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ABSTRACT  
   

This work demonstrates a capable reverse pulse deposition methodology to 

influence gap fill behavior inside microvia along with a uniform deposit in the fine line 

patterned regions for substrate packaging applications. Interconnect circuitry in IC 

substrate packages comprises of stacked microvia that varies in depth from 20µm to 

100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by 

photolithography. Photolithography defined pattern regions incorporate a wide variety of 

feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine 

traces with varying widths of 3µm - 30µm and additional planar regions to define a IC 

substrate package. Electrodeposition of copper is performed to establish the desired 

circuit. Electrodeposition of copper in IC substrate applications holds certain unique 

challenges in that they require a low cost manufacturing process that enables a void-free 

gap fill inside the microvia along with uniform deposition of copper on exposed patterned 

regions. Deposition time scales to establish the desired metal thickness for such packages 

could range from several minutes to few hours. This work showcases a reverse pulse 

electrodeposition methodology that achieves void-free gap fill inside the microvia and 

uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher 

deposition rates than traditional approaches.  In order to achieve this capability, 

systematic experimental and simulation studies were performed. A strong correlation of 

independent parameters that govern the electrodeposition process such as bath 

temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is 

shown to the deposition kinetics and deposition uniformity in fine patterned regions and 
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gap fill rate inside the microvia.  Additionally, insight into the physics of via fill process 

is presented with secondary and tertiary current simulation efforts. Such efforts lead to 

show “smart” control of deposition rate at the top and bottom of via to avoid void 

formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical 

characteristics of bulk copper is also shown to enable high reliability substrate packages 

for the IC packaging industry. 
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BACKGROUND AND LAYOUT OF THIS REPORT 

 
Section 1 Motivation for this work 

Manufacturing challenges are becoming the prominent decision making factors on 

choosing the right technologies and where high volume manufacturing factories are built. 

Today majority of corporations have moved their factories to low cost geographies to 

ensure cost competitive products1. However, the goals of attaining low cost feasible 

products can be easily accomplished through advances in technology rather than taking 

advantage of cheaper human labor. This alludes us to the question of what should we do 

differently across the board to attain cost effectiveness and improved efficiency? The 

answer is simple and common sense! Reduce the cost of every single factors involved in 

product manufacturing. For example, reduce workforce through automation, reduce 

materials cost through innovation, reduce process cost through understanding of all 

involved parameters and their interactions to make process more predictable, eliminate 

waste, improve throughput, etc1. Through this work, we identify novel and innovative 

technical solutions to an important process in semiconductor industry. The area of 

interest is electrodeposition process which is being used in wide variety of products such 

as silicon processing, substrate manufacturing, packaging, board manufacturing, SMT 

(Surface Mount Technology) process, and many more other applications.  

 

Section 2 State of the art and problem statement 

IBM introduced what is commonly now known as the “damascene process” in the late 

1990s to form copper IC interconnects 2. Later, a variation of the damascene process 
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known as dual damascene process was developed for cost effectiveness. Different flavors 

of damascene processes exist in IC manufacturing today based on feature types and 

application3.  In all cases, a line or via pattern is defined by photolithography or through 

LASER (Light Amplification by Stimulated Emission of Radiation) drill into a dielectric 

film. Copper seed layer is then deposited onto the dielectric film. This seed layer provides 

the conductivity across the surface necessary for the electrodeposition process, as well as 

a surface upon which nucleation of the deposited film can begin. Copper is then 

electrodeposited to form the desired circuitry by filling the seeded recesses in the 

dielectric.   High density IC packages have fine patterned regions in the scale of 3µm to 

features as large as 77µm along with many large plane area regions. They are supported 

with underlying microvia usually with via opening size 20µm to 100µm and an aspect 

ratio of 0.5 to 1.5. Enabling void-free gap fill and uniform FLS (Fine Lines and Spaces) 

deposition in a single plating step is beneficial and key for these applications to ensure 

product integrity and performance. State of the art systems utilize organic polymer 

additives to enable differential via fill capability. With such methods, in order to achieve 

uniform copper thickness and void-free fill, it is often required to slow the deposition 

process significantly and/or live with variations in feature to plane thicknesses across the 

entire electrodeposited surface. Deposition time scales range on the order of several 

minutes to few hours. Such limitations cripple process manufacturability. Furthermore 

utilization of polymer additives as electrolyte components generates undesired byproduct 

and limits the life of the bath and poses significant risks to process viability. Concerted 

new approaches are needed to enable low cost electroplating process for substrate 
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packages. A much straightforward approach would be to enable bottom-up fill and 

uniform deposition in the absence of additive species. In this study we provide one such 

logical approach utilizing reverse pulse plating methodology. However, various 

challenges exist in making this process viable. Some of the key challenges include 

achieving void-free fill, complete fill by eliminating any recess, uniform deposition of 

copper on the surface and features, optimized process time to improve throughput, etc3. 

  

Section 3 Layout of chapters in this report 

In order to achieve faster uniform fill and realize higher throughput additional insight into 

the physics of via fill is required.  Furthermore, once a process is finalized, repeatability 

of such processes and extrapolation to high volume manufacturing are desired. Such 

capability is only possible through establishing key learnings on a fundamental scale 

(molecular level interactions) and developing a predictive capability to modulate 

deposition parameters such as waveform, additive concentration etc. for desired gap fill. 

This report provides various experimental and simulation data focused primarily on 

identifying a capable electrodeposition process for substrate via fill and uniformity. 

Chapter I introduces integrated circuit, and packaging in integrated circuit. The critical 

need to scale packaging features in concert with IC transistor architecture scaling and the 

demand for developing advanced packaging technology is discussed further. Advantages 

of copper metal and the ability to achieve that through electrodeposition process is 

introduced. In chapter II we discuss the physics of electrodeposition and identify the key 

parameters that govern the deposition process. Chapter III provides a literature survey on 
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existing methodologies of via fill and various challenges associated with them. The 

criticality of TP (Throwing power) ratio for void-free bottom-up fill is discussed. In 

Chapter IV we introduce reverse pulse methodology and discuss how reverse pulse 

deposition addresses some of the key challenges discussed thus far along with a detailed 

literature survey on existing state of the art. Chapter V reviews the design of test coupon 

and the makeup of IC substrate with various stacked via geometry such as Via0, Via1 and 

Via5. The uniqueness of the via size, shape and gap fill challenges for each of these via 

geometry is briefly discussed. This chapter also reviews the experimental set up and 

make up of reverse pulse waveform.  In chapter VI we study the application of reverse 

pulse methodology for Via0 and Via1 geometry and showcase a capable process for void-

free gap fill for these feature geometries. In chapter VII, we provide a simulation 

capability for reverse pulse methodology and outline the mechanism and the critical 

throwing power needed for void-free fill with Via0 and Via1 geometry utilizing diffusion 

transport effects. The distribution of an electroplated deposit depends upon which 

transport phenomenon controls the plating rate. We need to consider the overall ohmic 

and mass transfer effects present inside the system to determine which transport 

mechanism dominates the distribution of copper inside the via region. Ohmic resistance 

of the metal film leads to variations of potentials in the film, and solution resistance leads 

to variations of potential in the plating solution. Mass-transfer effects lead to variations in 

concentration of cupric ion and additive species across the metal surface. Generally, non-

uniform reaction rates are caused by either inadequate mixing, so that reactant 

concentrations are not uniform (convection effect), or by spatial variations in the 
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electrical-potential difference across the electrode/electrolyte interface or due to 

concentration gradient (diffusion). Due to the large concentration of acid present in the 

electrolyte, migration effects are negligible.  In chapter VIII, microstructure of the 

electrodeposited copper is characterized with various analytical techniques such as SEM, 

EBSD, XRD and AFM to analyze grain size, crystal orientation / texture, and intrinsic 

stress build up with different experimental conditions such as bath temperature, 

electrolyte composition and Anneal. In chapter IX, challenges of void-free fill with Via5 

geometry and the need to identify additional knobs to prevent void entrapment for this 

geometry is discussed. A comprehensive design of experiments with optimization of six 

different additive ratio’s with different bath temperature and reverse pulse waveform is 

studied to show TP improvement and the generic TP improvement trend with increased 

suppression. In chapter X, similar set of studies were performed for Via1 geometry to 

show how increased suppression with reverse pulse methodology yields significantly 

better fill. Chapter XI attempts a 2D simulation model to incorporate the effect of 

additives for gap fill with Via5 and Via1 geometry and corroborates the finding with 

experimental data. The model also predicts to incorporate additional leveling agents to 

improve the throwing power further. Chapter XII showcases a capable reverse pulse 

methodology for all via geometries with the newly identified reverse pulse methodology 

at optimized additive concentrations. Improvements with uniformity for patterned 

features across each layer of substrate with different via geometry is explored. 

Microstructure comparison of the new bath composition is also summarized with some of 

the data collected thus far to showcase high reliable substrate packages. 
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CHAPTER I 

INTRODUCTION 

Integrated circuits play a vital role in our day to day life. Applications for integrated 

circuits include anything from complex cloud servers or high speed computers that 

require fast computing speeds to a simple wearable technology like fitness watch or a 

tablet computer that requires low cost build up elements and smart architecture to enable 

a lean footprint. The invention of transistor revolutionized the history of mankind in the 

past century. Ultra-fast computing speeds, high memory storage capabilities, versatile 

network and data connectivity are made possible today due to the ever shrinking cost and 

size of transistor nodes1, 2. The drive to lowered cost has been primarily enabled through 

miniaturization or “scaling down” of the transistor architectures and the subsequent 

explosion of I/O signals (input/output signals) in a very small footprint. 

 

Section 1.0 Integrated Circuits and Interconnects 

Market analysis and various technical studies 2-5 argue that the success of the industry 

over the past several years has been primarily due to its frequent cadence in transistor 

scaling utilizing Moore’s Law. As shown in Figure 1.15, while a 100nm transistor node 

technology used to drive ~500 I/O per cm2 a few years ago, we are in the 14-7nm node 

generation today that drives >20000 I/O per cm2.  
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Figure 1.1: Plot of transistor node scaling with I/O per unit area 

[Figure adapted from reference5] 

 

An “interconnect” in an integrated circuit is a stack up of planes that integrates the 

transistor with the additional components necessary for system operation in an external 

circuit. Usually, interconnect features closer to the transistor are extremely small 

(consistent with the size of transistor node technology) primarily made up of nanometer 

size via’s and traces. They eventually fan out and connect much larger micro and macro 

power planes as they approach closer to components that connect to external circuits. 

Figure 1.2 shows a stack up of copper interconnects. Typically, in an industrial scale, 

wafer level processing is utilized to build nanoscale features and board level processing is 

utilized to build mesoscale to microscale power planes.  
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Figure 1.2:  Stack up of copper interconnects 

[Figure adapted from Reference6] 

IC packaging technology has not revolutionized over the past decade with the design 

rules remaining mostly stagnant. Figure 1.32 shows the chronology of feature size 

transition for the transistor nodes (black line) and package assemblies (red line). It is 

notable here that the packaging features size have remained steady over the past several 
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decades while the transistor node features sizes have reduced on the order of ~1000x. 

With the recent transistor node technology suffering from serious technical and yield 

challenges due to the complexity in manufacturing of the shrinking node sizes, it is 

argued that any further growth and improvement in I/O density & bump pitch scaling that 

requires high density interconnects needs to happen on the packaging side of business. 

Some key packaging assembly concepts that are being considered today include high 

density organic interposers and multichip package assemblies with high density 

interconnects. These advanced packaging assembly methods not only need to enable high 

density interconnects but need to facilitate them at lowered cost at the same order as 

traditional packages.  

 

Figure 1.3: Chronological plot of transistor node and PCB feature scale 

[Figure adapted from Reference2] 
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Section 1.1 IC assembly and packaging process 

In simple terms, IC packages connect the IC transistors and the ensuing build up 

architecture to the outside word.  IC packages ensure mechanical protection, provide 

thermal management and enable reliable and efficient signal and power delivery.  Key 

requirements of microelectronic IC packages include signal integrity (minimizing RC 

delay), reduced form factor, scaling, mechanical and environmental support, thermal 

management against heat dissipation in the circuit, etc. Packaging needs vary widely for 

different application segments.  Based on the market segments they serve and the 

complexity in the manufacturing of the package, packaging for various IC applications 

can be broadly classified to four main categories.  Such applications include, integrated 

systems for mobile markets (1), flexible and new revolutionary markets (2), complex / 

high power market segments like gaming computers (3) very highly complex to top notch 

processing needs of servers and supercomputers (4). Based on the needs of these market 

segments, some key objectives for packaging can be quickly identified as low packaging 

height (Z height) to establish a lean foot print, reduced warpage to enable compatibility 

with any chip material they are attached, increased I/O density and efficient power 

delivery.   

Historically, there are two primary ways to connect the silicon die to the package: 

Wire bond (Figure 1.4) and Flip Chip (Figure 1.5).  In a wire bond package (conventional 

package) the back of the processed die is attached to the package and electrical 

connection is made through wires connecting the die to the package.  
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Figure 1.4:  Wire bond packaging process 

[Figure adapted from Reference9] 

 

Wire bonding is cost-effective, but wires can be attached only on the periphery, limiting 

the number of interconnects possible. On the other hand, with Flip-chip– Bumps 

(packages utilized today) the chip is flipped over and the bumps are soldered to the 

package forming mechanical and electrical connections.  

 

 

Figure 1.5: Flip Chip packaging process 

[Figure adapted from Reference9] 

 

Flip chips provide better performance at high frequency plus the bumps can be located 

anywhere on the surface of the die rather than just on the periphery. There are 3 primary 

ways to attach packages to printed circuit boards. Pin Grid Array, (PGA), Ball Grid Array 
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(BGA), Land Grid Array (LGA). The discussion of such package types is beyond the 

scope of this work.   

 

Section 1.2 Substrates in packaging 

There are two distinct interconnect segments in Flip chip packaging process show in 

Figure 1.6 below. 

  

Figure 1.6: Interconnects in Flip Chip packaging process 

[Figure adapted from Reference9] 

 

In a 1st level interconnect, the interconnect is made between the die and the package. In a 

2nd level interconnect, the interconnect is made between the package and the board. It 

also includes the interconnect between the package and capacitors (not shown) that are 

added to filter out spikes in electrical signals. A substrate is the intermediate that enables 

both 1st and 2nd level interconnect.  

Substrate is the base material supporting the die and surrounding parts in IC 

packages shown in Figure 1.7. It fulfills several important purposes including, (1) It 

provides a mechanically robust package for the die (2) It connects the very small 

electrical interconnects on the die to the larger connections of the motherboard, (3) It can 

provide important electrical benefits to the die, (4) It can assist in thermal dissipation of 
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the heat from the die. Together with other items (underfill, integrated heat spreader, etc.), 

the substrate comprises the total electronic package that connects the die to the rest of the 

electronic system and the motherboard 7, 10, 11. Substrate designs and architectures are 

customized for each product following industry standards (JEDEC - Joint Electron 

Device Engineering Council) 12. The layout and design of the substrate must be done in 

conjunction with the die architecture to ensure that the package works. Formation of a 

substrate is normally accomplished through either subtractive or additive or semi additive 

processing.  A substrate is made up of multiple layers of copper conductors, built up on 

polymeric dielectric layers which are laminated onto a fiberglass/epoxy matrix core 

utilizing semi additive processing methods. 

 

Figure 1.7: Architecture of an IC packaging substrate 

[Figure adapted from Reference7, 10, 11] 

 



 

  15 

Section 1.3 Electrodeposition in IC substrate Packages 

IC substrate packages are usually manufactured utilizing a semi additive process that 

includes alternating stacks of dielectric and copper routing metal layers as shown in 

Figure 1.7 above. Layer to layer connection is made possible through via stacks. This 

alternating stack termed build up layer is formed as follows. A dielectric film is 

laminated on top of an underlying core or bottom layer. LASER drill is done to expose 

the via region and the underlying copper. A thin metal seed covering a dielectric surface 

is then established followed by generation of a circuit pattern utilizing photolithography 

process. Copper is next deposited, usually by electrodeposition, to fill the via and enable 

patterned copper deposit on the seed surface defined by the photoresist pattern. Finally, 

the photoresist and seed layer are removed leaving only the metal circuit pattern with via 

pads and traces. These process steps are repeated to enable a multilayer stack. In the 

make-up / manufacturing of a substrate, copper electrodeposition process plays a key role 

in establishing the substrate. The electrical connectivity and power delivery is done 

through via’s and traces that are filled with copper metal7, 10, 11. Figure 1.8a  shows a 

cartoon of an photoresist patterned layer with open via’s and traces prior to 

electrodeposition and Figure 1.8b and 1.9 shows the same substrate layout after 

electrodeposition is accomplished inside the via and trace regions (identified as filled 

region in Figure 1.9 above). 
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Figure 1.8:  (a) Substrate layout without copper deposit and (b) with copper 
deposit 

 
 

 
 

Figure 1.9: Substrate layout with copper deposit on microvia and fine pattern 
 

 

Synthesis of copper through electrodeposition techniques have proven to be 

versatile, cost effective and readily scalable to high volume manufacturing. Alternative 

methods such as CVD (Chemical Vapor Deposition), Electroless deposition, PVD 

(Physical Vapor Deposition) methods have been developed but not utilized for bulk Cu 

deposition for cost considerations3. Electroless process has highly unstable electrolyte 

compounds and requires frequent bath dump for process stability. The process also needs 

expensive catalyst material for the copper to seed to dielectric. Electrodeposition of 

copper for IC substrate applications holds certain unique challenges. For example, 
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entrapment of voids and defects in via structures limits overall package power delivery 

and reliability. Presence of non-uniform copper deposit results in package assemblies 

with high warpage and poor compatibility to downstream processes which in turn results 

in significantly lowered assembly yield7.  IC substrate packages require void-free gap fill 

inside via regions with an extremely small recess along with deposition of uniform 

copper film in fine line spaces (FLS). The choice of the native chemistry species, 

electrolyte composition, deposition parameters (temperature, bath composition, 

deposition current, etc.) utilized in electrodeposition process largely influences the 

metallurgy of the plated film. Furthermore, gaining insight into thin film properties such 

as film purity, grain orientation, grain size, intrinsic stress build up and understanding 

their relationship to different plating conditions is key to establish the desired metallurgy 

of the plated film. 

 

Section 1.4 Introduction to Copper 

Today, copper is the unanimous industry choice for interconnect build up.  IBM 

introduced what is commonly now known as the “damascene process” in the late 1990s 

to form copper IC interconnects3. Later, a variation of the damascene process known as 

dual damascene process was developed for cost effectiveness.  Different flavors of 

damascene processes exist today based on feature types and application3, 7.  In all cases, 

copper is electrodeposited to form the desired circuitry. Thickness of the film deposit 

ranges in mesoscale to nanoscale depending on the need of the process. To date, copper 

metal has been the material of choice due to its clear technical advantages and lower cost. 
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For example, copper shows low electrical resistance, high thermal conductivity as 

summarized in the table below. 3, 7, 8 

 

Table 1.1: Comparison of conductivity, resistivity, density and melting point for various 
metals 

 

Metal 

Types 

Electrical 

conductivity 

(10.E6 S/m) 

Electrical 

resistivity 

(10.E-8 

Ohm.m) 

Thermal 

Conductivity  

(W/m.k) 

Density 

(g/cm3) 

Melting 

point  

(°C) 

Silver 62,1 1,6 420 10,5 961 
Copper 58,5 1,7 401 8,9 1083 

Gold 44,2 2,3 317 19,4 1064 
Aluminum 36,9 2,7 237 2,7 660 

 

Along with those advantages, Cu thin films also show improved electromigration 

(EM) life and tend to be easier to manufacture for IC applications3. Although silver is one 

of the best-known metal conductor, its high cost limits its use to IC circuits. Table 1.18 

compares some of the key bulk properties of copper to some of the well-known metals. 

Aluminum metal was preferred in the early days, but copper is now the ubiquitous choice 

in interconnect applications due to it high conductivity and ease of manufacturability at 

shrinking node sizes. A comparison of some of the key bulk characteristics of bulk Cu 

and Al is given in Table 1.28. 

Table 1.2: Comparative Characteristics of Copper and Aluminum 

S.No CHARACTERISTICS COPPER ALUMINUM 

1 Yield Strength (Mpa) 216 55 
2 Hardness (HV) 51 15 
3 Electrical resistivity (µΩ-cm) 1.67 2.65 
4 Young’s Modulus (Gpa) 129.8 70.6 
5 Resistive Capactive Delay in Intel Chip (ns) 0.3 1.0 
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As shown in Table 1.2, copper shows relatively high tensile strength. The lower 

electrical resistivity of copper makes it an excellent conductor of electricity which in turn 

significantly reduces interconnect signal delays (as shown in Table 1.2)6.  

 

Section 1.5 Summary 

In summary, IC packages needs to incorporate high density interconnects made of fine 

copper traces and large aspect ratio via. Electrodeposition is the preferred industrial 

methodology to enable such advanced architecture. The fundamental principles that guide 

electrodeposition of process needs to be understood in order to enable advanced 

electrodeposition. In chapter II we discuss some of those fundamental principles to 

identify key pathways that enables electrodeposition for IC substrate packages. 
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CHAPTER II 

FUNDAMENTALS OF ELECTRODEPOSITION 

The process of deposition and removal of a material from a metal surface is guided 

through electrochemical principles.  Various kinetic and thermodynamic phenomenon 

facilitate electrodeposition reaction at the metal-solution interface during 

electrodeposition. There are several pathways of a electrode reaction to occur as shown in 

Figure 2.0.  As shown in Figure 2.0, there needs to mass transfer of the reactants from the 

bulk of the solution to the interface. Several chemical reactions happens at the electrode–

electrolyte interface. The reduced atoms then needs to adsorb to the metal lattice. Any 

non-reduced ions needs to quickly desorb or move away from the surface to allow the 

electrode reaction to continue further. Depending on the applied potential, the sustained 

electrode reaction can be controlled by the principles of one or more of these effects such 

as mass transport, chemical reaction, adsorption, migration, etc. 

 

 

Figure 2.0: Pathway of a general electrode reaction 
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Section 2.0 Introduction 

The distribution of an electroplated deposit depends upon which transport phenomenon 

controls the plating rate. In order for the reaction to continue uninterrupted and to achieve 

the desired deposit thickness, we need to consider the overall ohmic and mass transfer 

effects present inside the system. Furthermore, we need to determine which transport 

mechanism dominates the deposition reaction. Ohmic resistance of the metal film leads to 

variations of potentials in the film and solution resistance leads to variations of potential 

in the plating solution. Mass-transfer effects lead to variations in concentration of metal 

ion and other electrolyte species across the metal surface. Generally, non-uniform 

reaction rates are caused by either inadequate mixing, so that reactant concentrations are 

not uniform (convection effect), or by spatial variations in the electrical-potential 

difference across the electrode/electrolyte interface or due to concentration gradient 

(diffusion). Therefore, in order to establish a capable electrodeposition process, 

fundamental understanding of these principles and their impact is key. In this chapter we 

will discuss on some of the fundamentals of the electrodeposition process utilizing those 

principles. 

Section 2.1 Process of electrodeposition 

Typically, electrodeposition is performed by immersing a conductive surface (wafer / 

panel / any conductive metallic crystal lattice) termed cathode in an electrolyte solution 

comprised of metal ions (G) that needs to be deposited. To begin with, a metallic crystal 

lattice is immersed in an electrolyte with metal ions (G).  An external power supply is 



 

  23 

utilized to drive the electrons (e-) from the anode towards the cathodic surface. The 

ensuing reaction between the metallic ions on the solution and the electrons on the 

cathode generates species H on the cathode as shown below.  

� + ���  →  	           (2.1) 

where n is the number of electrons. For example, the above simplification can be 

extended to Cu deposition reaction as shown below.  


��
 + ���  →  ��         (2.2) 

where, two moles of electrons are added to the cathodic surface that leads to reduction of 

one mole of cuprous (Cu2+) ion to copper metal on the surface. Thus, in the absence of 

any secondary reactions, the amount of metal deposited (m) is easily estimated by 

utilizing Faraday’s law5 in terms of the no of moles of electrons supplied (n), amount of 

current driven by the power supply (I) to the reaction and deposition time (t) as, 

� = ����/��            (2.3) 

Here F is Faraday’s constant, Aw is the atomic weight of the metal deposited and n is the 

number of electrons utilized for that reaction. For electronic applications, estimation of 

increase in metal thickness with the deposition process is a more desired parameter than 

the mass of the metal obtained 2. This estimation is easily obtained by taking the density 

of the metal ion deposited in a given two-dimensional area and converting the amount of 

metal deposited to the thickness of the metal. For example (if we assume the deposition 

for copper metal in a well-mixed copper electrolyte solution), per faraday’s law, a current 

of 1A when deposited over a period of 60s will theoretically yield 0.02g of Cu metal 
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based on equation 2.3.  When deposited on a 1dm2 surface area of the cathode surface the 

ensuing mass can be converted to predict 0.22µm of additional deposited copper (as 

thickness = mass / (area * density)). Practically however, the measured copper thickness 

varies due to various kinetic and thermodynamic limitation of the deposition process 

termed as losses. The current efficiency is then calculated as the ratio of measured weight 

(or thickness) to theoretically calculated value based on the equation 2.3 explained above. 

 

Section 2.2 Kinetic and thermodynamic principles of electrodeposition 

In order to best understand the kinetic and thermodynamics principles of 

electrodeposition, it’s easier to break the electrodeposition process into three stages such 

as electrode immersion (prior to start of the deposition), initial phase of the deposition 

(process in the first few milliseconds) and deposition process thereafter. 

 

Section 2.2.1 Stage 1: Equilibrium potential and exchange current 

density 

Let’s define the 1st stage as when the cathode surface (metal layer to be deposited) is 

immersed in the electrolyte solution before the external power supply is turned ON. In 

this case, as soon as the metal is immersed in the solution there will be an exchange of 

metal ions between the electrode – electrolyte interface and some ions from the cathodic 

metal lattice will enter the solution and vice versa until an equilibrium is established.  

Thus, a dynamic interface is created between the electrolyte and the metal surface.  An 

exchange of ions happens between the two interface setting up an equilibrium. Even 
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though there is no applied potential or current to the metal electrode or electrolyte, the 

metal surface and the electrolyte exists in an equilibrium potential and there is exchange 

of charge due to the EMF acting as the driving force.  This equilibrium potential is 

termed as rest potential or open circuit potential (OCP). This equilibrium potential (Erest) 

is easily estimated using Nernst equation as a function of activity of the species as1,  

����� =  �� + ��
�� �� [!]

[#]         (2.4) 

Where [G] is the activity of the oxidized species (Cu2+ for example in copper deposition) 

and H is the reduced species (Cu metal).  R is a gas constant and T is the temperature. E0 

is the standard reduction potential estimated using Gibb’s relationship as, 

�� =  − ∆!�
��            (2.5) 

Where ΔG0 is the standard free energy of the reaction.  For practical purposes, E0 is 

estimated against a SHE (Standard Hydrogen Electrode) in a 1M solution at 298K 2. The 

Standard Hydrogen Electrode has a reduction potential of 0V in a 1M solution at 298K 2 

on a platinum electrode surface and is utilized as a reference scale for estimating all 

reduction potentials 4. To best understand this SHE reference scale, a similar analogy can 

be given to another metric such as atomic mass. Atomic mass of all elements in the 

periodic table is referenced to the mass of a C12 atom. Reference to SHE potential for a 

given electrochemical reaction follows a similar analogy. For any reaction, deviations of 

standard reduction potential E0 to Erest based on actual concentrations utilized in the 

reaction can then be estimated utilizing Nernst equation. For example, for a divalent 

metal ion the equilibrium potential shifts by 29mV per decade of metal ion activity [G]2. 
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For reference, the standard reduction potential of Cu2+ in a 1M solution against SHE at 

298K is 0.337V and 0.521V for Cu1+ ion reduction3. 


��
 + ��� → 
�           �� = �. ''( )� *#�        (2.6a) 

  
�
 + �� → 
�                �� = �. +�, )� *#�    (2.6b) 

As discussed in various textbooks 1-3, thermodynamically unstable materials such as 

potassium and sodium exhibit negative potentials for reduction while noble metals such 

as gold and platinum, exhibit positive reduction potentials. When a potential more 

negative than the Erest value of a metal/ion couple is applied at a surface immersed in a 

solution containing ions of the metal, electrodeposition (reduction) of the metal ion to the 

metal happens. Henceforth, species that exhibit more positive potentials are easier to 

deposit than thermodynamically unstable materials such as alkali metals. 

Electrodeposition of alkali metals incorporates other challenges because various other 

side reactions side (unfavorable reduction of various impurities) occur first before 

deposition of alkali metals leading to a poor deposit. 

 

Section 2.2.1.1 Exchange current density 

When the cathodic metal is initially immersed in the electrolyte, despite the absence of 

any measured current, there is still an exchange of charge at the interface. This exchange 

of charge is equated in terms of exchange current density i0. To best understand this, let 

us take the example of copper metal immersed in a copper sulfate solution, Cu2+ ions will 

leave the metal surface faster than the ionic movement from the electrolyte towards the 
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Cu lattice. This leaves the metal lattice deprived of Cu2+ ions at the solution interface 

leading to accumulation of excess electrons on the interface and a negative charge.  

This accumulation of negative charge subsequently enables rearrangement of 

charges (ions) on the solution side of the interface. The solution side now has 

accumulation of Cu2+ ions or positive charge on the interface as shown in Figure 2.1 

 
 

Figure 2.1:  A simple schematic to show metal solution interface after immersion 
and before start of electrodeposition 3 

 

This accumulation further slows the movement of ions from the cathodic crystal lattice 

and increases the rate of ions entering the lattice. After a certain period, an equilibrium is 

established. We discussed the potential measured at this stage as equilibrium potential 

with no net current flow but exchange of charge. This exchange of charge is estimated as 

exchange current density and is determined as follows. For a generic reaction explained 

below, where species H is formed, let kc be the rate constant of the forward reaction 

(cathodic) and kr for the reverse reaction.  
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� + ��� 
-.⇌
-�

 	            (2.7) 

Utilizing Arrhenius equation, the rate constant of forward and reverse reaction rate is 

express as1 

 -. =  �.012 (− 4!.
�� )           (2.8) 

and 

-� =  ��012 (− 4!�
�� )           (2.9) 

Where AC and Ar are the Arrhenius constants for the forward and reverse reactions and 

ΔGc and ΔGr are the gibb’s free energy for the forward and reverse reactions.  The rate of 

forward cathodic reaction can be expressed in terms of current as1,  

�.
��� =   ��6.�78� �6�� =  -.
!     (2.10) 

Where A is the active surface area, C is the concentration and CG and CH are the 

concentrations of the respective species G and H and F is Faraday’s constant. Similarly, 

the rate of the reverse reaction can be expressed in terms of current as, 

   
��

��� =   ��6.�78� �6�� =  -�
#     (2.11) 

The net current for the above generic reaction is calculated as 

� = �. − ��          (2.12) 

By substituting the above expressions, the net current equation is expressed as1 

� =  ���[-.
! −  -�
#]      (2.13) 



 

  29 

At equilibrium the reaction rates are matched where kcCG = krCH and I = 0.  We can 

simplify, kc= kr to k0 when the system is at equilibrium potential E0, as the activity and 

concentration CG = CH = C.  Here C is the concentration of ion in the bulk.  Even though 

the net current I is zero at equilibrium, there is still a balanced faradaic activity between 

the solution and the interface. This balanced activity is expressed as exchange current 

“I0” which based on all the above equation simplifies to1  

��  =  ��-�
 or  7�  =  �-�
, where   7� = ��
�    (2.14) 

Thus, the exchange current (I0) or the exchange current density (i0) is directly 

proportional to k0 the reaction rate constant and is often substituted or utilized to express 

the rate of the reaction in kinetic equations. For electrochemical reactions, exchange 

current density can be easily determined with Butler-Volmer expressions for cathode and 

anode reactions (discussed in the next section below) which in turn allows us to directly 

gauge the rate of the reaction without actually computing the rate constants. As discussed 

in various text books1-3, reactions with large exchange currents correspond to very rapid 

and usually reversible metal reduction charge transfer kinetics and result in strong 

dependence of the deposition current on mass transfer and applied potential. 

 

Section 2.2.2 Stage 2: Kinetics of early stage of deposition 

When the external power supply is turned on, an excess potential or overpotential is 

applied to the electrode surface as the electrons move towards the cathode. This increase 

in applied potential results in an exponential increase in the deposition current at a given 
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interfacial ion concentration and the resulting current density is best determined by the 

relationship developed by Butler- volmer1-3 

7 = 7� 9�: ; <(,�=)��>����?
�� @ − �:; < (�=)��>����?

�� @A  (2.15a) 

where α is the symmetry factor between cathodic and anodic reaction, i is the current 

density and i0 is the exchange current density, n is the number of electrons, R is a gas 

constant, T is the temperature of the reaction and E and E0 are the applied potential and 

standard reduction potential.  This equation essentially represents the net current flowing 

through the system for a reversible reaction when an anodic (oxidation) and cathodic 

(reduction) reaction are happening reversibly and in parallel. For α = 0, this reaction 

simplified to i = i0 which indicates the cathodic and anodic reaction are in equilibrium 

and symmetric. Similarly when B =  0,  i = i0, that is in the absence of an applied 

overpotential an equilibrium is established with the net current density operating as the 

exchange current density. Once an overpotential is applied, the α shifts towards either 

cathodic or anodic reaction based on the standard reduction potential and determines the 

net value and direction of current flowing. For irreversible electrodeposition reaction that 

happens at high enough cathodic potentials, Butler volmer equation can be simplified to 

equation 2.15b discarding any anodic contributions. 

7 = 7� 9−�:; < (�=)��>����?
�� @A         (2.15b)  

Expression 2.15b is widely utilized to simulate the observed current density based on 

applied potential. The transfer coefficient α for the cathodic process (deposition of Cu2+) 

is obtained from the slope of the plot of applied potential vs the observed current density 
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B DE FGH (I) or mathematically noted as JB / J (FGH I). Overall, the current dependence 

on potential can be considered analogous to a reaction rate dependence on temperature in 

an Arrhenius equation 2.  Alternatively, the metal solution interface can be considered as 

a resistance element in an equivalent circuit, which decreases in value as the applied 

voltage increases. The above stage of the deposition process is termed to happen in 

kinetic or activation controlled regime. However, the kinetic phase of deposition applies 

only when the concentration of the ion at the interface is matched to the bulk 

concentration C (a key assumption that relates k0 to i0). In reality, the concentration of the 

ions varies as deposition process proceeds further 3. For example, the metal ions are 

consumed during electrodeposition with an applied potential and the concentration of 

metal ions decreases at the interface. In order for the electrodeposition process to 

continue, further transfer of ions from the bulk of the solution needs to happen. Figure 

2.23 shows how concentration profile varies across at the interface especially around the 

metal interface called the diffusion layer. The stagnant diffusion layer and the mass 

transfer effect is discussed in the following section. 
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Figure 2.2: A schematic to show concentration profile in the bulk and in the 
diffusion layer 

  
[Figure adapted from reference2] 

 
 

Section 2.2.3 Stage 3: Helmholtz double layer and mass transfer effects 

In order to best understand the effects of mass transfer, let us briefly describe the setup of 

electrolyte ions close to the interface and far from the interface. As previously explained, 

when a metal is immersed in an electrolyte there is movement and rearrangement of 

charges on interfaces on both the solution side and metallic surface. This double layer 

charge arrangement has been experimentally proven to behave like a capacitor with 

capacitance measured on the order of Farads that varies based on the experimental setup. 

The solution side of this double layer is hypothesized to be made of multiple layers as 

shown in the Figure 2.31 below. The inner layer (IHP – Inner Helmholtz plane) is 

described as layer closest to the electrode with adsorbed solvent molecules and 
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specifically oriented adsorbed redox ions without the solvation shell. The subsequent 

outer layer (OHP – Outer Helmholtz plane) is then arranged with the solvated cations.  

 

Figure 2.3: A schematic to show double layer and ionic behavior far and close to 
the interface  

 

[Figure adapted from reference5] 

 

The distance “d” between the OHP and the metal layer is termed as double layer 

thickness 3.  Typically, IHP thickness ranges to length scales on the order of few 

angstroms and OHP thickness ranges to a few nanometer 1. The solvated ions in OHP 

interact through electrostatic force in a nonspecific manner 1. Because of thermal 

agitation in the bulk solution, non-specifically adsorbed ions distribute around the OHP 

in a diffusion layer that extends to the bulk of the solution.  Diffusion layer thickness is 

usually on the order of few microns to about 1000µm based on the convection in the 
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boundary layer2. Convection due to mixing and thermal /mechanical agitation enables 

uniform concentrations of species across distances much greater than a distance of about 

1mm 2. Increasing convection decreases the thickness of the stagnant diffusion layer at 

the cathode interface.  Transfer of ions from the bulk of the solution to the interface 

happens though three different transport mechanism such as migration, diffusion and 

convection 3. These distinct ion transport mechanism is represented mathematically using 

Nernst Planck equation3 as follows, 

 

  K7     =  −L7M7.7
�

�� N∅     −  M7N.7     +       .7)         (2.16) 

 Flux      =          Migration          +     Diffusion    +       Convection  

 

where Ni is the molar flux of the species i, Zi is the charge number of the ionic species i,  

F is the Faraday’s constant (96485 C/mol), Di is the diffusion coefficient (m2/s),  ∅ is the 

electrostatic potential (V), PQ is the concentration of species (mol/m3),  v  is the velocity 

of the species i, R is the Ideal gas constant (8.3145 J / K. mol), T is the temperature (K).   

