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ABSTRACT  

   

In the presence of correlation, generalized linear models cannot be employed to 

obtain regression parameter estimates. To appropriately address the extravariation due to 

correlation, methods to estimate and model the additional variation are investigated. A 

general form of the mean-variance relationship is proposed which incorporates the 

canonical parameter. The two variance parameters are estimated using generalized 

method of moments, negating the need for a distributional assumption. The mean-

variance relation estimates are applied to clustered data and implemented in an adjusted 

generalized quasi-likelihood approach through an adjustment to the covariance matrix. In 

the presence of significant correlation in hierarchical structured data, the adjusted 

generalized quasi-likelihood model shows improved performance for random effect 

estimates. In addition, submodels to address deviation in skewness and kurtosis are 

provided to jointly model the mean, variance, skewness, and kurtosis. The additional 

models identify covariates influencing the third and fourth moments. A cutoff to trim the 

data is provided which improves parameter estimation and model fit. For each topic, 

findings are demonstrated through comprehensive simulation studies and numerical 

examples. Examples evaluated include data on children’s morbidity in the Philippines, 

adolescent health from the National Longitudinal Study of Adolescent to Adult Health, as 

well as proteomic assays for breast cancer screening. 
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CHAPTER 1 

INTRODUCTION 

While many statistical tests and models focus on understanding and characterizing 

the mean, the variance has an important role. Many distributions make assumptions about 

the variance, which must be met when analyzing or modeling data. Evaluating deviations 

in the assumed variance can help researchers to better understand their data and verify the 

appropriateness of the selected model. Moreover, modeling the variance such as in 

weighted least squares or joint modeling improves model fit and accounts for excess 

variability. Improvements to modeling techniques have reduced the variance or the 

uncertainty in understanding the driver for the model. Adjustments to estimation and 

modeling methods to account for the variance can be implemented to maximize the 

information available. 

1.1 Exponential Family of Distributions 

A random variable 𝑌 has a probability distribution which is a member of the 

exponential family if the density function can be written in the form  

𝑓𝑌(𝑦; 𝜃, 𝜙) = exp {
(𝑦𝜃 − 𝑏(𝜃))

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)} 

for canonical parameter 𝜃, and functions 𝑎(∙), 𝑏(∙), and 𝑐(∙). Many common 

distributions, such as the normal, Poisson, gamma, and binomial distributions can be 

characterized in this form. Distributions in the exponential family have the following 

properties: the mean is 𝐸(𝑌) = 𝜇 = 𝑏′(𝜃) and the variance is 𝑣𝑎𝑟(𝑌) = 𝑏′′(𝜃)𝑎(𝜙). The 

variance, composed of a function of 𝑏(∙), is related to the mean and can also be expressed 

in terms of the mean with the function 𝑉(𝜇) (McCullagh and Nelder 1989). 
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1.2 Moments of Distributions 

A probability distribution has the moment generating function  

𝑀𝑌(𝑡) = 𝐸(𝑒𝑡𝑌) 

where 𝑡 is in the real numbers. Moment generating functions are used to obtain properties 

of random variables and can be used to characterize distributions. For a continuous 

random variable 𝑦, the first moment or mean of a distribution can be found as 

𝑀𝑦
′ (0) =

𝑑𝑀𝑦(𝑡)

𝑑𝑡
|

0
= [∫ 𝑦𝑒𝑡𝑦𝑓(𝑦)𝑑𝑦

∞

−∞
]

0
= ∫ 𝑦𝑓(𝑦)𝑑𝑦

∞

−∞
= 𝐸(𝑦). 

Higher order moments are determined by taking the corresponding derivative of the 

moment generating function and evaluating the function at 𝑡 = 0 (Rencher and Schaalje 

2008). 

The mean and the variance, the first and second central moments, are often used 

to describe a distribution. The mean identifies the center of the distribution, while the 

variance describes the spread. The measures skewness and kurtosis are also used to 

describe the shape of the distribution. These measures are related to the third and fourth 

central moments where the skewness is defined as 

𝛾1 =
𝐸(𝑌−𝜇)3

(𝜎2)3/2   

and the excess kurtosis is defined as 

𝛾2 =
𝐸(𝑌−𝜇)4

(𝜎2)2 − 3,  

for 𝜇, the mean of 𝑌, and the variance 𝜎2. The skewness and kurtosis both describe the 

tails of the distribution. The skewness measures symmetry in the tails of the distribution, 

while the kurtosis indicates the weight of the tails.  
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1.3 Generalized Linear Models 

Generalized linear models are an extension of linear models, and allow for the 

response distribution to be a member of the exponential family (not necessarily normal) 

and do not require the relationship between the response and the predictors to be linear. 

Generalized linear models are specified by three components: the random component, 

systematic component, and the link function. The random component identifies the 

probability distribution of the response variable 𝑌. The systematic component describes 

the linear predictor 𝜂, which is a function of the covariates so that 𝜂 = ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=1 . The 

link function specifies the relationship between the random and systematic components 

through the function 𝑔(∙) which is a monotonic twice differentiable function. Thus for 𝜇, 

the expected value of 𝑌, 𝑔(𝜇) = 𝜂 (McCullagh and Nelder 1989). 

1.4 Summary of Chapters 

 In this dissertation, three distinct papers are presented. The first paper explores the 

estimation of the mean-variance relationship, particularly in the presence of 

overdispersion and underdispersion. An alternative parameterization using the canonical 

parameter is proposed, and the mean-variance parameters are estimated using generalized 

method of moments. This approach expands the variance form to account for 

overdispersion, as suggested by the data. 

 The second paper utilizes the estimation of the mean-variance relation and 

extends it for use in two-level clustered data. An adjusted generalized quasi-likelihood 

modeling approach is presented that implements the estimated variance in the covariance 

matrix. This adjustment allows generalized quasi-likelihood models to account for the 
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true mean-variance relationship prescribed by the data and offers a method for modeling 

overdispersed data. 

 The third paper further evaluates distributional assumptions through higher order 

moment conditions, including the skewness and kurtosis. Joint modeling of the mean and 

dispersion (Smyth 1989) is expanded to incorporate deviation in skewness and deviation 

in skewness submodels. These models identify covariates related to deviations in the tails 

of the distribution. A cutoff is also investigated to remove outliers due to skewness and 

kurtosis and improve model fit for the mean and dispersion submodels. 
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CHAPTER 2 

ADJUSTED CANONICAL PARAMETER FOR ESTIMATING THE MEAN-

VARIANCE RELATIONSHIP 

 

Abstract 

Implicit to parametric modeling is an assumption of the underlying properties of the 

distribution, which typically includes the specification of the relationships between the 

mean and variance. While many distributions in the exponential family have a theoretical 

mean-variance relationship, it is often the case that the data under investigation are 

correlated thus varying the relation. While others have adjusted the likelihood to estimate 

the true mean-variance relationship, we present a generalized method of moments 

approach based on an adjustment to the canonical parameter as warranted by the data.  

This method is void of distributional assumptions and is computationally tractable. We 

provide test statistics and confidence intervals for identifying the mean-variance 

parameters relation. The adjustment through the canonical parameter provides a general 

approach for all models with unknown underlying distributions but with memberships in 

the quasi-exponential family. The properties and performance of our method are 

evaluated through a simulation study. Two numerical examples were analyzed, one with 

a count outcome and the other with a binary outcome. 

 

2.1 Introduction 

The construction of test statistics and confidence intervals rely on the variance of 

the responses. As a common statistical measure, the variance is often relied on to 
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understand the differences in the responses or a function of the responses for a set of data. 

We often make assumptions about the variance based on the assumed underlying 

distribution of the responses, as it is well known that the variance is related to the mean 

for most distributions in the exponential family. However, it is often the case that while 

the responses may be on a certain scale and often resemble a certain distribution, the 

mean-variance relationship may not be as expected due to extraneous variation. This 

extraneous variation may be due in part to clustering or the structural design of the data 

collected. As such, the true but unknown distribution has parameters that are shifted. 

A shift in parameter values, indicating that the true variance of the responses 

deviates from the expected variance, is commonly exhibited in count and binary data. 

Inflated variance, or so-called overdispersion, is often observed, particularly in 

longitudinal or clustered data analyses, as overdispersion is inherent in data with a 

hierarchical structure. McCullagh and Nelder (1989) suggested that overdispersion may 

be the norm. While underdispersion describes the case when the variance is a fraction of 

the expected mean, this is less often reported in practice. 

Overdispersion has two primary effects. One is that the summary statistics, 

including the test statistics, will have a larger variance than expected (Morel and 

Neerchal 2012). The second effect is a possible loss of efficiency in using statistics 

appropriate for the single-parameter family and ignoring the variance (Cox 1983). 

Therefore, it is important to identify and account for any overdispersion; otherwise, one 

is likely to declare covariates as significant when in fact they are not. Studies have also 

shown that ignoring overdispersion and thereby misspecifying the model can bias the 

covariate effects and greatly impact the variance of the coefficients (Wilson and Koehler 
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1991; Milanzi, Alonso, and Molenberghs 2012). While underdispersion is less common, 

it also impacts the accuracy of the analysis and can result in inaccurate conclusions. 

Methods to identify overdispersion and provide corrections to improve estimates 

of the variance have been presented (Cox and Reid 1987; McCullagh and Tibshirani 

1990). In addition, several methods to address overdispersion due to correlation have 

been widely investigated. Some methods account for correlation through the random 

component, through analyses such as generalized estimating equations (Liang and Zeger 

1986) or by assuming a probability distribution on the response. Other studies have 

considered tests for specific distributions, such as tests for overdispersion for proportions 

(Pack 1986). Score test statistics for Poisson and binomial models with overdispersion 

have also been presented (Dean 1992), with extensions to results for more general 

distributions. Xiang et al. (2007) provided a score test for overdispersion in a zero-

inflated Poisson mixed regression model. Yang, Hardin, and Addy (2009) simplified the 

score statistic to test overdispersion in the zero–inflated generalized Poisson mixed model 

which was selected based on the approximate mean-variance relationship in the data.  

 Distributions in the exponential family exhibit a certain mean-variance 

relationship. This relation is altered if there is overdispersion or underdispersion. As 

such, overdispersion or underdispersion is identified by estimating the parameters in the 

mean-variance relationship and then measuring deviations from the theoretical values. 

Mean-variance models are not uncommon, in fact, Kukush et al. (2009) considered a pair 

of mean and variance functions with a common parameter vector 𝜃 estimated using an 

extended quasi-score function. Tsou (2011) considered two parameters (𝜆, 𝜓) in a 

parametric robust method of determining the mean-variance relationship through 
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estimation of the power 𝜆 with an adjusted robust log likelihood method for fixed values 

of 𝜓. Tsou demonstrated that, for distributions with a power mean-variance relationship 

such as the Poisson, Weibull, and Inverse Gaussian, the adjusted log likelihood method 

produced accurate parameter estimates despite using a normal working model.  While 

these methods produce good results, the performance does not extend to nonlinear 

relationships, such as with binary data, which does not have a power relationship between 

the mean and variance.   

This paper presents the evaluation of a general mean-variance relation in 

observational data. It consists of a simple method to identify and estimate overdispersion 

and underdispersion based on a two-parameter representation of the mean-variance 

relationship. We present a generalized method of moments (GMM) approach based on an 

adjusted canonical parameterization, which generalizes this method to all distributions 

that are members of the quasi-exponential family. Our approach negates the need for 

distributional assumptions as required with a maximum likelihood estimation approach. 

In addition, we provide test statistics and confidence intervals for the adjustment 

parameters. The properties and performance of our estimators are validated through a 

simulation study. 

In Section 2.2, we review a likelihood estimation approach for the two-parameter 

mean-variance relation. In Section 2.3, we introduce the canonical parameterization of 

the mean-variance relationship, which expands the use of this variance form to any 

distribution in the exponential family. We present a generalized method of moments 

approach to estimate the mean-variance parameters as well as a test to identify 

overdispersion or underdispersion. In Section 2.4, a simulation study is conducted to 
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examine the properties of the GMM estimators. In Section 2.5, our GMM approach of 

estimating the mean-variance relationship is applied to a data set obtained from Weisberg 

(1985), the count of the number of snow geese in a flock, and to a children’s morbidity 

study in the Philippines (Bhargava 1994). 

2.2 Likelihood Approach to Estimating the Mean-Variance Relationship 

Consider 𝑛 observations 𝑦1, … , 𝑦𝑛 of the random variable 𝒀, each with mean 𝜇𝑖 

and variance  

𝑣𝑎𝑟(𝑦𝑖) = 𝜓𝜇𝑖
𝜆. 

Tsou (2011) provided a parametric robust method of determining this mean-variance 

relationship by estimating the power 𝜆 with an adjusted robust log likelihood method for 

fixed values of 𝜓. He proposed adding a correction to the normal model to obtain 

asymptotically valid inferences for 𝜆, 𝜓, and the regression parameters. For the normal 

distribution, the log profile likelihood for 𝜆 is 

𝑙(𝜆, 𝜋(𝜆)) = −
1

2
𝑙𝑜𝑔 2𝜋 −

1

2
𝑙𝑜𝑔 𝜓𝜇𝜆 −

(𝑦−𝜇)2

2𝜓𝜇𝜆 , 

to which Tsou implements a robust adjustment 
𝐴

𝐵
 (Royall and Tsou 2003). The adjustment 

factors are 

𝐴 = 𝑰𝜆𝜆 − 𝑰𝜆𝜋𝑰𝜋𝜋
−1𝑰𝜋𝜆 

and 

𝐵 = 𝑽𝜆𝜆 − 2𝑰𝜆𝜋𝑰𝜋𝜋
−1𝑽𝜋𝜆 + 𝑰𝜆𝜋𝑰𝜋𝜋

−1𝑽𝜋𝜋𝑰𝜋𝜋
−1𝑰𝜋𝜆, 

where 𝜆 is the power, 𝝅 = (𝛽𝐼,0, … , 𝛽𝐼,𝑝−1, 𝜓) denotes the dispersion parameter and the 

regression coefficients, and 𝑽𝜆𝜆, 𝑽𝜆𝜋, and 𝑽𝜋𝜋 are defined as follows:  

𝑽𝜆𝜆 =  𝑙𝑖𝑚
𝑛→∞

𝐸ℎ [
𝑙𝜆(𝜆0,𝜋0)2

𝑛
], 
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𝑽𝜆𝜋 = 𝑙𝑖𝑚
𝑛→∞

𝐸ℎ [
𝑙𝜆(𝜆0,𝜋0)𝑙𝜋(𝜆0,𝜋0)

𝑛
], 

𝑽𝜋𝜋 = 𝑙𝑖𝑚
𝑛→∞

𝐸ℎ [
𝑙𝜋(𝜆0,𝜋0)2

𝑛
]. 

