
Numerical Modeling of Cake Formation and Permeate Flux Decline

in Membrane Filtration Using OpenFOAM

by

Jueming Hu

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2018 by the

Graduate Supervisory Committee:

Marcus Herrmann, Chair

Huei-Ping Huang

Taewoo Lee

ARIZONA STATE UNIVERSITY

May 2018

 i

ABSTRACT

Membrane filtration is an important technology in industry. In the past few decades,

equations have been developed from experimental results to predict cake formation and

permeate flux decline in the membrane filtration process. In the current work, the block of

particles on membrane surface is achieved by setting surface flux on membrane surface

zero. This approach is implemented for both microfiltration and nanofiltration using

OpenFOAM. Moreover, a new method to deal with cake resistance for nanofiltration is

introduced. Cake resistance is applied to both cake and membrane. To validate the new

techniques, results of crossflow microfiltration are compared to theoretical results and

results of two crossflow nanofiltration cases are compared to experimental data. In addition,

the new techniques are applied to dead end filtration to observe the different structure of

the cake and explore the effect of resistance on velocity profile.

 ii

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Prof. Marcus Herrmann. The door to

Prof. Herrmann office was always open whenever I ran into a trouble spot or had a question

about my research or writing. He guided me in the right direction when I was confused

about what to do and doubted what had been done.

I would also like to acknowledge my lab mates Hooman Farsani, Sugajen Narayana

Perumal and Erik Scougal. I am gratefully indebted to them for their very valuable help on

this thesis. Hooman gave me a lot of useful advices and has been very helpful in

encouraging me to be optimistic. In addition, Sugajen is the person who taught me how to

use OpenFOAM. Moreover, Erik helped me understand numerical methods better. Without

their passionate participation and input, this thesis could not have been successfully

conducted.

Finally, I must express my loving thanks to my parents and friends. Without their

encouragement and understanding it would have been impossible for me to finish this work.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION .. 1

Membrane Filtration..1

 Thesis Outline..3

2 THEORY OF PIMPLEFOAM TO SOLVE NAVIER-STOKES PROBLEM..... 4

Discretisation Procedure for the Navier-Stokes System in PimpleFOAM....4

PimpleFOAM Algorithm..6

3 FINITE VOLUME METHOD FOR CONVECTION DIFFUSION PROBLEM 8

Basics of Finite Volume Method for Convection Diffusion Equation..........8

Upwind Differencing Scheme..9

4 METHODOLOGY ... 11

Cake Predicting Model for Microfiltration..11

Shear Induced Diffusion Coefficient..11

Cake Resistance of Microfiltration...12

 Implementation of Model...13

Cake Predicting Model for Nanofiltration..16

Brownian Diffusion Coefficient...17

Cake Resistance of Nanofiltration..17

 Implementation of Model...18

 iv

CHAPTER Page

5 RESULTS AND DISCUSSION .. 20

Microfiltration Results...20

 Model Description..20

 Results..22

Nanofiltration Results..26

 Simulation of Suhan Kim’s Model..26

 Model Description...26

 Results...28

Simulation of Seungkwan Hong’s Model......................................31

 Model Description...31

Results...33

Application to Dead End Filtration...34

6 CONCLUSIONS ... 42

Conclusions..42

REFERENCES .. 43

APPENDIX

 A MAIN CODES OF MICROFILTRATION SOLVER ... 44

 B MAIN CODES OF SOLVER FOR KIM’S MODEL .. 53

 v

LIST OF TABLES

Table Page

1. Characteristics of Membrane Processes .. 1

2. Permeate Flux in Microfiltration .. 25

 vi

LIST OF FIGURES

Figure Page

1. Dead End and Crossflow Membrane Filtration ... 2

2. Concentration Polarization and Cake Layer ... 3

3. Vectors d and S on an Orthogonal Mesh ... 9

4. Upwind Differencing Scheme with Normal Velocity ... 9

5. Geometry of Microfiltration Device .. 21

6. Concentration Distribution at Different TMPs in Microfiltration 22

7. Initial and Final Permeate Flux at Different TMPs ... 24

8. Geometry of Suhan Kim’s Model .. 27

9. Meshes around Membrane Surface .. 28

10. Permeate Flux with Time at TMP 70 kPa ... 29

11. Concentration inside the Cake Region at 70min ... 30

12. Concentration at 18.3s .. 31

13. Geometry of Hong’s Model ... 32

14. Concentration inside the Cake Region at 25min ... 33

15. Flux with Time in the Case of 100 nm Particle Size under TMP of 40 kPa 33

16. Geometry of Dead End Filtration .. 35

17. Effect of mr on Vertical Velocity ... 37

18. Vertical Velocity in Microfiltration ... 38

19. Area Around Left Side of Wall .. 38

20. Vertical Velocity in Hong’s Model.. 39

21. Volume Fraction in Microfiltration ... 40

 vii

Figure Page

22. Volume Fraction in Hong’s Model .. 40

23. Cake Region in Hong’s Model .. 41

 1

CHAPTER 1

INTRODUCTION

1.1 Membrane Filtration

Membrane filtration is a pressure technology to separate solids from fluids by

adding a medium through which only the fluid can pass. Its different modalities are

microfiltration, ultrafiltration, nanofiltration and reverse osmosis. In detail, the operating

pressure and the size of particles in the fluids of the four modalities are different. The

differences in operating conditions are tabulated in Table 1.1 ("Industrial applications of

membrane filtration", 2018).

Table 1.1 Characteristics of membrane processes

Membrane filtration can also be classified according to the direction of the feed stream,

namely dead end and crossflow membrane filtration. They are illustrated in the Figure 1.1.

 2

Figure 1.1 Dead end and crossflow membrane filtration (Christodoss, 2013)

Filtration by membrane technology is increasingly being used in productive

processes of numerous industries. Its capacity to separate extracts and specific natural

essences at low or ambient temperatures makes filtration by membranes a more profitable

technology than other traditional methods. The food industry, with important specifications

in the dairy and sugar, pharmaceutical, biotechnological and chemical sectors, is area in

which filtration by membrane can be very useful.

During crossflow membrane filtration, suspended particles are transported to the

membrane surface by permeate flow due to an imposed pressure drop. The layer with

particles is named concentration polarization layer. Because of the finite size of colloidal

particles, the particle concentration on the membrane surface reaches its maximum value

after a short period of time, and a cake layer starts to form as shown in Figure 1.2. The

resulting cake layer on the membrane surface increases the hydraulic resistance to permeate

flow and, thus, reduces permeate flow through the membrane.

 3

Figure 1.2 Concentration polarization and cake layer (Thiam Teik Wan, 2015)

1.2 Thesis Outline

The objective of this thesis is to model the membrane filtration process using

appropriate numerical techniques. In detail, cake formation and permeate flux predicting

models are implemented for microfiltration and nanofiltration respectively. The

simulations are all conducted by OpenFOAM using a finite volume method. A procedure

to deal with the flux of particles on the membrane surface is developed. The filtration

process is simulated by solving solute and solvent in a coupled manner. Additionally, the

total cake resistance is applied to both the cake and membrane in nanofiltration which

results in a smaller specific cake resistance. To validate the new techniques, results of the

microfiltration model are compared to theoretical results and the permeate flux of

nanofiltration is compared to experimental data. At last, the methods are applied to dead

end filtration to observe the different structure of the cake and the velocity profile as

compared to crossflow filtration.

 4

CHAPTER 2

THEORY OF PIMPLEFOAM TO SOLVE NAVIER-STOKES PROBLEM

2.1 Discretisation Procedure for the Navier-Stokes System in PimpleFOAM

PimpleFOAM is a solver in OpenFOAM for transient problems. In this section, the

governing equations that PimpleFOAM solves are presented. The governing equations for

unsteady and incompressible flow are as follows:

 0 U (2.1)

 () () p
t




    


U
UU U (2.2)

where p is the ratio of real pressure to density.

