. G. Anagnostakis, “Defending
against hitlist worms using network address space randomization”, in “Proceedings
of the 2005 ACM Workshop on Rapid Malcode”, WORM ’05, pp. 30–40 (ACM, New
York, NY, USA, 2005), URL http://doi.acm.org/10.1145/1103626.1103633.

Avizienis, A. and L. Chen, “On the implementation of n-version programming for
software fault tolerance during execution”, in “Proc. IEEE COMPSAC”, vol. 77,
pp. 149–155 (1977).

Balzarotti, D., M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel and
G. Vigna, “Saner: Composing static and dynamic analysis to validate sanitization
in web applications”, in “Security and Privacy, 2008. SP 2008. IEEE Symposium
on”, pp. 387–401 (IEEE, 2008).

Barrantes, E. G., D. H. Ackley, T. S. Palmer, D. Stefanovic and D. D. Zovi, “Ran-
domized instruction set emulation to disrupt binary code injection attacks”, in
“Proceedings of the 10th ACM conference on Computer and communications se-
curity”, pp. 281–289 (ACM, 2003).

Boyd, S. W. and A. D. Keromytis, “Sqlrand: Preventing sql injection attacks”, in
“Applied Cryptography and Network Security”, pp. 292–302 (Springer, 2004).

Carvalho, M. and R. Ford, “Moving-target defenses for computer networks”, Security
Privacy, IEEE 12, 2, 73–76 (2014).

Crosby, S., M. Carvalho and D. Kidwell, “A layered approach to understanding
network dependencies on moving target defense mechanisms”, in “Proceedings of
the Eighth Annual Cyber Security and Information Intelligence Research Work-
shop”, CSIIRW ’13, pp. 36:1–36:4 (ACM, New York, NY, USA, 2013), URL
http://doi.acm.org/10.1145/2459976.2460017.

Cui, A. and S. J. Stolfo, “Symbiotes and defensive mutualism: Moving target de-
fense”, in “Moving Target Defense”, pp. 99–108 (Springer, 2011).

Cyberspace, T., “Strategic plan for the federal cybersecurity research and develop-
ment program”, Executive Office of the President National Science and Technology
Council (2011).

Doupé, A., B. Boe, C. Kruegel and G. Vigna, “Fear the ear: discovering and miti-
gating execution after redirect vulnerabilities”, in “Proceedings of the 18th ACM
conference on Computer and communications security”, pp. 251–262 (ACM, 2011).

Doupé, A., L. Cavedon, C. Kruegel and G. Vigna, “Enemy of the State: A State-
Aware Black-Box Vulnerability Scanner”, in “Proceedings of the USENIX Security
Symposium (USENIX)”, (Bellevue, WA, 2012).

46

http://doi.acm.org/10.1145/1103626.1103633
http://doi.acm.org/10.1145/2459976.2460017

Doupé, A., W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel and G. Vigna, “deDa-
cota: Toward Preventing Server-Side XSS via Automatic Code and Data Separa-
tion”, in “Proceedings of the ACM Conference on Computer and Communications
Security (CCS)”, (Berlin, Germany, 2013).

Dunlop, M., S. Groat, W. Urbanski, R. Marchany and J. Tront, “Mt6d: A moving
target ipv6 defense”, in “MILITARY COMMUNICATIONS CONFERENCE, 2011
- MILCOM 2011”, pp. 1321–1326 (2011).

Eckersley, P., “How unique is your web browser?”, in “Privacy Enhancing Technolo-
gies”, pp. 1–18 (Springer, 2010).

Felmetsger, V., L. Cavedon, C. Kruegel and G. Vigna, “Toward automated detection
of logic vulnerabilities in web applications”, in “USENIX Security Symposium”,
pp. 143–160 (2010).

Forrest, S., A. Somayaji and D. H. Ackley, “Building diverse computer systems”,
in “Operating Systems, 1997., The Sixth Workshop on Hot Topics in”, pp. 67–72
(IEEE, 1997).

Ge, L., W. Yu, D. Shen, G. Chen, K. Pham, E. Blasch and C. Lu, “Toward
effectiveness and agility of network security situational awareness using mov-
ing target defense (mtd)”, vol. 9085, pp. 90850Q–90850Q–9 (2014), URL http:
//dx.doi.org/10.1117/12.2050782.

Green, M., D. C. MacFarland, D. R. Smestad and C. A. Shue, “Characterizing
network-based moving target defenses”, in “Proceedings of the Second ACM Work-
shop on Moving Target Defense”, pp. 31–35 (ACM, 2015).

Huang, Y. and A. K. Ghosh, “Introducing diversity and uncertainty to create mov-
ing attack surfaces for web services”, in “Moving Target Defense”, pp. 131–151
(Springer, 2011).