The terms 𝑙𝜆 and 𝑙𝜋 are the first derivatives of 𝑙(𝜆, 𝜋(𝜆)) in terms of 𝜆 and 𝜋, 

respectively. The limiting values of the derivatives of square matrix of dimension 𝑝 + 1,  

𝑰𝜆𝜆 = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑

(𝑙𝑜𝑔 𝜇𝑖)2

2

𝑛
𝑖=1 , 

and 

𝑰𝜆𝜋 =  𝑙𝑖𝑚
𝑛→∞

1

𝑛
[∑

𝜆𝑥𝑖,0𝜇𝑖
′ 𝑙𝑜𝑔 𝜇𝑖

2𝜇𝑖

𝑛
𝑖=1 , … , ∑

𝜆𝑥𝑖,𝑝−1𝜇𝑖
′ 𝑙𝑜𝑔 𝜇𝑖

2𝜇𝑖

𝑛
𝑖=1 , ∑

𝑙𝑜𝑔 𝜇𝑖

2𝜓

𝑛
𝑖=1 ], 

where the 𝑗th row for 𝑗 = 1, … , 𝑝 is  

𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑥𝑖,𝑗−1𝑥𝑖,0 [

𝜇𝑖
′2

𝜓𝜇𝑖
𝜆 +

𝜆2𝜇𝑖
′2

2𝜇𝑖
2 ]𝑛

𝑖=1 , … , ∑ 𝑥𝑖,𝑗−1𝑥𝑖,𝑝−1 [
𝜇𝑖

′2

𝜓𝜇𝑖
𝜆 +

𝜆2𝜇𝑖
′2

2𝜇𝑖
2 ]𝑛

𝑖=1 , ∑ [
𝜆𝑥𝑖,𝑗−1𝜇𝑖′

2𝜓𝜇𝑖
]𝑛

𝑖=1 ), 

and the (𝑝 + 1)th row is 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ [

𝜆𝑥𝑖,0𝜇𝑖
′

2𝜓𝜇𝑖
]𝑛

𝑖=1 , … , ∑ [
𝜆𝑥𝑖,𝑝−1𝜇𝑖

′

2𝜓𝜇𝑖
]𝑛

𝑖=1 ,
𝑛

2𝜓2). 

Tsou (2011) demonstrated that, for a fixed multiplicative factor 𝜓, the adjusted 

log likelihood method has good properties and the estimates for the power relating the 

mean and variance were produced despite using a normal working model. Tsou’s 

simulation study showed that the power 𝜆 was estimated nearly exactly for the Poisson, 

Weibull, and Inverse Gaussian distributions with large sample sizes. In addition, the 

likelihood technique corrected the empirical type I error probability. While the robust 

method produced accurate estimates of the mean-variance relationship parameters, the 

adjustment factor requires lengthy derivations for the derivatives and depends on the 

skewness and the kurtosis of the true underlying distribution. In practice, this method is 
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computationally intensive to obtain the estimate for 𝜆, and information about the 

underlying distribution is often unknown. 

We present an alternative approach based on generalized method of moments. 

This estimation technique is based on the first and second moment conditions, assuming 

that they exist (Tan, et al. 2010). As such, this method does not require the distributional 

assumptions of likelihood methods and is computationally very tractable. Our GMM 

method produces consistent estimates, similar to semiparametric techniques.  

2.3 Generalized Method of Moments Approach to Estimating the Mean-Variance 

Relationship 

2.3.1 General Framework 

Consider 𝑛 observations 𝑦𝑖, 𝑖 = 1, 2, … 𝑛; as realizations of a set of independent 

random variables 𝑌𝑖 with mean 𝜇𝑖 related to 𝑘 covariates 𝑥1, … , 𝑥𝑘 through a link function 

𝑔(∙) so that 𝐸(𝑌𝑖) = 𝜇𝑖 and 𝑔(𝜇𝑖) = 𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑘𝑥𝑖,𝑘 for 𝑖 = 1, … , 𝑛. The 

estimates of the regression parameters 𝛽0, … , 𝛽𝑘 can be obtained using estimating 

equations obtained from the likelihood. Let the joint probability function of 𝑌𝑖 be 

𝑓(𝑦; 𝜃, 𝜙) = 𝑒𝑥𝑝 [
(𝑦𝜃 − 𝑏(𝜃))

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)] 

with known functions 𝑎, 𝑏, and 𝑐 (McCullagh and Nelder 1989). When the so-called 

dispersion parameter 𝜙 is known, then 𝑓(𝑦; 𝜃, 𝜙) is a linear exponential family model 

with canonical parameter 𝜃. If 𝜃 is unknown, then we have a two-dimensional 

exponential family with log likelihood, 

𝑙(𝜃, 𝜙|𝑦) =
(𝑦𝜃−𝑏(𝜃))

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙). 

Using the expectation of differentiation of the likelihood 
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𝐸 (
𝜕𝑙(𝜃, 𝜙|𝑦)

𝜕𝜃
) = 0 

and the property 

𝐸 (
𝜕2𝑙(𝜃, 𝜙|𝑦)

𝜕𝜃2
) + 𝐸 (

𝑙(𝜃, 𝜙|𝑦)

𝜕𝜃
)

2

= 0 

yields the expected value 𝐸(𝑌) = 𝑏′(𝜃) and the variance 𝑣𝑎𝑟(𝑌) = 𝑏′′(𝜃)𝑎(𝜙) where 

𝑏′(𝜃) denotes the first derivative and 𝑏′′(∙) denotes the second derivative. Thus, both 𝑏′ 

and 𝑏′′ are functions of the canonical parameter 𝜃. The mean and the variance are related 

through the first derivative and second derivative of the function 𝑏(𝜃). The variance of 

the observations is a product of a function of the canonical parameter 𝜃 and a function of 

the dispersion parameter 𝜙. 

The Poisson distribution and the binomial distribution are members of the 

exponential family and are commonly used to analyze count data and binary data, 

respectively. The Poisson distribution has probability mass function  

𝑓(𝑦; 𝛼) = 𝑒𝑥𝑝(𝑦 𝑙𝑜𝑔 𝛼 − 𝛼 − 𝑙𝑜𝑔 𝑦!) 

with 𝑎(𝜙) = 1, 𝑏(𝜃) = 𝛼 = 𝑒𝑥𝑝(𝜃), 𝑐(𝑦, 𝜙) = − 𝑙𝑜𝑔 𝑦!, and canonical parameter 𝜃 =

𝑙𝑜𝑔(𝛼). Thus, the expected mean and variance under the Poisson distribution are equal to 

𝛼. The binomial distribution has probability distribution function  

𝑓(𝑦; 𝑚, 𝑝) = (
𝑚
𝑦 ) 𝑝𝑦(1 − 𝑝)𝑚−𝑦, 

with 𝑎(𝜙) = 1, 𝑏(𝜃) = 𝑚𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝜃)), 𝑐(𝑦, 𝜙) = 𝑙𝑜𝑔 (
𝑚
𝑦 ) and the canonical 

parameter 𝜃 = 𝑙𝑜𝑔 (
𝑝

1−𝑝
). Under the binomial distribution, the expected mean is 𝑚𝑝 and 
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the expected variance is 𝑚𝑝(1 − 𝑝) (McCullagh and Nelder 1989; Dobson and Barnett 

2008). 

2.3.2 Canonical Parameterization 

Consider the canonical parameter 𝜃 through its derivative of the inverse link 

function ℎ, where ℎ = 𝑔−1, and 𝜓 and 𝜆 are parameters in the variance of 𝑌. Then, a 

general mean-variance relationship with flexibility through the parameters of the 

dispersion 𝜓 and power 𝜆, is  

𝑣𝑎𝑟(𝑌) = 𝜓[ℎ′(𝑔(𝜇))]
𝜆

= 𝜓[ℎ′(𝜃)]𝜆 = 𝑏′′(𝜃)𝑎(𝜙) 

where ℎ′(𝜃) is the first derivative of the inverse of the canonical link. For a majority of 

members of the exponential family of distributions, including the Poisson and binomial 

distributions, this power relationship is convenient and flexible to describe the mean-

variance relationship.  

For example, in the case where 𝑌 follows the Poisson distribution with natural 

parameter 𝛼, the canonical parameter is 𝜃 = 𝑙𝑜𝑔 (𝛼) and so the corresponding mean-

variance parameter relation is 

𝑣𝑎𝑟(𝑌) = 𝜓[ℎ′(𝜃)]𝜆 = 𝜓𝛼𝜆 

which reflects an adjusted true mean-variance parameter relation. For the binomial 

distribution with natural parameters 𝑚 and 𝑝, the canonical parameter is 𝜃 = 𝑙𝑜𝑔𝑖𝑡(𝑝) 

which corresponds to the canonical mean-variance parameter relation 

𝑣𝑎𝑟(𝑌) = 𝜓[ℎ′(𝜃)]𝜆 = 𝜓 [
𝑒𝑥𝑝(𝜃)

(1+𝑒𝑥𝑝(𝜃))2]
𝜆

= 𝜓[𝑝(1 − 𝑝)]𝜆 , 

as 𝑝 = 𝑒𝜃(1 + 𝑒𝜃)
−1

. Thus, the power parameter λ allows for adjustment or deviation 

from the specified distributional properties. While the binomial does not have a natural 
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power relationship between the mean and variance, the relationship based on the canonical 

parameter can be estimated. We consider such deviation while considering distributions 

from the quasi-exponential family. The quasi-exponential families represents the Poisson 

and the binomial distributions but do not possess a full identification of the true underlying 

distribution. They are fully defined through the canonical parameterization identified based 

on the scale of the responses in the data. Such situations are robust to misspecification as 

shown in Section 2.4. In this paper, we introduce GMM estimators for the parameters 𝜓 

and 𝜆 in the canonical mean-variance relation. 

2.3.3 GMM Estimation of 𝜓 and 𝜆 

The parameters, 𝜓 and 𝜆, are key parameters in the variance function and so it is 

essential that we obtain reliable and efficient estimates. Our GMM estimators identify 

deviations from the theoretical values in the true mean-variance relation. We rely on the 

assumptions that the distribution is a member of the quasi-exponential family and that the 

first and second moments exist (Hansen 1982). We do not require complete distributional 

assumptions, as is the case with likelihood estimation. However, the GMM estimators of 

𝜓 and 𝜆 are consistent and are asymptotically normal (Jiang 2003).  

Let 𝜸̂𝐺𝑀𝑀 be an estimator for a vector of parameters 𝜸 = (𝜓, 𝜆)′ that minimizes 

the quadratic objective function 𝑓𝑛(𝜸)′𝑊𝑛𝑓𝑛(𝜸) (Zsohar 2012; Lalonde, Wilson, and Yin 

2014), where 𝑓𝑛(𝜸) is a vector of the sample moment conditions, and 𝑊𝑛 is a symmetric, 

positive definite weight matrix of dimension 𝑛. Then,  

𝜸̂𝐺𝑀𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷{𝑓𝑛(𝜸)′𝑊𝑛𝑓𝑛(𝜸)}  (2.1) 
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is a the generalized method of moments estimator for 𝜸 which minimizes the objective 

function. Thus, we obtain the GMM estimators of the parameters 𝜓 and 𝜆, by presenting 

the population moment conditions 

𝐸 (ℎ′(𝜃𝑖)(𝑣𝑎𝑟(𝑦𝑖) − 𝜓[ℎ′(𝜃𝑖)]𝜆)) = 0 (2.2a) 

𝐸 (ℎ′(𝜃𝑖)2(𝑣𝑎𝑟(𝑦𝑖) − 𝜓[ℎ′(𝜃𝑖)]𝜆)) = 0 (2.2b) 

where ℎ′(𝜃𝑖) is the first derivative of the inverse link function. These conditions are 

similar to moment conditions for estimation of parameters in a nonlinear model, where 

𝜓[ℎ′(𝜃𝑖)]𝜆 as an unbiased estimate of the variance and 𝑣𝑎𝑟(𝑦𝑖) as the empirical estimate 

of the variance based on the data, (𝑦𝑖 − 𝜇𝑖)2. Equating the moment condition and an 

empirical estimate of  𝑓𝑛(𝜸) results in  

1

𝑛
∑ 𝑓(𝑦𝑖, 𝜓, 𝜆)𝑛

𝑖=1 = [

1

𝑛
∑ ℎ′(𝜃𝑖)(𝑣𝑎𝑟(𝑦𝑖) − 𝜓[ℎ′(𝜃𝑖)]𝜆)𝑛

𝑖=1

1

𝑛
∑ ℎ′(𝜃𝑖)2(𝑣𝑎𝑟(𝑦𝑖) − 𝜓[ℎ′(𝜃𝑖)]𝜆)𝑛

𝑖=1

] = [
0
0

]. 

A two-step GMM is utilized, with an identity weight matrix for the first iteration. In the 

second step, the weights are selected as an estimate of the optimal weight matrix for 

GMM as 

𝑊̂𝑛 = [
1

𝑛
∑ 𝑓(𝑦𝑖, 𝜓̂, 𝜆̂)𝑓(𝑦𝑖, 𝜓̂, 𝜆̂)

′𝑛

𝑖=1
]

−1

 

where 𝜓̂, 𝜆̂ is an estimate of the mean-variance relationship from the first step (Imbens 

and Spady 2002). Thus, 𝜸̂𝐺𝑀𝑀 is an estimate of the mean-variance relation parameters 

that minimizes the quadratic objective function 𝑓𝑛(𝜸)′𝑊𝑛𝑓𝑛(𝜸). 

The generalized method of moments approach is flexible and estimates both 

parameters (𝜓, 𝜆) simultaneously rather than requiring one value to be held fixed while 
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the other is estimated. However, one can fix one parameter at a time and estimate the 

other parameter using one moment condition. Similarly, one can extend GMM and use 

the additional moment condition, 

𝑓3(𝑦𝑖, 𝜓, 𝜆) = ℎ′(𝜃𝑖)3(𝑣𝑎𝑟(𝑦𝑖) − 𝜓[ℎ′(𝜃𝑖)]𝜆)    (2.3) 

to estimate parameters. The additional moment condition improves the asymptotic 

efficiency, although there is the possibility of small sample bias (Donald, Imbens, and 

Newey 2009). This GMM procedure has many advantages over the likelihood approach. 

It does not rely on complete distributional assumptions, and is obtainable even when 

likelihood methods are computationally burdensome (Zsohar 2012). In addition, the 

resulting estimates for the variance parameters 𝜓 and 𝜆 are reliable and consistent. 