The discretized form of the continuity equation is as follows:

0f

f

   U S U (2.3)

where S is the outward-pointing face area vector, fU is the face velocity. The nonlinear

term in Eqn. (2.2) can be discretized as follows:

() () ()f f

f

  UU S U U

 () f

f

F U

 p p N N

N

a a U U (2.4)

where ,P Na a are functions of U , ,P NU U are the face velocity. F represents the flux

through the face:

 () fF  S U (2.5)

 5

The flux F needs to satisfy the continuity equation (Eqn. (2.1)).

In order to derive the pressure equation, a semi-discretized form of the momentum

equation is used (Jasak, 1996):

P Pa p U H(U) (2.6)

PU can be written as:

1

P

P P

p
a a

  
H(U)

U (2.7)

The H(U) term includes the matrix coefficients for all neighbor faces multiplied by the

corresponding velocities and the source part of the transient term and all other source terms

apart from the pressure gradient:

0

N N

N

a
t

  



U

H(U) U (2.8)

Velocities on the cell face are expressed as the face interpolate:

1

() () () ()P f f f f

P P

p
a a

  
H(U)

U (2.9)

This is used to calculate the face fluxes. The following form of the pressure equation is

obtained by substituting Eqn. (2.9) into Eqn. (2.1).

1
() ()

P P

p
a a

  
H(U)

 () f

f Pa
 

H(U)
S (2.10)

When Eqn. (2.10) is satisfied, the face fluxes are guaranteed to be conservative.

The final form of the discretized incompressible Navier-Stokes system is:

 6

()P P f

f

a p U H(U) S (2.11)

1
[() ()] ()f f f

f fP P

p
a a

    
H(U)

S S (2.12)

2.2 PimpleFOAM Algorithm

The principal of the algorithm is as follows: Within one time step, a solution can

be found with under relaxation which means (Jasak, 1996):

()new old p old

pp p p p   (2.13)

()new old p old

U  U U U U (2.14)

In Eqn. (2.13), newp is the approximation of the pressure field that is used in the next

momentum predictor, oldp is the pressure field used in the momentum predictor, p is the

pressure under-relaxation factor which is between 0 to 1, pp is the solution of the pressure

equation. Similarly, in Eqn. (2.14), new
U is the approximation of the velocity field that is

used in the next pressure predictor, old
U is the velocity field used in the pressure predictor,

U is the velocity under-relaxation factor which is between 0 to 1, p
U is the solution of

the momentum equation. The solution is required to reach a defined tolerance criterion

(Holtzman, 2017).

To find the solution within each time step, the so called outer corrector and inner

corrector are needed. The number of outer correctors of the PimpleFOAM algorithm

defines how many outer iterations to perform. In other words, it defines how many times

the coupled velocity and pressure equations are performed before it is forced to move onto

 7

the next time step, regardless of whether that time step has converged or not. However, the

number of outer correctors does not mean that it performs all of these iterations. It simply

iterates until time step convergence is reached and move on to the next time step. The

criterion for time step convergence is defined as the absolute tolerance of the solver. By

choosing a suitable outer corrector, it can be ensured that explicit parts of the equations are

converged. Another thing to note about the outer corrector is that it solves with relaxation

factors until the last outer iteration. Thus, if one runs for 50 iterations, then the algorithm

runs the first 49 with relaxation factors and 1 without. The number of inner corrector is the

number of times the pressure is corrected within an iteration which is suggested to set low

as 1-3 in the PimpleFOAM guide. A large number of inner correctors rarely improve results

and should conform to this recommendation. The stability of the PimpleFOAM algorithm

can be improved by reducing the relaxation factor, by doing this convergence takes longer

and therefore more outer correctors should be added. This is useful in protecting against

unstable solutions where the maximum Courant number is likely to spike. There are limits

to this and sometimes it is better to simply reduce the time step size or if auto time stepping

reduces the maximum Courant number("CFD: PIMPLE Algorithm", 2018).

 8

CHAPTER 3

FINITE VOLUME METHOD FOR CONVECTION DIFFUSION PROBLEM

In this chapter, the finite volume method for convection diffusion equations is introduced.

In addition, for membrane filtration simulations, an upwind differencing scheme is chosen.

The introduction and reason for the upwind differencing scheme are illustrated in Chapter

3.2.

3.1 Basics of Finite Volume Method for Convection Diffusion Equation

The convection diffusion equation is as follows:

 () ()D
t


 


   


U (3.1)

where  is volume fraction of solute and D is the diffusion coefficient of solute. The

discretisation of the convection term is obtained using Eqn. (3.2):

() () f
V

f

dV    U S U

 () f f

f

 S U

 f

f

F (3.2)

where F is the face flux which is shown in Eqn. (2.5). The face value fU is determined

by an interpolation scheme. Additionally, the face value f is calculated from the values

at the cell centres, which are obtained using the convection differencing scheme. The

discretisation of the diffusion term is obtained using Eqn. (3.3) (Jasak, 1996):

() () f
V

f

D dV D      S

 9

 () ()f f

f

D    S (3.3)

Since the mesh is orthogonal, vector d which points from the owner to its neighbor cell and

face normal vector S are parallel.

Figure 3.1 Vectors d and S on an orthogonal mesh

It is possible to use the following expression for the gradient of the scalar  :

() N P
f

 



  S S

d
 (3.4)

Using Eqn. (3.4), the face gradient of  can be calculated from the two values around the

face.

3.2 Upwind Differencing Scheme

The role of the convection differencing scheme is to determine the value of  on

the face from the values in the cell centers. The upwind differencing scheme is shown in

Figure 3.2:

Figure 3.2 Upwind differencing scheme with face normal velocity

 10

When the normal velocity
PU in Figure 3.2 at cell P points from P to N, the volume

fraction at face f is equal to volume fraction at cell P. By contrast, the volume fraction at

face f is equal to volume fraction at cell N when the velocity
PU at cell P points from N to

P. In other words, the volume fraction at face f is equal to that at the upstream cell center.

There are mainly two reasons to choose upwind differencing scheme. Firstly, the

scheme accounts the direction of flow. In this way, volume fraction on the membrane

surface is equal to the value at the first cell center above the membrane. This is consistent

with the idea that membrane surface rejects all the coming particles when calculating

convection term. Secondly, the first order upwind scheme is bounded which means it gives

physically bounded results. In other words, the volume fraction is always between 0 and 1.

 11

CHAPTER 4

METHODOLOGY

This chapter introduces the techniques to simulate the crossflow membrane filtration

process. Pure water is considered as the solvent and particles are solute. Membrane surface

prevents particles from passing through it. This thesis focuses on predicting concentration

polarization, cake formation and permeate flux for microfiltration and nanofiltration.

Different strategies and conditions are applied to microfiltration and nanofiltration. In

detail, a modified diffusion coefficient and a method to deal with cake resistance are

introduced separately for each type of filtration. Additionally, the way to simulate the

blockage of the solute on the membrane surface is the same for all filtration models and is

illustrated in the part on microfiltration.

4.1 Cake Predicting Model for Microfiltration

 In microfiltration, a shear induced diffusion coefficient is used and the cake

resistance is applied directly to the cake cells. Other details about the physical property of

fluid and the algorithm are introduced in Chapter 4.1.3.

4.1.1 Shear Induced Diffusion Coefficient

Shear induced diffusion dominates when particle sizes are larger than 0.5 m (Cho,

Kim, Moon & Kwon, 2006). In the microfiltration model, since the particle radius is around

2.5 m , a shear induced diffusion coefficient is used. The shear-induced hydrodynamic

diffusion coefficient, D , has the following form (Romero & Davis, 1988):

2 2 8.80.33 (1 0.5)D a e    (4.1)

 12

where
du

dy
  is the local shear rate in the layer and a is the particle radius. It can be seen

from Eqn. (4.1) that the shear induced diffusion coefficient is dependent on velocity and

volume fraction. As a result, the diffusion coefficient is a scalar field instead of a constant

and needs to update at every time step.