Migration represents movement of the ions due to an applied electric field. 

Cations move towards the cathode and anion towards the anode due to this ionic 

migration. Migration is easily evaluated with the estimation of ionic conductivity (ƙ) 

using the equation1,  

ƙ =  ��
�� ∑ L7�M7.77         (2.17) 
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Solutions with large conductivity show minimal ohmic loss. Therefore, migration effects 

are usually negligible when excess charge carriers are present in the system or when the 

solution conductivity is high. During electrodeposition a supporting electrolyte such as 

sulfuric acid or an alkaline solution is purposely added to negate any migration effects. In 

the absence of appropriate mixing and convection, migration effects can dominate if the 

current carrying capacity of the ion is a significant portion of the entire solution. This is 

estimated using transference number. The transference number1 represents the fraction of 

the current carried by that ion in a solution of uniform composition.  

�7 =  T7�M7.7
∑ T7�M7.77

          (2.18) 

In copper deposition for IC substrate applications with a well-mixed sulfuric acid-based 

electrolytes, the transference number of protons (H+) is so large that migration effects are 

negligible compared to diffusion limitations2. 

Diffusion represents movement of ions due to a concentration gradient and 

usually plays a large role in determining the deposition characteristics for IC applications. 

As previously explained, because of thermal agitation in the bulk solution, non-

specifically adsorbed ions distribute around the OHP in a diffusion layer that extends to 

the bulk of the solution.  The stagnant layer between OHP and the fluid boundary layer 

defined in Figure 2.3 is termed diffusion layer.  Thickness is usually on the order of few 

microns to about 1000µm based on the convection in the boundary layer.  

The diffusion term in the Nernst Planck equation4 (-Di▼Ci) can be simplified to 

calculate diffusional flux Ji of a particular chemical species using Fick’s first law of 

diffusion in x-direction as4,  
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U7 =  −M7
V
7
V:             (2.19) 

This diffusion represents a key component of ion transport that cannot be neglected 

under any conditions during electrochemical consumption at an electrode3. At 

room temperature, copper ions in an electrolyte solution generally have a diffusion 

coefficient of order ~5x10-6 cm2 /s that roughly results in a 0.1ms diffusion time for a 

0.1µm distance and a 1s diffusion time across a 25µm distance1. As shown in Figure 2.4 

below, at low overpotential (when the applied potential E is closer to E0) current density 

increases exponentially per Butler Volmer equation as explained in the previous section 

(Region 2) and stays linear at very low overpotential (Region1).  However, at sufficiently 

high overpotential there is no increase in current density with increase in applied 

potential potential.  In the absence of any migration effects in a well-mixed system, this 

effect is likely due to diffusion.  This effect can also be seen for long deposition times 

since the interface region is depleted of metal ions and the rate of ion transport in the 

diffusion layer from the bulk determines the rate of deposition. Thus, the process now 

shifts from activation (kinetic control) to diffusion (thermodynamic control) and becomes 

diffusion limited. This steady state diffusion control enables a constant current or limiting 

current with any increase in applied potential as shown in (Region 4) in the graph below 
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 Figure 2.4: A schematic to show current density to applied potential relationship 
 

[Figure adapted from reference2] 
 

Mathematically, this limiting diffusion current density (iL) can be determined using 

Cottrell equation as 

7W  =  ��M7
,
�.7

(X�)�.+            (2.20) 

Where t is the deposition time. If we approximate diffusion length  for (Dit)0.5 then the 

above equation simplifies to,  

7W  =  ��M7.7
          (2.21) 
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When operating at limiting current density, the species are reduced as soon they reach the 

interface. Increase in applied potential at limiting current density will cause non faradaic 

reactions such as rearrangement of ions in the electrode than the metal ion reduction.  

Region 3 in the fixture above is termed a mixed region when the transition from 

activation control to diffusion control happens.  

Lastly, convection includes movement of ions in the bulk solution by agitation, 

pumping etc. to maintain a well-mixed solution.  Once the diffusion layer is established 

metal ions travel by diffusion and migration. The ionic flow at a given point on the 

surface is proportional to the concentration of metal ions at the interface regardless of 

other factors. Typically, the interfacial concentration is increased by faster mass transfer 

and higher bulk concentrations of metal ion in solution.  

 

Section 2.3 Current distribution with electrodeposition for planar and non-planar 

(via) surfaces 

So far, we discussed the Butler Volmer kinetic effects that predicts kinetically control 

current density (or deposit profile) and Nernst Planck effects to predict the mass transfer 

effects that affect the flux (or) transport of ions in the electrolyte and eventually the 

current density / deposit thickness. To proceed further, it is necessary to classify the 

electrodeposition process utilized in real systems into some simple categories (primary, 

secondary and tertiary) based on their operating parameters in order to best understand 

which losses / stages of electrodeposition previously described dominates the current 
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distribution. We can then utilize those identified key knobs to tweak the process 

parameters and obtain the desired deposit profile.  

For example, if we assume a frequently use case system where the reduction 

reaction happens at a very fast rate then the kinetic effects can be neglected. The criteria 

here is that the reaction is so fast that there is no electrodeposition in activation region 

(kinetically controlled). Metal ions are quickly reduced as they approach the interface. If 

the electrolyte solution is assumed to be well mixed (no convective effects) and if the 

concentration of reductant metal ions is very high in the electrolyte (no diffusion effects) 

then losses due to convection and diffusion term can also be considered negligible. Thus, 

the Nernst Planck equation simplifies to the migration portion only or ohm’s law as the 

movement of ions is dictated by the solution conductivity or solution resistance, which is 

constant for a given electrolyte.  This case can be classified as a primary current 

distribution model in that it accounts only for the electric field present in the process 

which is dictated by the geometry of the anode and cathode surface and the distance 

between the electrodes (the length of electric field) along with the solution resistance 

which is constant for a given electrolyte 3,6. 

  For systems that undergo slow reduction kinetics, secondary current distribution is 

utilized to model current distribution. This case is the most popular in simulating 

industrial applications in electrochemistry. Unlike primary current distribution, in this 

case, losses due to activation caused by the slowness of the reduction process is thought 

to be significant. Rest of the assumptions in primary case including (good mixing enabled 

by convection) and high concentration of the ion (no diffusion) still applies. Essentially, 
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in this case activation losses due to polarization of the electrode is taken into 

consideration along with solution resistance3.  In this situation electrode kinetics losses 

are not found to be negligible compared to the ohmic losses. This model can be applied to 

predict uniform deposition on a non-planar surface. Consider a non-planar via surface as 

shown in figure 2.57 below let us assume l = 25YZ (depth of the via) After initial 

deposition with the deposition conditions aligning to the assumptions defined above 

uniform conformal deposition is obtained at the top and bottom of the feature. For such 

cases, Wagner7 devised a new notation called “Wagner number” to predict the extent of 

uniformity in current distribution with a secondary current distribution model.  

 

Figure 2.5: A simple schematic to show conformal plating with non-planar 
surface 

 

This Wagner number is denoted as,  

          (2.22) 
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Where l is the length of the non-planar surface, [ is the solution conductivity and (
\]
\Q ) is 

the polarization ratio or slope of the polarization curve. For fast reaction kinetics, 
\]
\Q = 0 

and hence Wa = 0 indicating the secondary reaction simplifies to primary current 

distribution model7. For more realistic case where there is limited kinetics, Wa number 

can be used to predict the degree of uniformity even on a non-planar surface. Higher the 

Wagner number obtained, the process simplifies to more uniform deposit with secondary 

current distribution assumptions. 

  

 

Figure 2.6: Void formation with mass transfer limitation on a non-planar via 

region 

 

For IC substrate packages, uniform deposit is desired on the top of the via surface while 

super fill is desired inside the via. Thus, this case is more accurately reflected utilizing 

tertiary current distribution model that also considers concentration variation at the 

interface. In other words, mass transfer limitation due to consumption of reducing species 

at the electrode surface leads to diffusion limitation. Diffusion of reducing species from 
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the bulk of the solution to the interface limits the overall reaction. Although during the 

initial stages of the deposition reaction, the concentration is uniformly distributed inside 

the top and bottom of the via leading to conformal deposition, reduction in concentration 

of the species (more so at the via bottom than at the via top) due to length of the diffusion 

layer being small at the Via top than at the Via bottom (as the bulk solution fluid 

boundary layer is way further from the bottom of the feature) the diffusion times are 

longer and becomes limiting at the via bottom. This leads to non-uniform current 

distribution of higher deposition rate at the via top than at the via bottom which in turn 

leads to voids entrapment. A cartoon showing this effect is shown in figure 2.6.  

 

Section 2.4 Summary 

As previously explained, non-planar surfaces undergo uniform deposition rates during the 

initial stages of deposition as shown for a via feature example in Figure 2.6. That is, via 

sidewalls at the top undergo reduction at the same rate as via sidewalls at the bottom. 

However, a sustained deposition reaction in such scale could lead to a void entrapment. 

In summary, the understanding the principles of electrodeposition can explain which 

transport mechanism dominates current distribution and the effective thickness deposition 

on planar and non-planar surfaces such as via’s.  Discussion on how void entrapment 

occurs along with some key methodologies to enable void-free fill inside the via is 

discussed further in chapter III. 
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CHAPTER III 

VIA FILL MECHANISM AND CHALLENGES 

This chapter focusses on various mechanisms that facilitate bottom–up fill to achieve 

void-free via fill. The role of cupric and cuprous ions, mechanism and fill challenges with 

the incorporation of organic additives is further elaborated. The mechanism that leads to 

void entrapment is first discussed. 

 

Section 3.0 Introduction to voids in copper electrodeposition 

As shown in Figure 3.1, during the initial stages, the deposition happens under kinetic 

regime (Figure 3.1b) and the thickness of the copper is still uniform at the top and bottom 

of the via sidewalls 14. Incoming seed layer prior to the start of deposition is shown in 

Figure (3.1a). As the deposition process continues from the initial stages, (as deposition 

process usually happens for t >10s to achieve the desired thickness) the concentration of 

Cu2+ that is getting consumed at the via bottom and via top of the sidewalls needs to be 

adequately replenished. If adequate replenishment does not happen, side walls of the via 

top will show higher Cu2+ concentration and increased thickness / deposition rate 

compared to the sidewalls of the via bottom as shown in Figure 3.1c. As previously 

discussed this phenomenon is due to diffusion limited mass transfer of Cu2+ from the bulk 

of the solution to via bottom. Sidewalls at the via top are unlikely to see this behavior 

because of their proximity to the bulk solution. The diffusion limitation at the via bottom 

leads to reduced deposition rate at the sidewalls of the via bottom.  As mass transfer 

limitation of the process takes over further, the deposition transitions completely from 
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kinetic to diffusion regime. In that case, deposition rate becomes slow at the side walls of 

the via bottom while the via top continues at a sustained rate. As the deposition process 

continues even further, this condition exaggerates leading to a condition termed  “pinch 

off”, where in the sidewalls at the top of via start to collide14. Figure 3.1d shows the 

plated profile inside the via prior to pinch-off where the thickness of the sidewall is much 

higher compared to the thickness of the side walls at the via bottom. Further extension in 

deposition process leads to entrapment of voids in the middle due to “pinch-off” as 

shown in Figure 3.1e. 

 

Figure 3.1: Electrodeposition of copper to show void formation 
 

Void entrapment is a significant risk for overall package reliability and IC circuit 

functioning 1-4. For industrial applications, there is a critical need to establish completely 

filled via features with copper metal that is void-free in order to ensure signal and IC 

substrate package integrity 1-4. In order to establish a void-free process, a differential 

plating rate needs to be established as there is a risk of void entrapment. To establish a 

void-free process, this differential plating rate needs to happen in such a way where the 

deposition rate at the bottom of the via (ibottom) has to be at a rate that is much higher 

compared to the top of the via ( itop.)3, 24, 14. This challenging process requirement to 
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enable bottom-up fill where ibottom > itop (deposition rate or current density higher at the 

bottom of the feature compared to the top) has been the focus of various scientific studies 

for decades 1-4.  

To quantify the goal discussed above, a key ratio parameter of  “itop /  ibottom “ is 

utilized in various literatures named as “throwing power” or “BUF” (bottom-up fill ratio) 

or “ Gap fill ratio” and needs to be greater than a value of 1 for bottom-up fill to be 

established inside the feature1-4, . IC substrate applications require even smaller throwing 

power for void-free fill due to the tapered nature of the Via. A critical aspect to consider 

here is that establishment of an process that achieves throwing power greater than 1 (itop /  

ibottom ratio >1)  doesn’t necessarily guarantee a void-free fill. Minimum gap fill ratio to 

enable void-free fill is dictated by geometry of the incoming non-planar surface (via / 

trench). This geometry is defined as “aspect ratio” which is widely accepted in the 

scientific world as the ratio of depth of the via (height of the via) to the via bottom 

diameter 3, 4. The minimum required ratio to establish a void-free fill process varies based 

on the type of application or aspect ratio. Different feature types utilized in copper 

electrodeposition applications are classified based on this incoming aspect ratio of the via 

/ trench surface. It is imperative that the likelihood of obtaining void-free fill on via’s 

with higher aspect ratio is far more difficult compared to lower aspect ratio via’s. In other 

words via features with large aspect ratio require advanced process capability that enables 

very high throwing power (itop /  ibottom ratio >>>>1). Typically, itop and ibottom are 

estimated by measuring the thickness of the sidewalls at the top and bottom of the via. 
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Faraday’s law enables this calculation as the proportionality of mass/ deposit thickness to 

the applied current density55. 

 

Section 3.1 Introduction to via fill in copper electrodeposition 

The process of obtaining a void-free fill with a bottom-up fill inside the via feature is 

termed as “super fill” or in simplified terms “via fill” or “gap fill” process3-5. This process 

is also referred in some cases as “super - conformal” process16.  When a via feature that 

needs to undergo super fill is immersed in an electrolyte solution, prior to to the start of 

deposition process, a metal- solution interface across various points in the via region (via 

top sidewalls as well as via bottom sidewalls) is established. All the points along the via 

features (top and bottom) are electrically connected (shorted) with a continuous copper 

seed layer (cathodic surface). Therefore, any potential difference of copper seed layer at 

the top and bottom of the via can be assumed to be negligible. This is especially true for 

extremely thick Cu seed layers where sheet resistance is negligible. Via features utilized 

in IC substrate applications utilize seed thickness in the range of 7000Å to 15000Å which 

eliminates any ohmic potential difference contribution from the seed layer1,3,4. In order to 

establish a differential deposition rate, majority of the scientific efforts have focused their 

innovation efforts on the solution side of the interface. Typically, organic additives are 

added to the electrolyte bath to enhance the the growth rate of copper inside features 

relative to the top of the via. 3,5,14 For very thin seed layers (1000Å or less) sheet 

resistance of the seed influences deposition kinetics leading to even higher probability of 

void entrapment, necessitating a more robust approaches for differential plating and 
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superfill3.  Besides establishing a differential via fill, organic polymer additives are added 

in trace amounts to the electrolyte to influence the grain structure and purity of the 

deposited copper. Therefore, key parameters such as ductility, hardness, surface 

roughness, stress and tensile strength of the deposited film also need to be evaluated 

when utilizing an organic additive based approach for via fill3.    

Copper deposition technology has evolved through generations and application to 

IC circuits has happened as recently as a decade ago. Significant “prior art” exists for 

additive based fill approach for copper damascene process specifically for large aspect 

ratio via’s where plating time scales are in the range of few minutes to seconds. The 

manufacturing extendibility of such process has also been achieved to bath volumes as 

high as 300L or so with a bath life of few weeks2,3.  For IC substrate packaging 

applications, the composition of electrolyte involved in copper electrodeposition includes 

acidic aqueous electrolyte bath with dissolved copper sulfate, sulfuric acid, chloride ions 

and various organic additives to enable via fill 3,4,14.  

 

Section 3.2 Inorganic components in copper electrodeposition 

Cu2+ supplied as copper sulfate pentahydrate (CuSO4.5H2O) solution and sulfuric acid 

H2SO4 along with Cl- (supplied as HCl) are the primary inorganic constituents of the 

copper plating bath.  Mechanism and role of each of these components is further 

discussed below. As previously discussed, high concentration of Cu2+ (sourced from 

CuSO4.5H2O) eliminates diffusion limitation. As shown in equation 2.22, deposition rate 

of copper metal and its distribution is strongly correlated to conductivity of the 
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electrolyte solution (ƙ). In copper electrodeposition, ionic conductivity is determined 

through the concentration of protons (H+ ions) supplied from H2SO4. A high 

concentration of H2SO4 decreases solution resistance and mitigates any migration effects. 

As discussed in scientific literature, the unique transport mechanism of ions that aids in 

ionic conductivity with increased H+ ions is explained with Grotthuss mechanism4.  

Separately, considerations of solubility of CuSO4.5H2O in sulfuric acid solution 

limits the peak concentration that could be utilized for Cu2+ in the electrolyte.  The trade-

off here is that if very high concentration of CuSO4.5H2O is utilized to eliminate 

diffusion (mass transfer limitation) this could limit the maximum concentration of 

sulfuric acid in the electrolyte due to solubility concerns. A high concentration of H2SO4 

in the electrolyte is often desired for improved conductivity from the electrolyte as that in 

turn facilitates uniform distribution of copper deposit across features of various geometry. 

Various scientific studies tabulate the range of use of these components based on 

application type3,4. Besides these two key components, a small amount of catalyst in the 

form of Cl- is added to catalyze various reactions (that will be discussed below) especially 

in the presence of organic additives.  

 

Section 3.3 Criticality of cuprous ion in copper electrodeposition 

Reduction reaction of copper deposition is described as  


��
 + ���  →  ��         (3.1) 

Various scientific studies 4,6 have shown that Cu2+ reduction follows a three step pathway 

shown as reactions (3.2a), (3.2b) and (3.2c) and Figure 3.2. Of these three identified 
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reaction mechanisms, the rate controlling step of conversion of Cu2+ to Cu1+ (reaction in 

equation 3.2a) is determined to be the most critical due to the formation of Cu1+ 

intermediate that is present in a reversible equilibrium at the copper surface4,41,44,. 

Formation of Cu1+ is strictly defined by the applied potential in order for this reaction to 

be rate limiting.  Bockris et al 41,44 have shown that the reduction of Cu1+ to Cu (reaction 

in equation 3.2b) happens very fast due to the high value of exchange current density 

observed and it is mostly accepted that this reaction is unlikely to be the rate controlling 

step. Cupric reduction to Cu reaction has also a large rate constant observed.4,41,44  

Formation of Cu1+ can happen in multiple pathways. In equation 3.2 (a), 

formation of Cu1+ happens through the reduction of Cu2+ with an applied potential. 

However, Cu1+ is also formed even in the absence of any applied potential due to the 

interaction of Cu metal surface with Cu2+ as shown in equation 3.3a 4,6 


��
 + ��  ⇌  
�
           (3.2a) 


�
 + ��  ⇌  
�6^           (3.2b) 


�6^ ← →  
�`6��7.�          (3.2c) 
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Figure 3.2: Reduction of Cu2+ with the formation of Cu1+ and Cuad intermediates 
 

 

It has been reported that Cu1+ can easily diffuse away from the interface into the bulk of 

the solution 6,10. In such cases Cu1+ is easily oxidized back to Cu2+ in the presence of 

dissolved oxygen or with the addition of O2 (introduced with an O2 bubbler) inside the 

electrolyte solution10. Besides the formation of Cu1+, other intermediates such as CuClad 

adsorbate is also formed on the surface in the presence of Cl-  at OCP (Open Circuit 

Potential) as shown in equation 3.3a and 3.3b. Reactions shown in equation 3.3a and 3.3b 

are termed as comproportionation reaction6.   


� + 
��
 ⇌  �
�
           (3.3a) 


� + 
��
+�
`� ⇌  �
�
`6^        (3.3b) 

In summary, generation of Cu1+ happens both at OCP as well as during the rate controlled 

reduction of Cu2+ ion. In all cases, the formation of Cu1+ further leads to the formation of  

CuClad adsorbate film due to the strong interaction of Cu1+ ion  with Cl-  ion. Equation 
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3.4a through equation 3.4e summarizes all the reactions that happens once the reduction 

process proceeds in the absence of any organic additives 6.  


��
 + ��  ⇌  
�
           (3.4a) 


�
 + ��  ⇌  ��             (3.4b) 


��
 + ���  ⇌  ��            (3.4c) 


��
+
`� + �� ⇌  
�
`6^        (3.4d) 


�
`6^ + �� ⇌  
� + 
`�
      (3.4e) 

In the presence of organic additives, presence of Cu1+ ion and the CuClad plays a vital 

role in complexing and enabling a differential rate of deposition, i.e., increase or decrease 

rate of deposition when compared to the normal rate. Via fill or gap fill is established due 

to the difference in the Cu+ amount between the inside and outside of the via hole 11.  

 

Section 3.4 Role of chloride ion in copper electrodeposition 

The role of Cl- and the kinetics of CuClad film formation in the absence of additives is 

discussed below. Yokoi 4 describes the role of Cl- ion in electrodeposition with the 

establishment of a quasi-reversible Cl- adsorption reaction that further facilitates the 

reduction of Cu+ ions to Cuad or reversibly the dissolution of Cuad to  Cu+ at the surface. 

Essentially in the presence of Cl- and at operating potentials positive than -0.1V Vs SHE. 

it's been proven that there is an ordered adsorption layer of  Cl-  formed on the surface for 

both deposition and dissolution reversible reactions. At potentials below -0.1V the fast 

movement of Cl- ions is considered as a disordered adsorption rate. Nagy Z et al 28 have 
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demonstrated that the Cu2+ ions present on the metal - solution interface coordinate with 

Cl- adsorbed on the copper surface to reduce to Cu1+  45. With reduced concentrations or in 

the absence of Cl- ions in the electrolyte, irregular nodular growth happens across the 

surface.  Kondo et al 30 have shown that the formation of the Cu(I)Cl is critical for super 

fill mechanism.  CuClad species complex with polymer additives that are added to enable 

super fill and facilitate their adsorption on the surface. Hayase et al9 have also shown 

experimentally that consumption of Cl- happens during the reduction of Cu2+ ions. For 

electrolytes operating with very low concentration of Cl- this consumption could lead to 

diffusion limitation at the via bottom than at the via top.  

 

Section 3.5 Organic components in copper electrodeposition 

Almost in all cases, copper electrodeposition for electronic applications includes the 

presence of an organic additive mixture in the electrolyte. Organic additives are added to 

the plating bath to enhance / suppress the growth rate of copper in features relative to the 

planar surface. Figure 3.33 shows the effect on deposition current (deposition rate) when 

additives are present. Chemicals which act to increase the current at a given voltage 

namely the accelerators and the other class of molecules that act to reduce current at a 

given voltage are termed the suppressors / leveler comprise these polymeric additives.  
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Figure 3.3: Schematic to show the effect of additives on deposition current3 

 

Differential deposition is enabled with the concurrent addition of large molecular weight 

suppressor and fast diffusing accelerator molecules. Strongly adsorbing suppressor 

molecules can inhibit / reduce deposition rate at the top of via (as they are diffusion 

limited to reach via bottom) while the accelerator molecules promote accelerated copper 

growth from via bottom. Competitive adsorption and reaction of these species on the 

copper surface enables enhanced differential copper deposition with higher rate at the 

bottom of via relative to the suppressed deposition rate on the planar surface (top of the 

via) and the upper side walls of the features. Leveler molecules are added to offset the 

accelerated growth effect provided by the accelerators and to fine tune deposition 

uniformity.  For copper IC packaging applications the true nature and concentration of 

the additive components remains largely proprietary and a closely guarded secret. A large 

amount of scientific literature spanning since 19502-47 for gap fill have identified a typical 

set of additives that exhibits superfilling. We will further look into the typical makeup of 

these molecules and their principle role in copper electrodeposition.  
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Section 3.5.1 Suppressors 
 
Suppressors 13, 27, 25, 31, 32,35,36, 38 are long chain, large molecular weight polymers that are 

water soluble. Typically, polymers such as polyethylene glycol (PEG) or polypropylene 

glycol (PPG) or their copolymers 27, are utilized as suppressors as shown in Figure 3.4  

 

Figure 3.4: Example of Suppressor and Leveler molecules utilized in copper 
electrodeposition 

 

These molecules suppress Cu2+ ion reduction by adsorbing and blocking the metallic 

surface that are normally available for Cu2+ reduction. The adsorption of the suppressor is 

mediated through a CuClad film on the surface as shown in reaction 3.5 below 6. 

�
�
`6^ + #a ((
#�):a)b	 ⇌

[	c((�	�):a
�
`)� ((
	�):a)b�� #]6^                                         (3.5) 

Essentially the suppression of these molecule is enabled due to the formation of a dense 

layer of the complexed species (identified in reaction 3.5) at the interface that is 

facilitated by the presence of adsorbed Cl- to the copper surface. The Cu+ ion that is 

ionically binded to the Cl- on one side is attached to the oxygen atom of the suppressor 

molecule as shown in simulated model by Feng et al40 in Figure 3.5. These adsorbed 
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species adsorb and desorb on top of the freshly formed copper surface during the copper 

deposition without being incorporated in significant amounts30. The adsorbed layer act as 

diffusion barriers physically limiting the access of cupric ions and other additives (e.g., 

the “accelerators”) to the copper surface. These adsorbed species are eventually knocked 

off by the accelerators depending on the local current density due to the competitive 

adsorption of the accelerator molecules causing desorption.  Boeckmann et al 31, 32,35,36 

have categorized suppressor activity according to their interaction with SPS (bis(3-

sulfopropyl) disulfide) by performing various potential transient measurements.  

 

Figure 3.5: Model of PEG - Cu+- Cl- complex with the Cu+ ion attached to the 
oxygen atom of the PEG and the Cl- adsorbed on copper surface  

 

In the absence of Cl- any adsorption of suppressor molecule to block the deposition 

process is unlikely. As discussed before formation of Cl- adsorbed layer to the copper 

surface is strictly determined with the applied potential. The adsorption of suppressor is 

thus related to the applied potential and shown in the Figure 3.6 as a cartoon below.  
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Figure 3.6: Model of PEG - Cu+- Cl- complex with the Cu+ ion attached to the 
oxygen atom of the PEG and the Cl- adsorbed on copper surface as a function of 

applied potential4 

 

The time-dependent interplay of accelerator and suppressor on the non-planar 

copper electrode surface and their complexation with reaction intermediates leads to the 

desired gap fill behavior. In the early stage of deposition, suppressor adsorption happens 

on the surface. However, in order for the deposition process to continue, the blocked 

surfaces by the suppressors needs to be displaced at some point.  The displacement of the 

suppressor–chloride complex by cuprous thiolate [intermediate formed by accelerator] in 

the reaction shown below in equation 3.6 is likely the equivalent of the competitive 

adsorption of suppressor and accelerator species6.  
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[#a ((
#�):a
�
`)� ((
	�):a)b�� #]6^  + �def ⇌

[	c((�	�):a)b # + �
`� + �
�(�)(�g78`6��)6^    (3.6) 

The makeup of accelerator molecule and the formation of cuprous thiolate that facilitates 

suppressor removal is discussed further.  

 

Section 3.5.2 Accelerators 

Accelerators6,7,17,37,43 are usually molecules of smaller size (compared to Suppressor) and 

are usually fast diffusing species. In the presence of Cl- adsorbed on the surface, 

accelerators increase the current density or the deposition rate on the copper seed surface. 

Almost in all cases, a sodium salt of bis(3-sulfopropyl) disulfide (SPS) or its reduced 

monomer, 3-mercaptopropylsulfonate (MPS) are utilized as accelerator for copper 

electrodeposition. Figure 3.7 shows the chemical structure of the SPS & MPS molecules 

37. As shown there, these molecules are characterized by the presence of the sulfonate 

functional group (R-SO3) and the sulfur–sulfur disulfide bond (“S-S”) in SPS and the 

thiolate (R -SH) group in MPS. These groups play a critical role in the acceleration 

mechanism. Accelerator reactions are very complex due to the formation of various 

intermediates and byproducts.  Some of those studied reactions are discussed further in 

the discussion of via fill mechanism below. In general, copper has strong affinity for 

sulfur “S” and the (–C–S–S–C–) portion of the molecule is believed to interact with the 

copper surface and result in strong adsorption.  While on the copper surface, SPS and 

MPS form a super accelerating Cu (I) thiolate species that eventually is reduced to Cu 

regenerating the SPS and MPS molecules. This regeneration helps preventing the 
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incorporation of accelerator molecule inside the film. However, accelerator molecules do 

get consumed in the course of the reaction due to the formation of irreversible byproducts 

that eventually needs to be drained. Thus, reducing the life of the bath in an industrial 

scenario.  

 

Figure 3.7: Chemical structure of the SPS & MPS molecules that are utilized as 
accelerator. 

 

As previously explained in the absence of any applied potential at OCP, Cu1+ 

intermediates are readily formed due to the interaction of Cu metal surface with Cu2+. 

These Cu1+ intermediates can interact with accelerators even at OCP react to form 

Cu(I)thiolates. Various redox reactions involving SPS / MPS at OCP are shown in 

reactions 3.7a – 3.7d below. 
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�
��
 + iph* ⇌ ���(j)klmn�ok0 + fef + i#
  (3.7d) 

Verckeen et al 6 captures a more complex set of reactions involving SPS/ MPS with Cu1+ 

and other surface intermediates that eventually lead to the formation of either 

Cu(I)thiolate or Cu(I)(thiolate)ad. Discussion on each of those reactions is beyond the 

scope of this work.  With an applied potential, in the presence of applied electric field, 

the thiolate group acts as super accelerating species and reduces to Cu as shown in 

equation 3.8a – 3.8h below. 6,43  


��
 + ��  ⇌  
�
            (3.8a) 


�
 + ��  ⇌  ��              (3.8b) 
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 + ���  ⇌  ��             (3.8c) 


��
+
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�
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�
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� + 
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�(�)(�g78`6��)6^ + #
 + �� ⇌ �� + def    (3.8g) 

*h* + �#
 + ��� ⇌ �def      (3.8h) 

In all cases discussed above, there is a strong interaction of SPS / MPS species with Cu1+ 

/ Cl- ion on the surface52, 34. Potentiostatic experiments performed by Tan et al 52 show 

that in the absence of any Cl- ion present in the electrolyte, accelerators behave as 

suppressors. This has been previously confirmed in other studies as well 17. Besides 
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thiolates, Schultz et al53 reported formation of a CuCl-SPS complex with sulfonate group 

that also has an accelerant effected similar to the thiolate species.  

In summary, accelerator molecular family with unique functional groups such as 

sulfonate and thiols can accelerate copper deposition on a pure copper surface. As 

discussed in reaction 3.6 they can even displace adsorbed suppressor molecules on other 

copper surfaces to undergo rapid deposition. However, this rapid deposition needs to be 

regulated eventually to achieve a planar deposit. This is achieved through the addition of 

a third additive component termed leveler which is discussed below.  

 

Section 3.5.3 Leveler 

Leveler8, 19, 33, 38,47 are actually a type of suppressor molecule that are charged. Typically, 

these molecules are nitrogen-containing cationic organic additives and are utilized in 

polymeric or sometimes in monomeric form. Examples of typical leveler molecules are 

shown in Figure 3.4.  Levelers regulate super-fill and play an important in the later stage 

of copper deposition process to enable a uniform deposit. In the present work the effect of 

leveling agents is not discussed any further.  

 

Section 3.6 Via fill mechanism with organic additives in copper 

electrodeposition 

Various models have been developed by researchers to explain the competitive 

interaction of these organic additives that enables void-free fill 5,14 -16,26. The validity of 

the model and the mechanism varies based on feature size and the type of application that 
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they are intended. For large feature applications, in the early 2000, diffusion adsorption 

model was utilized to explain super fill with the polymer additives. 5,14. In this model a 

single additive agent (suppressor) was utilized to explain the via fill mechanism. In the 

earlier case, in the absence of any additives with copper electrodeposition, establishment 

of a large diffusion region inside the via. If the copper electrodeposition proceeds such 

that the operating current density (applied potential)  is well below diffusion limitation,  

then the reduction of cupric ion will happen under kinetic regime rather than in diffusion 

limited regime. In that case, if a strongly adsorbing,  large molecular weight suppressing 

species is added in dilute amounts such that the consumption of suppressor becomes mass 

transfer limited then a diffusion layer is established for the suppressor species from the 

bulk of the solution to the top and bottom of the non-planar interface (Via top, for 

example). This enables differential suppression with more suppression at the top of the 

feature compared to the bottom due to the adsorption of the suppressor. This phenomenon 

enables the via bottom to plate at a faster rate than the via top to enable bottom-up fill.  

In summary, with this mechanism, the amount of polarization / suppression is 

varied along seed surface creating different deposition rates and overpotential along the 

surface of the via sidewalls. While this mechanism could explain the inhibition kinetics 

of copper deposition to initiate differential plating in a non-planar surface very well, 

extrapolation of the model to larger current density applications and extension to longer 

process time in the presence of accelerator along with suppressor that leads to momentum 

plating and rounded growth on top of the via sidewalls that eventually causes a bump 

formation (Figure 8e, for example) was largely absent.  



 

  63 

Later, Reid and West et al 26, refined the model and explained this rapid growth in 

via bottom by taking into account the phenomenon of accumulation of accelerator species 

at the via bottom at the corners. The selective accumulation of accelerator in the via 

bottom was correlated to the presence of increased surface area at the corners of the via 

bottom. Suppression adsorption observed only at the via top was correlated to diffusion 

limitation at the bottom of the feature. Elimination of bumps at the end of the process was 

explained to the accumulation of Leveler. Reid’s trench fill mechanism is shown in 

Figure 3.83.  

 

Figure 3.8: Via fill inside a trench feature with time evolution3 
 

In the similar time frame, Moffat et al16 proposed the popular “curvature-enhanced 

accelerator coverage” or CEAC model. This model is widely accepted in the scientific 

world and has a similar approach as Reid and West 3,26 . It is also defined based on 

accelerator accumulation at the via bottom to explain the bottom-up fill. This mechanism 

utilizes a competitive adsorption between the accelerator and suppressor molecules 23.  

As Moffat16,18,22,23,39,54 explains, the key factors involved in detailing CEAC mechanism 

includes the growth velocity (deposition rate) that is proportional to the local coverage of 

the accelerator on the surface and the fact that accelerator remains segregated (not 
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lumped) at the metal/electrolyte interface during deposition. For growth inside via / 

trench features, this phenomenon is explained to the enrichment of the accelerator on 

advancing concave surfaces (corner of trench / via bottom) and dilution of the coverage 

of accelerator on convex sections (corner sections at the top of the via). This capability 

leads to distinct bottom-up filling of via / trench features. Furthermore, the enrichment 

and dilution processes continues to be dynamic as the via filling process proceeds 

necessitating a continuous change in accelerator / catalyst coverage based on the inside 

surface area and further enabling the localized accumulation of accelerator. This highly 

localized concentration of accelerator species leads to displacement of adsorbed 

suppressor species and allowing the via fill process to continue further. Moffat’s 

experimental and simulation data to explain CEAC-based bottom-up trench filling as 

applied to copper electrodeposition is shown in Fig. 3.922.  

 

 

Figure 3.9: Super Filling of trenches obtained by Moffat et al22 with accelerator 
pretreated surfaces prior to copper plating in a PEG-Cl electrolyte at –0.25 V.  
Simulation of super fill by depicting catalyst coverage with a SPS derivatized 

0.5um wide trench during copper deposition from an acid copper sulfate 
electrolyte containing PEG-Cl is shown on the right (experimental and simulation 

results from Moffat et al)16,18,22, 39,54. 
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Experimental and simulation of super fill by Moffat et al 16,18,22, 39, 54 depicting local 

catalyst coverage with a SPS derivatized 0.5um wide trench during copper deposition 

from an acid copper sulfate electrolyte containing PEG-Cl is shown in Figure 3.9. As 

shown here, initially, the accelerator is distributed uniformly along the trench profile. 

Similar to the Reid’s proposed mechanism 2,3,26, the accumulation initially continues in a 

conformal fashion due to the uniform coverage of accelerator on the side walls. This is 

followed by enrichment of accelerator on the concave corners and the nearby inclined 

surface of the side walls. As bottom-up fill continues, further enrichment of accelerator 

occurs and accelerated growth entails leading to a flat bottom profile. In contrast, the 

growth velocity on the convex upper corners is mitigated by dilution of the accelerator 

concentration. As the bottom surface approaches the upper corners, an inversion of 

curvature occurs and the growth slows as the highly accelerated growth front dilates and 

forms a bump above the feature.  Although this model is widely accepted for via fill 

mechanism, this model does not taken into account any concentration or convection 

dependent effects of the additives for long term deposition process.   

Later Akolkar et al15,20 extrapolated the effects of suppressor by incorporating 

transport and adsorption behavior.  Specifically, Akolkar and Dubin12 showed that the 

rate of the bottom-up growth depends strongly on the short time-scale suppressor 

concentration field present near the surface using tertiary current distribution models. 