2.3.4 Inference for the Mean-Variance Relation 

We obtain the asymptotic properties of our estimators, develop a test of 

overdispersion, and obtain the confidence intervals for the parameters through a GMM 

approach (Hansen 1982). Assume the data come from a quasi-exponential family. Since 

the sample moments are asymptotically normally distributed, we have 

√𝑛(𝑓𝑛(𝜸̂))
𝑑
→ 𝑁(0, 𝜟), 

where 

𝜟 = 𝐸[𝑓(𝑦, 𝜸∗)𝑓(𝑦, 𝜸∗)′] 

for a value of the parameter 𝜸∗. As such, the GMM estimator 𝜸̂𝐺𝑀𝑀 has the asymptotic 

covariance, 

𝑣𝑎𝑟(𝜸̂𝐺𝑀𝑀 ) = 𝑽𝐺𝑀𝑀 =
1

𝑛
[𝜞′𝑾𝜞]−1𝜞′𝑾𝜟𝑾𝜞[𝜞′𝑾𝜞]−1 

for 
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𝜞 = 𝐸 [
𝜕𝑓(𝑦,𝜸)

𝜕𝜸
] = 𝐸 [

𝜕𝑓(𝑦,𝜆,𝜓)

𝜕𝜓
,

𝜕𝑓(𝑦,𝜆,𝜓)

𝜕𝜆
]

′

, 

where 𝜞 is the expected value of the Jacobian of population moment conditions and 𝑾 is 

a specified weight matrix. In the optimal case, the weight matrix is selected as 𝑾 =

(𝜟)−1, so that 

𝑽𝐺𝑀𝑀 =
1

𝑛
[𝜞′𝑾𝜞]−1 

resulting in asymptotically efficient GMM estimators, 𝜓̂𝐺𝑀𝑀 and 𝜆̂𝐺𝑀𝑀 (Zsohar 2012). In 

practice, the covariance matrix is calculated using the estimate 

𝜞̂ =
1

𝑛
∑

𝜕𝑓(𝑦, 𝜸̂)

𝜕𝜸̂

𝑛

𝑖=1
 

for 𝜸̂ = (𝜓̂, 𝜆̂). Significant overdispersion is identified through testing the hypotheses 

𝐻0: 𝜓 = 1, 𝐻𝑎: 𝜓 > 1 and 𝐻0: 𝜆 = 1, 𝐻𝑎: 𝜆 > 1. The 𝑍 test statistics 

𝑍𝜓 =
𝜓̂−1

√𝑣𝑎𝑟(𝜓̂)

  

and 

𝑍𝜆 =
𝜆̂−1

√𝑣𝑎𝑟(𝜆̂)

, 

and follow the standard normal distribution under the null hypothesis. Thus, a measure of 

the overdispersion can be obtained through the 100(1-𝛼)% confidence intervals for 𝜓 and 

𝜆,  

(𝜓̂𝐺𝑀𝑀 − 𝑧
1−

𝛼
2

√𝑉𝐺𝑀𝑀,𝜓, 𝜓̂𝐺𝑀𝑀 + 𝑧
1−

𝛼
2

√𝑉𝐺𝑀𝑀,𝜓) 

(𝜆̂𝐺𝑀𝑀 − 𝑧
1−

𝛼
2

√𝑉𝐺𝑀𝑀,𝜆, 𝜆̂𝐺𝑀𝑀 + 𝑧
1−

𝛼
2

√𝑉𝐺𝑀𝑀,𝜆) 
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where 𝑧𝛼 is the 𝛼𝑡ℎ quantile from the standard normal distribution (Imbens and Spady 

2002). 

2.4 Simulation Study 

A simulation study is conducted to demonstrate the uses and properties of our 

GMM estimators of the variance using the adjusted canonical parameter in the quasi-

exponential family (McCullagh and Nelder 1989; Dobson and Barnett 2008). In Sections 

2.4.1 and 2.4.2 we examine the mean-variance relationship parameters in count and 

binary data, respectively. Data simulated with sample sizes of 500 are analyzed over 

5,000 iterations. The means 𝝁 are obtained through the link function 𝑔 such that 𝑔(𝜇𝑖) =

2 + 5𝑋𝑖, with a log link for the Poisson data and a logit link for the binomial data. The 

single predictor 𝑋 comes from the Uniform (0, 1.5) distribution for the Poisson 

simulation and from the standard normal distribution for the binomial simulation. In 

Section 2.4.3, we evaluate the impact of sample size on the mean-variance estimates for 

the binomial distribution. Each sample size simulation was replicated with 100 iterations. 

2.4.1 Poisson Distribution 

The Poisson distribution has a mean-variance relationship in terms of the 

canonical parameter as ℎ′(𝜃) = 𝜇 and the variance of the Poisson distribution is 

𝑣𝑎𝑟(𝑌) = 𝜇. Thus, from the simulated data we expect the mean-variance parameter 

estimates 𝜓̂ and 𝜆̂ to be equal or close to 1 (Table 2.1). 

 

Table 2.1. Poisson Simulation Results 

Parameter Estimate Standard Error 

𝜓 0.996 0.002 

𝜆 0.996 0.021 
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The results are in agreement for both parameters, thereby supporting the relation in 

the canonical form. We fix the parameter 𝜓 at 1 and select the form ℎ′(𝜃) = 𝜇 as our 

responses are on the integer scale. The estimate for 𝜆 with a fixed value of 𝜓 is given in 

Table 2. The canonical parameter ℎ′(𝜃) is robust to misspecification. The estimate for 𝜆 

when the canonical parameter is specified as ℎ′(𝜃) = 𝜇2, such that 𝑣𝑎𝑟(𝑌) = (𝜇2)𝜆, is 

also provided in Table 2. We obtain a value for 𝜆̂ close to 0.5, as expected. 

 

Table 2.2. Poisson Simulation Results, 𝜓 = 1 

𝒉′(𝜽) Estimate Standard Error 

𝜇 0.996 0.018 

𝜇2 0.498 0.011 

 

2.4.2 Binomial Distribution 

The mean-variance relationship for a binomial random variable 𝑌 is evaluated 

using the canonical parameter ℎ′(𝜃) = 𝑝(1 − 𝑝), as 𝜃 = 𝑙𝑜𝑔𝑖𝑡(𝑝). The simulation study 

evaluates the performance of the GMM estimators under the true mean-variance 

relationship for the binomial distribution with 𝑚 = 1 and the results support the adequacy 

of the model, Table 2.3. 

 

Table 2.3. Binomial Simulation Results 

 Estimate Standard Error 

𝜓 1.031 0.349 

𝜆 1.001 0.221 
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The GMM estimators have values of 𝜓̂ = 1.031 and 𝜆̂ = 1.001, with standard 

errors are consistent with adequate performance. The technique accurately obtains the 

parameter values of 𝜓 and 𝜆 as 1. This is seen through the confidence intervals which 

include the true value. 

2.4.3 Sample Size Evaluation 

The simulation study examines the performance of the GMM mean-variance 

estimation for the binomial distribution with 𝑚 = 1 over various sample sizes, 𝑛 = 30, 

40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500. The estimates, standard errors, and 

percent significant (simulations where the estimate was found to be significantly greater 

than 1) are obtained for 𝜓 and 𝜆 over 5000 simulations. 
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Table 2.4. Sample Size Simulation Results 

  Estimate Standard Error Percent Significant 

𝑛 = 30 
𝜓 6.308 6.991 14.8% 

𝜆 1.260 0.813 6.5% 

𝑛 = 40 
𝜓 3.977 3.686 11.6% 

𝜆 1.111 0.764 3.0% 

𝑛 = 50 
𝜓 2.623 2.393 9.6% 

𝜆 1.045 0.692 2.4% 

𝑛 = 60 
𝜓 2.114 1.959 9.0% 

𝜆 1.025 0.640 2.6% 

𝑛 = 70 
𝜓 1.771 1.615 7.8% 

𝜆 1.035 0.598 2.5% 

𝑛 = 80 
𝜓 1.741 1.369 7.4% 

𝜆 1.015 0.556 2.3% 

𝑛 = 90 
𝜓 1.416 1.252 6.9% 

𝜆 1.023 0.530 1.9% 

𝑛 = 100 
𝜓 1.435 1.246 6.1% 

𝜆 1.028 0.506 1.6% 

𝑛 = 200 
𝜓 1.114 0.621 3.9% 

𝜆 1.011 0.353 0.5% 

𝑛 = 300 
𝜓 1.069 0.476 2.6% 

𝜆 1.007 0.288 0.4% 

𝑛 = 400 
𝜓 1.050 0.401 2.1% 

𝜆 1.007 0.249 0.4% 

𝑛 = 500 
𝜓 1.035 0.351 2.3% 

𝜆 1.002 0.222 0.4% 

 

The simulation study suggests that the mean-variance parameter estimates vary 

more as the sample size decreases. For example, for a sample size of 50, the estimate for 

the parameter 𝜓 reveals significance in 9.6% of simulated cases. However, for a sample 

size of 80, the parameter estimates are 𝜓̂ = 1.741 and 𝜆̂ = 1.015 and the estimate for the 

parameter 𝜓 is significant in only 7.4% of simulations. 

2.5 Numerical Examples 

The GMM approach to estimate the variance is useful in many applications, 

particularly with count and binary outcomes which often exhibit overdispersion. We 
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revisit the count of snow geese in a flock, which was previously analyzed (Tsou 2011), to 

compare our approach to the adjusted likelihood approach. We also examine the mean-

variance relationship for children’s morbidity in the Philippines Bukidnon Province for 

overdispersion. 

2.5.1 Snow Geese Count 

We consider two observers estimating the number of snow geese in a flock from 

an airplane to test aerial survey methods. The observers made estimates of the number of 

geese, which were compared to the true number of geese determined by a photograph 

(Weisberg 1985). The observers counted geese from 45 flocks. Figure 2.1 shows one of 

the observers counts and indicates that there may be overdispersion, as the variance in the 

count of snow geese increases as the size of the flock increases. 

 

Figure 2.1. Plot of the Estimated Number of Snow Geese Compared to the True Number 

of Snow Geese in a Flock 

 

To estimate the two parameters in the variance relationship, one may consider 

three moment conditions thereby resulting in more efficient estimates. We demonstrate 



  23 

the use of an extra moment condition, Equation 2.3, and estimate 𝑣𝑎𝑟̂(𝑌𝑖) = 1.178𝜇𝑖
1.780 

with confidence intervals of (1.164,1.192) and (1.674,1.887) for 𝜓 and 𝜆, respectively. 

Tsou (2011) analyzed these data and obtained the mean-variance relationship using a 

likelihood approach by holding 𝜓 fixed as 0.092 and estimated 𝜆̂ = 2.027 with a standard 

error of 0.257. For comparative purposes, we apply the GMM technique with 𝜓 fixed and 

obtain an estimate of 𝜆̂ = 2.153 with a standard error of 0.043. 

2.5.2 Philippines Morbidity 

We evaluate data on children’s health collected by the International Food Policy 

Research Institute in the Philippines (Bhargava 1994). Information including morbidity, 

age, gender, and body mass index (BMI) are available for 370 children. We consider the 

first visit for each child to evaluate the variance across children. The binary outcome 

morbidity indicates whether the child was sick or not. We evaluate overdispersion in the 

data through estimating the canonical form of the variance 𝑣𝑎𝑟(𝑦𝑖) = 𝜓ℎ′(𝜃)𝜆 for 

ℎ′(𝜃) = 𝑝(1 − 𝑝). The probability of morbidity for each child 𝑝𝑖 is estimated using a 

generalized linear mixed model due to the repeated measurements. Using the GMM 

approach for estimating the mean-variance relationship, we obtain 𝜓̂ = 0.841 and 𝜆̂ = 

0.891 with standard errors 0.519 and 0.407, respectively. These results indicate that the 

morbidity data for the first visit of each child are not overdispersed. 

2.6 Conclusions 

Although it is common to assume that the variance of a random variable is a 

function of the mean, it is often the case that the true variance in the data may be inflated 

due to underlying correlation, resulting in overdispersion. Overdispersion is a common 

phenomenon when analyzing count and binary data, particularly in longitudinal or 
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clustered data. Using likelihood methods to analyze data relies on the true mean-variance 

relationship, which assumes that the underlying distribution is correctly specified. The 

generalized method of moments approach is an alternative technique that produces 

estimators that do not require distributional assumptions or a pre-assumed mean-variance 

relationship. It is computationally tractable and has many nice properties. Our simulation 

study verifies that the GMM estimator produces unbiased and consistent estimates with 

low standard errors. The performance demonstrates that the GMM estimation technique 

identifies the mean-variance relationship in the data. The estimators are appropriate and 

reliable for estimating the variance parameters 𝜓 and 𝜆. The simulation study also 

demonstrated that the accuracy of the mean-variance relationship depends on sample size, 

and caution should be used when applying this approach to datasets of small sample 

sizes. The two numerical examples demonstrate how estimation of both variance 

parameters can be used to identify overdispersion. Our GMM approach is a comparable 

alternative to likelihood based methods of estimating the form of the variance and serves 

as an indicator for overdispersion and potential violations to model assumptions. More 

importantly, the parameter estimates can be utilized to fit an overdispersed model through 

a generalized quasi-likelihood model, which takes into account the mean-variance 

relations in the data (Wedderburn 1974). 
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CHAPTER 3 

ADJUSTED CANONICAL GENERALIZED QUASI-LIKELIHOOD 

 

Abstract 

Generalized quasi-likelihood models are useful for analyzing data without an underlying 

distributional assumption. These models rely on the mean-variance relationship of the 

data and have many good properties such as unbiased estimates and small standard errors. 

In correlated data, the underlying mean-variance relationship may be shifted although the 

distribution is still a member of the quasi-exponential family. We propose fitting 

generalized quasi-likelihood models to correlated data using alternative estimation of the 

covariance matrix. We implement the canonical parameter adjustment to the mean-

variance relationship estimated using generalized method of moments and extend it for 

use in hierarchical data. We demonstrate the performance of this adjusted generalized 

quasi-likelihood approach through a simulation study and apply this modeling technique 

to Filipino children’s morbidity data and adolescent obesity data in the United States. 

 

3.1 Introduction 

When analyzing data under particular distributional assumptions, we assume a 

prescribed mean-variance relationship exists in the data. However, it is often the case that 

a given dataset will exhibit overdispersion (larger variance than expected) by the 

underlying distribution. In this case, the true distribution is unknown and corrections for 

the inflated variance need to be incorporated into the analyses. Ignoring possible 

overdispersion is a naïve approach to analyze the data and can lead to poor and inaccurate 
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estimates. Binary and count data commonly exhibit overdispersion, as well as 

hierarchical data. Longitudinal and clustered data analyses are correlated due to 

similarities between clusters and within clusters.  

Generalized linear models are widely used as a standard tool in regression 

analysis when the distribution is a member of the exponential family. However, it is well 

known that traditional generalized linear models cannot be employed to obtain regression 

parameter estimates when there is correlated data or significant overdispersion. Such data 

require statistical models such as generalized estimating equations, generalized linear 

mixed models, and joint modeling of the mean and dispersion (Wilson and Lorenz 2015). 

Generalized estimating equations account for correlation through the selection of a 

covariance structure for the correlated responses (Liang and Zeger 1986). Lee and Nelder 

(2000) presented the use of generalized linear mixed models to model overdispersion in 

non-normal data. Mixed models incorporate random effects, such as random intercepts 

and random slopes, to account for correlation due to clustering (Breslow and Clayton 

1993). The joint modeling of the mean and the variance uses an additional submodel to 

address the dispersion parameter in a generalized linear model context (Smyth 1989). The 

joint modeling of the mean and variance accounts for variation in both the mean and the 

variance submodels and has been extended to joint modeling in hierarchical generalized 

linear model structures (Smyth and Verbyla 1999; Lee and Nelder 2006). 

In cases where the underlying distribution is unspecified, a quasi-likelihood 

approach can be implemented (Wedderburn 1974). This modeling technique does not 

assume an underlying distribution. In quasi-likelihood modeling, the distribution 

assumption is relaxed through the specification of a variance function. Such approach 
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requires the specification of the mean-variance relationship and estimates of the 

covariance matrix in a quadratic form to obtain the regression parameter estimates and 

corresponding standard errors. The quasi-likelihood approach has many good properties, 

including unbiased estimates and smaller standard errors as compared to alternative 

methods (Wang and Wilson 2017).  

