
 

 

 

 

 

Three Essays on Correlated Binary Outcomes: Detection and Appropriate Models  

by 

Kyle Irimata 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved March 2018 by the 

Graduate Supervisory Committee:  

 

Jeffrey R. Wilson, Chair 

Jennifer Broatch 

Ioannis Kamarianakis 

Ming-Hung Kao 

Mark Reiser 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

May 2018  



 

 

  i 
 

ABSTRACT 

   

Correlation is common in many types of data, including those collected through 

longitudinal studies or in a hierarchical structure. In the case of clustering, or repeated 

measurements, there is inherent correlation between observations within the same group, 

or between observations obtained on the same subject. Longitudinal studies also 

introduce association between the covariates and the outcomes across time. When 

multiple outcomes are of interest, association may exist between the various models. 

These correlations can lead to issues in model fitting and inference if not properly 

accounted for. This dissertation presents three papers discussing appropriate methods to 

properly consider different types of association. The first paper introduces an ANOVA 

based measure of intraclass correlation for three level hierarchical data with binary 

outcomes, and corresponding properties. This measure is useful for evaluating when the 

correlation due to clustering warrants a more complex model. This measure is used to 

investigate AIDS knowledge in a clustered study conducted in Bangladesh. The second 

paper develops the Partitioned generalized method of moments (Partitioned GMM) 

model for longitudinal studies. This model utilizes valid moment conditions to separately 

estimate the varying effects of each time-dependent covariate on the outcome over time 

using multiple coefficients. The model is fit to data from the National Longitudinal Study 

of Adolescent to Adult Health (Add Health) to investigate risk factors of childhood 

obesity. In the third paper, the Partitioned GMM model is extended to jointly estimate 

regression models for multiple outcomes of interest. Thus, this approach takes into 

account both the correlation between the multivariate outcomes, as well as the correlation 
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due to time-dependency in longitudinal studies. The model utilizes an expanded weight 

matrix and objective function composed of valid moment conditions to simultaneously 

estimate optimal regression coefficients. This approach is applied to Add Health data to 

simultaneously study drivers of outcomes including smoking, social alcohol usage, and 

obesity in children. 
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CHAPTER 1 

INTRODUCTION 

Binary outcome data are collected in many disciplines and present unique problems as 

compared to the analysis of continuous outcome data. For instance, researchers may be 

interested in the study of hospital readmission for patients. In addition to collecting 

patient information on readmission, researchers may also obtain measurements on 

covariates such as age, weight, gender or number of diseases. Beyond the difficulties 

introduced by the type of outcome, such studies can also involve various types of 

correlation that can further complicate the analysis. One such type of correlation exists 

between the responses taken on the subjects. These associations, referred to as intraclass 

correlation, can arise due to repeated measurements on the same subjects, similarities that 

exist between subjects, or because of hierarchical data sampling structures. In the case of 

hierarchical data, correlation can exist at multiple levels of clustering. For example, in the 

study of hospital readmission, repeated measurements may be taken on the same patients, 

leading to associations between their observations. The patients may in turn have 

similarities in their outcomes if they have the same primary care physician, which 

introduces an additional level of association. Correlation may also exist between the 

outcome and the covariates across time, resulting in time-dependent covariates. When 

measurements are collected over time, there can sometimes be either a lagged or fall-off 

effect of the covariate on the outcome as the study progresses. For the hospital 

readmission example, the number of diseases a patient has can affect his or her 

probability of readmission. However, the number of diseases can continue to affect the 

patient in the future as well. The presence of either type of association can have a 
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significant impact on the fit of logistic regression models, which often rely on the 

assumption of independence. 

1.1. Generalized Linear Models 

Generalized linear models are well known for data with independent observations, with 

an assumed distribution from the exponential family. Consider a random variable 𝑦𝑖 such 

that 𝑖 = 1, . . , 𝑛; with a distribution from the exponential family, so the log-likelihood 

function is of the form (Smyth 1989), 

𝑙(𝜃𝑖 , 𝜙𝑖
−1, 𝜔𝑖: 𝑦𝑖) = ∑[𝜔𝑖𝜙𝑖

−1 (𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)) − 𝑐(𝑦𝑖 , 𝜔𝑖𝜙𝑖
−1)]

𝑖

 

where  

𝑐(𝑦𝑖 , 𝜔𝑖𝜙𝑖
−1) = 𝜔𝑖𝜙𝑖

−1𝑎(𝑦𝑖) −
1

2
𝑠(−𝜔𝑖𝜙𝑖

−1) + 𝑡(𝑦𝑖) 

and 𝜙𝑖 is unknown and the functions 𝑎(𝑦𝑖) and 𝑏(𝜃𝑖) are known. 

For the generalized linear model, it is useful to consider the marginal form, which 

relates the effect of some number of covariates to the mean response. Denote the mean by 

𝜇𝑖 = 𝐸(𝑌𝑖) = 𝑏′(𝜃𝑖) and the 𝑣𝑎𝑟(𝑦𝑖) = 𝜎𝑖
2 = [𝜔𝑖𝜙𝑖

−1𝑣(𝜇𝑖)] where 𝑣(𝜇𝑖) = 𝑏′′(𝜃𝑖) and 

𝑏′(∙) is the first derivative and 𝑏′′(∙) is the second derivative of 𝑏(∙). The marginal model 

is given by 

𝑔(𝜇𝑖) = 𝒙𝒊′𝜷 

where 𝒙𝒊
′ = (𝑥1, … . . , 𝑥𝑝)′ is the vector of covariates and 𝜷 is the vector of regression 

parameters. The link function 𝑔 is a monotone and differentiable function, which serves 

as a transformation on the mean response (Donner 1986).  



 

 

3 

 

The logistic regression model, which utilizes a logit link, is a type of generalized 

linear model and is useful in the analysis of binary data. It relates the log-odds, or logit of 

the outcome to some number of predictors through regression parameters. We express the 

logistic regression model as 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖 = 1|𝜷)) = 𝒙𝒊′𝜷. 

The generalized linear model, and thus in turn the logistic regression model, requires the 

assumption that all observations are independent, which is often not the case. 

1.2. Generalized Linear Mixed Models 

Generalized linear mixed models are an extension of the traditional generalized linear 

model and incorporate random effects to account for cluster level effects, or correlation in 

the data. Similar to the generalized linear model, the generalized linear mixed model 

utilizes a link function to relate a response to some number of covariates. A logit link is 

most commonly utilized in the case of binary outcome data. 

Consider the hierarchical logistic regression model with three levels where there 

are random effects at two of those levels such that  

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌𝑖𝑗𝑘 = 1|𝜷, 𝜇𝑖 , 𝜇𝑖𝑗)) = 𝒙𝒌′𝜷 + 𝜇𝑖 + 𝜇𝑖𝑗 

where μi and μij are normally distributed, each with mean 0 and respective variances 𝜎𝐴
2 

and 𝜎𝐵(𝐴)
2  (where 𝜎𝐴

2 denotes the variance within the primary clusters and 𝜎𝐵(𝐴)
2  denotes 

the variance of the secondary units within the primary units) and where 𝒙𝒌′ =

(𝑥1𝑘, … , 𝑥𝑝𝑘)′ is the vector of covariates at the first level of the observational units and 𝜷 

is the corresponding vector of regression parameters (Donner 1986). It is customary to 
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assume that, conditioned on 𝜇𝑖 and 𝜇𝑖𝑗, the likelihood for the ith subject involves 

integrating out the random intercept and is given by: 

𝐿𝑖 = 𝐿(𝑌𝑖𝑗𝑘 = 1|𝜷, 𝜎𝐴
2, 𝜎𝐵(𝐴)

2 ) 

= ∬∏𝑃𝑟(𝑌𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘|𝜷, 𝜇𝑖 , 𝜇𝑖𝑗)𝛷𝜎𝐴
2(𝜇𝑖)𝛷𝜎𝐵(𝐴)

2 (𝜇𝑖𝑗)𝑑𝜇𝑖𝑑𝜇𝑖𝑗

𝑛𝑖𝑗

𝑘

 

= ∬∏𝑃𝑟(𝑌𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘|𝜷, 𝑧𝑖 , 𝑧𝑖𝑗)𝛷(𝑧𝑖)𝛷(𝑧𝑖𝑗)𝑑𝑧𝑖𝑑𝑧𝑖𝑗

𝑛𝑖𝑗

𝑘

 

where 𝜇𝑖 = 𝜎𝐴𝑧𝑖, 𝜇𝑖𝑗 = 𝜎𝐵(𝐴)𝑧𝑖𝑗, 𝑧𝑖~ 𝑁(0,1) and 𝑧𝑖𝑗~ 𝑁(0,1), which are obtained by 

transforming from 𝜇𝑖~ 𝑁(0, 𝜎𝐴
2) and 𝜇𝑖𝑗~ 𝑁(0, 𝜎𝐵(𝐴)

2 ), each represented respectively by 

𝛷𝜎𝐴
2   and 𝛷𝜎𝐵(𝐴)

2 . As we cannot take the joint likelihood through the product of the 𝑌𝑖𝑗𝑘 as 

they are not independent, we utilize the conditional distribution. Thus, the total likelihood 

for the marginal is the product of these terms resulting in 𝐿 = ∏ 𝐿𝑖
𝑛
1  for all the 

observations. The maximum likelihood estimates are often obtained through numerical 

integration, such as through Gauss-Hermite polynomials (Lesaffre and Spiessens 2001). 

1.3. Accounting for Correlation 

In this work, we introduce methods for measuring and accounting for correlation in 

binary outcome data. We provide a method for measuring intraclass correlation in the 

presence of multiple levels of nesting in hierarchical data. This approach is useful for 

identifying when the association between responses merits the use of a more complex 

model, in practice. We also provide a new method, called the Partitioned generalized 

method of moments (Partitioned GMM), for modeling time-dependent covariates in 



 

 

5 

 

longitudinal studies. The Partitioned GMM utilizes valid moment conditions to separately 

estimate the effect of time-dependent covariates on the outcome both within the same 

time-period as well as at lagged time-periods. Finally, we develop a simultaneous GMM 

model with partitioned coefficients to account for the correlation between multiple 

responses of interest, while also estimating the potentially varying effects of time-

dependent covariates on each response. 
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CHAPTER 2 

IDENTIFYING INTRACLASS CORRELATION NECESSITATING HIERARCHICAL 

MODELING 

Kyle M. Irimata, Jeffrey R. Wilson 

Abstract 

Hierarchical binary outcome data with three levels, such as disease remission for 

patients nested within physicians, nested within clinics are frequently encountered in 

practice. One important aspect in such data is the correlation that occurs at each level of 

the data. In parametric modeling, accounting for these correlations increases the 

complexity. These models may also yield results that lead to the same conclusions as 

simpler models. We developed a measure of intraclass correlation at each stage of a 

three-level nested structure and identified guidelines for determining when the 

dependencies in hierarchical models need to be taken into account. These guidelines are 

supported by simulations of hierarchical data sets, as well as the analysis of AIDS 

knowledge in Bangladesh from the 2011 Demographic Health Survey. We also provide a 

simple rule of thumb to assist researchers faced with the challenge of choosing an 

appropriately complex model when analyzing hierarchical binary data. 

2.1. Introduction 

Hierarchical binary data has become increasingly commonplace in many settings 

and has in turn created the critical challenge of choosing the most appropriate model, 

without introducing unnecessary complexity. For instance, researchers may be interested 
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in whether or not a disease is in remission and may collect data on individual patients, 

each nested within physicians, who are each nested within clinics. This type of 

correlation within clustered data can lead to incorrect interpretation in data analysis if not 

properly accounted for (Liang and Zeger 1986). McMahon, Pouget and Tortu (2006) also 

showed that the strength of the within cluster dependence of the observations is an 

important consideration when determining an appropriate level of model complexity. 

Random effects models are often used when the presence of correlation between 

observations is expected due to the hierarchical structure of the data. Although these 

models account for associations in the data, they also introduce some complications in 

both model fitting and interpretation. 

The intraclass correlation coefficient (ICC) is a quantitative measure of the 

similarity among observations within classes or clusters. For hierarchical or multilevel 

data, the ICC provides a summary of the overall strength of the association amongst 

responses within a cluster. It is frequently used to quantify the familial aggregation of 

disease in genetic epidemiological studies (Cohen 1980; Liang, Zeger, and Qaqish 1992). 

The challenge with intraclass correlation when dealing with binary data lies within the 

fact that the variance depends on the mean, or in other words the probability. Many 

approaches do not provide easily accessible methods for addressing clustering at multiple 

levels of a hierarchy. 

Many estimators of the intraclass correlation at each level have been derived for 

continuous response data (Donner 1986). However, methods for estimating the intraclass 

correlation coefficient for binary response data are comparatively less investigated. Zou 

and Donner (2004), amongst others (Ridout, Demétrio, and Firth 1999), provided a 
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thorough review of techniques for a two-level nested model. Common approaches for 

estimation are the application of ANOVA type estimators (Elston 1977), the Pearson 

correlation coefficient (Donner 1986; Mudelsee 2003), moment estimators (Kleinman 

1973), or the use of kappa-type measures (Fleiss and Cuzick 1979; Mak 1988). Other 

approaches include Bayesian hierarchical models (Tan, et al. 1999), pseudo-likelihood or 

quasi-likelihood approaches (Nelder and Pregibon 1987), as well as less common 

approaches (Oman and Zucker 2001). O’Connell and McCoach (2008) presented a 

simple measure of intraclass correlation for binary outcomes, which relies upon the 

assumption of a logistic distribution on the residuals with variance of 3.29 (Ene, et al. 

2015; Snijders and Bosker 1999). The ICC has also been investigated in various sampling 

designs (Bodian 1994), in applied settings (Gulliford, Ukoumunne, and Chinn 1999), and 

as a tool for determining the design effect (Cunningham and Johnson 2016). 

Many researchers have applied closed-form asymptotic variance formulae for 

point estimators of the ICC to binary outcome data arising in clusters of variable size 

(Bloch and Kraemer 1989; Bodian 1994; Cunningham and Johnson 2016; Fleiss and 

Cuzick 1979). Simulation studies have also shown that confidence intervals based on the 

estimator provide coverage levels close to nominal over a wide range of parameter 

combinations (Fleiss and Cuzick 1979). However, existing methods for the analysis of 

dichotomous outcomes generally have not addressed correlation in models with more 

than one level of clustering.  

In this paper, we derived tests for each level of correlation in a three-stage model 

with two levels of clustering, which can be readily extended to higher levels. These tests 

can be used to determine at what level or levels the intraclass correlation needs to be 
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taken into account prior to fitting a complex model. We adapted an ANOVA type 

estimator of the ICC to binary outcomes for the case of a hierarchical, unbalanced design 

with three levels (Kirk 1982; Elston 1977; Ridout, Demétrio, and Firth 1999; Zou and 

Donner 2004). These estimators provide overall summaries of the association at each of 

the levels of the data and utilize estimates of each of the variance components, including 

the residual variance. Such estimators have been shown to perform well as long as the 

data are not extremely unbalanced (Swallow and Monahan 1984) or the correlation very 

small (Donner and Koval 1980). We also derived large sample properties and simulated 

multilevel data to determine thresholds at which each level of clustering the intraclass 

correlation must be taken into account. Additionally, we provided Cramer’s V squared 

(Cicchetti 1994) as a simple rule of thumb approximation for the ICC.  

In Section 2, we review correlated outcomes and present a hierarchical logistic 

model. In Section 3, we develop ANOVA type intraclass correlation estimators for the 

first and second levels of a hierarchy. The results of a simulation study to explore the 

effects of correlation are presented in Section 4. In Section 5, we analyze data from the 

2011 Bangladesh Demographic Health Survey and provide comparisons to alternative 

approaches. Some conclusions and discussions are provided in Section 6. 

2.2. Hierarchical Models 

2.2.1 Generalized Linear Models 

Generalized linear models are often used to analyze data with independent 

observations with an assumed distribution from the exponential family. These models are 

useful in relating predictors to the mean of the response using a link function. The logistic 
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regression model, which utilizes a logit link, is a member of this family of models and is 

useful in the analysis of binary data (Dobson 2002). The generalized linear model, and 

hence the logistic regression model, rely on the assumption of independent observations, 

which is not the case with hierarchical data; thus it is not appropriate for analyzing 

multilevel data. 