Later Dow et al 42,46 incorporated the effect of leveler utilizing a convection dependent 

adsorption model.  
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Section 3.7 Challenges with additive based via fill for IC Substrate applications 

Although additive based bottom-up fill approaches are highly suitable for filling 

microvia’s in IC substrate packages, utilization of these organic additives poses other 

constraints. For example, some of these organic polymer additives are highly unstable 

molecules and rapidly degrade at high over-potentials or when readily exposed to the 

anodic surface 48-51. The breakdown products of these additives tend to be more active in 

the plating bath than the parent species and disrupt the overall bottom-up fill mechanism. 

For example, large suppressor species could break down to smaller molecular fragments3. 

These fragmented breakdown products of suppressors tend to be more active in the bath 

than the parent species due to their reduced size and increased diffusion rate. 

Electrodeposition in the presence of these fragmented additives then leads to uniform 

polarization / overpotential, as the fragments tend to inhibit the nucleation sites for 

deposition uniformly everywhere  than just at the via top surface. In most cases irregular 

adsorption / desorption kinetics happens due to the random nature of the byproduct 

formation which in turn results in poorly controlled bottom-up fill leading to reduced 

throwing power and eliminates repeatable stable performance. Similarly, when 

accelerator molecules break down, some of their byproducts tend to be highly charged 

metastable species that promote deposition process in a completely different operating 

regime when compared to the native species. Nodular growth with poor bottom-up fill is 

observed with such byproducts 48-51.  

In order to to sustain the capability of the process and preserve the dynamics of 

gap fill mechanism with the parent species, the electrolyte needs to be frequently drained 
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to arrest the accumulation of excess byproducts. This frequent drainage and make up of 

new chemistry drives high consumption of the organic additives and poses a major cost 

challenge for IC substrate applications. To mitigate this scenario, it is important to have 

non-degrading additives or we need to effectively remove the degrading byproducts. 

Electrodeposition for IC substrate applications happens in reactor tanks with very 

large footprint.  The reactor includes a stationary plating bath with regular infeed of 

panels in horizontal / vertical fashion (VCP – Vertical Continuous Plater). Typical bath 

volume range anywhere from 1000L - 15000L based on the tank design. These large 

volume tanks were primarily designed in such fashion to enable high factory output with 

minimal cost. As discussed before, the accumulation of byproducts and their disruptive 

effect on the overall process capability negates any cost advantage originally realized 

with those large industrial footprints.  

Furthermore, high density substrate packages require both gap fill and uniform 

copper thickness on the patterned regions in a single manufacturing process step. 

Uniform deposition in patterned regions is usually attained by increasing the conductivity 

of the electrolyte. Reid et al 2,3 summarize that electrolytes with high sulfuric acid 

concentrations (>80g/L) are predominantly utilized for PCB (Printed Circuit Board) and 

damascene applications to mitigate electrolyte resistance effects on thickness distribution. 

With thick seed layers, (as the sheet resistance is reduced) any reduction in electrolyte 

resistance enabled with the introduction of high electrolyte conductivity tends to 

homogenize the electric field  and enable uniform deposition across isolated and dense 

patterned regions of the cathode. Ohmic drop in potential is significantly reduced with 
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increased electrolyte conductivity.  However, the capability of additives to generate 

bottom-up fill is severely compromised at those very high acid concentrations 3,21,.  High 

over-potentials generated due to the additive interaction is significantly reduced at high 

acid concentrations when compared to similar low acid concentrations.  As the high 

density substrate packages necessitate both gap fill and uniform deposition in patterned 

regions a high acid plating approach without any additive optimization is unlikely to 

work. There is always a compromise in gap fill performance (throwing power) Vs 

deposition uniformity in the two different acid regimes. Conversely, these two processes 

can be carried out independently in two separate plating baths with each chemistry tuned 

to target the desired fill capability / uniform FLS deposition requirements. Such efforts 

are least preferred, given the large plating tank footprint in the factory floor and added 

cost with dual processing.  Concentration of the Cu2+ ions in the electrolyte needs to be 

significantly reduced with large increase in sulfuric acid concentrations to prevent 

precipitation of the copper sulfate crystals in the electrolyte. With reduced Cu2+ ion 

concentrations in the electrolyte, concerns of plating reaction operating in a diffusion 

limitation regime is likely to occur and could limit the overall current density utilized to 

drive the plating reaction. In such cases, careful design of reactor geometry with strong 

agitation profile characteristics needs to happen to reduce the thickness of the boundary 

layer at the interface. Limitation of the overall current density conversely extends the 

total deposition time needed to achieve the target fill, leading to reduced factory outputs 

and additional cost.  
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Section 3.8 Alternative approaches from additive based via fill 

High density packages have fine patterned regions in the scale of 9µm to features as large 

as 77µm along with many large plane area regions. They are supported with underlying 

microvia’s usually with via opening size 20µm to 100µm and an aspect ratio of 0.5 to 

1.5. Enabling void-free gap fill and uniform FLS deposition in a single plating step is 

beneficial and key for these applications. With the additional capability required with the 

state of the art systems discussed thus far, concerted new approaches are needed to enable 

low cost electroplating process for substrate packages. For example, identification of new 

additive formulations that promotes bottom-up fill at high acid concentrations without 

compromising deposit uniformity is the easiest approach. Such approach enables single 

tank processing and guarantees the necessary process requirements for IC substrates. On 

the contrary, the risks of byproduct accumulation and their detrimental effect on fill still 

exist with such additive based approach.  

 

Section 3.9 Summary 

Clearly there is a strong need to identify a novel solution space where in the the 

formation of byproduct or the cycle of byproduct generation is systematically disrupted. 

Such an effort requires basic understanding of factors that cause creation of undesirable 

byproducts in a plating bath (to enable stability of the additive species).   With such 

capability electrolyte bath life can be extended for a longer time period and consumption 

of the additives can be significantly reduced. Alternatively, a much straightforward 

approach would be to enable bottom-up fill and uniform deposition in the absence of 
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additive species. In the absence of any byproducts generated in the electrolyte, concerns 

of byproduct effect on fill is eliminated with such approaches. The process operates in a 

stable state along the life of the bath.  However, the via fill capability still needs to be 

achieved with the incorporation of innovative methodologies / concepts. Alternative 

approach could include finding additional methods to augment the bottom-up fill 

mechanism for gap fill even in the presence of additive break downs. In tandem with 

organic additives, these additional process knobs could offset for reduced gap fill with the 

break down products and continue to show sustained high quality, reliable process. 

Chapter IV introduces one such approach utilizing reverse pulse plating methodology. In 

reverse pulse mode, the cathodic current is pulsed to enable bottom-up fill in the absence 

of any additives. Presence of additives could further augments this bottom-up fill 

mechanism.  In Chapter IV reverse pulse methodology is introduced.  The advantages 

and the mechanism of reverse pulse methodology for gap fill is further discussed. 
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CHAPTER IV 

REVERSE PULSE DEPOSITION METHODOLOGY AND PRESENT WORK 

This chapter focusses on the application of reverse pulse deposition process to achieve 

void-free via fill. The impact of reverse pulse current density and durations, the 

advantages of such process and the underlying mechanism are further elaborated blow. 

 

Section 4.0 Reverse pulse plating, introduction, advantages 

In electrodeposition, growth rate of copper is directly proportional to the applied plating 

current. In (Direct Current) DC plating mode, cathodic current is continuously fed while 

in pulsed or reverse pulse mode, the cathodic current is applied in short pulses1,6. The 

very first application of pulse plating for copper deposition is traced back to 19818 and 

extension of reverse pulse for through hole fill applications was observed in 19889. 

Further extension of reverse pulse to PCB applications has been shown by Kobayashi et 

al and Kenny et al 7,14 We have also investigated the extendibility of reverse pulse 

methodology for IC substrate applications as part of this thesis study.12 Reverse pulse 

plating has been shown to enable bottom-up fill in the absence of any additives for TSV 

applications20. Presence of additives could further improve the bottom-up fill process 11, 

14-26.  Surprisingly, the impact of forward-reverse pulses for bottom-up fill plating has 

been investigated only in very few literatures since its conception in early days. Primarily 

these efforts were driven by the work of West et al 2-4, Hayase and Kondo et al15-19 and 

Kim et al21-26. The effect of pulsed reverse current on the structure and hardness of 

copper deposits obtained from acidic electrolytes containing organic additives to enable 
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smaller grain size immediately post plating and grain refinement was shown by Pearson10 

and Hu et al13     

 

Section 4.1 Reverse pulse mechanism 

In the absence of any additives, local plating rate is directly proportional to local cuprous 

and cupric ion concentration inside the features. Under direct current plating conditions 

the bottom of the feature sees much lower concentration of the Cu2+ ions than the top due 

to diffusion limitation. Therefore, the average current density (deposition rate) at the top 

(iT) remains larger than that of via bottom (iB) leading to pinch off voids. This mechanism 

is very pertinent for IC substrate packages as the features have very large feature depths 

and plating reaction happens for an extended time periods (several minutes / hours) given 

the large via geometry. Enabling reverse pulse addresses this gap and helps to establish 

“gap fill”. The mechanism of reverse pulse methodology enabling gap fill inside the via 

in the absence of additives has been under investigation only recently with very few 

scientific studies to explore the mechanism thus far.  
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Figure 4.1: Schematic of forward, off current and reverse pulse waveform 

 

Section 4.1.1 Reverse pulse mechanism – Addition of “Off “ pulse 

As discussed before, for deposition reactions happening at high enough current density, 

the local plating rate inside feature is proportional to concentration of local Cu2+ ion 

concentration. During forward reaction, application of forward pulse (idep) for a duration 

of Tdep ,  the bottom of feature is likely to see lower concentration of Cu2+ species than the 

via top which has a higher Cu2+ concentration that are readily supplied from the bulk of 

the solution leading to pinch off voids. Plating at lower average current densities 

decreases this difference but still iB < iT remains. However, when an off time is enabled 

post a forward current as shown in the cartoon for a duration of Toff, there is no 

consumption of Cu2+ either at the top / bottom of the via during this off time period. 

However, during this offtime period (Toff) replenishment of the Cu2+ from the bulk 

solution to the via bottom region (which is starved of Cu2+) is likely to happen, mainly 

due to diffusion considerations. If the duration of offtime is set such that  Toff > tD
 where 

0
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off-time not 
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application

Reverse current

off current

plating current (forward)
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Tdis

Deposition
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tD is defined as required diffusion time of Cu2+ , then the via bottom will be replenished 

back with enough Cu2+ and can continue electrodeposition such that it is no longer 

diffusion limited. This simple incorporation of an off time would allow the sidewall of 

the via bottom to now plate at the same rate as sidewall of the via top which enables a 

maximum throwing power of 1.  A schematic of the above discussion in off-pulse mode 

is shown in Figure 4.2.  However, the choice of “off-time” poses certain constraints. The 

maximum throwing power with an off time induced process cannot be greater than 1. 

Furthermore, the duration of the off time process needs to be such that it is much higher 

than the time needed for diffusion to the via bottom such that those regions are not Cu2+ 

starved (Toff needs to be greater than tD) . Normally, this diffusion time is directly 

proportional to the length of diffusion which in our case translates to the depth of the via. 

In the absence of strong additives, it is mainly the large relaxation time (diffusion time) 

needed for the ions to reach the bottom of via. As an example, a feature that has a depth 

of ~25µm likely has a diffusion time (tD) that is order of a few second as shown in Table 

4.1. 

 

Table 4.1: Estimation of diffusion time with ~5.3ASD (A/dm2 or Ampere per Square 
Decimeter) deposition for Via0 feature geometry 

 

 Ion D (cm2/s) h (cm) = depth tD (s) 

Cu2+ 7.2E-06 0.0025 0.87 
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For a feature that has a depth of ~70µm this duration is likely much longer.  Therefore, a 

frequent interruption in the deposition process happens with an off-time induced 

methodology and this in-turn extends the overall process time and limits the factory 

output and adds overhead cost. 

In summary, incorporation of an off pulse helps to improve throwing power but 

other limitations persist. Optimal fill results (max iB/iT) can only be obtained when the 

pulse durations match diffusion time which are determined based on feature depth, 

meaning  TFWD = TOFF ~ tD. Careful considerations of other critical parameters such as 

agitation, choice of bulk concentration of copper, operating current density all play a 

significant role in the appropriate choice of the off-time duration to prevent diffusion 

limited deposition at the via bottom.   If TFWD is much larger than tD, most of the 

deposition at the via bottom happens in a depleted Cu2+ ion state as shown on the left 

cartoon on Figure 4.2. This condition leads to smaller iB/iT ratio (throwing power) that 

eventually leads to voids.  If TOFF is too short, bottom of feature is not replenished with 

adequate Cu2+ ions and leads to void entrapment as well. 
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Figure 4.2: Schematic to explain via fill with an incorporation of off pulse during 
deposition 

 
 

Section 4.1.2 Reverse pulse mechanism – Addition of “Reverse” pulse 

As explained earlier, during forward reaction when the application of forward pulse (idep) 

happens for a duration of Tdep ,  the bottom of feature is likely to see lower concentration 

of Cu2+ species than the via top which has a higher Cu2+ concentration that are readily 

supplied from the bulk of the solution leading to pinch off voids. In order to take 

throwing power >>1 and eliminate the constraint of dependence on tD, incorporation of 

reverse pulse into a forward waveform is proposed.  When a reverse pulse for a duration 

of TREV is enabled post a forward pulsed current as shown in the Figure 4.1 for a duration 

of TREV, there are multiple mechanisms that happens in parallel as shown in Figure 4.3. 
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Figure 4.3: Schematic to explain via fill with an incorporation of Reverse pulse 
during deposition 

 

To begin with, there is no consumption of Cu2+ either at the top / bottom of the via during 

the reverse pulse duration. Secondly and more importantly, during this reverse pulse 

duration (TREV) there is more spatially uniform dissolution of Cu2+ ions on the via walls. 

This replenishment of Cu2+ happens uniformly inside the via region due to the dissolution 

from the freshly deposited metal that just happened during the forward pulse duration.   

Due to this replenishment, we now have more uniform Cu2+ gradient along both 

the via top and bottom region which in turn allows both these regions to operate away 

from a diffusion limited regime. If the forward current density and duration of the 

forward pulse is carefully chosen such that via bottom is not completely deprived of Cu2+ 

ions during forward deposition, an introduction of reverse waveform at this stage with a 

carefully devised reverse current density and reverse pulse duration could adequately 

replenish the via bottom region with Cu2+ ions enabling the via bottom and sidewall 
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regions to plate at the same rate as via top region. As discussed before, for IC substrate 

applications, the diameter of the via opening is always larger at the via top than at the via 

bottom due to the inherent nature of the LASER drill process that enables these 

geometries. For such geometry, a uniform plating on the sidewall could be enough to 

prevent the propensity of pinch-off voids or side wall collusion at the top of the via 

before the via bottom fill ups that could eventually lead to void entrapment. The 

advantage of reverse pule methodology over an “off-time” process is in that the duration 

of reverse pulse can be set such that TREV can be << tD
  and the via bottom could still be 

adequately replenished with Cu2+ ions to prevent pinch off at the via top. 

Recently Hayashi et al 16,18,19 also reported that reverse pulse enables differential 

distribution of Cu1+ at the top and bottom of via which enables the via bottom region to 

plate at a much faster rate than the via top leading to very high throwing power for 

through mask applications.  We had discussed earlier that Cu2+ reduction to Cu metal is a 

two-step process with the formation of Cu1+ intermediate.  In order to establish a higher 

throwing power, Hayashi argues that reverse pulse plating enables a differential 

distribution of Cu1+ inside the via region. During the application of the reverse pulse 

waveform which immediately follows a forward pulse deposition step as show Figure 

4.1, dissolution of Cu from the metal surface is likely to happen generating excess Cu1+ 

species rather than Cu2+ species.  Hayashi et al16,18,19 explains and validates that the 

concentration of this excess Cu1+ generated during reverse pulse is much more at the via 

bottom than via top.  
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In order to develop a reverse pulse methodology for bottom-up via fill and to 

electrodeposit copper, other plating process parameters needs to be carefully designed 

and optimized and their operating window needs to be taken into consideration to ensure 

a capable deposition process. We will briefly look into the some of those considerations 

now. 

 

Section 4.2 Considerations with reverse pulse waveform - mass transfer 

limitation (Cu2+ Concentration) 

Incorporation of Reverse Pulse waveform enables the plating process to happen at a 

much higher overall deposition rates than with traditional forward current only deposition 

process. In the choice of this waveform, adequate care must be taken with reactor and 

process design such that the system operates far away from diffusion limited current 

density.  Namely, the the proximity of iAVG (the average current density accounting for 

the forward and reverse condition) to the mass transport limiting current density (iL) for a 

given system needs to be avoided. Feature length scales and reactor design and the 

electrolyte concentration determine the functionality. For example, IC substrates are 

comprised of relatively large features (20µm to 100µm depth) with an aspect ratio of 0.5 

to 1.5. Gap fill of such large geometry require plating time scales in the range of several 

minutes to few hours. With large feature depth and increased deposition times, mass 

transfer transfer limitation of cupric ions can occur and constrain the deposition process.  

For example, throwing power inside the feature is calculated as a ratio of the deposition 

rate at bottom (iB) to deposition rate at top (iT).  For Cu2+ reduction, this is calculated as, 
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throwing power (iB / iT). The magnitude of this ratio is also a function of the average 

applied current density iapp on the cathode.  Therefore, we can indicate the throwing 

power (iB/iT) as function of limiting current density function (iapp/iL).  The larger the iapp/iL 

ratio, the more likely the feature is depleted of Cu2+ ions at via bottom. Therefore, smaller 

the throwing power (iB / iT). The relation of mass transport limited current density to bulk 

Cu2+ concentration is given by the Levich equation5,  

7W  =  �. q���M7
�
'r7

,
�s7

t,
q 
          (4.1) 

Where, iL is the Levich current density (mass transport limited current density), n is the 

number of moles of electrons, F is the faraday’s constant, D is the diffusion coefficient, ω 

is the angular rotation rate of the electrode, ϑ is the kinematic viscosity and C is the bulk 

concentration of the Cu2+ ions. Therefore, as the bulk concentration of copper is 

increased, the magnitude of mass transport limited current density also gets larger.  At 

large Cu2+ bulk concentrations with same applied current density (iapp), the ratio of iapp/iL 

is now reduced indicating a better margin for throwing power (iB / iT). Even though iB / iT 

cannot be increased to >1 with increase in just copper electrolyte concentration without 

the addition of additives or reverse pulse, such transition is likely to buy more margin and 

enable the system to operate  in a more benign regime with throwing power ~1.  

Therefore, large Cu2+ bulk concentrations enables less Cu2+ depletion inside the via and 

smaller propensity of voids. The mechanism discussed above was numerically simulated 

and verified by West et al3,4 to correlate throwing power to the ratio of iapp/iL for various 

diffusion length scales. Therefore, careful consideration of agitation profile, electrolyte 

flow, and electrolyte concentration needs to happen to ensure there is adequate supply of 
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bulk concentration of Cu2+ ions to drive the reduction reaction at via bottom.  Previous 

studies have already shown that low Cu2+ ionic concentration in the electrolyte and poor 

agitation are likely to impact gap fill even with DC plating process1.  Plating at lower 

current densities can alleviate some of this difference but still iB < iT condition is likely to 

persist even in those cases.  

 

Section 4.3 Considerations with reverse pulse waveform - flash plating 

The incoming surface layer is a thin layer of copper seed. Prior to the application of the 

reverse pulse this seed layer needs to be protected such that the thickness of the seed 

layer is increased and seed dissolution during the early stage of deposition is prevented.  

Seed dissolution during early stages of deposition will prevent electrical 

continuity along the via surface and pose other unintended risks and challenges to the via 

fill process.  Copper dissolution on the cathode surface will occur during reverse pulse 

time periods. Therefore, seed dissolution can also occur early in the plating process when 

operating under strong reverse pulse plating conditions. Utilization of strong pulse 

amplitudes early in the deposition stage can exaggerate the dissolution behavior leading 

to excessive seed dissolution and discontinuity of the deposition process. Therefore, a 

flash plating step with direct current or reduced reverse charges is always performed 

before the introduction of a strong reverse pulse early in the process to increase the 

thickness of the incoming seed layer. Separately, when reverse pulse deposition happens 

in the presence of additives, careful consideration of anode material, anode and reactor 
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geometry, bath temperature needs to happen to protect against any detrimental effect of 

byproduct formation.     

 

Section 4.4 Considerations with reverse pulse waveform - momentum plating 

As discussed earlier, high throwing power could be established with the reverse pulse 

plating process during the reverse charge periods. IC substrates have large via sizes that 

require a strong reverse pulse waveform with high reverse charge to enable bottom-up 

fill. In the absence of strong leveler or other additive species to arrest the accelerated 

growth of copper, bottom-up fill process is likely to continue uncontrollably leading to a 

phenomenon termed as “momentum plating”. Momentum plating is likely to cause non-

uniform metal deposit across finely patterned regions. Given the need of uniform FLS 

deposition in conjunction with gap fill, optimization of reverse pulse waveform to arrest 

momentum plating and enabling uniform deposition is necessary.  

 

Section 4.5 Summary 

In summary, given the advantage of a large throwing power and the ability to generate a 

bottom-up via fill, reverse pulse methodology seems to be an attractive approach for IC 

substrate applications. Incorporation of reverse pulse duration on the order of 

milliseconds to a process that operates for few minutes / hours should have minimal 

impact to the overall process duration that otherwise happen with forward current 

deposition only.  Furthermore, this methodology could also be extended to various via 

sizes and aspect ratios, a key element of IC substrate stack-up.  In the following chapter 
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(chapter V) we will discuss how a how a test coupon is fabricated for this study. Chapter 

V will further discuss the methodology and preparation of IC substrate samples with 

various via geometries for this study. Discussion of the experimental set up conditions 

that are utilized for the application of reverse pulse methodology along with the design of 

experiments that was planned and executed to evaluate the gap fill behavior is discussed. 

 

REFERENCES 

1. J. Reid in Handbook of semiconductor manufacturing technology, R. Doering, Y. 
Nishi, CRC Press: Boca Raton, 2nd Edition, (2008) 
 

2. M. S. Chandrasekar, M. Pushpavanam, Electrochimica Acta, 53 (8), 3313-3322 
(2008) 

 
3. A. C. West, Journal of The Electrochemical Society, 145 (9), 3070 (1998) 

 
4. J. M. Lee, A.C. West, Journal of The Electrochemical Society, 152 (10), C645 

(2005) 
 

5. A. J. Bard, L. Faulkner, Electrochemical Methods: Fundamentals and 
applications, Wiley Student Ed, 2nd Edition, (2001) 

 
6. J. J. Sun, K. Kondo, T. Okamura, S. Oh, M. Tomisaka, H. Yonemura, M. Hoshino 

and K. Takahashi, Journal of The Electrochemical Society, 150(6), G355 (2003) 
 

7. T. Kobayashi, J. Kawasaki, K. Mihara, and H. Honma, Electrochimica Acta, 
47(1–2), 85 (2001) 

 
8. Electrolytic metal deposition with the pulse plating process, Wire, 31 (6), 277 

(1981) 
 

9. G. Holmbom, B. E. Jacobsson, Surface and Coatings Technology, 35 (3-4), 333-
341, (1988) 

 
10. T. Pearson, J.K. Dennis, Surface and Coatings Technology, 42  (1), 69-79

 (1990) 
 



 

  88 

11. T. Pearson, J.K. Dennis, Journal of Applied Electrochemistry, 20 (2), 196-208 
(1990) 

 
12. K. Ganesan, IEEE 67th Electronic Components and Technology Conference 

(2017) 
 

13. C.C. Hu, C. -M. Wu, Surface and Coatings Technology,  176 (1), 75-83 (2003) 
 

14. S. Kenny, B. Reents, J. Zosel, Printed Circuit Design and Manufacture, 22 (1), 
22-29 (2005) 

 
15. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, D. 

Barkey, Journal of the Electrochemical Society, 152 (11), H173-H177 (2005) 
 

16. M. Hayase, M. Nagao, Journal of the Electrochemical Society, 156 (6), D198-
D203 (2009) 

 
17. K. Kondo, N. Taichi, O. Naoki, J Appl Electrochem, 39, 1789–1795  (2009) 

 
18. M. Hayase, K. Otsubo, Journal of the Electrochemical Society, 157 12, D628-

D632 (2010) 
 

19. M. Hayase, M. Nagao, Journal of the Electrochemical Society, 160 12, D3216-20 
(2013) 

 
20. Q.S. Zhu, A. Toda, Y. Zhang, T. Itoh, R. Maeda, Journal of the Electrochemical 

Society, 161 (5), D263-D268 (2014) 
 

21. S.K. Cho, J. J. Kim, Journal of The Electrochemical Society, 153 (12), C822-
C825 (2006) 

 
22. M. J. Kim, S. K. Cho, H.-C. Koo, T. Lim, K. J. Park, and J. J. Kim, Journal of The 

Electrochemical Society, 157, D564 (2010) 
 

23. M. J. Kim, T. Lim, K. J. Park, S. K. Cho, S.-K. Kim, and J. J. Kim, Journal of The 
Electrochemical Society, 159, D538 (2012) 
 

24. M. J. Kim, T. Lim, K. J. Park, O. J. Kwon, S.-K. Kim, and J. J. Kim, Journal of 
The Electrochemical Society, 159, D544 (2012) 
 

25. M. J. Kim, T. Lim, K. J. Park, O. J. Kwon, S.-K. Kim, and J. J. Kim, Journal of 
The Electrochemical Society, 160 (12) D3081-D3087 (2013)   

 



 

  89 

26. M. J. Kim, T. Lim, K. J. Park, O. J. Kwon, S.-K. Kim, and J. J. Kim, Journal of 
The Electrochemical Society, 160 (12) D3088-D3092 (2013)   
  

  



 

  90 

CHAPTER V 

EXPERIMENTAL SETUP AND DETAILS 

 

Section 5.0 Design of test coupons 

A test coupon as shown in Figure 5.1 was generated utilizing a standard process flow 

well known for packaging substrate architectures1. A roughened blanket Copper Clad 

Film (CCL) after sonication in deionized water was utilized as a base layer and a layer of 

dielectric film was laminated on top. The film was subsequently cured post lamination. 

Desired via opening inside the dielectric film was then established with a LASER drill 

process.  

  

Figure 5.1: Schematic of test coupon with electrodeposited copper along with a 
patterned resist film and an underlying via stack. 
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Post roughening and cleaning of via surface, an electroless copper seed layer with an 

average seed thickness of 0.7µm ~1.0µm was then deposited. After annealing the Cu seed 

and a mild acid clean, a dry photoresist film (DFR) was laminated. The photoresist film 

was then exposed and developed to establish the fine line pattern circuitry. These DFR 

and LASER defined coupons were then utilized for plating evaluation. Prior to copper 

deposition, exposed copper density post patterning was verified to be in the range of 

~40% for the bottom stack layer and ~70% for the subsequent top metal layers. A 

thorough plasma clean inside an oxygen chamber and an acid clean in 10% sulfuric acid 

was always performed before each plating experiment. The process flow utilized in 

generation of the test coupon for each of the experiments is shown in Figure 5.2.   
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Figure 5.2: Process flow for test coupon generation 
 

 

Some of the process steps were looped as shown in Figure 5.2 to establish additional 

layer of interest to generate a stacked via.  

 

Section 5.1 Discussion of via geometries and pattern features for this study 

Table 1 summarizes via geometries and line space dimensions studied of each layer with 

the test coupon. The bottom via layer generated on the copper clad layer is referred to as 

via0 or V0 and the corresponding bottom metal stack layer is referred as Layer1 (white 

Loop

Copper Clad Layer

DI sonication + Roughening

Dielectric Film + Oven

LASER Drill
(Via formation)

Desmear + Electroless Cu Seed
+ Anneal + Acid clean

Patterning + Plasma clean
(Dry Film Lamination + Exposure + 

Developer)

Electrodeposition + resist  and seed 
removal + Anneal and roughening
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colored features shown in Figure 5.1). The via dimensions for this layer are captured in 

Table 5.1  For example, plating process happens to fill both Via0 and uniformly deposit 

patterned regions of Layer1. Although the final package included a four layer stack, in 

order to develop a capable gap fill process for each layer and for quick turnaround of 

results, short loop process flows were created to study Layer 2 through Layer 4. Each 

substrate layer has different via geometries and the electrodeposition process for each of 

those geometries was studied independently.  In the creation of short process flows, via 

geometry of the required layer and their pattern was created rather than building a full 

stack till that layer. Table 5.1 summarizes via geometries and FLS (Fine Line Space) 

dimensions studied of each layer with the test coupon. 

 

Table 5.1: Summary of via dimension and FLS structures with the test coupon 

 
 

 
Section 5.2 Experimental setup: reactor setup 

Figure 5.3 shows a simplified schematic of electroplating cell utilized for the study. The 

electrolyte solution was made by dissolving copper sulfate pentahydrate crystals in a 

Plating Summary
Via bottom 

diameter
Via Depth FLS widths studied

V0 / Layer 1 25µm 25 -30µm 9µm, 13µm, 77µm, Planes

V1 / Layer 2 50µm 25µm 9µm, 13µm, 77µm, Planes

V2 / Layer 3 50µm 25µm 9µm, 13µm, 77µm, Planes

V5 / Layer 4 75µm 65µm 13µm, 77µm, Planes
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sulfuric acid solution to generate an initial inorganic concentration of 25g/l Cu2+, 80g/l 

H2SO4 and 50ppm chloride and 1g/l Fe3+. Oxidation of Fe3+ to Fe2+ as shown in Figure 

5.2 was utilized as the anodic reaction. Hydrochloric acid was utilized as the source of 

chloride ions. All plated experiments were performed at modification of these 

concentrations that would be stated during the discussion of those results. Early in the 

study, Cu2+ concentration was targeted at 25g/l and 50 g/l that was later increased to 65g/l 

to eliminate diffusion barriers for void-free fill. 65g/l is the highest concentration of Cu2+ 

that can be reached with the existing electrolyte set up as any further increase caused 

precipitation of copper.  Experiments performed with Cu2+ concentration of 25g/l are 

annotated carefully as required. Sodium Chloride crystals were utilized for the 

replenishment of the chloride component in the bath. Bath compositions were closely 

monitored and kept within <1% deviation of the target values. Electrodeposition was 

performed with a commercially available plating equipment. All plating experiments 

were performed at Intel Corporation, Chandler, AZ fab facility. A commercial Fe2+/ Fe3+ 

redox reagent and regenerator was utilized for driving the anodic reaction and keeping 

the ionic concentration of ferric ions in check. Concentration of ferric ions generated 

during the plating process was frequently monitored to keep the total conc. of ions to a 

minimum (<1.0g/l). Fe3+ concentration was initially targeted at 1g/l.  Specific 

concentrations utilized for each of those experiments will be stated as needed.  

Commercially available organic additives, purchased from Atotech Inc., namely SMP 

Inpulse Leveller and SMP Inpulse Brightener were also added to the plating bath. The 

consumption and target concentration of these species were closely monitored and kept 
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within the operating window.  Exact molecular structure and details of this chemistry is 

proprietary to the supplier and unknown for this study. The nomenclature of these 

commercial species can be confusing to the reader since we discussed the role of 

accelerator and suppressor molecules in the introductory part of the chapter. This 

confusion will be easily clarified in the later part of the discussion during the discussion 

on results from various experimental and simulation studies.  Some of those results would 

duly confirm that the overall behavior of these commercial species would closely match 

that of some of the generic species of accelerator and suppressor discussed earlier. 

Henceforth in the rest of the discussion these species would be termed as accelerator and 

suppressor only.  For the initial part of the study, the accelerator species was targeted at 

12ml/l and the suppressor was targeted at 16ml/l. Thus, the net ratio of the species was 

maintained at 0.75. Any change in target concentration or change from this nominal ratio 

that was later optimized to further improve the fill process will be clearly stated during 

the discussion of those results. Nominal temperature of the plating bath was maintained at 

36°C. Initially, depositions with high copper concentration was performed at 48°C. 

Specific temperature carried out for each experimented will be clearly annotated.  
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Figure 5.3:  Schematic of the plating cell 
 

For all plating experiments, the thickness of the incoming copper seed was further 

increased with a flash plating process in the same plating bath where rest of the plating 

process happens. This was done to prevent any increase in resistivity due to seed loss or 

discontinuity in the early stages of plating from the application of reverse waveform, acid 

etch or Fe2+/Fe3+ redox couple present in the electrolyte. Flash plating was performed for 

450s – 750s as required for a given via feature. Adequate circulation and strong agitation 

were performed to ensure complete mixing of the electrolyte and elimination of any dead 
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zones inside the reactor. Post deposition, the copper surface was annealed before any 

metrology measurements.  In all cases, thickness measurements and void analysis were 

performed with an in-house profilometer (VEECO) or with SEM (Hitachi), wherever 

applicable. 3D X-ray (X-Raida) techniques were utilized to verify elimination of trapped 

voids. Materials characterization utilizing SEM, were performed both at Intel Corporation 

and at Arizona State University, Tempe AZ. 

 

Section 5.3 Experimental setup: Choice of reverse pulse plating waveform 

A schematic of reverse pulse waveform utilized in this study is shown in Figure 5.4. i1 & 

i2 marked on the Y-scale are the forward and reverse pulse current density amplitudes and 

T1 & T2* are the corresponding time periods for those amplitudes. Time duration Ttotal of 

the waveform that equals T1+T2 is the length of the total waveform and is always in the 

range of 80ms to 100ms. This waveform was then repeated for the established plating 

period to achieve the required fill. Average current density for each waveform is calculated 

as A0 = [(i1×T1)-(i2×T2)]/Ttotal, and could vary anywhere between 2ASD to 5ASD (A/dm2).  



 

  98 

 

Figure 5.4: Schematic of forward-reverse pulse waveform 
 

In this study, the amplitude of reverse pulse current and time period were varied 

independently to establish a stronger reverse pulse effects.  To begin with, three different 

reverse pulse waveforms were utilized for our testing initially as shown below.  The 

parameters of various reverse pulse waveforms are summarized in Table 5.2. 
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  Table 5.2: Summary of reverse pulse waveforms utilized in this study 

 
 

As shown in Table 5.2, pulse waveform #1 with a reverse current density of 10ASD is 

considered a soft pulse. Pulse waveform # 2 with a reverse current density of 40ASD is 

indicated as a hard / strong pulse waveform and pulse waveform #3 with reverse current 

density of 24ASD as an intermediate waveform. These soft, intermediate and strong 

reverse pulse cover the entire spectrum of reverse pulse duration and current possible for 

testing with the current equipment set up. For all waveforms, reverse current were 

included only for a very short time period (few millisecond). Layout of the different 

reverse pulse waveform that were tested initially is shown in Figure 5.5 below. 

Average 

Current density 

and Time period

Reverse 

Current density 

and Time period

Forward 

Current density 

and Time period

itotal

(A/dm2)
Ttotal

(s)
i2

(A/dm2)
T2

(s)
i1

(A/dm2)
T1

(s)

Pulse Waveform # 1 5.0 0.08 10 0.002 5.3 0.078

Pulse Waveform # 2 3.4 0.08 40 0.004 5.7 0.076

Pulse Waveform # 3 5.0 0.08 24 0.004 6.5 0.076

Pulse Waveform # 4 5.0 0.08 24 0.002 5.75 0.076
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Figure 5.5: Schematic of different pulse waveforms experimented 
 

 

Section 5.4 Summary 

So far we discussed the construction of test coupon with various via geometry and fine 

pattern features for IC substrate applications. Each via geometry requires a unique 

approach to establish a gap fill methodology along with generation of uniform deposit on 

pattern regions. Earlier in chapter II, we had discussed that the distribution of an 

electroplated deposit depends upon which transport phenomenon controls the plating rate. 

Therefore, we need to consider the overall electrical and chemistry effects present inside 

the system to determine which transport mechanism dominates the distribution of copper 

inside via region. Ohmic resistance of the metal film leads to variations of potentials in 

the film while solution resistance leads to variations of potential in the plating solution. In 

the presence of a thin conductive seed layer, charge transfer resistance cannot be ignored 

either.  These effects are termed electrical effects and the “Butler–Volmer” equation 
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simplifies accordingly based on the given rate limiting parameter as shown in Figure 5.6 

(left side of the flow chart).   

 

Figure 5.6: Flow chart to show simplification of “Butler-Volmer” equation with 
electrical and chemistry effects 

 

Alternatively, mass-transfer effects leads to variations in concentration of cupric ion and 

other additive species present in the electrolyte. Domination of such effects across the 

metal surface is termed, chemistry effects as shown in Figure 5.6 (right side of the flow 

chart).  Generally, non-uniform reaction rates are caused by either inadequate mixing so 

that reactant concentrations are not uniform (convection effect), or by spatial variations in 

the electrical-potential difference across the electrode/electrolyte interface or due to 

concentration gradient (diffusion). Due to the large concentration of acid present in the 

electrolyte, migration effects are negligible. For the purpose of enabling void free via fill, 

the true diffusion effect on the gap fill process needs to be understood. Convection effects 

play an equally important role as well. When diffusion and chemistry effects dominates 

the fill process, the deposition current density determined from “Butler-Volmer” equation 
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simplifies to a proportional limit of kinetic rate constant, concentration gradient and 

availability of active surface sites for the reduction process to happen as shown in Figure 

5.7. Several factors can influence the parameters in these equations and optimizing of 

such parameters can facilitate bottom-up fill. For example, as shown in Figure 5.7, 

increased temperature can offset for depletion of Cu2+ ions at the via bottom due to the 

increased mobility of ions at higher temperature and improve bottom fill rate. 