4.1.2 Cake Resistance of Microfiltration

In the microfiltration model, once the volume fraction at a cell center exceeds 0.6,

a cake is formed. There is additional resistance offered by the cake. The value of the

specific cake resistance is obtained through the Carman-Kozeny relation:

2 2

3

(1)c c
c

c

C S
r






 (4.2)

where the constant C is 5, c is the porosity of the randomly packed cake layer equal to

max1  and cS is the specific surface,
3

cS
a

 . The unit of specific cake resistance is 2m .

The cake resistance is only applied to the cake cells. Another important parameter is cake

resistance, cR , whose unit is 1m .

c c cR r (4.3)

where c is cake thickness. cR means the total resistance to the fluid caused by the cake

while
cr is a thickness averaged resistance and is a physical characteristic of cake.

 To take cake resistance into account when solving hydrodynamics, cake resistance

is transferred to a source term in the momentum equation. The new momentum equation is

as follows:

 13

() () cp r
t

 


     


U
UU U U (4.4)

4.1.3 Implementation of Model

There are mainly two parts in the simulation: Navier-Stokes equation and

convection diffusion equation of volume fraction. The coupling from the Navier-Stokes

equation to convection diffusion equation is done by using the velocity which is used to

calculate convection term of volume fraction. The coupling from the convection diffusion

equation to the Navier-Stokes equation is achieved by kinematic viscosity,  , which is a

function of concentration (Paipuri, 2014). The functional form of ()  was determined

empirically from viscosity measurements of suspensions of rigid spheres in a Couette

viscometer (Leighton & Acrivos, 1986):

2

0 (1 1.5)

1
c


 





 



 (4.5)

where 0 is the viscosity of the particle free fluid and the solvent is water in all models in

this thesis, c is the value of volume fraction larger than which cake is formed. After the

cake is formed, cake is treated as an extra porous medium. As a result, the viscosity inside

the cake is no longer a function of concentration and is equal to the viscosity of the particle

free fluid.

 The membrane resistance, mR , is transferred to a source term for the momentum

equation similar to the cake resistance. The specific membrane resistance, mr , is calculated

in Eqn. (4.6):

 14

 m
m

m

R
r


 (4.6)

The unit of mr is 2m . The momentum equation including membrane resistance is shown

in Eqn. (4.7):

() () mp r
t

 


     


U
UU U U (4.7)

 Both water and particles are considered flowing at the same velocity. Thus there is

only one velocity in the simulation. After solving the Navier-Stokes system, surface flux

and surface diffusion coefficients are used in the convection diffusion equation. To make

surface flux on the membrane surface equal to the flux at the above cell center, upwind

scheme is used to calculate flux. To prevent particles passing through the membrane

surface, both surface flux and surface diffusion coefficient are set to zero. In OpenFOAM,

the cell centers are numbered from left to right and bottom to top. Each face has an owner

cell center and a neighbor cell center. The owner cell is the cell with the smaller number.

Since the membrane surface is horizontal, when the owner cell of a face has a membrane

resistance while there is no membrane resistance at the neighbour cell, the face is identified

within the membrane surface. Before the convection diffusion equation, the velocity is

calculated and at the beginning of next time step the velocity is updated according to the

new pressure profile. So it is safe to directly set the surface flux on the membrane surface

to zero.

 After the cake is formed, the cake cell has reached its maximum capacity of

particles which means no more particles can come into the cell. To achieve this, the cell

faces are treated as walls. To express this mathematically, the surface flux and diffusion

 15

coefficient on all faces of the cake cell are set to zero. In this way, the volume fraction

calculated from the convection diffusion equation does not increase.

 In terms of boundary conditions, a no-slip condition is used at walls. In addition,

there are one inlet and two outlets in the following crossflow models. Pressure at the bottom

outlet is set to zero and a parabolic velocity profile is set for the inlet which is calculated

using Eqn. (4.8).

2 21
() ()

2
x

dP
U y H y

dx
  (4.8)

where  is the dynamic viscosity, P is the pressure difference in the x direction between

inlet and outlet, H is half of the width of up channel and y is the distance away from

centerline. Eqn. (4.8) is for a rectangular channel flow. Moreover, the right outlet has a

fixed value of pressure based on a given transmembrane pressure which is described in

detail in Chapter 5.1.1. In OpenFOAM, both pressure and velocity of the boundary surface

need to set. The velocity or pressure which is not set to a fixed value at inlet or outlet is set

zero gradient.

 The entire simulation process can be summarized using the following algorithm:

Algorithm 1: Cake predicting model for microfiltration

Initialize the flow solver (velocity, pressure,  ,  , mr ,
cr , D)

Set boundary conditions

While (time  end time) do

 Compute mr

 Solve Navier-Stokes equation

 16

 While (a parabolic flow is reached in the up channel) do

 If the parabolic flow was just reached, set initial  for the upper channel

 Compute D

 Interpolate D to faces to get fD

 Set both F and fD on membrane surface and faces of cake cell zero

 Solve convection diffusion equation

 Compute
cr

 Update 

 End

End

At the beginning, the simulation is solving for the flow only with membrane resistance.

After a parabolic flow is reached in the upper channel, the convection diffusion equation

starts to solve. This is to avoid start error in OpenFOAM. Also in experiment inlet is away

from the membrane to wait for fully developed flow.

4.2 Cake predicting model for Nanofiltration

In nanofiltration, a Brownian diffusion coefficient is used and the total cake

resistance is applied to both cake and membrane. Other details about the physical property

of the fluid and the algorithm are introduced in Chapter 4.2.3.

 17

4.2.1 Brownian Diffusion Coefficient

 Brownian diffusion dominates when particle sizes are smaller than 0.5 m (Cho,

Kim, Moon & Kwon, 2006). In the nanofiltration model, since the particle radius is on the

order of nanometers, a Brownian diffusion coefficient is used. Brownian diffusion comes

from Brownian motion. The diffusion coefficient for a single particle is given by the

Stokes-Einstein equation:

6

kT
D

a
 (4.9)

where k is the Boltzman constant which is 231.38 10 and T is the absolute temperature.

It is shown that the variation of diffusion with particle volume fraction is not significant in

this model (Kim, Marion, Jeong & Hoek, 2006). As a result, the diffusion coefficient at a

cell center can be obtained by using Eqn. (4.9).

4.2.2 Cake Resistance of Nanofiltration

In the nanofiltration model, once the volume fraction at a cell center exceeds 0.63,

the cake is formed. The value of specific cake resistance is also obtained through Eqn. (4.2).

It is around 1710 2m . Then when using the Eqn. (4.4), the result of permeate flux is

extremely smaller than expected. In this way, it is hard to see an increase of the volume

fraction and cake growth.

The new technique to express the cake resistance is applying the total cake

resistance to both cake and membrane. The new specific cake resistance is marked as cr 

which is obtained using Eqn. (4.10):

 18

c c
c

c m

r
r



 
 


 (4.10)

cr  is applied to the cake cell and the cells inside the membrane which have the same

tangential coordinate as the cake cell. c is the cake thickness and its increases with the

growth of the cake. To ensure the total cake resistance does not change, the specific

membrane resistance needs to be updated by Eqn. (4.11):

m m cr r r   (4.11)

 The momentum equation with both cake and membrane resistance in nanofiltration

is shown in Eqn. (4.12):

() () c mp r r
t

  
        


U
UU U U U (4.12)

To validate the special treatment of cake resistance, it is applied to two different models.

The results are shown in Chapter 5.2.

4.2.3 Implementation of Model

 The simulation process for nanofiltration is almost the same as microfiltration. The

idea to set the flux and diffusion coefficient on the membrane surface and faces of cake

cells is exactly the same. The main differences are the technique to apply the new specific

cake resistance, membrane resistance and the way to calculate the diffusion coefficient.