2.2.2 Hierarchical Logistic Regression Models 

Hierarchical data often arise as a result of cluster sampling, such as when subjects 

are recruited from several practices or practitioners (Adams, et al. 2004). In such cases, 

the responses within clusters may be correlated due to similarities in characteristics or 

outcomes (Smyth 1989). Correlation will also result if individuals within clusters interact 

and tend to conform, or if they are all influenced by cluster-level characteristics.  

Consider a nested three-level structure with binary outcomes, where the 

observational units at the first level are nested within secondary units (effect B), which 

are nested within the primary units (effect A). Each level of nesting results in association 

that can be measured by an intraclass correlation. Hierarchical logistic regression models 

extend the ordinary logistic regression model, as they take these correlations into account 

by introducing a random effect for each cluster level (Dobson 2002). However, these 

models also introduce additional complexity. As discussed by McMahon, et al (2006), the 

extent to which the observations within a cluster are correlated is thus useful in 

determining whether to utilize more complicated models. They discussed a variety of 

methods for evaluating the amount of intraclass correlation present. However, those 
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methods did not fully address guidelines for when they are meaningful, nor did they 

consider hierarchical models with more than two levels.  

2.3. Multiple Intraclass Correlation 

2.3.1 Intraclass Correlation 

The intraclass correlation coefficient quantifies the similarity of individuals 

within groups and provides an index of aggregation. Liang and Zeger (1986) noted that 

ignoring this dependency often leads to incorrect conclusions in data analysis. Further, 

the degree to which the clustering is present may impact the analysis of the data.  

Consider a random sample of binary outcomes, denoted by 𝑌𝑖𝑗𝑘 based on a three-

level hierarchical structure.  Assume that exchangeability is present among the outcomes 

at level one, with the probability of a success, 𝑃𝑟(𝑌𝑖𝑗𝑘 = 1) = 𝜋𝑖𝑗 for 𝑖 = 1,… , 𝑎; 𝑗 =

1, … , 𝑏𝑖; 𝑘 = 1,… , 𝑛𝑖𝑗. In essence, the observations within a given cluster can be 

reordered without affecting the joint distribution. Some researchers view exchangeability 

as a generalization of the assumption of independent, identically distributed distributions. 

Also assume that observations from different primary clusters are independent, and that 

observations from different secondary clusters are independent, conditioned on the 

primary level of clustering. Observations from the same secondary cluster within a given 

primary cluster are assumed to be correlated with common correlation 𝜌𝐵(𝐴) =

𝑐𝑜𝑟𝑟(𝑌𝑖𝑗𝑘, 𝑌𝑖𝑗𝑘′) for k ≠ k′, while observations from the same primary cluster are 

assumed to be correlated with common correlation 𝜌𝐴 = 𝑐𝑜𝑟𝑟(𝑌𝑖𝑗., 𝑌𝑖𝑗′.) for 𝑗 ≠ 𝑗′. We 

define the overall estimator for the probability of success as �̂� =
∑ ∑ ∑ 𝑌𝑖𝑗𝑘

𝑛𝑖𝑗
𝑘=1

𝑏𝑖
𝑗=1

𝑎
𝑖=1 

𝑁
, where 
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𝑁 = ∑ 𝑁𝑖
𝑎
𝑖=1 = ∑ ∑ 𝑛𝑖𝑗

𝑏𝑖
𝑗=1

𝑎
𝑖=1  is the total number of observations in the sample. For 

example, in the study of disease remission, we may consider the patients to be the 

individual observations, who are in turn nested within doctors at the secondary stage of 

clustering, each of whom is nested within hospitals at the primary stage of clustering. We 

explore ANOVA type estimators in addressing intraclass correlation at the primary and 

secondary levels (Sahai and Ojeda 2007). 

2.3.2 Multiple Intraclass Correlation Estimator 

We derived an ANOVA type estimator of the intraclass correlation at the 

secondary level of clustering within the primary level of clustering to be: 

�̂�𝐵(𝐴) =
𝑟3
𝑟1

∗
𝑀𝑆𝐵(𝐴) − 𝑀𝑆𝐸

𝑀𝑆𝐴 + (
𝑟3 − 𝑟2

𝑟1
)𝑀𝑆𝐵(𝐴) + (

𝑟1𝑟3 − 𝑟1 + 𝑟2 − 𝑟3
𝑟1

)𝑀𝑆𝐸
 

and the estimator for the intraclass correlation at the primary level of clustering as: 

�̂�𝐴 =
𝑀𝑆𝐴 − (

𝑟2
𝑟1

)𝑀𝑆𝐵(𝐴) + (
𝑟2 − 𝑟1

𝑟1
)𝑀𝑆𝐸

𝑀𝑆𝐴 + (
𝑟3 − 𝑟2

𝑟1
)𝑀𝑆𝐵(𝐴) + (

𝑟1𝑟3 − 𝑟1 + 𝑟2 − 𝑟3
𝑟1

)𝑀𝑆𝐸
 

for the constants 𝑟1 =
𝑁−∑

∑ 𝑛𝑖𝑗
2𝑏𝑖

𝑗=1

𝑁𝑖

𝑎
𝑖=1

𝑏−𝑎
 , 𝑟2 =

∑
∑ 𝑛𝑖𝑗

2𝑏𝑖
𝑗=1

𝑁𝑖

𝑎
𝑖=1 −

1

𝑁
∑ ∑ 𝑛𝑖𝑗

2𝑏𝑖
𝑗=1

𝑎
𝑖=1

𝑎−1
 and 𝑟3 =

𝑁−
1

𝑁
∑ 𝑁𝑖

2𝑎
𝑖=1

𝑎−1
, 

where 𝑎 denotes the number of primary clusters and 𝑏 denotes the total number of 

secondary clusters. Mimicking the usual notation in ANOVA, we obtained 

𝑀𝑆𝐴 =
1

𝑎 − 1
[𝑆2 −

1

𝑁
S1

2] 
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𝑀𝑆𝐵(𝐴) =
1

𝑏 − 𝑎
[𝑆3 − S2] 

𝑀𝑆𝐸 =
1

𝑁 − 𝑏
[𝑆1 − S3] 

where 𝑆1 = ∑ ∑ ∑ 𝑌𝑖𝑗𝑘
𝑛𝑖𝑗

𝑘=1
𝑏𝑖
𝑗=1

𝑎
𝑖=1 , 𝑆2 = ∑

(∑ ∑ 𝑌𝑖𝑗𝑘

𝑛𝑖𝑗
𝑘=1

𝑏𝑖
𝑗=1

)
2

𝑁𝑖

𝑎
𝑖=1  and 𝑆3 =

∑ ∑
(∑ 𝑌𝑖𝑗𝑘

𝑛𝑖𝑗
𝑘=1 )

2

𝑛𝑖𝑗

𝑏𝑖
𝑗=1

𝑎
𝑖=1 . The vector (𝑆1, 𝑆2, 𝑆3) can be shown to be asymptotically 

distributed as a multivariate normal distribution (Zou and Donner 2004), which after 

algebraic manipulation has the variance-covariance matrix given by: 

𝜮 = (

𝑉𝑎𝑟(𝑆1) 2𝜋𝑉𝑎𝑟(𝑆1) 2𝜋𝑉𝑎𝑟(𝑆1)

2𝜋𝑉𝑎𝑟(𝑆1) 4𝜋2𝑉𝑎𝑟(𝑆1) 4𝜋2𝑉𝑎𝑟(𝑆1)

2𝜋𝑉𝑎𝑟(𝑆1) 4𝜋2𝑉𝑎𝑟(𝑆1) 4𝜋2𝑉𝑎𝑟(𝑆1)

) 

where 

Var(S1) = 𝑁𝜋(1 − 𝜋) + 𝜌𝐵(𝐴)𝜋(1 − 𝜋)∑∑𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖

𝑗=1

𝑎

𝑖=1

+ 

𝜌𝐴𝜋(1 − 𝜋)∑ ∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))
𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 . 

Through the use of the delta method, the asymptotic distributions for �̂�𝐵(𝐴)  and �̂�𝐴 are  

√𝑁(�̂�𝐵(𝐴) − 𝜌𝐵(𝐴)) → 𝑁(0,𝜱𝑩(𝑨)
𝑻𝜮𝜱𝑩(𝑨))

 

and 
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√𝑁(�̂�𝐴 − 𝜌𝐴) → 𝑁(0,𝜱𝑨
𝑻𝜮𝜱𝑨) 

(Zou and Donner 2004) respectfully, where  

𝜱𝑩(𝑨) =

(

  
 

𝜕�̂�𝐵(𝐴)

𝜕𝑆1

𝜕�̂�𝐵(𝐴)

𝜕𝑆2

𝜕�̂�𝐵(𝐴)

𝜕𝑆3 )

  
 

 and 𝜱𝑨 =

(

 
 

𝜕�̂�𝐴

𝜕𝑆1

𝜕�̂�𝐴

𝜕𝑆2

𝜕�̂�𝐴

𝜕𝑆3)

 
 

 

are the vectors of partial derivatives evaluated at the expected values: 

𝐸[𝑆1] = 𝑁𝜋, 

𝐸[𝑆2] = 4𝜋2𝑎 + 4𝜋3(1 − 𝜋)𝜌𝐵(𝐴) ∑
1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 4𝜋3𝜌𝐴(1 −

𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 − 𝑁𝜋2, 

and 

𝐸[𝑆3] = 𝜋(1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2 

This leads to the variances of our estimators as 

var(�̂�𝐵(𝐴)) = 𝜱𝑩(𝑨)
𝑻𝜮𝜱𝑩(𝑨) =

𝑣𝑎𝑟(𝑆1)

𝜆1
4 ∗ (

𝑟3

𝑟1
)
2
[1 − 4𝜋 + 4𝜋2] (

1

𝑁−𝑏
)
2
(𝜆1 − 𝑑2𝜆2)

2  

and 

var(�̂�𝐴) = 𝜱𝑨
𝑻𝜮𝜱𝑨 =

𝑣𝑎𝑟(𝑆1)

𝜆1
4 (1 + 4𝜋2 − 4𝜋) ((

𝑟2−𝑟1

𝑟1(𝑁−𝑏)
) 𝜆1 − (

𝑑2

𝑁−𝑏
)𝜆3)

2
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for the constants 𝑑1 =
𝑟3−𝑟2

𝑟1
  and 𝑑2 =

𝑟1𝑟3−𝑟3−𝑟1+𝑟2

𝑟1
 and where 

𝜆1 = −
1

(𝑎−1)
𝑁𝜋2 +

𝑑2

𝑁−𝑏
𝑁𝜋 + (

1

𝑎−1
−

𝑑1

𝑏−𝑎
)𝜋2 (4𝑎 + 4𝜋(1 −

𝜋)𝜌𝐵(𝐴) ∑
1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 4𝜋𝜌𝐴(1 −

𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 − 𝑁) +

(
𝑑1

𝑏−𝑎
−

𝑑2

𝑁−𝑏
) ((1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2)  

𝜆2 = −
1

𝑁−𝑏
𝑁𝜋 −

1

𝑏−𝑎
𝜋2 (4𝑎 + 4𝜋(1 − 𝜋)𝜌𝐵(𝐴) ∑

1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 +

4𝜋𝜌𝐴(1 − 𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 −

𝑁) + (
1

𝑁−𝑏
+

1

𝑏−𝑎
) (𝜋(1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2)  

and  

𝜆3 = −
1

(𝑎−1)
𝑁𝜋2 +

𝑟2−𝑟1

𝑟1(𝑁−𝑏)
𝑁𝜋 + 𝜋2 (

1

𝑎−1
+

𝑟2

𝑟1(𝑏−𝑎)
) [4𝑎 + 4𝜋(1 −

𝜋)𝜌𝐵(𝐴) ∑
1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 4𝜋𝜌𝐴(1 −

𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 − 𝑁 ] −

(
𝑟2

𝑟1(𝑏−𝑎)
+

𝑟2−𝑟1

𝑟1(𝑁−𝑏)
) [𝜋(1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2] . 

By a second application of the delta method, the distribution after a logarithmic 

transformation is 
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√𝑁(𝑙𝑜𝑔 (�̂�𝐵(𝐴)) − 𝑙𝑜𝑔(𝜌𝐵(𝐴))) → 𝑁 (0, (
1

𝜌𝐵(𝐴)
)

2

𝜱𝑩(𝑨)
𝑻𝜮𝜱𝑩(𝑨))

 

and 

√𝑁(𝑙𝑜𝑔(�̂�𝐴) − 𝑙𝑜𝑔(𝜌𝐴)) → 𝑁 (0, (
1

𝜌𝐴
)
2

𝜱𝑨
𝑻𝜮𝜱𝑨) 

Further discussion of these derivations are provided in the appendix. 

2.3.3 Inference for Intraclass Correlation 

We utilized the results of Section 3.2 to develop methods for comparing the ICC 

to an established threshold. In particular, we sought to establish methods for evaluating 

the hypotheses: 

H01: 𝜌𝐴 = 𝜌0 vs. Ha1: 𝜌𝐴 > 𝜌0 

H02: 𝜌𝐵(𝐴) = 𝜌0 vs. Ha2: 𝜌𝐵(𝐴) > 𝜌0 

These tests allowed us to determine when the strength of the intraclass correlation 

at each level was large enough to warrant the use of a more complex model. We utilized 

large sample properties for testing these hypotheses against results established by a 

simulation study. The asymptotic normal test statistics for these hypotheses are 

𝑍𝐴 =
𝑙𝑜𝑔(

�̂�𝐴
𝜌0

)

√
1

𝑁�̂�𝐴
2 𝑣𝑎�̂�(�̂�𝐴))

 and 𝑍𝐵(𝐴) =
𝑙𝑜𝑔(

�̂�𝐵(𝐴)

𝜌0
)

√
1

𝑁�̂�𝐵(𝐴)
2 𝑣𝑎�̂�(�̂�𝐵(𝐴)) 
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respectively. Donner and Donald (1988) showed that the Pearson correlation is not 

adequate for testing correlated observations but a simple adjustment can be made. More 

appropriately the one sided confidence intervals are 

[0, 𝑒𝑥𝑝 {𝑙𝑜𝑔(�̂�𝐴) + 𝑍𝛼√
1

𝑁�̂�𝐴
2 𝑣𝑎�̂�(�̂�𝐴)}] 

and 

[0, 𝑙𝑜𝑔(�̂�𝐵(𝐴)) + 𝑍𝛼√
1

𝑁�̂�𝐵(𝐴)
2 𝑣𝑎�̂�(�̂�𝐵(𝐴))] 

based on extension of earlier results (Zou and Donner 2004). These calculations can be 

completed using our R program available at http://www.public.asu.edu/~jeffreyw. 

2.3.4 Cramer’s V and Rule of Thumb 

Cicchetti (1994) presented comparisons between the ICC and the product-moment 

correlation and claimed that the product-moment correlation places an upper limit on the 

maximum ICC. We used Cramer’s V squared (V2) in a similar manner as an easy to 

calculate, but conservative approximation for our intraclass correlation measure.  

Cramer’s V (Cramer 1946; Liebetrau 1983) is a popular coefficient for evaluating 

relationships between nominal variables, regardless of the dimensions of the contingency 

table, based on the value of the chi-squared test of independence. Kirk (1982) provided 

an in depth discussion of the properties of this estimator. For a two-dimensional table 

based on the number of clusters by the two-category response, we define 𝑉2 = 𝑋2/N, 
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where N is the sample size. The statistic 𝑉2 is the mean square canonical correlation 

between the clusters and the binary response, and ranges between 0 and 1, where larger 

values of 𝑉2 indicate a stronger association. In our example discussed in Section 5, we 

found that 𝑉𝐴
2 = 0.025, based on the 7 by 2 table, where 7 is the number of clusters (or 

divisions). 

While our R-program can easily compute �̂�𝐴 and �̂�𝐵(𝐴) it may not necessarily be 

convenient for researchers in more applied settings. As such we propose the use of 𝑉2 as 

a quick approximation of the strength of the association. Further support for the use of 

this measure as an approximation is provided in Section 4.2.  

2.4. Simulation Study and Hypothesis Testing 

2.4.1 Simulation Study 

We conducted a simulation study to determine thresholds for the ICC at which the 

associations in the data should not be ignored. Each simulated dataset comprised of 25 

primary units, each containing between eight and fifteen secondary units. Each of these 

secondary units contained between two and forty observations. We created an intercept 

term for each level of clustering from a normal distribution with a mean of zero and a 

user defined variance term for each iteration in order to incorporate a clustering effect. 

