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ABSTRACT  

   

Membrane filtration is an important technology in industry. In the past few decades, 

equations have been developed from experimental results to predict cake formation and 

permeate flux decline in the membrane filtration process. In the current work, the block of 

particles on membrane surface is achieved by setting surface flux on membrane surface 

zero. This approach is implemented for both microfiltration and nanofiltration using 

OpenFOAM. Moreover, a new method to deal with cake resistance for nanofiltration is 

introduced. Cake resistance is applied to both cake and membrane. To validate the new 

techniques, results of crossflow microfiltration are compared to theoretical results and 

results of two crossflow nanofiltration cases are compared to experimental data. In addition, 

the new techniques are applied to dead end filtration to observe the different structure of 

the cake and explore the effect of resistance on velocity profile. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Membrane Filtration 

Membrane filtration is a pressure technology to separate solids from fluids by 

adding a medium through which only the fluid can pass. Its different modalities are 

microfiltration, ultrafiltration, nanofiltration and reverse osmosis. In detail, the operating 

pressure and the size of particles in the fluids of the four modalities are different. The 

differences in operating conditions are tabulated in Table 1.1 ("Industrial applications of 

membrane filtration", 2018). 

Table 1.1 Characteristics of membrane processes 

 

Membrane filtration can also be classified according to the direction of the feed stream, 

namely dead end and crossflow membrane filtration. They are illustrated in the Figure 1.1.  
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Figure 1.1 Dead end and crossflow membrane filtration (Christodoss, 2013) 

Filtration by membrane technology is increasingly being used in productive 

processes of numerous industries. Its capacity to separate extracts and specific natural 

essences at low or ambient temperatures makes filtration by membranes a more profitable 

technology than other traditional methods. The food industry, with important specifications 

in the dairy and sugar, pharmaceutical, biotechnological and chemical sectors, is area in 

which filtration by membrane can be very useful. 

During crossflow membrane filtration, suspended particles are transported to the 

membrane surface by permeate flow due to an imposed pressure drop. The layer with 

particles is named concentration polarization layer. Because of the finite size of colloidal 

particles, the particle concentration on the membrane surface reaches its maximum value 

after a short period of time, and a cake layer starts to form as shown in Figure 1.2. The 

resulting cake layer on the membrane surface increases the hydraulic resistance to permeate 

flow and, thus, reduces permeate flow through the membrane. 
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Figure 1.2 Concentration polarization and cake layer (Thiam Teik Wan, 2015) 

 

1.2 Thesis Outline 

The objective of this thesis is to model the membrane filtration process using 

appropriate numerical techniques. In detail, cake formation and permeate flux predicting 

models are implemented for microfiltration and nanofiltration respectively. The 

simulations are all conducted by OpenFOAM using a finite volume method. A procedure 

to deal with the flux of particles on the membrane surface is developed. The filtration 

process is simulated by solving solute and solvent in a coupled manner. Additionally, the 

total cake resistance is applied to both the cake and membrane in nanofiltration which 

results in a smaller specific cake resistance. To validate the new techniques, results of the 

microfiltration model are compared to theoretical results and the permeate flux of 

nanofiltration is compared to experimental data. At last, the methods are applied to dead 

end filtration to observe the different structure of the cake and the velocity profile as 

compared to crossflow filtration.  
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CHAPTER 2 

THEORY OF PIMPLEFOAM TO SOLVE NAVIER-STOKES PROBLEM 

 

2.1 Discretisation Procedure for the Navier-Stokes System in PimpleFOAM 

PimpleFOAM is a solver in OpenFOAM for transient problems. In this section, the 

governing equations that PimpleFOAM solves are presented. The governing equations for 

unsteady and incompressible flow are as follows: 

                                                                  0 U                                                        (2.1) 

                                            ( ) ( ) p
t




    


U
UU U                                     (2.2) 

where p  is the ratio of real pressure to density.  

The discretized form of the continuity equation is as follows: 

0f

f

   U S U                                               (2.3) 

where S  is the outward-pointing face area vector, fU  is the face velocity. The nonlinear 

term in Eqn. (2.2) can be discretized as follows: 

( ) ( ) ( )f f

f

  UU S U U   

     ( ) f

f

F U   

                                                                 p p N N

N

a a U U                                         (2.4) 

where ,P Na a  are functions of U , ,P NU U  are the face velocity. F  represents the flux 

through the face: 

                                                              ( ) fF  S U                                                        (2.5) 
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The flux F  needs to satisfy the continuity equation (Eqn. (2.1)).  

In order to derive the pressure equation, a semi-discretized form of the momentum 

equation is used (Jasak, 1996): 

                                                         
P Pa p U H(U)                                                 (2.6) 

PU  can be written as: 

  
1

P

P P

p
a a

  
H(U)

U                                                (2.7) 

The H(U)  term includes the matrix coefficients for all neighbor faces multiplied by the 

corresponding velocities and the source part of the transient term and all other source terms 

apart from the pressure gradient: 

                                                      

0

N N

N

a
t

  



U

H(U) U                                           (2.8) 

Velocities on the cell face are expressed as the face interpolate: 

 
1

( ) ( ) ( ) ( )P f f f f

P P

p
a a

  
H(U)

U                                     (2.9) 

This is used to calculate the face fluxes. The following form of the pressure equation is 

obtained by substituting Eqn. (2.9) into Eqn. (2.1). 

1
( ) ( )

P P

p
a a

  
H(U)

  

                            ( ) f

f Pa
 

H(U)
S                                      (2.10) 

When Eqn. (2.10) is satisfied, the face fluxes are guaranteed to be conservative. 

The final form of the discretized incompressible Navier-Stokes system is: 
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( )P P f

f

a p U H(U) S                                       (2.11) 

1
[( ) ( ) ] ( )f f f

f fP P

p
a a

    
H(U)

S S                                 (2.12) 

 

2.2 PimpleFOAM Algorithm 

The principal of the algorithm is as follows: Within one time step, a solution can 

be found with under relaxation which means (Jasak, 1996): 

( )new old p old

pp p p p                                          (2.13) 

( )new old p old

U  U U U U                                       (2.14) 

In Eqn. (2.13), newp  is the approximation of the pressure field that is used in the next 

momentum predictor, oldp  is the pressure field used in the momentum predictor, p  is the 

pressure under-relaxation factor which is between 0 to 1, pp  is the solution of the pressure 

equation. Similarly, in Eqn. (2.14), new
U  is the approximation of the velocity field that is 

used in the next pressure predictor, old
U  is the velocity field used in the pressure predictor, 

U  is the velocity under-relaxation factor which is between 0 to 1, p
U  is the solution of 

the momentum equation. The solution is required to reach a defined tolerance criterion 

(Holtzman, 2017).   

To find the solution within each time step, the so called outer corrector and inner 

corrector are needed. The number of outer correctors of the PimpleFOAM algorithm 

defines how many outer iterations to perform. In other words, it defines how many times 

the coupled velocity and pressure equations are performed before it is forced to move onto 
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the next time step, regardless of whether that time step has converged or not. However, the 

number of outer correctors does not mean that it performs all of these iterations. It simply 

iterates until time step convergence is reached and move on to the next time step. The 

criterion for time step convergence is defined as the absolute tolerance of the solver. By 

choosing a suitable outer corrector, it can be ensured that explicit parts of the equations are 

converged. Another thing to note about the outer corrector is that it solves with relaxation 

factors until the last outer iteration. Thus, if one runs for 50 iterations, then the algorithm 

runs the first 49 with relaxation factors and 1 without. The number of inner corrector is the 

number of times the pressure is corrected within an iteration which is suggested to set low 

as 1-3 in the PimpleFOAM guide. A large number of inner correctors rarely improve results 

and should conform to this recommendation. The stability of the PimpleFOAM algorithm 

can be improved by reducing the relaxation factor, by doing this convergence takes longer 

and therefore more outer correctors should be added. This is useful in protecting against 

unstable solutions where the maximum Courant number is likely to spike. There are limits 

to this and sometimes it is better to simply reduce the time step size or if auto time stepping 

reduces the maximum Courant number("CFD: PIMPLE Algorithm", 2018). 
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CHAPTER 3 

FINITE VOLUME METHOD FOR CONVECTION DIFFUSION PROBLEM 

In this chapter, the finite volume method for convection diffusion equations is introduced. 