Jafarian, J. H., E. Al-Shaer and Q. Duan, “Openflow random host mutation: Trans-
parent moving target defense using software defined networking”, in “Proceedings
of the First Workshop on Hot Topics in Software Defined Networks”, HotSDN ’12,
pp. 127–132 (ACM, New York, NY, USA, 2012), URL http://doi.acm.org/10.
1145/2342441.2342467.

Jafarian, J. H. H., E. Al-Shaer and Q. Duan, “Spatio-temporal address mutation
for proactive cyber agility against sophisticated attackers”, in “Proceedings of the
First ACM Workshop on Moving Target Defense”, MTD ’14, pp. 69–78 (ACM, New
York, NY, USA, 2014), URL http://doi.acm.org/10.1145/2663474.2663483.

Jovanovic, N., C. Kruegel and E. Kirda, “Static analysis for detecting taint-style
vulnerabilities in web applications”, Journal of Computer Security 18, 5, 861–907
(2010).

47

http://dx.doi.org/10.1117/12.2050782
http://dx.doi.org/10.1117/12.2050782
http://doi.acm.org/10.1145/2342441.2342467
http://doi.acm.org/10.1145/2342441.2342467
http://doi.acm.org/10.1145/2663474.2663483

Kewley, D., R. Fink, J. Lowry and M. Dean, “Dynamic approaches to thwart ad-
versary intelligence gathering”, in “DARPA Information Survivability Conference
amp; Exposition II, 2001. DISCEX ’01. Proceedings”, vol. 1, pp. 176–185 vol.1
(2001).

Laperdrix, P., W. Rudametkin and B. Baudry, “Mitigating browser fingerprint track-
ing: multi-level reconfiguration and diversification”, in “Proceedings of the In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’15)”, (2015).

Larsen, P., A. Homescu, S. Brunthaler and M. Franz, “Sok: Automated software
diversity”, in “Security and Privacy (SP), 2014 IEEE Symposium on”, pp. 276–291
(IEEE, 2014).

Li, Y., R. Dai and J. Zhang, “Morphing communications of cyber-physical systems
towards moving-target defense”, in “Communications (ICC), 2014 IEEE Interna-
tional Conference on”, pp. 592–598 (2014).

Luo, Y.-B., B.-S. Wang and G.-L. Cai, “Effectiveness of port hopping as a moving tar-
get defense”, in “Security Technology (SecTech), 2014 7th International Conference
on”, pp. 7–10 (2014).

Luo, Y.-B., B.-S. Wang and G.-L. Cai, “Analysis of port hopping for proactive cy-
ber defense”, International Journal of Security and Its Applications 9, 2, 123–134
(2015).

Michalski, J., C. Price, E. Stanton, E. Lee, K. Chua, Y. Wong and C. Tan, “Network
security mechanisms utilizing dynamic network address translation”, (2002).

Nguyen-Tuong, A., D. Evans, J. C. Knight, B. Cox and J. W. Davidson, “Security
through redundant data diversity”, in “Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on”, pp. 187–196
(IEEE, 2008).

Nikiforakis, N., W. Joosen and B. Livshits, “PriVaricator: Deceiving fingerprinters
with Little White Lies”, in “Proceedings of the International World Wide Web
Conference (WWW)”, (2015).

Nikiforakis, N., A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens and G. Vigna,
“Cookieless Monster: Exploring the Ecosystem of Web-based Device Fingerprint-
ing”, in “Proceedings of the IEEE Symposium on Security and Privacy”, (2013).

Okhravi, H., M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow and
W. Streilein, “Survey of cyber moving target techniques”, Tech. rep., DTIC Docu-
ment (2013).

Pettis, K. and R. C. Hansen, “Profile guided code positioning”, in “ACM SIGPLAN
Notices”, vol. 25, pp. 16–27 (ACM, 1990).

48

Portner, J., J. Kerr and B. Chu, “Moving target defense against cross-site scripting
attacks (position paper)”, in “Foundations and Practice of Security”, pp. 85–91
(Springer, 2014).

Ratanaworabhan, P., V. B. Livshits and B. G. Zorn, “Nozzle: A defense against heap-
spraying code injection attacks.”, in “USENIX Security Symposium”, pp. 169–186
(2009).

Reis, C., A. Barth and C. Pizano, “Browser security: lessons from google chrome”,
Queue 7, 5, 3 (2009).

Robertson, J. and M. Riley, “JPMorgan Hack Said to Span Months Via Multiple
Flaws”, (2014).

Salamat, B., T. Jackson, G. Wagner, C. Wimmer and M. Franz, “Runtime defense
against code injection attacks using replicated execution”, Dependable and Secure
Computing, IEEE Transactions on 8, 4, 588–601 (2011).