One continuous and one binary covariate were adopted into the simulation for each 

observational unit according to a multivariate random normal distribution where the 

binary predictor was obtained as a dichotomization of one of the predictors. The 

probability produced from the combined effect of the fixed and random effects was used 

to generate a binary outcome according to a Bernoulli distribution.  
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We simulated 84,000 hierarchical data sets in R and calculated �̂�𝐵(𝐴) and �̂�𝐴 at 

each level of clustering for each dataset. Both these correlations were constrained 

between 0 and 0.30 for our simulations. A standard logistic regression and a three-level 

hierarchical model with random intercepts at each level were fit to each dataset. The 

significance of the predictors was noted for each analysis based on a significance level 

of 𝛼 = 0.05 and used to obtain the rate of agreement between the two models. The 

analyses were determined to agree if both analyses indicated that a certain predictor was 

significant (𝑝 ≤ 0.05), or if both analyses indicated that the predictor was not significant 

(𝑝 > 0.05). The percentage agreement, organized according to the ICC at level 2 versus 

level 3, is provided in Table 2.4.1.  

 

Table 2.4.1. Percentage Agreement for the Continuous/Binary Predictor 

Continuous/Binary 

Predictor 

Correlation at secondary cluster (Level 2) 

[0,0.05) [0.05,0.1) [0.1,0.15) [0.15,0.2) [0.2,0.25) [0.25,0.3) 

Correlation 

at primary 

cluster 

(Level 3) 

[0,0.05) 98.4/98.3 93.9/95.7 90.9/93.1 89.7/92.2 86.5/89.2 81.4/85.0 

[0.05,0.1) 93.7/95.8 90.5/93.4 87.5/91.4 85.4/87.9 82.2/84.3 77.9/79.8 

[0.1,0.15) 91.9/93.4 88.6/90.5 85.6/87.4 81.0/83.9 77.9/79.9 74.5/75.8 

[0.15,0.2) 88.7/90.9 85.1/87.3 81.2/83.6 77.9/79.7 74.0/75.0 70.0/72.7 

[0.2,0.25) 84.4/87.4 81.9/83.7 78.0/80.1 73.9/75.4 70.6/71.3 67.5/67.5 

[0.25,0.3) 81.8/83.7 77.4/79.9 73.8/76.8 71.5/73.4 67.9/68.4 76.2/61.9 

 

This simulation showed that the percentage agreement decreased as the 

correlation increased at either stage of clustering. In the presence of correlation at both 

levels of clustering, the discrepancy between the logistic regression model and the three-

level hierarchical model was more pronounced. Once both measures of correlation 

increased beyond 0.10, the agreement rate fell below 90%. When the correlation at either 

the primary or secondary units increased beyond 0.15 the agreement rate for the 
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continuous predictor fell below 90% regardless of the amount of correlation present at the 

other level. Conservative researchers should consider more complex models when the 

amount of association increases beyond 0.10. For most situations, a more complex model 

should be investigated once the intraclass correlation increases beyond 0.15. 

2.4.2 Upper Bound for Intraclass Correlation – Simulation Study 

Based on a simulated study of 70,000 data sets, we found that �̂�𝐵(𝐴)
2 ≥ �̂�𝐵(𝐴); thus 

�̂�𝐵(𝐴)
2  provides a conservative, easy to use estimate of association for the ICC for the 

secondary clusters. We also found that �̂�𝐴
2 was larger than �̂�𝐴 for lower levels of 

association at the primary cluster. In fact, even for larger values of �̂�𝐴, the value of �̂�𝐴
2 

was very close; within an allowable error of 0.005. We found that �̂�𝐴
2 + 0.005 ≥ �̂�𝐴 for 

correlation below 0.20 and that within an allowable error of 0.008 that �̂�𝐴
2 + 0.008 ≥ �̂�𝐴 

for all correlation levels below 0.30. Given these results, we concluded that �̂�2 provides a 

generally conservative approximation of the ICC at each stage of the hierarchy. Thus, �̂�2 

provides a useful approximation in conjunction with previous results for determining 

appropriate model complexity.  

2.5. Data Example 

We illustrated the use of these intraclass correlation measures through the analysis 

of data from the 2011 Bangladesh Demographic Health Survey. These data contained 

information on 17,457 women from 600 different villages at the secondary stage of 

clustering, within seven different divisions at the primary level of clustering. The villages 

at the secondary level of clustering were all of approximately the same size, and 
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generally corresponded to individual villages in Bangladesh, while the divisions at the 

primary level of clustering represent administrative regions. The binary outcome was 

whether the respondent had knowledge of AIDS. We utilized five covariates, which 

included religion (Islam, Hinduism, Buddhism and Christianity), patient’s age at the time 

of the interview, education level (none, primary, or secondary and higher), number of 

living children, and whether the individual lived in a rural or urban location. Access to 

this dataset can be requested from http://www.dhsprogram.com/data/new-user-

registration.cfm (NIPORT 2011). 

We calculated the ICC for both the village and division level of clustering as well 

as the respective 90% and 95% confidence intervals. We also calculated the value of �̂�2 

for each stage of clustering. The results are given in Table 2.5.1. 

 

Table 2.5.1. Intraclass Correlation, Confidence Intervals and V2 

 �̂� 
Confidence Intervals (𝝆) 

�̂�𝟐 
𝟗𝟎% 𝟗𝟓% 

District Level (A) 0.028 (0, 0.106) (0, 0.155) 0.025 

Village Level (B(A)) 0.160 (0, 0.197) (0, 0.209) 0.208 

 

The 95% confidence interval for ICC at the primary unit for the district level of 

clustering does not include our cut-off value of 0.15, although the 90% confidence 

interval does. Thus, at the 5% significance level, we cannot be confident that a model 

which ignores the district level of clustering is adequate, although at the 10% significance 

level, we may conclude that a simpler model is sufficient. Both the 90% and 95% 

confidence interval for the ICC at the secondary units for the village level of clustering 

include our cut-off value of 0.15. Therefore, there is strong correlation at the village 

http://www.dhsprogram.com/data/new-user-registration.cfm
http://www.dhsprogram.com/data/new-user-registration.cfm
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level, suggesting the need for a more complex model. Hence, at the 10% significance 

level, we concluded the village level of clustering needed to be accounted for, while the 

district level of clustering did not. 

We also found that both �̂�𝐴
2 and �̂�𝐵(𝐴)

2  provided good approximations for the ICC 

at each level and also led to similar conclusions. Given the small size of �̂�𝐴
2, there is little 

reason to believe that the district level of clustering needs to be accounted for in the 

model. Since �̂�𝐵(𝐴)
2  is relatively large, we should consider models which account for the 

correlation at the village level. 

We fitted a standard logistic regression model to our data to evaluate the 

covariates under the assumption of independence, and found that religion, age, education, 

children and location were all significant predictors of AIDS knowledge. We also fitted a 

two-level hierarchical model with one random intercept term for the effects of villages, 

and found that education, children and location were significant predictors of AIDS 

knowledge. In addition, we fitted a three-level hierarchical model with two random 

intercept terms, one for the effect of districts and one for the effect of villages. For this 

analysis, education, children and location were significant predictors of AIDS 

knowledge. The results of these analyses are summarized in Table 2.5.2. 

 

Table 2.5.2. P-Values for the Predictors of AIDS Knowledge 

 Religion Age Education Children Location 

Logistic 0.0277 <0.0001 <0.0001 <0.0001 <0.0001 

Logistic One Intercept 0.81223 0.2545 <0.0001 <0.0001 <0.0001 

Logistic Two Intercepts 0.9748 0.2799 <0.0001 <0.0001 <0.0001 
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We noted that the results of the independence model differed from the results of 

the two-level hierarchical model. Under the assumption of independence, religion and 

age, among other predictors, were significant predictors of AIDS knowledge; however, 

neither of these two predictors were significant once the village level correlation was 

taken into account. With respect to the significance of predictors, the results of the three-

level hierarchical model are identical to those obtained by the two-level model.  

The results of these data analyses are in agreement with our simulation results. 

The correlation at the village level was significant based on the confidence interval for 

the ICC, as well as �̂�𝐵(𝐴)
2 ; thus a random effect should be included to account for the 

association within the secondary units. However, the correlation at the district level was 

fairly inconsequential, as illustrated by the confidence interval for the ICC, as well as �̂�𝐴
2; 

therefore, a second random intercept for the district level would not be beneficial. A 

model which assumes independence is also inappropriate, thus the logistic regression 

model with one random intercept for the secondary units is best for these data. 

As a comparison, we calculated the ICC for each level using an approach 

discussed by O’Connell and McCoach (2008). Using their method, a three-level 

hierarchical model with two random intercepts and no predictors was fitted and estimates 

of the variances for each random term were obtained, where the error variance was 

assumed to be 3.29. For this approach, �̂�𝐴
∗ = 0.0348 and �̂�𝐵(𝐴)

∗ = 0.236, which are both 

similar to the values produced using our ANOVA estimator. However, their approach 

relies on an additional assumption that a logistic regression has an error variance of 3.29. 

Our approach provides an improved, data driven approximation of the error variance 

without the blanket requirement of such additional assumptions. 
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2.6. Conclusions 

Multilevel binary outcome data are encountered in a variety of disciplines; 

however, approaches to evaluate the effect of the clustering when there is more than one 

level of nesting are not as well documented or researched. The correlation induced at 

each level of clustering can have a significant effect on data analysis results and often 

must be taken into account at each level. However, accounting for each level of clustering 

incorporates a certain degree of challenge with model fitting and interpretation as they 

involve more complexity. Thus, accounting for the intraclass correlation is a choice 

between simplicity versus accuracy. We obtained ANOVA type estimators of intraclass 

correlation for binary outcomes at two levels of nesting, with respective asymptotic 

properties. Our estimators directly estimate the error variance, without any additional 

assumptions and further can be applied to the analysis of unbalanced data. These 

estimators are useful for identifying when more complex models are necessary. In 

particular, our simulation results showed that more complex models should be considered 

when the ICC is larger than 0.15 in most cases, and for more conservative researchers 

when the ICC is greater than 0.10. We also provided simple approximations using a 𝑉2 

measure, which offers a quick, conservative approximation for the ICC. Both of these 

approaches are useful for reducing unnecessary model complexity while also ensuring 

that predictors are not mistakenly identified as significant. 

2.7. Appendix 

2.7.1 Variance Derivations: 

We have that  
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�̂�𝐵(𝐴) =
𝑟3
𝑟1

∗
𝑀𝑆𝐵(𝐴) − 𝑀𝑆𝐸

𝑀𝑆𝐴 + (
𝑟3 − 𝑟2

𝑟1
)𝑀𝑆𝐵(𝐴) + (

𝑟1𝑟3 − 𝑟1 + 𝑟2 − 𝑟3
𝑟1

)𝑀𝑆𝐸
  

�̂�𝐴 =
𝑀𝑆𝐴 − (

𝑟2
𝑟1

)𝑀𝑆𝐵(𝐴) + (
𝑟2 − 𝑟1

𝑟1
)𝑀𝑆𝐸

𝑀𝑆𝐴 + (
𝑟3 − 𝑟2

𝑟1
)𝑀𝑆𝐵(𝐴) + (

𝑟1𝑟3 − 𝑟1 + 𝑟2 − 𝑟3
𝑟1

)𝑀𝑆𝐸
 

for the constants 𝑟1 =
𝑁−∑

∑ 𝑛𝑖𝑗
2𝑏𝑖

𝑗=1

𝑁𝑖

𝑎
𝑖=1

𝑏−𝑎
 , 𝑟2 =

∑
∑ 𝑛𝑖𝑗

2𝑏𝑖
𝑗=1

𝑁𝑖

𝑎
𝑖=1 −

1

𝑁
∑ ∑ 𝑛𝑖𝑗

2𝑏𝑖
𝑗=1

𝑎
𝑖=1

𝑎−1
 and 𝑟3 =

𝑁−
1

𝑁
∑ 𝑁𝑖

2𝑎
𝑖=1

𝑎−1
, 

where 𝑎 denotes the number of primary clusters and 𝑏 denotes the total number of 

secondary clusters. Mimicking the usual notation in ANOVA, we obtained 

𝑀𝑆𝐴 =
1

𝑎 − 1
[𝑆2 −

1

𝑁
S1

2] 

𝑀𝑆𝐵(𝐴) =
1

𝑏 − 𝑎
[𝑆3 − S2] 

𝑀𝑆𝐸 =
1

𝑁 − 𝑏
[𝑆1 − S3] 

where 𝑆1 = ∑ ∑ ∑ 𝑌𝑖𝑗𝑘
𝑛𝑖𝑗

𝑘=1
𝑏𝑖
𝑗=1

𝑎
𝑖=1 , 𝑆2 = ∑

(∑ ∑ 𝑌𝑖𝑗𝑘

𝑛𝑖𝑗
𝑘=1

𝑏𝑖
𝑗=1

)
2

𝑁𝑖

𝑎
𝑖=1  and 𝑆3 =

∑ ∑
(∑ 𝑌𝑖𝑗𝑘

𝑛𝑖𝑗
𝑘=1

)
2

𝑛𝑖𝑗

𝑏𝑖
𝑗=1

𝑎
𝑖=1  

 

Through the assumption of independence between observations from different 

primary clusters, as well as the assumption of independence between observations from 

different secondary clusters, given the primary level of clustering, we find that the vector 
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(𝑆1, 𝑆2, 𝑆3) has the variance-covariance matrix given by: 

𝜮 = (

Var(S1) cov(S1, S2) cov(S1, S3)
cov(S1, S2) Var(S2) cov(S2, S3)
cov(S1, S3) cov(S2, S3) Var(S3)

) =

(

Var(S1) 2πVar(S1) 2πVar(S1)

2πVar(S1) 4π2Var(S1) 4π2Var(S1)

2πVar(S1) 4π2Var(S1) 4π2Var(S1)

). 

The variances and covariances can be calculated using 

𝑐𝑜𝑣(𝑌𝑖𝑗𝑘, 𝑌𝑖𝑗𝑘′) = 𝑐𝑜𝑟𝑟(𝑌𝑖𝑗𝑘, 𝑌𝑖𝑗𝑘′)𝜎𝑌𝑖𝑗𝑘
𝜎𝑌𝑖𝑗𝑘′ = 𝜌𝐵(𝐴)𝜋(1 − 𝜋) 

and 

𝑐𝑜𝑣(𝑌𝑖𝑗., 𝑌𝑖𝑗′.) = 𝑐𝑜𝑟𝑟(𝑌𝑖𝑗., 𝑌𝑖𝑗′.)𝜎𝑌𝑖𝑗.
𝜎𝑌𝑖𝑗′.

 

= 𝜌𝐴𝜋(1 − 𝜋)√𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1)). 

For illustration, the variance of 𝑆1 is derived as: 

𝑉𝑎𝑟(𝑆1) = 𝑉𝑎𝑟 (∑∑ ∑ 𝑌𝑖𝑗𝑘

𝑛𝑖𝑗

𝑘=1

𝑏𝑖

𝑗=1

𝑎

𝑖=1

) 

= ∑∑ ∑ 𝑉𝑎𝑟(𝑌𝑖𝑗𝑘)

𝑛𝑖𝑗

𝑘=1

𝑏𝑖

𝑗=1

𝑎

𝑖=1

+ ∑∑ ∑ 𝑐𝑜𝑣(𝑌𝑖𝑗𝑘 , 𝑌𝑖𝑗𝑘′)

𝑛𝑖𝑗

𝑘≠𝑘′

𝑏𝑖

𝑗=1

𝑎

𝑖=1

+ ∑ ∑ 𝑐𝑜𝑣(𝑌𝑖𝑗, 𝑌𝑖𝑗′)

𝑏𝑖

𝑗≠𝑗′

𝑎

𝑖=1
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= 𝑁𝜋(1 − 𝜋) + 𝜌𝐵(𝐴)𝜋(1 − 𝜋)∑ ∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)
𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 𝜌𝐴𝜋(1 −

𝜋)∑ ∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))
𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 . 