Additionally, in Eqn. (4.5) when the concentration is 0.62,
c




 is very close to 1. To avoid

viscosity going to infinity, Eqn. (4.5) is used only when volume fraction is smaller than

0.62.

 19

 The entire simulation process can be summarized using the following algorithm:

Algorithm 2: Cake predicting model for nanofiltration

Initialize the flow solver (velocity, pressure,  ,  , mr  , cr  , D)

Set boundary conditions

While (time  end time) do

 Compute mr 

 Solve Navier-Stokes equation

 While (a parabolic flow is reached in the up channel) do

 If the parabolic flow was just reached, set initial  for the upper channel

 Compute D

 Interpolate D to faces to get fD

 Set both F and fD on membrane surface and faces of cake cell zero

 Solve convection diffusion equation

 Compute cr 

 Update 

 End

End

 20

CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents results of different models discussed in Chapter 4. It starts with the

results of microfiltration with four different applied pressures. Phenomena of concentration

polarization, cake formation and flux decline are discussed. Then two simulations of

nanofiltration are given. Numerical results of nanofiltration models are compared to

experimental data to validate the technique of dealing with cake resistance for

nanofiltration.

5.1 Microfiltrtaion Results

 This section describes microfiltration results. The geometry of the filtration device

and exact values of physical properties of the solvent and solute are included. The effect of

transmembrane pressure applied to the device on permeate flux and cake layer is studied.

5.1.1 Model Description

 The geometry of the filtration device is shown in Figure 5.1. There are two outlets.

Flow entries from the left side. Part of the flow leaves the device at the right side and part

leaves the device through bottom. The membrane location is indicated by dashed lines. The

wall location is indicated by bold line. The unit of lengths in Figure 5.1 is m .

 21

Figure 5.1 Geometry of microfiltration device

Transmembrane pressure (TMP) is defined as pressure difference between either

side of membrane at its half way point.

0 ()in in out per

L
TMP p p p p

L
    (5.1)

In Eqn. (5.1), inp is pressure at the inlet, 0L is the distance of the middle of membrane to

inlet, L is the length of the channel, outp is the pressure at the right outlet, perp is the

pressure at the bottom outlet. The radius of solute in this model is 2.5 m and therefore the

specific cake resistance can be calculated using Eqn. (4.2) with the porosity of the

randomly packed cake layer at 0.4. A pressure drop between the inlet and the right outlet

of 270 Pa is used. This results in a crossflow with a parabolic velocity profile calculated

using Eqn. (4.8). A fixed inlet concentration of 0.05 is used which is the same as the initial

condition for the upper channel. The particle free medium is considered as water. Therefore

0 in Eqn. (4.5) is 6 210 /m s . For this filtration device the resistance of the membrane mR

is 8 11.62 10 m .

 22

5.1.2 Results

 For microfiltration, simulations with four TMPs were conducted using one

geometry. Other parameters are keep constant to analyze the effect of pressure on the cake

layer and permeate flux.

 The four TMPs are 1180, 1780, 2980, 4180 Pa. The model is run at each TMP until

steady state is reached. Among the four cases, only the pressure at the right outlet is

changed. To test the approach to block particles on the membrane surface, one needs to

capture the increase in concentration. So for microfiltration methods and equations are

solved in non-dimensional form.

Concentration distribution at 0.02s is shown in Figure 5.2.

Figure 5.2 Concentration distribution at different TMPs in microfiltration

From the color legend, it can be concluded that firstly when TMPs are 1180 Pa and 1780

Pa, there is no cake layer formed. Only concentration polarization is built up. Secondly,

the cake at TMP of 4180 Pa is thicker than the one at 2980 Pa. Concentration polarization

 23

is the first stage of cake formation. With higher TMP, the velocity coming to the membrane

surface is larger which means within unit time, the flow brings more particles toward the

membrane surface. Moreover, particles have the ability to diffuse and can be blown away

by the tangential flow. So the increase in volume fraction depends on the speed of blocking

particles over the membrane and the speed of particle blowing away and diffusing away.

In the four cases, the tangential velocity of crossflow is similar and the diffusion coefficient

is also the same at a same concentration. As a result, concentration over the membrane

increases faster and more with larger permeate flux which is caused by larger TMP.

Another important point to make is that the thickest concentration polarization or cake in

each case is at the end of the membrane. This is possibly due to a higher convective force

by the fluid on the solute particles in the crossflow direction (Paipuri, 2014). Also the

formation of the cake can be observed during the simulation to start to form from the end

of membrane.

The other important result is a permeate flux decline. Permeate flux is the flux

coming out of the membrane. In the simulations, the average velocity at the first cell center

normal to the membrane is taken as the permeate flux. The average velocity can be

calculated using Eqn. (5.3):

0
()

mL

y

w

m

U x dx
v

L



 (5.3)

where mL is the length of the membrane. The initial and final permeate flux at different

TMP are shown in Figure 5.3.

 24

Figure 5.3 Initial and final permeate flux at different TMP

It can be seen there is a nonnegligible decrease in permeate flux with TMPs at 2980 Pa and

4180 Pa. This is due to the additional resistance of the cake. This can also explain why the

final permeate flux is almost same as initial flux with TMPs at 1180 Pa and 1780 Pa. The

value of the final permeate flux is compared to the theoretical data using Eqn. (5.4)

(Kromkamp et al., 2005):

4
1/30.072 ()c

w wall

b m

a
v

L





 (5.4)

where
wall is the nominal shear rate at the wall, b is the bulk particle volume fraction and

c is the maximal volume fraction. The results are shown in Table 5.1.

 25

Table 5.1 Permeate flux in microfiltration

TMP
wall (410 1s) wv (/m s , calculated) wv (/m s , simulated) error

1180 5.4 -0.0097 -0.008 17.5%

1780 6.2 -0.011 -0.012 9.1%

2980 7 -0.013 -0.017 30.7%

4180 9 -0.016 -0.021 31.25%

wall is obtained from the simulation results. When a cake is formed, the simulation results

of the permeate flux are larger than theoretical data. The possible reason is that the flow is

not steady state yet and the cake is still growing. At steady state, the transport of particles

from the bulk to the concentration polarization layer by permeate flow is balanced by the

transport of particles due to crossflow (Hong, Faibish & Elimelech, 1997). When doing the

simulation, the case is stopped by the end time which comes from a plot of flux as a

function of time in Kromkamp’s work (Kromkamp et al., 2005). In Kromkamp’s work

(Kromkamp et al., 2005), the velocity has already reached steady state at time 0.02 s. Thus,

the end time is set to 0.2. But the length of the membrane in the current work is smaller

than in Kromkamp’s model (Kromkamp et al., 2005). Another possible reason is that the

velocity at the cell center is taken as the permeate flux while the exact permeate flux is the

velocity at the membrane. If using an interpolation method to compute the velocity at the

membrane surface, the permeate flux from the simulation would be smaller than what is

shown in Table 5.1 since the velocity inside the membrane region is smaller than that above

the membrane due to the membrane resistance.

 26

5.2 Nanofiltration Results

This section describes two models of nanofiltration. The approach to represent cake

resistance for nanofiltration is applied to different cases for validation. Both cases have

experimental data to compare.

5.2.1 Simulation of Suhan Kim’s Model

 Work in this chapter follows Suhan Kim’s model (Kim, Marion, Jeong & Hoek,

2006).

5.2.1.1Model Description

The geometry of the filtration device is shown in Figure 5.4. The fluid flows in the

same direction as in the microfiltration. Part of the flow leaves the device at the right side

and part leaves the device through bottom. The membrane location is indicated by dashed

lines. The wall location is indicated by bold line. The unit of lengths in Figure 5.4 is cm .

The widths of upper and bottom channel are the same as in Kim’s model. However, the

length of the channel and membrane are shorter to save computational cost but this does

not have impact on the results. Moreover, in Paipuri’s work (Paipuri, 2014), the length also

has no effect for this case. To get stable results, the inlet and right outlet are set away from

the membrane.