 

 

Figure 5.7: Key parameters to modulate “chemistry effects” with simplified 
“Butler-Volmer” relationship 

 

Incorporation of reverse pulse methodology establishes additional amount of Cu2+ ions 

from the freshly dissolved metal due to the application of reverse pulse. Reduction in the 

overall deposition rate leads to slow depletion of Cu2+ ions which in turn allows for 

diffusing Cu2+ ions to play catch-up with the fill process preventing depletion. 

Incorporation of additives selectively blocks surface sites at the via top and enables 
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bottom-up fill.  Therefore, a capable deposition process can be established utilizing each 

of these available parameters for IC substrate fill applications.  

Earlier in this chapter, we have identified several reverse pulse waveforms that 

could be extensively applied to optimize gap fill for various via geometries. A design of 

experiments was henceforth set-up to study the capability of these reverse pulse 

methodology for void free fill in IC substrate via geometries. Early into development of 

reverse pulse process we ran into several challenges that are not normally seen with DC 

(direct current) plating process. Experimental studies with the incorporation of reverse 

pulse methodology for Via0 and Via1 geometry along with the optimization efforts to 

enable void free fill is captured in Chapter VI. 

In order to best explain the experimental limitations observed with reverse pulse 

methodology and to better predict throwing power that can be obtained with reverse pulse 

process for these via geometries a simulation effort was undertaken. Simulation set up 

and the results from simulation studies are captured in Chapter VII. 

  Chapter VIII covers the microstructure obtained with reverse pulse 

methodology. In this part of the study, we showcase the ability to tune microstructure 

with the application of reverse pulse waveform along with other identified process 

conditions from the relationship in Figure 5.7, such as bath temperature and electrolyte 

concentration.  

While extending the reverse pulse process from Via0 to Via5 we ran into 

additional challenges of enabling void free gap fill due to the presence glass cloth fiber 

protrusions inside the via that impede bottom-up fill. A comprehensive DOE was then 
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established to encompass the interaction of all possible process parameters including 

organic additives based on the relationship identified in Figure 5.7 to improve TP and 

enable void free fill. Learning’s from such studies are shown in Chapter IX and X. 

Finally a simulation effort was undertaken to identify the extent of TP improvement that 

can be obtained with organic additives along with reverse pulse and the results from those 

simulation studies are shown in Chapter XI.  

Experimental results from the the application of reverse pulse methodology for 

via0 and Via1 geometries is now discussed further.  
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CHAPTER VI 

REVERSE PULSE METHODOLOGY FOR VOID-FREE FILL ACROSS VIA0 AND 

VIA1 GEOMETRY 

 

Section 6.0 Introduction to via0 and via1 geometry 

Via0 geometry includes a via with a depth of ~25µm. The via top and bottom diameter 

can vary slightly due to the variation with the drilling process but normally the via 

bottom diameter ranges around ~20µm and via top diameter around ~40µm. Via1 

geometry accommodates similar depth but the via opening size is larger with the bottom 

diameter around 50~55µm and via top opening to be much larger (~70µm). Due to the 

presence of large opening area inside the via that requires  gap fill of copper, 

electrodeposition with much higher deposition rate (current density) are desired to reduce 

the total time for deposition and increase factory output. To enable high deposition rates, 

electrodeposition process conditions such as electrolyte composition, bath temperature, 

deposition waveform needs to be designed carefully. The distribution of Cu metal 

utilizing an electrodeposition process depends upon which transport phenomenon 

controls the net deposition rate. We need to consider the overall ohmic and mass transfer 

effects present inside the system to determine which transport mechanism dominates the 

distribution of copper inside the via region. Ohmic resistance of the metal film leads to 

variations of potentials in the film, and solution resistance leads to variations of potential 

in the plating solution. Mass-transfer effects lead to variations in concentration of cupric 

ion and additive species across the metal surface. High deposition rates lead to mass 
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transfer limitation that eventually could lead to the via bottom deprived of any Cu2+ ions 

for deposition while the via top plating at a higher deposition rate due to the easy supply 

of Cu2+ ions from the bulk. This phenomenon leads to entrapment of voids.  In order to 

improve the deposition rate at the via bottom and establish high throwing power 

(increased deposition rate at the via bottom compared to via top) definition of novel 

methodologies are needed. In this section, incorporation of a novel reverse pulse 

methodology is attempted to gap fill Via0 and Via1 geometry. Experimental results 

obtained with Via0 geometry is discussed first followed by the experimental results 

obtained with Via1 geometry.  

 

Section 6.1 Design of experiments with via0 geometry for gap fill 

Table 6.1 summarizes the eight different experiments that were performed to enable void-

free bottom-up fill with the incorporation of reverse pulse methodology for via0 

geometry. For all plating experiments, the thickness of the incoming copper seed was 

further increased with a flash plating process in the same plating bath where rest of the 

plating process happens. This was done to prevent any increase in resistivity due to seed 

loss or discontinuity in the early stages of plating from the application of reverse 

waveform, acid etch or Fe2+/Fe3+ redox couple present in the electrolyte. Flash plating 

was performed for 450s – 750s as required for a given via feature.  Key electrodeposition 

parameters are tabulated for each of those experiments. Fill and deposit results obtained 

with these experiments will be discussed further below.  
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Table 6.1: Design of experiments for Via0 geometry 

  
 
 

Section 6.2 Results and discussion with via0 geometry for gap fill 

Figure 6.1a shows a SEM cross-section of an incoming via surface covered with a copper 

seed layer.  The depth of the via was measured to be around 24.11µm and the via top 

diameter was measured to be 34.12 µm while the via bottom diameter was measured to 

be 17.12 µm. The coverage of the seed layer was found to be continuous and uniform 

along the length of the via with the thickness of the copper seed to be measured around 

~1um.  Henceforth, the via of this geometry will be referred to as via0 or V0 and will the 

focus for further discussion below.  

Figure 6.1b shows the SEM cross-section of a Via0 after flash copper deposition 

(Expt #2). Flash plating is always performed because of concerns of seed dissolution 

during early part of the process.  Flash plating of this layer was performed for a duration 

Steps Parameters
Expt

1

Expt

2

Expt

3

Expt

4

Expt

5

Expt

6

Expt

7

Expt

8

F
la

sh
 C

u

Cu2+ (g/l) 25 25 25 25 65 65 65 65

Temp © 36 36 36 36 36 36 36 36

Pump Agitation (Hz) 15 15 15 15 15 30 30 30

Reverse Pulse CD 10 10 10 10 10 10 10 10

Reverse Pulse Duration (ms) 2 2 2 2 2 2 2 2

Forward Pulse Duration (ms) 78 78 78 78 78 78 78 78

Reverse Pulse Waveform ID 1 1 1 1 1 1 1 1

Total Duration (s) 450 450 450 450 450 450 450 450

V
ia

 F
il

l

Cu2+ (g/l) 25 25 25 65 65 65 65

Temp © 36 36 36 36 36 36 36

Pump Agitation (Hz) 15 15 15 15 15 15 30

Reverse Pulse CD 10 24 24 24 24 40 10

Reverse Pulse Duration (ms) 2 2 4 4 4 4 2

Forward Pulse Duration (ms) 78 78 76 76 76 76 78

Reverse Pulse Waveform ID 1 4 3 3 3 2 1

Total Duration (s) 1000 450 450 450 450 450 1000
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of 450s utilizing reverse pulse waveform #1 with the concentration of the Cu2+ ion 

maintained at 25g/l, 36°C. The pump agitation was controlled at 15Hz that corresponds to 

a flow rate of ~130LPM. Overall, the thickness of the deposit looks continuous with the 

thickness of the deposit measured at the via top region at ~2X higher than at via bottom. 

 
 

Figure 6.1: a) Incoming copper seed layer: Via depth of ~25um and via bottom 
opening of ~20um and b) POST Flash Cu deposition (25g/l of Cu2+ for a duration 

of 450s, 36°C, 15Hz of Pump frequency) 
 

Figure 6.2 shows the gap fill profile from Expt #3 that was performed with reverse pulse 

waveform #1 for a duration of 1000s post flash Cu plating. Presence of key-hole voids 

confirms the lack of gap fill. The thickness of the deposit at via bottom region is reduced 

than at the via top region likely leading to sidewall collusion at the via top and 

entrapment of voids. It is to be noted that a small amount of organic additives were added 

in the electrolyte, as discussed in Chapter V to generate a bright deposit. Unsurprisingly, 

trace amount of organics added in the electrolyte did not show any positive impact on the 

via fill process confirming their reduced impact in the fill process so far. 
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Figure 6.2: SEM Cross-section of Via0 post complete deposition with reverse 

pulse waveform #1 (25g/l of Cu2+ for a duration of 1000s, 36°C, 15Hz of Pump 

frequency) 

  

Section 6.2.1 Results: Effect of copper concentration for via0 

In experiments #2, #3, #4 the reverse pulse duration and current density was varied 

independently during via fill process. Surprisingly, when the magnitude of reverse 

current density was increased to larger values to increase the concentration of local Cu2+ 

ion at via bottom, no change in fill profile was observed. Figure 6.3 shows SEM cross-

section after complete deposit with higher reverse pulse current density and durations.  
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Figure 6.3: SEM Cross-section of Via0 post complete deposition with the 
following conditions: a) Post Via fill (1000s, 8ASD, 2ms [Reverse pulse # 1], b) 
POST Via fill (450s, 24ASD, 2ms [Reverse pulse # 4], c) POST Via fill (450s, 

24ASD, 4ms [Reverse pulse # 3] 
 

In all cases pinch off and key hold voids were observed. As shown in Figure 6.3a & 6.3b 

even after significant increase in reverse pulse current density from 10ASD to 24ASD 

there was no impact in throwing power with the top of the via still plating at a 

significantly higher rate.  As shown in Figure 6.3b & 6.3C increasing the reverse pulse 

duration from 2ms to 4ms at a reverse current density of 24ASD also did not generate 

adequate bottom-up fill. In all these cases, thickness of via sidewalls at the top of via 

seems to be much higher than the bottom region of the via indicating poor bottom-up fill.   

This behavior can be likely attributed to the applied current operating near the 

diffusion limited current density. Under mass transfer limitations, excess Cu2+ ions 

generated with the reverse charge is readily consumed at the via top surface before 

diffusing to via bottom due to the lack of adequate replenishment of Cu2+ ions from the 

bulk. Low throwing power condition with iB < iT < 1 is likely to persist and cause pinch-

off or void entrapment. Reduction in applied current density mitigates some of this effect. 

However, such approaches will increase the overall processing time and limit factory 
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outputs. Therefore, in order to move the deposition process from mass transfer limited 

regime, Cu2+ concentration in the electrolyte was increased from 25g/l to 65g/l.  Gap fill 

capability of reverse pulse waveform was re-evaluated without reducing the applied 

current density as experiment # 5 with the data shown in Figure 6.4.  

 

Figure 6.4: SEM Cross-section of Via0 post complete deposition with the 
following conditions: Flash Cu plating with 65g/l Cu 2+ and via fill utilizing 65g/l 

Cu 2+, Reverse Pulse # 3 
 

 

As shown in Figure 6.4, pinch off voids were still observed but the size of the voids have 

been drastically reduced.  An increase in pump flow rate for the flash Cu plating process 

from 13Hz [115LPM] to 30Hz [230LPM] was performed to provide better agitation and 

circulation inside the reactor and another experiment was executed in experiment # 6 

with the rest of parameters unchanged. This condition completely eliminates the voids as 

shown in Figure 6.5. 
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Figure 6.5: SEM Cross-section of Via0 post complete deposition with the 
following conditions: Flash Cu plating with 65g/l Cu 2+ 30Hz and via fill utilizing 

65g/l Cu 2+, Reverse Pulse # 3 
 

 
Section 6.3 Results and discussion with non-uniform deposition for via0 

geometry 

In a conventional DC plating process, accelerator molecules (fast diffusion species) are 

added in the plating bath to enhance bottom-up fill behavior. Accelerators catalyze the 

reduction of Cu1+ to Cu during Cu deposition1. Other additive species such as suppressors 

/ levelers modulate the local deposition rate through adsorption or by coupling with the 

polarized accelerator molecules to provide uniform deposition and level the final deposit.  

Similarly, in the case of reverse pulse based process,  with the application of reverse 

current, deposition rate at the bottom of via is dramatically accelerated leading to higher 

throwing power value. In the absence of leveler molecule to attenuate the accelerated 

deposition, the deposition process happens in a “momentum plating” or extreme “super 

fill” regime. Although void-free fill is obtained, such unchecked momentum plating could 

lead to non-uniform deposition of copper in the Via pad and FLS regions.  In this study, 

with the induction of reverse pulse methodology to improve bottom-up fill momentum 

plating is established with accelerated growth of copper from the via bottom. Such a 

phenomenon is likely to persist on fine traces and pad regions as well. Therefore, 
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momentum plating induced with reverse pulse methodology will provide a very non-

uniform deposit overall. A strong reverse pulse waveform introduces a condition termed 

as “Ski-slope” meaning the surrounding trace and pad features show sloped deposit than a 

flat deposit that is desired. Fine trace and large pad regions tend to plate at a different rate 

and show non-uniform surface. 

Expt #8 incorporates reverse pulse waveform #1, that has a reverse current density 

of 8ASD for a duration of 2ms. The gap fill deposition time was increased significantly to 

~1000s.  As shown in Figure 6.6b1 and 6.6b2 even after such prolonged plating duration 

the via shows a large dimple at the top, indicating a largely unfilled via.  The contour maps 

also show a largely unfilled via. The surrounding fine traces plate slightly thinner than the 

via pad regions.  
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Figure 6.6:  (a1) Top view and (a2) side view of FLS and via feature layout (b1) 
Thickness contour map with reverse pulse waveform # 1 waveform at layer1 (b2) 
SEM images of Via0 and a 9µm trace feature at layer1 plated with reverse pulse 

waveform # 1(c1) Thickness contour map with reverse pulse waveform # 2 
waveform at layer1 (c2) SEM images of Via0 and a 9µm trace feature at layer1 

plated with reverse pulse waveform # 2 (d1) Thickness contour map with reverse 
pulse waveform # 3 waveform at layer1 (d2) SEM images of Via0 and a 9µm 

trace feature at layer1 plated with reverse pulse waveform # 3 
  

Figure 6.6c1 and 6.6c2 show the results obtained from Expt #7 where the maximum 

allowed current density of 40ASD was utilized with a time duration (TREV) of 4ms with 

reverse pulse waveform #2. Thickness contour and SEM image depict a momentum plating 

phenomenon being established. 



 

  115 

Fine trace regions plate thick while the surrounding large pad regions show significantly 

lower thickness, in a non-uniform fashion. Non-uniform “ski slope” topography is 

observed with the large via pads. These large non-uniform deposit confirm that it is difficult 

to achieve a uniform deposit of trace and pad features with the incorporation of a very 

strong reverse pulse for these via geometry. Figure 6.6d1 and 6.6d2 show the results 

obtained from Expt #6 where a nominally allowed reverse current density of 24ASD was 

utilized with reverse pulse waveform #3.  Void-free bottom-up gap fill is present and any 

presence of “Ski-sloped” pads is eliminated. Figure 6.7 summarizes the measured plating 

thickness across a trace and via pad feature around the via region with different reverse 

current density.  A top and side view schematic of the pattern in the test coupon for the 

measured thickness contour maps is shown in Figure 6.6a and 6.6b. 
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Figure 6.7: Summary of plating thickness with different reverse pulse current 
density and durations 

 
 

Ideally all the features need to plate to the same target height with the ratio to 1. As seen 

from Figure 6.7, with the introduction of a larger reverse pulse conditions, this ratio 

decreases significantly to generate non-uniform surfaces.  

We will now move onto the experimental studies and the results obtained with 

incorporation of reverse pulse methodology for Via1 geometry 

 

Section 6.4 Design of experiments with via1 geometry 

Table 6.2 summarizes the different experiments that were performed to enable void-free 

bottom-up fill with the incorporation of reverse pulse methodology for via1 geometry. 

Key electrodeposition parameters are tabulated for each of those experiments. Fill and 

deposit results obtained with these experiments will be discussed further below.  
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Table 6.2: Design of experiments for Via1 geometry 

 
 

 
Section 6.5 Results and Discussion with via1 Geometry 

Figure 6.8a shows a SEM cross-section of an incoming via surface covered with a copper 

seed layer.  The depth of the via was measured to be around 23.22µm and the via top 

diameter was measured to be 63.43 µm while the via bottom diameter was measured to 

be 54.62 µm. The coverage of the seed layer was found to be continuous and uniform 

along the length of the via with the thickness of the copper seed to be measured around 

~1um.  Henceforth, the via of this geometry will be referred to as via1 or V1 and will the 

focus for further discussion below.  

 

Steps Parameters
Expt

9

Expt

10

Expt

11

Expt

12

Expt

13

F
la

sh
 C

u

Cu2+ (g/l) 25 25 25 25 65

Temp © 36 36 36 36 36

Pump Agitation (Hz) 15 15 15 15 30

Reverse Pulse CD 10 10 10 10 10

Reverse Pulse Duration (ms) 2 2 2 2 2

Forward Pulse Duration (ms) 78 78 78 78 78

Reverse Pulse Waveform ID 1 1 1 1 1

Total Duration (s) 750 750 750 750 750

V
ia

 F
il

l

Cu2+ (g/l) 25 25 25 65

Temp © 36 36 36 36

Pump Agitation (Hz) 15 15 15 15

Reverse Pulse CD 10 24 24 24

Reverse Pulse Duration (ms) 2 2 4 4

Forward Pulse Duration (ms) 78 78 76 76

Reverse Pulse Waveform ID 1 4 3 3

Total Duration (s) 750 750 750 750
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Figure 6.8: a) SEM Cross-section of Via1 with a copper seed layer;  Figure 6.8b) 
SEM Cross-section of Via1 post Flash Cu plating process with 25g/l of bulk Cu2+ 

ions and 36°C bath temperature; Figure 6.8c) SEM Cross-section of Via1 post 
Flash Cu plating and Via fill with 25g/l of bulk Cu2+ ions and 36°C bath 

temperature and reverse current density of 8ASD for 2ms; Figure 6.8d) SEM 
Cross-section of Via1 post Flash Cu plating and Via fill with 25g/l of bulk Cu2+ 
ions and 36°C bath temperature and reverse current density of 24ASD for 2ms;  
Figure 6.8e) SEM Cross-section of Via1 post Flash Cu plating and Via fill with 

25g/l of bulk Cu2+ ions and 36°C bath temperature and reverse current density of 
24ASD for 4ms; Figure 6.8f) SEM Cross-section of Via1 post Flash Cu plating 
with 65g/l of bulk Cu2+ ion and Via fill with 65g/l of bulk Cu2+ ions and 36°C 

bath temperature and reverse current density of 24ASD for 4ms 
 

Figure 6.8b shows the SEM cross-section of a Via1 geometry after flash plating 

deposition (Expt #9) . Flash plating of this layer was performed for a duration of 750s 

utilizing reverse pulse waveform #1 with the concentration of the Cu2+ ion maintained at 

25g/l, 36°C. The pump agitation was controlled at 15Hz. The thickness of the deposit 

looks continuous with the thickness of the deposit measured at the via top region at ~2X 

higher than at the via bottom.  
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Figure 6.8c shows the gap fill profile of Expt #10 that was performed with reverse pulse 

waveform #1 for a duration of 750s post flash Cu plating. The via looks completely 

unfilled for this duration. Deposit thickness is also higher at the via top region that at via 

bottom indicating a side wall collusion at the via top if the deposition process continues 

further and high propensity of void entrapment. 

  

Section 6.5.1 Effect of copper concentration for via1 geometry 

In experiments 11 and 12 the reverse pulse duration and current density were varied to 

obtain via fill. Surprisingly, when the magnitude of reverse current density was increased 

to larger values to increase the concentration of local Cu2+ ion at via bottom, no change in 

fill profile was observed. Presence of key-hole voids confirms the lack of gap fill.  Figure 

6.8d and 6.8e shows SEM cross-section after complete deposit with higher reverse pulse 

current density and durations. In all cases pinch off and key-hole voids were still 

observed. As shown in Figure 6.3c & 6.3d even after significant increase in reverse pulse 

current density from 10ASD to 24ASD there was no impact in throwing power with the 

top of the via still plating at a significantly higher rate.  As shown in Figure 6.8d & 6.8e 

increasing the reverse pulse duration from 2ms to 4ms at a reverse current density of 

24ASD also did not generate bottom-up fill. In all these case thickness of the via 

sidewalls at the top of the via seems much higher than the bottom region of the via 

indicating poor bottom-up fill.  As discussed with the via0 geometry, this behavior can be 

attributed to the applied current operating near the diffusion limited current density. 

Therefore, in order to move the deposition process from mass transfer limited regime, 
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Cu2+ concentration in the electrolyte was increased from 25g/l to 65g/l.  Gap fill 

capability of reverse pulse waveform was re-evaluated without reducing the applied 

current density as experiment # 13 with the data shown in Figure 6.8e.  As shown in 

Figure 6.8e, pinch off voids were eliminated. Correction in pump frequency for the flash 

Cu plating process from 13Hz to 30Hz was accommodated in expt #13 based on the 

learning’s from Via0 geometry. 

 
Section 6.6 Results and discussion with non-uniform deposition for via1 

geometry 

Given the clear learning’s earlier on Via0 geometry with the impact of high reverse pulse 

current and to a non-uniform deposit with fine trace regions plating thicker and the 

surrounding large pad regions with significantly lower thickness, repeat measurements of 

such features were not done for this layer.  It is clear that reverse pulse duration and current 

density needs to optimized to obtain uniform copper deposit wherein the variation in 

thickness of the feature is minimized, all in while ensuring void-free gap fill inside the via. 

 

Section 6.7 Summary with via0 and via1 geometries 

In summary, void-free via fill process is obtained with the introduction of reverse pulse 

methodology for Via0 geometry. Optimization of process conditions such as electrolyte 

Cu2+ concentration, agitation and the reverse pulse amplitude was necessary to generate a 

completely filled Via. A larger reverse amplitude degrades the thickness distribution 

across the features. 
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For Via1 geometry, void-free via fill process is obtained with the introduction of 

reverse pulse methodology. Optimization of process conditions such as electrolyte Cu2+ 

concentration, agitation and the reverse pulse amplitude was necessary to generate a 

completely filled Via. A larger reverse pulse amplitude is likely to degrade the thickness 

distribution across the features with these ratios as well.  So far we discussed the results 

obtained from experimental studies with different reverse pulse waveforms and attempted 

to mitigate the mass transfer effect with increased bulk concentration of copper. In 

chapter VII, a simulation effort is undertaken to validate the concentration gradient effect 

seen with the present system. The simulation effort aims to identify critical throwing 

power needed to generate void-free bottom-up fill and how reverse pulse methodology 

helps to enable that. 
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CHAPTER VII 

SIMULATION OF REVERSE PULSE PROCESS 

 

Section 7.0 Introduction 

Simulation for gap fill inside via features for applications such as dual damascene and 

TSV (Through Silicon Via) have already been extensively studied in various literatures1-

4. In the present effort a simulation case study was undertaken to explain the mechanism 

of gap-fill data under different pulse and reverse pulse plating conditions for Via0 

geometry on IC substrate applications. Via0 geometry includes via of ~20µm depth and a 

diameter of ~35um as shown in Figure 7.1 below.  

 

 

Figure 7.1: Via0 geometry utilized for simulation case study 
 

Takahashi and Gross have previously outlined which phenomena dominate current 

distribution on ≤1micron feature scales.1 Earlier in chapter II, we had discussed that the 
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distribution of an electroplated deposit depends upon which transport phenomenon 

controls the plating rate. We need to consider the overall ohmic and mass transfer effects 

present inside the system to determine which transport mechanism dominates the 

distribution of copper inside the via region. Ohmic resistance of the metal film leads to 

variations of potentials in the film, and solution resistance leads to variations of potential 

in the plating solution. Mass-transfer effects lead to variations in concentration of cupric 

ion and additive species across the metal surface. Generally, non-uniform reaction rates 

are caused by either inadequate mixing, so that reactant concentrations are not uniform 

(convection effect), or by spatial variations in the electrical-potential difference across the 

electrode/electrolyte interface or due to concentration gradient (diffusion). Due to the 

large concentration of acid present in the electrolyte, migration effects are negligible. For 

the purpose of understanding the true diffusion effect on the gap fill process, in this 

simulation, the spatial variations in the electrode –potential difference across the 

electrode-electrolyte interface and inadequate mixing effects were assumed to be minimal 

and negligible. This was assumption in Takahashi’s work1. Similar to the work of 

Takahashi1, our own work suggests that these assumptions hold for the larger features 

(10s of microns) currently encountered in package build-up applications.  A quick 

analysis of the process conditions will show that this justification is valid for the Via0 

geometry systems we have studied thus far. 
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Section 7.1 Convection effects 

The relative importance of convection vs. diffusion is represented by the Peclet number1 

where,   

Pe = νL/D                   (7.1) 

where ν is a fluid velocity in the via, L is a via depth, and D is the diffusivity of the Cu2+ 

species. If Pe >> 1, then convection plays an important role in the transport of cupric ion 

and additive species into the via. If Pe << 1, convection effects are negligible and 

diffusion transport dominates the ion transport mechanism. For our system, the fluid 

velocity was roughly determined by solving for laminar flow using Navier-Stoke’s 

equation with the Fluent SW system. 

A simple 3D geometry was constructed to mimic the submerged jet flow of fluid 

inside the plating reactor as shown in Figure 7.2. Essentially this simple geometry 

represents the flow coming out of a single nozzle (injectors) to determine the velocity of 

the fluid at the mouth of the via.  

 

Figure 7.2: 3D Geometry of impingement Jet flow 
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In the actual system that was utilized for experiments in Chapter VI, the flow nozzles 

were positioned very close to the test coupon surface. The position of the coupon was 

roughly determined to be about 1.7mm away from the tip of the nozzle. Four different 

cases were tested to determine the velocity magnitude along the center line of the via as 

shown in Table 7.1 below. 

 

Table 7.1: Summary of simulation tests performed with different inlet velocity. 

 

 

A small via is defined in this chapter as a via with a depth of ~25µm and a top diameter 

of ~35µm. A large via is defined as via with a depth of ~200µm and a top diameter of 

~150µm. The actual system was estimated to operate between an inlet velocity of 

0.5~1m/s which falls within the range of the simulation tests conducted. Figure 7.3 shows 

the velocity magnitude obtained at the mouth of the via for each of the inlet velocity 

conditions on small and large via geometry.  

 

Via Size Inlet Velocity

V0 (Small via) 0.1 m/s 1 m/s

Large Via 0.1 m/s 1 m/s
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Figure 7.3: Velocity Magnitude along the center line of the via 
 

 

Computing the Pe number now becomes straight forward with the availability of these 

velocity magnitudes. Table 7.2 summarizes the fluid velocity at the mouth of the via and 

the corresponding Pe number for different inlet velocity.   

 

Table 7.2: Summary of Peclet number with different inlet velocity 
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For a via of 25µm depth with the Cu 2+ diffusion coefficient around 7.2E-06 cm2/s , Pe 

number measures <<1 for different via sizes and inlet velocity.  Given that Pe <<1,  for 

the purposes of this simulation study the impact of  flow velocities / convection inside 

vias can be considered to be very small and negligible.  

 

Section 7.2 Ohmic potential distribution effects 

Migration represents movement of the ions due to an applied electric field. Given the 

presence of a supporting electrolyte with high concentration of protons, the migration 

effects can be considered negligible overall.  Furthermore, Tafel kinetics can be utilized 

to determine the degree of non-uniformity caused by ohmic potential distribution. For 

larger cathodic overpotential 5mV, Wagner number can be estimated to indicate the 

degree of importance of the electrode kinetics. A low Wagner number ~0 indicates 

electrical potential differences are important in determining the overall thickness 

distribution. Wagner number value >1 indicates electrical potential differences do not 

play a critical role in determining the overall current / thickness distribution. In the 

present system, the solution conductivity was measured to be around 140 mS/cm. W The 

Wagner number, assuming Tafel kinetics is  

         (7.2) 

 

Utilizing values of αc = 0.5 and κ = 140mS/cm, L = 25µm, iavg = 500A/m2, T = 309K, the 

Wagner number in equation 7.2 solves to a value of ~60. As the wagner number value of 

60 is not extremely small, the above calculations indicate that in the current system, non-
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uniformity in the electric potential is somewhat important at these feature scale levels. 

For the ease of modeling efforts, the electric potential effects where considered to be 

small and negligible for this simulation study.  With these considerations, the simulation 

effort was primarily aimed to determine if the reverse pulse methodology accommodates 

adequate TP (throwing power) to enable void-free gap fill along with the evaluation of 

concentration gradients of the cupric ion species present within the via after the 

application of these reverse pulses. 

 

Section 7.3 Simulation set up and discussion 

The simulation process assumes that the plating reactor is well designed and operates at 

nearly ideal operating conditions. The current distribution on a flat substrate in the 

absence of via’s is considered be uniform. Focus is primarily on the deposition 

distribution inside the Via regions.  Effects or organic additives, catalyzing oxidizers etc. 

are not included in the simulation. For Via0 geometry, the characteristic via depth is 

approximately 25µm.  Conservation of cupric ions species for such a geometry gives the 

relationship,  

          (7.3) 

 

Thus, this equation is solved utilizing the appropriate boundary conditions as follows.   

The boundary conditions are set up as follows. 

At t = 0,  

C = Cbulk              (7.4) 

V.
V� = M wV�.

V:� + V�.
Vb�x 
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δ = 30µm              (7.5) 

h = 25 µm             (7.6) 

at  n = h(t),    

              (7.7) 

 

Where, n represents the derivative taken normal to boundary. When n= 0,  

c = cbulk               (7.8) 

Figure 7.4 summarizes the equations that were solved for the pulse and reverse pulse 

plating study.  Ansys Fluent software (License purchased with Intel Corporation) was 

utilized to solve this problem. 

 
 

Figure7.4: Simulation set up that was utilized for simulating Reverse Pulse 
plating study 

δ

c = cbulk

during forward plating step

during reverse step

x

y

M V.
V� = 7

�� 



 

  130 

 
 
Here,  
c = concentration of Cu2+ ions   
cbulk = bulk concentration of Cu2+ ions 
t = time   
n = represents the derivative taken normal to boundary 
k = is the kinetic constant for Cu deposition   
F = Faraday constant 
irev = recipe-prescribed (constant) current density during reverse pulse 
D = diffusion coefficient of Cu2+ ions   
d = diffusion boundary layer thickness 
 

The underlying physics for this problem including the assumed one step Cu deposition 

kinetics were taken from already published work of West et al.2  In the present study, 

however, a 2D transient diffusion problem is solved and shape change effects of the 

feature as it fills with metal is ignored. The focus of the simulation is on early deposition 

stages only.  As we are only considering the effect of concentration on ii at this point, the 

butler volmer kinetics simplifies to Tafel Kinetics which further simplifies to a linear 

equation as the effect of overpotential in this approach is found to small and negligible. In 

that case the current density i settles to a simple relationship as shown below. 

        (7.9) 

The goal of this study is to evaluate the throwing power or bottom-up fill performance of 

three reverse pulse waveform that were experimented earlier.  Furthermore, a steady state 

capability is implemented whereby cathode overpotential at every time step is adjusted so 

as to maintain the target mean current density called for by the recipe.  This effectively 

means that the kinetic constant in the first order Cu reduction expression is modulated at 

during forward plating step

during reverse step
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every time step.  Our simulation domain also includes an assumed diffusion boundary 

layer thickness of 30 microns – a very approximate estimate of what the actual thickness 

can be in actual plating reactors.  However, this assumption is not likely to affect the 

relative performance results of plating recipes but only the magnitude of the differences 

among them. Figure 7.5 shows a simple schematic of the Via0 geometry that is about to 

be plated. Two critical time scales are key in the assumptions we have made for this 

simulation are described below. 

(A) Diffusion time scale is based on the initial depth of the feature, l = 30µm;  

D=5E-06cm2/s is the diffusion coefficient of Cu2+ in water: Therefore, diffusion 

time (tD) approximates per equation 7.9 to ~1.8s 

tD = l2/D              (7.9) 

 

(B) The other relevant time scale is the time required to fill the feature which we 

assume is similar to the total processing time for the panel. 

tproc = 1800-3600s           (7.10) 

 

Figure 7.5:  A feature with a depth s and width L prior to electrodeposition 
process 
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In our model, the shape change of the feature due to Cu metallization on its surfaces is 

neglected.  The study only evaluates the robustness of a given reverse pulsed plating 

waveform to show the improvement in throwing power obtained during the early stages 

of deposition process  (t << tproc). At this stage, electrodeposit growth is not likely to 

appreciably alter the shape of the feature.   In other words, if havg(t) is the mean thickness 

deposited in the feature at given time t, this parameter is set such that havg(t)<< L or s of 

feature at all times.  Adequate care has been taken to extend the the time of interest in the 

simulation to be long enough such that the initial diffusion transport transients effects 

dissipate and a a quasi-steady state is achieved. The time of interest chosen for the quasi 

steady state satisfies the condition:  t >tD for all experiments.  In order to evaluate the 

robustness of a fill process, the evolution of the ratio hbottom(t)/htop(t) is tracked with time.  

To achieve a void-free fill, it is desirable to maximize this value.   

For features that show wider diameter at the top region than at bottom, this ratio 

can be significantly less than 1 and still produce a good bottom-up fill result (this can be 

thought of as geometric levelling effect)3.   At t=0, this ratio is unity (no depletion).  With 

the assumed kinetics of one step Cu cation reduction and no additives present in the 

system, the ratio decreases with time due to a net consumption of Cu ions along the 

sidewall to a quasi-steady state values. Some oscillations are seen (with frequency that 

matches the given reverse pulse waveform recipe) around a steady average value.  For 

recipes that lead to void-free fills, this ratio would slowly (over the fill time) approach 

unity as the feature fills.  Hence, the argument holds true that investigation at this early 
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period in the process (tD < t << tproc) is a good indicator for evaluating the robustness of a 

overall plating recipe. 

 

Section 7.4 Simulation results – DOE discussion 

Simulation were carried for two specific reverse pulse waveforms that were 

experimentally studied earlier. Table 7.3 captures the parameters of the two waveforms 

that were studied.  

 

Table 7.3:  Parameters of reverse pulse WF# 1 and WF#2 utilized for simulation study 

 
 

 

WF#1 has a reverse current density of 10ASD and has a Tdiss/Tdep ratio of 0.026 

while WF#2 has a reverse current density of 40ASD with Tdiss/Tdep ratio of 0.053.  The 

corresponding idiss/idep for each of the studied waveforms is captured in Table 7.3.  

Simulation efforts were then carried out on Ansys fluent systems by solving equations 7.3 

through 7.9. Figure 7.4 captures the process that was solved to determine the distribution 

of the Cu2+ concentration field inside the feature. Total of 12 simulation runs were 

performed. Ten legs were run for 25g/l Cu2+ bulk concentration system. The first leg was 

Average 

Current density 

and Time period

Reverse 

Current density 

and Time period

Forward Current 

density and Time 

period

Witotal

(A/dm2)

Ttotal

(s)

i2

(A/dm2)

T2

(s)

i1

(A/dm2)

T1

(s)

WF # 1 5.0 0.08 10 0.002 5.3 0.078 0.026 1.887

WF # 2 3.4 0.08 40 0.004 5.7 0.076 0.053 7.018
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stopped after 1st FWD only pulse and then continued till the application of 1st REV pulse. 

Third simulation leg was run till a quasi-steady state was achieved. Table 7.4 captures the 

design of experiments. 

 

Table 7.4:  Design of Experiments for simulation tests 

 

 
 

Section 7.5 Simulation results – WF #1 and WF#2 with 25g/l Cu2+ 

Contour maps shown in Figure 7.6 includes the gradient in Cu2+ concentration seen after 

the application of the FWD duration of the first pulse (TFWD) in Figure 7.6a1 followed by 

the REV duration of the first pulse (TREV) in Figure 7.6b1 with the bulk Cu2+
 

concentration targeted at 25g/l (0.4mol/l) for a Via0 via geometry that has 30µm depth 

and a bottom diameter of 25µm and top diameter of 30µm. In the experimental run, these 

pulses are cycled and continuously till the entire deposition process is completed. (Ttotal = 

Duty cycle * (TFWD + TREV)).  

Expt # 1 Expt # 2 Expt # 3 Expt # 4 Expt # 5 Expt # 6 Expt # 7 Expt # 8 Expt # 9 Expt # 10 Expt # 11 Expt # 12

Cu2+(g/l) 25g/l 25g/l 25g/l 25g/l 65g/l 65g/l 25g/l 25g/l 25g/l 25g/l 25g/l 25g/l

WF #1
FWD+

REV

Steady 

state

Steady 

state

WF #2
FWD 

+REV

Steady 

state

Steady 

state

OFF #1 FWD
FWD + 

OFF

OFF #2 FWD
FWD + 

OFF

OFF #3 FWD
FWD + 

OFF
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Figure 7.6: Contour maps of Cu2+ concentration distribution after the application of 
reverse pulse WF# 1 and WF#2 with 25g/l bulk Cu2+ concentration 

 

As seen in the qualitative contour maps in Figure 7.6a1 and 7.6b1 after the end of 1st 

FWD pulse step, the bottom of the features is heavily depleted of Cu2+ ion (shown in 

blue) compared to the top. After the application of reverse pulse with WF#1, there is no 

adequate replenishment of copper and the bottom region still shows low amount of Cu2+ 

ion concentration. This depletion leads to thin deposit profile at the via bottom compared 

to the via top. WF#2 shows attenuated profile compared to WF#1 with a high local Cu2+ 

concentration generated near feature bottom surface confirming the replenishment of 

Cu2+ ion with the application of a higher reverse current compared to WF#1. However, 

the via bottom region is still depleted of Cu2+ ion confirming the via voids that were seen 

experimentally.   
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Section 7.6 Simulation results – OFF #1, OFF#2 and WF#2 with 25g/l Cu2+ 

Experiments 7 through 12 were run with off pulse recipes OFF #1, OFF#2 and OFF#3. 