2.7.2 Asymptotic Distributions: 

As discussed by Zou and Donner (2004), the vector (𝑆1, 𝑆2, 𝑆3) can be shown to 

be asymptotically distributed as a multivariate normal distribution with variance-

covariance matrix as given previously. Through application of the delta method, the 

asymptotic distributions for �̂�𝐵(𝐴)  and �̂�𝐴 are  

√𝑁(�̂�𝐵(𝐴) − 𝜌𝐵(𝐴)) → 𝑁(0,𝜱𝑩(𝑨)
𝑻𝜮𝜱𝑩(𝑨))

 

and 

√𝑁(�̂�𝐴 − 𝜌𝐴) → 𝑁(0,𝜱𝑨
𝑻𝜮𝜱𝑨) 

respectfully, where  

𝜱𝑩(𝑨) =

(

  
 

𝜕�̂�𝐵(𝐴)

𝜕𝑆1

𝜕�̂�𝐵(𝐴)

𝜕𝑆2

𝜕�̂�𝐵(𝐴)

𝜕𝑆3 )

  
 

 and 𝜱𝑨 =

(

 
 

𝜕�̂�𝐴

𝜕𝑆1

𝜕�̂�𝐴

𝜕𝑆2

𝜕�̂�𝐴

𝜕𝑆3)

 
 

 

are the vectors of partial derivatives evaluated at the expected values: 

𝐸[𝑆1] = 𝑁𝜋, 
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𝐸[𝑆2] = 4𝜋2𝑎 + 4𝜋3(1 − 𝜋)𝜌𝐵(𝐴) ∑
1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 4𝜋3𝜌𝐴(1 −

𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 − 𝑁𝜋2, 

and 

𝐸[𝑆3] = 𝜋(1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2 

This leads to the variances of our estimators as 

var(�̂�𝐵(𝐴)) = 𝜱𝑩(𝑨)
𝑻𝜮𝜱𝑩(𝑨) =

𝑣𝑎𝑟(𝑆1)

𝜆1
4 ∗ (

𝑟3

𝑟1
)
2
[1 − 4𝜋 + 4𝜋2] (

1

𝑁−𝑏
)
2
(𝜆1 − 𝑑2𝜆2)

2  

and 

var(�̂�𝐴) = 𝜱𝑨
𝑻𝜮𝜱𝑨 =

𝑣𝑎𝑟(𝑆1)

𝜆1
4 (1 + 4𝜋2 − 4𝜋) ((

𝑟2−𝑟1

𝑟1(𝑁−𝑏)
) 𝜆1 − (

𝑑2

𝑁−𝑏
)𝜆3)

2

  

for the constants 𝑑1 =
𝑟3−𝑟2

𝑟1
  and 𝑑2 =

𝑟1𝑟3−𝑟3−𝑟1+𝑟2

𝑟1
 and where 

𝜆1 = −
1

(𝑎−1)
𝑁𝜋2 +

𝑑2

𝑁−𝑏
𝑁𝜋 + (

1

𝑎−1
−

𝑑1

𝑏−𝑎
)𝜋2 (4𝑎 + 4𝜋(1 −

𝜋)𝜌𝐵(𝐴) ∑
1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 4𝜋𝜌𝐴(1 −

𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 − 𝑁) +

(
𝑑1

𝑏−𝑎
−

𝑑2

𝑁−𝑏
) ((1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2)  
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𝜆2 = −
1

𝑁−𝑏
𝑁𝜋 −

1

𝑏−𝑎
𝜋2 (4𝑎 + 4𝜋(1 − 𝜋)𝜌𝐵(𝐴) ∑

1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 +

4𝜋𝜌𝐴(1 − 𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 −

𝑁) + (
1

𝑁−𝑏
+

1

𝑏−𝑎
) (𝜋(1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2)  

and  

𝜆3 = −
1

(𝑎−1)
𝑁𝜋2 +

𝑟2−𝑟1

𝑟1(𝑁−𝑏)
𝑁𝜋 + 𝜋2 (

1

𝑎−1
+

𝑟2

𝑟1(𝑏−𝑎)
) [4𝑎 + 4𝜋(1 −

𝜋)𝜌𝐵(𝐴) ∑
1

𝑁𝑖
∑ 𝑛𝑖𝑗(𝑛𝑖𝑗 − 1)

𝑏𝑖
𝑗=1

𝑎
𝑖=1 + 4𝜋𝜌𝐴(1 −

𝜋) ∑
1

𝑁𝑖
∑ √𝑛𝑖𝑗𝑛𝑖𝑗′ (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗 − 1)) (1 + 𝜌𝐵(𝐴)(𝑛𝑖𝑗′ − 1))

𝑏𝑖
𝑗≠𝑗′

𝑎
𝑖=1 − 𝑁 ] −

(
𝑟2

𝑟1(𝑏−𝑎)
+

𝑟2−𝑟1

𝑟1(𝑁−𝑏)
) [𝜋(1 − 𝜋)[𝑏 + 𝑁𝜌𝐵(𝐴) − 𝑏𝜌𝐵(𝐴)] + 𝑁𝜋2] . 

By a second application of the delta method, the distribution after a logarithmic 

transformation is 

√𝑁(log (�̂�𝐵(𝐴)) − 𝑙𝑜𝑔(𝜌𝐵(𝐴))) → 𝑁 (0, (
1

𝜌𝐵(𝐴)
)

2

𝜱𝑩(𝑨)
𝑻𝜮𝜱𝑩(𝑨))

 

and 

√𝑁(log(�̂�𝐴) − log(𝜌𝐴)) → 𝑁 (0, (
1

𝜌𝐴
)
2

𝜱𝑨
𝑻𝜮𝜱𝑨) 
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CHAPTER 3 

PARTITIONED GMM LOGISTIC REGRESSION MODELS FOR LONGITUDINAL 

DATA 

Kyle M. Irimata, Jennifer Broatch, Jeffrey R. Wilson 

Abstract 

Correlation is inherent in longitudinal studies due to the repeated measurements 

on subjects, as well as due to time-dependent covariates in the study. In the National 

Longitudinal Study of Adolescent to Adult Health (Add Health), data was repeatedly 

collected on children in grades 7-12 across four waves. Thus, observations obtained on 

the same adolescent were correlated, while predictors were correlated with current and 

future outcomes such as obesity status, amongst other health issues. Previous methods, 

such as the generalized method of moments (GMM) approach have been proposed to 

estimate regression coefficients for time-dependent covariates. However, these 

approaches combined all valid moment conditions to produce an averaged parameter 

estimate for each covariate and thus assumed that the effect of each covariate on the 

response was constant across time. This assumption is not necessarily optimal in 

applications such as Add Health or health-related data. Thus, we depart from this 

assumption and instead use the Partitioned GMM approach to estimate multiple 

coefficients for the data based on different time-periods. These extra regression 

coefficients are obtained using a partitioning of the moment conditions pertaining to each 

respective relationship. This approach offers a deeper understanding and appreciation 

into the effect of each covariate on the response. We conduct simulation studies, as well 
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as analyses of obesity in Add Health, rehospitalization in Medicare data, and depression 

scores in a clinical study. The Partitioned GMM methods exhibit benefits over previously 

proposed models with improved insight into the non-constant relationships realized when 

analyzing longitudinal data.  

3.1. Introduction 

It is common in many fields, such as health and health related research, to observe 

subjects or units over time, while also measuring covariates at each visit. For example, 

the National Longitudinal Study of Adolescent to Adult Health (Add Health) is a study of 

a nationally representative sample of adolescents in grades 7-12 in the United States, 

which was collected on a cohort of students over four waves, with the first wave 

beginning in 1994-1995. This type of study produces longitudinal data, which allow for 

the testing of more involved hypotheses, with improved efficiency of estimates, as 

compared to cross-sectional or time-series data (Hsiao 2007). However, the design also 

complicates the statistical analysis because the observations are no longer independent 

due to the repeated measurements. The collection over time also introduces 

interdependence of the covariates and the responses across time. For instance, a child’s 

depression level in the Add Health study may affect his or her obesity status at the time 

of measurement, as well as obesity status during a future measurement. The correlation 

between repeated measurements in longitudinal studies has been addressed using 

marginal models, such as generalized estimating equations (GEE) (Zeger and Liang 

1986) or using a subject-specific approach such as mixed modeling(Breslow and Clayton 

1993). However, there are comparatively fewer appropriate methods to account for the 
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time-dependent covariates caused by the correlation between the covariates and response 

across time. Many approaches for accounting for time-dependent covariates also assume 

that a constant level of association exists at all time-periods, though in practice this may 

not hold in longitudinal data. For example, in a study of the effect of high epoetin alpha 

dosage on mortality amongst elderly hemodialysis patients discussed by Zhang, et al 

(2009), the dosage is administered based on targeted levels of hematocrit. The levels of 

hematocrit are thus related to both current and previous doses of epoetin (Heagerty and 

Comstock 2013). 

In this paper, we present a generalized method of moments (GMM) model for 

time-dependent covariates. This method utilizes a partitioning of the moment conditions 

to represent the varying impacts of each covariate on the responses across time. The 

model allows the strength of the impact of the covariate to vary due to time, and utilizes a 

reconfigured, lower diagonal data matrix. Thus, we provide a model with multiple 

regression coefficients rather than using a linear combination of the associations, which 

may impact the overall results. These multiple regression coefficients provide a more 

complete description of the relationship between the covariates and the response and 

avoid the potential averaging of positive and negative, or strong and weak relationships. 

3.1.1 Longitudinal Data and Marginal Models 

Longitudinal data consist of merging inter-individual differences and intra-individual 

dynamics and have several advantages over cross-sectional or time-series data. One 

advantage is that it allows researchers to study the dynamic parts of a model. 

Longitudinal data also provides more accurate predictions of individual outcomes since it 
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pools the data, “borrowing strength” from other observations, instead of providing 

predictions of individual outcomes based on the data on the individual (Diggle, et al. 

2002).  

Marginal or population averaged models, such as GEE, are commonly used in the 

analysis of such data to address the mean response as a function of covariates. These 

models utilize a working correlation structure, based on some presumed relationship, but 

do not distinguish between valid or invalid moment conditions. The correlation is 

assumed to exist due to the repeated measures taken on the subjects; however, the 

subjects themselves are assumed independent of one another.  

In the case of longitudinal data with time-dependent covariates, Pepe and 

Anderson (1994) showed that the GEE approach is valid and provides consistent 

estimates if the independent working correlation matrix is utilized. This is also the case if 

future applications of the results require the expectation of the response as a function of 

the current covariates. However, Lai and Small (2007) showed that, although the 

independent working correlation matrix may be a safe choice, it does not provide 

efficient estimates. In this paper, we introduce extra regression parameters to analyze 

longitudinal data, such as the Add Health data, while taking into account the intricate 

relationships that exist at varying degrees due to the measurements of obesity collected 

across time.  

3.1.2 Lagged Models 

Lagged models are often used with longitudinal or time series data. These models 

incorporate previous values of the dependent or independent variable from  earlier time-
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periods to account for autocorrelation in the data (Keele and Kelly 2005). However, when 

there is serial correlation, these models can produce biased estimates. Further, the 

introduction of a lagged dependent variable sometimes suppresses the effects of the 

covariates in the model, and often lacks reasonable causal interpretation (Achen 2001). 

Keele and Kelly (2005) showed that the use of a lagged dependent variable is 

inappropriate in certain circumstances, though it remains one of the best approaches for 

addressing time series data. As Diggle, et al (2002) noted, the appropriate use of such 

predictors depends in part on the goals of the analysis.  

Generalized estimating equations have been proposed as an extension to lagged 

covariate models (Zeger and Liang 1986) with an appropriately selected working 

correlation matrix. Schildcrout and Heagerty (2005) suggested the use of the independent 

working correlation matrix for lagged GEE models in order to ensure consistent 

parameter estimates, although this may also lead to relative inefficiency. We extend the 

lagged covariate model with a generalized method of moments approach to address the 

correlation induced by time-dependent covariates.  

3.1.3 GMM Models 

The generalized method of moments estimator was introduced by Hansen (1982) 

with applications to econometrics. Lai and Small (2007) and Lalonde, Wilson, and Yin 

(2014) showed that the generalized method of moments (GMM) model is a great choice 

when there are time-dependent covariates. Although these methods, amongst others 

(Guerra, et al. 2012; Zhou, et al. 2014; Chen and Westgate 2017), have been proposed for 

logistic regression models with time-dependent covariates, these models did not 
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distinguish between the strength and type of association between the responses and 

covariates at different time-periods. These approaches instead combined all associations 

to provide one parameter estimate for each covariate, regardless of the varying strength or 

direction of the association. 

We introduce a partitioned generalized method of moments approach for 

separating regression coefficients, to distinguish the effect of covariates on the outcome 

when they are observed in the same time-period from the effect when they are observed 

in different time-periods. The partitioned model combines the features of lagged models, 

and the characteristics of GMM models to describe the varying strength of the 

relationships between the covariates and the responses over time. In Section 2, we review 

existing methods for longitudinal data, with an emphasis on GMM models. In Section 3, 

we provide the Partitioned GMM framework, which is used to determine the varying 

impact of the covariates at different periods on the response. We present the results of a 

simulation study in Section 4 to demonstrate the performance of the Partitioned GMM 

model. Applications to Add Health data, Medicare rehospitalizations, and depression 

scores in a clinical study are discussed in Section 5. 

3.2. Marginal Regression Modeling with Time-Dependent Covariates 

Marginal models have been introduced to address the challenges created due to 

time-dependent covariates. Guerra, Shults, Amsterdam and Ten-Have (2012) presented a 

logistic regression model for longitudinal data, relating the mean of the response with 

covariates based on the subjects under measure. They adjusted for the correlation due to 

the repeated measurements on each subject using a maximum likelihood method for time-
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independent and time–dependent covariates. Selig, Preacher and Little (2012) accounted 

for the impact of time-dependent covariates by using several different functional forms, 

thereby presenting lag-moderated associations. For covariates measured at varying times, 

they evaluated the difference on one covariate as it relates to the difference on another 

covariate. Müller and Stadtmuller (2005) introduced a generalized functional linear 

regression model where the predictor is a random function, which relied on dimension 

reduction using orthogonal expansion. Our model incorporates a special case of this 

model, and relies on generalized method of moments to estimate the regression 

coefficients. 

Zhou, Lefante, Rice, and Chen (2014) introduced a method using the modified 

quadratic inference function. They used alternative forms for the working correlation 

matrix, with a different form for each type of covariate corresponding to the valid 

moment conditions. Their approach improves consistency and efficiency, although it 

relied on a single regression parameter to describe the relationship between each 

covariate and the response. Chen and Westgate (2017) provided a new GMM approach 

which utilized a modified weight matrix based on linear shrinkage to help avoid 

singularity. They also introduced a modified GEE approach with an adjusted working 

correlation matrix to eliminate biased equations, along with a model selection approach 

to identify an appropriate model based on the data type. This model was useful in 

improving properties of the regression parameter estimates; however, their proposed 

method considered only models where the effect of each predictor on the response is 

constant across time. 
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3.2.1 GMM Models with Covariate Classification 

Lai and Small (2007) used a marginal model for longitudinal continuous data with 

generalized method of moments (GMM) to account for the time-dependent covariates. 

They considered repeated observations, with response 𝑦𝑖𝑡 for subject 𝑖 at time 𝑡, whose 

marginal distribution follows a generalized linear model, given the time-dependent vector 

of covariates 𝒙𝑖𝑡. = (𝑥𝑖𝑡1, … , 𝑥𝑖𝑡𝐽). They assumed that the observations 𝑦𝑖𝑠 and 𝑦𝑘𝑡 are 

independent when 𝑖 ≠ 𝑘 but not necessarily when 𝑖 = 𝑘 and 𝑠 ≠ 𝑡. Thus, observations 

from different subjects were assumed independent, while observations from the same 

subject were not. In obtaining estimates of the regression coefficients, Lai and Small 

made use of the moment conditions such that 

𝐸 [
𝜕𝜇𝑖𝑠(𝜷)

𝜕𝛽𝑗
{𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷)}] = 0  (3.2.1) 

for appropriately chosen 𝑠, 𝑡, and 𝑗, where 𝜇𝑖𝑡(𝜷) = 𝐸[{𝑦𝑖𝑡|𝑋𝑖𝑡}] denotes the expectation 

of 𝑦𝑖𝑡 based on the vector of covariate values 𝒙𝑖𝑡. associated with the vector of parameters 

𝜷 in the systematic component that describes the marginal distribution of 𝑦𝑖𝑡. Their 

model made full use of the valid moment conditions in groups based on time-dependent 

covariates, to obtain estimates. 

The benefit for this approach was identifying the appropriate moment conditions 

associated with the covariates, as methods such as GEE with time-dependent covariates 

will omit some valid moment conditions. Lai and Small classified covariates as type I, 

type II or type III, based on which moment conditions were considered valid. Covariates 

for which Equation (3.2.1) holds for all 𝑠 and 𝑡 were designated as type I. A covariate 

was considered type II when Equation (3.2.1) holds for all 𝑠 ≥ 𝑡, but fails for some 𝑠 < 𝑡. 
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Thus, type II covariates observed at time 𝑠 affect the outcome at future time 𝑡, though 

there is no feedback from the outcome onto the predictors. Covariates for which Equation 

(3.2.1) does not hold for any 𝑠 > 𝑡 were designated as Type III covariates. These 

covariates can occur when feedback is present between the outcome at previous time-

periods and the covariate at future time-periods. Each type of covariate utilized a 

different set of moment conditions to estimate the corresponding regression coefficient. 