In addition, for membrane filtration simulations, an upwind differencing scheme is chosen. 

The introduction and reason for the upwind differencing scheme are illustrated in Chapter 

3.2. 

 

3.1 Basics of Finite Volume Method for Convection Diffusion Equation 

The convection diffusion equation is as follows: 

 ( ) ( )D
t


 


   


U                                             (3.1) 

where   is volume fraction of solute and D  is the diffusion coefficient of solute. The 

discretisation of the convection term is obtained using Eqn. (3.2):  

( ) ( ) f
V

f

dV    U S U   

                         ( ) f f

f

 S U   

                 f

f

F                                                 (3.2) 

where F  is the face flux which is shown in Eqn. (2.5). The face value fU  is determined 

by an interpolation scheme. Additionally, the face value f  is calculated from the values 

at the cell centres, which are obtained using the convection differencing scheme. The 

discretisation of the diffusion term is obtained using Eqn. (3.3) (Jasak, 1996): 

( ) ( ) f
V

f

D dV D      S   
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 ( ) ( )f f

f

D    S                                    (3.3) 

Since the mesh is orthogonal, vector d which points from the owner to its neighbor cell and 

face normal vector S are parallel. 

 

 

 

 

Figure 3.1 Vectors d and S on an orthogonal mesh 

It is possible to use the following expression for the gradient of the scalar  : 

( ) N P
f

 



  S S

d
                                              (3.4) 

Using Eqn. (3.4), the face gradient of    can be calculated from the two values around the 

face. 

 

3.2 Upwind Differencing Scheme 

The role of the convection differencing scheme is to determine the value of   on 

the face from the values in the cell centers. The upwind differencing scheme is shown in 

Figure 3.2: 

 

 

 

Figure 3.2 Upwind differencing scheme with face normal velocity 
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When the normal velocity 
PU  in Figure 3.2 at cell P points from P to N, the volume 

fraction at face f is equal to volume fraction at cell P. By contrast, the volume fraction at 

face f is equal to volume fraction at cell N when the velocity 
PU  at cell P points from N to 

P. In other words, the volume fraction at face f is equal to that at the upstream cell center.  

There are mainly two reasons to choose upwind differencing scheme. Firstly, the 

scheme accounts the direction of flow. In this way, volume fraction on the membrane 

surface is equal to the value at the first cell center above the membrane. This is consistent 

with the idea that membrane surface rejects all the coming particles when calculating 

convection term. Secondly, the first order upwind scheme is bounded which means it gives 

physically bounded results. In other words, the volume fraction is always between 0 and 1. 
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CHAPTER 4 

METHODOLOGY 

This chapter introduces the techniques to simulate the crossflow membrane filtration 

process. Pure water is considered as the solvent and particles are solute. Membrane surface 

prevents particles from passing through it. This thesis focuses on predicting concentration 

polarization, cake formation and permeate flux for microfiltration and nanofiltration. 

Different strategies and conditions are applied to microfiltration and nanofiltration. In 

detail, a modified diffusion coefficient and a method to deal with cake resistance are 

introduced separately for each type of filtration. Additionally, the way to simulate the 

blockage of the solute on the membrane surface is the same for all filtration models and is 

illustrated in the part on microfiltration. 

 

4.1 Cake Predicting Model for Microfiltration 

 In microfiltration, a shear induced diffusion coefficient is used and the cake 

resistance is applied directly to the cake cells. Other details about the physical property of 

fluid and the algorithm are introduced in Chapter 4.1.3. 

 

4.1.1 Shear Induced Diffusion Coefficient 

Shear induced diffusion dominates when particle sizes are larger than 0.5 m  (Cho, 

Kim, Moon & Kwon, 2006). In the microfiltration model, since the particle radius is around 

2.5 m , a shear induced diffusion coefficient is used. The shear-induced hydrodynamic 

diffusion coefficient, D  , has the following form (Romero & Davis, 1988): 

2 2 8.80.33 (1 0.5 )D a e                                              (4.1) 
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where 
du

dy
    is the local shear rate in the layer and a  is the particle radius. It can be seen 

from Eqn. (4.1) that the shear induced diffusion coefficient is dependent on velocity and 

volume fraction. As a result, the diffusion coefficient is a scalar field instead of a constant 

and needs to update at every time step. 

 

4.1.2 Cake Resistance of Microfiltration 

In the microfiltration model, once the volume fraction at a cell center exceeds 0.6, 

a cake is formed. There is additional resistance offered by the cake. The value of the 

specific cake resistance is obtained through the Carman-Kozeny relation: 

  
2 2

3

(1 )c c
c

c

C S
r






                                                   (4.2) 

where the constant C  is 5, c  is the porosity of the randomly packed cake layer equal to 

max1  and cS  is the specific surface, 
3

cS
a

 . The unit of specific cake resistance is 2m . 

The cake resistance is only applied to the cake cells. Another important parameter is cake 

resistance, cR , whose unit is 1m  .  

c c cR r                                                           (4.3) 

where c  is cake thickness. cR  means the total resistance to the fluid caused by the cake 

while 
cr  is a thickness averaged resistance and is a physical characteristic of cake. 

 To take cake resistance into account when solving hydrodynamics, cake resistance 

is transferred to a source term in the momentum equation. The new momentum equation is 

as follows: 
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( ) ( ) cp r
t

 


     


U
UU U U                                  (4.4) 

 

4.1.3 Implementation of Model 

There are mainly two parts in the simulation: Navier-Stokes equation and 

convection diffusion equation of volume fraction. The coupling from the Navier-Stokes 

equation to convection diffusion equation is done by using the velocity which is used to 

calculate convection term of volume fraction. The coupling from the convection diffusion 

equation to the Navier-Stokes equation is achieved by kinematic viscosity,  , which is a 

function of concentration (Paipuri, 2014). The functional form of ( )   was determined 

empirically from viscosity measurements of suspensions of rigid spheres in a Couette 

viscometer (Leighton & Acrivos, 1986): 

2

0 (1 1.5 )

1
c


 





 



                                              (4.5) 

where 0  is the viscosity of the particle free fluid and the solvent is water in all models in 

this thesis, c  is the value of volume fraction larger than which cake is formed. After the 

cake is formed, cake is treated as an extra porous medium. As a result, the viscosity inside 

the cake is no longer a function of concentration and is equal to the viscosity of the particle 

free fluid. 

 The membrane resistance, mR , is transferred to a source term for the momentum 

equation similar to the cake resistance. The specific membrane resistance, mr , is calculated 

in Eqn. (4.6): 
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 m
m

m

R
r


                                                         (4.6) 

The unit of mr  is 2m . The momentum equation including membrane resistance is shown 

in Eqn. (4.7): 

( ) ( ) mp r
t

 


     


U
UU U U                                 (4.7) 

 Both water and particles are considered flowing at the same velocity. Thus there is 

only one velocity in the simulation. After solving the Navier-Stokes system, surface flux 

and surface diffusion coefficients are used in the convection diffusion equation. To make 

surface flux on the membrane surface equal to the flux at the above cell center, upwind 

scheme is used to calculate flux. To prevent particles passing through the membrane 

surface, both surface flux and surface diffusion coefficient are set to zero. In OpenFOAM, 

the cell centers are numbered from left to right and bottom to top. Each face has an owner 

cell center and a neighbor cell center. The owner cell is the cell with the smaller number. 