Figure 7.7 captures the contour map of these off pulse recipes after the 1st FWD pulse 

followed by an off time duration.  

 
 

Figure 7.7: Contour maps of Cu2+ concentration distribution after the application of pulse 
recipes OFF# 1, OFF #2 and OFF#3 with 25g/l bulk Cu2+ concentration 
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As shown in Figure 7.7a1, 7.7b1 and 7.7c1 after the application of the 1st FWD only 

pulse, the via bottom is depleted of Cu2 especially at the corners. When an off time 

duration of 4ms was applied following the 1st FWD pulse there was little change in the 

Cu2+ gradient at the bottom. However, as the off time duration is increased to 50 and 

100ms [OFF #2 and OFF#3] the off time allows for some replenishment of Cu2+ species. 

Longer off times are needed to show more relaxation as the diffusion time of Cu2+ ions 

across a 30µm depth is ~1.8s.  

 

Section 7.7 Simulation results –WF#1 and WF#2 at 25g/l and 65g/l Cu2+ 

Before proceeding with the results from steady state simulation, the critical throwing 

power needed before pinch-off voids can form is estimated. Via0 geometry has a via top 

diameter of 38µm and a via bottom diameter of 22µm as shown in Figure 7.8. Pinch-off 

voids happen when the via top sidewalls collide before the via bottom is filled up. At 

38µm diameter, the bottom needs to fill before via top sidewall reaches 19µm. Via 

bottom meanwhile has to reach a maximum radii of 11µm before the top reaches 19 µm. 

Therefore, the critical throwing power needed for X-section shown in Figure 7.8 is 11/19 

= 0.57. Given the variation in LASER drill and lamination process, we can set the critical 

throwing power band region to be on the order of 0.55 – 0.6 for Via0 geometry. Any 

process that shows throwing power >0.6 is likely to be void-free, while those below the 

throwing power <0.55 are confirmed to be show voids. 
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Figure 7.8: SEM X-section of Via0 geometry for critical TP calculation 
 

 

Figure 7.9a and 7.9b shows the steady state data obtained for both 25g/l and 65 g/l Cu2+ 

ion concentration with WF #1 and WF #2. It is evident from from Figure 7.9a with Cu2+ 

concentration at 25g/l, at steady state both reverse pulse waveforms #1 and #2 fall well 

below the critical throwing power requirement of 0.55-6 and hence show pinch –off 

voids. Experimental SEM image results corresponding to those waveforms are captured 

in Figure 7.9 below. However, when the bulk Cu2+concentration is increased to 65g/l, the 

steady state profile stay above the critical threshold of 0.55- 0.63 and do not show any 

pinch-off voids. The simulation shows that throwing power with WF#2 to be better than 

WF#1 that is confirmed with experimental data. 
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Figure 7.9: Graph of Thickness distribution ratio (Throwing power) for steady 
state after the application of pulse # 1 and pulse #2 with 25g/l (a) and 65g/l (b) 

bulk Cu2+ concentration 
 
 
 

It is important to note that the simulation data accounts for bottom-up and plating 

behavior with reverse pulse only while the experimental data has added contribution from 

organic additives and oxidizers that further augment the bottom-up fill process with 

higher TP and buy additional margin to avoid any void entrapment. 

 

Section 7.8 Simulation results – Comparison of results with work of West et al 

This section compares the throwing power predicted with the present study to that of the 

numerical simulation work published by West et al2 in their 1D approximation model to 

explain the role of reverse pulse electrodeposition in High aspect ratio via’s. In that 

work2, as shown in Figure 7.10a they plot the void size (made dimensionless by the 

trench width L)   along the depth of the trench with   X=0 as the top of the trench and 
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X=1 being the bottom most region of the trench.   The plot shown in Figure 7.10a was 

simulated for the reverse pulse waveform that has  id / ip  = 5. In our case, reverse pulse 

WF #2 has a similar ratio of   id / ip  = 7 as shown in Figure 7.10b. Taking some 

approximate extrapolations from the curve for trench top and trench bottom for the Tdiss/ 

Tdep ratio of 0.05 and lining them up to be the via top and via bottom in the graph to be 

~20% from the absolute via top and bottom (X = 0.2 and X =0.8), we infer the via top 

thickness (accounting for larger opening at the via top) as 35.46µm and via bottom 

thickness as 22.92µm. This equates to a throwing power of 0.65 (ibottom / itop) which is 

well consistent with the value of 0.63 that is predicted with this study (Figure 7.10b).  
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Section 7.9 Summary 

Simulation study with WF #1 and WF#2 confirm the concentration gradient observed 

with low concentration of bulk copper leading to pinch off voids. At 25g/l of bulk Cu2+ 

concentration, the via bottom is severely depleted of Cu2+ ions leading to pinch –off 

voids. WF#2 with higher reverse current density helps to replenish much more Cu2+ ions 

than WF#1. At high concentrations the via bottom has even larger amount of Cu2+ ions 

leading to a steady state throwing power value of 0.63 for WF#2 and 0.6 for WF#1. 

Simulations with OFF time pulses show that the the off-time duration needs to be 

significantly longer for relaxation of Cu2+ ions at the via bottom region. Comparison of 

throwing power with WF#2 show consistent result with that from the work of West et al2. 

More importantly the TP obtained from WF#1 and WF#2 at 65g/l of bulk concentration 

of Cu2+ ions show that such values are well above the critical TP needed for the Via0 

geometry and show a void-free, bottom-up gap fill process.  Besides enabling gap fill, the 

choice of additives and the type of deposition parameters (temperature, bath composition, 

reverse pulse current, etc.,) utilized in electrodeposition process largely influences the 

metallurgy of the plated film. Gaining insight into grain orientation, grain size, and 

intrinsic stress build up and understanding their relationship to different plating 

conditions are key to establish the desired metallurgy of the plated film. In Chapter VIII, 

we investigate the impact to microstructure and mechanical properties of electrodeposited 

copper with different electrodeposition parameter set up and identify the critical 

deposition conditions that enable desired microstructure for better mechanical reliability 

and electrical performance. 
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CHAPTER VIII 

MICROSTRUCTURE CHARACTERIZATION OF ELECTRODEPOSITED FILM 

 

Section 8.0 Introduction 

Preferred crystallographic orientation of the grains developed in material processing, 

such as electrodeposition could result in texturing and potential anisotropic properties. 

Texturing and/or preferentially orientated grains can develop in electrodeposited film is 

based on the type of deposit parameters.  Study of microstructure and texture of an 

electrodeposited layer enables prediction of the overall metallurgical properties of the 

film. In general, they are of great significance in establishing the physical and mechanical 

properties of the film. For example, Lee et al 1, 2 in their study of electrodeposited copper 

for IC applications show that the electrodeposited copper interconnect metals are usually 

polycrystalline and that grain boundary diffusion characteristics limit electro migration 

and stress-induced void formation. Vaidya et al3 propose that migration rates are affected 

by three key thin film properties such as grain size, grain size distribution and texture of 

the film and these parameters eventually determine the electromigration lifetime. 

Specifically, their work prove that a strong (111) texture is associated with improved 

electromigration lifetime. Masataka et al4 prove that hardness can be improved with 

reduced grain size utilizing ‘Hall-Petch equation’ with a threshold on grain size. Hall – 

Petch equation relates yield stress to grain size. This relationship suggests increase in 

grain boundary strengthening if there are more grain boundaries after a threshold in grain 

size. Schiotz et al5 show that metal softening happens at very small grain sizes below a 
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certain threshold with “reverse Hall-Petch” coming into play. Therefore, it is needless to 

emphasize that study of microstructure of copper deposit could play a critical role in the 

industrial scale wafer and board manufacturing process for IC applications. In these 

applications, electrodeposited copper is usually polished / etched in various downstream 

operations to establish the desired circuitry6,7.  Compatibility of copper morphology to 

such downstream process is key for high yield manufacturing process.  Patrick et al8 

show that the local etch removal rate is lower for grains whose surface normals are near 

the (111) direction and increases as the angle between the surface normal and the (111) 

direction increases. Reid et al6 show that the purity of copper films directly correlate to 

microvoid density.   

 

Section 8.1 Literature study 

Song et al9 discuss that a high strength of polycrystalline copper is usually achieved with 

a compromise in other critical properties such as reduced conductivity. They go on to 

show that a film of single crystal Cu (111) can have a high density of twin growth and 

higher yield strength than bulk copper. The electrical resistivity of such films is also 

matched to bulk copper. Reid et al6 & Harper et al10 show increase in grain size due to 

self-annealing. They also show various undesired changes in crystallographic texture 

properties due to self –annealing. However, Lee et al1,2,11 and Harper et al10 went on to 

prove that grain coalescence / self-annealing occurs at room temperature and established 

that such characteristics define the surface morphology for each of the plating 

waveforms. In their study copper films plated with a current density of 5ASD (Amperes 
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per Square Decimeter) show smaller grain sizes compared to films plated at 10ASD and 

continue to evolve at different rate with time until a steady state is reached (~60hr). In 

order to properly compare the effect of different plating parameter conditions it is 

necessary to lock the evolution time post deposition or wait for long enough time such 

that a steady state is reached.  Lee et al1,2,11 continue to show that (111) peak intensity 

decreases rapidly with inreased current density and (200) signal inreases. This behavior is 

believed to be due to the higher energy state of the films plated at higher current 

densities. Finch et al12 in the early 50’s show that the preferred orientation of an 

electrodeposit mainly depends upon the substrate on which crystal is deposited and on the 

plating bath conditions. Panagrov et al13 summarizes the influence of electroplated bath 

conditions on texture and preferred orientation. In his summary, he corroborates that for 

samples that were electrodeposited at low overpotential, the preferred orientation that was 

observed for FCC metals was (111).  This preferred orientation changes to (100) at 

intermediate overvoltage’s and at very high overpotential the preferred orientation further 

changes to (110). In the reverse pulse methodology that was discussed earlier, we should 

expect the various reverse pulse waveforms with increased reverse current  density to 

show different texture and preferred grain orientation based on this analysis.  

 

Section 8.2 Characterization methods 

Majority of the literature study for copper microstructure utilize scanning electron 

microscope (SEM) for morphological characterization14.  Grain size distribution and 

grain orientation analysis were performed through X-ray diffraction techniques. Ibanez et 
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al15 perform micro hardness characterization with tester equipped with Vickers indenter. 

Hardness value (HU) is then calculated utilizing a formula. Lee et al1 perform film 

textures analysis with X-ray diffraction using the Bragg-Brentano method and Schulz 

reflection method. In most studies, grain diameters are calculated from the measurement 

of each grain area assuming circular grain shape. The grain area is computed by analyses 

of traced images utilizing a software. Reid et al6 utilize TOFSIMS analysis for surface 

purity.  

 

Section 8.3 Details of present study - Focus on microstructure of flash deposited 

copper 

In general, the electrodeposited crystals that grows from the substrate 

preferentially orient towards the surface upon which they are deposited or upon the bath 

conditions in which they were deposited. For the present study applications, an electro-

less copper seed that has a preferred (220) orientation with a thickness of 1000A0 is 

utilized as the surface upon which electrodeposited Cu is built. As seen in the previous 

chapter VI, a flash plating process is performed on top of this seed layer to prevent 

dissolution of copper with reverse pulse waveforms.  Utilization of strong pulse 

amplitudes early in the deposition stage can exaggerate the dissolution behavior leading 

to excessive seed dissolution and discontinuity of the deposition process. Therefore, a 

flash plating step with reduced reverse charge is performed to increase the thickness of 

the incoming seed layer before the introduction of a strong reverse pulse early in the 

process. Therefore, rest of this chapter will focus on the thin film properties of this flash 
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deposited copper than on the final film stack that was deposited with reverse pulse 

waveforms.  The results from our ensuing experiments will show that the thin film of 

electrodeposited flash copper preferentially orients in (111) orientation even though they 

are deposited on a (220) copper seed surface and modifications of deposition parameters 

can significantly alter this orientation. Henceforth, the rest of this study will focus on 

impact of electrodeposited parameters on the above identified thin film properties.  

 

Section 8.4 Experimental details 

There were a total of 9 experiments performed for micro-characterization of the thin 

copper films that were deposited with reverse pulse methodology. Table 8.1 captures the 

process conditions that was varied between the different experiments.  

 

Table 8.1: Experimental details for microstructure analysis 

 

 

Key parameters that were adjusted include the bulk concentration of copper, bath 

temperature, annealing conditions and the concentration of Fe3+ oxidizer. An in-house 

SEM (Hitachi) analysis was performed to obtain images with two different 

Expt # 1 Expt # 2 Expt # 3 Expt # 4 Expt # 5 Expt # 6 Expt # 7 Expt # 8 Expt # 9

Bath Temp (C) 36 36 48 36 48 36 48 48 48

Cu2+ Conc. 25g/l 65g/l 65g/l 65g/l 65g/l 65g/l 65g/l 50g/l 50g/l

Reverse Pulse Current Density 8ASD 8ASD 8ASD 10ASD 10ASD 10ASD 10ASD 8ASD 8ASD

REverse Pulse Duration 2ms 2ms 2ms 2ms 2ms 2ms 2ms 2ms 2ms

Average Current Density 

[FWD +REV]
5ASD 5ASD 5ASD 5ASD 5ASD 5ASD 5ASD 5ASD 5ASD

Fe3+ Conc. 1g/l 1g/l 1g/l 1g/l 1g/l 1g/l 1g/l 1g/l 3g/l

Roughnening process N N N N N N N Y Y

Bake N N N N N Y Y N N
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magnifications as shown in the later figures.  All samples were analyzed after idling for 

15+ days at room temperature. This was done to eliminate any noise in the data due to 

self-annealing as it is difficult to perform these analyses immediately after plating. We 

have discussed self-annealing behavior with electrodeposited and long idle durations 

(>10 days) are needed at room temperature to attain steady state grain growth. External 

bake could offset this limitation and a bake at 180°C for 30min was performed for some 

of the samples. Samples with such conditions (Expt #6 and Expt #7) would be 

specifically annotated during the results discussion. Copper grain structure  of the all the 

samples were characterized by EBSD (Philips / FEI XL30 with Nordlys Nano EBSD 

Detector).  In some cases X-ray diffraction was done to obtain details of the texture of the 

film.  AFM (Atomic Force Microscope) analysis was done to determine the roughness of 

the film and Nano-indentation studies were performed to characterize the hardness of the 

thin films.  

 

Section 8.5 Results and Discussion 

To begin with two separate thin films were generated by varying the bulk concentration 

of Cu2+ ions in the electrolyte from 25g/ to 65g/l. All other deposition parameters were 

kept constant. SEM micrograph images obtained from Expt # 1 and #2 are shown in 

Figure 8.1. 
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Figure 8.1: SEM micrograph of electrodeposited copper after RT anneal with a) 
25g/l of bulk Cu2+ ion and b) 65g/l of bulk Cu2+ ion 

 

From the SEM micrograph of the samples obtained with different bulk Cu2+ 

concentration experiments, it is clear that no significant variation in the characteristic of 

the thin film can be ascertained. No further analysis was conducted with these films.  In 

the second set of experiments, bath temperature was varied from 36°C to 48°C. Bulk 

concentration of Cu2+ ions in the electrolyte was maintained at 65g/l for both temperature 

conditions and all other deposition parameters were kept constant. SEM micrographs 

obtained with Expt #2 and Expt #3 are the summarized in Figure 8.2.  
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Figure 8.2: SEM micrograph of electrodeposited copper after RT anneal with 
65g/l of bulk Cu2+ ion a) 36°C and b) 48°C 

 

It can be inferred from the micrograph at both 2um and 20um resolutions, the films plated 

with 48°C show significantly smaller grain size (~x2 order of magnitude) compared to 

the electrodeposited copper films generated at 36°C. In order to understand if this 

reduced grain size effect is real, the same set of experiment conditions were repeated at a 

slightly higher reverse current density of 10ASD as Expt #4 and Expt #5. Here again only 

the temperature of the bath was changed between the two experimental conditions, whose 

results are compared.  Comparison of SEM micrographs shows consistent results with 

grain size reduced at 48°C compared to 36°C as shown in Figure 8.3. 
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Figure 8.3: SEM micrograph of electrodeposited copper after RT anneal with 
65g/l of bulk Cu2+ ion and 10ASD reverse current at  a) 36°C and b) 48°C 

 

In the next set of experiments, annealing was done to enable the samples to steady state 

grain growth with the same experimental conditions. Annealing was performed to 

confirm if the different temperatures applied during electrodeposition affects nucleation 

or the ensuing grain growth characteristics post electrodeposition. Therefore, two 

different samples were generated with identical deposition parameters as Expt #4 and 

Expt #5, but this time the samples were immediately baked at 180°C for 30min post 

electrodeposition.  Figure 8.4 captures the SEM micrographs from those experiments and 

the results continue to show consistent behavior with earlier tests were grain size is 

smaller at higher plating bath temperatures. The increased nucleation that led to smaller 

grain size at 48°C can be attributed to the increased activity of the accelerator at those 

temperatures16. Many literatures show a columnar grain growth at high concentrations of 
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accelerator but it is difficult to decipher from the SEM micrographs here if columnar 

growth is present. 

 

 

Figure 8.4: SEM micrograph of electrodeposited copper after 180°C bake with 
65g/l of bulk Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C 

 

To further understand the texture and morphology differences at the different bath 

temperatures, an EBSD (Electron back scatter diffraction) analysis was performed to 

ascertain the difference in grain sizes.  The data obtained with EBSD measurements are 

shown in Figure 8.5. Electron Back-scatter diffraction data confirms that samples 

electrodeposited with 48°C bath temperature show much finer grain sizes especially near 

foot while the samples plated at 36°C bath temperature show significantly larger grain 

sizes.  Average grain sizes after accounting for variation in grain diameter indicates that 

the 36°C bath has >2X order increase at low temperature than at high temperature.  Pole 
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diagrams shown on the left for both cases also show (111) preferential orientation at both 

temperatures. 

 

 Figure 8.5: EBSD of electrodeposited copper after 180°C bake with 65g/l of bulk 
Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C 

 

XRD (X-ray diffraction) analysis were then performed to analyze the texture of the two 

films. Figure 8.6 shows the summarized data obtained after XRD analysis. PANalytical 

XPert Pro MRD system with X-ray wavelength CuKα of 1.54nm operating at 45kV 

currently at LeRoy Eyring Center at Arizona State University was utilized for this 

measurement.  As shown in Figure 8.6, a strong (111) preferential orientation is observed 

for 36°C (86%) and a slightly reduced (111) orientation (66%) was observed for 48°C 

with a corresponding uptick in (311) family of planes (25% Vs 11%) at 48°C compared 

to 36°C. 
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Figure 8.6: Texture of electrodeposited copper after 180°C bake and RT anneal 
with 65g/l of bulk Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C 

obtained from XRD 
 

AFM top down images shown in Figure 8.7 further confirm that samples with 36°C bath 

temperature have nearly >2x increase in grain size compared to samples at 48°C. These 

datasets are consistent with EBSD data that was collected earlier. Furthermore, roughness 

measurements of the samples were done with AFM and it was found that the plated film 

overall has very roughness with the samples plated at 36°C showing much higher 

roughness (415nm) than those plated at 48°C bath temperature (330nm). This variation in 

roughness is likely attributed to the larger grain size and due to less dense nucleation at 

36°C compared to 48°C. The AFM analysis was conducted with an in-house 

measurement system at Intel Corporation, Chandler, AZ, facility. The roughness images 

obtained with AFM are shown in Figure 8.8. 
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Figure 8.7: AFM Top down image of electrodeposited copper after 180°C bake 
with 65g/l of bulk Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C  

 

 

Figure 8.8: AFM roughness map of electrodeposited copper after 180°C bake with 
65g/l of bulk Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C  
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Lastly, intrinsic stress values were computed from XRD analysis on the flat surfaces 

using the conventional sin2Ψ method 17,18.  The calculated stress numbers are plotted in 

Figure 8.9. A cartoon on the left shows how a compressive stress on a substrate could 

lead to buckling of the substrate.   

 

Figure 8.9: Residual stress chart of electrodeposited copper after 180°C  bake 
with 65g/l of bulk Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C  

 

Surprisingly, a sharp distinction in stress behavior was observed at 36°C and 48°C. For 

example, a compressive stress was observed at (111) orientation for 48°C with lower 

grain size microstructure while a tensile stress with larger grain size was observed for the 

same orientation at 36°C. This data confirms that the choice of plating bath temperature 

has a significant impact on the intrinsic stress built in the film. The reduced hardness for 

36°C samples is hypothesized to its larger grain size, and the larger hardness at 48°C is 

attributed to the fine grains based on “Hall-Petch effect” relationship of yield stress to 

grain size. 
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Figure 8.10: Hardness of electrodeposited copper after 180°C bake with 65g/l of 
bulk Cu2+ ion and 10ASD reverse current at a) 36°C and b) 48°C  

 

Lastly, in order to understand the impact of Fe3+ oxidizer, two different experiments were 

performed with the bulk concentration of Cu2+ ions maintained at 50g/l and the bath 

temperature at 48°C. Fe3+ concentration was varied between 1g/l and 3g/l for experiments 

Expt #8 and Expt #9. The increase in the oxidizer concentration is expected to limit the 

growth rate of the copper grains, as Fe3+ is a strong oxidizer and can easily etch away 

electrodeposited copper through the reaction 8.1 shown below. 

���'
 + 
� ↔ 
��
 + ����
          (8.1) 

Based on this reaction mechanism, it can be inferred that in the presence of an oxidizer in 

the system (Fe3+),  the grain size of electrodeposited copper is always adjusted real time 

as it nucleates. When the concentration of the oxidizer is increased further to 3g/l, it is 

natural that the grain sizes are reduced further due to the increased etching activity of the 

Fe3+ oxidizer. SEM micrograph images shown in Figure 8.11 confirm that with increase 
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in concentration of oxidizer in the electrolyte solution, the grain size is reduced further.  

No further analysis were conducted with these films.   

 

 

Figure 8.11: SEM micrograph of electrodeposited copper after RT anneal with 

65g/l of bulk Cu2+ ion and 8ASD reverse current at a) 1g/l Fe3+ and b) 3g/l Fe3+   

 

Section 8.6 Summary 

In summary microstructure analysis of electrodeposited copper reveal significant 

differences in film characteristics with modifications in deposit conditions. In this study, 

various electrodeposit parameters that affect flash deposited copper were studied. Key 

parameters that were adjusted include the bulk concentration of copper, bath temperature, 

annealing conditions and the concentration of Fe3+ oxidizer. An in-house SEM (Hitachi) 
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analysis was performed for all the measurements. Bath temperature shows significant 

change in grain size with increased temperature. It is hypothesized that at increased 

temperatures the energy barrier for reduction reaction is minimized compared to 

deposition reactions with similar conditions but at reduced temperatures. With the 

lowering of energy barrier, it is highly likely that there is a higher propensity of 

nucleation or an increased nucleation rate at the surface (easier facilitation of the 

deposition reaction). Such increased nucleation rate leads to frequent formation of fresh 

grains than the growth of existing nuclei. Therefore, with the incorporation of reverse 

pulse process, at elevated temperatures (480C in this case) smaller grain sizes are 

observed due to increased nucleation rate when compared to reduced temperatures of 

360C. XRD, EBSD, AFM and nanoindentation tests show that 48°C temperature has 

compressive intrinsic stress and smaller grains compared to tensile stress and larger grain 

size at 36°C.  It has been shown that when a fresh grain size is formed it tends to remain 

compressive and as grains grow they tend to be tensile17. The presence of compressive 

stress at 480C is thus consistent with our earlier hypothesis of higher nucleation rate and 

frequent formed fresh grains at 480C compared to 360C. At 360C, where larger grain sizes 

were observed, it is likely that the intrinsic stress changing from compressive to tensile 

stress during grain growth. 

So far, we discussed the extension of reverse pulse methodology to Via0 and Via1 

geometry and the ensuing microstructure for IC substrate applications. There is another 

unique class of via geometry termed V5 in IC substrates that has fiber protrusion inside 

the via. In Chapter IX we study the challenges associated with gap fill for such a 
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geometry and identify additional knobs for improving throwing power besides optimizing 

reverse pulse methodology to enable void-free fill. 
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CHAPTER IX 

GAP FILL METHODOLOGY FOR VIA’S WITH GLASS FIBER PROTRUSION 

 

Section 9.0 Introduction 

In chapter VI, we discussed the ability of reverse pulse methodology to enable void-free 

gap fill for via dimensions Via0 and Via1 that are used in IC substrate applications. Via0 

has a geometry of ~25µm depth with a via bottom diameter of ~25µm, which leads to an 

aspect ratio of 1.0. Via1 has a depth of ~25µm but with much larger opening sizes 

(diameter of ~50um) which leads to an aspect ratio of 0.5. As discussed before, these 

via’s (Via0 and Via1) are drilled through a dielectric film to enable I/O routing and 

ground plane connections between an active die and the mother board. IC substrates also 

include another class of via dimensions termed Via5 in this study. The uniqueness of the 

Via5 geometry is that it is generated using a LASER on a glass cloth reinforced dielectric 

film instead of a normal dielectric film. Typically, the depth of the via ranges on the order 

of ~65um and the via bottom diameter is on the order of ~55µm to ~60µm.  Furthermore 

inside the via , there are always fiber protrusions extending inside the via, normally on 

the order of ~9µm to 10µm from the via side walls to the center. These fiber extensions 

protruding inside the via demand a unique challenge for bottom-up gap fill process. 

Copper electrodeposited at the fiber protrusions have the propensity to collude before  

any bottom fill can happen due to the small opening area present at those locations 

compared to the via bottom. Electrodeposit growth at the fiber protrusion region needs to 

be reduced compared to the growth rate via top and via bottom to avoid pinch-off. 
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Otherwise, the likelihood of void entrapment is highly likely. Unique approaches and 

innovations are needed to develop a methodology that shows bottom-up fill process 

without void entrapment for such via’s with fiber protrusions and is the focus of the study 

below.  Figure 9.1 shows the top down and cross-sectional view of a Via5 geometry 

generated on glass fiber reinforced dielectric film. In Figure 9.1b, the dielectric film is 

uniformly coated with a copper seed surface. Fiber’s protrusions can be seen extending 

~9um to ~10um from the sidewalls roughly at center region of the via. Given the 

limitations of the upstream processes, the location of fiber protrusion inside the via can 

vary widely. As shown in Figure 9.2 fiber protruding at ~10um from the sidewalls are 

seen at various locations such as top, middle and bottom location along the depth of the 

via. 

 

 

Figure 9.1: a) Top-view and b) cross-section view of a Via5 via prior to 
electrodeposition 
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Figure 9.2: Cross-section view of a Via5 via prior to electrodeposition with 

copper seed surface and fiber protrusions extending at ~10um from the sidewalls 
along the various positions within the depth of via such as fiber protrusion at via 
top (a), fiber protrusion at via bottom (b) and fiber protrusion at via middle (c) 

In all cases, the coverage of the seed layer was found to be continuous and  

 

uniform along the length of the via with the thickness of the copper seed to be measured 

around ~2um.  Henceforth, the via of this geometry will be referred to as via5 and will be 

the focus for further discussion below.  

Section 9.1 Design of experiments – experiments #A through #J 

In chapter VI, we showcased a reverse pulse methodology to gap fill Via0 and Via1 

dimensions. In this study, a similar attempt was made to generate void-free gap fill inside 

Via5 geometry. To begin with, 9 sets of experiments (Expt # A through J) in three set of 

batches (Batch 1 – Expt A,B,C; Batch 2- E,F; Batch 3- G, H, I, J) were performed with 

exactly similar parametric conditions to those attempted at enabling void-free free on 

Via0 and Via1 geometry. Experimental details are summarized in Table 9.1. The shape 

and amplitude of revere pulse waveforms #1, #2 and #3 that were utilized in these 

experiments are tabulated shown in Table 5.2 and Figure 5.5 (Chapter V). 
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Table 9.1: Experimental run card (Expt # A through J) for Via5 Gap fill evaluation 

 
 
 

Section 9.2 Results and discussion 

 
Section 9.2.1 Results: via5 experiments #A through #C 

Figure 9.3a shows the SEM cross-section of a Via5 after flash plating deposition (Expt 

#A). Flash plating is always performed because of concerns of seed dissolution during 

early part of the process. Flash plating of this layer was performed for a duration of 450s 

utilizing reverse pulse waveform #1 with the concentration of the Cu2+ ion maintained at 

25g/l, 36°C. The pump agitation was controlled at 15Hz. As seen from Figure 9.3a, the 

thickness of the deposit looks continuous with the thickness of the deposit measured at 

the via top region at ~2X or larger than at the via bottom. In order to understand the true 

extent of the variation of the thickness of side walls at the top and bottom of the via, the 

plating process was further continued with the same parametric deposition conditions for 

Parameters Expt A Expt B Expt C Expt E Expt F Expt G Expt H Expt I Expt J

F
la

sh
 C

u

Cu2+ (g/l) 25 25 25 65 65 65 65 65 65

Temp © 36 36 36 36 36 36 36 36 36

Pump Agitation (Hz) 15 15 15 30 30 30 30 30 30

Reverse Pulse CD 10 10 10 10 10 10 5 10 5

Reverse Pulse Duration (ms) 2 2 2 2 2 2 2 2 2

Forward Pulse Duration (ms) 78 78 78 78 78 78 78 78 78

Reverse Pulse Waveform ID 1 1 1 1 1 1 1b 1 1b

Total Duration (s) 450 450 450 550 550 550 1100 550 1100

V
ia

 F
il

l

Cu2+ (g/l) 25 50 65 65 65 65 65 65

Temp © 36 48 36 36 36 36 36 36

Pump Agitation (Hz) 15 13 13 13 30 30 13 13

Reverse Pulse CD 10 40 40 24 10 5 40 20

Reverse Pulse Duration (ms) 2 4 4 4 2 2 4 4

Forward Pulse Duration (ms) 78 76 76 76 78 78 76 76

Reverse Pulse Waveform ID 1 2 2 3 1 1b 2 2b

Total Duration (s) 1250 900 900 600 950 2400 900 1800
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an additional 1250s as Expt #b. The SEM cross-section from Expt #b is shown in Figure 

9.3b.  The thickness of the sidewalls looks higher at the via top region than at the bottom 

leading to lower throwing power (Thickness bottom / Thickness top) and more importantly, 

due to the inherent nature of glass fiber protrusion present inside Via5 geometry, the size 

of the via opening at those fiber locations looks much smaller than at the via bottom and 

has a high propensity to collude and trap a void underneath with any further extension in 

the deposition process with similar parametric conditions. In Expt # C, after flash 

deposition process, in order to generate improved bottom-up fill, reverse pulse 

methodology that was earlier attempted for Via0 and Via1 was tested for Via5 with 

revere pulse waveform #2 that has a high reverse current density of 40ASD for a pulse 

duration of 4ms.  The concentration of the bulk Cu2+ concentration was doubled to 50g/l 

to mitigate any mass transfer limitations and the temperature of the bath was increased to 

48°C from 36°C to improve the mobility of ions to the via bottom and the overall 

deposition rate along with faster nucleation. 

 

Figure 9.3: a) Flash deposited via with 25g/l of Cu2+ ions, b) Via fill with reverse 
pulse #1 post Flash Cu with 25g/l of Cu2+ ions, c) Via fill with reverse pulse #2, 

50g/l of Cu2+, 48°C post Flash Cu with 25g/l of Cu2+
 ions,  d) Non-uniform 

pattern observed with Expt # C 
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As shown in Figure 9.3c, even with the incorporation of all these capable knobs via void 

was entraped due to the impingement of copper plated on the fiber protrusions before any 

bottom-up fill process can happen.  In expt # C, the surface of the coupon, post 

deposition is patchy and resembles a “honey comb” like pattern that corresponds to non-

uniform thickness distribution. The surface of the copper is highly non-uniform due to the 

application of high reverse current repeatedly or a long duration of time. The applied high 

reverse current generates non-uniform surface thickness on the surface rather than a gap 

fill inside the via. The large pinch-off void observed inside the via region confirms this 

mechanism further and indicates that momentum plating was established after sidewall 

collusion happened leading to non-uniform copper on the ensuing top surface.  Figure 

9.3d shows a top view microscope image of the highly non-uniform patter observed on 

the surface post deposition.  

 

Section 9.2.2 Results: via5 experiments #E through #F 

In order to eliminate, pinch-off voids and regulate large scale non-uniformity observed on 

the surface, in the second batch of experiments, experiments E through F, the bulk 

concentration of the copper was increased to 65g/l for the entire deposition process to 

minimize any mass transfer limitation of Cu2+ ions at the via bottom sidewalls.  
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Figure 9.4: e) Via fill with reverse pulse #2 post Flash Cu with 65g/l of Cu2+ ions 
(Expt #E), f) Via fill with reverse pulse # 3 post Flash Cu with 65g/l of Cu2+ ions 

(Expt # F) 
 

 In experiment Expt # E, via fill was performed with a reverse current density of 40ASD 

for 4ms. In Expt #F, the reverse current density was reduced to 24ASD for 4ms. These 

waveforms at high bulk concentration of Cu2+ ions have previously resulted in void-free 

fill for Via0 and Via1 geometry.  However, with Via5 geometry due to the presence of 

fiber protrusions, the throwing power generated with the reverse pulse methodology was 

not adequate to eliminate pinch-off at fiber protrusion regions leading to entrapment of 

voids as shown in Figure 9.4e and 9.4f. It is also important to note that there is no 

significant deposition seen from the bottom pad region of the via or on the via sidewalls 

corners.  

 
Section 9.2.3 Results: via5 experiments #G through #J 

Takahashi and Gross have previously outlined which phenomena dominate current 

distribution on ≤1micron feature scales.1 Distribution of an electroplated deposit depends 

upon which transport phenomenon controls the plating rate, such as inadequate mixing, 

so that reactant concentrations are not uniform (convection effect), or by spatial 



 

  170 

variations in the electrical-potential difference across the electrode/electrolyte interface or 

due to concentration gradient (diffusion).  If diffusion limitation dominates the overall 

charge distribution at the bottom of the via, assuming the spatial variations in the 

electrode –potential difference across the electrode-electrolyte interface and inadequate 

mixing effects were assumed to be minimal and negligible then an increase in 

concentration of Cu2+ ions or reduction in the deposition current density should aid in 

attaining similar via bottom thickness as at the top.  Diffusion time scale based on the 

initial depth of the feature can be easily estimated using equation 9.1 shown below 

tD = l2/D             (9.1) 

where, l = 65µm (depth of the feature) and  D =7.2E-06cm2/s is the diffusion coefficient 

of Cu2+ in water: Based on equation (9.1), the diffusion time (tD) approximates per 

equation 5.87s shown in Table 9.2. 

 

Table 9.2: Estimation of diffusion time for Via5 feature geometry 

Ion D (cm2/s) h (cm) = depth tD (s) 

Cu2+ 7.2E-06 0.0065 5.87 

  

Therefore, in order to eliminate any diffusion limitation effects and prevent depletion of 

Cu2+ ions at the via bottom, the concentration of bulk was maintained at 65g/l of Cu2+ions 

for all experiments going forward. For some of the experiments, reduced deposition rates 

was also explored. In order to understand the limitation of the current system and the 

throwing power obtained with the existing parameters, four set of experiments (Expt #G 
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through #J) were performed at 36°C with the bulk concentration of Cu2+ ions maintained 

at 65g/l utilizing reverse pulse waveform #1 and #2.  Experiment # H and # J were 

performed with half the current density as that was utilized earlier for reverse pulse 

waveform #1 and # 2 as reverse pulse waveform #1b and #2b. The shape and current 

density of the waveforms that were utilized in the experiments are captured in Figure 9.5 

below for reference. 

 

Figure 9.5: Reverse Pulse waveforms (#1, #1b, #2, #2b) utilized for expt #G (#1, 
high dep rate) , expt #H (#1b, low dep rate) , expt #I (#2, high dep rate) , expt #J 

(#2b, low dep rate) 
 

In reverse pulse waveforms #1b and #2b, both the forward and reverse current density 

were reduced in half but the corresponding reverse time durations were kept the same. 

Table 9.3 shows the exact current density parameters that were utilized in these 

waveforms.  
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Table 9.3: Reverse Pulse waveforms parameters for  #1, #1b, #2, #2b that were utilized 
for expt #G (#1, high dep rate) , expt #H (#1b, low dep rate) , expt #I (#2, high dep rate) , 

expt #J (#2b, low dep rate) 

 

 

Reducing the overall current density should assist in mitigating some of these mass 

transfer effects (if present) and aid to attain improved throwing power. The undesired 

consequence of reducing the current density is that it leads to increased process time to 

achieve the same specified target thickness. Therefore, in experiment # H and J the 

plating deposition time was extended 2X or longer (accounting for lower current 

efficiency at reduced current density) as summarized in Table 9.1. The results obtained 

with experiments #G through #J are shown as SEM cross-sections in Figure 9.5. 