These models assumed that the strength and direction of the association between the 

response and the covariate in any two-different time-periods remains the same. This 

assumption omits the effect of doses in a patient’s care over time, though there is a 

differential effect as time progresses. Thus, applications of this approach are limited in 

longitudinal data. 

3.2.2 GMM Models with Ungrouped Moment Conditions 

As an alternative to the grouping of moments based on covariate type, Lalonde, 

Wilson, and Yin (2014) introduced a method to ignore the classification and to instead 

look at the validity of each moment separately. In their individual approach to identifying 

valid moments, they relied on bivariate correlations to determine validity of the 

corresponding moment condition. These valid moments were used to obtain estimates of 

the regression coefficients. They assumed that all moments when the predictor and 

response are observed in the same time-period, 𝑠 = 𝑡 are valid, and tested the remaining 

𝑇(𝑇 − 1) moment conditions individually for validity. The moment condition (3.2.1) was 

considered valid when 𝜌𝑥𝑡,𝑒𝑠
= 0, that is when the correlation between the residual 

observed at time s, denoted by 𝑒𝑠, and the covariate observed at time t, denoted by 𝑥𝑡 
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where 𝑠 ≠ 𝑡 was zero. Thus, this GMM approach (Lalonde, Wilson, and Yin 2014) 

accounted for the feedback created between the outcomes at a particular time-period and 

the predictors at later time-periods. However, similar to Lai and Small (2007), they 

grouped the valid moments to obtain an estimate of a single regression coefficient to 

represent the overall effect of a given covariate. 

3.3. Partitioned Coefficients with Time-Dependent Covariates 

We present the Partitioned GMM as an alternative approach to existing GMM 

models (Lai and Small 2007; Lalonde, Wilson, and Yin 2014; Zhou, et al. 2014) for time-

dependent covariates. We utilize the test for valid moment conditions presented by 

Lalonde, Wilson and Yin (2014), as well as the type II covariate proposed by Lai and 

Small (2007), though the approach can be readily extended to incorporate alternative 

moment condition selection techniques. Instead of grouping all valid moment conditions 

to obtain an average effect of the covariate on the response, we partition the moment 

conditions and separate the effects of the covariates on the responses across time. This 

partitioning produces extra regression parameters for each covariate. The moment 

conditions are grouped based on the relationship of interest, and on the time lag between 

the covariate and the response. The Partitioned GMM is best applicable to data without 

many repeated observations, relative to the number of observations (Stoner, Leroux, and 

Puumala 2010).  

3.3.1 Partitioned GMM Model 

The Partitioned GMM model accounts for the relationships between the outcomes 
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observed at time 𝑡, 𝑌𝑡 and the jth covariate observed at time 𝑠, 𝑋𝑗𝑠 for 𝑠 ≤ 𝑡. In fitting this 

model, for each time-dependent covariate Xj measured at times 1, 2, … , T; for subject 𝑖 

and the 𝑗𝑡ℎcovariate, the data matrix is reconfigured as a lower triangular matrix,  

𝐗ij =

[
 
 
 
1 Xij1 0 … 0

1 𝑋𝑖𝑗2 𝑋𝑖𝑗1 … 0

⋮ ⋮ ⋮ … ⋮
1 Xi1T 𝑋𝑖𝑗(𝑇−1) … Xij1]

 
 
 

= [𝟏 𝑋𝑖𝑗
[0]

𝑋𝑖𝑗
[1]

… 𝑋𝑖𝑗
[𝑇−1]

] 

where the superscript denotes the difference, 𝑡 − 𝑠 in time-periods between the response 

time 𝑡 and the covariate time 𝑠. Thus, the model is given by 

𝑔(𝜇𝑖𝑡) = 𝛽0 + 𝛽𝑗
𝑡𝑡𝑋𝑖𝑗

[0]
+ 𝛽𝑗

[1]
𝑋𝑖𝑗

[1]
+ 𝛽𝑗

[2]
𝑋𝑖𝑗

[2]
…+𝛽𝑗

[𝑇−1]
𝑋𝑖𝑗

[𝑇−1]
  (3.3.1) 

and in matrix notation 𝑔(𝝁𝒊) = 𝑿𝒊𝒋𝜷𝑗, where the 𝑿𝑖𝑗 matrix denotes the systematic 

component and the mean response is 𝝁𝑖 = (𝜇𝑖1, … , 𝜇𝑖𝑇)′ dependent on the regression 

coefficients 𝛽𝑗 = (𝛽0, 𝛽𝑗
𝑡𝑡 , 𝛽𝑗

[1]
, 𝛽𝑗

[2]
, … , 𝛽𝑗

[𝑇−1]
). The coefficient 𝛽𝑗

𝑡𝑡 denotes the effect of 

the covariate 𝑋𝑗𝑡 on the response 𝑌𝑡 during the tth period, or in other words when the 

covariate and the outcome are observed in the same time-period. When 𝑠 < 𝑡 we denote 

the lagged effect of the covariate 𝑋𝑗𝑠 on the response 𝑌𝑡 by the coefficients 

𝛽𝑗
[1]

, 𝛽𝑗
[2]

, … , 𝛽𝑗
[𝑇−1]

. These additional coefficients allow the effect of the covariate on the 

response to change across time and to be identified separately, rather than assuming that 

the association maintains the same strength and direction over time. For example, the 

coefficient 𝛽𝑗
[1]

 denotes the effect of 𝑋𝑗𝑠 on 𝑌𝑡 across a one time-period lag. In general, 

each of the 𝐽 time-dependent covariates yields a maximum of 𝑇 partitions of 𝛽𝑗. Let 𝜷 be 

the concatenation of the parameters associated with each of the J covariates. Thus, for a 
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model with J covariates, the data matrix 𝑿 will have a maximum dimension of 𝑁 by 𝑇, 

and 𝜷 is a vector of maximum length 𝐽 × (𝑇 + 1). 

The extra regression parameters naturally lead to questions regarding singularity 

of the data matrix. We argue that this phenomenon is similar to the use of Generalized 

Estimating Equations (GEE) with correlated data. Stoner, Leroux, and Puumala (2010) 

found that when the size of each cluster is large relative to the number of clusters, 

marginal models such as GEE with flexible correlation structures may not converge, 

while fixed working correlation structures may produce estimates that are not efficient. 

We analogously found that the use of extra regression parameters produced reliable 

estimates when the number of clusters are large in comparison to the number of time-

periods.  

3.3.2 Partitioned GMM Estimation 

Consider 𝑦𝑖 for 𝑖 = 1,… ,𝑁; to be an independent and identically distributed 

random variable with mean 𝜇𝑖𝑡 at time t, and let 𝜷𝟎 denote the vector of regression 

parameters. Let 𝑻𝒋 be the 𝑇 × 𝑇 matrix, which specifies which moment conditions are 

valid for the 𝑗th covariate, as determined by the desired approach. Thus, elements in 𝑻𝒋 

take on the value of one when there is valid moment condition according to Equation 

(3.2.1), and takes a value of zero when the moment is not valid for the 𝑗th covariate. The 

1

2
𝑇(𝑇 − 1) moments pertaining to cases when 𝑠 > 𝑡 are set to zero. The elements in 𝑻𝒋 

are partitioned into up to T separate 𝑇 × 𝑇 matrices denoted by 𝑻𝒋𝒌 for 𝑘 = 1,… , 𝑇 − 1. 

The information for the T moment conditions when 𝑠 = 𝑡, occurring when the response 
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and the covariate are observed in the same time-period, are contained in 𝑻𝒋𝟎, an identity 

matrix. Information for the moment conditions occurring when the response is observed 

one time-period after the covariate, 𝑡 − 𝑠 = 1 are contained in the matrix 𝑻𝒋𝟏. To 

accommodate the adjusted data vector 𝑋𝑖𝑗
[1]

 discussed in Section 3.1, shift each element in 

𝑻𝒋𝟏 forward by one column such that the valid moment conditions in 𝑻𝒋𝟏 exist only on 

the diagonal, with zero otherwise. Each of the remaining matrices 𝑻𝒋𝒌 are created 

similarly. 

Let 𝑻𝒗𝒋𝒌 be the reshaped 1 𝑥 𝑇2 vector of the elements in 𝑻𝒋𝒌. Concatenate the 

row vectors for all covariates and lagged effects to form the matrix 𝑻𝒔𝒉𝒂𝒑𝒆, which is of 

maximum dimension (𝐽 × 𝑇) × 𝑇2. Let 𝑁𝑣 be the number of ones in 𝑻𝒔𝒉𝒂𝒑𝒆, or 

equivalently the total number of valid moment conditions. Let Ω𝑡𝑡 ∈ [𝑥𝑠, 𝑦𝑡;  𝑠 = 𝑡] and 

for 𝑠 < 𝑡, consider each valid moment condition where Ω𝑠𝑡 ∈ [𝑥𝑠, 𝑦𝑡  ;  𝑠 ≠ 𝑡]. There are T 

members in Ωtt and one member for each of Ωst.  Thus the fitted model to (3.3.1) is  

𝜇𝑖𝑡(𝛽) = 𝛽0 + 𝛽𝑗
𝑡𝑡𝑋𝑖𝑗

[0]
+ ∑ 𝛽𝑗

[𝑘]
𝑋𝑖𝑗

[𝑘]

𝑻−𝟏

𝒌=𝟏

|𝒗𝒂𝒍𝒊𝒅 𝒎𝒐𝒎𝒆𝒏𝒕𝒔 

Let 𝒈𝑖 be an 𝑁𝑣 𝑥 1 vector composed of the values of all valid moment conditions 

for subject 𝑖, computed at the initial value 𝜷𝟎. Each element in 𝒈𝑖 is calculated as 

𝜕𝜇𝑖𝑠(𝜷𝟎)

𝜕𝛽
𝑗
[𝑘] [𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷𝟎)] such that the corresponding element in 𝑻𝒋𝒌 takes value 1 for 𝑘 =

1, … , 𝑇 − 1. Let 𝑮𝒏 be the 𝑁𝑣 𝑥 1 vector consisting the sample average of all valid 

moment conditions, such that 

1

N
∑ 𝐠i

N
i=1 =

1

N
∑

∂μis(𝛃𝟎)

∂β
j
[k] [yit − μit(𝛃𝟎)]

N
i=1 . 
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The optimal weight matrix 𝑾𝒏 is computed as (
1

𝑁
∑ 𝒈𝑖𝒈𝑖

𝑇𝑁
𝑖=1 )

−1

, which is of dimension 

𝑁𝑣 𝑥 𝑁𝑣. Then, the GMM regression estimator is 

�̂�𝐺𝑀𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷𝟎

𝑮𝒏(𝜷𝟎)
𝑇 𝑾𝒏(𝜷𝟎)  𝑮𝒏(𝜷𝟎), 

which is the argument minimizing the quadratic objective function. The asymptotic 

variance of the estimator �̂�𝐺𝑀𝑀 is 

[(
1

N
∑

∂𝐠i(𝛃)

∂𝛃

N
i=1 )

T

𝐖𝐧(𝛃) (
1

N
∑

∂𝐠i(𝛃)

∂𝛃

N
i=1 )]

−1

, 

evaluated at 𝜷 = �̂�𝐺𝑀𝑀.  

Logistic Regression Model: In the case of the logistic regression model, the mean is given 

by 

𝜇𝑖𝑡(𝜷𝟎) =
𝑒𝑥𝑝 (𝒙𝑖𝑡.𝜷)

1+𝑒𝑥𝑝 (𝒙𝑖𝑡.𝜷)
, 

so the valid elements in 𝒈𝑖 each take the form: 

∂μis(𝛃𝟎)

∂β
j
[k] [yit − μit(𝛃𝟎)] = xisjμis(𝛃𝟎)[1 − μis(𝛃𝟎)][yit − μit(𝛃𝟎)]. 

Thus, for the asymptotic variance, in the case of logistic regression, each 𝑁𝑣 𝑥 1 vector 

 ∂𝐠i(𝛃)

∂β
l
[𝐤]  in the matrix 

𝜕𝒈𝑖(𝜷)

𝜕𝜷
= [

𝜕𝒈𝑖(𝜷)

𝜕𝛽𝑗
[1]

, … ,
𝜕𝒈𝑖(𝜷)

𝜕𝛽𝑗
[𝑇−1]] 

is obtained as  
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𝜕{[
𝜕𝜇𝑖𝑠(𝜷)

𝜕𝛽
𝑗
[𝑘] ][𝑦𝑖𝑡−𝜇𝑖𝑡(𝜷)]}

𝜕𝛽𝑙
[𝑚] = 𝑥𝑖𝑠𝑗𝜇𝑖𝑠(𝜷)[1 − 𝜇𝑖𝑠(𝜷)] {𝑥𝑖𝑠𝑙[1 − 2𝜇𝑖𝑠(𝜷)][𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷)] −

𝑥𝑖𝑡𝑗𝜇𝑖𝑡(𝜷)[1 − 𝜇𝑖𝑡(𝜷)]}, 

where 𝑗 = 1,… , J, 𝑙 = 1,… 𝐽, 𝑘 = 1,… , 𝑇 − 1 and 𝑚 = 1,… , 𝑇 − 1. 

Normal distribution model: Similarly, for the normal error model, the moment conditions 

in 𝒈𝑖 take the form 

𝜕𝜇𝑖𝑠(𝜷𝟎)

𝜕𝛽
𝑗
[𝑘] [𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷𝟎)] = 𝑥𝑖𝑠𝑗[𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷𝟎)], 

for the valid moment conditions. The asymptotic variance is computed using the 𝑁𝑣 𝑥 𝐽 

matrix   

𝜕𝒈𝑖(𝜷)

𝜕𝜷
= [

𝜕𝒈𝑖(𝜷)

𝜕𝛽
𝑗
[1] , … ,

𝜕𝒈𝑖(𝜷)

𝜕𝛽
𝑗
[𝑇−1]], 

where each of the 𝑁𝑣 𝑥 1 vectors 
 𝜕𝒈𝑖(𝜷)

𝜕𝛽𝑗
[𝒌]  is computed as 

𝜕{[
𝜕𝜇𝑖𝑠(𝜷)

𝜕𝛽
𝑗
[𝑘]

][𝑦𝑖𝑡−𝜇𝑖𝑡(𝜷)]}

𝜕𝛽𝑙
[𝑚] = −𝑥𝑖𝑠𝑗𝑥𝑖𝑠𝑙, 

for 𝑗 = 1,… , J, 𝑙 = 1,… 𝐽, 𝑘 = 1,… , 𝑇 − 1 and 𝑚 = 1,… , 𝑇 − 1. 

3.3.3 Types of Partitioned GMM Models  

We present two Partitioned GMM models, one based on the Lalonde, Wilson and 

Yin (2014) approach to identifying valid moment conditions (Partitioned-LWY) and the 

other based on the Lai and Small (2007) approach to identifying valid moment conditions 
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using covariate classification (Partitioned-LS). The partitioning approach is used in 

conjunction with either of the two methods for identifying and selecting valid moment 

conditions.  

The Lalonde, Wilson and Yin (2014) approach evaluates each moment condition 

individually, and thus improves estimation. On the other hand, the introduction of lagged 

parameter estimates depends on comparatively fewer moment conditions, at the different 

segments. As such, it is possible at times that these lagged parameters will not always be 

estimable if certain moment conditions are not valid. The Lai and Small (2007) method 

depends on the grouping of moments based on covariate type. Thus, under this set of 

moment conditions, all lagged parameters are estimable, although the estimation may rely 

on moments that are not valid. In Section 4, we conduct a simulation study to evaluate the 

performance of these two methods. 