In this paper, a generalized quasi-likelihood (GQL) model to fit correlated data is 

presented which uses an adjusted canonical parameterization of the mean-variance 

relationship in the covariance. The adjusted canonical parameter provides a 

generalization that makes this approach feasible for all models with unknown 

distributions but is believed to be a member of the quasi-exponential family. The adjusted 

GQL model negates the need for distributional assumptions as required with a maximum 

likelihood estimation approach, and incorporates the empirical variance in the data. In 

Section 3.2, we review a generalized quasi-likelihood approach that estimates the 

regression parameters and the variance components in a clustered data setting (Sutradhar 

2004). In Section 3.3, we propose an alternative model to analyze data using generalized 

quasi-likelihood while accounting for the overdispersion. The method is simple as it 

incorporates an adjustment to the canonical parameter. In Section 3.4, we validate the 

performance of the adjusted generalized quasi-likelihood model with GMM estimates of 

the mean-variance relation through a simulation study. In Section 3.5, the GQL model 

with adjusted canonical parameters are used to analyze the children’s health in the 

Philippines (Bhargava 1994) and obesity data collected through the National 

Longitudinal Study of Adolescent to Adult Health (Add Health) (Harris, et al. 2009). 
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3.2 Generalized Quasi-likelihood Models 

Consider 𝑛 vectors of observations 𝒚𝟏, … , 𝒚𝒏 where 𝒚𝒊 = (𝑦𝑖1, … . 𝑦𝑖𝑛𝑖
) for 𝑖 =

1, … 𝑛 where 𝑦𝑖𝑗 follows a distribution from the exponential family with link function 

𝑔(∙) such that 𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗 = 𝒙𝑖𝑗
′ 𝜷 + 𝛼𝑖 for 𝑘 covariates where 𝛼𝑖~𝑁(0, 𝜎2) is a random 

intercept for cluster 𝑖. The linear component can also be written as 𝜂𝑖𝑗 = 𝒙𝑖𝑗
′ 𝜷 + 𝜎𝜉𝑖 

where 𝜉𝑖~𝑁(0,1) as 𝜉𝑖 = 𝛼𝑖/𝜎. We estimate 𝜷 and 𝜎 using GQL. Let the response vector 

be 𝑺𝒊 = (𝑦𝑖
′, 𝑢𝑖

′) where 𝒚𝒊
′ = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖

) and 𝒖𝒊
′ = (𝒖𝒊𝟏

′ , 𝒖𝒊𝟐
′ ) contains the pairwise 

products where 𝒖𝒊𝟏 = (𝑦𝑖1
2 , … , 𝑦𝑖𝑛𝑖

2 ) and 𝒖𝒊𝟐 = (𝑦𝑖1𝑦𝑖2, … , 𝑦𝑖𝑗𝑦𝑖𝑗′ , … , 𝑦𝑖(𝑛𝑖−1)𝑦𝑖𝑛𝑖
). The 

vector of model parameters is 𝜽 = (𝜷′, 𝜎)′ and 𝑴𝒊(𝜃) is the mean of the response vector 

𝑺𝒊. Let 𝜴𝒊(𝜃) be the covariance matrix for 𝑺𝒊 as 𝜴𝒊(𝜃) = (𝜔𝑖𝑗). Then, the generalized 

quasi-likelihood estimating equation 

∑
𝜕𝑴𝒊

′(𝜃)

𝜕𝜃

𝑛
𝑖=1 𝜴𝑖

−1(𝜃)[𝑺𝒊 − 𝑴𝒊(𝜃)] = 0          (3.1) 

is used to obtain the GQL estimates of 𝜷 and 𝜎 (Wedderburn 1974; Sutradhar 2004). The 

𝑟𝑡ℎ finite moments of 𝑦𝑖𝑗 determine the GQL estimates, denoted using the function 

𝑔(𝑟)(𝜂𝑖𝑗). 

The mean of the response vector, 𝑴𝒊(𝜃), is evaluated based on  

𝑴𝒊(𝜃) = 𝐸(𝑺𝒊) = 𝐸(𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
, 𝑌𝑖1

2 , … , 𝑌𝑖𝑛𝑖

2 , 𝑌𝑖1𝑌𝑖2, … , 𝑌𝑖(𝑛𝑖−1)𝑌𝑖𝑛𝑖
) 

where 

𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗(𝜃) = 𝐸[𝑔(1)(𝑥𝑖𝑗
′ 𝛽 + 𝜎𝜉)] 

𝐸(𝑌𝑖𝑗
2) = 𝑚𝑖𝑗𝑗(𝜃) = 𝐸[𝑔(2)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)] 

𝐸(𝑌𝑖𝑗𝑌𝑖𝑘) = 𝑚𝑖𝑗𝑘(𝜃) = 𝐸[𝑔(1)(𝑥𝑖𝑗
′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑘

′ 𝛽 + 𝜎𝜉)]. 
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The partial derivative matrix 
𝜕𝑴𝒊

′(𝜃)

𝜕𝜃
 has dimension (𝑝 + 1) × {𝑛𝑖(𝑛𝑖 + 1)/2}, where the 

partial derivatives are  

𝜕𝜇𝑖𝑗(𝜃)

𝜕𝛽
= 𝐸[𝑔̃(1)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)]𝑥𝑖𝑗
′   

𝜕𝑚𝑖𝑗𝑗(𝜃)

𝜕𝛽
= 𝐸[𝑔̃(2)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)]𝑥𝑖𝑗
′   

𝜕𝑚𝑖𝑗𝑘(𝜃)

𝜕𝛽
= 𝐸[𝑔̃(1)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑘
′ 𝛽 + 𝜎𝜉)]𝑥𝑖𝑗

′ + 𝐸[𝑔(1)(𝑥𝑖𝑗
′ 𝛽 + 𝜎𝜉)𝑔̃(1)(𝑥𝑖𝑘

′ 𝛽 +

𝜎𝜉)]𝑥𝑖𝑘
′   

𝜕𝜇𝑖𝑗(𝜃)

𝜕𝜎
= 𝐸[𝜉𝑔̃(1)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)]𝑥𝑖𝑗
′   

𝜕𝑚𝑖𝑗𝑗(𝜃)

𝜕𝜎
= 𝐸[𝜉𝑔̃(2)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)]𝑥𝑖𝑗
′   

𝜕𝑚𝑖𝑗𝑘(𝜃)

𝜕𝜎
= 𝐸[𝜉{𝑔̃(1)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑘
′ 𝛽 + 𝜎𝜉) + 𝑔(1)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)𝑔̃(1)(𝑥𝑖𝑘
′ 𝛽 + 𝜎𝜉)}]  

where 𝑔̃(𝑟)(∙) is the first derivative of 𝑔(𝑟)(∙). The covariance matrix is 

𝜴𝒊 = [
𝜮𝒊 𝑷𝒊

𝑷𝒊
′ 𝑸𝒊

] 

where 𝚺𝒊 = 𝑐𝑜𝑣(𝑌𝑖), 𝑷𝒊 = 𝑐𝑜𝑣(𝑌𝑖, 𝑈𝑖
′) and 𝑸𝒊 = 𝑐𝑜𝑣(𝑈𝑖). The diagonal elements of 𝜮𝒊, 

the variances of 𝑌𝑖, are 

𝜎𝑖𝑗𝑗 = 𝑉𝑎𝑟(𝑌𝑖𝑗) = 𝑚𝑖𝑗𝑗(𝜃) − 𝜇𝑖𝑗
2 (𝜃). 

with off diagonal elements 

𝜎𝑖𝑗𝑘 = 𝐶𝑜𝑣(𝑌𝑖𝑗 , 𝑌𝑖𝑘) = 𝑚𝑖𝑗𝑘(𝜃) − 𝜇𝑖𝑗(𝜃)𝜇𝑖𝑘(𝜃). 

The matrix 𝑷𝒊 is of dimension 𝑛𝑖 × {𝑛𝑖(𝑛𝑖 + 1)/2} and contains 𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑗
2), 

𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑗𝑌𝑖𝑙) and 𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑘𝑌𝑖𝑙).  

For 𝑗 = 𝑘 = 𝑙, 𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑗
2) = 𝑝𝑖𝑗𝑗𝑗(𝜃) = 𝐸[𝑔(3)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)] − 𝜇𝑖𝑗(𝜃)𝑚𝑖𝑗𝑗(𝜃).  
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For 𝑗 = 𝑘 ≠ 𝑙 and 𝑗 = 𝑙 ≠ 𝑘, the covariance elements are 

𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑗𝑌𝑖𝑙) = 𝐸(𝑌𝑖𝑗
2𝑌𝑖𝑙) − 𝜇𝑖𝑗(𝜃)𝑚𝑖𝑗𝑙(𝜃) = 𝐸[𝑔(2)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑙
′ 𝛽 + 𝜎𝜉)] −

𝜇𝑖𝑗(𝜃)𝑚𝑖𝑗𝑙(𝜃).  

For 𝑗 ≠ 𝑘 ≠ 𝑙, 𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑘𝑌𝑖𝑙) = 𝑝𝑖𝑗𝑘𝑙(𝜃) = 𝐸[𝑔(1)(𝑥𝑖𝑗
′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑘

′ 𝛽 +

𝜎𝜉)𝑔(1)(𝑥𝑖𝑙
′ 𝛽 + 𝜎𝜉)] − 𝜇𝑖𝑗(𝜃)𝑚𝑖𝑘𝑙(𝜃). 

In the covariance matrix, 𝑸𝒊 contains 𝑐𝑜𝑣(𝑌𝑖𝑗𝑌𝑖𝑘, 𝑌𝑖𝑙𝑌𝑖𝑤) with dimension {𝑛𝑖(𝑛𝑖 + 1)/

2} × {𝑛𝑖(𝑛𝑖 + 1)/2}.  

For 𝑗 = 𝑘 = 𝑙 = 𝑚, 𝑐𝑜𝑣(𝑌𝑖𝑗
2, 𝑌𝑖𝑗

2) = 𝑞𝑖𝑗𝑗𝑗𝑗(𝜃) = 𝐸[𝑔(4)(𝑥𝑖𝑗
′ 𝛽 + 𝜎𝜉)] − 𝑚𝑖𝑗𝑗

2 (𝜃).  

For 𝑗 = 𝑘 ≠ 𝑙 ≠ 𝑤, 𝑐𝑜𝑣(𝑌𝑖𝑗
2, 𝑌𝑖𝑙𝑌𝑖𝑤) = 𝑞𝑖𝑗𝑗𝑙𝑤(𝜃) = 𝐸[𝑔(2)(𝑥𝑖𝑗

′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑙
′ 𝛽 +

𝜎𝜉)𝑔(1)(𝑥𝑖𝑤
′ 𝛽 + 𝜎𝜉)] − 𝑚𝑖𝑗𝑗(𝜃)𝑚𝑖𝑙𝑤(𝜃).  

For 𝑗 ≠ 𝑘 ≠ 𝑙 ≠ 𝑤,  

𝑐𝑜𝑣(𝑌𝑖𝑗𝑌𝑖𝑘, 𝑌𝑖𝑙𝑌𝑖𝑤) = 𝑞𝑖𝑗𝑘𝑙𝑤 = 𝐸[𝑔(1)(𝑥𝑖𝑗
′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑘

′ 𝛽 + 𝜎𝜉)𝑔(1)(𝑥𝑖𝑙
′ 𝛽 +

𝜎𝜉)𝑔(1)(𝑥𝑖𝑤
′ 𝛽 + 𝜎𝜉)] − 𝑚𝑖𝑗𝑘(𝜃)𝑚𝑖𝑙𝑤(𝜃).  

Then, the quasi-likelihood estimate 𝜽̂𝑄𝐿 = (𝜷̂𝑄𝐿
′ , 𝜎̂𝑄𝐿)

′
 is found using Newton-

Raphson iteration as  

𝜽̂𝑄𝐿(𝑡 + 1) = 𝜽̂𝑄𝐿(𝑡) + [∑
𝜕𝑴𝒊

′(𝜃)

𝜕𝜃

𝑛
𝑖=1 𝜴𝑖

−1 𝜕𝑴𝑖(𝜃)

𝜕𝜃
]

(𝑡)

−1

[∑
𝜕𝑴𝒊

′(𝜃)

𝜕𝜃

𝑛
𝑖=1 𝜴𝒊

−1(𝜃)[𝑺𝒊 − 𝑴𝒊(𝜃)]]. 

The covariance of the quasi-likelihood estimator is 

𝑉̂(𝜽̂𝑄𝐿) = [∑
𝜕𝑴𝒊

′(𝜃)

𝜕𝜃

𝑛
𝑖=1 𝜴𝑖

−1 𝜕𝑴𝑖(𝜃)

𝜕𝜃
]

−1

. 

GQL estimators are consistent and efficient (Sutradhar 2004). Specification of the GQL 

model is important as consistency of the regression parameter estimates depends on 
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correctly specifying link function and efficiency depends on a correctly specified 

variance function. 

3.3 Adjusted Quasi-likelihood Models with Canonical Parameterization 

We postulate that the variance parameter estimates 𝜓̂ and 𝜆̂ obtained through 

GMM estimation (Chapter 2) is applicable to modeling the mean-variance relationship in 

overdispersed data and to estimate the covariance matrix for inference. In this section, we 

use quasi-likelihood estimation in a semiparametric model with a correlated structure 

based on the canonical parameter representation in the mean-variance relationship. It is 

natural to find some deviation from the relation between the mean and variance when 

dealing with correlated data. As such, we rely on the first two moments of the response 

based on knowledge of the scale of the responses. 

3.3.1 Mean-Variance Estimation in Hierarchical Data 

In Chapter 2, the mean-variance relation was presented as a useful method for 

identifying deviations from the assumed variance. The canonical mean-variance form 

extends the estimation to distributions in the exponential family and estimates the true 

mean-variance relation for moderate sample sizes. Initially, the mean-variance estimation 

method was used with cross-sectional data. We extend the estimation procedure to 

identify the mean-variance relation in clustered data and use the estimates in generalized 

quasi-likelihood modeling.  

 Let the random variables 𝑦𝑖𝑗, for the 𝑗𝑡ℎ observed value in cluster 𝑖,  𝑗 = 1, … , 𝑛𝑖 

and 𝑖 = 1, … , 𝑛, have means 𝜇𝑖𝑗 related to 𝑘 covariates and random effect 𝛼𝑖 through the 

link function 𝑔(∙) such that 𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗 and 𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗 = 𝑥𝑖𝑗𝑘
′ 𝛽 + 𝛼𝑖 where the 

random effect 𝛼𝑖 represents the variation between clusters such that 𝛼𝑖~𝑁(0, 𝜎2). 



  32 

Further, consider 𝜉𝑖 = 𝛼𝑖/𝜎, where 𝜉𝑖~𝑁(0,1) so the linear predictor becomes 𝑔(𝜇𝑖𝑗) =

𝑥𝑖𝑗𝑘
′ 𝛽 + 𝜎𝜉𝑖. 