Since the membrane surface is horizontal, when the owner cell of a face has a membrane 

resistance while there is no membrane resistance at the neighbour cell, the face is identified 

within the membrane surface. Before the convection diffusion equation, the velocity is 

calculated and at the beginning of next time step the velocity is updated according to the 

new pressure profile. So it is safe to directly set the surface flux on the membrane surface 

to zero. 

 After the cake is formed, the cake cell has reached its maximum capacity of 

particles which means no more particles can come into the cell. To achieve this, the cell 

faces are treated as walls. To express this mathematically, the surface flux and diffusion 
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coefficient on all faces of the cake cell are set to zero. In this way, the volume fraction 

calculated from the convection diffusion equation does not increase. 

 In terms of boundary conditions, a no-slip condition is used at walls. In addition, 

there are one inlet and two outlets in the following crossflow models. Pressure at the bottom 

outlet is set to zero and a parabolic velocity profile is set for the inlet which is calculated 

using Eqn. (4.8). 

2 21
( ) ( )

2
x

dP
U y H y

dx
                                            (4.8) 

where   is the dynamic viscosity, P  is the pressure difference in the x direction between 

inlet and outlet, H  is half of the width of up channel and y  is the distance away from 

centerline. Eqn. (4.8) is for a rectangular channel flow. Moreover, the right outlet has a 

fixed value of pressure based on a given transmembrane pressure which is described in 

detail in Chapter 5.1.1. In OpenFOAM, both pressure and velocity of the boundary surface 

need to set. The velocity or pressure which is not set to a fixed value at inlet or outlet is set 

zero gradient. 

 The entire simulation process can be summarized using the following algorithm: 

Algorithm 1: Cake predicting model for microfiltration 

Initialize the flow solver (velocity, pressure,  ,  , mr ,  
cr , D ) 

Set boundary conditions 

While (time   end time) do 

     Compute mr   

     Solve Navier-Stokes equation 
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     While (a parabolic flow is reached in the up channel) do 

          If the parabolic flow was just reached, set initial  for the upper channel 

          Compute D   

          Interpolate D to faces to get fD    

          Set both F and fD  on membrane surface and faces of cake cell zero 

          Solve convection diffusion equation 

           Compute 
cr   

           Update    

      End 

End 

 

At the beginning, the simulation is solving for the flow only with membrane resistance. 

After a parabolic flow is reached in the upper channel, the convection diffusion equation 

starts to solve. This is to avoid start error in OpenFOAM. Also in experiment inlet is away 

from the membrane to wait for fully developed flow. 

 

4.2 Cake predicting model for Nanofiltration 

In nanofiltration, a Brownian diffusion coefficient is used and the total cake 

resistance is applied to both cake and membrane. Other details about the physical property 

of the fluid and the algorithm are introduced in Chapter 4.2.3. 
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4.2.1 Brownian Diffusion Coefficient 

 Brownian diffusion dominates when particle sizes are smaller than 0.5 m  (Cho, 

Kim, Moon & Kwon, 2006). In the nanofiltration model, since the particle radius is on the 

order of nanometers, a Brownian diffusion coefficient is used. Brownian diffusion comes 

from Brownian motion. The diffusion coefficient for a single particle is given by the 

Stokes-Einstein equation: 

6

kT
D

a
                                                         (4.9) 

where k  is the Boltzman constant which is 231.38 10  and T  is the absolute temperature. 

It is shown that the variation of diffusion with particle volume fraction is not significant in 

this model (Kim, Marion, Jeong & Hoek, 2006). As a result, the diffusion coefficient at a 

cell center can be obtained by using Eqn. (4.9). 

 

4.2.2 Cake Resistance of Nanofiltration 

In the nanofiltration model, once the volume fraction at a cell center exceeds 0.63, 

the cake is formed. The value of specific cake resistance is also obtained through Eqn. (4.2). 

It is around 1710 2m . Then when using the Eqn. (4.4), the result of permeate flux is 

extremely smaller than expected. In this way, it is hard to see an increase of the volume 

fraction and cake growth.  

The new technique to express the cake resistance is applying the total cake 

resistance to both cake and membrane. The new specific cake resistance is marked as cr   

which is obtained using Eqn. (4.10): 
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c c
c

c m

r
r



 
 


                                                   (4.10) 

cr   is applied to the cake cell and the cells inside the membrane which have the same 

tangential coordinate as the cake cell.  c  is the cake thickness and its increases with the 

growth of the cake. To ensure the total cake resistance does not change, the specific 

membrane resistance needs to be updated by Eqn. (4.11): 

m m cr r r                                                        (4.11) 

 The momentum equation with both cake and membrane resistance in nanofiltration 

is shown in Eqn. (4.12): 

( ) ( ) c mp r r
t

  
        


U
UU U U U                        (4.12) 

To validate the special treatment of cake resistance, it is applied to two different models. 

The results are shown in Chapter 5.2. 

 

4.2.3 Implementation of Model 

 The simulation process for nanofiltration is almost the same as microfiltration. The 

idea to set the flux and diffusion coefficient on the membrane surface and faces of cake 

cells is exactly the same. The main differences are the technique to apply the new specific 

cake resistance, membrane resistance and the way to calculate the diffusion coefficient. 

Additionally, in Eqn. (4.5) when the concentration is 0.62, 
c




 is very close to 1. To avoid 

viscosity going to infinity, Eqn. (4.5) is used only when volume fraction is smaller than 

0.62.  
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 The entire simulation process can be summarized using the following algorithm: 

Algorithm 2: Cake predicting model for nanofiltration 

Initialize the flow solver (velocity, pressure,  ,  , mr  ,  cr  , D ) 

Set boundary conditions  

While (time   end time) do 

     Compute mr    

     Solve Navier-Stokes equation 

     While (a parabolic flow is reached in the up channel) do 

          If the parabolic flow was just reached, set initial   for the upper channel 

          Compute D   

          Interpolate D to faces to get fD    

          Set both F and fD  on membrane surface and faces of cake cell zero 

          Solve convection diffusion equation 

          Compute cr    

          Update    

     End 

End 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter presents results of different models discussed in Chapter 4. It starts with the 

results of microfiltration with four different applied pressures. Phenomena of concentration 

polarization, cake formation and flux decline are discussed. Then two simulations of 

nanofiltration are given. Numerical results of nanofiltration models are compared to 

experimental data to validate the technique of dealing with cake resistance for 

nanofiltration.  

 

5.1 Microfiltrtaion Results 

 This section describes microfiltration results. The geometry of the filtration device 

and exact values of physical properties of the solvent and solute are included. The effect of 

transmembrane pressure applied to the device on permeate flux and cake layer is studied. 

 

5.1.1 Model Description 

 The geometry of the filtration device is shown in Figure 5.1. There are two outlets. 

Flow entries from the left side. Part of the flow leaves the device at the right side and part 

leaves the device through bottom. The membrane location is indicated by dashed lines. The 

wall location is indicated by bold line. The unit of lengths in Figure 5.1 is m . 
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Figure 5.1 Geometry of microfiltration device 

Transmembrane pressure (TMP) is defined as pressure difference between either 

side of membrane at its half way point.  