 27

Figure 5.4 Geometry of Suhan Kim’s model

 The particle radius in this model is 60 nm and the temperature is 20 C , therefore

the diffusion coefficient can be calculated using Eqn. (4.9). The thickness of the membrane

is not given in Kim’s model (Kim, Marion, Jeong & Hoek, 2006) and is set to be about half

the width of the bottom channel. From the experimental data (Kim, Marion, Jeong & Hoek,

2006), the volume fraction of randomly packed cake layer is 0.67 so the porosity, c is set

0.33. Specific cake resistance, cr  can be calculated using Eqn. (4.10) and is 17 21.6 10 m .

When the cake is formed, the specific membrane resistance in the membrane cells below

the cake is updated through Eqn. (4.11).

In this model, TMP is 70 kPa and the crossflow velocity is 6 /cm s . A fixed inlet

concentration of 54 10 is used which is the same as the initial condition for the upper

channel. For this filtration device the resistance of the membrane is 11 18.11 10 m .

 Since the thickness of the cake formed in the experiment is in the order of a few

tenths of m , the vertical mesh size inside the cake region which is predicted to be no

thicker than 30 m is set to be 0.75 m to capture the cake. Outside the cake region and

above the membrane, graded mesh where cell-to-cell expansion ratio is about 1.1 is used.

To see the meshes clearly, meshes around membrane surface are zoomed in to show in

mR

 28

Figure 5.5.

Figure 5.5 Meshes around membrane surface

5.2.1.2 Results

In this model, there are mainly two parts of results, permeate flux decline and cake

layer formation. The value of TMP is given in the experimental data. In the simulation, the

inlet velocity is set as the crossflow velocity and pressures at the two outlets are set. The

pressures are calculated using Eqn. (5.1).

The plot of permeate flux versus time is shown in Figure 5.6.

 29

Figure 5.6 Permeate flux with time at TMP 70 kPa

It can be observed that the model and experimental data are very much in agreement. But

at the beginning, the flux calculated in the simulation decreases sharper than in the

experiment. The possible reason is the porosity c used to calculate the specific cake

resistance by Eqn. (4.2) is not accurate. The maximum volume fraction is used to get

porosity. In other words, the porosity is smaller than the actual value and therefore the

specific cake resistance used in the simulation is larger. Additionally, constant porosity

with time can cause over estimation of the permeate flux decline (Kim, Marion, Jeong &

Hoek, 2006). The other error shown in Figure 5.6 is that the flux obtained from the

simulation is larger than in the experimental. This is the outcome of the above first error.

As the flux is smaller at the beginning, it causes slower growth of the cake which results

in smaller cake resistance according to Eqn. (4.10) which shows cake resistance depends

on cake thickness.

 30

 Concentration inside the cake region at 70 min is shown in Figure 5.7.

Figure 5.7 Concentration inside the cake region at 70 min

To validate the blockage of particles by membrane surface, a paticle mass balance equation

is used (Hong, Faibish & Elimelech, 1997):

0 0() c
c w

d
v

dt


    (5.5)

where c is the volume fraction inside the concentration polarization layer, 0 is the bulk

concentration, c is the thickness of the concentration polarization layer and wv is the

permeate flux. After particles accumulate for 18.3 second, the volume fraction is 0.07 as

shown in Figure 5.8. At this time, c is considered as the vertical mesh size and wv is

considered as the initial permeate flux. c obtained by using Eqn. (5.5) is 0.09. Thus the

difference is 22.2%.

 31

Figure 5.8 Concentration at 18.3 s

5.2.2 Simulation of Seungkwan Hong’s Model

 Work in this chapter follows Seungkwan Hong’s model (Hong, Faibish &

Elimelech, 1997).

5.2.2.1 Model Description

The geometry of the filtration device is shown in Figure 5.9. Fluid flows in the same

direction as Kim’s model (Kim, Marion, Jeong & Hoek, 2006). The width of upper channel

is the same as Hong’s model. However, the length of the channel and the membrane is

shorter to save computational cost but this does not have impact on the results. To get stable

results, the inlet and right outlet are set away from the membrane.

 32

Figure 5.9 Geometry of Hong’s model

The particle radius in this model is 100 nm and the temperature is 20 C , therefore

the diffusion coefficient can be calculated by using Eqn. (4.9). The thickness of the

membrane is not given in Kim’s model and is set to be the width of the bottom channel.

The porosity of the randomly packed cake layer, c is set to 0.36 which is the same as in

Hong’s model. The specific cake resistance, cr  can be calculated using Eqn. (4.10) and is

16 23.95 10 m . When the cake is formed, the specific membrane resistance at the

membrane cells below the cake is updated through Eqn. (4.11).

In this model, TMP is 40 kPa. The crossflow velocity is set 0.002 /m s which is

one tenth of the velocity in Hong’s model. Since in Eqn. (3.1) tangential velocity has the

potential to blow away cake, velocity is set small to capture cake. In Hong’s work,

crossflow velocity has no significant effect on cake formation. Fixed inlet concentration of

41 10 is used which is the same as initial condition for upper channel. For this filtration

device, the resistance of the membrane is 12 11.25 10 m .

 Similar to Kim’s model, the vertical mesh size inside the cake region is set to be 1

m to capture the cake. Outside the cake region and above the membrane, graded mesh

where cell-to-cell expansion ratio is about 1.1 is used.

mR

 33

5.2.2.2 Results

 Concentration inside the cake region at 25min is shown in Figure 5.9.

Figure 5.10 Concentration inside the cake region at 25min

Permeate flux with time is shown in Figure 5.11.

Figure 5.11 Flux with time in the case of 100 nm particle size under TMP of 40 kPa

 34

Compared to experimental data, the flux obtained from the simulation is larger and

deceases slower. The slow decrease in the flux is because slow growth of the cake. The

possible reason is the convection diffusion equation in the simulation has axial diffusion

and axial convection. In Hong’s numerical model, axial diffusion is neglected because it is

much smaller than the other terms under typical conditions of crossflow filtration.

Additionally, the assumption that the longitudinal transport of excess particles by crossflow

is negligible is used (Hong, Faibish & Elimelech, 1997). Since two terms remain in the

simulation, they would have impact on the concentration. To verify the way to represent

cake resistance for the flow, the theoretical relation between permeate flux and resistance

is described by a Darcy type expression of the form (Cho, Kim, Moon & Kwon, 2006):

()m c c

p
v

R r 



 (5.6)

At 25min, there are five cake layers and thus the thickness of cake is 5 m and permeate

flux is 23 /m s as it is shown in Figure 5.11. From Eqn. (5.6), permeate flux is 27

/m s .So the difference is about 15%.

5.3 Application to Dead End Filtration

As demonstrated in the above two nanofiltration cases, the new model works well

and simulation results agree with experimental results.

The methods are applied to dead end filtration. The complete feed flow is forced

through the membrane. There are two models in this section. One model uses the

microfiltration membrane condition at TMP 4180 Pa introduced in Chapter 5.1.1 and the

other one uses the membrane condition in Hong’s model introduced in Chapter 5.2.2.1.

 35

The variable of interest in dead end filtration is velocity inside the membrane and

cake structure. In terms of initial condition, pressures at both inlet and outlet are set at the

beginning. In this way, it is a pressure driven flow. The general geometry is shown in

Figure 5.12. The membrane is in the middle of the device and surfaces expect inlet and

outlet are walls.