 Recall the general mean-variance relationship, 𝑣𝑎𝑟(𝑌) = 𝜓[ℎ′(𝜃)]𝜆, where 𝜃 is 

the canonical parameter and ℎ′(𝜃) is the first derivative of the inverse canonical link. For 

cross sectional data, the variance parameters 𝜓 and 𝜆 were estimated from all the data 

based on generalized method of moments, (2.2a) and (2.2b). In clustered data, there is 

added correlation that must be addressed in any models. For two-level hierarchical, 

consider 𝑛 clusters where 𝑛 is of moderate size. Let an observation be sampled from each 

cluster denoted as 𝑦1(𝑗1), 𝑦2(𝑗2) … , 𝑦𝑛(𝑗𝑛) where (𝑗𝑖) is the sampled observation number 

for the 𝑖𝑡ℎ group where 1 ≤ 𝑗 ≤ 𝑛𝑖. We apply the GMM procedure to the observations of 

sample size 𝑛𝑖 to estimate the mean-variance relationship parameters 𝜓 and 𝜆 for the 

sampled data. The estimated variances are 

𝑣𝑎𝑟̂(𝑌𝑖𝑗) = 𝜓̂[ℎ′(𝜃𝑖𝑗)]
𝜆̂
. 

We select 𝑚 random samples of observations from each cluster and calculate the mean-

variance parameters in each sample. Thus, the average of 𝜓̂𝑘 and 𝜆̂𝑘 for 𝑘 = 1, … , 𝑚 

provide parameter estimates. For the situation where there are few clusters and 𝑛𝑖 is of 

moderate size, the mean-variance relation parameters can be estimated using a moderate 

number of observations within each cluster. 

3.3.2 Adjusted Generalized Quasi-likelihood 

From use the generalized quasi-likelihood estimating equation (3.1), with 𝑴𝒊, 

𝜕𝑴𝒊
′(𝜃)

𝜕𝜃
, and the covariance matrix 𝜴𝒊(𝜃), we estimate the regression parameters 𝜷 and the 

variance of the random effect 𝜎. While GQL is known to perform well and produce 
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consistent and efficient estimators (Sutradhar 2004), it depends on the estimate of the 

variance of 𝑆𝑖, which we obtain from the canonical mean-variance relationship form 

𝜓[ℎ′(𝜃𝑖𝑗)]
𝜆
. The covariance matrix 𝜴𝑖(𝜷, 𝜎, 𝜓, 𝜆 ) is estimated with diagonal elements in 

𝜮𝒊 of 𝜎𝑖𝑖 = 𝜎𝑖𝑖(𝛽, 𝜎, 𝜓, 𝜆) where 

𝜎𝑖𝑗𝑗 = 𝑣𝑎𝑟(𝑌𝑖𝑗) = 𝜓[ℎ′(𝜃𝑖𝑗)]
𝜆
 

for estimates of 𝜓 and 𝜆 estimated using GMM on a random sample of an 

observation from each cluster. For given 𝜓 and 𝜆, the GQL estimates of 𝜷 and 𝜎 from 

(3.1) are unbiased. The GQL estimators are consistent and efficient as 𝜇𝑖𝑗 is the mean of 

𝑦𝑖𝑗 and the weight matrix 𝜮𝒊 reflects the estimated covariance. 

3.4 Simulation Study 

Consider simulated binary response data in a two-level hierarchical data structure. 

Each dataset contains 100 clusters, each has 5 observations in each cluster (for a total of 

500 observations). The random intercept 𝛼𝑖 associated with each cluster is generated 

from 𝑁(0, 𝜎𝛼
2) with 𝜎𝛼 = 1, 2, 3, 4, or 5. The linear predictor is 𝜂𝑖 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛼𝑖, 

where 𝛽1 = 𝛽2 = 1 and 𝑋1 and 𝑋2 are generated from standard normal distributions. We 

fit an adjusted GQL model (averaged across ten random samples), GQL model, and a 

generalized linear mixed model (GLMM) to the simulated data for 500 iterations, Table 

3.1. 
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Table 3.1. GQL Simulation Results for Binary Data 

  𝜷̂𝟏 (SE) 𝜷̂𝟐 (SE) 𝝈̂ (SE) 

𝜎 = 1 

Adjusted GQL 
1.0071  

(0.1523) 

0.9439  

(0.1547) 

1.1602  

(0.2555) 

GQL 
1.0039  

(0.1417) 

0.9982  

(0.1413) 

1.0022  

(0.2061) 

GLMM 
0.9988  

(0.1369) 

1.0135  

(0.1376) 

0.9557  

(-) 

𝜎 = 2 

Adjusted GQL 
1.0142  

(0.1879) 

1.0272  

(0.1890) 

2.0553  

(0.3858) 

GQL 
1.0095  

(0.1635) 

1.0224  

(0.1642) 

2.0441  

(0.2987) 

GLMM 
1.0021  

(0.1619) 

1.0147  

(0.1627) 

1.9456  

(-) 

𝜎 = 3 

Adjusted GQL 
1.0264  

(0.2372) 

1.0357  

(0.2384) 

3.1000  

(0.6676) 

GQL 
1.0137  

(0.1860) 

1.0279  

(0.1868) 

3.0558  

(0.4511) 

GLMM 
0.9903  

(0.1814) 

1.0043  

(0.1820) 

2.8352  

(-) 

𝜎 = 4 

Adjusted GQL 
1.0503  

(0.2918) 

1.0663  

(0.2945) 

4.2475  

(1.0827) 

GQL 
1.0230  

(0.2089) 

1.0354  

(0.2097) 

4.0954  

(0.6486) 

GLMM 
0.9734  

(0.1987) 

0.9853  

(0.1990) 

3.6486  

(-) 

𝜎 = 5 

Adjusted GQL 
1.0528  

(0.3367) 

1.0742  

(0.3397) 

5.3381  

(1.5583) 

GQL 
1.0161  

(0.2291) 

1.0332  

(0.2302) 

5.1082  

(0.8747) 

GLMM 
0.9364  

(0.2074) 

0.9521  

(0.2080) 

4.3366  

(-) 

 

The adjusted GQL model produces accurate estimates of the regression 

parameters 𝛽1, 𝛽2, and random effect variance. The parameter estimates are similar 

across the three methods (mixed, GQL, and adjusted GQL). The simulation results 
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suggest that the adjusted GQL model recovers the true values when relying on the 

estimated mean-variance relationship in the covariance matrix. 

3.5 Numerical Examples 

We analyze two longitudinal examples, children’s morbidity in the Philippines 

Bukidnon Province and adolescent obesity data in the United States. We fit an adjusted 

generalized quasi-likelihood model using the canonical mean-variance relationship for 

the covariance structure. Parameter estimates are compared to the generalized linear 

mixed model and generalized quasi-likelihood models.  

3.5.1 Philippines Children’s Morbidity Study 

Data on children’s health were obtained by the International Food Policy 

Research Institute in the Philippines (Bhargava 1994). Information pertaining to 

morbidity including age in months and body mass index (BMI) are available for 370 

children, collected over three visits. The binary outcome morbidity indicates whether the 

child was sick at the time of the visit. We address potential overdispersion in the data 

through the canonical form of the variance 𝑣𝑎𝑟(𝑦𝑖𝑗) = 𝜓ℎ′(𝜃𝑖𝑗)
𝜆
 where ℎ′(𝜃𝑖𝑗) =

𝑝𝑖𝑗(1 − 𝑝𝑖𝑗). The mean-variance parameter estimates, obtained from 100 random samples 

of one observation per child, are 𝜓̂ = 1.16 and 𝜆̂ = 1.07 with standard errors 0.97 and 

0.53, respectively. These results lead us to believe the data are not overdispersed (test 

statistics 𝑍𝜓 = 0.16 and 𝑍𝜆 = 0.13), however, we estimate the regression parameters for 

age and BMI, and the standard deviation of the random effect for children using adjusted 

GQL, GQL, and GLMM for comparison. 
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Table 3.2. Children’s Morbidity Model Estimates and Standard Errors 

  𝜷𝑨𝒈𝒆 𝜷𝑩𝑴𝑰 𝝈 

Adjusted GQL Estimate -0.0187 -0.0175 0.8085 

 Std. Error 0.0047 0.0136 0.1572 

GQL Estimate -0.0185 -0.0184 0.8114 

 Std. Error 0.0047 0.0135 0.1529 

GLMM Estimate -0.0183 -0.0178 0.7199 

 Std. Error 0.0045 0.0130 - 

 

The model estimates using the three approaches are similar, Table 3.2. The 

estimate of 𝜎 is 0.7199 for the generalized linear mixed model, 0.8114 for the generalized 

quasi-likelihood approach, and 0.8085 for the adjusted generalized quasi-likelihood 

approach. While the estimate of 𝜎 using the adjusted GQL approach is slightly smaller 

than the estimate from GQL, they do not differ significantly which is expected as the 

mean-variance parameters did not indicate significant overdispersion.  

3.5.2 Add Health Obesity Study 

The Add Health Study is a longitudinal study in the United States of adolescents 

in 7th through 12th grade, with information collected over four waves of interviews 

between 1994 and 2008 (Harris, et al. 2009). The factors associated with obesity for 2712 

adolescents include activity scale and feeling scale, ratings of physical activity and 

emotional health. Obesity is binary, indicating whether the adolescent was obese at the 

time of the interview. We use 10 random samples to obtain the mean-variance parameter 

estimates 𝜓̂ = 0.71 and 𝜆̂ = 0.82 with standard errors 0.10 and 0.08, respectively. The 

result indicates that significant deviation from the assumed mean-variance relationship 
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(test statistics 𝑍𝜓 = -3.02 and 𝑍𝜆 = -2.09). Thus, making use of the true mean-variance 

form improves the model fit. The model parameter estimates and standard errors are 

provided, Table 3.3. 

 

Table 3.3. Adolescent Obesity Model Estimates and Standard Errors 

  𝜷𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝑺𝒄𝒂𝒍𝒆 𝜷𝑭𝒆𝒆𝒍𝒊𝒏𝒈 𝑺𝒄𝒂𝒍𝒆 𝝈 

Adjusted GQL Estimate -1.2078 -0.5623 2.1885 

 Std. Error 0.0515 0.0698 0.0978 

GQL Estimate -1.1006 -0.5518 1.9993 

 Std. Error 0.0442 0.0687 0.0898 

GLMM Estimate -1.3438 -0.6527 2.6900 

 Std. Error 0.0472 0.0726 - 

 

The regression parameter estimates for activity scale and feeling scale are similar. 

However, the estimates of the standard deviation of the random effect 𝜎 vary between the 

three models. In the generalized linear mixed model and GQL model, the estimates 

are 𝜎̂𝐺𝐿𝑀𝑀 = 2.690 and 𝜎̂𝐺𝑄𝐿 = 1.999. For the adjusted GQL model, the estimate 𝜎̂𝐴𝑑𝑗𝐺𝑄𝐿 

= 2.189 is outside the confidence interval for 𝜎̂𝐺𝑄𝐿. This significant difference in the 

estimators is realized due to the incorporation of the true variance in the estimation 

procedure. 

3.6 Conclusions 

Correlation on account of clustering can alter the variance in a dataset. This shift 

in the mean-variance relation due to correlation is addressed with additional modeling. 

While generalized linear mixed models and generalized quasi-likelihood models account 

for correlation through the variance of the random effect, one can also address the 

correlation through a mean-variance relation. The alternative parameterization presented 
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uses the covariance matrix in GQL to model extra variation. The simulation study 

demonstrates the performance of incorporating the canonical mean-variance relationship 

in the GQL covariance matrix. The numerical examples, Philippines morbidity and Add 

Health, demonstrate that one can rely on the estimated mean-variance relationship in the 

presence of overdispersion. The adjusted GQL model makes use of the mean-variance 

relationship to address correlation in the data. The flexibility in the canonical mean-

variance approximation and modeling through GQL makes this model appropriate for 

any distribution in the quasi-exponential family. 
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CHAPTER 4 

JOINT MODELING OF MEAN, VARIANCE, SKEWNESS, AND KURTOSIS 

 

Abstract 

When modeling data, it is common to model the mean, or the first moment of the 

distribution of the responses, and determine which covariates influence the outcome. One 

often improves the model fit by evaluating and accounting for the unexplained variation. 

Such is the case when we jointly model the mean and the variance. This paper expands 

on this notion and introduces the joint modeling of the mean (first moment), variance 

(second moment), skewness (third moment) and kurtosis (fourth moment) to provide an 

improved fit to the data. For most distributions in the exponential family, the mean, 

variance, skewness, and kurtosis are related, so one would expect that a covariate that 

impacts the mean would also influence higher order moments. We use the relationship 

between the moments to obtain an improved fit. The additional modeling of the skewness 

and kurtosis is used to trim the data and improve the parameter estimates in the mean and 

variance submodels. A simulation study demonstrates the performance of joint modeling 

of the mean, variance, skewness, and kurtosis. We examine proteomic assays for breast 

cancer screening and identify biomarkers that are associated with a diagnosis of breast 

cancer. We find that the variance, skewness, and kurtosis are often impacted by the same 

predictors when the distribution is realized.  
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4.1 Introduction 

When fitting models to data, the aim is usually to understand the relationship 

between the mean of the outcomes, 𝐸(𝑌|𝑋), and the covariates 𝑋. A significant fit allows 

one to make conclusions about the mean based on the values of the covariates. In the 

analysis of the mean, one often begins with some knowledge regarding the distribution of 

(𝑌|𝑋). Although there are times when the underlying distribution is completely 

unknown, we can begin with a relationship between the first two moments. When the 

distribution is known, we use methods such as likelihood or quasi-likelihood to obtain the 

parameter estimates for the mean of the distribution of responses. In order to improve the 

model fit, it is natural to consider and model the unexplained variation through a function 

of the observed 𝑦 and the predicted mean 𝜇̂𝑌|𝑋. Smyth (1989) considered the joint 

modeling of the mean and dispersion by using the unexplained deviation in the mean 

submodel to improve the model fit. The additional submodel allows one to model how 

the spread of the data from the mean relates to certain covariates. The covariates in the 

mean submodel may be included in the dispersion submodel, or additional covariates 

may be considered. 

While the joint modeling of the mean and dispersion submodels accounts for 

unequal variance across subpopulations, it does not account for higher order moments 

which are often related to the mean and variance through certain parameters. This paper 

extends the joint modeling approach to model functions of the skewness and the kurtosis 

of the distribution. Thus, we add a third and a fourth submodel. These additional 

measures, relating to the third and fourth moments of the distribution, represent the shape 

characteristics. Some researchers have considered various estimators for higher order 
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moments (Joanes and Gill 1998; Jiang 2003), and found that testing for skewness and 

kurtosis have led to improvements in modeling time series and longitudinal data (Bai and 

Ng 2005; Soberón and Stute 2017). Similar to location and scale, the measures of 

skewness and kurtosis help model certain aspects of the distribution of responses. 

Therefore, it is conceivable to extend joint modeling to incorporate skewness and kurtosis 

(Balanda and MacGillivray 1988).  

This paper introduces the fit of four separate models that are related through 

functions based on the deviation between the data 𝑌 and the predicted conditional mean 

𝜇̂𝑌|𝑋 obtained from the mean submodel. Let 𝛾1 and 𝛾2 be the skewness and kurtosis, 

respectively, defined as 

𝛾1 =
𝐸(𝑌−𝜇)3

(𝜎2)3/2   

and  

𝛾2 =
𝐸(𝑌−𝜇)4

(𝜎2)2 − 3. 

where 𝜇 is the mean of 𝑌 and 𝜎2 is the variance of 𝑌. The term 𝛾2 is also referred to as 

the excess kurtosis since it is relative to the normal distribution, but henceforth we will 

refer to this simply as the kurtosis. The joint estimation of the mean, variance, skewness, 

and kurtosis parameters is useful for identifying deviations in the expected skewness and 

kurtosis under the assumed distribution. Neykov, Filzmoser, and Neytchev (2012) 

showed that joint modeling of mean and dispersion can be sensitive to outliers in the data. 