0 ( )in in out per

L
TMP p p p p

L
                                          (5.1) 

In Eqn. (5.1), inp  is pressure at the inlet, 0L  is the distance of the middle of membrane to 

inlet, L  is the length of the channel, outp  is the pressure at the right outlet, perp  is the 

pressure at the bottom outlet. The radius of solute in this model is 2.5 m and therefore the 

specific cake resistance can be calculated using Eqn. (4.2) with the porosity of the 

randomly packed cake layer at 0.4. A pressure drop between the inlet and the right outlet 

of 270 Pa is used. This results in a crossflow with a parabolic velocity profile calculated 

using Eqn. (4.8). A fixed inlet concentration of 0.05 is used which is the same as the initial 

condition for the upper channel. The particle free medium is considered as water. Therefore 

0  in Eqn. (4.5) is 6 210 /m s . For this filtration device the resistance of the membrane mR  

is 8 11.62 10 m .  
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5.1.2 Results 

 For microfiltration, simulations with four TMPs were conducted using one 

geometry. Other parameters are keep constant to analyze the effect of pressure on the cake 

layer and permeate flux. 

 The four TMPs are 1180, 1780, 2980, 4180 Pa. The model is run at each TMP until 

steady state is reached. Among the four cases, only the pressure at the right outlet is 

changed. To test the approach to block particles on the membrane surface, one needs to 

capture the increase in concentration. So for microfiltration methods and equations are 

solved in non-dimensional form. 

Concentration distribution at 0.02s is shown in Figure 5.2. 

 

Figure 5.2 Concentration distribution at different TMPs in microfiltration  

From the color legend, it can be concluded that firstly when TMPs are 1180 Pa and 1780 

Pa, there is no cake layer formed. Only concentration polarization is built up. Secondly, 

the cake at TMP of 4180 Pa is thicker than the one at 2980 Pa. Concentration polarization 
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is the first stage of cake formation. With higher TMP, the velocity coming to the membrane 

surface is larger which means within unit time, the flow brings more particles toward the 

membrane surface. Moreover, particles have the ability to diffuse and can be blown away 

by the tangential flow. So the increase in volume fraction depends on the speed of blocking 

particles over the membrane and the speed of particle blowing away and diffusing away. 

In the four cases, the tangential velocity of crossflow is similar and the diffusion coefficient 

is also the same at a same concentration. As a result, concentration over the membrane 

increases faster and more with larger permeate flux which is caused by larger TMP. 

Another important point to make is that the thickest concentration polarization or cake in 

each case is at the end of the membrane. This is possibly due to a higher convective force 

by the fluid on the solute particles in the crossflow direction (Paipuri, 2014). Also the 

formation of the cake can be observed during the simulation to start to form from the end 

of membrane. 

The other important result is a permeate flux decline. Permeate flux is the flux 

coming out of the membrane. In the simulations, the average velocity at the first cell center 

normal to the membrane is taken as the permeate flux. The average velocity can be 

calculated using Eqn. (5.3): 

0
( )

mL

y

w

m

U x dx
v

L



                                                  (5.3) 

where mL  is the length of the membrane. The initial and final permeate flux at different 

TMP are shown in Figure 5.3. 
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Figure 5.3 Initial and final permeate flux at different TMP 

It can be seen there is a nonnegligible decrease in permeate flux with TMPs at 2980 Pa and 

4180 Pa. This is due to the additional resistance of the cake. This can also explain why the 

final permeate flux is almost same as initial flux with TMPs at 1180 Pa and 1780 Pa. The 

value of the final permeate flux is compared to the theoretical data using Eqn. (5.4) 

(Kromkamp et al., 2005): 

4
1/30.072 ( )c

w wall

b m

a
v

L





                                               (5.4) 

where 
wall  is the nominal shear rate at the wall, b  is the bulk particle volume fraction and 

c  is the maximal volume fraction. The results are shown in Table 5.1. 
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Table 5.1 Permeate flux in microfiltration 

TMP     
wall ( 410  1s  )      wv  ( /m s  , calculated)     wv ( /m s , simulated)        error 

1180            5.4                               -0.0097                             -0.008              17.5% 

1780            6.2                               -0.011                               -0.012               9.1% 

2980              7                                -0.013                               -0.017              30.7% 

4180               9                                   -0.016                                  -0.021               31.25% 

 

wall  is obtained from the simulation results. When a cake is formed, the simulation results 

of the permeate flux are larger than theoretical data. The possible reason is that the flow is 

not steady state yet and the cake is still growing. At steady state, the transport of particles 

from the bulk to the concentration polarization layer by permeate flow is balanced by the 

transport of particles due to crossflow (Hong, Faibish & Elimelech, 1997). When doing the 

simulation, the case is stopped by the end time which comes from a plot of flux as a 

function of time in Kromkamp’s work (Kromkamp et al., 2005). In Kromkamp’s work 

(Kromkamp et al., 2005), the velocity has already reached steady state at time 0.02 s. Thus, 

the end time is set to 0.2.  But the length of the membrane in the current work is smaller 

than in Kromkamp’s model (Kromkamp et al., 2005). Another possible reason is that the 

velocity at the cell center is taken as the permeate flux while the exact permeate flux is the 

velocity at the membrane. If using an interpolation method to compute the velocity at the 

membrane surface, the permeate flux from the simulation would be smaller than what is 

shown in Table 5.1 since the velocity inside the membrane region is smaller than that above 

the membrane due to the membrane resistance. 
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5.2 Nanofiltration Results 

This section describes two models of nanofiltration. The approach to represent cake 

resistance for nanofiltration is applied to different cases for validation. Both cases have 

experimental data to compare. 

 

5.2.1 Simulation of Suhan Kim’s Model 

 Work in this chapter follows Suhan Kim’s model (Kim, Marion, Jeong & Hoek, 

2006). 

 

5.2.1.1Model Description 

The geometry of the filtration device is shown in Figure 5.4. The fluid flows in the 

same direction as in the microfiltration. Part of the flow leaves the device at the right side 

and part leaves the device through bottom. The membrane location is indicated by dashed 

lines. The wall location is indicated by bold line. The unit of lengths in Figure 5.4 is cm . 

The widths of upper and bottom channel are the same as in Kim’s model. However, the 

length of the channel and membrane are shorter to save computational cost but this does 

not have impact on the results. Moreover, in Paipuri’s work (Paipuri, 2014), the length also 

has no effect for this case. To get stable results, the inlet and right outlet are set away from 

the membrane.  
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Figure 5.4 Geometry of Suhan Kim’s model 

 The particle radius in this model is 60 nm  and the temperature is 20 C , therefore 

the diffusion coefficient can be calculated using Eqn. (4.9). The thickness of the membrane 

is not given in Kim’s model (Kim, Marion, Jeong & Hoek, 2006) and is set to be about half 

the width of the bottom channel. From the experimental data (Kim, Marion, Jeong & Hoek, 

2006), the volume fraction of randomly packed cake layer is 0.67 so the porosity, c  is set 

0.33. Specific cake resistance, cr    can be calculated using Eqn. (4.10) and is 17 21.6 10 m . 

When the cake is formed, the specific membrane resistance in the membrane cells below 

the cake is updated through Eqn. (4.11).  

In this model, TMP is 70 kPa and the crossflow velocity is 6 /cm s . A fixed inlet 

concentration of 54 10  is used which is the same as the initial condition for the upper 

channel. For this filtration device the resistance of the membrane  is 11 18.11 10 m  .  

 Since the thickness of the cake formed in the experiment is in the order of a few 

tenths of m , the vertical mesh size inside the cake region which is predicted to be no 

thicker than 30 m  is set to be 0.75 m to capture the cake. Outside the cake region and 

above the membrane, graded mesh where cell-to-cell expansion ratio is about 1.1 is used. 