3.4. Simulation Study 

We conducted a simulation study to examine the performance of the Partitioned 

GMM and to compare the model to non-partitioned models. We simulated a Bernoulli 

random variable with the mean response dependent on a continuous type II time-

dependent covariate (Lai and Small 2007). We assigned a time-dependent covariate 

weight of 1.5 and with correlation induced by random effects distributed according to a 

normal distribution, with mean 0 and variance 1. The data were simulated with complete 

observations at 𝑇 = 3 time-periods for 𝑁 = 100, 250 and 500 subjects. The regression 

parameters were set to  𝛽0 = 0, 𝛽𝑡𝑡 = 0.3, 𝛽[1] = 0.5 and 𝛽[2] = 0.7, thus there was a 

strong lagged effect of the covariate on the response across time.  
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We fit two Partitioned GMM models to each simulated set of data, following the 

Lalonde, Wilson and Yin (2014) moment approach (Partitioned-LWY) model, and using 

the Lai and Small (2007) moment approach (Partitioned-LS) model. Following Zeger and 

Liang (1991), we fit a lagged GEE model (Lagged-GEE) with an independent working 

correlation matrix. In addition, we fit “one-parameter per covariate” models, including 

Lalonde, Wilson and Yin (2014) GMM (LWY-GMM), Lai and Small (2007) GMM (LS-

GMM) and GEE with an independent working correlation matrix (GEE-IND). In the 

partitioned models, the coefficient βj
tt is comparable with LWY-GMM, LS-GMM and 

GEE-IND. Average parameter estimates (APE), and coverage probabilities based on 95% 

confidence intervals are recorded for each model in Table 3.4.1. 
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Table 3.4.1. Simulated Coverage Probabilities and Average Parameter Estimates (APE)  

for partitioned and cross-sectional approaches 

  Intercept = 0 𝜷𝒕𝒕 = 𝟎. 𝟑 𝜷[𝟏] = 𝟎. 𝟓 𝜷[𝟐] = 𝟎. 𝟕 

 Method 
Cove

rage 
APE 

Cove

rage 
APE 

Cove

rage 
APE 

Cove

rage 
APE 

N=100 

Partitioned 

LWY 
0.94 0.00 0.91 0.29 0.93 0.52 0.91 0.56 

Partitioned 

LS 
0.94 0.00 0.91 0.26 0.92 0.43 0.92 0.66 

Lagged-

GEE 
0.96 0.00 0.93 0.29 0.93 0.46 0.94 0.76 

LWY-

GMM 
0.72 -0.63 0.07 13.44         

LS-GMM 0.41 -3.07 0.02 25.99         

GEE-IND 0.96 0.00 0.24 0.51         

N=250 

Partitioned 

LWY 
0.95 0.00 0.91 0.28 0.96 0.53 0.80 0.40 

Partitioned 

LS 
0.95 0.00 0.91 0.26 0.92 0.44 0.91 0.64 

Lagged-

GEE 
0.96 0.00 0.90 0.25 0.93 0.43 0.93 0.63 

LWY-

GMM 
0.88 -0.17 0.00 4.04         

LS-GMM 0.58 -0.44 0.00 15.65         

GEE-IND 0.96 0.00 0.02 0.51         

N=500 

Partitioned 

LWY 
0.98 0.00 0.85 0.31 0.98 0.51 0.40* 0.32* 

Partitioned 

LS 
0.98 0.00 0.88 0.26 0.90 0.43 0.90 0.61 

Lagged-

GEE 
0.98 0.00 0.87 0.25 0.90 0.43 0.91 0.61 

LWY-

GMM 
0.96 -0.08 0.00 1.09         

LS-GMM 0.72 -0.18 0.00 10.05         

GEE-IND 0.98 0.00 0.00 0.50         

*Denotes results obtained from 30 or fewer simulations 

 

The cross-sectional models (LWY-GMM, LS-GMM, and GEE-IND), with one 

parameter per covariate provide poor coverage and poor parameter estimates. This poor 
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performance is attributed to the combining of all moment conditions, regardless of 

strength or direction, which is inherent in these cross-sectional models. As the 

relationship between the covariate and the response changes over time, a single, a single 

cross-sectional parameter is incapable of providing accurate and reliable estimates. 

However, the partitioned models overcome these challenges using estimates for each 

lagged coefficient.  

The Partitioned-LS and Partitioned-LWY models produce comparable results, 

with some notable differences. The Partitioned-LWY model generally provides better 

coverage of the true parameter. The Partitioned-LS model produces coverage of at least 

88% across all simulation settings, for all regression parameters. The coverage for both 

approaches was less than nominal, which has previously been discussed as a 

disadvantage of the simulation approach (Lalonde, Wilson, and Yin 2014). In general, the 

Partitioned-LWY produced parameter estimates that were less biased than those produced 

by the Partitioned-LS. However, in cases when the Partitioned-LS outperforms the 

Partitioned-LWY, the discrepancy was pronounced, with the Partitioned-LWY yielding 

largely more biased estimates. The Partitioned-LWY model relies on valid moment 

conditions using an ungrouped approach, and thus some coefficients are not always 

estimable. The two partitioned approaches both generally perform better than the Lagged-

GEE, with the Partitioned-LWY model providing the preferable model overall.  

In Section 5, we fit these two partitioned models to three numerical examples 

using a SAS MACRO (Cai and Wilson 2015; Cai and Wilson 2016) which is available at 

http://www.public.asu.edu/~jeffreyw. Additional discussions pertaining to the use of this 

macro are provided in the Supporting Information. 
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3.5. Numerical Examples 

We revisited three numerical examples. One example modeled obesity in children 

using the National Longitudinal Study of Adolescent to Adult Health (Add Health) (Harris 

and Udry 2016). A second example was a study of patient rehospitalization (Lalonde, 

Wilson, and Yin 2014; Jencks, Williams, and Coleman 2009) using Medicare data. A third 

example focused on a clinical study of depression scores (Reisby, et al. 1977). Each of 

these examples was analyzed using Partitioned GMM models, with moment conditions 

selected using the Lalonde, Wilson and Yin approach (Partitioned-LWY) and the Lai and 

Small approach to obtain moment conditions (Partitioned-LS). We compared the results to 

the one-parameter per covariate models obtained from Lalonde, Wilson and Yin GMM 

(LWY-GMM), Lai and Small GMM (LS-GMM), and GEE with an independent (GEE-

IND) working correlation matrix. We also provided comparisons to the Lagged-GEE model 

using an independent working correlation structure. 

3.5.1 Add Health Data 

There are efforts in place to reduce and understand childhood obesity in the 

United States, with 17% childhood obesity ((NCCOR) 2014).  We fit the Partitioned 

GMM models to the National Longitudinal Study of Adolescent to Adult Health (Add 

Health) to investigate the relationships between risk factors and obesity in adolescents. 

These data were originally collected from students in grades 7 to 12, beginning in 1994-

1995. The students were measured at three time-periods after their initial enrolment, 

resulting in four measurements, producing information on 2,712 students at each of the 

four time-periods. The binary outcome measures obesity status based on each student’s 

BMI (Pu, Fang, and Wilson 2017). The time-dependent covariates were depression scale, 
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number of hours spent watching television, physical activity level and whether the 

student was a social alcohol drinker. The data included a time-independent predictor for 

race, denoting white or non-white. The identification of valid moment conditions using 

the Lalonde, Wilson and Yin (2014) approach is given in Table 3.5.1.1.  

 

Table 3.5.1.1. Moment Conditions for the Add Health Study 

 Depression TV Hrs 

  s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 

t=1 1 0 0 0 1 0 0 0 

t=2 1 1 0 0 1 1 0 0 

t=3 0 1 1 0 1 1 1 0 

t=4 0 0 0 1 1 1 1 1 

 Activity Alcohol 

 s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 

t=1 1 0 0 0 1 0 0 0 

t=2 1 1 0 0 1 1 0 0 

t=3 1 1 1 0 1 1 1 0 

t=4 0 1 1 1 1 1 1 1 

 

For the one-parameter models, LWY-GMM, LS-GMM and GEE-IND, the results 

vary. The LS-GMM approach identifies all covariates (race, depression, TV Hrs, physical 

activity level and social alcohol drinking) as significant in predicting obesity. The LWY-

GMM model does not find race and alcohol as significant. The GEE-IND model does not 

race as significant indicator of obesity. These results are included in Table 3.5.1.2. 
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Table 3.5.1.2. Cross-sectional Parameter Estimates and p-Values for the Add Health  

Study 

 LS-GMM LWY-GMM GEE-IND 

Parameter Est. p-Value Est. p-Value Est. p-Value 

Intercept -2.369 <.001 -2.059 <.001 -1.737 <.001 

Race 0.31 0.003 0.176 0.056 0.114 0.164 

Depression 1.019 <.001 0.841 <.001 0.678 <.001 

TV Hrs 0.017 <.001 0.016 <.001 0.012 <.001 

Activity -0.854 <.001 -0.683 <.001 -0.474 <.001 

Alcohol 0.244 <.001 0.124 0.068 0.147 0.032 

 

In the Partitioned GMM and the lagged models for the cross-sectional periods, the 

Partitioned-LS, the Partitioned-LWY and lagged GEE models find depression level and 

hours spent watching television to be significant. The Partitioned-LWY model finds race, 

depression level, hours spent watching television and physical activity level as significant 

in predicting obesity status. Both Partitioned GMM models identify depression level as 

having significant one time-period lagged effects, though the Partitioned-LWY model 

also identifies physical activity level as significant at a one time-period lag. Across a two 

time-period lag, the Partitioned-LS model finds depression level, hours spent watching 

television, and physical activity level as significant and the Partitioned-LWY model finds 

physical activity level and social alcohol drinking as significant. Under the Partitioned-

LS model, depression level and hours spent watching television are significant predictors 

across a three time-period lag, and under the Partitioned-LWY model, physical activity 

level is significant across a three time-period lag. Due to the lack of valid moment 

conditions based on the Lalonde, Wilson and Yin (2014) method, some lagged 

relationships are not estimable. The discrepancies between the two analyses are attributed 

to the different moment conditions employed in obtaining parameter estimates. Although 
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the Lagged-GEE has similarities with the partitioned models, the results are different. 

These differences can also be attributed to the use of non-existent moment conditions due 

to the fixed independent working correlation structure. The estimates and p-values for 

these two partitioned models as well as the Lagged-GEE, are reported in Table 3.5.1.3. 

 

Table 3.5.1.3. Partitioned Parameter Estimates and p-Values for the Add Health Study 

  Partitioned-LS Partitioned-LWY Lagged-GEE 
  Est. p-Value Est. p-Value Est. p-Value 
 Intercept -3.076 <.001 -3.025 <.001 -2.526 <.001 
 Race 0.074 0.433 0.222 0.020 0.067 0.456 

Cross-

sectional 

Depression 0.384 <.001 0.501 <.001 0.137 0.166 

TV Hrs 0.015 <.001 0.015 <.001 0.013 <.001 

Activity -0.059 0.057 -0.165 <.001 -0.144 <.001 

Alcohol -0.060 0.414 0.010 0.895 -0.124 0.064 

Lagged 

one 

period 

Depression 0.315 <.001 0.582 <.001 0.290 <.001 

TV Hrs 0.002 0.216 0.004 0.089 0.004 0.046 

Activity -0.028 0.197 -0.095 <.001 -0.021 0.350 

Alcohol 0.078 0.189 0.046 0.476 0.025 0.670 

Lagged 

two 

periods 

Depression 0.661 <.001 - - 0.692 <.001 

TV Hrs 0.013 <.001 - - 0.010 <.001 

Activity 0.069 0.002 0.180 <.001 0.075 0.001 

Alcohol 0.068 0.283 0.295 <.001 0.008 0.893 

Lagged 

three 

periods 

Depression 0.417 <.001 - - 0.432 <.001 

TV Hrs 0.012 <.001 - - 0.012 <.001 

Activity 0.019 0.493 0.158 <.001 -0.009 0.766 

Alcohol 0.017 0.822 - - 0.057 0.466 

3.5.2 Medicare Readmission Data 

Patient rehospitalization within 30 days of discharge for the same diagnosis is a 

key measure for hospital reimbursements under Medicare. We examined a Medicare 

dataset to address questions about rehospitalization. The data contained information on 

1,625 patients who were admitted to a hospital 4 times. Thus, each subject had three 

observations indicating the number of days to rehospitalization. The models investigated 
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the probability of an individual returning to the hospital within 30-days. The covariates 

were time-dependent, including number of diagnoses (NDX), number of procedures 

(NPR), length of stay (LOS), and whether the patient had coronary atherosclerosis 

(DX101) (Jencks, Williams, and Coleman 2009). We utilized the LWY approach (2014) 

to identify valid moment conditions to fit the Partitioned-LWY. Moment conditions 

where s > t were not considered, while all moment conditions where s = t are 

considered valid. Valid moment conditions are denoted by ‘1’ in Table 3.5.2.1. The data 

were also analyzed using the LS approach assuming Type II covariates. 

 

Table 3.5.2.1. Moment Conditions for the Medicare Study 

 NDX NPR LOS DX101 

 s=1 s=2 s=3 s=1 s=2 s=3 s=1 s=2 s=3 s=1 s=2 s=3 

t=1 1 0 0 1 0 0 1 0 0 1 0 0 

t=2 1 1 0 1 1 0 1 1 0 1 1 0 

t=3 1 1 1 1 1 1 0 0 1 1 1 1 

 

The cross-sectional models (LWY-GMM, LS-GMM and GEE-IND) with one 

regression parameter per covariate, are used to analyze the Medicare readmission data. 

These three approaches all identify the number of diagnoses and the length of stay as 

significant predictors of hospital readmission. The results of these analyses are given in 

Table 3.5.2.2. 
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Table 3.5.2.2. Cross-sectional Parameter Estimates and p-Values for the Medicare Study 

 LS-GMM LWY-GMM GEE-IND 
 Est. p-value Est. p-value Est. p-value 

Intercept -0.629 <.001 -0.614 <.001 -0.574 <.001 

NDX 0.055 <.001 0.057 <.001 0.062 <.001 

NPR -0.024 0.206 -0.024 0.203 -0.022 0.242 

LOS 0.051 <.001 0.046 <.001 0.034 <.001 

DX101 -0.043 0.646 -0.048 0.606 -0.094 0.311 

 

The relationships across time in the Medicare data are modelled with the 

Partitioned-LS and Partitioned-LWY models, and the results of these approaches are 

similar. These models identify the number of diagnoses and length of stay as significant 

when the response and the predictor are observed in the same time-period, as well as 

across a one time-period lag. Length of stay is significant under the Partitioned-LS model 

at a two time-period lag. Because no valid moment conditions for this particular 

relationship are identified under the Lalonde, Wilson and Yin approach, the Partitioned-

LWY is not able to produce estimates for this parameter. While the Lagged-GEE 

produces similar results, length of stay is not identified as significant across a two time-

period lag. This discrepancy is due to the use of non-existent moment conditions in the 

GEE model. The results for these three models are given in Table 3.5.2.3. 
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Table 3.5.2.3. Partitioned Parameter Estimates and p-Values for the Medicare Study 

  Partitioned-LS Partitioned-LWY Lagged-GEE 
  Est. p-Value Est. p-Value Est. p-Value 
 Intercept -0.482 <.001 -0.479 <.001 -0.470 <.001 

Cross-

sectional 

NDX 0.062 <.001 0.062 <.001 0.069 <.001 

NPR -0.030 0.124 -0.031 0.110 -0.020 0.287 

LOS 0.048 <.001 0.049 <.001 0.030 <.001 

DX101 -0.063 0.512 -0.066 0.489 -0.086 0.361 

Lagged 

one period 

NDX -0.047 <.001 -0.047 <.001 -0.041 <.001 

NPR -0.012 0.605 -0.016 0.490 -0.019 0.389 

LOS 0.018 0.022 0.019 0.036 0.017 0.030 

DX101 0.034 0.752 0.032 0.769 0.009 0.933 

Lagged 

two 

periods 

NDX 0.007 0.657 0.023 0.098 0.018 0.259 

NPR -0.048 0.112 -0.030 0.291 -0.043 0.154 

LOS 0.029 0.044 - - 0.014 0.325 

DX101 0.025 0.864 -0.041 0.774 -0.029 0.842 

3.5.3 Depression Score Data 

Reisby, et al (1977) examined the relationship between Imipramine (IMI) and 

Desipramine (DMI) plasma levels and clinical response in 52 depressed inpatients. The 

study spanned four weeks and focused on changes in Hamilton Depression Scores. Each 

subject received the same dose of IMI at the end of each week, and measurements were 

taken on DMI and depression levels (Goetgeluk and Vansteelandt 2008). In addition to 

the time-dependent covariates IMI and DMI, the study included a time-independent 

covariate for each subject’s gender. Moment conditions identified as valid using the 

Lalonde, Wilson and Yin (2014) approach are included in Table 3.5.3.1. 
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Table 3.5.3.1. Moment Conditions for the Depression Score Study 

 Gender IMI DMI 

 s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 

t=1 1 0 0 0 1 0 0 0 1 0 0 0 

t=2 0 1 0 0 1 1 0 0 1 1 0 0 

t=3 0 0 1 0 1 1 1 0 1 1 1 0 

t=4 0 0 0 1 1 1 1 1 1 1 1 1 

 

The one parameter models, LS-GMM, LWY-GMM and GEE-IND, produce 

different results, with each approach identifying one predictor as significant. Gender was 

not significant in any of the models, though the signs of the coefficient under each model 

often disagreed. These results are given in Table 3.5.3.2. 