They provided a trimming approach to obtain robust estimators. We also propose a cutoff 

for trimming based on the skewness and kurtosis to improve the model fit and increases 

the estimation accuracy for both the mean and the dispersion models. 
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We use the joint modeling of the mean, variance, skewness, and kurtosis to study 

the biomarkers the diagnosis of breast cancer. Breast cancer screening methods have 

rapidly improved with the implementation of proteomic assays. While the assays have 

increased diagnosis accuracy, researchers are still investigating the relationship between 

particular biomarkers and breast cancer. Our analysis identifies certain biomarkers 

associated with a positively skewed probability of having breast cancer, which is a new 

contribution to the field. The joint modeling of the mean, variance, skewness and kurtosis 

gives a better understanding of the impact of the covariates on the outcome. In Section 

4.2, we review distributional moments, including a characterization of the skewness and 

the kurtosis through the third and fourth moments, and present a review of joint modeling 

of the mean and dispersion (Smyth 1989). Section 4.3 introduces the joint modeling of 

the mean, variance, skewness and kurtosis and the estimation of the regression 

parameters for each submodel. In addition, we provide a cutoff based on the skewness 

and kurtosis to trim the data and improve the model fit. In Section 4.4, we conduct a 

simulation study to demonstrate the advantages of joint modeling of mean, variance, 

skewness, and kurtosis as opposed to the joint modeling of the mean and dispersion. In 

Section 4.5, we analyze the breast cancer proteomic assay data and provide some overall 

conclusions in Section 4.6. 

4.2 Background 

4.2.1 Notation 

Let the random variable 𝑌 with mean 𝜇 and variance 𝜎2 be a member of the 

exponential family which has the form  

𝑓(𝑦; 𝜃, 𝜙) = 𝑒𝑥𝑝 {
(𝑦𝜃−𝑏(𝜃))

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)}    (4.1) 
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where 𝜃 is the canonical parameter, 𝜙 is the dispersion parameter, and the functions 𝑎, 𝑏, 

and 𝑐 are known. The mean of 𝑌 is 𝜇 = 𝐸(𝑌) = 𝑏′(𝜃) and the variance is 𝜎2 = 𝑣𝑎𝑟(𝑌) =

𝑎(𝜙)𝑏′′(𝜃). Thus, the mean-variance relationship is expressed as  

𝑣𝑎𝑟(𝑌) =
𝜙

𝑤
𝑉(𝜇)  

for 𝑎(𝜙) =
𝜙

𝑤
 and 𝑉(𝜇) as a function representing the relationship between the mean and 

variance (McCullagh and Nelder 1989).  

4.2.2 Skewness and Kurtosis 

The skewness 𝛾1 and the kurtosis 𝛾2 are related to the third and fourth moments of 

the distribution and describe its shape through the tails. Both measures are related to the 

mean (𝜇) and variance (𝜎2) as the skewness, 

𝛾1 =
𝐸(𝑌 − 𝜇)3

(𝜎2)3/2
=

𝜇3

𝜇2
3/2

=
{𝑎(𝜙)}2𝑏(3)(𝜃)

{𝑎(𝜙)𝑏′′(𝜃)}3/2
 

is the standardized third central moment and the kurtosis, 

𝛾2 =
𝐸(𝑌 − 𝜇)4

(𝜎2)2
− 3 =

𝜇4

𝜇2
2 − 3 =

{𝑎(𝜙)}3𝑏(4)(𝜃) + 3{𝑎(𝜙)𝑏′′(𝜃)}2

{𝑎(𝜙)𝑏′′(𝜃)}2
− 3 

=
{𝑎(𝜙)}3𝑏(4)(𝜃)

{𝑎(𝜙)𝑏′′(𝜃)}2
 

is the standardized fourth central moment less 3, where 𝜇𝑖 is the 𝑖th central moment of the 

distribution. This relationship holds for parameters in the binomial, gamma, normal, and 

Poisson distributions. Although the normal distribution has a skewness and kurtosis of 0 

and no relation between the moments, the binomial, gamma, and Poisson distributions have 

skewness and kurtosis values that are related to their parameters, Table 4.1. 
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Table 4.1. Mean, Variance, Skewness, and Kurtosis for Selected Distributions 

Distribution Mean Variance Skewness Kurtosis 

Binomial(n, p) 𝑛𝑝 𝑛𝑝(1 − 𝑝) (1 − 2𝑝)/√𝑛𝑝(1 − 𝑝) (6𝑝2 − 6𝑝 + 1){𝑛𝑝(1 − 𝑝)}−1 

Gamma(𝜙−1, 𝜙𝜇) 𝜇 𝜙𝜇2 2𝜙1/2  6𝜙 

Normal(𝜇, 𝜎2) 𝜇 𝜎2 0 0 

Poisson (𝜆) 𝜆 𝜆 𝜆−1/2 𝜆−1 

 

Skewness and kurtosis are referred to as shape statistics as they indicate the shape 

of the distribution. Both measures describe the tails of the distribution, as shown in 

Figure 4.1. 

 
(a)                                                               (b) 

Figure 4.1. Probability Density Plots for a) Skewness and b) Kurtosis 

 

The skewness measures symmetry in a distribution and describes the relative size 

of the two tails. A distribution that is completely symmetric, such as the normal 

distribution, has a skewness of 0. Skewness less than or greater than 0 is related to 

extreme observations in either the left or the right tails. Distributions that are left skewed, 

with a left leading tail, are referred to as negatively skewed while distributions that are 
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right skewed are positively skewed (Fogler and Radcliffe 1974; Groeneveld and Meeden 

1984).  

The kurtosis is a measure of the combined weight of the tails relative to the rest of 

the distribution. A large positive kurtosis indicates that the data are greatly concentrated 

near the mean and declines rapidly from the center with heavy tails on both sides of the 

mean (Groeneveld and Meeden 1984; DeCarlo 1997). The measure is reported relative to 

the normal distribution, which has a kurtosis of 0. Distributions are often described as 

leptokurtic, platykurtic, or mesokurtic, based on the value of the kurtosis. Leptokurtic 

indicates that the distribution has a kurtosis larger than the normal distribution (𝛾2 > 0) 

and thus has heavier tails compared to the normal distribution. Platykurtic indicates that 

the distribution is flat (𝛾2 < 0) and has lighter tails than the normal distribution (Chissom 

1970).  Mesokurtic distributions have a kurtosis close to 0, and includes the normal 

distribution. The kurtosis ranges from -2 (a binomial random variable with two equally 

likely outcomes) to ∞ (a t-distribution with 4 degrees of freedom). Kurtosis can 

differentiate between two distributions with the same mean and variance, such as a 

normal distribution with mean 0 and variance 5/3 (𝛾2 = 0) and a t-distribution with 5 

degrees of freedom (𝛾2 = 6). While the first two moments of both distributions are the 

same, the shapes are different as the t-distribution has heavier tails. 

Numerous studies have investigated the limiting distributions of the skewness and 

kurtosis. For an independent normally distributed random variable with 𝑛 observations, 

the limiting distributions are √𝑛𝛾1̂ → 𝑁(0, 6) and √𝑛𝛾2 → 𝑁(0, 24) (Kendall and Stuart 

1969), where 𝛾1 and 𝛾2 are estimators of 𝛾1 and 𝛾2. The skewness and kurtosis are often 



  46 

utilized in tests of normality and studies have indicated that 𝑛 (
𝛾̂1

2

6
+

𝛾̂2
2

24
) converges in 

distribution to a 𝜒2 with 2 degrees of freedom (Jarque and Bera 1980; Bera and Jarque 

1981). However, when the data are weakly correlated, Bai and Ng (2005) showed  

(
√𝑛𝛾1

𝑠(𝛾1)
)

2

+ (
√𝑛(𝛾2 − 𝛾2)

𝑠(𝛾2)
)

2
𝑑
→ 𝜒2

2 

where 𝑠(𝛾̂1) and 𝑠(𝛾2) are the asymptotic standard errors of the skewness and kurtosis, 

respectively. Bai and Ng (2005) also showed that there is bias in the sample kurtosis, 

particularly in the presence of serial correlation. The estimates of skewness and kurtosis 

are affected by sample size and a large number of observations is necessary to obtain 

reliable estimates. 

In generalized linear models, the model fit assumes that the higher order moments 

of the distributions behave independently of lower order moments. For example, in 

simple linear regression, each observation is assumed to come from a normally 

distributed population with mean 𝜇, variance 𝜎2, skewness 𝛾1 = 0, and kurtosis 𝛾2 = 0, 

denoted as 𝑌~𝑁(𝜇, 𝜎2, 𝛾1, 𝛾2). When modeling the mean of this distribution, we see a 

relationship between the predictor (𝑋) and the outcome. We assume that 𝑋 does not 

impact the variance, skewness, or kurtosis, when in fact it may be directly impacting 

higher order moments. In Figure 4.2, we have the distribution of 𝑌|𝑋 as 𝑋 changes. We 

assume a normal distribution exists for 𝑌|𝑋 at each value (subpopulation) of 𝑋, with 

constant variance and the skewness and kurtosis equal to 0.  



  47 

 

Figure 4.2. Example of Simple Linear Regression Analysis  

 

In essence, we assume that the variance, skewness, and kurtosis do not vary from 

one subpopulation (𝑋 = 𝑥1) to the next (𝑋 = 𝑥2) under the assumed distribution. 

However, it is often the case that the variance of 𝑌|𝑋 at each subpopulation is not 

constant across all subpopulations. Instead, we often find larger variation than expected. 

The joint modeling of the mean and dispersion addresses such deviations from the model 

assumptions. In a like manner, one can also identify deviations in the skewness and 

kurtosis that may be present in the data.  

4.2.3 Joint Modeling of the Mean and Dispersion 

In a letter to the editor, Nelder et al. (1998) presented the joint modeling of the 

mean and dispersion by using two interlinked generalized linear models (GLM) for the 

mean and the dispersion. They use the deviance component, a function of 𝑌 and 𝜇𝑌|𝑋, as 
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the response for the dispersion model, and the inverse of the fitted values for the 

dispersion model as the prior weights for the mean model. An iterative-reiterative 

procedure is used to fit the mean and the dispersion submodels until both estimators of 

the regression parameters 𝜷 and 𝜸 (in the mean and dispersion, respectively) converge. 

Nelder et al. (1998) used a GLM approach for fitting the dispersion submodel and as such 

used model-checking techniques for generalized linear models. Such techniques are 

applied directly to both submodels of the joint modeling of the mean and dispersion 

(McCullagh and Nelder 1989). 

Consider a random variable 𝑌𝑖 for 𝑖 = 1, … , 𝑛, that follows a distribution that is a 

member of the exponential family, so the log-likelihood function based on known 

parameters 𝜃𝑖, 𝜙𝑖, and 𝑤𝑖 is 𝑙(𝜃𝑖 , 𝜙𝑖
−1, 𝑤𝑖: 𝑦𝑖) = ∑ [𝑤𝑖𝜙𝑖

−1{𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)} +𝑖

𝑐(𝑦𝑖, 𝑤𝑖𝜙𝑖
−1)]. For 𝜙𝑖 and 𝑤𝑖 unknown but fixed, this form is a member of the 

exponential family if we assume that c(𝑦𝑖, 𝑤𝑖𝜙𝑖
−1) = −𝑤𝑖𝜙𝑖

−1𝑎(𝑦𝑖) −
1

2
𝑠(−𝑤𝑖𝜙𝑖

−1) +

𝑡(𝑦𝑖). Therefore, it follows that  

𝑙(𝜃𝑖, 𝜙𝑖
−1, 𝑤𝑖: 𝑦𝑖) = ∑ [𝑤𝑖𝜙𝑖

−1{𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖) − 𝑎(𝑦𝑖)} −
1

2
𝑠(−𝑤𝑖𝜙𝑖

−1) + 𝑡(𝑦𝑖)]𝑖 .      (4.2) 

Thus, we have a generalized linear model such that for 𝜇𝑖 = 𝐸(𝑌𝑖) = 𝑏′(𝜃𝑖), 𝑔𝑀(𝜇𝑖) =

𝒙𝒊
′𝜷, where 𝒙𝒊

′ = (𝑥𝑖0, … , 𝑥𝑖𝑝) is the vector of covariates, 𝜷 is the vector of regression 

parameters, and 𝑏′(∙)  is the first derivative of the function 𝑏(𝜃𝑖) for link function 𝑔𝑀(∙). 

The functions 𝑎(𝑦) and 𝑏(𝜃𝑖) are known functions. The variance is 𝑣𝑎𝑟(𝑌𝑖) = 𝜎𝑖
2 =

{𝑤𝑖𝜙𝑖
−1𝑣(𝜇𝑖)}, where 𝑣(𝜇𝑖) = 𝑏′′(𝜃𝑖) and 𝑏′′(∙) is the second derivative of 𝑏(∙). Smyth 

(1989) reported that Barndorff-Nielsen and Blaesid (1983a; 1983b) studied generalized 

linear models and showed that 𝑎(∙), 𝑏(∙), and 𝜃 are related. Thus, we can think of the 
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likelihood function l(𝜃𝑖 , 𝜙𝑖
−1, 𝑤𝑖: 𝑦𝑖) as a function of 𝜷 through 𝜃𝑖 when 𝜙𝑖

−1 and 𝑤𝑖 are 

held fixed and defines a submodel corresponding to the mean through 𝜷. 

Consider (4.2) and define a random variable 𝐷𝑖 = 𝑑𝑖 for 𝑖 = 1, … , 𝑛 for the 

dispersion 𝑑𝑖 such that 𝑑𝑖(𝑦𝑖, 𝜇𝑖) = −2{𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖) − 𝑎(𝑦𝑖)}. Substituting 𝑑𝑖(𝑦𝑖, 𝜇𝑖) 

and reparametrizing, we obtain a distribution of the form of the exponential family, so the 

log-likelihood function is of the form 

𝑙(𝜙𝑖
−1, 𝑤𝑖: 𝑑𝑖) = ∑ [

1

2
{−𝑤𝑖𝜙𝑖

−1𝑑𝑖 − 𝑠(−𝑤𝑖𝜙𝑖
−1)} + 𝑡(𝑦𝑖)]𝑖 . 

This representation is similar to the form of the log-likelihood defined in the mean 

submodel and as such follows a generalized linear model with 𝐸(𝐷𝑖 = 𝑑𝑖) = 𝛿𝑖 =

𝑤𝑖𝑠̇(−𝑤𝑖𝜙𝑖
−1) and 𝑣𝑎𝑟(𝐷𝑖) = 2𝑤𝑖

2𝑠̈(−𝑤𝑖𝜙𝑖
−1). The dispersion submodel can be 

formulated with link function 𝑔𝑉(𝛿𝑖) = 𝒛𝒊
′𝜸 where 𝒛𝒊

′ = (𝑧𝑖0, … , 𝑧𝑖𝑝) is the vector of 

covariates and 𝛄 is the vector of regression parameters used to explain the dispersion. 