To see the meshes clearly, meshes around membrane surface are zoomed in to show in 

mR
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Figure 5.5. 

 

Figure 5.5 Meshes around membrane surface  

 

5.2.1.2 Results 

In this model, there are mainly two parts of results, permeate flux decline and cake 

layer formation. The value of TMP is given in the experimental data. In the simulation, the 

inlet velocity is set as the crossflow velocity and pressures at the two outlets are set. The 

pressures are calculated using Eqn. (5.1). 

The plot of permeate flux versus time is shown in Figure 5.6. 
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Figure 5.6 Permeate flux with time at TMP 70 kPa 

It can be observed that the model and experimental data are very much in agreement. But 

at the beginning, the flux calculated in the simulation decreases sharper than in the 

experiment. The possible reason is the porosity c  used to calculate the specific cake 

resistance by Eqn. (4.2) is not accurate. The maximum volume fraction is used to get 

porosity. In other words, the porosity is smaller than the actual value and therefore the 

specific cake resistance used in the simulation is larger. Additionally, constant porosity 

with time can cause over estimation of the permeate flux decline (Kim, Marion, Jeong & 

Hoek, 2006). The other error shown in Figure 5.6 is that the flux obtained from the 

simulation is larger than in the experimental. This is the outcome of the above first error. 

As the flux is smaller at the beginning, it causes slower growth of the cake which results 

in smaller cake resistance according to Eqn. (4.10) which shows cake resistance depends 

on cake thickness. 



  30 

 Concentration inside the cake region at 70 min is shown in Figure 5.7. 

 

Figure 5.7 Concentration inside the cake region at 70 min 

To validate the blockage of particles by membrane surface, a paticle mass balance equation 

is used (Hong, Faibish & Elimelech, 1997): 

0 0( ) c
c w

d
v

dt


                                                    (5.5) 

where c  is the volume fraction inside the concentration polarization layer, 0  is the bulk 

concentration, c  is the thickness of the concentration polarization layer and wv  is the 

permeate flux. After particles accumulate for 18.3 second, the volume fraction is 0.07 as 

shown in Figure 5.8. At this time, c is considered as the vertical mesh size and wv is 

considered as the initial permeate flux. c obtained by using Eqn. (5.5) is 0.09. Thus the 

difference is 22.2%. 
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Figure 5.8 Concentration at 18.3 s 

 

5.2.2 Simulation of Seungkwan Hong’s Model 

 Work in this chapter follows Seungkwan Hong’s model (Hong, Faibish & 

Elimelech, 1997). 

 

5.2.2.1 Model Description 

The geometry of the filtration device is shown in Figure 5.9. Fluid flows in the same 

direction as Kim’s model (Kim, Marion, Jeong & Hoek, 2006). The width of upper channel 

is the same as Hong’s model. However, the length of the channel and the membrane is 

shorter to save computational cost but this does not have impact on the results. To get stable 

results, the inlet and right outlet are set away from the membrane. 
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Figure 5.9 Geometry of Hong’s model 

The particle radius in this model is 100 nm  and the temperature is 20 C , therefore 

the diffusion coefficient can be calculated by using Eqn. (4.9). The thickness of the 

membrane is not given in Kim’s model and is set to be the width of the bottom channel. 

The porosity of the randomly packed cake layer, c  is set to 0.36 which is the same as in 

Hong’s model. The specific cake resistance, cr    can be calculated using Eqn. (4.10) and is

16 23.95 10 m  . When the cake is formed, the specific membrane resistance at the 

membrane cells below the cake is updated through Eqn. (4.11).  

In this model, TMP is 40 kPa. The crossflow velocity is set 0.002 /m s  which is 

one tenth of the velocity in Hong’s model. Since in Eqn. (3.1) tangential velocity has the 

potential to blow away cake, velocity is set small to capture cake. In Hong’s work, 

crossflow velocity has no significant effect on cake formation. Fixed inlet concentration of 

41 10   is used which is the same as initial condition for upper channel. For this filtration 

device, the resistance of the membrane  is 12 11.25 10 m  .  

 Similar to Kim’s model, the vertical mesh size inside the cake region is set to be 1

m to capture the cake. Outside the cake region and above the membrane, graded mesh 

where cell-to-cell expansion ratio is about 1.1 is used.  

mR
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5.2.2.2 Results 

 Concentration inside the cake region at 25min is shown in Figure 5.9. 

 

Figure 5.10 Concentration inside the cake region at 25min 

Permeate flux with time is shown in Figure 5.11. 

 

Figure 5.11 Flux with time in the case of 100 nm  particle size under TMP of 40 kPa 
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Compared to experimental data, the flux obtained from the simulation is larger and 

deceases slower. The slow decrease in the flux is because slow growth of the cake. The 

possible reason is the convection diffusion equation in the simulation has axial diffusion 

and axial convection. In Hong’s numerical model, axial diffusion is neglected because it is 

much smaller than the other terms under typical conditions of crossflow filtration. 

Additionally, the assumption that the longitudinal transport of excess particles by crossflow 

is negligible is used (Hong, Faibish & Elimelech, 1997). Since two terms remain in the 

simulation, they would have impact on the concentration. To verify the way to represent 

cake resistance for the flow, the theoretical relation between permeate flux and resistance 

is described by a Darcy type expression of the form (Cho, Kim, Moon & Kwon, 2006): 

( )m c c

p
v

R r 



                                                  (5.6) 

At 25min, there are five cake layers and thus the thickness of cake is 5 m  and permeate 

flux is 23 /m s as it is shown in Figure 5.11. From Eqn. (5.6), permeate flux is 27

/m s .So the difference is about 15%.  

 

5.3 Application to Dead End Filtration 

As demonstrated in the above two nanofiltration cases, the new model works well 

and simulation results agree with experimental results. 

The methods are applied to dead end filtration. The complete feed flow is forced 

through the membrane. There are two models in this section. One model uses the 

microfiltration membrane condition at TMP 4180 Pa introduced in Chapter 5.1.1 and the 

other one uses the membrane condition in Hong’s model introduced in Chapter 5.2.2.1.  
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The variable of interest in dead end filtration is velocity inside the membrane and 

cake structure. In terms of initial condition, pressures at both inlet and outlet are set at the 

beginning. In this way, it is a pressure driven flow. The general geometry is shown in 

Figure 5.12. The membrane is in the middle of the device and surfaces expect inlet and 

outlet are walls. 

 

Figure 5.12 Geometry of dead end filtration 

For incompressible flow inside the membrane, the following momentum equation in y 

direction can be obtained: 

2 2

2 2m

Dv v v
p gY r v

Dt x y
  

 
     

 
                                 (5.7) 

where y  is vertical direction, x  is tangential direction, v  is velocity in  y direction, u  is 

velocity in x direction, g  is acceleration of gravity and Y  is elevation. When it is steady 
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state and flow is fully developed, 
Dv

Dt
 and 

2

2

v

y




 vanish. The aim of solving this equation 

is to find how v  inside the membrane behaves along the membrane length. Also velocity 

coming to and out of membrane are same based on mass conservation. Eqn. (5.7) can be 

written as: 

2

2 m

v
r v p gY

x
 


   


                                               (5.8) 

with no slip condition: 

( 0) 0v x    

( ) 0v x L                                                        (5.9) 

 The exact solution to Eqn. (5.9) is as follows: 

1 2 0( ) m mr x r x
v x C e C e v


     

1 0 2C v C    

0
2

( 1)
)

m

m m

r L

r L r L

v e
C

e e



 


  

0

m

p gY
v

r

 
                                                    (5.10) 

By ploting ( )v x  with different mr   , the effect of mr  on the vertical velocity can be seen in 

Figure 5.13.  
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Figure 5.13 Effect of mr  on vertical velocity 

With larger mr , the vertical velocity is close to uniform along the tangential direction while 

it is easy to see the curved shape in the velocity profile for smaller mr . In nanofiltration, 

mr  is in the order of 1510 . So 
2C  is almost 

0v  , 1C  is almost 0, 2
mr x

C e


 is almost 0, 

0( )v x v . This means the velocity inside the membrane region is almost constant in the 

tangential direction.  