 

Average 

Current density 

and Time period

Reverse 

Current density 

and Time period

Forward 

Current density 

and Time period

itotal

(A/dm2)
Ttotal

(s)
i2

(A/dm2)
T2

(s)
i1

(A/dm2)
T1

(s)

Pulse Waveform # 1 5.0 0.08 10 0.002 5.38 0.078

Pulse Waveform # 1b 2 0.08 5 0.002 2.19 0.078

Pulse Waveform # 2 3.4 0.08 40 0.004 5.70 0.076

Pulse Waveform # 2b 1.7 0.08 20 0.004 2.84 0.076
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Figure 9.6: SEM micrograph of Expt #G through Expt #J 
g) Via fill with reverse pulse #1 post Flash Cu at 65g/l of Cu2+ ions, 950s, h) Via 
fill with reverse pulse # 1b post Flash Cu at 65g/l of Cu2+ ions, 2400s, i) Via fill 
with reverse pulse #2 post Flash Cu at 65g/l of Cu2+ ions, 900s, 9.6 j) Via fill with 
reverse pulse # 2b post Flash Cu at 65g/l of Cu2+ ions, 1800s 

 

In Expt # G, the via fill deposition process post flash Cu was performed with reverse 

pulse waveform #1 but the deposition process was extended to 950s. SEM micrograph of 

the sample post deposition is shown in Figure 9.6g. The thickness of the copper deposit at 

the via bottom (on the pad region) was measured to be 5.43µm. The via pad thickness on 

the top surface was measured from SEM cross-section to be 13.9µm. The throwing power 

ratio (Thickness bottom / Thickness top) for this experiment #G can then be calculated to be 

0.4. In Expt #H, both the flash deposition process and the via fill happened at half the 

forward and reverse current density with reverse pulse waveform # 1b but with the 

overall deposition time extended. SEM micrograph of the sample post deposition is 

shown in Figure 9.6h. The thickness of the pad was measured to be 7.1µm and the 

deposit thickness at the via bottom was measured to be 7.0.  Thus, with the low 

deposition rate in Expt #H, the overall pad thickness is reduced to ~7µm compared to 

~14um with the high deposition rate on Expt # G. However, the throwing power with 

Expt #H that computes to a value of  1 (Thickness bottom / Thickness top) which is 

significantly higher than the 0.4 that was obtained on Expt # G.  This indicates that 
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electrodeposition at reduced current density can significantly improve throwing power 

except that such reduced current density leads to significantly long plating durations.  

Similar set of experiments were then repeated with reverse pulse waveform #2 and with 

reduced current density #2b as experiment #I and #J.  In Expt # I, the via fill deposition 

process post flash Cu was performed with reverse pulse waveform #2 but the deposited 

process was completed at 950s. SEM micrograph of the sample post deposition is shown 

in Figure 9.6I. The thickness of the copper deposit at the via bottom (on the pad region) is 

irrelevant due to the entrapment of voids that are seen. Via pad thickness on the top 

surface was measured from SEM cross-section to be ~7µm. In Expt #J, both the flash 

deposition process and the via fill happened at half the forward and reverse current 

density with reverse pulse waveform #2b but with the overall deposition time extended. 

Once again, as shown in Figure 9.6J, void entrapment is observed even at these low 

current densities. So far, incorporation of reverse pulse methodology alone has not 

yielded a void-free process for Via5 geometry that has glass cloth fiber protrusions inside 

the via region. Reduction in current density to mitigate the mass transfer effect and 

increase in bulk concentration of the electrolyte also shows void entrapment with poor 

bottom-up fill. Earlier with Via0 and Via1 geometry, improved throwing power leading 

to void-free fill were obtained with optimization of reverse pulse methodology alone, but 

Via5 poses a different set of challenge.   
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Section 9.3 Optimization of organic additive ratio and bath temperature with 

reverse pulse methodology 

In order to identify additional knobs for improving throwing power, the ability of organic 

additives and bath temperature was investigated as independent knobs to improve 

throwing power for Via5 geometry.  

It is well known that in the presence of Cl- ion species in the electrolyte, organic 

additives such as accelerators enhance the corner growth rate at the via bottom and 

suppressors temporarily block adsorption of Cu1+ at the via top until displaced by the 

accelerator2.  West et al studied the ratio of these additives to the ensuing throwing power 

for damascene applications. 3 A similar attempt was made for Via5 geometry, by 

performing a comparative study to generate the correlation of throwing power to various 

ratio of accelerator to suppressor molecules. Such a study could generate a good 

understanding of the ability of the organic additive to enable bottom-up fill for Via5 

geometry.   

Investigating the effect of Accelerator and Suppressor species independently 

significantly increases the number of experiments to be performed when coupled with 

other independent bath deposition variables such as bath temperature and reverse pulse 

waveforms that influence TP differently at different additive concentrations. Therefore, it 

was decided to consider the ratio of the additives as a single variable during the design of 

the experiments rather than independently varying the concentration of the two species. 

In the experiments conducted thus far (chapter VI - VIII), the organic ratio was 

maintained at 0.75 (ratio of measured accelerator to suppressor concentration). In our 
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testing so far, two proprietary additives namely “SBP2 Accelerator” and “SBP2 Leveler” 

purchased from Atotech Inc., were utilized for the experiments. The Accelerator 

concentration was targeted and maintained at 12ml/l while Leveler concentration was 

measured at 16ml/L. An analytical CV (Cyclic Voltammetry) method was utilized to 

measure and target the concentration of the bath periodically as needed. Overall, the 

concentrations were maintained within the range of ± 0.2ml/l from specified target. The 

exact molecular details of these species were unknown for this study and the functionality 

of these species were expected to behave primarily as accelerator and suppressor that are 

referenced in scientific literature studies. Henceforth, these species will be termed as 

accelerator and suppressor for rest of this study and their concentration would be varied 

to understand their impact on bottom-up fill for Via5 geometry. 

Increased deposition temperature leads to increased mobility of the Cu2+ ion as 

well as the additive species to the via bottom.  Previously, the temperature of the plating 

bath has been shown to affect bottom-up gap fill mechanism for Cu damascene 

applications3. In such studies lower operating temperatures (20°C) had been 

recommended due to the scale of the features that needs void-free fill. In the present 

application given the large size of the via with a critical need to enable the availability of 

Cu2+ ion and additive species to the via bottom much higher temperature such as 40°C 

and 48°C were studied. 
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Section 9.4 Design of Experiments with various organic additive ratio and bath 

temperature with reverse pulse waveform # 1 and # 1b 

As explained earlier, the primary goal of the testing here was to identify an optimal 

concentration ratio of the additive at elevated bath temperature for gap fill with Via5 

geometry. An experimental DOE run card was set up to investigate the effect of these 

variables with reverse pulse waveforms # 1. Reverse pulse waveform #1 accommodates a 

maximum reverse current density of 10ASD for 2ms duration. The average current 

density for deposition was set at 5.4ASD and plated for a duration of 950s post Flash Cu 

deposition. Reverse pulse #1b was performed for the same 2ms duration with the reverse 

current density reduced to 5ASD with the average current density for deposition reduced 

to 2.2ASD. Reverse pulse #1b was performed for an extended time (2400s) to 

accommodate for the reduced current density. For samples obtained with Low deposition 

rate (reverse pulse #1b), the flash Cu deposition was also performed at low current 

density for an extended duration (1100s).  Six different accelerator to suppressor additive 

concentration ratio were studied with the ratio of the additives being varied from 0.26 to 

1.75. Each additive ratio was first tested at bath temperature of 40°C (Experiment 1 

through 6) with reverse pulse waveform #1. The exact set of experiments were then 

repeated with reduced current density (lower deposition rate) utilizing reverse waveform 

#1b (Experiment 7 through 12). Going forward, these conditions will be termed high and 

low dep rate for rest of this section.   
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Experiments 1 through 12 were then repeated with the exact parametric conditions at 

48°C bath temperature and is identified in the DOE table as experimental splits 13 

through 24 for high and low dep rates.   The experimental run card tabulated in Table 9.4 

shows the different parameters studied.  The choice of the ratio of the additives selected 

to study between the ranges of 0.26 - 1.75 was random.  During the execution of the 

experiments, Expt # 15 (high dep rate) and Expt # 21 (low rate) corresponding to additive 

ratio of 0.57 at 48°C bath temperatures had an experimental malfunction and the samples 

generated from those experiments are not measured. In summary, 24 different 

experiments were performed with various additive ratios at high and low deposition rate 

for bath temperature 40°C and 48°C utilizing reverse pulse waveform #1 and #1b. An 

SEM cross-section was performed for each of those 24 experiments.  

 

Section 9.5 Results and discussion with various organic additive ratio and bath 

temperature with reverse pulse waveform # 1 and # 1b 

Results obtained with cross sections for 40°C bath temperature samples are shown in 

Figure 9.7 (1-12) with the top row of images shown for high deposition rate and the 

bottom row with identical parametric conditions except for low deposition rates. SEM 

cross-sections for 48°C bath temperature experiment conditions are shown in Figure 9.8 

(13 -24) with a similar set of image classification for top row and bottom row figures 

correspondingly for high and low deposition rates. Throwing power ratio was calculated 

for each of those experiments based on the measurements of the thickness of copper 

deposited at the via bottom and at the via top. A certain approximation had to be made in 
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determining the thickness values from the SEM graph as the via deposit is not completely 

flat. Therefore, the reported thickness values are subject to certain tolerance of variation. 

The measured values and the ratio are tabulated in Table 9.5. Figure 9.9 shows the plot of 

measured throwing power for each of those additive ratio conditions at different 

deposition rate and temperature. As shown in the bottom plot of Figure 9.9, for 40°C bath 

temperature at high dep rate (blue line in Figure 9.9), there is a gradual increase in 

throwing power as the additive ratio is decreased. A zoomed version of this plot is shown 

on the top plot. A linear Trendline fit shows reasonable match with the TP (throwing 

power) ratio increasing with reduced additive ratio. Reduced additive ratio directly 

correlates to increased suppression. This result indicates that as the overall suppression 

characteristic of the bath is increased, an improvement in throwing power can be 

obtained.  Figure 9.9 also shows plot for 40°C bath temperature at low dep rate (Orange 

line in Figure 9.9). This condition did not show any significant as increase in throwing 

power. A maximum TP ratio of 1 or close to 1 was seen at all additive ratios. At high dep 

rate for 48°C (Grey line in Figure 9.9), an increase in throwing power is seen with 

reduced additive ratio similar to 40°C, but a Trendline did not have a clean linear fit 

likely due to noise present in the data. However, at low dep rate for 48°C, a drastic 

increase in TP is observed with reduced additive ratio. TP as high as 3.5 was achieved 

with an additive ratio of 0.3 at 48°C. 
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Table 9.5: Electrodeposited Via5 top and bottom thickness and TP ratio measured for 
Expt# 1 through 24 with various additive ratio for bath temperature 40°C and 48°C with 
reverse pulse waveform # 1 (high dep rate) and reverse pulse waveform # 1b (low dep 

rate) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Expt # Dep Rate Bath Temp Additive ratio
XSEM Bottom 

Thickness (µm)

XSEM Top 

Thickness (µm)

TP Ratio 

(Bottom 

thickness / Top 

Thickness)

Expt #1 High Dep rate 400C 0.3 5.6 13.8 0.4

Expt #2 High Dep rate 400C 0.4 8.2 16.4 0.5

Expt #3 High Dep rate 400C 0.6 5.0 15.6 0.3

Expt #4 High Dep rate 400C 0.6 5.3 14.5 0.4

Expt #5 High Dep rate 400C 1.3 3.9 16.1 0.2

Expt #6 High Dep rate 400C 1.8 2.8 11.3 0.2

Expt #7 Low Dep rate 400C 0.3 5.1 7.7 0.7

Expt #8 Low Dep rate 400C 0.4 8.8 9.2 1.0

Expt #9 Low Dep rate 400C 0.6 9.0 9.1 1.0

Expt #10 Low Dep rate 400C 0.6 7.0 7.1 1.0

Expt #11 Low Dep rate 400C 1.3 5.5 7.7 0.7

Expt #12 Low Dep rate 400C 1.8 3.0 4.1 0.7

Expt #13 High Dep rate 480C 0.3 9.2 16.9 0.5

Expt #14 High Dep rate 480C 0.4 3.0 13.9 0.2

Expt #15 High Dep rate 480C 0.6 0.0 0.0

Expt #16 High Dep rate 480C 0.6 5.9 15.7 0.4

Expt #17 High Dep rate 480C 1.3 3.9 14.5 0.3

Expt #18 High Dep rate 480C 1.8 0.0 13.0 0.0

Expt #19 Low Dep rate 480C 0.3 29.1 8.3 3.5

Expt #20 Low Dep rate 480C 0.4 7.6 4.7 1.6

Expt #21 Low Dep rate 480C 0.6 0.0 0.0

Expt #22 Low Dep rate 480C 0.6 3.5 3.0 1.2

Expt #23 Low Dep rate 480C 1.3 3.5 5.0 0.7

Expt #24 Low Dep rate 480C 1.8 5.5 4.4 1.3



 

  184 

 
 

Figure 9.9: Plot of additive ratio Vs Throwing power for high and low deposition 
rate utilizing 40°C and 48°C bath temperature and 65g/l of bulk Cu2+ ions for via5 

 
 

Section 9.6 Key learning’s with various organic additive ratio and bath 

temperature with reverse pulse waveform # 1 and # 1b 

To summarize, 24 different experiments were performed with various additive 

concentration ratios (termed as additive ratio going forward) at high and low deposition 

rate for bath temperature 40°C and 48°C utilizing reverse pulse waveform type #1 for 

high deposition rate and #1b for low deposition rate. An SEM cross-section was 

performed for each of those 24 experiments. The results obtained with such cross sections 

indicate a linear increase in throwing power for reduced additive ratio at all conditions. 
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The extent of improvement varies with bath temperature and deposition rate. With 48°C 

and low deposition rate, TP as high as 3.5 is achieved with an additive ratio of 0.3. 

 

Section 9.7 Design of experiments with various organic additive ratio and bath 

temperature with reverse pulse waveform # 2 and # 2b 

Reverse pulse waveform #1 accommodates a maximum reverse current density of 

10ASD for 2ms duration. The average current density for deposition was set at 5.4ASD 

and plated for a duration of 950s post Flash Cu deposition. Reverse pulse #1b was 

performed for the same 2ms duration with the reverse current density reduced to 5ASD 

with the average current density for deposition reduced to 2.2ASD. In order to see the 

impact of reverse pulse current density and duration on Via5 fill, similar set of 

experiments performed earlier with reverse pulse #1 and #1b were repeated with reverse 

pulse waveform #2 and #2b. Reverse pulse waveform #2 accommodates a maximum 

reverse current density of 40ASD for 4ms duration. The average current density for 

deposition was set at 3.4ASD. Reverse pulse #2b was performed for the same 4ms 

duration with the reverse current density reduced to 20ASD with the average current 

density for deposition reduced to 1.7ASD. Reverse pulse #2b was performed for an 

extended time (1800s) to accommodate for the reduced current density. For samples 

obtained with low deposition rate (reverse pulse #2b), flash Cu deposition was also 

performed at low current density for an extended duration. Here again, six different ratio 

of the additives were studied with the ratio of the additives being varied from 0.26 to 

1.75. Each additive ratio was first tested at bath temperature of 40°C (Experiment 25 



 

  186 

through 30) with reverse pulse waveform # 2 (high dep rate). The exact set of 

experiments were then repeated with reduced current density (lower deposition rate) 

utilizing reverse waveform #2b (Experiment 31 through 36).  Experiments 25 through 36 

were then repeated with the exact parametric conditions as earlier but at 48°C bath 

temperature and is shown as experimental splits 37 through 48 for high and low dep rates.   

The experimental run card tabulated in Table 9.6 shows the different parameters studied 

with reverse pulse waveform type #2 and #2b.  The choice of the ratio of the additives 

selected to study were kept identical to reverse pulse waveform #1.  During the execution 

of the experiments, Expt # 39 (high dep rate) and Expt # 45 (low rate) corresponding to 

additive ratio of 0.57 at 48°C bath temperatures had an experimental malfunction and 

those data samples were not analyzed. To summarize, 24 different experiments were 

performed with various additive ratios at high and low deposition rate for bath 

temperature 40°C and 48°C utilizing reverse pulse waveform #2 and #2b. An SEM cross-

section was performed for each of those 24 experiments.  

 

Section 9.8 Results and discussion with various organic additive ratio and bath 

temperature with reverse pulse waveform # 2 and # 2b 

Results obtained with such cross sections for 40°C bath temperature are shown in Figure 

9.10 (25 - 36) and cross sections for 48°C bath temperature are shown in Figure 9.11 (37 

- 48). A quick overview of the results published in Figure 9.10 and 9.11 show 

significantly improved gap fill with Via5 geometry on reverse pulse #2 and #2b 

compared to the fill results obtained with reverse pulse #1 and #1b. 
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Furthermore, for experimental results generated with utilizing reverse pulse waveform #2 

and #2b, instead of reporting throwing power, a new parameter termed “via recess 

thickness” is measured and reported.  Throwing power values with these results could be 

confounded by the fact that the via was already filled for most of the test conditions and it 

would be difficult to de-convolute the thickness contribution from the via sidewalls and 

via bottom in order to truly establish a throwing power that is consistent with the values 

reported earlier. The presence of glass fiber at different locations along the depth of the 

via further complicates the true sidewall contribution that needs to be offset to determine 

the via bottom thickness. Therefore, a new independent parameter called “Via recess” 

was defined to compare the performance for Expt #25 through 48. Figure 9.12 with a 

schematic cartoon shows the methodology for the measurement of the via recess 

thickness. Via recess in this study is defined as the amount of via region that is not 

completely filled. A profilometric measurement was utilized to obtain the via recess 

thickness by averaging the measurement point along the concentric circle points along on 

the outer via top region as well as the recessed location inside the gap filled via region. 

Differences between the measurements points along the outside concentric circle and the 

recess point enables the via recess thickness. Conversely, the via recess thickness can 

also be measured with a cross-section but the cross-section needs to happen on the center 

of the via and it is always difficult to land the polish at the exact center location and is 

more prone to error. For this reason, the data from profilometer was utilized to determine 

the via recess thickness measurements. In most cases, consistent results between the 

cross-section and profilometer was obtained but not this was not always the case. 
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Profilometer reported much higher recess values in some cases, indicating a worse fill 

condition than the results generated with SEM cross-section. 

 

 

Figure 9.12: Schematic of Via recess measurement with a Cross-section (top 
picture) and a top view (bottom picture) 

 

From the schematic above in Figure 9.12, it can be easily concluded that a sample that 

shows low via recess thickness would indicate a very good fill bottom-up and vice-verse 

for a sample that has a poor bottom-up or gap fill with high via recess. The profilometer 

measured via recess thickness values for Expt #25 through 48 are tabulated in Table 9.7. 

In each case the presence of via void was also verified and tabulated in Table 9.7. Figure 

9.13 shows the plot of measured via recess for each of those additive ratio conditions at 
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different deposition rate and temperature.  It is notable here that all high dep rate 

conditions at 40°C show via voids while the low deposition rate conditions do not show 

via voids. With 48°C condition, the low additive ratio of 0.26 do not show via voids at 

high deposition rate while the rest of the condition show some level of voiding.  Low dep 

rate at 48°C do not show voiding. 
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Table 9.7: Electrodeposited Via5 via recess thickness and presence of void measured for  
Expt# 25 through 48 with various additive ratio for bath temperature 400C and 480C with 

reverse pulse waveform #2 (high dep rate) and reverse pulse waveform #2b (low dep 
rate) 

 

Expt # Dep Rate Bath Temp Additive ratio
Via Recess

(µm)

Void 

Observation

Expt # 25 High Dep rate 400C 0.26 13.3 Y

Expt # 26 High Dep rate 400C 0.43 12.1 Y

Expt # 27 High Dep rate 400C 0.57 12.0 Y

Expt # 28 High Dep rate 400C 0.63 14.0 Y

Expt # 29 High Dep rate 400C 1.25 25.8 Y

Expt # 30 High Dep rate 400C 1.75 25.0 Y

Expt # 31 Low Dep rate 400C 0.26 13.3 N

Expt # 32 Low Dep rate 400C 0.43 12.0 N

Expt # 33 Low Dep rate 400C 0.57 26.2 N

Expt # 34 Low Dep rate 400C 0.63 16.2 N

Expt # 35 Low Dep rate 400C 1.25 36.5 N

Expt # 36 Low Dep rate 400C 1.75 35.0 N

Expt # 37 High Dep rate 480C 0.26 9.4 N

Expt # 38 High Dep rate 480C 0.43 13.8 Y

Expt # 39 High Dep rate 480C 0.57

Expt # 40 High Dep rate 480C 0.63 20.9 Y

Expt # 41 High Dep rate 480C 1.25 41.8 Y

Expt # 42 High Dep rate 480C 1.75 27.0 Y

Expt # 43 Low Dep rate 480C 0.26 16.7 N

Expt # 44 Low Dep rate 480C 0.43 18.0 N

Expt # 45 Low Dep rate 480C 0.57

Expt # 46 Low Dep rate 480C 0.63 18.9 N

Expt # 47 Low Dep rate 480C 1.25 31.1 N

Expt # 48 Low Dep rate 480C 1.75 24.0 N
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As shown in the right plot of Figure 9.13a, for 40°C bath temperature at high dep rate 

(blue line), there is a gradual decrease in via recess with the reduction in additive ratio. 

Reduced additive ratio directly correlates to increased suppression. This result indicates 

that as the overall suppression characteristic of the bath is increased, an improvement in 

fill rate can be obtained.  Figure 9.13a also shows plot for 48°C bath temperature at high 

dep rate (Grey line) a decrease in via recess is seen with reduced additive ratio similar to 

40°C condition. Similarly, as shown in the left plot of Figure 9.13b, for 40°C and 48°C 

bath temperature at low dep rate a decrease in via recess is observed with reduced 

additive ratio. These findings are consistent with the results on the left plot for high 

deposition rate.  It is to be noted that via voids are observed for most high deposition rate 

conditions at 40°C and 48°C, except for additive ratio of 0.26 at 48°C. All low dep rate 

condition shows no voiding with the lowest recess value obtained at a low additive ratio 

of 0.26 at 40°C and 48°C.  

 

Section 9.9 Key learning’s with various organic additive ratio and bath 

temperature with reverse pulse waveform # 2 and # 2b 

To summarize, 24 different experiments were performed with various additive ratios at 

high and low deposition rate for bath temperature 40°C and 48°C for reverse pulse 

waveform type #2 and #2b. An SEM cross-section was performed for each of those 24 

experiments. The results obtained with such cross sections indicate a decrease in via 

recess for reduced additive ratio at all conditions. Via voiding is still observed at high 
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deposition rates but void-free via fill is obtained at low deposition rates with the 

optimized fill performance at low additive ratio conditions.  

 

Section 9.10 Summary 

Via5 geometry presents a unique challenge for void-free gap fill due to the presence of 

glass fiber protrusions inside the via region. Incorporation of reverse pulse methodology 

with reverse pulse waveforms #1 and #2 that improved fill performance and enabled 

void-free fill with Via0 and Via1 geometry did not show much success for via5 

geometry. A “pinch-off” void was observed even with the incorporation of reverse pulse 

methodology. Additional process parameters that control the deposition process had to be 

identified to further improve the throwing power inside Via5 geometry. Six different 

combination ratio of organic additives such as accelerator and suppressor were then 

tested at two different bath temperatures of 40°C and 48°C. These sets of experiments 

were performed with reverse pulse #1 and reverse pulse #1b to ascertain the throwing 

power  with different additive combinations. A low additive ratio of accelerator to 

suppressor shows improved fill performance at all conditions. Furthermore, when these 

sets of experiments were performed with reverse pulse #2 and #2b that incorporates 

larger reverse current density and duration, a complete gap fill process was obtained with 

no via voids at low depositions rates and via recess reduced at small additive ratio 

combinations.   With increased reverse pulse duration, fill behavior (pertaining to 

throwing power) were similar at 48°C compared to 40°C. Thus, these efforts enable a 

capable reverse pulse deposition process with optimized additive concentration for Via5 
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geometry that shows void-free fill and improved overall fill performance. In Chapter X, 

we perform the same set of experiments for Via1 geometry to confirm whether the  newly 

identified deposition regime with increased suppression present in the electrolyte enables 

improved gap fill not only for Via5 geometry but across all Via geometry.  

 

REFERENCES 

 
1. K. M. Takahashi and M. E. Gross,  Journal of The Electrochemical Society, 

146(12), 4499 (1999)  
 

2. P. M. Vereecken, R. A. Binstead, H. Deligianni, and P. C. Andricacos, IBM 
Journal of Research and Development, 49(1), 3 (2005) 

 
3. Y. Cao, P. Taephaisitphongse, R. Chalupa, A.C. West, Journal of The 

Electrochemical Society, 148 (7), C466 (2001) 
 

4. J. Qing-Tang, R. Mikkola, B. Carpenter, Journal of Vacuum Science & 
Technology B (Microelectronics and Nanometer Structures), 17(5), 2361 (1999) 
 

  



 

  198 

CHAPTER X 

EXTENSION OF ADDITIVE RATIO OPTIMIZATION FOR VIA1 GEOMETRY 

 

Section 10.0 Introduction 

In chapter IX, we discussed the ability of reverse pulse methodology and additive ratio 

optimization to enable void-free gap fill for Via5 geometry that has a via depth on the 

order of ~65um and via bottom diameter is on the order of ~55µm to ~60µm. Besides the 

large sizes, these via geometry also had glass fiber protrusions extending inside the via 

that necessitated a very aggressive bottom-up fill condition to prevent a void-free fill. IC 

substrate applications have via bottom stack that has varying via geometry with Via0 that 

has a geometry of ~25µm depth along with a via bottom diameter of ~25µm and Via1 

that has a depth of ~30µm but with via bottom diameter of ~50um.  As discussed before, 

these via’s (Via0 and Via1) are drilled through a dielectric film (with no glass fiber) to 

enable I/O routing and ground plane connections between an active die and the mother 

board. The characteristic of incoming via geometry and the ability to generate void-free 

fill with the incorporation of reverse pulse waveform was already discussed in Chapter 

VI. In this chapter, we would extend the learning’s obtained from additive ratio 

optimization to the previously studied geometry of Via0 and Via1 and will confirm the 

learning’s obtained from Chapter IX that a reduced additive ratio accommodates  all via 

geometry for void-free gap fill besides the unique Via5 geometry. Such improvement in 

via fill can be obtained with the optimization of additive ratio along with the 

incorporation of reverse pulse waveform methodology. 
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Section 10.1 Results and discussions:  Via1 gap fill – experiment# A 

An incoming Via1 geometry with a uniformly coated copper seed surface is shown in 

Figure 10.1a1.  Electrodeposition was performed with the bulk concentration of the 

copper targeted at 65g/l for the entire duration of the deposition process to eliminate any 

mass transfer limitation of Cu2+ ions at the via bottom sidewalls. In Expt # A via fill 

process was performed with a reverse current density of 24ASD for 4ms post flash Cu 

deposition. The parametric conditions utilized for this deposition are tabulated in Table 

10.1. Flash Cu deposition was performed first to prevent seed dissolution during the 

initial stages of the deposition followed by via fill. 

 
Table 10.1: Parameter Summary for Experiment #A utilized for gap fill on Via1 

geometry 

 

Steps Parameters
Expt

A

F
la

sh
 C

u

Cu2+ (g/l) 65

Temp © 36

Pump Agitation (Hz) 30

Reverse Pulse CD 10

Reverse Pulse Duration (ms) 2

Forward Pulse Duration (ms) 78

Reverse Pulse Waveform ID 1

Total Duration (s) 700

V
ia

 F
il

l

Cu2+ (g/l) 65

Temp © 36

Pump Agitation (Hz) 13

Reverse Pulse CD 24

Reverse Pulse Duration (ms) 4

Forward Pulse Duration (ms) 76

Reverse Pulse Waveform ID 3

Total Duration (s) 700
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As shown in Figure 10.1a2, a void-free fill is obtained with the incorporation of reverse 

pulse waveform # 3 with a reverse current density of 24ASD for 4ms duration.  

 

Figure 10.1a1) SEM Cross-section of Via1 with a copper seed layer, a2) SEM 
Cross-section of Via1 post Flash Cu plating with 65g/l of bulk Cu2+ ion and Via 
fill with 65g/l of bulk Cu2+ ions and 36°C bath temperature and reverse current 

density of 24ASD for 4ms 
 

Via fill for IC substrate application require a void-free fill along with a completely filled 

via such that a dimple or via recess is minimized or completely eliminated. A schematic 

cartoon in Figure 10.2 shows the methodology for the measurement of the via recess 

thickness. Via recess in this study is defined as the amount of via region that is not 

completely filled. A profilometric measurement was utilized to obtain the via recess 

thickness by averaging the measurement point along the concentric circle points along on 

the outer via top region as well as the recessed location inside the gap filled via region. 

Differences between the measurements points along the outside concentric circle and the 

recess point enables the estimation of via recess thickness. Conversely, the via recess 

thickness can also be measured with a cross-section but the cross-section needs to happen 

on the center of the via and it is always difficult to land the polish at the exact center 
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location and such estimations are more prone to error. For this reason, the data from 

profilometer was utilized to determine the via recess thickness measurements. In most 

cases, consistent results between the cross-section and profilometer was obtained but not 

this was not always the case. Profilometer reported much higher recess values in some 

cases indicating a worse fill condition than the results generated with SEM cross-section. 

 

Figure 10.2: Schematic of Via recess measurement with a Cross-section (top 
picture) and a top view (bottom picture) 

 

For example, for Expt #A with the application of reverse waveform #3 the via recess was 

measured to be on the order of ~10µm with an SEM cross-section as shown in Figure 

10.1 a2. However, profilometer measurements indicated a maximum recess of ~20µm 

inside the via feature. Increase in deposition time shows an improvement in recess but 
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such activity could cause non-uniform copper surface.  So far, incorporation of reverse 

pulse methodology alone has yielded a void-free process for Via1 geometry. However, 

further improvement in throwing power is needed to eliminate via recess and achieve a 

complete fill with a uniform copper surface without the addition of additional process 

time. Therefore, in order to identify additional knobs for improving throwing power, the 

ability of organic additives and bath temperature to influence throwing power was 

investigated as independent knobs to improve gap fill capability for Via1 geometry.  

 

Section 10.2 Optimization of organic additive ratio and bath temperature with 

reverse pulse for via1 

It is well known that in the presence of Cl- ion species in the electrolyte, organic additives 

such as accelerators complex with the chloride ions and enhance the corner growth rate at 

the via bottom due to the presence of increased surface area at those regions and 

suppressors temporarily block adsorption of Cu1+ at the via top until displaced by the 

accelerator1.  West et al studied the ratio of these additives to the ensuing throwing power 

for damascene applications2. A similar attempt was made for Via1 geometry, by 

performing a comparative study to generate the correlation of throwing power to various 

ratio of accelerator to suppressor molecules. Such a study should generate a good 

understanding of the ability of the organic additive to enable bottom-up fill for Via1 

geometry.   

In this study, the ratio of the concentration of the additives was considered as a 

single variable than the concentration of the two species independently. In the 
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experimental results shown in Chapter VI and in experiment #A earlier, the organic 

additive ratio was maintained at 0.75 (ratio of measured accelerator to suppressor 

concentration). In our testing so far, two proprietary additives namely “SBP2 

Accelerator” and “SBP2 Leveler” purchased from Atotech Inc., were utilized for the 

experiments. The Accelerator concentration was targeted and maintained at 12ml/l while 

Leveler concentration was measured at 16ml/L. An analytical CV (Cyclic Voltammetry) 

method was utilized to measure and target the concentration of the bath periodically as 

needed. Overall, the concentrations were maintained within the range of ± 0.2ml/l from 

specified target. The exact molecular details of these species were unknown for this study 

and the functionality of these species were expected to behave primarily as accelerator 

and suppressor that are referenced in scientific literature studies. Henceforth, these 

species will be termed as accelerator and suppressor for rest of this study and their ratio 

would be varied to understand their impact on bottom-up fill for Via1 geometry. 

Increased deposition temperature leads to increased mobility of the Cu2+ ion as 

well as the additive species to the via bottom.  In the present application given the large 

size of the via with a critical need to enable the availability of Cu2+ ion and additive 

species to the via bottom much higher temperature such as 40°C and 48°C were studied. 

Four set of waveforms were experimented for these various additive ratios at 

40°C and 48°C with the bulk concentration of Cu2+ ions maintained at 65g/l utilizing 

reverse pulse waveform #1 and #3.  These experiments were repeated with half the 

current density as that was utilized earlier for reverse pulse waveform #1 and # 3 as 
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reverse pulse waveform #1b and #3b. The shape and current density of the waveforms 

that were utilized in the experiments are captured in Figure 10.3 below for reference. 

 

 

Figure 10.3: Reverse Pulse waveforms (#1, #1b, #3, #3b) utilized for additive 
ratio optimization 

 

In reverse pulse waveforms #1b and #3b, both the forward and reverse current density 

were reduced to less than half but the corresponding reverse time durations were kept the 

same. Table 10.2 shows the exact current density parameters that were utilized in these 

waveforms. 
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Table 10.2: Reverse Pulse waveforms parameters for #1, #1b, #3, #3b that were utilized 
for additive ratio optimization 

 

 
 

Section 10.3 Design of experiments with various organic additive ratio and bath 

temperature with reverse pulse waveform # 1 and # 1b 

As explained earlier, the primary goal of the testing here was to identify an optimal ratio 

of the additive at elevated bath temperature for gap fill with Via1 geometry. An 

experimental DOE run card was set up to investigate the effect of these variables with 

reverse pulse waveforms # 1.  Six different accelerator to suppressor concentration ratio 

of the additives were studied with the ratio of the additives being varied from 0.26 to 

1.75. Each additive ratio was first tested at bath temperature of 40°C (Experiment 1 

through 6) with reverse pulse waveform #1. The exact set of experiments were then 

repeated with reduced current density (lower deposition rate) utilizing reverse waveform 

#1b (Experiment 7 through 12). Going forward, these conditions will be termed high and 

low dep rate for rest of this section.   

Average 

Current density 

and Time period

Reverse 

Current density 

and Time period

Forward 

Current density 

and Time period

A0
(A/dm2)

T0
(s)

A2
(A/dm2)

T2
(s)

A1
(A/dm2)

T1
(s)

Pulse Waveform # 1 5.0 0.08 10 0.002 5.38 0.078

Pulse Waveform # 1b 2 0.08 5 0.002 2.19 0.078

Pulse Waveform # 3 5 0.08 24 0.004 6.53 0.076

Pulse Waveform # 3b 2 0.08 12 0.004 2.75 0.076
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Experiments 1 through 12 were then repeated with the same parametric conditions to 

what was experimented earlier but with the bath temperature at 48°C. These conditions 

are identified in the DOE table 10.3 as experimental splits 13 through 24 for high and low 

dep rates.   The experimental run card tabulated in Table 10.3 shows the different 

parameters studied.  The choice of the ratio of the additives selected to study between the 

ranges of 0.26 - 1.75 was random.  During the execution of the experiments, Expt # 15 

(high dep rate) and Expt # 21 (low rate) corresponding to additive ratio of 0.57 at 48°C 

bath temperatures had an experimental malfunction and those data samples were not 

analyzed. In summary, 24 different experiments were performed with various additive 

ratios at high and low deposition rate for bath temperature 40°C and 48°C utilizing 

reverse pulse waveform #1 and #1b. An SEM cross-section was performed for each of 

those 24 experiments.  

 

Section 10.4 Results and discussion with various organic additive ratio and bath 

temperature with reverse pulse waveform # 1 and # 1b 

Results obtained with such cross sections for 40°C bath temperature are shown in Figure 

10.4 (1-12) with the top row of the images shown for high copper deposition rate and the 

bottom row with identical parametric conditions except for low copper deposition rates. 

SEM cross-sections for 48°C bath temperature experiments are shown in Figure 10.5 (13 

-24) with a similar set of image classification for top row and bottom row figures 

correspondingly for high and low deposition rates. Throwing power ratio was calculated 

for each of those experiments based on the measurements of the thickness of copper 



 

  208 

deposited at via bottom and at via top. A certain approximation had to be made in 

determining the thickness values from the SEM graph as the via deposit is not completely 

flat. Therefore, the reported thickness values are subject to certain tolerance of variation. 