Figure 5.12 Geometry of dead end filtration

For incompressible flow inside the membrane, the following momentum equation in y

direction can be obtained:

2 2

2 2m

Dv v v
p gY r v

Dt x y
  

 
     

 
 (5.7)

where y is vertical direction, x is tangential direction, v is velocity in y direction, u is

velocity in x direction, g is acceleration of gravity and Y is elevation. When it is steady

 36

state and flow is fully developed,
Dv

Dt
 and

2

2

v

y




 vanish. The aim of solving this equation

is to find how v inside the membrane behaves along the membrane length. Also velocity

coming to and out of membrane are same based on mass conservation. Eqn. (5.7) can be

written as:

2

2 m

v
r v p gY

x
 


   


 (5.8)

with no slip condition:

(0) 0v x  

() 0v x L  (5.9)

 The exact solution to Eqn. (5.9) is as follows:

1 2 0() m mr x r x
v x C e C e v


  

1 0 2C v C  

0
2

(1)
)

m

m m

r L

r L r L

v e
C

e e



 



0

m

p gY
v

r

 
  (5.10)

By ploting ()v x with different mr , the effect of mr on the vertical velocity can be seen in

Figure 5.13.

 37

Figure 5.13 Effect of mr on vertical velocity

With larger mr , the vertical velocity is close to uniform along the tangential direction while

it is easy to see the curved shape in the velocity profile for smaller mr . In nanofiltration,

mr is in the order of 1510 . So
2C is almost

0v , 1C is almost 0, 2
mr x

C e


 is almost 0,

0()v x v . This means the velocity inside the membrane region is almost constant in the

tangential direction.

 The plot of the vertical velocity in microfiltration is shown in Figure 5.14 and the

area around the left side of the wall is zoomed in in Figure 5.15. Additionally, a plot of

vertical velocity in Hong’s model is shown in Figure 5.16.

 38

Figure 5.14 Vertical velocity in microfiltration

Figure 5.15 Area around left side of wall

 39

Figure 5.16 Vertical velocity in Hong’s model

From both models, outside of membrane, there are symmetrical boundary layers near walls.

Velocity in nanofiltration matches the analysis based on Eqn. (5.9) that it is almost constant

along the membrane length.

 Another important phenomenon is cake formation. A plot of volume fraction in

microfiltration is shown in Figure 5.17. and plot of volume fraction in Hong’s model is

shown in Figure 5.18. The cake region in Figure 5.18 is zoomed in in Figure 5.19. Both

Figure 5.17 and Figure 5.18 include the whole membrane length.

 40

Figure 5.17 Volume fraction in microfiltration

Figure 5.18 Volume fraction in Hong’s model

 41

 Figure 5.19 Cake region in Hong’s model

Compared to the previous microfiltration cases, the thickest cake shown in Figure 5.17 is

no longer at the end of the membrane while it is close to a parabolic shape. The cake in

nanofiltration is almost uniform.

 42

CHAPTER 6

CONCLUSIONS

6.1 Conclusions

In this thesis, a simple method to simulate blockage of particles on membrane

surfaces is developed. The method is applied to each case and is validated by observing

increase in volume fraction above the membrane and no increase below the membrane.

Permeate flux in the microfiltration models is compared to theoretical data and the

differences are acceptable.

 Furthermore, a new technique to represent cake resistance to the flow is introduced.

To validate the new technique, it is applied to Kim and Hong’s model. It is seen that

simulation results of permeate flux are in a very good agreement with experimental results.

Concentration distribution inside the cake region is shown. Reasons for the differences in

the flux are explored.

 To understand the above two approaches better, simulation of dead end filtration is

conducted. Velocity profiles inside the membrane region are studied. The cake structure is

also observed to be consistent with velocity profile.

 43

REFERENCES

CFD: PIMPLE Algorithm. (2018). SimScale CAE Forum. Retrieved 27 March 2018, from

https://www.simscale.com/forum/t/cfd-pimple-algorithm/81418

Cho, J., Kim, I., Moon, J., & Kwon, B. (2006). Determining Brownian and shear-induced

diffusivity of nano- and micro-particles for sustainable membrane filtration,

Desalination, 188(1-3),213-216. http://dx.doi.org/10.1016/j.desal.2005.04.119

Christodoss, D. (2013). Tangential Flow Filtration to Enable High Solids Concentration,

Improved Process Throughput, Capacity and Cost. Presentation.

Holtzman, T. (2017). Mathematics, Numerics, Derivations and OpenFOAM.

Hong, S., Faibish, R., & Elimelech, M. (1997). Kinetics of Permeate Flux Decline in

Crossflow Membrane Filtration of Colloidal Suspensions. Journal Of Colloid And

Interface Science, 196(2), 267-277. http://dx.doi.org/10.1006/jcis.1997.5209

Industrial applications of membrane filtration. (2018). Industrial wastewater & air

treatment. Retrieved 30 March 2018, from https://blog-

en.condorchem.com/industrial-applications-of-membrane-filtration/#.Wr7Lx-jwY2w

Jasak, H. (1996). Error Analysis and Estimation for the Finite Volume Method with

Applications to Fluid Flows. the University of London.

Kim, S., Marion, M., Jeong, B., & Hoek, E. (2006). Crossflow membrane filtration of

interacting nanoparticle suspensions. Journal Of Membrane Science, 284(1-2), 361-

372. http://dx.doi.org/10.1016/j.memsci.2006.08.008

Kromkamp, J., Bastiaanse, A., Swarts, J., Brans, G., van der Sman, R., & Boom, R. (2005).

A suspension flow model for hydrodynamics and concentration polarisation in

crossflow microfiltration. Journal Of Membrane Science, 253(1-2), 67-79.

http://dx.doi.org/10.1016/j.memsci.2004.12.028

Leighton, D., & Acrivos, A. (1986). Viscous resuspension. Chemical Engineering

Science, 41(6), 1377-1384. http://dx.doi.org/10.1016/0009-2509(86)85225-3

Paipuri, M. (2014). Numerical Modelling of Membrane filtration using Lattice Boltzmann

and Finite Volume Methods. Swansea University.

Romero, C., & Davis, R. (1988). Global model of crossflow microfiltration based on

hydrodynamic particle diffusion. Journal Of Membrane Science, 39(2), 157-185.

http://dx.doi.org/10.1016/s0376-7388(00)80987-4

Thiam Teik Wan, W. (2015). Experimental Study of the Separation of Oil in Water

Emulsions by Tangential Flow Microfiltration Process. Part 1: Analysis of Oil

Rejection Efficiency and Flux Decline. Journal Of Membrane Science &

Technology, 05(01). http://dx.doi.org/10.4172/2155-9589.1000130

 44

APPENDIX A

MAIN CODES OF MICROFILTRATION SOLVER

 45

1)

// calculate diffusion coefficient D

vector abcdex(1,0,0);

vector abcdey(0,1,0);

//shear rate

const volScalarField shearRate = mag((fvc::grad(U & abcdex)) & abcdey);

shear=shearRate;

//D

dVf=0.33*shearRate*pow(a,2)*pow(vf,2)*(1+0.5*exp(8.8*vf));

const labelUList& owner1 = mesh.owner();

const labelUList& neighbour1 = mesh.neighbour();

//below the membrane, D=0

forAll (mesh.C(),celli)

 {

 if (mesh.C()[celli].y()<=11.2)

 {

 dVf[celli]=0;

 }

 }

//when there is a cake, D=0

forAll (mesh.C(),celli)

 {

 if (srcu[celli]>0)

 {

 dVf[celli]=0;

 }

 }

2)

// define the source term for membrane

int fg2=0;

double Rm=1.62e+2;

double thi=1.2;

const volScalarField nu2 = turbulence->nu();

forAll (mesh.C(),celli)

{

//find membrane region

 if (mesh.C()[celli].x()>=(15) && mesh.C()[celli].x()<=(45) &&

mesh.C()[celli].y()>(10) && mesh.C()[celli].y()<(11.2))

 {

 fg2=1;

 46

 }

 srcm[celli]=fg2*nu2[celli]*Rm/thi;

 fg2=0;

}

3)

// define the source term for U

int fg=0;

const volScalarField nu1 = turbulence->nu();

forAll (mesh.C(),celli)

{

 if (vf[celli]>=0.6)