Thus, we can think of the likelihood function l(𝜙𝑖
−1, 𝑤𝑖: 𝑑𝑖) as a function of 𝜸 through 

𝜙𝑖
−1 when 𝑤𝑖 are held fixed as defining a submodel corresponding to the dispersion 

through 𝛄. It is common to model the variance as a function of the mean and allow the 

dispersion parameter to be dependent on certain covariates through unknown parameters. 

4.3 Model Fit and Trimming Using Skewness and Kurtosis 

4.3.1 Joint Modeling of Mean, Variance, Skewness, and Kurtosis 

We define the standardized residual as 𝜂 = 𝜖/𝜎 where 𝜖 = 𝑦 − 𝜇, similar to time 

series applications for incorporating skewness and kurtosis (Harvey and Siddique 1999; 

León, Rubio, and Serna 2005) in an extension to joint modeling. Then 𝐸(𝜂) = 0, 

𝐸(𝜂2) = 1,  
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𝐸(𝜂3) = 𝐸 [(
ϵ

σ
)

3

] =
𝐸[(𝑌−𝐸(𝑌))

3
]

𝜎3 = 𝛾1, 

and 𝐸(𝜂4) = 𝛾2 + 3. For the skewness submodel, let the response be  

𝑆 = 𝜂3 − 𝛾1 

with mean 𝐸(𝑆) = 𝜏 = 0 and variance 𝑉𝑎𝑟(𝑆) = 𝑉𝑎𝑟(𝜂3) = 𝐸(𝜂6) − 𝛾1
2. For the 

kurtosis submodel, let the response be 

𝐾 = (𝜂4 − 3) − γ2 

with mean 𝐸(𝐾) = 𝜅 = 0 and variance 𝑉𝑎𝑟(𝐾) = 𝑉𝑎𝑟(𝜂4) = 𝐸(𝜂8) − (𝛾2
2 + 3)2. These 

additional submodels identify covariates which impact the deviations in the expected 

skewness and expected kurtosis under the assumed distribution. 

The four submodels model the mean, dispersion, deviation from skewness, and 

deviation from kurtosis denoted as 𝜇, 𝜙, 𝜏, and 𝜅, respectively. We fit a mean submodel 

on the parameter 𝜇 and obtain the deviance to fit the dispersion submodel. We consider 

the standardized residuals from the mean submodel with the estimated variance to model 

the deviations in the skewness and kurtosis. Two-step generalized method of moments 

(GMM) is used to estimate the model coefficients and obtain standard errors for the 

skewness and kurtosis submodels. The estimation of the skewness and kurtosis submodel 

parameters do not require distributional assumptions. The moment conditions for each of 

the submodels are given in Sections 4.3.1.3 and 4.3.1.4. 

4.3.1.1 Mean Submodel 

Let 𝒚 = (𝑦1, … , 𝑦𝑛)′ be a random vector of observations from 𝑚 subpopulations 

of 𝑋, and denote the link function 𝑔𝑀(∙) such that for 𝐸(𝑌|𝑋) = 𝜇𝑌|𝑋, we have the 

generalized linear model  
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𝑔𝑀(𝜇𝑖) = 𝒙𝒊′𝜷 

where the covariates 𝒙𝒊
′ = (𝑥𝑖0, … , 𝑥𝑖𝑝) and the vector of regression coefficients 𝜷 =

(𝛽0, … , 𝛽𝑝)′ with 𝑣𝑎𝑟(𝑦𝑖|𝑿) = 𝜎𝑖𝑖 and covariance matrix 𝜮 = (𝜎𝑖𝑗). Thus, this is a mean 

submodel with covariates 𝑿 and regression coefficients 𝜷. The deviance measure is a 

function of 𝑌|𝑋 and 𝜇𝑌|𝑋,  

𝐷 = ∑ 2𝑤𝑖{𝑦𝑖(𝜃̃𝑖 − 𝜃𝑖) − 𝑏(𝜃̃𝑖) + 𝑏(𝜃𝑖)}

𝑛

𝑖=1

 

where 𝜃(∙) is the canonical link, 𝜃 = 𝜃(𝜇), 𝜃̃ = 𝜃(𝑦), and 𝑏(∙) is the cumulant function 

obtained from the exponential family (McCullagh and Nelder 1989). The deviances 

𝑑𝑖(𝑦𝑖, 𝜇𝑖) are used to model the variance. 

4.3.1.2 Variance Submodel 

Let the vector of responses be the deviance 𝒅 = (𝑑1, … , 𝑑𝑛)′ with mean 𝝓 and 

link function 𝑔𝑉(∙) such that the dispersion submodel is a generalized linear model,  

𝑔𝑉(𝜙𝑖) = 𝑙𝑜𝑔(𝜙𝑖) = 𝒛𝒊′𝜸 

with covariates 𝒛𝒊
′ = (𝑧𝑖0, … , 𝑧𝑖𝑞), regression parameters 𝜸 = (𝛾0, … , 𝛾𝑞), 𝑣𝑎𝑟(𝑑𝑖) =

𝜎𝑑𝑖𝑖
 and covariance matrix 𝜴 = (𝜎𝑑𝑖𝑗

). Fitting the variance submodel provides an 

estimate of the variance,  

𝜎2̂ =
𝜙̂

𝑤
𝑉(𝜇̂𝑌|𝑋), 

where 𝑤 is the prior weights, 𝜙̂ is the estimated dispersion parameter from the dispersion 

submodel, and 𝜇̂𝑌|𝑋 is the estimated mean from the mean submodel. In Smyth (1989), the 

mean and variance submodels are fit using likelihood approaches. However, there are 
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other fitting techniques including restricted maximum likelihood (Smyth and Verbyla 

1999). 

4.3.1.3 Skewness Submodel 

Recall we define the standardized residual 𝜂 = 𝜖/𝜎 such that the estimated 

skewness is 

𝑔1 = 𝜂̂3 =
𝜖̂3

𝜎̂3
=

𝜖̂3

(𝜎̂2)3/2
. 

We provide a generalized linear model to fit the skewness submodel through the 

deviation in skewness 𝜏. Let 𝒔 = (𝑠1, … , 𝑠𝑛)′ be the deviations in skewness for 𝒔 = 𝒈𝟏 −

𝜸̂𝟏, where 𝒈𝟏 is the estimated skewness defined above and 𝜸𝟏 is the expected skewness 

under the assumed distribution. Consider the link function 𝑔𝑆(∙), which relates the vector 

of covariates T to the deviation in skewness. Thus, we have  

𝑔𝑆(𝜏𝑖) = 𝜏𝑖 = 𝒕𝒊′𝜶 

where 𝒕𝒊
′ = (𝑡𝑖0, … , 𝑡𝑖𝑟) and 𝜶 = (𝛼1, … , 𝛼𝑟) with 𝑣𝑎𝑟(𝑠𝑖) = 𝜎𝑠𝑖𝑖

 and covariance matrix 

𝜣 = (𝜎𝑠𝑖𝑗
).  

The regression parameters 𝜶 are estimated using a generalized method of 

moments approach. Let the GMM estimator 𝜶̂𝐺𝑀𝑀 be the argument that minimizes the 

quadratic objective function 𝒇𝑛(𝜶)′𝑾𝑛𝒇𝑛(𝜶), such that 

𝜶̂𝐺𝑀𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼{𝒇𝑛(𝜶)′𝑾𝑛𝒇𝑛(𝜶)}. 

The sample moment conditions 𝒇𝑛(𝜶) are obtained using the empirical estimate of the 

population moment conditions 

𝐸 [
𝜕𝜏𝑖(𝜶)

𝜕𝛼𝑗
{𝑠𝑖 − 𝜏𝑖(𝜶)}] = 0. 
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In the case of an identity link, 
𝜕𝜏𝑖(𝜶)

𝜕𝛼𝑗
= [1 𝑡1 … 𝑡𝑟]′ for 𝑟 covariates. The weight 

matrix is estimated as 

𝑾̂𝑛 = [
1

𝑛
∑ 𝑓(𝑠𝑖, 𝜶̂)𝑓(𝑠𝑖, 𝜶̂)′

𝑛

𝑖=1
]

−1

 

using two-step generalized method of moments estimation with an identity weight matrix 

in the first step (Hansen 1982). The asymptotic variance of 𝜶̂𝐺𝑀𝑀 is computed as  

𝑽𝐺𝑀𝑀 =
1

𝑛
[𝜞′𝑾𝜞]−1 

where 𝜞 is the expected value of the Jacobian of population moment conditions, 

𝐸 [
𝜕𝒇(𝑠,𝜶)

𝜕𝜶
], evaluated at 𝜶 = 𝜶̂𝐺𝑀𝑀 (Imbens and Spady 2002). 

4.3.1.4 Kurtosis Submodel 

Let  

𝑔2 = 𝜂̂4 − 3 =
𝜖̂4

𝜎̂4 − 3 =
𝜖̂4

(𝜎̂2)2 − 3. 

be an estimate of the kurtosis. For the expected kurtosis under the assumed distribution 𝛾2, 

we evaluate the deviation in kurtosis 𝜅 through a generalized linear model. For deviations 

in the kurtosis 𝒌 = (𝑘1, … , 𝑘𝑛)′, where 𝒌 = 𝒈𝟐 − 𝜸̂𝟐, and link function 𝑔𝐾,  

𝑔𝐾(𝜅𝑖) = 𝜅𝑖 = 𝒖𝒊
′𝜹 

where 𝒖𝒊′ = (𝑢1, … , 𝑢𝑐) are the covariates and 𝜹 = (𝛿1, … , 𝛿𝑐) are the regression 

parameters with 𝑣𝑎𝑟(𝑘𝑖) = 𝜎𝑘𝑖𝑖
 and covariance matrix 𝜳 = (𝜎𝑘𝑖𝑗

). 

Similar to the skewness submodel, the GMM parameter estimates for the regression 

parameters are obtained as   

𝜹̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛿{𝒇𝑛(𝜹)′𝑾𝑛𝒇𝑛(𝜹)} 
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using weight matrix  

𝑾̂𝑛 = [
1

𝑛
∑ 𝑓(𝑘𝑖, 𝜹̂)𝑓(𝑘𝑖 , 𝜹̂)

′𝑛

𝑖=1
]

−1

 

The population moment conditions to estimate 𝜹̂𝐺𝑀𝑀 in the kurtosis submodel are  

𝐸 [
𝜕𝜅𝑖(𝜹)

𝜕𝛿𝑗
{𝑘𝑖 − 𝜅𝑖(𝜹)}] = 0  

with the asymptotic variance for 𝜹 calculated as described above. Thus, the vectors of 

regression parameters 𝜷, 𝜸, 𝜶, and 𝜹 are estimated using the four submodels (mean, 

variance, skewness, and kurtosis). The link function for the mean model is selected based 

on the scale of the responses. A log link is used for the dispersion submodel. Nelder et al. 

(1998) reported that sufficient data is needed to discriminate between alternative 

dispersion links. We use the identity link function for the skewness and kurtosis 

submodels, as the identity link function performs well for both models and is appropriate 

for negative values. The four submodels are summarized in Table 4.2.  

 

Table 4.2. Four Interlinked Submodels (Mean, Variance, Skewness, and Kurtosis) 

Component Mean Dispersion 
Deviation in 

Skewness 

Deviation in 

Kurtosis 

Response 𝑌𝑖 𝐷𝑖 𝑆𝑖 𝐾𝑖 

Mean 𝜇 𝜙 𝜏 𝜅 

Link 𝑔𝑀 (∙)  𝑔𝑉(∙) 𝑔𝑆(∙) 𝑔𝐾(∙) 

Predictor 𝑋𝑖 𝑍𝑖 𝑇𝑖 𝑈𝑖 

Parameter 𝛽 𝛾 𝛼 𝛿 

Covariance 𝛴 𝛺 𝛩 𝛹 
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4.3.2 Trimming Using Skewness and Kurtosis 

The presence of outliers impacts the model fit as well as the parameter estimates. 

Extreme values, due to the presence of skewness and kurtosis, can also impact the model 

fit. Neykov, et al. (2012) showed that trimming in joint modeling can identify outliers 

and reduce bias in the parameter estimates. As such, we recommend the removal of 

outliers based on the skewness and kurtosis model outcomes, 𝑆 and 𝐾. Suspected outliers 

can be removed using the cutoff |
𝑆

𝐾
| > 2. This utilizes the ratio of the deviation in 

skewness and deviation in kurtosis where 

𝑆

 𝐾
=

𝜂3−𝛾1

(𝜂4−3)−γ2
. 

This ratio identifies outliers due to the skewness or kurtosis. As we show in the 

simulation study, the removal of values with |
𝑆

 𝐾
| greater than 2 results in an improved 

mean-dispersion model fit and the model parameter estimates are similar or closer to the 

true values. 

4.4 Simulation Study 

A simulation study is conducted to demonstrate the benefits of fitting additional 

submodels. The study consists of normal and gamma distributed data generated under 

certain conditions, each replicated 1000 times. We simulate each data set with 500 

observations. The joint modeling is used to evaluate the impact of the covariates on the 

mean, variance, skewness, and kurtosis. 
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4.4.1 Normal Data 

We evaluate normally distributed data under four conditions. Under the normal 

distribution, 𝑦 has a mean of 𝜇, variance of 𝜙𝜎2, skewness of 0 and kurtosis of 0. For 

each simulation condition below, the mean is generated as 𝜇𝑖 = 1 + 𝑥𝑖 where 𝑥𝑖~𝑁(0,1). 

Condition 1: Let 𝜙 = 1 (homoscedastic normal). 

Condition 2: Let 𝑙𝑜𝑔(𝜙𝑖) = −2 − 2𝑥𝑖 for 𝑖 = 1, … ,500 (heteroscedastic normal). 

Condition 3: Let the data be simulated from the R package sn (Azzalini 2017) with 

parameters 𝜉 = 1 + 𝑥𝑖, 𝜔 = √𝜙, 𝛼 = 1, and 𝜏 = 0 where log(𝜙𝑖) = −2 − 2𝑥𝑖 

(heteroscedastic skew normal). 

Condition 4: Let the data be simulated from the uniform distribution, 𝑦𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) 

with 𝑎 = −√3 + 𝜇 and 𝑏 = 2𝜇 − 𝑎, which has an expected kurtosis of -1.2 (Chissom 

1970). 

The average parameter estimates and standard errors for each of the four 

conditions are provided in Table 4.3. The percentage of simulations in which the result is 

statistically significant for α = 0.05 is also reported. 
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Table 4.3. Simulation Results for Normal Data 

 
Mean Dispersion 

Deviation in 

Skewness 

Deviation in 

Kurtosis 

𝜷𝟎 𝜷𝟏 𝜸𝟎 𝜸𝟏 𝜶𝟎 𝜶𝟏 𝜹𝟎 𝜹𝟏 

Condition 1 

Estimate 0.9993 0.9993 -0.0098 -0.0020 -0.0025 -0.0018 -0.0285 -0.0008 

Std. Error 0.0447 0.0447 0.0953 0.0955 0.1686 0.1643 0.4120 0.3889 

% Significant 100.0% 100.0% 0.5% 0.4% 0.1% 0.0% 0.1% 0.0% 

Condition 2 

Estimate 1.0001 0.9998 -2.0099 -2.0087 -0.0034 -0.0001 -0.0266 0.0019 

Std. Error 0.0149 0.0074 0.0953 0.0955 0.1696 0.1633 0.4125 0.3879 

% Significant 100.0% 100.0% 100.0% 100.0% 0.3% 2.6% 0.0% 0.0% 

Condition 3 

Estimate 1.1543 0.9426 -2.2993 -2.0374 0.5154 -0.5737 0.0807 -0.0329 

Std. Error 0.0126 0.0062 0.0963 0.0965 0.1753 0.1982 0.4578 0.5071 

% Significant 100.0% 100.0% 100.0% 100.0% 91.7% 90.4% 0.0% 0.0% 

Condition 4 

Estimate 0.0040 -0.0007 0.0093 0.0001 0.0130 0.0010 -1.2161 0.0014 

Std. Error 0.0451 0.0452 0.0725 0.0727 0.0872 0.0873 0.1068 0.1084 

% Significant 4.2% 5.0% 0.1% 0.1% 0.9% 0.3% 100.0% 0.0% 

 

For the first three conditions, we expect the mean regression parameter estimates 

to be close to 1. Under Condition 1, the dispersion parameters should be close to 0 while 

in Condition 2, the dispersion parameters should both be equal to -2. The parameters for 

the skewness and kurtosis submodels are expected to be equal to or very close to zero. 