The measured values and the ratio are tabulated in Table 10.4. Figure 10.6 shows the plot 

of measured throwing power for each of those additive ratio conditions at different 

deposition rate and temperature. As shown in the plot of Figure 10.6, for 40°C bath 

temperature at high dep rate (blue line from Figure 10.6), there is a gradual increase in 

throwing power with the reduction in additive ratio.  Reduced additive ratio directly 

correlates to increased suppression. This result indicates that as the overall suppression 

characteristic of the bath is increased, an improvement in throwing power can be obtained 

consistent with the earlier findings on Via5 geometry.   Figure 10.6 also shows plot for 

40°C bath temperature at low dep rate (Orange line from Figure 10.6). This condition 

also shows an increase in throwing power with reduction of organic additive ratio. A 

maximum TP ratio of 1 to 1.5 was seen at low additive ratios for Via1 geometry. At high 

dep rate for 48°C (Grey line from Figure 10.6), an increase in throwing power is seen 

with reduced additive ratio but at a smaller rate. The TP values were lower at 48°C at low 

additive ratio. However, at low dep rate for 48°C (yellow line from Figure 10.6), an 

increase in TP is observed with reduced additive ratio with some tapering in TP at the 

lowest additive ratio. The reasons for this tapering for this bath temperature is not clear, 

other than to be classified with in the margin of the experimental error. 
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Table 10.4: Electrodeposited Via1 top and bottom thickness and TP ratio measured for 
Expt# 1 through 24 with various additive ratio for bath temperature 40°C and 48°C with 
reverse pulse waveform # 1 (high dep rate) and reverse pulse waveform # 1b (low dep 
rate) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Expt # Dep Rate Bath Temp Additive ratio

XSEM Bottom 

Thickness 

(µm)

XSEM Top 

Thickness 

(µm)

TP Ratio 

(Bottom 

thickness / 

Top Thickness)

Expt # 1 High Dep rate 400C 0.3 14.1 15.4 0.9

Expt # 2 High Dep rate 400C 0.4 9.5 16.7 0.6

Expt # 3 High Dep rate 400C 0.6 11.0 16.7 0.7

Expt # 4 High Dep rate 400C 0.6 7.3 16.9 0.4

Expt # 5 High Dep rate 400C 1.3 8.5 15.4 0.6

Expt # 6 High Dep rate 400C 1.8 7.5 16.8 0.4

Expt # 7 Low Dep rate 400C 0.3 17.9 10.7 1.7

Expt # 8 Low Dep rate 400C 0.4 10.3 10.8 1.0

Expt # 9 Low Dep rate 400C 0.6 6.6 10.8 0.6

Expt # 10 Low Dep rate 400C 0.6 10.3 9.8 1.0

Expt # 11 Low Dep rate 400C 1.3 5.8 8.7 0.7

Expt # 12 Low Dep rate 400C 1.8 5.8 8.6 0.7

Expt # 13 High Dep rate 480C 0.3 7.3 17.0 0.4

Expt # 14 High Dep rate 480C 0.4 6.8 14.4 0.5

Expt # 15 High Dep rate 480C 0.6

Expt # 16 High Dep rate 480C 0.6 8.5 13.6 0.6

Expt # 17 High Dep rate 480C 1.3 8.7 15.1 0.6

Expt # 18 High Dep rate 480C 1.8 8.5 16.2 0.5

Expt # 19 Low Dep rate 480C 0.3 5.3 7.3 0.7

Expt # 20 Low Dep rate 480C 0.4 9.8 9.2 1.1

Expt # 21 Low Dep rate 480C 0.6

Expt # 22 Low Dep rate 480C 0.6 9.5 9.3 1.0

Expt # 23 Low Dep rate 480C 1.3 4.9 5.6 0.9

Expt # 24 Low Dep rate 480C 1.8 3.2 5.4 0.6
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Figure 10.6: Plot of additive ratio Vs Throwing power for high and low deposition 
rate utilizing 40°C and 48°C bath temperature and 65g/l of bulk Cu2+ ions 

 
 
 

Section 10.5 Key learning’s with various organic additive ratio and bath 

temperature with reverse pulse waveform # 1 and # 1b 

To summarize, 24 different experiments were performed with various additive ratios at 

high and low deposition rate for bath temperature 40°C and 48°C for reverse pulse 

waveform type #1 and #1b. Reverse pulse waveform #1 accommodates a maximum 

reverse current density of 10ASD for 2ms duration. The average current density for 

deposition was set at 5.4ASD and plated for a duration of 700s post Flash Cu deposition. 

Reverse pulse #1b was performed for the same 2ms duration with the reverse current 

density reduced to 5ASD with the average current density for deposition reduced to 

2.2ASD. Reverse pulse #1b was performed for an extended time (2100s) to accommodate 
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for the reduced current density. For samples obtained with Low deposition rate (reverse 

pulse #1b), the flash Cu deposition was also performed at low current density for an 

extended duration (1400s).  An SEM cross-section was performed for each of those 24 

experiments. The results obtained with such cross sections indicate an increase in 

throwing power for reduced additive ratio at 40°C at high and low deposition rates. A 

similar characteristic is observed for high deposition rate at 48°C. At low deposition rate 

an increase in TP is observed until an additive ratio of 0.43 but the subsequent tapering 

down of the TP could not be explained clearly. Overall trend is still consistent in showing 

lower additive ratio improving the overall fill ratio. The extent of improvement varies 

with bath temperature and deposition rate. With 40°C and low deposition rate, TP as high 

as 1.7 is achieved with an additive ratio of 0.3. 

 

Section 10.6 Design of experiments with various organic additive ratio and bath 

temperature with reverse pulse waveform # 3 and # 3b 

Reverse pulse waveform #1 accommodates a maximum reverse current density of 

10ASD for 2ms duration. The average current density for deposition was set at 5.4ASD 

and plated for a duration of 700s post Flash Cu deposition. Reverse pulse #1b was 

performed for the same 2ms duration with the reverse current density reduced to 5ASD 

with the average current density for deposition reduced to 2.2ASD. Reverse pulse #1b 

was performed for an extended time (2100s) to accommodate for the reduced current 

density. In order to see the impact of reverse pulse current density and duration on Via5 

fill, similar set of experiments performed earlier with reverse pulse #1 and #1b were 
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repeated with reverse pulse waveform #3 and #3b.  Reverse pulse waveform #3 

accommodates a maximum reverse current density of 24ASD for 4ms duration. The 

average current density for deposition was set at 6.53SD. Reverse pulse #3b was 

performed for the same 4ms duration with the reverse current density reduced to 12ASD 

with the average current density for deposition reduced to 2.75ASD. Reverse pulse #3b 

was performed for an extended time (1400s) to accommodate for the reduced current 

density. For samples obtained with low deposition rate (reverse pulse #3b), the flash Cu 

deposition was also performed at low current density for an extended duration (1750s). 

The high deposition rate parameters were matched to Expt #A conditions summarized in 

Table 10.1.  Here again, seven different accelerator to suppressor concentration ratio 

were studied with the ratio of the additives being varied from 0.26 to 1.75. Each additive 

ratio was first tested at bath temperature of 40°C (Experiment 25 through 30) with 

reverse pulse waveform # 3 (high dep rate). The exact set of experiments were then 

repeated with reduced current density (lower deposition rate) utilizing reverse waveform 

#3b (Experiment 31 through 36).  Experiments 25 through 38 were then repeated with the 

exact parametric conditions, but the bath temperature increased to 48°C and shown in the 

DOE table as experimental splits 39 through 52 for high and low dep rates.   The 

experimental run card tabulated in Table 10.5 shows the different parameters studied with 

reverse pulse waveform type #3 and #3b.  The choice of the ratio of the additives selected 

for this study were kept identical to reverse pulse waveform #1 with an additional ratio at 

1.58.  During the execution of the experiments, Expt # 41 (high dep rate) and Expt # 48 

(low rate) corresponding to additive ratio of 0.57 at 48°C bath temperatures had an 
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experimental malfunction and those data samples are not analyzed. Expt # 37 (low dep 

rate) and Expt # 51 (low dep rate) corresponding to additive ratio of 1.58 at 40°C and 

48°C bath temperatures had an experimental malfunction and those data samples are not 

analyzed as well. To summarize, 28 different experiments were performed with various 

additive ratios at high and low deposition rate for bath temperature 40°C and 48°C 

utilizing reverse pulse waveform #3 and #3b. An SEM cross-section was performed for 

each of those 28 experiments.  

 

Section 10.7 Results and discussion with various organic additive ratio and bath 

temperature with reverse pulse waveform # 3 and # 3b 

Results obtained with such cross sections for 40°C bath temperature are shown in Figure 

10.7 (25 - 38) and cross sections for 48°C bath temperature are shown in Figure 10.8 (39 

- 52). A quick overview of the results published in Figure 10.7 and 10.8 show 

significantly improved gap fill with Via1 geometry on reverse pulse #3 and #3b 

compared to fill results obtained with reverse pulse #1 and #1b.   



 

  216 
 

R
e

v
e

rs
e

 P
u

ls
e

A
cc

e
le

ra
to

r 

C
o

n
c.

 (
m

l/
L)

S
u

p
p

re
ss

o
r 

C
o

n
c.

 

(m
l/

L)
R

a
ti

o
Te

m
p

e
ra

tu
re

C
u

rr
e

n
t 

D
e

n
si

ty
E

x
p

t

P
u

ls
e

 T
y

p
e

 #
 3

5
1

9
0

.2
6

4
0

0
C

 ,
 4

8
0
C

H
ig

h
2

5
, 

3
9

P
u

ls
e

 T
y

p
e

 #
 3

1
2

2
8

0
.4

3
4

0
0
C

 ,
 4

8
0
C

H
ig

h
2

6
, 

4
0

P
u

ls
e

 T
y

p
e

 #
 3

1
6

2
8

0
.5

7
4

0
0
C

 ,
 4

8
0
C

H
ig

h
2

7
, 

4
1

*

P
u

ls
e

 T
y

p
e

 #
 3

1
2

1
9

0
.6

3
4

0
0
C

 ,
 4

8
0
C

H
ig

h
2

8
, 

4
2

P
u

ls
e

 T
y

p
e

 #
 3

1
5

1
2

1
.2

5
4

0
0
C

 ,
 4

8
0
C

H
ig

h
2

9
, 

4
3

P
u

ls
e

 T
y

p
e

 #
 3

1
9

1
2

1
.5

8
4

0
0
C

 ,
 4

8
0
C

H
ig

h
3

0
, 

4
4

P
u

ls
e

 T
y

p
e

 #
 3

2
1

1
2

1
.7

5
4

0
0
C

 ,
 4

8
0
C

H
ig

h
3

1
, 

4
5

P
u

ls
e

 T
y

p
e

 #
 3

b
5

1
9

0
.2

6
4

0
0
C

 ,
 4

8
0
C

Lo
w

3
2

, 
4

6

P
u

ls
e

 T
y

p
e

 #
 3

b
1

2
2

8
0

.4
3

4
0

0
C

 ,
 4

8
0
C

Lo
w

3
3

, 
4

7

P
u

ls
e

 T
y

p
e

 #
 3

b
1

6
2

8
0

.5
7

4
0

0
C

 ,
 4

8
0
C

Lo
w

3
4

, 
4

8
*

P
u

ls
e

 T
y

p
e

 #
 3

b
1

2
1

9
0

.6
3

4
0

0
C

 ,
 4

8
0
C

Lo
w

3
5

, 
4

9

P
u

ls
e

 T
y

p
e

 #
 3

b
1

5
1

2
1

.2
5

4
0

0
C

 ,
 4

8
0
C

Lo
w

3
6

, 
5

0

P
u

ls
e

 T
y

p
e

 #
 3

b
1

9
1

2
1

.5
8

4
0

0
C

 ,
 4

8
0
C

Lo
w

3
7

*
, 

5
1

*

P
u

ls
e

 T
y

p
e

 #
 3

b
2

1
1

2
1

.7
5

4
0

0
C

 ,
 4

8
0
C

Lo
w

3
8

, 
5

2

T
ab

le
 1

0.
5:

 E
xp

er
im

en
ta

l r
un

 c
ar

d 
(E

xp
t#

 2
5 

 th
ro

ug
h 

52
) 

fo
r 

V
ia

1 
G

ap
 f

il
l e

va
lu

at
io

n 
w

it
h 

va
ri

ou
s 

ad
di

ti
ve

 r
at

io
 f

or
 b

at
h 

te
m

pe
ra

tu
re

 4
0°

C
 a

nd
 4

8°
C

 w
it

h 
re

ve
rs

e 
pu

ls
e 

w
av

ef
or

m
 #

 3
 (

hi
gh

 d
ep

 r
at

e)
 a

nd
 r

ev
er

se
 p

ul
se

 w
av

ef
or

m
 #

 3
b 

(l
ow

 d
ep

 r
at

e)
 

(*
 e

xp
er

im
en

t m
al

fu
nc

ti
on

 f
or

 th
os

e 
te

st
s 

an
d 

da
ta

 n
ot

 p
re

se
nt

ed
 f

ur
th

er
 in

 th
e 

st
ud

y)
 



 

  217 
 

F
ig

ur
e 

10
.7

: (
T

op
 r

ow
):

 E
xp

er
im

en
t 2

5 
– 

31
 s

ho
w

 v
ia

 f
il

l w
it

h 
va

ri
ou

s 
ad

di
ti

ve
 r

at
io

 f
or

 h
ig

h 
de

po
si

ti
on

 r
at

e 
(r

ev
er

se
 p

ul
se

 #
 3

) 
ut

il
iz

in
g 

40
°C

 b
at

h 
te

m
pe

ra
tu

re
 a

nd
 6

5g
/l

 o
f 

bu
lk

 C
u2+

 io
ns

 f
or

 V
ia

1 
ge

om
et

ry
 

 
F

ig
ur

e 
10

.7
: (

B
ot

to
m

 r
ow

):
 E

xp
er

im
en

t 3
2 

– 
38

 s
ho

w
 v

ia
 f

il
l w

it
h 

va
ri

ou
s 

ad
di

ti
ve

 r
at

io
 f

or
 lo

w
 d

ep
os

it
io

n 
ra

te
 

(r
ev

er
se

 p
ul

se
 #

 3
b)

 u
ti

li
zi

ng
 4

0°C
 b

at
h 

te
m

pe
ra

tu
re

 a
nd

 6
5g

/l
 o

f 
bu

lk
 C

u2+
 io

ns
 f

or
 V

ia
1 

ge
om

et
ry

 



 

  218   

F
ig

ur
e 

10
.8

: (
T

op
 r

ow
):

 E
xp

er
im

en
t 3

9 
– 

45
 s

ho
w

 v
ia

 f
il

l w
it

h 
va

ri
ou

s 
ad

di
ti

ve
 r

at
io

 f
or

 h
ig

h 
de

po
si

ti
on

 r
at

e 
(r

ev
er

se
 p

ul
se

 #
 3

) 
ut

il
iz

in
g 

48
°C

 b
at

h 
te

m
pe

ra
tu

re
 a

nd
 6

5g
/l

 o
f 

bu
lk

 C
u2+

 io
ns

 f
or

 V
ia

1 
ge

om
et

ry
 

 
F

ig
ur

e 
10

.8
: (

B
ot

to
m

 r
ow

):
 E

xp
er

im
en

t 4
6 

– 
52

 s
ho

w
 v

ia
 f

il
l w

it
h 

va
ri

ou
s 

ad
di

ti
ve

 r
at

io
 f

or
 lo

w
 d

ep
os

it
io

n 
ra

te
 

(r
ev

er
se

 p
ul

se
 #

 3
b)

 u
ti

li
zi

ng
 4

8°C
 b

at
h 

te
m

pe
ra

tu
re

 a
nd

 6
5g

/l
 o

f 
bu

lk
 C

u2+
 io

ns
 f

or
 V

ia
1 

ge
om

et
ry

 
 



 

  219 

Furthermore, for these set of tests with reverse pulse waveform #3 and #3b, instead of 

throwing power, “via recess thickness” was measured and reported.  Throwing power 

values with these results could be confounded by the fact that the via was already filled 

for most of the conditions and it would be difficult to de-convolute the thickness 

contribution from the via sidewalls and via bottom in order to truly establish a throwing 

power that is consistent with the values reported earlier. A schematic cartoon in Figure 

10.2 shows the methodology for the measurement of the via recess thickness. Via recess 

in this study is defined as the amount of via region that is not completely filled. 

 From the schematic in Figure 10.2, it can be easily ascertained that a sample that shows 

low via recess thickness would indicate a very good fill bottom-up and vice-verse for a 

sample that has a poor bottom-up or gap fill with high via recess. In each case the 

presence of via void was also verified and tabulated in Table 10.6. Profilometric 

measurement of via recess thickness is tabulated in Table 10.6. Figure 10.9 shows the 

plot of measured via recess for each of those additive ratio conditions at different 

deposition rate and temperature.  It is notable here that none of the high and low dep rate 

conditions at 40°C and 48°C show any via voids.  
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Table 10.6: Electrodeposited Via1 via recess thickness and presence of void measured for 
Expt# 25 through 52 with various additive ratio for bath temperature 40°C and 48°C with 
reverse pulse waveform # 3 (high dep rate) and reverse pulse waveform # 3b (low dep 

rate) 

 

 

Expt # Dep Rate Bath Temp Additive ratio
Via Recess

(µm)

Void 

Observation

Expt # 25 High Dep rate 400C 0.3 18.7 N

Expt # 26 High Dep rate 400C 0.4 22.5 N

Expt # 27 High Dep rate 400C 0.6 25.3 N

Expt # 28 High Dep rate 400C 0.6 27.3 N

Expt # 29 High Dep rate 400C 1.3 16.7 N

Expt # 30 High Dep rate 400C 1.6 18.5 N

Expt # 31 High Dep rate 400C 1.8 23.0 N

Expt # 32 Low Dep rate 400C 0.3 21.4 N

Expt # 33 Low Dep rate 400C 0.4 23.7 N

Expt # 34 Low Dep rate 400C 0.6

Expt # 35 Low Dep rate 400C 0.6 31.1 N

Expt # 36 Low Dep rate 400C 1.3 14.6 N

Expt # 37 Low Dep rate 400C 1.6 20.4 N

Expt # 38 Low Dep rate 400C 1.8

Expt # 39 High Dep rate 480C 0.3 19.5 N

Expt # 40 High Dep rate 480C 0.4 23.5 N

Expt # 41 High Dep rate 480C 0.6 16.7 N

Expt # 42 High Dep rate 480C 0.6 30.4 N

Expt # 43 High Dep rate 480C 1.3 19.0 N

Expt # 44 High Dep rate 480C 1.6 21.5 N

Expt # 45 High Dep rate 480C 1.8

Expt # 46 Low Dep rate 480C 0.3 18.4 N

Expt # 47 Low Dep rate 480C 0.4 24.9 N

Expt # 48 Low Dep rate 480C 0.6

Expt # 49 Low Dep rate 480C 0.6 28.8 N

Expt # 50 Low Dep rate 480C 1.3 18.7 N

Expt # 51 Low Dep rate 480C 1.6 22.5 N

Expt # 52 Low Dep rate 480C 1.8 25.3 N
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Figure 10.9: Plot of additive ratio Vs Via recess for high and low deposition rate 
utilizing 40°C and 48°C bath temperature and 65g/l of bulk Cu2+ ions 
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As shown in the plot of Figure 10.9, for 40°C bath temperature at high dep rate (blue 

line), there is a linear decrease in via recess with the reduction in additive ratio. Reduced 

additive ratio directly correlates to increased suppression. This result indicates that as the 

overall suppression characteristic of the bath is increased, an improvement in fill rate can 

be obtained.  Figure 10.9 also shows plot for 48°C bath temperature at high dep rate 

(Grey line). Decrease in via recess is seen with reduced additive ratio similar to 40°C 

condition. Similarly for 40°C and 48°C bath temperature at low dep rates, a decrease in 

via recess is observed with reduced additive ratio. These findings are consistent with the 

earlier results obtained with those on the Via5 geometry.  It is to be noted that no via 

voids are observed for most high deposition rate conditions.  

 

Section 10.8 Key learning’s with various organic additive ratio and bath 

temperature with reverse pulse waveform # 3 and # 3b 

To summarize, 28 different experiments were performed with various additive ratios at 

high and low deposition rate for bath temperature 40°C and 48°C for reverse pulse 

waveform type #3 and #3b. An SEM cross-section was performed for each of those 28 

experiments. The results obtained with such cross sections indicate a reduction in via 

recess for decreased additive ratio at all temperatures and reverse pulse durations. Via 

voiding is not observed at high deposition rates and void-free via fill is obtained at all 

deposition rates with the optimized fill performance at low additive ratio conditions.  
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Section 10.9 Summary of additive ratio optimization for via1 geometry 

Incorporation of reverse pulse methodology with reverse pulse waveforms #1 and #3 

shows void-free ill performance with Via1 geometry. However, a high via recess ~10um 

was observed.  Additional process parameters that control the deposition process had to 

be identified to further improve the throwing power inside Via1 geometry. Six different 

combination ratio of additives such as accelerator and suppressor were then tested at two 

different bath temperatures of 40°C and 48°C. These sets of experiments were performed 

with reverse pulse #1 and reverse pulse #1b to ascertain the throwing power with 

different additive combinations. A low additive ratio of accelerator to suppressor shows 

improved fill performance at all conditions. Furthermore, when these sets of experiments 

were performed with reverse pulse #3 and #3b that incorporates larger reverse current 

density and duration, a complete void-free gap fill process was obtained at all deposition 

rates that were tested. Decreased via recess indicating better fill was observed at small 

additive ratio combinations of accelerator to suppressor.   With increased reverse pulse 

duration, fill behavior (pertaining to throwing power) were similar at 48°C compared to 

40°C. Thus, these efforts enable a capable reverse pulse deposition process with 

optimized additive concentration for Via1 geometry that shows void-free fill and 

improved overall fill performance. In chapter X1, a simulation effort is undertaken to 

understand the limitations of TP improvement with the present additive system and 

identify new capabilities to further improve TP. The simulation model is validated to 

experimental data collected thus far on Via1 and Via5 geometry. 
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Chapter XI 

SIMULATION OF ADDITIVE EFFECT FOR SUPER FILLING OF COPPER FOR IC 

SUBSTRATE APPLICATIONS 

 

Section 11.0 Introduction 

Early in 2001, West et al1 developed a three additive model for super filling of copper for 

damascene applications. In his work he utilized molecules with different concentration 

ratios of SPS (bis (sodium sulfo propyl) disulfide) as an accelerator, JGB [Jannus Green 

B] as a leveler and PEG [Polyethylene Glycol] as suppressor to obtain throwing power 

and fill behavior for submicron feature scale applications. In their work, the activity of 

PEG and Cl- were lumped together to explain the activity of suppressor. Furthermore, in 

their work, PEG was considered to be not consumed at surface or incorporated into 

growing Cu deposit.  In such a scenario, there is no concentration gradient of PEG 

species in the electrolyte solution. The role of PEG was primarily defined as an adsorbate 

that physically adsorbs to the surface and blocks sites for Cu reduction reaction.  The role 

of SPS (accelerator) was defined to remove the adsorbed PEG species from the surface 

and free up the surface sites for Cu reduction reaction.  The role of JGB (leveler) was 

defined similar to PEG, wherein it blocks sites of Cu reduction but is not affected by SPS 

activity. In fact, JGB and PEG compete for surface sites. The kinetic parameters in this 

model were characterized based on flat or non-patterned RDE (Rotational Disc 

Electrode) experiments utilizing Linear Sweep Voltammetry (LSV).  This potentiostatic 

2D model was then used to map out gap fill results throwing power, (TP) for various 
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additive concentrations. Inclusion of shape evolution simulations (to capture feature gap-

fill during metallization) for a subset of cases was used to demonstrate that short time (no 

appreciable feature deformation) throwing power results were sufficient to predict the 

relative robustness of a gap-fill for a given set of additives’ concentrations.  Model results 

were partially validated by experimental gap-fill data.  However, it was later 

demonstrated, that this model would not predict “momentum plating” (or bump formation 

directly over features) in sub-micron features which for this additive mixture occurred as 

concentration of JGB was driven to 0.  It needs to be noted here that surface reactions can 

be quite complex, and this three additive system was primarily developed to explain an 

overall trend in additive behavior for gap fill behavior than to accurately predict the 

throwing power for a given system. 

 

Section 11.1 Simulation model 

In the present study a simulation effort was undertaken by adapting the three additive 

model that West and Radek et a l1 had developed for the existing two additive system that 

was experimentally studied thus far. In our experimental studies, two proprietary 

additives namely “SBP2 Accelerator” and “SBP2 Leveler” purchased from Atotech Inc., 

were utilized for the experiments. The exact molecular details of these species were 

unknown for this study and the functionality of these species were expected to behave 

primarily as accelerator and suppressor that are referenced in scientific literature studies. 

Therefore, the activity of these species were roughly approximated to be that of similar to 

SPS and PEG molecules.  Reaction rate constants and equilibrium constant for adsorption 
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for these species were utilized from the work of West et a l1 in the three additive system 

to develop the model. Kinetic constants adapted from those studies are tabulated in Table 

11.1 Other electrodeposition parameters such as bulk concentration of Cu2+ (z{|}~,� =
65H/F) were matched to the experimental conditions tested earlier   The purpose of this 

simulation effort was to predict the general trend in additive behavior as a function of 

accelerator to suppressor ratio for IC substrate application and establish a correlation to 

the experiment results obtained till now. Therefore, the contribution from reverse pulse 

for TP improvement was not accounted in the simulation study. Instead the deposition 

current density utilized in the study was averaged to the overall average current utilized 

with various reverse pulse waveforms studied so far that accounts for both the FWD and 

REV current density and duration. In order to have a meaningful correlation to the data, 

only the TP data obtained from reverse pulse waveform #1, which has the smallest 

reverse current amplitude of 10ASD for 2ms with the average current density at 5ASD 

was utilized for comparison. Reverse pulse waveform #1B with the net average current 

density as 2ASD was also utilized for additional data comparison. More aggressive 

reverse pulse waveforms were not utilized for comparison. Furthermore, this model does 

not show feature fill by fitting parameters but was only utilized to estimate throwing 

power as function of various additives concentrations ratios. Unlike the work of West et 

al1 for sub-micron, Damascene plating, present application was operating closer to the 

mass transport limit (to enable higher fill rates of these larger features) of Cu2+ hence the 

effect of Cu2+ ion depletion during deposition could not be neglected.  It has been 

incorporated into this study utilizing the same principles as those adapted in Chapter VII. 
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The model testing was applied to V1 and V5 geometries and to test whether model results 

contradict any available existing data trends.   

 

Section 11.2 Model construction 

The copper plating current density i depends on this interfacial overpotential according to 

generalized Butler Volmer kinetics 

7 = 7� 


��~,�


��~,�

 (, − ����) 9�:; < (�=)��>����?
�� @A    (11.1) 

where α is the symmetry factor between cathodic and anodic reaction, i is the current 

density and i0 is the exchange current density, n is the number of electrons, R is a gas 

constant, T is the temperature of the reaction and E and E0 are the applied potential and 

standard reduction potential.  z{|}~,�  , z{|}~,� is the concentration of Cu2+ at the surface 

and bulk of the solution. ���� =  �h�! +  ��!� represents surface sites blocked 

for Cu2+ reduction. This effective surface blockage is a result of multiple additive species 

interacting with each other such as suppressor (PEG/Cl-), Accelerator (SPS) and Leveler 

(JGB). For our two component study, the concentration of leveler (JGB) was equated to 

be negligible, therefore,  ���� ≈  �h�!. Accounting only for the near surface effects 

on short length scale where diffusive transport and surface reaction kinetics dominate, the 

current density (i) simplifies to, 

7 = - 

��~,�


��~,�

 (, − �h�!)        (11.2) 
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Where k is a kinetic constant for deposition that can vary in time with overpotential but 

not spatially and θPEG is the effective surface coverage obtained with the additives 

(suppressor). Therefore, (1-θeff) is the net reduction due to surface blockage by additives. 

Deposition ratio TP (TP=throwing power) at early stages of plating is a very useful 

metric for determining feature-fill robustness of a process. Given the large feature size 

and sluggish mixing present in the current system, a steady state gradient concentration 

develops very early on in plating process because of consumption along vertical sidewall.  

Early in Chapter VII, based on Peclet number analysis we determined that the effect of 

convective solution mixing (relative to diffusion) present inside the via is negligible with 

PE<<1 for a via depth of 25µm. Increased via depth of ~53µm for the larger Via5 is 

likely to show even more sluggish mixing at the via bottom. Wagener number analysis 

indicated ohmic resistance contributions are also small inside via regions. Therefore, 

concentration gradients (driven by consumption at the interface and diffusive transport 

inside the via) dominate current distribution inside the via’s.  Unlike an RDE system, 

determination of an effective diffusion boundary layer thickness in an industrial 

electroplater is not straightforward.  The adopted West et al model was run for a range of 

diffusion boundary layer thickness values until a match with throwing power results was 

obtained.  A value of ~1000microns (corresponding to <5rpm on an RDE) yielded good 

agreement with data.  This suggested a relatively sluggish mixing near the panel surfaces 

in our reactor.  Therefore, at sufficiently high deposition rates (higher plating currents), 

most benefits of additives can be lost. Simulations were carried out using an in-house, 2D 

boundary element code to solve a steady state diffusion equation (from bottom of a via to 
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the edge of the diffusion boundary layer thickness) subject to boundary conditions 

defined in equations 11.2 to 11.9.   

 

N�.*h* = �             (11.3) 

N�.�!� = �             (11.4) 

−M*h*
V.*h*

V� = -�,*h*�*h*         (11.5) 

−M�!�
V.�!�

V� = -�,�!���!�         (11.6) 

�*h* =  �*h*�fef,�
,
 �*h*�fef,�

            (11.7) 

�h�! =  ����  �:;>−=�*h*�.+ ? ����,�
,
 ����  �:;>−=�*h*�.+ ? ����,�

      (11.8) 

��!� =  ��������,�
,
 ��������,�

 (, − �h�!)      (11.9) 

 

The interaction between SPS and PEG was introduced using a Frumkin isotherm1, 2. Table 

11.1 captures the various simulation parameters utilized for this simulation.  
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Table 11.1: Parameters used for the simulation study 

 

 

Section 11.3 Simulation results 

For the present simulation efforts two different via geometry Via5 and Via1 were chosen 

to study. Experimental data of the TP for various additive ratios obtained with these 

different geometries were summarized in Chapter IX and X. Simulation efforts were 

undertaken to compare the results with the recently exhibited experimental data and 

extrapolate the behavior to predict additional knobs for improved TP (throwing power). 

Key features of the simulation model can be summarized as, 

A) Additive Effect � self-consistent kinetic model from West et al1 

B) Solution Mixing � modeled as boundary layer thickness and optimized to fit 

with experiment data 

Parameters Values

1.01 X 10-3 mol cm-3 or (65g/l)

Vary assuming (Mw 3350)

~0 (0.01 PPM)

vary

5 X 10-6 cm-2 s-1

1 X 10-6 cm-2 s-1

1 X 10-6 cm-2 s-1

1 X 10-10 mol cm-2 s-1

2 X 10-11 mol cm-2 s-1

5.11 X 109 mol-1 cm-3

3.61 X 108 mol-1 cm-3

3.08 X 107 mol-1 cm-3

α 7.0
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C) Plating Rate � model is potentiostatic so Cu2+ depletion is changed by 

modifying its reduction reaction rate constant 

Figure 11.1 shows a cartoon of the two different via geometry tested for this simulation 

effort along with their corresponding dimension. An example of SEM cross-section 

obtained with experimental studies obtained in Chapter IX and X for Via5 and Via1 are 

shown in Figure 11.1b to show how TP ratio were obtained experimentally.  

 

Figure 11.1:  a) Schematic of Via5 and Via1 geometry and b) Sample SEM 
images utilized for TP calculation utilized in experimental studies for Via1 and 

Via5 geometry 
 

To begin with, two initial simulation tests were run to check the validity of assumptions 

and the overall ability of model to predict throwing power. In the first simulation run, the 

distribution of Cu2+ at the via top and via bottom were generated assuming an 

electrodeposition system without the presence of additives. Figure 11.2a shows the Cu2+ 
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distribution in the absence of additives and Figure 11.2b shows the corresponding (i/iavg) 

at the top and bottom position of the via. It can be easily inferred that in the absence of 

additives the throwing power (TP) is much less than 1 (~0.14). Simulation test 2 was 

repeated with the same parametric set up but accounting for the presence of additives. For 

this run, two different additive ratio were tested for both Via1 and Via5 geometry. CJGB 

was set at 0.1PPM and 10PPM and the corresponding concentration for CSPS was set at 

9PPM and 0.1PPM. CPEG was set at 300PPM.  Figure 11.3a and 11.3b shows the 

corresponding Cu2+ ratio and  i/iavg along the via locations. Via top regions shows 

significantly reduced thickness for increased CJGB concentration compared to the increase 

in concentration of SPS (CSPS).  This early simulation tests confirms that TP>1 can be 

obtained with the incorporation of additives and the concentration ratio of the additive is 

a key metric that needs to be optimized for these various via geometries.  Figure 11.4 

shows the comparison of simulation predicted TP at high and low reaction rates for via5 

and via1 geometry with the corresponding experimental data obtained earlier at 40°C and 

48°C bath temperature. The trend prediction with the model seems consistent with the 

experimental data obtained earlier in that a low accelerator and high suppressor 

concentration tends to increase the TP at high reaction rate. A maximum throwing power 

of 1 can be obtained at low reaction rates with no change in TP ratio as a function of 

additive ratio. Figure 11.5 has the simulation prediction of throwing power (TP) with 

various CSPS (Accelerator) and CPEG (Suppressor)  ratio’s at high reaction rate for Via 5 

(Figure 11.5a) and for for Via1 (Figure 11.5b) geometry. In all cases the model prediction 

pertains to very high suppressor concentration and a lower accelerator concentration for 
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increased TP. Even at the highly reduced ratio, at high reaction rates the maximum TP 

that can be achieved for these geometries is on the order 0.6 -0.8. Previously in Figure 

11.3b, we saw significantly higher TP with the addition of JGB leveler. It is likely that 

the present system operates with two additive components identified as SPS and PEG 

with a reasonably consistent match of the simulation data to experimental results. 
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Section 11.4 Summary 

A diffusion-reaction solver for predicting the throwing power (TP or ratio of current 

densities) inside a feature as a function of additives’ concentrations during 

electrodeposition was developed and results were compared to the experimentally 

obtained TP data.  Model results correctly captured the trends seen in data as well as the 

magnitude of the TP ratio (for most of the available data).  Model results suggest that the 

present set of additives can only enable a relatively weak TP with the prediction that the 

present system likely has SPS and PEG components and needs incorporation of a Leveler 

species for improved TP.  In chapter XII, we showcase a void-free gap via fill process for 

all via geometry with single optimized bath composition that has high suppression along 

with the incorporation of reverse waveform methodology. Improved uniformity for 

pattern features is also shown and the study concludes with microstructure validation for 

the newly optimized bath composition to show a capable and reliable electrodeposition 

process for IC substrate applications. 
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CHAPTER XII 

CAPABLE ELECTRODEPOSITION METHODOLOGY FOR IC SUBSTRATE 

APPLICATION ACROSS ALL VIA GEOMETRIES 

 

Section 12.0 Introduction 

IC substrate applications are made up of stacks of various geometry.  So far we discussed 

the fill characteristics and gap fill behavior of each of these via geometry independently.  

Early in the process, voids were observed across all geometry and optimization of the fill 

process was needed with the incorporation of reverse pulse methodology. Figure 12.1 

shows the void observed across Via0, Via1 and Via5 geometry with 25g/l of bulk Cu2+ 

concentration with reverse pulse waveform #3 across via 0, via 1, via 5 and stacked via 

geometries.  For optimization, in certain cases incorporation of reverse pulse waveform 

accounting for mass transfer limitation with increased bulk electrolyte concentration 

enabled void-free fill while in the case of Via5, optimization of additive ratio and 

increased bath temperature was needed to improve the mobility of the ions to the via 

bottom and obtain better throwing power. For IC substrates, besides achieving void-free 

fill, the electrodeposition process also needs to generate uniform film deposit across 

patterned FLS features utilizing the same process conditions. Table 12.1 summarizes the 

various via geometries and line space dimensions studied of each layer with the test 

coupon far. Each layer presents unique via geometries along with a need to deposit 

uniform copper thickness on finely patterned regions in each layer. 
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Table 12.1: Summary of via dimension and FLS structures with the test coupon 

 

 

Section 12.1 Reverse pulse waveforms with optimized additive ratio for all via 

geometries 

Experimental results so far (learning’s from Chapter IX and X) with Via5 and Via1 

geometry indicate that a low additive ratio of 0.26 continues to show improved gap fill 

performance. This low additive concentration ratio of accelerator to suppressor directly 

correlates to increased suppression needed early in the deposition process to generate 

differential fill across the top of via region and via bottom. In all these test cases, the 

concentration of the Cl- ion species in the bulk electrolyte was maintained at 50PPM. We 

discussed in Chapter II that the formation of a film of CuCl very early in the deposition 

process on the cathodic Cu seed surface is key to the adsorption of the accelerators at the 

via bottom corners and suppressor additives at via top surface. This phenomenon 

eventually leads to differential fill. In the absence of Cl- molecule no additive adsorption 

occurs1. Kondo et al2 show increase in TP with increase in Cl- concentration for via 

geometries of 30µm depth and via opening of 100µm and argue that the increased Cl- 

Plating Summary
Via bottom 

diameter
Via Depth FLS widths studied

V0 / Layer 1 25µm 25 -30µm 9µm, 13µm, 77µm, Planes

V1 / Layer 2 50µm 25µm 9µm, 13µm, 77µm, Planes

V2 / Layer 3 50µm 25µm 9µm, 13µm, 77µm, Planes

V5 / Layer 4 75µm 65µm 13µm, 77µm, Planes
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concentration enables generation of more Cu(I) thiolate species and improved TP.  In 

order to validate the hypothesis that an increased suppression is needed to optimize void-

free bottom-up fill, an additional experiment with an accelerator to suppressor additive 

ratio of 0.26 was tested across all via geometries such as Via0, Via1, Via2, Via5. This 

experiment was conducted with the concentration of the Cl- species increased from 

50PPM to 80PPM.  Bulk concentration of the copper was maintained at 65g/l. Figure 

12.2 shows the 3D X-ray image of a stacked via with various via geometry with the 

bottom layer as Via0 and Via1, Via 2 and Via5 stacking on top in that order. 