Silver-Greenberg, J., M. Goldstein and N. Perlroth, “JPMorgan Chase Hacking Af-
fects 76 Million Households”, The New York Times (2014).

Team, P., “Address space layout randomization”, Phrack (2003).

Vikram, S., C. Yang and G. Gu, “Nomad: Towards non-intrusive moving-target
defense against web bots”, in “Communications and Network Security (CNS), 2013
IEEE Conference on”, pp. 55–63 (IEEE, 2013).

Wartell, R., V. Mohan, K. W. Hamlen and Z. Lin, “Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code”, in “Proceedings of the 2012 ACM
conference on Computer and communications security”, pp. 157–168 (ACM, 2012).

Williams, D., W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight and A. Nguyen-Tuong,
“Security through diversity: Leveraging virtual machine technology”, Security &
Privacy, IEEE 7, 1, 26–33 (2009).

Zhuang, R., S. A. DeLoach and X. Ou, “Towards a theory of moving target defense”,
in “Proceedings of the First ACM Workshop on Moving Target Defense”, MTD
’14, pp. 31–40 (ACM, New York, NY, USA, 2014), URL http://doi.acm.org/
10.1145/2663474.2663479.

Zhuang, R., S. Zhang, A. Bardas, S. DeLoach, X. Ou and A. Singhal, “Investigating
the application of moving target defenses to network security”, in “Resilient Control
Systems (ISRCS), 2013 6th International Symposium on”, pp. 162–169 (2013).

49

http://doi.acm.org/10.1145/2663474.2663479
http://doi.acm.org/10.1145/2663474.2663479

APPENDIX A

RAW DATA

50

−−
−− PostgreSQL database dump
−−

SET s tatement t imeout = 0 ;
SET l o ck t imeout = 0 ;
SET c l i e n t e n c od i n g = ’UTF8 ’ ;
SET s t anda rd con f o rm ing s t r i ng s = on ;
SET ch e ck func t i on bod i e s = fa l se ;
SET c l i en t min mes sage s = warning ;

DROP DATABASE te s t da t aba s e ;
−−
−− Name: t e s t d a t a b a s e ; Type : DATABASE; Schema : −; Owner : po s t g r e s
−−

CREATE DATABASE te s t da t aba s e WITH TEMPLATE = template0 ENCODING = ’UTF8 ’ LC COLLATE
= ’ Engl i sh United Sta t e s .1252 ’ LC CTYPE = ’ Eng l i sh United Sta t e s .1252 ’ ;

ALTER DATABASE te s t da t aba s e OWNER TO pos tg r e s ;

\connect t e s t da t aba s e

SET s tatement t imeout = 0 ;
SET l o ck t imeout = 0 ;
SET c l i e n t e n c od i n g = ’UTF8 ’ ;
SET s t anda rd con f o rm ing s t r i ng s = on ;
SET ch e ck func t i on bod i e s = fa l se ;
SET c l i en t min mes sage s = warning ;

−−
−− Name: pu b l i c ; Type : SCHEMA; Schema : −; Owner : po s t g r e s
−−

CREATE SCHEMA pub l i c ;

ALTER SCHEMA pub l i c OWNER TO pos tg r e s ;

−−
−− Name: SCHEMA pub l i c ; Type : COMMENT; Schema : −; Owner : po s t g r e s
−−

COMMENT ON SCHEMA pub l i c IS ’ standard pub l i c schema ’ ;

−−
−− Name: p l p g s q l ; Type : EXTENSION; Schema : −; Owner :
−−

CREATE EXTENSION IF NOT EXISTS p lpg sq l WITH SCHEMA pg ca ta l og ;

−−
−− Name: EXTENSION p l p g s q l ; Type : COMMENT; Schema : −; Owner :
−−

COMMENT ON EXTENSION p lpg sq l IS ’PL/pgSQL procedura l language ’ ;

SET s earch path = publ ic , pg ca ta l og ;

SET d e f a u l t t a b l e s p a c e = ’ ’ ;

SET d e f a u l t w i t h o i d s = fa l se ;

−−
−− Name: t e s t t a b l e ; Type : TABLE; Schema : pu b l i c ; Owner : po s t g r e s ; Tablespace :
−−

51

CREATE TABLE t e s t t a b l e (
username character varying (15) NOT NULL,
password character varying (15) NOT NULL,
creditnumber numeric (10 ,0)
) ;

ALTER TABLE t e s t t a b l e OWNER TO pos tg r e s ;

−−
−− Data fo r Name: t e s t t a b l e ; Type : TABLE DATA; Schema : pu b l i c ; Owner : po s t g r e s
−−