We find that these conditions hold and deviations in the skewness and kurtosis are not 

identified. Under Condition 3, which is a heteroscedastic skewed normal distribution, we 

expect to identify significant deviation in skewness and see that the regression parameters 

(𝛼0, 𝛼1) for the skewness submodel are significant in 91.7% and 90.4% of cases, 

respectively. Under Condition 4, the kurtosis submodel identifies a significant constant 

difference in the kurtosis. The average estimate of the intercept parameter for the 

deviation in kurtosis submodel is 𝛿0 = -1.2161 and is significant in 100.0% of the 1000 
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simulations. This represents the difference between the expected kurtosis of the normal 

distribution and the expected kurtosis of the uniform distribution. 

As there are highly significant deviations in skewness under Condition 3, we trim 

the data based on the cut point for the ratio |
𝑆

 𝐾
| > 2. Trimming improved the model fit for 

99.9% of the simulated data sets under Condition 3. The mean and variance parameter 

estimates for the original and trimmed models are shown in Figure 4.3. The true 

simulated value is denoted by the dashed line. In this case, the parameter estimates from 

the original and trimmed models are comparable. 

 

 
(a)                                                              (b) 

Figure 4.3. Original and Trimmed Estimates of the Normal a) Mean and b) Variance 

Model Parameters  

 

4.4.2 Gamma Data 

We simulate data under three conditions using a gamma distribution with scale 

parameter 𝜙𝑖𝜇𝑖 and shape parameter 𝜙𝑖
−1. Thus 𝑦𝑖 has mean 𝜇𝑖, variance 𝜙𝑖𝜇𝑖

2, skewness 
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2𝜙𝑖
1/2

, and kurtosis 6𝜙𝑖. In each condition, the covariate 𝑥𝑖 is uniformly distributed on 

(0, 1) and the mean is generated based on 𝑙𝑜𝑔 (𝜇𝑖) = 1 + 𝑥𝑖 such that 𝛽0 = 𝛽1 = 1. 

Condition 1: Let 𝜙 = 1. 

Condition 2: Let 𝑙𝑜𝑔(𝜙𝑖|𝑋) = −2 − 2𝑥𝑖  for 𝑖 = 1, … ,500.  

Condition 3: Let 𝑙𝑜𝑔(𝜙𝑖|𝑋) = −2 − 2𝑥𝑖 for 𝑖 = 1, … ,500 and ten percent of the data be 

randomly selected and perturbed as (0.25 + 0.5𝑥𝑖)%. 

The estimated parameter estimates, standard errors, and percent of statistically 

significant results are shown in Table 4.4. 

 

Table 4.4. Simulation Results for Gamma Data 

 
Mean Dispersion 

Deviation in 

Skewness 

Deviation in 

Kurtosis 

𝜷𝟎 𝜷𝟏 𝜸𝟎 𝜸𝟏 𝜶𝟎 𝜶𝟏 𝜹𝟎 𝜹𝟏 

Condition 1 

Estimate 0.9909 1.0095 -0.0035 -0.0065 0.0883 -0.1968 0.3856 -1.1858 

Std. Error 0.1211 0.1711 0.1933 0.3348 1.1771 2.0155 6.6177 11.2504 

% Significant 100.0% 99.9% 0.2% 0.1% 7.1% 0.6% 15.5% 0.9% 

Condition 2 

Estimate 0.9998 1.0002 -2.0044 -2.0060 -0.0050 -0.0113 -0.0249 -0.0458 

Std. Error 0.0306 0.0385 0.1892 0.3293 0.4279 0.6980 1.3494 2.1144 

% Significant 100.0% 100.0% 100.0% 100.0% 5.9% 1.5% 10.0% 0.9% 

Condition 3 

Estimate 0.9224 1.0524 -1.3522 -2.2844 -0.7327 0.3757 -2.1286 1.9654 

Std. Error 0.0388 0.0480 0.2066 0.3606 0.2814 0.5066 0.6886 1.2224 

% Significant 100.0% 100.0% 100.0% 100.0% 73.0% 10.4% 80.5% 51.4% 

 

Under Conditions 1 and 2, the mean estimates for the mean and dispersion model 

parameters are close to the true values (𝛽0 = 1, 𝛽1 = 1, 𝛾0 = 0, 𝛾1 = 0 for Condition 1 

and 𝛽0 = 1, 𝛽1 = 1, 𝛾0 = −2, 𝛾1 = −2 for Condition 2) while the parameter estimates for 

the skewness and kurtosis submodels are close to 0 and are not significant in most 

simulations. Under Condition 3, the perturbation adds additional skewness and kurtosis, 



  60 

and so the skewness and kurtosis submodels have non-zero parameter estimates. The 

intercept parameter estimates (α0 and δ0) are found to be significant in more than 73% of 

cases, which indicates some differences in the skewness and the kurtosis as compared to 

the expected skewness and kurtosis under the gamma distribution. 

Under Condition 3, the simulated data have significant skewness and kurtosis. 

However, trimming based on |
𝑆

 𝐾
| > 2 resulted in an improvement in 100% of the mean 

and dispersion model fits. The parameter estimates in the mean and variance models after 

trimming the data were closer to the true parameter values as compared to the estimates 

prior to trimming (Figure 4.4).  

 

  
(a)                                                              (b) 

Figure 4.4. Original and Trimmed Estimates of the Gamma a) Mean and b) Variance 

Model Parameters 
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4.5 Numerical Example 

While the accurate detection of breast cancer remains a challenge, recent studies 

have indicated that breast tumors are associated with fluctuations in serum protein 

biomarkers (SPB) and tumor associated antibodies (TAAb). This discovery has resulted 

in the consideration of proteomic assays as an additional diagnostic to breast cancer 

imaging. Henderson et al. (2016) integrated data from biomarker measurements in 

patients and found clinical sensitivity and specificity rates of breast cancer detection 

around 80% which support the use of proteomic approaches. We employ joint modeling 

of the mean, variance, skewness, and kurtosis to determine if any of the biomarker 

expression data are associated with more extreme probabilities of a breast cancer 

diagnosis. 

We examine breast cancer screening data from 190 women (Henderson, et al. 

2016) evaluated at Mercy Women’s Center – Oklahoma City. Our outcome of interest is 

breast cancer diagnosis. Information collected includes demographic information as well 

as 57 SBP and TAAb measurements. We focus on the biomarkers basic fibroblast growth 

factor (bFGF), Fas Ligand (FasL), Interleukin 10 (IL-10), Interleukin 12 (IL-12), 

Interleukin 8 (IL-8), Placental Growth Factor (PIGF), Vascular endothelial growth factor 

subtype D (VEGF-D), and Cancer antigen 15.3 (CA15.3). We fit a logistic regression 

model which assumes a Bernoulli distribution with skewness 
1−2𝑝

√𝑝(1−𝑝)
 and kurtosis 

6𝑝2−6𝑝+1

𝑝(1−𝑝)
. The parameter estimates and standard errors for the models are displayed in 

Table 4.5. Statistically significant variables are shown in bold. 
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Table 4.5. Mean, Variance, Skewness, and Kurtosis Parameter Estimates (Standard Error)  

for Breast Cancer Prediction 

Covariate Mean Dispersion 
Deviation in 

Skewness 

Deviation in 

Kurtosis 

Intercept 
-3.049  

(1.319) 

1.714  

(0.639) 

-17.856  

(0.027) 

190555.108 

(82.837) 

Age 
0.097  

(0.021) 

1.81E-3  

(9.17E-3) 

-0.289  

(0.827) 

3029.108 

(2591.318) 

bFGF 
0.044  

(0.021) 

-0.035  

(0.012) 

0.479  

(0.654) 

-667.660 

(1961.532) 

FasL 
-0.215  

(0.051) 

-0.0532  

(0.023) 

-0.618  

(1.885) 

-5063.869 

(5631.462) 

IL-10 
-2.758  

(0.444) 

-1.884  

(0.241) 

136.950  

(0.024) 

19923.309 

(72.334) 

IL-12 
-0.005  

(0.002) 

8.41E-4  

(1.11E-3) 

-0.035  

(0.104) 

244.657 

(362.027) 

IL-8 
0.006  

(0.001) 

3.68E-4  

(7.55E-4) 

0.145  

(0.026) 

-168.729 

(87.909) 

PIGF 
-0.018  

(0.027) 

4.34E-3  

(0.013) 

-1.764  

(1.150) 

-318.056 

(3329.274) 

VEGF-D 
-0.001  

(0.000) 

2.69E-5  

(1.99E-4) 

-0.015  

(0.019) 

86.088  

(61.496) 

CA15.3 
0.002  

(0.000) 

-1.02E-3 

(1.17E-4) 

0.203  

(0.092) 

-611.735 

(307.860) 

 

The covariate age and most biomarkers are significant predictors of breast cancer 

diagnosis. In addition, the biomarkers bFGF and FasL significantly impact the dispersion. 

Two biomarkers, IL-10 and CA15.3, are drivers of the dispersion, skewness, and kurtosis. 

The positive coefficients in the skewness submodel indicate that larger measurements of 

these biomarkers are associated with extremely high probabilities of breast cancer 

diagnoses. The IL-10 biomarker has a positive kurtosis coefficient suggesting relatively 

low probabilities in the tails. The negative kurtosis coefficient for CA15.3 indicates that 

this biomarker is indicative of extreme probabilities, such as a very low probability or a 

very high probability of breast cancer. The model also suggests that IL-8 has a 
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significantly higher skewness than expected under the binomial distribution, indicating 

that higher values of IL-8 are associated with extremely high probabilities of a breast 

cancer diagnosis. 

We trim the data based on the skewness and kurtosis ratio and find an 

improvement in the mean-dispersion model fit (-2 log likelihood of 150.623 vs 

176.1547). Modeling the trimmed data indicates that the biomarker IL-8 is not as useful 

for predicting breast cancer as previously observed. In addition, FasL is not significant in 

the dispersion submodel. However, IL-8 has a significant impact on the variance of breast 

cancer diagnoses. 
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Table 4.6. Mean and Variance Parameter Estimates (Standard Error) for Breast Cancer  

Prediction after Trimming 

Covariate Mean Dispersion 

Intercept 
-4.501  

(1.512) 

2.116  

(0.910) 

Age 
0.140  

(0.024) 

-0.006  

(0.013) 

bFGF 
0.070  

(0.022) 

-0.061  

(0.017) 

FasL 
-0.238  

(0.054) 

-0.047  

(0.031) 

IL-10 
-3.083  

(0.407) 

-2.147  

(0.327) 

IL-12 
-0.006  

(0.003) 

9.42E-4  

(1.51E-3) 

IL-8 
8.09E-5  

(0.002) 

0.002  

(0.001) 

PIGF 
-0.056  

(0.029) 

0.014  

(0.018) 

VEGF-D 
-0.001  

(0.000) 

-4.18E-5  

(2.74E-4) 

CA15.3 
0.002  

(0.000) 

-1.12E-3 

(1.59E-4) 

 

4.6 Conclusions 

In this paper, we expand on joint modeling to include submodels for the skewness 

and kurtosis. Inference on the skewness identifies significant deviations due to extreme 

observations in the tails. Inference on the kurtosis aids in the understanding of the 

concentration of the observations near the mean, to determine if the variability is due to a 

few extreme differences from the mean rather than a few modest differences from the 

mean. Simulation studies show that it is possible to simultaneously model the mean, 

variance, skewness, and kurtosis. In addition, we find that trimming based on the 

deviation in skewness and deviation in kurtosis leads to improved model fit and reliable 
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parameter estimates for the mean and dispersion submodels. We revisit breast cancer data 

for 190 women reported by Henderson, et al. (2016) and model breast cancer diagnosis. 

We identify covariates contributing to skewness or kurtosis, and can use this information 

to improve model fitting and to address outliers. 
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CHAPTER 5 

CONCLUSIONS 

Underlying distributional assumptions impact model estimation and fit. In 

particular, assumptions about the variance and higher order moments can lead to 

inaccurate parameter estimates and standard errors when the true variance in the data is 

not reflected in the approach. Methods to identify and appropriately account for 

deviations in the underlying distribution improve model fit and are particularly useful for 

correlated data. 

The first paper presents a generalized method of moments approach through a 

canonical parameterization of the mean-variance relationship. The canonical 

parameterization generalizes the form to any distribution in the exponential family. In 

addition, the generalized method of moments approach allows both mean-variance 

parameters to be estimated simultaneously and does not require an underlying 

distributional assumption. The generalized method of moments estimation approach is 

shown to be computationally tractable and flexible. The simulation study confirms the 

estimation accuracy of the parameter estimates, which have small standard errors. A test 

is developed to determine if there is significant deviation in the mean-variance 

relationship. 

 The second paper implements the mean-variance relation parameterization 

in a modeling application. The mean-variance relationship is extended for estimation in 

two-level hierarchical data and is implemented in the covariance matrix for generalized 

quasi-likelihood modeling. This adjusted generalized quasi-likelihood approach accounts 

for the variance in the data and is reflected in the estimation of the random effect. An 
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evaluation of the approach through two examples demonstrates that in the case of 

correlated data, the parameter estimate for the random effect is improved by 

implementing this model as compared to a standard generalized quasi-likelihood model.  

Additional deviations in moment assumptions are explored and addressed in the 

third paper. Joint modeling implements two simultaneous generalized linear models to 

improve model fit by modeling the unexplained variation in the mean model. We expand 

on this method and incorporate submodels to account for the skewness and kurtosis. This 

approach, the joint modeling of the mean, variance, skewness, and kurtosis, identifies and 

estimates the association of covariates with skewness and kurtosis in a particular set of 

data. Moreover, a cutoff based on the deviations in the skewness and kurtosis can remove 

outliers and improve the model fit of the mean and dispersion submodels. Parameter 

estimates in the trimmed model showed an improvement and had more accurate 

estimates.  

Overall, this research addresses the underlying assumption about moments of the 

distribution. Three methods are proposed and tested to estimate and model the variance 

and higher order moments. Accounting for deviations in the estimated variance through 

models such as adjusted generalized quasi-likelihood or joint modeling of the mean, 

variance, skewness, and kurtosis improve the model accuracy and extends the 

understanding of the covariate associations with the shape of the distribution. 
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