 The plot of the vertical velocity in microfiltration is shown in Figure 5.14 and the 

area around the left side of the wall is zoomed in in Figure 5.15. Additionally, a plot of 

vertical velocity in Hong’s model is shown in Figure 5.16. 
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Figure 5.14 Vertical velocity in microfiltration 

 

Figure 5.15 Area around left side of wall 
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Figure 5.16 Vertical velocity in Hong’s model 

From both models, outside of membrane, there are symmetrical boundary layers near walls. 

Velocity in nanofiltration matches the analysis based on Eqn. (5.9) that it is almost constant 

along the membrane length.  

 Another important phenomenon is cake formation. A plot of volume fraction in 

microfiltration is shown in Figure 5.17. and plot of volume fraction in Hong’s model is 

shown in Figure 5.18. The cake region in Figure 5.18 is zoomed in in Figure 5.19. Both 

Figure 5.17 and Figure 5.18 include the whole membrane length.  
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Figure 5.17 Volume fraction in microfiltration 

 

 

 

 

 

 

 

 

Figure 5.18 Volume fraction in Hong’s model 
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   Figure 5.19 Cake region in Hong’s model 

Compared to the previous microfiltration cases, the thickest cake shown in Figure 5.17 is 

no longer at the end of the membrane while it is close to a parabolic shape. The cake in 

nanofiltration is almost uniform. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1 Conclusions 

In this thesis, a simple method to simulate blockage of particles on membrane 

surfaces is developed. The method is applied to each case and is validated by observing 

increase in volume fraction above the membrane and no increase below the membrane. 

Permeate flux in the microfiltration models is compared to theoretical data and the 

differences are acceptable. 

 Furthermore, a new technique to represent cake resistance to the flow is introduced. 

To validate the new technique, it is applied to Kim and Hong’s model. It is seen that 

simulation results of permeate flux are in a very good agreement with experimental results. 

Concentration distribution inside the cake region is shown. Reasons for the differences in 

the flux are explored. 

 To understand the above two approaches better, simulation of dead end filtration is 

conducted. Velocity profiles inside the membrane region are studied. The cake structure is 

also observed to be consistent with velocity profile. 
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APPENDIX A 

MAIN CODES OF MICROFILTRATION SOLVER 
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1)  

// calculate diffusion coefficient D 

 

vector abcdex(1,0,0); 

vector abcdey(0,1,0); 

//shear rate 

const volScalarField shearRate = mag((fvc::grad(U & abcdex)) & abcdey); 

shear=shearRate; 

//D 

dVf=0.33*shearRate*pow(a,2)*pow(vf,2)*(1+0.5*exp(8.8*vf)); 

 

const labelUList& owner1 = mesh.owner(); 

const labelUList& neighbour1 = mesh.neighbour(); 

 

//below the membrane, D=0 

forAll (mesh.C(),celli) 

         { 

     if (mesh.C()[celli].y()<=11.2) 

     { 

   dVf[celli]=0; 

     } 

  } 

//when there is a cake, D=0 

forAll (mesh.C(),celli) 

         { 

     if (srcu[celli]>0) 

     { 

   dVf[celli]=0; 

     } 

  } 

 

2) 

// define the source term for membrane 

int fg2=0; 

double Rm=1.62e+2; 

double thi=1.2; 

const volScalarField nu2 = turbulence->nu(); 

 

forAll (mesh.C(),celli) 

{ 

//find membrane region 

    if (mesh.C()[celli].x()>=(15)  && mesh.C()[celli].x()<=(45) && 

mesh.C()[celli].y()>(10) && mesh.C()[celli].y()<(11.2))  

    { 

  fg2=1; 
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    } 

           srcm[celli]=fg2*nu2[celli]*Rm/thi; 

    fg2=0; 

} 

 

 

3) 

// define the source term for U 

int fg=0; 

const volScalarField nu1 = turbulence->nu(); 

 

forAll (mesh.C(),celli) 

{ 

 

    if (vf[celli]>=0.6) 

    { 

  fg=1; 

  srcu[celli]=fg*nu1[celli]/nu1[celli]*5.0*pow((1-

0.4),2)*pow((3/a.value()),2)/pow(0.4,3); 

    } 

     

    fg=0; 

 

} 

 

 

forAll (mesh.boundaryMesh(), patchI) 

{ 

        forAll(srcu.boundaryField()[patchI], faceI) 

           { 

   

         if (vf.boundaryField()[patchI][faceI]>=0.6) 

         { 

      fg=1; 

      

srcu.boundaryFieldRef()[patchI][faceI]=fg*nu1.boundaryField()[patchI][faceI]/nu1.boun

daryField()[patchI][faceI]*5.0*pow((1-0.4),2)*pow(3/a.value(),2)/pow(0.4,3); 

         } 

     

    fg=0; 

    } 

         

} 
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4) 

// Solve the Momentum equation 

 

MRF.correctBoundaryVelocity(U); 

 

tmp<fvVectorMatrix> tUEqn 

( 

    fvm::ddt(U) + fvm::div(phi, U) 

  + MRF.DDt(U) 

  + turbulence->divDevReff(U) 

 == 

    fvOptions(U)-fvm::Sp(srcm, U) -fvm::Sp(srcu, U) 

); 

fvVectorMatrix& UEqn = tUEqn.ref(); 

 

UEqn.relax(); 

 

fvOptions.constrain(UEqn); 

 

if (pimple.momentumPredictor()) 

{ 

    solve(UEqn == -fvc::grad(p)); 

 

    fvOptions.correct(U); 

} 

int num=0; 

int num2=0; 

double sum=0.0; 

double sum2=0.0; 

double ave=0.0; 

double ave2=0.0; 

double sum3=0.0; 

double ave3=0.0; 

double sum4=0; 

double sum5=0; 

const labelUList& owner = mesh.owner(); 

const labelUList& neighbour = mesh.neighbour(); 

 

forAll(owner, facei) 

        { 

  //look for membrane surface 

          if  ( (srcm[owner[facei]]!=0 && srcm[neighbour[facei]]==0) || 

(srcm[owner[facei]]==0 && srcm[neighbour[facei]]!=0)) 

  { 

   //top membrane surface 
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   if (mesh.C()[neighbour[facei]].y() > 11.2 || 

mesh.C()[owner[facei]].y() > 11.2) 

   { 

    sum=sum+U[neighbour[facei]].x(); 

    sum2=sum2+U[neighbour[facei]].y(); 

    sum3=sum3+U[owner[facei]].y(); 

    num=num+1; 

   } 

   //bottom membrane surface 

   if (mesh.C()[neighbour[facei]].y() > 10 && 

mesh.C()[owner[facei]].y() < 10) 

   { 

    sum4=sum4+U[neighbour[facei]].y(); 

    sum5=sum5+U[neighbour[facei]].x(); 

    num2=num2+1; 

   } 

    

         } 

         } 

reduce(sum,sumOp<scalar>());  

reduce(sum2,sumOp<scalar>());  

reduce(sum3,sumOp<scalar>());  

reduce(num,sumOp<scalar>());  

ave=sum2; 

ave2=sum2/num; 

ave3=sum3/num; 