INSERT INTO t e s t t a b l e VALUES (’ user1 ’ , ’ t e s t p a s s ’ , 60547381) ;
INSERT INTO t e s t t a b l e VALUES (’ user2 ’ , ’ pass ’ , 72619472) ;
INSERT INTO t e s t t a b l e VALUES (’ user3 ’ , ’ pas spass ’ , 81124561) ;
INSERT INTO t e s t t a b l e VALUES (’ user4 ’ , ’ passwordpass ’ , 5522698) ;

−−
−− Name: username ; Type : CONSTRAINT; Schema : pu b l i c ; Owner : po s t g r e s ; Tablespace :
−−

ALTER TABLE ONLY t e s t t a b l e
ADDCONSTRAINT username PRIMARYKEY (username) ;

−−
−− Name: pu b l i c ; Type : ACL; Schema : −; Owner : po s t g r e s
−−

REVOKE ALL ON SCHEMA pub l i c FROM PUBLIC;
REVOKE ALL ON SCHEMA pub l i c FROM pos tg r e s ;
GRANT ALL ON SCHEMA pub l i c TO pos tg r e s ;
GRANT ALL ON SCHEMA pub l i c TO PUBLIC;

−−
−− PostgreSQL database dump complete
−−

Listing A.1: Pre-conversion PostgreSQL Database Dump

Converted with mysql2pg−1.9
Converted on Wed, 01 Jul 2015 23 : 58 : 23 +0000
Lightbox Techno log ie s Inc . http ://www. l i gh tbox . ca

SET SQLMODE=”NO AUTO VALUE ON ZERO” ;
SET t ime zone=”+00:00” ;

DROP DATABASE te s t da t aba s e ;
CREATE DATABASE ‘ t e s t da tabase ‘ DEFAULTCHARACTER SET UTF8;

USE ‘ t e s t da tabase ‘ ;

CREATE TABLE t e s t t a b l e (
username varchar (15) NOT NULL,
password varchar (15) NOT NULL,
creditnumber numeric (10 ,0)
) ENGINE=MyISAM;

INSERT INTO t e s t t a b l e VALUES (’ user1 ’ , ’ t e s t p a s s ’ , 60547381) ;
INSERT INTO t e s t t a b l e VALUES (’ user2 ’ , ’ pass ’ , 72619472) ;
INSERT INTO t e s t t a b l e VALUES (’ user3 ’ , ’ pas spass ’ , 81124561) ;
INSERT INTO t e s t t a b l e VALUES (’ user4 ’ , ’ passwordpass ’ , 5522698) ;
ALTER TABLE t e s t t a b l e
ADDCONSTRAINT username PRIMARYKEY (username) ;

Listing A.2: Post-conversion MySQL Database Dump

52

Figure A.1: PHP and PostgreSQL translated to Python and MySQL

Figure A.2: PHP to Python translation with MySQL

53

Figure A.3: Python and MySQL translated to PHP and PostgreSQL

Figure A.4: MySQL to PostgreSQL translation with Python

54

Figure A.5: Python and PostgreSQL translated to PHP and MySQL

Figure A.6: Python to PHP translation with PostgreSQL

55

Figure A.7: PostgreSQL to MySQL Translation with Python

Figure A.8: Step one of uploading notes

56

Figure A.9: Step two of uploading notes

Figure A.10: Step three of uploading notes

57

Figure A.11: Step four of uploading notes

Figure A.12: Uploading note functionality post translation

58

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Static System Configurations: Conventional System Configurations
	1.2 Research Approach
	1.3 Limitations
	1.4 Contributions

	2
	2.1 Introduction to Moving Target Defense
	2.2 Challenges in Moving Target Defense
	2.3 Related Work
	2.4 Dynamic Network Techniques
	2.4.1 Port Randomization
	2.4.2 Traffic Morphing
	2.4.3 Dynamic Network Address Translation
	2.4.4 Network Address Space Randomization

	2.5 Key Challenges to Moving Target Defense
	2.6 Moving Target Defense Framework

	3
	3.1 Web Applications: Individual and Commercial Front Doors
	3.2 Dissecting Modern Web Applications
	3.3 Current Security Issues and Considerations

	4
	4.1 Current State of Moving Target Defense in Web Applications
	4.2 Leveraging web application layers for MTD
	4.2.1 Logic Layer
	4.2.2 Storage Layer
	4.2.3 Presentation Layer
	4.2.4 Browsers

	5
	5.1 Source Code language diversification
	5.2 Database dialect diversification

	6
	6.1 Application Functionality
	6.2 Translation and Randomization cost overhead
	6.3 Security Evaluation

	7
	REFERENCES
	A