 {

 fg=1;

 srcu[celli]=fg*nu1[celli]/nu1[celli]*5.0*pow((1-

0.4),2)*pow((3/a.value()),2)/pow(0.4,3);

 }

 fg=0;

}

forAll (mesh.boundaryMesh(), patchI)

{

 forAll(srcu.boundaryField()[patchI], faceI)

 {

 if (vf.boundaryField()[patchI][faceI]>=0.6)

 {

 fg=1;

srcu.boundaryFieldRef()[patchI][faceI]=fg*nu1.boundaryField()[patchI][faceI]/nu1.boun

daryField()[patchI][faceI]*5.0*pow((1-0.4),2)*pow(3/a.value(),2)/pow(0.4,3);

 }

 fg=0;

 }

}

 47

4)

// Solve the Momentum equation

MRF.correctBoundaryVelocity(U);

tmp<fvVectorMatrix> tUEqn

(

 fvm::ddt(U) + fvm::div(phi, U)

 + MRF.DDt(U)

 + turbulence->divDevReff(U)

 ==

 fvOptions(U)-fvm::Sp(srcm, U) -fvm::Sp(srcu, U)

);

fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor())

{

 solve(UEqn == -fvc::grad(p));

 fvOptions.correct(U);

}

int num=0;

int num2=0;

double sum=0.0;

double sum2=0.0;

double ave=0.0;

double ave2=0.0;

double sum3=0.0;

double ave3=0.0;

double sum4=0;

double sum5=0;

const labelUList& owner = mesh.owner();

const labelUList& neighbour = mesh.neighbour();

forAll(owner, facei)

 {

 //look for membrane surface

 if ((srcm[owner[facei]]!=0 && srcm[neighbour[facei]]==0) ||

(srcm[owner[facei]]==0 && srcm[neighbour[facei]]!=0))

 {

 //top membrane surface

 48

 if (mesh.C()[neighbour[facei]].y() > 11.2 ||

mesh.C()[owner[facei]].y() > 11.2)

 {

 sum=sum+U[neighbour[facei]].x();

 sum2=sum2+U[neighbour[facei]].y();

 sum3=sum3+U[owner[facei]].y();

 num=num+1;

 }

 //bottom membrane surface

 if (mesh.C()[neighbour[facei]].y() > 10 &&

mesh.C()[owner[facei]].y() < 10)

 {

 sum4=sum4+U[neighbour[facei]].y();

 sum5=sum5+U[neighbour[facei]].x();

 num2=num2+1;

 }

 }

 }

reduce(sum,sumOp<scalar>());

reduce(sum2,sumOp<scalar>());

reduce(sum3,sumOp<scalar>());

reduce(num,sumOp<scalar>());

ave=sum2;

ave2=sum2/num;

ave3=sum3/num;

//Info<< ave <<endl;

Info<< ave2 <<endl;

Info<< num <<endl;

//Info<< ave3 <<endl;

Info<< sum4 <<endl;

Info<< num2 <<endl;

Info<< sum5 <<endl;

5) viscosity

namespace Foam

{

namespace viscosityModels

{

 defineTypeNameAndDebug(changenutwo, 0);

 addToRunTimeSelectionTable(viscosityModel, changenutwo, dictionary);

}

}

 49

Foam::volScalarField

Foam::viscosityModels::changenutwo::calcNu() const

{

 const fvMesh& mesh_ = U_.mesh();

 const volScalarField& vf = mesh_.lookupObject<volScalarField>("vf");

 volScalarField newNu=nu0_*vf;

 forAll (mesh_.C(),celli)

 {

 if (vf()[celli]<0.6)

 {

 newNu[celli]= nu0_.value()*pow(1+1.5*vf()[celli]/(1-

vf()[celli]/0.6),2);

 }

 else

 {

 newNu[celli]= nu0_.value()*1;

 }

 }

 forAll (mesh_.boundaryMesh(), patchI)

 {

 forAll(vf.boundaryField()[patchI], faceI)

 {

 if (vf.boundaryField()[patchI][faceI]<0.6)

 {

 newNu.boundaryFieldRef()[patchI][faceI]=nu0_.value()*pow(1+1.5*vf.boundary

Field()[patchI][faceI]/(1-vf.boundaryField()[patchI][faceI]/0.6),2);

 }

 else

 {

 newNu.boundaryFieldRef()[patchI][faceI]= nu0_.value()*1;

 }

 }

 }

 return newNu;

}

 50

6) main function

int main(int argc, char *argv[])

{

 #include "postProcess.H"

 #include "setRootCase.H"

 #include "createTime.H"

 #include "createMesh.H"

 #include "createControl.H"

 #include "createTimeControls.H"

 #include "createFields.H"

 #include "createFvOptions.H"

 #include "initContinuityErrs.H"

 turbulence->validate();

 // * //

 Info<< "\nStarting time loop\n" << endl;

 //dimensionSet::debug = 0;

 while (runTime.run())

 {

 #include "readTimeControls.H"

 #include "CourantNo.H"

 #include "setDeltaT.H"

 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 const labelUList& owner6 = mesh.owner();

 const labelUList& neighbour6 = mesh.neighbour();

 // --- Pressure-velocity PIMPLE corrector loop

 while (pimple.loop())

 {

 #include "sourcemem.H"

 #include "UEqn.H"

 // --- Pressure corrector loop

 while (pimple.correct())

 {

 #include "pEqn.H"

 }

 51

 if (pimple.turbCorr())

 {

 laminarTransport.correct();

 turbulence->correct();

 }

 }

 // wait for fuuly developed

 if (mesh.time().value() > 17907) //17910(4180pa)16480(1780pa)17980(1180pa)

 {

 abc=abc+1;

 if (abc==1)

 {

//interfield

 forAll (mesh.C(),celli)

 {

 if (mesh.C()[celli].y()>11.2)

 {

 vf[celli]=0.05;

 }

 if (mesh.C()[celli].y()<=11.2)

 {

 vf[celli]=0;

 }

 }

 }

 #include "dVfcal.H"

 surfaceScalarField dVff = fvc::interpolate(dVf);

 forAll(neighbour6, facen)

 {

//all surfaces inside membrane including top

 if (srcm[neighbour6[facen]]!=0 || srcm[owner6[facen]]!=0 ||

srcu[neighbour6[facen]]!=0 || srcu[owner6[facen]]!=0)

 {

 phi[facen]=0;

 dVff[facen]=0;

 }

 }

//convection diffusion equation

 52

 fvScalarMatrix vfEqn

 (

 fvm::ddt(vf)

 + fvm::div(phi, vf)

 - fvm::laplacian(dVff, vf)

 ==

 fvOptions(vf)

);

 vfEqn.relax();

 fvOptions.constrain(vfEqn);

 vfEqn.solve();

 fvOptions.correct(vf);

 #include "sourceU.H"

}

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

 << " ClockTime = " << runTime.elapsedClockTime() << " s"

 << nl << endl;

 //Info<< mesh.time().value() << endl;

 }

 Info<< "End\n" << endl;

 return 0;

}

 53

APPENDIX B

MAIN CODES OF SOLVER FOR KIM’S MODEL

 54

1)

// define the equation for D

forAll (mesh.C(),celli)

 {

 dVf[celli]=3.6e-12;

 }

const labelUList& owner1 = mesh.owner();

const labelUList& neighbour1 = mesh.neighbour();

forAll (mesh.C(),celli)

 {

 if (mesh.C()[celli].y()<=0.0032)

 {

 dVf[celli]=0;

 }

 }

forAll (mesh.C(),celli)

 {

 if (srcu[celli]>0)

 {

 dVf[celli]=0;

 }

 }

2)

// define the source term for membrane

int fg2=0;

double Rm=8.11e+11;

double thi=0.0012;

int numb=0;

const volScalarField nu2 = turbulence->nu();

//find the thickest cake

forAll(mesh.C(),cellh)

{

 if(vf[cellh]>0.63)

 {

 ymax[cellh]=mesh.C()[cellh].y();

 forAll(mesh.C(),cellj)