 

//Info<< ave <<endl; 

Info<< ave2 <<endl; 

Info<< num <<endl; 

//Info<< ave3 <<endl; 

Info<< sum4 <<endl; 

Info<< num2 <<endl; 

Info<< sum5 <<endl; 

 

5) viscosity 

namespace Foam 

{ 

namespace viscosityModels 

{ 

    defineTypeNameAndDebug(changenutwo, 0); 

    addToRunTimeSelectionTable(viscosityModel, changenutwo, dictionary); 

} 

} 
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Foam::volScalarField 

Foam::viscosityModels::changenutwo::calcNu() const 

{ 

 

 const fvMesh& mesh_ =  U_.mesh(); 

     

 const volScalarField& vf =  mesh_.lookupObject<volScalarField>("vf"); 

 volScalarField newNu=nu0_*vf; 

  

 forAll (mesh_.C(),celli) 

  

 { 

  if (vf()[celli]<0.6) 

  { 

   newNu[celli]= nu0_.value()*pow(1+1.5*vf()[celli]/(1-

vf()[celli]/0.6),2); 

  }  

  else 

  { 

   newNu[celli]= nu0_.value()*1; 

  }  

 

 } 

 

 

 forAll (mesh_.boundaryMesh(), patchI) 

 { 

        forAll(vf.boundaryField()[patchI], faceI) 

        { 

  if (vf.boundaryField()[patchI][faceI]<0.6) 

  { 

  

 newNu.boundaryFieldRef()[patchI][faceI]=nu0_.value()*pow(1+1.5*vf.boundary

Field()[patchI][faceI]/(1-vf.boundaryField()[patchI][faceI]/0.6),2); 

  } 

  else 

  { 

   newNu.boundaryFieldRef()[patchI][faceI]= nu0_.value()*1; 

  } 

        } 

        } 

 

 return newNu;  

} 
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6) main function 

int main(int argc, char *argv[]) 

{ 

    #include "postProcess.H" 

 

    #include "setRootCase.H" 

    #include "createTime.H" 

    #include "createMesh.H" 

    #include "createControl.H" 

    #include "createTimeControls.H" 

    #include "createFields.H" 

    #include "createFvOptions.H" 

    #include "initContinuityErrs.H" 

 

    turbulence->validate(); 

     

    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

    Info<< "\nStarting time loop\n" << endl; 

    //dimensionSet::debug = 0; 

    while (runTime.run()) 

    { 

        #include "readTimeControls.H" 

        #include "CourantNo.H" 

        #include "setDeltaT.H" 

 

        runTime++; 

 

        Info<< "Time = " << runTime.timeName() << nl << endl; 

 const labelUList& owner6 = mesh.owner(); 

 const labelUList& neighbour6 = mesh.neighbour(); 

        // --- Pressure-velocity PIMPLE corrector loop 

        while (pimple.loop()) 

        { 

      

      

     #include "sourcemem.H" 

            #include "UEqn.H" 

 

            // --- Pressure corrector loop 

            while (pimple.correct()) 

            { 

                #include "pEqn.H" 

            } 
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            if (pimple.turbCorr()) 

            { 

                laminarTransport.correct(); 

                turbulence->correct(); 

            } 

        } 

 

 // wait for fuuly developed 

 if (mesh.time().value() > 17907) //17910(4180pa)16480(1780pa)17980(1180pa) 

 { 

    abc=abc+1; 

    if (abc==1) 

    { 

//interfield 

  forAll (mesh.C(),celli) 

         { 

     if (mesh.C()[celli].y()>11.2) 

     { 

   vf[celli]=0.05; 

    

     } 

     if (mesh.C()[celli].y()<=11.2) 

     { 

   vf[celli]=0; 

    

     } 

  } 

    } 

  

     #include "dVfcal.H" 

 

     surfaceScalarField dVff = fvc::interpolate(dVf); 

     forAll(neighbour6, facen) 

        { 

//all surfaces inside membrane including top 

          if  (srcm[neighbour6[facen]]!=0 || srcm[owner6[facen]]!=0 || 

srcu[neighbour6[facen]]!=0 || srcu[owner6[facen]]!=0) 

  { 

        phi[facen]=0; 

   dVff[facen]=0; 

  

  } 

     } 

      

//convection diffusion equation 
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            fvScalarMatrix vfEqn 

            ( 

                fvm::ddt(vf) 

              + fvm::div(phi, vf) 

              - fvm::laplacian(dVff, vf) 

              == 

                fvOptions(vf)  

            ); 

 

            vfEqn.relax(); 

            fvOptions.constrain(vfEqn); 

            vfEqn.solve(); 

            fvOptions.correct(vf); 

     #include "sourceU.H" 

} 

  

  

        runTime.write(); 

 

        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 

            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 

            << nl << endl; 

        //Info<< mesh.time().value() << endl; 

  

    } 

 

    Info<< "End\n" << endl; 

 

    return 0; 

} 
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APPENDIX B 

MAIN CODES OF SOLVER FOR KIM’S MODEL 
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1) 

// define the equation for D 

 

forAll (mesh.C(),celli) 

         { 

     dVf[celli]=3.6e-12; 

  } 

const labelUList& owner1 = mesh.owner(); 

const labelUList& neighbour1 = mesh.neighbour(); 

 

forAll (mesh.C(),celli) 

         { 

     if (mesh.C()[celli].y()<=0.0032) 

     { 

   dVf[celli]=0; 

     } 

  } 

 

forAll (mesh.C(),celli) 

         { 

     if (srcu[celli]>0) 

     { 

   dVf[celli]=0; 

     } 

  } 

 

2) 

// define the source term for membrane 

int fg2=0; 

double Rm=8.11e+11; 

double thi=0.0012; 

int numb=0; 

const volScalarField nu2 = turbulence->nu(); 

//find the thickest cake 

 

forAll(mesh.C(),cellh) 

{ 

 if(vf[cellh]>0.63) 

 { 

  ymax[cellh]=mesh.C()[cellh].y(); 

  forAll(mesh.C(),cellj) 

  { 

   if ( abs(mesh.C()[cellj].x()-mesh.C()[cellh].x())<1e-8 && 

vf[cellj]>0.63 && mesh.C()[cellj].y()>ymax[cellh]) 

   { 



  55 

    ymax[cellh]=mesh.C()[cellj].y(); 

   } 

  } 

  rc[cellh]=((ymax[cellh]-0.0032)/(0.75e-6)*2+1)/2*(0.75e-6)*(1.6e+17); 

 } 

} 

forAll (mesh.C(),celli) 

{ 

    if (mesh.C()[celli].x()>=(0.02)  && mesh.C()[celli].x()<=(0.07) && 

mesh.C()[celli].y()>(0.002) && mesh.C()[celli].y()<(0.0032))  

    { 

  fg2=1; 

  srcm[celli]=fg2*nu2[celli]*Rm/thi; 

//if with same x position, there is a cake 

  forAll(mesh.C(),cellm) 

  { 

   if ( abs(mesh.C()[cellm].x()-mesh.C()[celli].x())<1e-8 && 

vf[cellm]>0.63) 

   { 

   

 srcm[celli]=fg2*nu2[celli]*Rm/thi+fg2*nu2[celli]*rc[cellm]/(thi+ymax[cellm]-

0.0032); 

   } 

  } 

    } 

   

} 

3) 

// define the source term for U 

const volScalarField nu1 = turbulence->nu(); 

int fg=0; 

forAll(mesh.C(),cellh) 