 

Table 3.5.3.2. Cross-sectional Parameter Estimates and p-Values for the Depression  

Score Study 

 LS-GMM LWY-GMM GEE-IND 
 Est. p-Value Est. p-Value Est. p-Value 

Intercept 4.881 <.0001 5.661 0.0366 5.774 0.1485 

SEX 0.046 0.9167 -1.323 0.2279 -0.549 0.7615 

IMI -2.862 <.0001 -0.568 0.1528 -0.945 0.2945 

DMI 0.094 0.0076 -1.633 0.0028 -2.064 0.0008 

 

The Lalonde, Wilson and Yin(2014) method identifies all moment conditions for 

the time-dependent covariates as valid, thus the results of the Partitioned-LS and 

Partitioned-LWY models are identical. For both partitioned approaches, IMI and DMI are 

significant in predicting depression scores at a one time-period lag. Thus, the results of 

the cross-sectional models vary from the partitioned approaches. We also see that the 

results of the Lagged-GEE vary from the two partitioned methods. Under the Lagged-

GEE, only DMI at a two time-period lag is identified as significant. Table 3.5.3.3 

presents the results for the partitioned-LS, Partitioned-LWY and Lagged-GEE models. 
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Table 3.5.3.3. Partitioned Parameter Estimates and p-Values for the Depression Score  

Study 

  Partitioned-LS Partitioned-LWY Lagged-GEE 
  Est. p-Value Est. p-Value Est. p-Value 
 Intercept 7.454 0.174 7.454 0.174 4.897 0.231 
 Gender -3.040 0.277 -3.040 0.277 -0.502 0.780 

Cross-

sectional 

IMI -0.660 0.105 -0.660 0.105 -0.935 0.359 

DMI -1.749 0.174 -1.749 0.174 -1.337 0.070 

Lagged 

one 

period 

IMI -0.844 <.001 -0.844 <.001 -0.727 0.248 

DMI 0.626 <.001 0.626 <.001 0.389 0.490 

Lagged 

two 

periods 

IMI 0.353 0.918 0.353 0.918 0.569 0.271 

DMI -1.052 0.705 -1.052 0.705 -1.103 0.020 

Lagged 

three 

periods 

IMI 0.246 0.967 0.246 0.967 0.814 0.549 

DMI -0.450 0.930 -0.450 0.930 -1.050 0.350 

3.5.4 Consequences 

Most models are easily fit when there is independence among the observations. 

However, the presence of correlation whether among the observations, or induced 

through future effects of responses and covariates, or from the correlation among 

covariates impact the efficiency of the estimates through the variance. Thus, it is 

important to include valid moments in the computation of the estimates and their 

efficiency. The results from these three examples and the simulation study reveal that 

identifying the valid moment conditions is essential, especially when one wants to 

identify the relationships across time. Moreover, it is evident that while identifying the 

valid moments is essential, the methods used to determine the significance of the 

covariate are also important. If these valid moments are combined to obtain estimates for 

a single regression coefficient, then the true relationships may be distorted. Combining 
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valid moments from different responses in one time-period with covariates in a different 

time-period mask the individual impact.  

Though non-partitioned models may produce the same results as the Partitioned 

GMM model in the cross-sectional portion of the data, these results are only 

circumstantial. In fact, the partitioned and non-partitioned methods are utilizing different 

sets of information, based on the moment conditions. The non-partitioned models use an 

averaging of all information between the covariate and the response to produce a cross-

sectional estimate, while the partitioned model utilizes only valid moment conditions 

occurring when the response and covariate are observed in the same time-period. Thus, 

the non-partitioned model condenses a comparatively larger amount information into a 

single parameter, and are more likely to present significant results than the partitioned. 

These non-partitioned models also inherently assume that the relationship between each 

covariate and the response remains the same over time. Though the lagged-GEE model 

somewhat overcomes this limitation, the parameter estimation relies on non-existent 

moment conditions. Thus, the Partitioned GMM models provide more insight into the 

data by separating the cross-sectional and lagged relationships, while also utilizing valid 

moment conditions. The grouping of moment conditions based on the time elapsed 

between observation of the covariate and the response forces the estimation of each 

regression parameter to rely only on information pertaining to that particular relationship. 

Among the Partitioned GMM models, the valid moments are determined based on 

the method used. The Partitioned-LS approach provides parameter estimates for all 

lagged relationships based on the covariate classification method. However, that grouping 

may include some invalid moments. In contrast, the Partitioned–LWY approach utilizes 
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an individual identification method for each moment condition, and is thus less likely to 

include invalid moments. Both Partitioned GMM models provide improved 

understanding regarding the effects of time-dependent covariates on the outcome over 

time. 

 

3.6. Conclusions 

Correlation inherent in repeated measures on subjects present several challenges 

as compared to the analysis of cross-sectional data. However, the correlation caused by 

time-dependent covariates introduces an added challenge. Lai and Small (2007), Lalonde, 

Wilson and Yin (2014), and Zhou, Lefante, Rice and Chen (2014), among others, have 

presented models addressing the feedback effects due to time-dependent covariates. 

However, these models do not distinguish between the cross-sectional from the lagged 

relationships and rather present an overall effect of the covariate on the responses. The 

Partitioned GMM models separately identifies cross-sectional and lagged effects of the 

covariates, while also utilizing only valid moment conditions. Thus, the Partitioned 

GMM provides a more complete description of the complex effects of time-dependent 

covariates on outcomes. 
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CHAPTER 4 

SIMULTANEOUS GMM MODELS WITH TIME-DEPENDENT COVARIATES 

Kyle M. Irimata, Elsa Vazquez Arreola, Jeffrey R. Wilson 

Abstract 

We propose a simultaneous generalized method of moments (GMM) model for 

multiple outcomes with partitioned coefficients to account for time-dependent covariates 

in longitudinal studies. This approach relies on valid moment conditions to ensure 

efficient parameter estimation, while the partitioned coefficients provide insight into the 

effect of each covariate on the outcome across time. Using a concatenation of the valid 

moment conditions, we extend the dimension of the objective function to account for the 

correlation between the multiple outcomes. This marginal model also has the benefit of 

avoiding the need for any additional distributional assumptions, as is often used in joint 

modeling. We apply our approach to simultaneously investigate risk factors of smoking, 

social alcohol drinking and obesity among adolescents in the United States and provide 

comparisons to separately fitted models to illustrate the impact of correlation between the 

outcome variables. 

4.1. Introduction 

Longitudinal data are common to many disciplines and are useful for 

investigating how an individual’s responses vary as time progresses. As a result of the 

repeated measurements taken over time, there is inherent correlation between the 

repeated measurements, as well as between the covariates in one period and the outcome 
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in a different time. Researchers may also be interested in simultaneous investigation of 

more than one outcome, which introduces additional correlation between these outcome 

variables. For example, in the National Longitudinal Study of Adolescent to Adult Health 

(Add Health) (Harris and Udry 2016), students are followed starting in 1994-1995, and 

are measured at three later time-periods. Inference may be simultaneously desired on 

multiple, correlated outcomes, such as smoking and alcohol. The longitudinal nature of 

the study results in time-dependent covariates such as depression level and physical 

activity level with both immediate and carry-over effects on either, or both outcomes as 

time progresses. An appropriate model for this type of data needs to account for all forms 

of correlation.in order to provide valid inferences. We refer to the separate outcome 

variables as outcomes, while the repeated measurements on each of those outcomes are 

referred to as responses. In this paper, we propose a simultaneous generalized method of 

moments (GMM) model to account for the multiple outcomes as well as the time-

dependency inherent to longitudinal data. 

4.1.1 Time-Dependent Covariates on a Single Response Variable 

The use of marginal models with time-independent covariates on a single 

response has been well established; however, appropriate models for time-dependent 

covariates are still emerging and have recently received considerable attention. The 

generalized estimating equations (GEE) (Zeger and Liang 1986) model, which utilizes a 

working correlation structure to account for the association between repeated 

measurements, is a popular type of marginal model for correlated data. However, Hu 

(1998) and Pepe and Anderson (1994) showed that estimates from GEE models with 
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arbitrary working correlation structures may lack consistency in the presence of time-

dependent covariates, and thus proposed the use of the independent working correlation 

structure. 

Lai and Small (2007) presented generalized method of moments (GMM) as an 

alternative approach to fitting marginal models with time-dependent covariates, which 

produced more efficient estimators as compared to GEE with the independent working 

correlation structure. Their GMM approach utilized a three-type classification scheme for 

the time-dependent covariates to identify and use estimating equations which are not 

utilized by the GEE approach with an independent working correlation structure. Zhou, 

Lefante, Rice, and Chen (2014), based on the classification method introduced by Lai and 

Small (2007), provided a modified approach for addressing time-dependent covariates 

using the modified quadratic inference function. Lalonde, Wilson and Yin (2014) 

extended the GMM model for time-dependent covariates with a method for testing each 

moment condition separately for validity. This approach allowed the moment conditions 

to vary, without the need to specify a specific covariate type.  

Although the GMM models provide desirable properties, these models inherently 

assumed that the effect of each covariate on the response was constant over time, which 

may not be a reasonable assumption in practice. Several models that incorporate lagged 

coefficients have been proposed to produce separate estimates for the effect of each 

covariate on the outcome across various time-periods (Muller and Stadtmuller 2005; 

Selig, Preacher, and Little 2012; Zeger and Liang 1986; Keele and Kelly 2005). Irimata, 

Broatch and Wilson (2018) introduced a flexible partitioned GMM model to allow the 

effect of each time-dependent covariate on the outcome to vary over time. This model 
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was a special case of the functional model discussed by Müller and Stadtmuller (2005). 

Though this model maintained the desirable properties of GMM models and allowed for 

additional insight into the effect of each time-dependent covariate, this model was not 

built to model more than one outcome variable. Thus, we propose an extension of the 

partitioned GMM, which can simultaneously estimate regression equations for multiple 

outcomes while accounting the correlation between these outcome variables, without the 

need to assume a multivariate distribution. 

4.1.2 Simultaneous Models with Distributional Assumptions 

Multivariate data are common in many disciplines. Separate models for 

longitudinal data can be fit to address the multiple response variable; however, statistical 

inferences based on separate analyses ignore the correlation between the multiple 

outcomes, leading to potentially inefficient parameter estimates (Berridge and Crouchley 

2011; Fitzmaurice, Laird, and Ware 2004). Thus, the effect of a covariate is not 

accurately captured, if we ignore the interdependence of the multiple outcomes. 

The multivariate longitudinal modeling (Bandyopadhyay, Ganguli, and Chatterjee 

2011; Fieuws and Verbeke 2004; Fieuws, Verbeke, and Molenberghs 2007) is one 

approach for addressing such limitations. These approaches account for the 

interdependence in the multivariate outcomes through a multivariate distribution thereby 

improving efficiency and reduce bias (Gueorguieva 2001; McCulloch 2008). However, 

because these approaches require a known distribution, they rely on certain assumptions 

and inference may not be valid if the distribution is misspecified (Wu, et al. 2012). The 

challenges with separate models can be also be lessened with joint models (Liu, et al. 
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2010; Maciejewski and Maynard 2004; Xu and Zeger 2001). For instance, the multiple 

models are often linked through the random effect to account for the association between 

the responses (Ghebremichael 2015; Liu, et al. 2010). Song, Davidian and Tsiatis (2002) 

proposed an extension of this approach using a semiparametric approach which required 

only that the random effects have a smooth density. The use of joint latent class models 

has also been proposed for longitudinal data (Proust-Lima, et al. 2014). In econometrics, 

multiple-equation GMM has been used to fit multiple GMM models simultaneously 

(Hayashi 2000). However, these approaches are not applicable to analyses including 

time-dependent covariates, and often rely on additional distributional assumptions. 

We propose the use of a joint model; however, unlike previous studies, this 

approach does not require any distributional assumptions, and includes time-varying 

effects of each covariate using a partitioning of regression parameters. In Section 2, we 

review correlated responses and generalized method of moments estimators. In Section 3, 

we introduce a simultaneous GMM approach with partitioned coefficients. In Section 4, 

the proposed model is applied to the Add Health study. In Section 5, we provide 

discussions and conclusions. 

4.2. Generalized Method of Moments Models 

The GMM estimator is used frequently in  econometrics (Hansen 1982) and is 

increasingly useful in statistical modeling. Many researchers have demonstrated the 

efficacy of the GMM model in addressing time-dependent covariates using a single 

regression parameter for each covariate (Chen and Westgate 2017; Lai and Small 2007; 

Lalonde, Wilson, and Yin 2014). Irimata, Broatch and Wilson (2018) utilized a 



 

 

65 

 

partitioned GMM model to evaluate time-dependent covariates using multiple regression 

coefficients per covariate. 

Consider a study with repeated observations over 𝑇 time-periods on 𝑁 subjects 

with J covariates. Let 𝑦𝑖𝑡 denote the outcome measured on the ith subject at the tth time-

period with marginal density, given the time-varying vector of covariates 𝒙𝑖𝑡., following a 

generalized linear model. The observations 𝑦𝑖𝑠 and 𝑦𝑘𝑡 are assumed to be independent 

when 𝑖 ≠ 𝑘, but may be correlated when 𝑖 = 𝑘. Denote the conditional expectation of the 

random variable 𝑦𝑖𝑡 given the vector of covariates 𝒙𝑖𝑡. with the vector of regression 

parameters 𝜷 as 𝜇𝑖𝑡(𝜷). We utilize the moment condition 

𝐸 [
𝜕𝜇𝑖𝑠(𝜷)

𝜕𝛽𝑗
{𝑦𝑖𝑡 − 𝜇𝑖𝑡(𝜷)}] = 0,  (4.2.1) 

as discussed by Lai and Small (Lai and Small 2007), for appropriately selected 

𝑠, 𝑡 and 𝑗.  

4.2.1 Single Parameter GMM 

The generalized method of moments models using a single parameter for each 

covariate are now common (Chen and Westgate 2017; Qu, Lindsay, and Li 2000; Zhou, 

et al. 2014; Lai and Small 2007). In this paper, we concentrate on the framework 

established by Lalonde, Wilson and Yin (2014), though the methods discussed in later 

sections can be extended to accommodate alternative approaches. 

Lai and Small (2007) introduced a marginal model using GMM estimation for 

time-dependent covariates. Their method relied on the classification of each covariate as 

either Type I, Type II or Type III, which in turn provided information regarding the 

moment conditions, which could be used to estimate the regression parameter. A 
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covariate was designated as Type I if Equation (4.2.1) held for all 𝑠 and all 𝑡, and thus all 

moment conditions were considered valid. A Type II covariate satisfied Equation (4.2.1) 

whenever 𝑠 ≥ 𝑡, but failed for some 𝑠 < 𝑡, with a common example including covariates 

are not independent of future responses, but without any type of feedback effect from the 

response back onto the covariate. A covariate was classified as Type III when Equation 

(4.2.1) does not hold for any 𝑠 > 𝑡, and often occur when there is a feedback process 

from the outcome onto the covariate. 

Lalonde, Wilson and Yin (2014) discussed extensions to the GMM model for 

time-dependent covariates, using a hypothesis test to separately evaluate each moment 

condition for validity. The test allowed for all valid moment conditions to be utilized in 

model estimation, without requiring that each covariate be classified by type. They 

showed that the validity of Equation (4.2.1) is equivalent to the correlation between the 

residual, 𝑒𝑠 observed at time 𝑠, and the covariate, 𝑥𝑡 observed at time t, being equal to 

zero. They assumed that all moment conditions arising from 𝑠 = 𝑡 were are valid. All 

other 𝑇(𝑇 − 1) moment conditions were tested for validity using the hypothesis 

𝐻0: 𝜌𝑥𝑡,𝑒𝑠
= 0; thus the moment conditions were considered valid under the null 

hypothesis. This hypothesis was tested using a Z-statistic using the pairwise correlations 

between the residual and covariate at each time-period. The identified valid moment 

conditions were used to fit the regression model. 