 {

 if (abs(mesh.C()[cellj].x()-mesh.C()[cellh].x())<1e-8 &&

vf[cellj]>0.63 && mesh.C()[cellj].y()>ymax[cellh])

 {

 55

 ymax[cellh]=mesh.C()[cellj].y();

 }

 }

 rc[cellh]=((ymax[cellh]-0.0032)/(0.75e-6)*2+1)/2*(0.75e-6)*(1.6e+17);

 }

}

forAll (mesh.C(),celli)

{

 if (mesh.C()[celli].x()>=(0.02) && mesh.C()[celli].x()<=(0.07) &&

mesh.C()[celli].y()>(0.002) && mesh.C()[celli].y()<(0.0032))

 {

 fg2=1;

 srcm[celli]=fg2*nu2[celli]*Rm/thi;

//if with same x position, there is a cake

 forAll(mesh.C(),cellm)

 {

 if (abs(mesh.C()[cellm].x()-mesh.C()[celli].x())<1e-8 &&

vf[cellm]>0.63)

 {

 srcm[celli]=fg2*nu2[celli]*Rm/thi+fg2*nu2[celli]*rc[cellm]/(thi+ymax[cellm]-

0.0032);

 }

 }

 }

}

3)

// define the source term for U

const volScalarField nu1 = turbulence->nu();

int fg=0;

forAll(mesh.C(),cellh)

{

 if(vf[cellh]>0.63)

 {

 ymax[cellh]=mesh.C()[cellh].y();

 forAll(mesh.C(),cellj)

 {

 if (abs(mesh.C()[cellj].x()-mesh.C()[cellh].x())<1e-8 &&

vf[cellj]>0.63 && mesh.C()[cellj].y()>ymax[cellh])

 {

 ymax[cellh]=mesh.C()[cellj].y();

 }

 }

 rc[cellh]=((ymax[cellh]-0.0032)/(0.75e-6)*2+1)/2*(0.75e-6)*(1.6e+17);

 56

 srcu[cellh]=nu1[cellh]*rc[cellh]/(0.0012+ymax[cellh]-0.0032);

 }

}

4)

// Solve the Momentum equation

MRF.correctBoundaryVelocity(U);

tmp<fvVectorMatrix> tUEqn

(

 fvm::ddt(U) + fvm::div(phi, U)

 + MRF.DDt(U)

 + turbulence->divDevReff(U)

 ==

 fvOptions(U)-fvm::Sp(srcm, U)-fvm::Sp(srcu, U)

);

fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor())

{

 solve(UEqn == -fvc::grad(p));

 fvOptions.correct(U);

}

int num=0;

int num1=0;

int num2=0;

double sum=0.0;

double sum1=0.0;

double ave=0.0;

double ave1=0.0;

double sum2=0;

double ave2=0;

double sum3=0;

double ave3=0;

const labelUList& owner = mesh.owner();

const labelUList& neighbour = mesh.neighbour();

forAll(owner, facei)

 {

 57

 if (srcm[owner[facei]]!=0 && srcm[neighbour[facei]]==0) //||

(srcm[owner[facei]]==0 && srcm[neighbour[facei]]!=0))

 {

// calclate permeate flux

 if (mesh.C()[neighbour[facei]].y() > 0.0032)

 {

 sum=sum+U[neighbour[facei]].y();

 sum1=sum1+U[owner[facei]].y();

 num=num+1;

 }

//flux inside cake

 if(vf[neighbour[facei]]>=0.63)

 {

 num2=num2+1;

 sum2=sum2+U[neighbour[facei]].y();

 //sum3=sum3+U[owner[facei]].y();

 }

 }

 }

5) viscosity for nanofiltration

namespace Foam

{

namespace viscosityModels

{

 defineTypeNameAndDebug(changenunf, 0);

 addToRunTimeSelectionTable(viscosityModel, changenunf, dictionary);

}

}

//calcNu

Foam::volScalarField

Foam::viscosityModels::changenunf::calcNu() const

{

 const fvMesh& mesh_ = U_.mesh();

 const volScalarField& vf = mesh_.lookupObject<volScalarField>("vf");

 volScalarField newNu=nu0_*vf;

//Foam::volScalarField nu2_;

 forAll (mesh_.C(),celli)

 58

 {

 if (vf()[celli]<0.625)

 {

 newNu[celli]= nu0_.value()*pow(1+1.5*vf()[celli]/(1-

vf()[celli]/0.63),2);

 }

 else

 {

 newNu[celli]= nu0_.value()*1;

 }

 }

 forAll (mesh_.boundaryMesh(), patchI)

 {

 forAll(vf.boundaryField()[patchI], faceI)

 {

 if (vf.boundaryField()[patchI][faceI]<0.625)

 {

 newNu.boundaryFieldRef()[patchI][faceI]=nu0_.value()*pow(1+1.5*vf.boundary

Field()[patchI][faceI]/(1-vf.boundaryField()[patchI][faceI]/0.63),2);

 }

 else

 {

 newNu.boundaryFieldRef()[patchI][faceI]= nu0_.value()*1;

 }

 }

 }

 return newNu;

}

6) main function

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"

#include "turbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvOptions.H"

// * //

int main(int argc, char *argv[])

{

 #include "postProcess.H"

 59

 #include "setRootCase.H"

 #include "createTime.H"

 #include "createMesh.H"

 #include "createControl.H"

 #include "createTimeControls.H"

 #include "createFields.H"

 #include "createFvOptions.H"

 #include "initContinuityErrs.H"

 turbulence->validate();

 // * //

 Info<< "\nStarting time loop\n" << endl;

 //dimensionSet::debug = 0;

 while (runTime.run())

 {

 #include "readTimeControls.H"

 #include "CourantNo.H"

 #include "setDeltaT.H"

 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 const labelUList& owner6 = mesh.owner();

 const labelUList& neighbour6 = mesh.neighbour();

 // --- Pressure-velocity PIMPLE corrector loop

 while (pimple.loop())

 {

 #include "sourcemem.H"

 #include "UEqn.H"

 // --- Pressure corrector loop

 while (pimple.correct())

 {

 #include "pEqn.H"

 }

 if (pimple.turbCorr())

 {

 laminarTransport.correct();

 turbulence->correct();

 60

 }

 }

//wait for fullt developed

 if (mesh.time().value() > 10)

 {

 abc=abc+1;

 if (abc==1)

 {

//interfield

 forAll (mesh.C(),celli)

 {

 if (mesh.C()[celli].y()>0.0032)

 {

 vf[celli]=4e-5;

 }

 if (mesh.C()[celli].y()<=0.0032)

 {

 vf[celli]=0;

 }

 }

 }

//convection diffusion equation

 #include "dVfcal.H"

 double vf6=0;

 surfaceScalarField dVff = fvc::interpolate(dVf);

//all faces inside membrane including top and bottom

 forAll(neighbour6, facen)

 {

 if (srcm[neighbour6[facen]]!=0 || srcm[owner6[facen]]!=0 ||

srcu[neighbour6[facen]]!=0 || srcu[owner6[facen]]!=0)

 {

 phi[facen]=0;

 dVff[facen]=0;

 }

 }

 fvScalarMatrix vfEqn

 (

 fvm::ddt(vf)

 + fvm::div(phi, vf)

 61

 - fvm::laplacian(dVff, vf)

 ==

 fvOptions(vf)

);

 vfEqn.relax();

 fvOptions.constrain(vfEqn);

 vfEqn.solve();

 fvOptions.correct(vf);

 #include "sourceU.H"

 forAll(mesh.C(),celli)

 {

 if (vf[celli]>=vf6)

 {

 vf6=vf[celli];

 }

 }

 Info<<vf6<<endl;

}

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

 << " ClockTime = " << runTime.elapsedClockTime() << " s"

 << nl << endl;

 }

 Info<< "End\n" << endl;

 return 0;

}