{ 

 if(vf[cellh]>0.63) 

 { 

  ymax[cellh]=mesh.C()[cellh].y(); 

  forAll(mesh.C(),cellj) 

  { 

   if ( abs(mesh.C()[cellj].x()-mesh.C()[cellh].x())<1e-8 && 

vf[cellj]>0.63 && mesh.C()[cellj].y()>ymax[cellh]) 

   { 

    ymax[cellh]=mesh.C()[cellj].y(); 

   } 

  } 

  rc[cellh]=((ymax[cellh]-0.0032)/(0.75e-6)*2+1)/2*(0.75e-6)*(1.6e+17); 
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  srcu[cellh]=nu1[cellh]*rc[cellh]/(0.0012+ymax[cellh]-0.0032); 

 } 

} 

4) 

// Solve the Momentum equation 

 

MRF.correctBoundaryVelocity(U); 

 

tmp<fvVectorMatrix> tUEqn 

( 

    fvm::ddt(U) + fvm::div(phi, U) 

  + MRF.DDt(U) 

  + turbulence->divDevReff(U) 

 == 

    fvOptions(U)-fvm::Sp(srcm, U)-fvm::Sp(srcu, U) 

); 

fvVectorMatrix& UEqn = tUEqn.ref(); 

 

UEqn.relax(); 

 

fvOptions.constrain(UEqn); 

 

if (pimple.momentumPredictor()) 

{ 

    solve(UEqn == -fvc::grad(p));  

 

    fvOptions.correct(U); 

} 

int num=0; 

int num1=0; 

int num2=0; 

double sum=0.0; 

double sum1=0.0; 

double ave=0.0; 

double ave1=0.0; 

double sum2=0; 

double ave2=0; 

double sum3=0; 

double ave3=0; 

const labelUList& owner = mesh.owner(); 

const labelUList& neighbour = mesh.neighbour(); 

 

forAll(owner, facei) 

        { 
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          if  (srcm[owner[facei]]!=0 && srcm[neighbour[facei]]==0) //|| 

(srcm[owner[facei]]==0 && srcm[neighbour[facei]]!=0)) 

  { 

// calclate permeate flux 

   if (mesh.C()[neighbour[facei]].y() > 0.0032 ) 

   { 

    sum=sum+U[neighbour[facei]].y(); 

    sum1=sum1+U[owner[facei]].y(); 

    num=num+1; 

   } 

//flux inside cake 

   if(vf[neighbour[facei]]>=0.63) 

   { 

     num2=num2+1; 

     sum2=sum2+U[neighbour[facei]].y(); 

     //sum3=sum3+U[owner[facei]].y(); 

   } 

  } 

         } 

 

5) viscosity for nanofiltration 

namespace Foam 

{ 

namespace viscosityModels 

{ 

    defineTypeNameAndDebug(changenunf, 0); 

    addToRunTimeSelectionTable(viscosityModel, changenunf, dictionary); 

} 

} 

 

//calcNu 

 

Foam::volScalarField 

Foam::viscosityModels::changenunf::calcNu() const 

{ 

 

 const fvMesh& mesh_ =  U_.mesh(); 

     

 const volScalarField& vf =  mesh_.lookupObject<volScalarField>("vf"); 

 volScalarField newNu=nu0_*vf; 

  

//Foam::volScalarField nu2_; 

 

 

 forAll (mesh_.C(),celli) 
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 { 

  if (vf()[celli]<0.625) 

  { 

   newNu[celli]= nu0_.value()*pow(1+1.5*vf()[celli]/(1-

vf()[celli]/0.63),2); 

  }  

  else 

  { 

   newNu[celli]= nu0_.value()*1; 

  }  

 } 

 

 

 forAll (mesh_.boundaryMesh(), patchI) 

 { 

        forAll(vf.boundaryField()[patchI], faceI) 

        { 

  if (vf.boundaryField()[patchI][faceI]<0.625) 

  { 

  

 newNu.boundaryFieldRef()[patchI][faceI]=nu0_.value()*pow(1+1.5*vf.boundary

Field()[patchI][faceI]/(1-vf.boundaryField()[patchI][faceI]/0.63),2); 

  } 

  else 

  { 

   newNu.boundaryFieldRef()[patchI][faceI]= nu0_.value()*1; 

  } 

        } 

        } 

 return newNu;  

} 

 

6) main function 

#include "fvCFD.H" 

#include "singlePhaseTransportModel.H" 

#include "turbulentTransportModel.H" 

#include "pimpleControl.H" 

#include "fvOptions.H" 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

int main(int argc, char *argv[]) 

{ 

    #include "postProcess.H" 
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    #include "setRootCase.H" 

    #include "createTime.H" 

    #include "createMesh.H" 

    #include "createControl.H" 

    #include "createTimeControls.H" 

    #include "createFields.H" 

    #include "createFvOptions.H" 

    #include "initContinuityErrs.H" 

 

    turbulence->validate(); 

     

    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

    Info<< "\nStarting time loop\n" << endl; 

    //dimensionSet::debug = 0; 

    while (runTime.run()) 

    { 

        #include "readTimeControls.H" 

        #include "CourantNo.H" 

        #include "setDeltaT.H" 

 

        runTime++; 

 

        Info<< "Time = " << runTime.timeName() << nl << endl; 

 const labelUList& owner6 = mesh.owner(); 

 const labelUList& neighbour6 = mesh.neighbour(); 

        // --- Pressure-velocity PIMPLE corrector loop 

        while (pimple.loop()) 

        { 

      

      

     #include "sourcemem.H" 

            #include "UEqn.H" 

 

            // --- Pressure corrector loop 

            while (pimple.correct()) 

            { 

                #include "pEqn.H" 

            } 

 

            if (pimple.turbCorr()) 

            { 

                laminarTransport.correct(); 

                turbulence->correct(); 
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            } 

        } 

 

//wait for fullt developed 

 if (mesh.time().value() > 10)  

 { 

    abc=abc+1; 

          if (abc==1) 

    { 

//interfield 

  forAll (mesh.C(),celli) 

         { 

     if (mesh.C()[celli].y()>0.0032) 

     { 

   vf[celli]=4e-5; 

    

     } 

     if (mesh.C()[celli].y()<=0.0032) 

     { 

   vf[celli]=0; 

    

     } 

  } 

    } 

     

//convection diffusion equation 

     #include "dVfcal.H" 

     double vf6=0; 

     surfaceScalarField dVff = fvc::interpolate(dVf); 

//all faces inside membrane including top and bottom 

     forAll(neighbour6, facen) 

        { 

          if  (srcm[neighbour6[facen]]!=0 || srcm[owner6[facen]]!=0 || 

srcu[neighbour6[facen]]!=0 || srcu[owner6[facen]]!=0) 

  { 

        phi[facen]=0; 

   dVff[facen]=0; 

    

  } 

     } 

 

            fvScalarMatrix vfEqn 

            ( 

                fvm::ddt(vf) 

              + fvm::div(phi, vf) 
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              - fvm::laplacian(dVff, vf) 

              == 

                fvOptions(vf)  

            ); 

 

            vfEqn.relax(); 

            fvOptions.constrain(vfEqn); 

            vfEqn.solve(); 

            fvOptions.correct(vf); 

     #include "sourceU.H" 

     forAll(mesh.C(),celli) 

    { 

  if (vf[celli]>=vf6) 

  { 

   vf6=vf[celli]; 

  } 

    } 

    Info<<vf6<<endl; 

      

} 

  

  

        runTime.write(); 

 

        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 

            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 

            << nl << endl; 

  

    } 

 

    Info<< "End\n" << endl; 

 

    return 0; 

} 