Electrodeposition was performed with the electrolyte condition described above with the 

bath temperature set at 40°C. Flash Cu deposition was performed to prevent seed 

dissolution and via fill deposition was then performed with reverse pulse waveform #3 

that was classified as high Cu deposition rate in chapter X for via geometry Via0, Via1 

and Via2. It is to be noted here that Via1 and Via2 are identical geometries. For Via5 

geometry, reverse pulse waveform #2b with low copper deposition rate was utilized. As 

shown with the 3D X-ray image in Figure 12.2, the via stack shows completely filled 

via’s without any entrapped voids across all Via geometry.  

 

Section 12.2 Results and discussion with non-uniform deposition across all via 

geometry 

A high throwing power with the via bottom plating at an increased deposition rate than 

via top leads to void-free fill and this phenomenon can be established with the 

incorporation of  reverse pulse methodology. IC substrates have large via sizes that 
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require a strong reverse pulse waveform with high reverse charge to enable bottom-up 

fill. In the absence of strong leveler or other additive species to arrest the accelerated 

growth of copper, bottom-up fill process is likely to continue uncontrollably leading to a 

phenomenon termed as “momentum plating”. Momentum plating causes non-uniform 

metal deposit across finely patterned regions. For IC substrates, there is a strong need to 

establish uniform deposit thickness in patterned FLS regions in conjunction with enabling 

gap fill of via’s. Optimization of reverse pulse waveform to arrest momentum plating and 

enabling uniform deposition is therefore critical to achieve a reliable IC substrate 

package. 
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Figure 12.1: SEM Micrograph of various via geometry (a) Via 0, (b) Via 1 (c) Via 
5 and (d) stacked via of the test coupon obtained after electrodeposition with 

reverse pulse methodology at 36°C bath temperature and 25g/l of bulk Cu2+ ions, 
with an additive ratio of 0.75 and Cl- at 50PPM 

 

 

Figure 12.2: Three dimensional X-ray image of stacked via of the test coupon obtained  
after electrodeposition with reverse pulse methodology at  40°C bath temperature and 

65g/l of bulk Cu2+ ions, with an additive ratio of 0.26 and Cl- at 80PPM 
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For this reason, a balance needs to be reached with an optimization to reverse pulse 

current density and duration to obtain uniform copper deposit wherein the variation in 

thickness of the feature is minimized. This needs to happen while ensuring the void 

entrapment inside the via region is prevented.  Recapturing the learning’s from chapter 

IX, although void-free fill is attained with the incorporation of reverse pulse waveform #2 

for via0 and via1 geometries, incorporation of a reverse pulse amplitude of 40ASD for 

4ms duration with this waveform, provides highly non-uniform copper surface with “ski 

sloped” pads as shown in Figure 12.3a. Fine trace and large pad regions tend to plate at a 

different rate. Fine trace regions plate tend to plate thick while the surrounding large pad 

regions show significantly lower thickness. Non-uniform “ski slope” topography is also 

observed with the large pads. Figure 12.3a and 12.3b show a qualitative contour plot of 

the non-uniformity observed on the surface with the thickness of the finer 9µm trace 

regions being much higher than the surrounding. The shape of the surrounding pads is 

also not planar with the establishment of momentum plating with these large reverse 

pulse amplitudes as shown in Figure 12.3a for Via0, Layer 1 and Figure 12.3b for Via5, 

Layer 4. Figure 12.3c show the profilometer measured deposit thickness across different 

features for each via layer deposition with reverse pulse waveform #2. 
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Figure 12.3: (a) Thickness contour map of Layer 1 with reverse pulse waveform # 
2, additive ratio of 0.75, 36°C bath temperature and 65g/l bulk Cu2+ concentration 
(b) Thickness contour map of Layer 4 with reverse pulse waveform # 2, additive 
ratio of 0.75, 36°C bath temperature and 65g/l bulk Cu2+ concentration (c) 
Profilometer thickness measurement of all features at Layers 1,2,3,4 with additive 
ratio of 0.75, 36°C bath temperature and 65g/l bulk Cu2+ concentration 

 

Section 12.3 Uniform FLS plating with void-free fill across all via geometry 

In order to address the large ski slope and non-uniform deposit observed with reverse 

pulse waveform #2 and to preserve the void-free gap fill capability that was previously 

established, a milder reverse pulse waveform # 3 was tested for Via0 and Via1 geometry. 

The goal was to generate uniform FLS plating along with void-free fill.  These reverse 

pulse waveforms were tested with an optimized additive ratio of 0.26 along with the bath 

temperature at 40°C and the bulk concentration of Cu2+ maintained at 65g/l. This 

condition provided void-free fill across via0 and via1 geometry as shown in Figure 12.2 

earlier. As shown in Figure 12.4a, the contour maps of test coupons plated with the 

optimized additive ratio of 0.26 along with reverse pulse waveform #3 exhibits very 

uniform trace and pad regions with minimal variation in plating deposit thickness. Non-
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uniform “ski slope” profile is also eliminated. Figure 12.4b shows the contour map of 

Layer 4, Via5 geometry. Via5 geometry was tested with reverse pulse waveform #2b that 

deposits at low deposition rate due to the presence of glass cloth fiber. It’s also notable 

that very fine feature of 9µm was not included in the coupon design for this layer.  The 

rest of the parametric conditions such as electrolyte concentrations, additive ratios and 

bath temperature were kept identical to the earlier testing. As shown in Figure 12.4a and 

12.4b, the shape of the surrounding pads looks planar and uniform.  

 

Figure 12.4: (a) Thickness contour map with reverse pulse waveform # 3 
waveform at layer1 with optimized additive ratio of 0.26 at 40°C bath temperature 
and 65g/l bulk Cu2+ concentration (a) Thickness contour map with reverse pulse 
waveform # 2b waveform at layer4 with optimized additive ratio of 0.26 at 40°C 
bath temperature and 65g/l bulk Cu2+ concentration (c) Profilometer thickness 
measurement of all feature regions at different via layers with optimized additive 
ratio of 0.26 at 40°C bath temperature and 65g/l bulk Cu2+ concentration 

 

Figure 12.3c show the profilometer measured deposit thickness across different features 

for each via layer deposition with reverse pulse waveform #2. The measured features 

were at the identical location as the data reported in in Figure 12.3 with reverse pulse 

waveform # 2.  A quick comparison of thickness range as plotted in Figure 12.5 shows 
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that the non-uniformity in thickness (range) was reduced significantly with the 

introduction of a milder reverse pulse waveform and optimized additive ratio at a bath 

temperature of 40°C (orange line, Series #2) compared to a high amplitude reverse pulse 

waveform operating with a higher additive ratio and 36°C bath temperature (blue line, 

Series #1). By enabling an optimized reverse pulse plating methodology, low cost and 

high yield plating process is delivered for substrate plating industry. 

 

Figure 12.5: Profilometer thickness comparison of all feature regions at different 
via layers between (#1) and (#2) reverse pulse waveforms 

 

Section 12.4 Microstructure characterization with optimized additive ratio 

 
Microstructure characterization was previously performed (results shown in Chapter #  

VIII) for 36°C and 48°C bath temperatures with an additive ratio of 0.75 to show grain 

size morphology evolving with reduced bath temperature. A reverse current density of 

10ASD for 2ms duration was utilized to generate the films for such analysis. To perform 

an identical comparison, the same reverse pulse waveform and magnitude was utilized 
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for the new parametric conditions that is identified. The additive ratio was modified to 

0.26 and bath temperature increased to 40°C to generate the sample. Bulk concentration 

of the Cu2+ ions was maintained at 65g/l.  An electro-less copper seed that has a preferred 

(220) orientation with the thickness measured at 1000A0 was utilized as the surface upon 

which electrodeposited Cu is built.  EBSD (Electron back scatter diffraction) analysis 

was performed to ascertain the difference in grain sizes.  The data obtained with EBSD 

measurements are shown in Figure 12.6. Earlier results obtained with 36°C and 48°C are 

added here for a comparison. Electron Back-scatter diffraction data confirms that samples 

electrodeposited with 40°C bath temperature with an additive ratio of 0.26 show 

intermediate grain sizes compared to those plated at 36°C and 48°C bath temperature 

with an additive ratio of 0.75. Pole diagrams are shown on the left side of the figure for 

all test cases. Mostly, the new sample (Leg #1) also shows no preferred orientation but 

random orientation. 
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 Figure 12.6: EBSD of electrodeposited copper after 180°C bake with 65g/l of 
bulk Cu2+ ion and 10ASD reverse current at a) 36°C with additive ratio of 0.75, b) 

48°C with additive ratio of 0.75, c) Leg 1 with 40°C bath temperature and 
additive ratio of 0.26 

 

XRD analysis was performed to compare texture and morphology differences for the 

latest sample generated at the new optimized additive ratio and 40°C bath temperatures, 

Figure 12.7 shows the summarized data obtained after XRD analysis. PANalytical XPert 

Pro MRD system with X-ray wavelength CuKα of 1.54nm operating at 45kV currently at 

LeRoy Eyring Center at Arizona State University was utilized for this measurement.  . 

Earlier results obtained with 36°C and 48°C are added here for a comparison. As shown 

in Figure 12.7, a strong (111) preferential orientation is observed for 36°C (86%) and a 

slightly reduced (111) orientation (66%) was observed for 48°C. The leg #1 sample 

generated at 40°C with the optimized additive ratio of 0.26 shows roughly uniform 
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presence of all orientations including (111), (200) (220) and (311) with a minor texturing 

of (111). 

 
 

Figure 12.7: Texture of electrodeposited copper after 180°C bake with 65g/l of 
bulk Cu2+ ion and 10ASD reverse current at a) 36°C with additive ratio of 0.75, b) 

48°C with additive ratio of 0.75, c) Leg 1 with 40°C bath temperature and 
additive ratio of 0.26 

 

Lastly, intrinsic stress values were computed from XRD analysis using the conventional 

sin2Ψ method. 3,4. Earlier results obtained with 36°C and 48°C are added here for a 

comparison.  The calculated stress numbers are plotted in Figure 12.8.  
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Figure 12.8: Residual stress chart of electrodeposited copper after 180°C bake 
with 65g/l of bulk Cu2+ ion and 10ASD reverse current at a) 36°C with additive 

ratio of 0.75, b) 48°C with additive ratio of 0.75, c) Leg 1 with 40°C bath 
temperature and  additive ratio of 0.26 

 

Figure 12.8 confirms that samples electrodeposited with 40°C bath temperature with an 

optimized additive ratio of 0.26, exhibit intermediate stress values compared to those 

plated at 36°C and 48°C bath temperature. A small tensile stress was observed for all 

orientation with the new leg 1 condition.  

 

Section 12.5 Summary 

Void-free fill across various all via geometries is demonstrated. A low additive ratio of 

0.26 continues to show improved gap fill performance across all via geometry. This low 

additive ratio directly correlates to increased suppression needed in the deposition 

process to generate differential fill across via top and via bottom. Strong reverse pulse 
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waveform show momentum plating with fine traces plating thick and the deposit of pad 

and plane regions plating non-uniformly with a “ski slope” profile.  A balanced approach 

with reduced reverse currents enables both super fill across all via geometries & prevents 

“pinch off” / key-hole void formation. With such waveforms, momentum plating is 

arrested and thickness of the multilayer deposit stack is kept uniform. Microstructure 

evaluation shows random crystal orientations observed with the electrodeposited film 

with nominal intermediate grain size to those generated at 36°C and 48°C. A low intrinsic 

stress is also observed at 40°C with the low additive ratio.  In this study, a capable 

reverse pulse methodology is identified to establish uniform copper thickness on large 

pads (77µm - 200µm) and fine traces (9µm – 50µm). This concludes this dissertation 

study.  In chapter XIII, we summarize all the learnings obtained from this study. 
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CHAPTER XIII 

CONCLUSION  

In summary, manufacturing cost for reliable package continues to trend up. Such high 

package costs could be offset by focusing our research and development activities on 

developing critical manufacturing process steps in the make-up of the packages. 

Furthermore, today’s market requirement is driving an increased desire to scale 

packaging technologies.  To enable that, an increase in interconnect density needs to 

happen. Such capabilities needs to exist without significantly increasing the overall cost 

of the packages and improve yield. Thus, high density interconnects with IC substrates 

require development of advanced processing technologies to establish advanced 

capabilities and minimize the cost of manufacturing. The focus of this work is to reduce 

cycle time and enabling advanced fill performance and improved deposit quality for 

electrodeposition of Cu. Traditional approaches for gap fill involved additive based 

bottom-up fill with reduced deposition rates and long process time to avoid void 

entrapment and bottom-up fill. In this study, we have demonstrated a capable reverse 

pulse methodology along with the presence of additives to achieve void-free fill and 

uniform copper deposit in high density trace regions.  Early into the study, significant 

challenges were encountered for all via geometry that was tested.  

For Via0 and Via1 geometry with via depths on the order of ~25 µm, reverse 

pulse methodology was experimented at very high deposition rate to reduce the overall 

deposition time. A void-free gap fill process was also established at such high deposition 

rates. Limitations of diffusion transport process leading to poor throwing power with the 
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via bottom plating at much lower rate than via top region was identified. The bulk 

concentration of electrolyte was significantly increased to offset this limitation. With the 

dilution in concentration gradient minimized, incorporation of reverse pulse current 

density of 40ASD enabled void-free gap fill for both V0 and V1 geometry. Higher 

reverse pulse current processes exhibit non-uniform surface deposit. Finely patterned 

traces show higher thickness while the deposit on pad and plane regions show relatively 

lower thickness and deposit non-uniformly with a “ski slope” profile. Therefore, reverse 

pulse current density was optimized to 24ASD from 40ASD to attain void-free fill and 

enable reasonably uniform pattern plating of fine traces (9µm – 50µm) for such 

geometries.  

2D simulation efforts was used to showcase the mass transfer limitation and the 

presence of large concentration gradient with Cu2+ ion depletion at the via bottom for 

Via0 geometry. Increase in bulk concentration of Cu2+ ion in the electrolyte minimizes 

the differential gradient seen in Cu2+ ion distribution inside the via. We have shown that 

incorporation of off-time with off time durations longer than the diffusion time are 

needed for the Cu2+ ion to reach the via bottom and enable improved TP and achieve 

void-free fill. More importantly, this study proves with experimental and simulation 

efforts that, with the incorporation of reverse pulse methodology, additional Cu2+ ions are 

generated through dissolution of some of the freshly deposited copper and helps to 

quickly offset for any depletion of the Cu2+ ion and enable a differential gradient for fill. 

The reverse pulse durations are on much smaller time scales than the required off-time to 

establish similar concentration gradient profile. Validation of the simulation effort with 
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the 1D simulation effort of West et al1 exhibits a close match with the simulation 

predicting the critical TP needed for void-free behavior to be on the order of ~0.6 or 

higher for Via0 geometry.  

 Grain size, texture and intrinsic stress analysis of the electrodeposited copper 

films indicate significant reduction in grain size and variation in intrinsic stress direction 

from tensile to compressive at higher bath temperature. The copper films has a preferred 

(111) orientation and nano-indentation studies prove lower hardness at reduced 

temperature. Such capabilities allow us to tune the deposition flatness / warpage control 

on the substrate package layers and enable ease of assembly manufacturing and improved 

package reliability 

Early in the study, we found that the application of reverse pulse methodology to 

enable void-free gap fill on Via0 and Via1 geometry was not adequate for large size via5 

geometries due to the presence of  fiber protrusions inside the via. Optimization of 

additive ratio with a 48 leg DOE with six different concentrations of additives with high 

and low reverse pulse magnitudes and different bath temperatures indicates strong 

correlation of improved throwing power with reduced concentration of accelerator and 

increased concentration of leveler species. It was noted that the additive ratio value needs 

to be small to attain increased throwing power. Void-free fill was generated for V5 with 

these optimized ratios. These learning’s were then extended to Via0 and Via1 geometry 

to show case a capable gap fill methodology across all via geometries with a single bath 

composition.  
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Lastly, a simulation effort with extrapolation of three additive model to the 

present system indicates similar trend as those observed with experimental studies. 

Further optimization of  the additive concentrations with the present system is unlikely to 

yield any further improvement in throwing power due to the limitations in surface 

coverage with PEG only suppression. The result of modeling effort enables us to 

recommend incorporation of leveling agents such as JGB to improve the TP>1 for these 

systems. 
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CHAPTER XIV 

FUTURE WORK 

Based on the various key learning’s established from the study thus far and the 

fundamental limitation that existed in designing some of the experiment in the existing 

study we propose the following additional work scope to further optimize the gap fill 

process for IC substrate applications. We believe extrapolation of such efforts could lead 

to accommodate deposition process at higher current density and improved TP which in 

turn leads to shortened process time and increased factory output. 

Section 14.0 Future work: Incorporation of leveler as a third additive component 

In the present study, incorporation of large reverse pulse magnitudes (>24ASD) could not 

happen due to the establishment of momentum plating and generation of non-uniform 

copper deposit with the fine traces plating thicker than the surrounding plane regions. An 

attenuated reverse waveform was needed to balance the uniformity of the deposit and 

enable void-free gap fill inside via. We believe the presence of a strong leveling agent in 

the additive system is likely to offset this behavior. Reid et al1 show that the activity of a 

charged leveler species can significantly attenuate the surface deposit and prevent a non-

uniform deposit (ski sloped, non-uniform plating). Furthermore, his efforts for additive 

optimization to achieve improved bottom-up fill indicate that increased suppression is 

needed at via top regions to block the available surface sites for copper reduction 

reactions. PEG molecules act as surface blocking sites until displaced by the accelerator. 

In our simulation effort, the addition of a small amount of JGB (Leveler molecule) shows 

rapid increase in overall suppression and higher throwing power compared to suppression 
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with PEG molecules only. The role of JGB (leveler) is defined similar to PEG, wherein it 

blocks sites of Cu reduction but is not affected by SPS activity likely due to the design of 

the molecular species. Larger molecular weight species are likely to have diffusion 

limitation and enable differential surface blocking effect, with more coverage at the via 

top than at the bottom leading to significantly improved TP. 

 Thus, introduction of a well-designed leveler species for the present applications 

enables multiple advantages. Foremost, they acts as surface blocking sites similar to PEG 

and enable uniform pattern deposit. The increased suppression is also likely to enable 

better TP due to the increased suppression at the via top region. Presence of a strong 

leveler also enables incorporation of larger reverse pulse current density to establish 

momentum plating and improved throwing power with the known advantage that the 

presence of leveler species can attenuate the surface non-uniformity due to momentum 

plating.  

Section 14.1 Future work: Identify the role of Cu+ species in IC substrates 

Recently Hayashi et al 2,4,5 reported that reverse pulse enables differential distribution of 

Cu1+ at the top and bottom of via which in turn enables the via bottom region to plate at a 

much faster rate than the via top leading to very high throwing power.  We had discussed 

earlier that Cu2+ reduction to Cu metal is a two-step process with the formation of Cu1+ 

intermediate.  In order to establish a higher throwing power with reverse pulse deposition 

methodology, Hayashi argues that a differential distribution of Cu1+ inside the via region 

needs to be established. During the application of the reverse pulse waveform which 

immediately follows a forward pulse deposition step, dissolution of Cu from the metal 
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surface is likely to happen generating excess Cu1+ species rather than Cu2+ species.  

Hayashi et al2,4,5 explains and validates that the concentration of this excess Cu1+ 

generated during reverse pulse is much more at the via bottom than via top. The 

underlying assumption being that Cu1+ generated at the via top has the propensity to 

easily diffuse away than at the via bottom. Furthermore Cu1+ generated at the via top can 

be easily oxidized with the addition of some oxidizers such as O2 or by increasing the 

dissolved oxygen level in the electrolyte solution 2-5.  Cu1+ generated at the via top can be 

easily oxidized back to Cu2+ and gets consumed while the Cu1+ concentration in the via 

bottom remains unchanged. This excess generation of Cu1+ in the via bottom leads to 

increased deposition rate at the via bottom than at the via top and enables super fill. In his 

work, Hayashi’s work was primarily focused on gap fill with high aspect ratio via’s. We 

believe these mechanisms can also be extended for via geometries of IC substrate 

applications and needs to be studied to further improve TP at increased deposition rates. 
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MPS 3-mercapto-1-propanesulfonate 

θ_PEG 
Active surface coverage with PEG 
molecules 

Al Aluminum 
m Amount of mass deposited 

� Angular rotation rate of the electrode 
iapp Applied current density 

AC 
Arrhenius constants for the forward 
reaction 

Ar 
Arrhenius constants for the Reverse 
reaction 

AFM Atomic Force Microscopy 
Aw Atomic Weight 

BGA Ball Grid Array 
SPS Bis(sodium sulfopropyl) disulfide 
BUF Bottom-up fill 

cbulk 
Bulk concentration of Cu2+ ions in the 
electrolyte 

Zi Charge number of the ionic species i 
CMP Chemical Mechanical Polishing 
CVD Chemical Vapor Deposition 

Cl- Chloride Ion 

CTE Coefficient of Thermal Expansion 

(∂Ci)/∂x (or) ▼Ci 
Concentration Gradient of species i 
along x direction 

�P
�� 

Concentration gradient with n 
represents the derivative taken normal 
to boundary 

C Concentration of a given species 
c Concentration of a given species 
ci Concentration of species  i 

cbulk Concentration of species at the bulk 
Cu Copper 

Cuad Copper adsorbate 
CuCl Copper Chloride 
CCL Copper Clad Film 

CuSO4.5H2O Copper sulfate pentahydrate 
CE Counter electrode 
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Cu2+ Cupric ion 

Cu+ Cuprous ion 

I Current 
i Current density 

iB (or) ibottom Current density at via bottom 
iT (or) itop Current density at via top 

CEAC mechanism 
Curvature enhanced accelerator 
coverage 

CV Cyclic Voltammetry 
DI Deionized Water 
h Depth of the via 
Di Diffusion coefficient of species i 

 Diffusion length 

tD Diffusion time 

DC Direct Current 

“d” Double layer thickness 
DFR Dry Photoresist Film 
θ_eff Effective coverage with additives 
EM Electromigration 

e- Electron 

EBSD Electron back scattered diffraction 
Ø Electrostatic potential 
k0 Equilibrium Reaction rate constant 

Erest Equilibrium Rest Potential 

I0 Exchange current 

i0 Exchange current density 
Expt # Experiment # 

exp Exponential function 

F Faradays constant 

Fe3+ Ferric ion 
FLS Fine Lines and Spaces 

ν Fluid velocity 

Ji Flux of species i 

iFWD or idep Forward current density during pulse 

TFWD or Tdep Forward pulse time duration 

FTIR Fourier transform infrared spectroscopy 
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GC Glass Cloth 

HV Hardness 

HAST Highly accelerated stress testing 

HCl Hydrochloric acid 

R Ideal Gas constant 

IHP Inner Helmholtz Plane 
I/O  Signals Input / Output signals 

IC Integrated circuit 

ƙ 
Ionic conductivity, Solution 
conductivity 

JGB Janus Green B 

JEDEC 
Joint Electron Device Engineering 
Council 

k Kinetic constant for Cu deposition 

LGA Land Grid Array 

l 
Length of the non-planar surface or Via 
depth 

LASER 
Light Amplification by Stimulated 
Emission of Radiation 

iL 
Limiting diffusion current density or 
Levich current density 

LSV Linear sweep voltammetry 

LPM Liters Per Minute 
ln Logarithmic factor 

log Logarithmic factor 

havg(t) 
Mean thickness deposited in the feature 
at given time t 

Ni Molar flux of the species i 

n No of electrons 

OCP Open Circuit Potential 
OHP Outer Helmholtz Plane 

η Overpotential 
Z - Height Package Height 

PPM Parts Per Million 

Pe Peclet Number 

PVD Physical vapor deposition 

PGA Pin Grid Array 
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PEG Polyethylene glycol 

PEI Polyethyleneimine 
PPG Polypropylene glycol 
PVP Polyvinyl pyrrolidone 

PCB Printed Circuit Board 

PWB Printed wiring board 

H+ Protons 

iAVG 

Pulse average current density 
accounting for the forward and reverse 
condition 

itotal Pulse deposition current density 

Toff Pulse deposition off time duration 

kc 
Rate constant of the forward reaction 
(Cathodic) 

kr 
Rate constant of the reverse reaction 
(Anodic) 

RE Reference electrode 

RC Delay Resistive Capacitive Delay 

iREV or idiss Reverse current density during pulse 

RP Reverse Pulse 

TREV or Tdiss Reverse pulse time duration 

RDE Rotating disc electrode 

Ra Roughness (average) 

SEM Scanning Electron Microscope 

SAP Semi-additive process 

E0 Standard electrode potential 

ΔG0 Standard free energy of reaction 

SHE Standard Hydrogen Electrode 

R-SH Sulfonate functional group 
H2SO4 Sulfuric acid 
SMT Surface Mount Technology 

α 
Symmetry factor between cathodic and 
anodic reaction 

T Temperature 
R-SO3 Thiolate functional group 

3D Three dimensional 
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TSV Through silicon via 
TP Throwing Power 
t Time 

Ttotal Total deposition time duration 
ti Transference number 

2D Two dimensional 

ASD 
Units of Current density, Ampere per 
Square Decimeter 

� Kinematic Viscosity 
vi Velocity of species i 

VCP Vertical Continuous Plater 
L Via depth 

VR Via Recess 

V0 Via0 
V1 Via1 
V2 Via2 
V5 Via5 

VMS Virgin makeup solution 

Wa Wagner number 
WE Working electrode 

XRD X-ray Diffraction 
XPS X-ray photoelectron spectroscopy 

 
 
  



 

  277 

 
APPENDIX B 

ADDITIONAL ACKNOWLEDGEMENTS 

  



 

  278 

I had tremendous support from many of my colleagues at Intel Corp and Arizona State 

University in enabling various data collection towards the success of this dissertation. 

Specifically, I would like to acknowledge the assistance of the following individuals. 

 

a) Sandeep Sane for helping to coordinate XRD data collection.   

b) Rajen Sidhu for supporting with nanoindentation and AFM measurements. 

c) Deepak Kulkarni for facilitating various brainstorm sessions on Via0    

deposition experiments 

d) Tarek Ibrahim for facilitating various brainstorm sessions on Via5 deposition 

experiments 

e) Pilin Liu for EBSD data collection. 

f) Zuoming Zhao for support with SEM cross-section measurements 

g) CC Kuo for assisting on the simulation set up and simulation runs 

h) Lab, Yield and Metrology team for various lab analysis of the electrolyte bath 

and thickness measurements and analysis support 

  



 

  279 

APPENDIX C 

COPYRIGHT PERMISSIONS 

  



 

  280 

1) Copyright Permission for Figure 1.2 from Wikipedia 
 
I, the copyright holder of this work, hereby publish it under the following licenses: 

Permission is granted to copy, distribute and/or modify this document 
under the terms of the GNU Free Documentation License, Version 1.2 or 
any later version published by the Free Software Foundation; with no 
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A 
copy of the license is included in the section entitled GNU Free 

Documentation License. 

 

This file is licensed under the Creative Commons 
Attribution-Share Alike 3.0 Unported license. 

 

You are free:  
to share – to copy, distribute and transmit the work 
to remix – to adapt the work 
Under the following conditions:  
attribution – You must attribute the work in the manner 
specified by the author or licensor (but not in any way that 
suggests that they endorse you or your use of the work). 
share alike – If you alter, transform, or build upon this 
work, you may distribute the resulting work only under the 
same or similar license to this one. 
This licensing tag was added to this file as part of the GFDL 
licensing update. 

 

This file is licensed under the Creative Commons 
Attribution 2.5 Generic license. 

 

You are free:  
to share – to copy, distribute and transmit the work 
to remix – to adapt the work 
Under the following conditions:  
attribution – You must attribute the work in the manner 
specified by the author or licensor (but not in any way that 
suggests that they endorse you or your use of the work). 

 
 

2) Copyright Permission for Figure 1.1 and 1.3 from Yole 
 



 

  281 

 
  



 

  282 

 
3) Copyright Permission for Figure 1.4, 1.5, 1.6, 1.7, 1.8 and any other content utilized 

from Intel Corporation and permission to publish the thesis 

 

 

 
 

 
4) Copyright Permission for Figure 2.2 and 2.4 from Wiley 

 
Order Completed 

Thank you for your order. 

 

This Agreement between Kousik Ganesan ("You") and John Wiley and Sons ("John Wiley 

and Sons") consists of your order details and the terms and conditions provided by John 

Wiley and Sons and Copyright Clearance Center. 

License number Reference confirmation email for license number     

License date Mar, 20 2018     

Licensed Content 
Publisher 

John Wiley and Sons     

Licensed Content 
Publication 

Wiley Books     

Licensed Content 
Title 

Fundamental Considerations     

Licensed Content 
Author 

Milan Paunovic, Mordechay Schlesinger, Dexter D. Snyder     



 

  283 

Licensed Content 
Date 

Feb 24, 2011     

    

Licensed Content 
Pages 

32     

Type of use Dissertation/Thesis     

Requestor type University/Academic     

Format Print and electronic     

Portion Figure/table     

Number of 
figures/tables 

4     

Original Wiley 
figure/table 
number(s) 

Figure 1.7, Figure 1.8, Figure 1.12, Figure 1.13     

Will you be 
translating? 

No     

Title of your thesis / 
dissertation 

Capable Copper Electrodeposition Process for Integrated Circuit - Substrate 
Packaging Manufacturing 

    

Expected completion 
date  

May 2018     

Expected size 
(number of pages) 

261     

Requestor Location Arizona State University 
3652 E MEAD Dr 
 
 
Chandler, AZ 85249 
United States 
Attn: Arizona State University 

    

Publisher Tax ID EU826007151     

Billing Type Invoice     

Billing address Arizona State University 
3652 E MEAD Dr 
 
 
Chandler, AZ 85249 
United States 
Attn: Arizona State University 

    

Total 0.00 USD     

  

   

5) Copyright Permission for Figure 2.3 from Wiley 
 

JOHN WILEY AND SONS LICENSE 

TERMS AND CONDITIONS 

Mar 20, 2018 

This Agreement between Arizona State University -- Kousik Ganesan ("You") 
and John Wiley and Sons ("John Wiley and Sons") consists of your license 
details and the terms and conditions provided by John Wiley and Sons and 

Copyright Clearance Center. 

License Number 4312850743673 



 

  284 

License date Mar 19, 2018 

Licensed Content 
Publisher 

John Wiley and Sons 

Licensed Content 
Publication 

Wiley Books 

Licensed Content Title Electrochemical Methods: Fundamentals and 
Applications, 2nd Edition 

Licensed Content Author Allen J. Bard Larry R. Faulkner 

Licensed Content Date Dec 1, 2001 

Licensed Content Pages 1 

Type of use Dissertation/Thesis 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 2 

Original Wiley 
figure/table number(s) 

Following Figures: 1.3.6 1.2.3 

Will you be translating? No 

Title of your thesis / 
dissertation 

Capable Copper Electrodeposition Process for Integrated 
Circuit - Substrate Packaging Manufacturing 

Expected completion date May 2018 

Expected size (number of 
pages) 

261 

Requestor Location Arizona State University 
3652 E MEAD Dr 

Chandler, AZ 85249 
United States 

Attn: Arizona State University 

 

Publisher Tax ID EU826007151 

Total 0.00 USD   

 
6) Copyright Permission for Figure 3.3 and Figure 3.8 from Taylor & Francis Group 

 
 



 

  285 

Confirmation Number: 11705954 

Order Date: 03/20/2018 

Payment Information 

Kousik Ganesan  
Arizona State University  
kousik.ganesan@asu.edu  

+1 (480) 862-5201  
Payment Method: n/a 

Order Details 
Handbook of semiconductor manufacturing technology 

Order detail ID: 71075416 
Order License Id: 4313071169018 

ISBN: 9781574446753 
Publication Type: Book 

Publisher: TAYLOR & FRANCIS GROUP LLC 
Author/Editor: DOERING, ROBERT 

Permission Status:  Granted 
Permission type: Republish or display content 

Type of use: Thesis/Dissertation 
 
 

Requestor type Academic institution 
Format Print, Electronic 
Portion image/photo 

Number of images/photos 

requested 
2 

The requesting 
person/organization 

Kousik Ganesan 

Title or numeric reference of 

the portion(s) 
Figure 16.15 and Figure 16.19 

Title of the article or chapter the 
portion is from 

Damascene Copper Electroplating 

Editor of portion(s) Robert Doering 
Author of portion(s) Jonathan Reid 
Volume of serial or 

monograph 
2nd Ed 

Page range of portion 16-1 to 16-36 
Publication date of portion 05/01/2018 

Rights for Main product 
Duration of use Life of current edition 

Creation of copies for the 
disabled 

no 

With minor editing privileges no 



 

  286 

For distribution to Worldwide 
In the following language(s) Original language of publication 

With incidental promotional use no 
Lifetime unit quantity of new 

product 
Up to 499 

Title 
Capable Copper Electrodeposition Process for 

Integrated Circuit - Substrate Packaging Manufacturing 
Instructor name n/a 
Institution name n/a 

Expected presentation date May 2018 
Attachment  

Note: This item will be invoiced or charged separately through CCC's RightsLink 
service.  More info $ 0.00 

This is not an invoice. 

Total order items:  1 

Order Total: 0.00 USD 

Confirmation Number: 11705954 

 

 
 

7) Copyright Permission for Figure 1.2 and Figure 2.11 and Figure 2.12 from Springer 
Nature 

 
 

Order Completed 

Thank you for your order. 
 
This Agreement between Arizona State University -- 
Kousik Ganesan ("You") and Springer Nature 
("Springer Nature") consists of your license details 
and the terms and conditions provided by Springer 
Nature and Copyright Clearance Center. 

Your confirmation email will contain your order 
number for future reference. 

printable details  

License Number 4313080732275     
License date Mar 20, 2018     

Licensed Content 
Publisher 

Springer Nature     

Licensed Content 
Publication 

Springer eBook     



 

  287 

Licensed Content Title Copper Electrodepositon     
Licensed Content Author Masayuki Yokoi     

Licensed Content Date Jan 1, 2014     
Type of Use Thesis/Dissertation     

Requestor type academic/university or 
research institute 

    

Format print and electronic     

Portion figures/tables/illustrations     
Number of 
figures/tables/illustrations 

3     

Will you be translating? no     
Circulation/distribution <501     

Author of this Springer 
Nature content 

no     

Title Capable Copper 
Electrodeposition Process 
for Integrated Circuit - 
Substrate Packaging 
Manufacturing 

    

Instructor name n/a     
Institution name n/a     

Expected presentation 
date 

May 2018     

Portions Figure 1.2, Figure 2.12, 
Figure 2.11 
 

    

Attachment 
 

    
Requestor Location Arizona State University 

3652 E MEAD Dr 
 
 
Chandler, AZ 85249 
United States 
Attn: Arizona State 
University 

    

Billing Type Invoice     



 

  288 

Billing address Arizona State University 
3652 E MEAD Dr 
 
 
Chandler, AZ 85249 
United States 
Attn: Kousik Ganesan 

    

Total 0.00 USD     
 

 
8) Copyright Permission for Figure 7.10 from Journal of the Electrochemical Society 

 
Confirmation Number: 11705964 

Order Date: 03/20/2018 
Payment Information 

Kousik Ganesan  
Arizona State University  
kousik.ganesan@asu.edu  

+1 (480) 862-5201  
Payment Method: n/a 

Order Details 

Journal of the Electrochemical Society 
Order detail ID: 71075494 

Order License Id: 4313081285768 
ISSN: 1945-7111 

Publication Type: e-Journal 
Volume: 

Issue: 
Start page: 

Publisher: Electrochemical Society 
Author/Editor: Electrochemical Society 

Permission Status:  Granted 
Permission type: Republish or display content 
Type of use: Republish in presentation/slides 

View details 

Requestor type Not-for-profit entity 

Format Print, Electronic 

Portion chart/graph/table/figure 

Number of charts/graphs/tables/figures 1 

The requesting person/organization Kousik Ganesan 

Title or numeric reference of the 
portion(s) 

Figure 7 

Title of the article or chapter the portion 
is from 

Pulse Reverse Copper Electrodeposition in High Aspect Ratio Trenches and 
Vias 

Editor of portion(s) N/A 

Author of portion(s) Alan C. West 

Volume of serial or monograph 145 

Issue, if republishing an article from a 
serial 

9 

Page range of portion 3070-3074 

Publication date of portion 1998 



 

  289 

Rights for Main product 

Duration of use Life of current edition 

Creation of copies for the disabled no 

With minor editing privileges no 

For distribution to Worldwide 

In the following language(s) Original language of publication 

With incidental promotional use no 

Lifetime unit quantity of new product Up to 499 

Title Capable Copper Electrodeposition Process for Integrated Circuit - Substrate 
Packaging Manufacturing 

Client / Sponsor Arizona State Univeristy 

Expected presentation date May 2018 

Attachment 
 

Note: This item will be invoiced or charged separately through CCC's RightsLink service.  More info $ 0.00 
This is not an invoice. 

Total order items:  1 
Order Total: 0.00 USD 

  



 

  290 

9) Copyright Permission for Figure 3.9 from Dr. Moffat.T 
 

 
 