4.2.2 Partitioned GMM 

Though single parameter per covariate GMM models are useful for modeling 

time-dependent covariates, these models limit the effect of each covariate to be the same 



 

 

67 

 

in each time-period, which may not be an ideal assumption in practice. Irimata, Broatch 

and Wilson (2018) proposed a partitioned GMM model which utilized multiple 

parameters for each time-dependent covariate to separately represent the varying 

relationships between each covariate and the responses over time. They utilized a 

partitioning method, based on the difference in time-period between the covariate and 

response. The moment conditions were grouped based on this partitioning, which led to 

the lower diagonal design matrix 

𝐗ij =

[
 
 
 
1 Xij1 0 … 0

1 Xij2 Xij1 … 0

⋮ ⋮ ⋮ … ⋮
1 Xi1T Xij(T−1) … Xij1]

 
 
 

= [𝟏 Xij
[0]

Xij
[1]

… Xij
[T−1]

] 

which was used in the marginal model  

𝑔(𝜇𝑖𝑡) = 𝛽0 + 𝛽𝑗
𝑡𝑡𝑋𝑖𝑗

[0]
+ 𝛽𝑗

[1]
𝑋𝑖𝑗

[1]
+ 𝛽𝑗

[2]
𝑋𝑖𝑗

[2]
…+ 𝛽𝑗

[𝑇−1]
𝑋𝑖𝑗

[𝑇−1]
 (4.2.2) 

for subject 𝑖, with appropriate link function 𝑔(∙). The coefficient 𝛽𝑗
𝑡𝑡 denoted the cross-

sectional effect of the jth covariate on the outcome observed in the same time-period. The 

parameters 𝛽𝑗
[1]

, … 𝛽𝑗
[𝑇−1]

 denoted the effect of the jth covariate on the outcome observed 

across a 1 to 𝑇 − 1 time-period lag, respectively. For example, 𝛽𝑗
[1]

 represented the 

relationship between 𝑋𝑗 and the outcome across a one time-period lag. They identified 

valid moment conditions using either the Type II covariate proposed by Lai and Small 

(2007), or the test for validity introduced by Lalonde, Wilson and Yin (2014),  though 

their simulation studies suggested that the Lalonde, Wilson and Yin method produces less 

biased estimates, with better parameter coverage. This model was best suited to data with 
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few time-periods, relative to the number of subjects, similar to restrictions with GEE 

models (Stoner, Leroux, and Puumala 2010). We expand on this framework to consider 

multiple simultaneous responses of interest with a joint model fitting procedure. 

4.3 Joint Modeling for Correlated Binary Responses 

Though models, such as those based on GMM, are useful for accounting for time-

dependent covariates, the separate fit of these models to multiple outcomes ignores the 

correlation between these multiple outcome variables. The use of separate models leads 

to inefficient estimates and  the results of the analysis (Berridge and Crouchley 2011; 

Fitzmaurice, Laird, and Ware 2004). The multiple-equation GMM model accounts for the 

fit of more than one outcome (Hayashi 2000), however the model does not account for 

time-dependent covariates in longitudinal data. In this section, we present an expanded 

objective function to estimate regression parameters based on the partitioned GMM 

model (Irimata, Broatch, and Wilson 2018), for modeling multivariate outcomes using 

simultaneous model fitting, while also accounting for the time-dependent covariates. 

4.3.1 Model and Estimators 

Consider a regression model with time-dependent covariates, and the method of 

Lalonde, Wilson and Yin (2014) to  identify the set of valid moment conditions, though 

other methods for valid moment identification can be used. Let M denote the number of 

response variables of interest, where  𝒀(𝑚)𝑖 = (𝑦(𝑚)𝑖1, … , 𝑦(𝑚)𝑖𝑇)
′
 is the 𝑇 𝑥 1 vector of 

outcomes associated with the ith subject 𝑖 = 1, 2, … ,𝑁; for the mth outcome variable and 

let 𝝁(𝑚)𝑖 = (𝜇(𝑚)𝑖1, … , 𝜇(𝑚)𝑖𝑇)′ denote the corresponding mean vector. Let 𝑿(𝑚)𝑖 =
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[

1 𝑋(𝑚)𝑖11 ⋯ 𝑋(𝑚)𝑖𝐽1

⋮ ⋮ ⋱ ⋮
1 𝑋(𝑚)𝑖1𝑇 ⋯ 𝑋(𝑚)𝑖𝐽𝑇

] denote the matrix of J covariates for model m, where at time 

t, the row vector is given by 𝐗(m)i.t = (X(m)i1t, … , X(m)iJt) and the column vector for the 

jth covariate is 𝑿(𝑚)𝑖𝑗. = (𝑋(𝑚)𝑖𝑗1, … , 𝑋(𝑚)𝑖𝑗𝑇)′. To account for the time-dependent 

covariates and to evaluate  lagged effects, we utilize a lower triangular data matrix, 

similar to the method discussed by Irimata, Broatch and Wilson (2018), such that the data 

matrix for the jth covariate in the mth model is  

𝐗(m)ij
′ =

[
 
 
 
1 X(m)ij1 0 … 0

1 X(m)ij2 X(m)ij1 … 0

⋮ ⋮ ⋮ … ⋮
1 X(m)i1T X(m)ij(T−1) … X(m)ij1]

 
 
 

= [𝟏 X(m)ij
[0]

X(m)ij
[1]

… X(m)ij
[T−1]

] 

where the bracketed superscripts denote the differences in observed time-periods between 

the mth outcome and the covariate. Thus, the model is 

𝑔(𝜇(𝑚)𝑖𝑡) = 𝛽(𝑚)0 + 𝛽(𝑚)𝑗
𝑡𝑡 𝑋(𝑚)𝑖𝑗

[0]
+ 𝛽(𝑚)𝑗

[1]
𝑋(𝑚)𝑖𝑗

[1]
+ 𝛽(𝑚)𝑗

[2]
𝑋(𝑚)𝑖𝑗

[2]
…+ 𝛽(𝑚)𝑗

[𝑇−1]
𝑋(𝑚)𝑖𝑗

[𝑇−1]
 

for appropriate link function 𝑔(∙), and 𝑔(𝝁(𝒎)𝒊) = 𝑿(𝒎)𝒊𝒋𝜷(𝒎)𝒋 in matrix form. The 

interpretation of each of the regression coefficients is analogous to Model (4.2.2). Thus, 

𝛽(𝑚)𝑗
𝑡𝑡  denotes the cross-sectional effect of the jth covariate in the mth regression model, 

while β(m)j
[1]

…β(m)j
[T−1]

 denote the lagged effects across a 1,… , 𝑇 − 1 time-period lag. 

Let 𝑀 = 2, with two simultaneous outcomes, which for subject 𝑖 are the vectors 

𝒀(𝟏)𝒊 and 𝒀(𝟐)𝒊, though the approach is analogous for larger M (Hayashi 2000). Let 𝜷(𝟏) 

and 𝜷(𝟐) be vectors of unknown regression parameters corresponding to the functions 
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𝒇(𝑦(1)𝑖, 𝜷(𝟏)) = [

𝑓1(𝑦(1)𝑖 , 𝜷(𝟏))

⋮
𝑓𝐺1

(𝑦(1)𝑖, 𝜷(𝟏))
] and 𝒉(𝑦(2)𝑖 , 𝜷(𝟐)) = [

ℎ1(𝑦(2)𝑖, 𝜷(𝟐))

⋮
ℎ𝐺2

(𝑦(2)𝑖 , 𝜷(𝟐))
] for every 

subject i, where the number of moment conditions, 𝐺1 and 𝐺2 may not be equal. Then 

there are 𝐺 = ∑ 𝐺𝑚
𝑀
𝑚=1  moment conditions which take the form 𝒇(𝑦(1)𝑖, 𝜷(𝟏)) and 

𝒉(𝑦(2)𝑖, 𝜷(𝟐)), such that  

𝐸 [
𝒇(𝑦(1)𝑖, 𝜷(𝟏))

𝒉(𝑦(2)𝑖, 𝜷(𝟐))
] = 𝐸

[
 
 
 
 
 
 
 𝑓

1
(𝑦

(1)𝑖
, 𝜷

(𝟏)
)

⋮

𝑓
𝐺1

(𝑦
(1)𝑖

, 𝜷
(𝟏)

)

ℎ1 (𝑦
(2)𝑖

, 𝜷
(𝟐)

)

⋮

ℎ𝐺2
(𝑦

(2)𝑖
, 𝜷

(𝟐)
)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 𝐸 (𝑓

1
(𝑦

(1)𝑖
, 𝜷

(𝟏)
))

⋮

𝐸 (𝑓
𝐺1

(𝑦
(1)𝑖

, 𝜷
(𝟏)

))

𝐸 (ℎ1 (𝑦
(2)𝑖

, 𝜷
(𝟐)

))

⋮

𝐸 (ℎ𝐺2
(𝑦

(2)𝑖
, 𝜷

(𝟐)
))]

 
 
 
 
 
 
 
 
 

=

(

  
 

0
⋮
0
0
⋮
0)

  
 

 

for all i. We define the sample analogue of this moment condition across all subjects as 

𝑭𝑵(𝑦(1), 𝜷(𝟏))

𝑯𝑵(𝑦(2), 𝜷(𝟐))
=

1

𝑁
∑[

𝑓
1
(𝑦

(1)𝑖
, 𝜷

(𝟏)
)

⋮

𝑓
𝐺1

(𝑦
(1)𝑖

, 𝜷
(𝟏)

)

]

𝑁

𝑖=1

1

𝑁
∑[

ℎ1 (𝑦
(2)𝑖

, 𝜷
(𝟐)

)

⋮

ℎ𝐺2
(𝑦

(2)𝑖
, 𝜷

(𝟐)
)

]

𝑁

𝑖=1

=
1

𝑁

[
 
 
 
 
 
 
 
 ∑ 𝑓

1
(𝑦

(1)𝑖
, 𝜷

(𝟏)
)

⋮

∑ 𝑓
𝐺1

(𝑦
(1)𝑖

, 𝜷
(𝟏)

)

∑ℎ1 (𝑦
(2)𝑖

, 𝜷
(𝟐)

)

⋮

∑ ℎ𝐺2
(𝑦

(2)𝑖
, 𝜷

(𝟐)
)]
 
 
 
 
 
 
 
 

 

Define the 𝐺 × 𝐺 positive definite weight matrix as 𝑊𝑁 = (
𝑊11 𝑊12

𝑊12 𝑊22
), which is 

computed using the cross product of the moment conditions for each subject. This matrix 

accounts for the covariance that exists between the two models through the inclusion of 

the elements in 𝑊12. Thus,  

WN =
1

N
[∑ (

𝐟(y(1)i, 𝛃(𝟏))

𝐡(y(2)i, 𝛃(𝟐))
)(

𝐟(y(1)i, 𝛃(𝟏))

𝐡(y(2)i, 𝛃(𝟐))
)

T

N
i=1 ]. 
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Define the objective function such that: 

QN(𝛃) = (
𝐅𝐍(y(1), 𝛃(𝟏))

𝐇𝐍(y(2), 𝛃(𝟐))
)

T

WN
−1 (

𝐅𝐍(y(1), 𝛃(𝟏))

𝐇𝐍(y(2), 𝛃(𝟐))
). 

The GMM estimator of 𝜷 = (
𝜷(𝟏)

𝜷(𝟐)
) is the vector of regression parameters that minimizes 

𝑄𝑁(𝜷), thus 

�̂�GMM = (
�̂�𝐆𝐌𝐌(𝟏)

�̂�𝐆𝐌𝐌(𝟐)

) = argminβϵℬQN(𝛃). 

This minimum is obtained using nonlinear optimization, such as Newton-Raphson or 

conjugate gradient method. The estimates are obtained using a continuously updating 

procedure in which each successive estimate of 𝜷 is obtained with a weight matrix 

calculated using the estimate for 𝜷 from the previous iteration. 

In calculating the asymptotic variance, let 

�̂� =
1

𝑁
∑

(

 
 

𝜕𝑓(𝑦(1)𝑖, �̂�𝑮𝑴𝑴(𝟏))

𝜕𝜷(𝟏)

𝜕ℎ(𝑦(2)𝑖, �̂�𝑮𝑴𝑴(𝟐))

𝜕𝜷(𝟐) )

 
 

𝑁

𝑖=1

 

denote the vector of partial derivatives evaluated at �̂�𝐺𝑀𝑀. The asymptotic variance of 

�̂�𝐺𝑀𝑀 is 𝑉𝑎𝑟(�̂�𝐺𝑀𝑀) = (�̂�𝑊𝑁
−1�̂�)−1 with 𝑊𝑁

−1 evaluated at �̂�𝐺𝑀𝑀. 

By extension, for the general case 𝑚 = 𝑀,  

𝑊𝑁 =
1

𝑁

[
 
 
 
 

∑

(

 
 

𝒇(𝑦(1)𝑖, 𝜷(𝟏))

𝒉(𝑦(2)𝑖 , 𝜷(𝟐))

⋮
𝒌(𝑦(𝑚)𝑖, 𝜷(𝑴)))

 
 

(

 
 

𝒇(𝑦(1)𝑖, 𝜷(𝟏))

𝒉(𝑦(2)𝑖, 𝜷(𝟐))

⋮
𝒌(𝑦(𝑚)𝑖, 𝜷(𝑴)))

 
 

𝑇

𝑁
𝑖=1

]
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such that 

𝑄𝑁(𝜷) =

(

 
 

𝑭𝑵(𝑦(1), 𝜷(𝟏))

𝑯𝑵(𝑦(2), 𝜷(𝟐))

⋮
𝑲𝑵(𝑦(𝑚), 𝜷(𝑴)))

 
 

𝑇

𝑊𝑁
−1

(

 
 

𝑭𝑵(𝑦(1), 𝜷(𝟏))

𝑯𝑵(𝑦(2), 𝜷(𝟐))

⋮
𝑲𝑵(𝑦(𝑚), 𝜷(𝑴)))

 
 

 

and thus �̂�𝐺𝑀𝑀 =

(

 
 

�̂�𝑮𝑴𝑴(𝟏)

�̂�𝑮𝑴𝑴(𝟐)

⋮
�̂�𝑮𝑴𝑴(𝑴))

 
 

= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝜖ℬ𝑄𝑁(𝜷). 

For logistic regression models on the mth outcome variable, the mean response is 

𝜇(𝑚)𝑖𝑡(𝜷(𝒎)) =
𝑒𝑥𝑝 (𝒙(𝑚)𝑖𝑡.𝜷(𝒎))

1 + 𝑒𝑥𝑝 (𝒙(𝑚)𝑖𝑡.𝜷(𝒎))
 

and thus, each element in 𝒇(𝑦(1)𝑖, 𝜷(𝟏)) or 𝒉(𝑦(2)𝑖, 𝜷(𝟐)) is  

𝜕𝜇(𝑚)𝑖𝑠(𝜷(𝒎))

𝜕𝛽(𝑚)𝑗
[𝑘]

[𝑦(𝑚)𝑖𝑡 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))]

= 𝑥(𝑚)𝑖𝑠𝑗𝜇(𝑚)𝑖𝑠(𝜷(𝒎))[1 − 𝜇(𝑚)𝑖𝑠(𝜷(𝒎))][𝑦(𝑚)𝑖𝑡 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))] 

Therefore, each row of (

𝜕𝑓(𝑦(1)𝑖,�̂�𝑮𝑴𝑴(𝟏))

𝜕𝜷(𝟏)

𝜕ℎ(𝑦(2)𝑖,�̂�𝑮𝑴𝑴(𝟐))

𝜕𝜷(𝟐)

) in the asymptotic variance of a logistic 

regression model is computed using 

𝜕{[
𝜕𝜇(𝑚)𝑖𝑠(𝜷(𝒎))

𝜕𝛽
(𝑚)𝑗
[𝑘] ][𝑦(𝑚)𝑖𝑡−𝜇(𝑚)𝑖𝑡(𝜷(𝒎))]}

𝜕𝛽
(𝑚)𝑙
[𝑘′]

= 𝑥(𝑚)𝑖𝑠𝑗𝜇(𝑚)𝑖𝑠(𝜷(𝒎))[1 − 𝜇(𝑚)𝑖𝑠(𝜷(𝒎))] {𝑥(𝑚)𝑖𝑠𝑙[1 −

2𝜇(𝑚)𝑖𝑠(𝜷(𝒎))][𝑦(𝑚)𝑖𝑡 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))] − 𝑥(𝑚)𝑖𝑡𝑗𝜇(𝑚)𝑖𝑡(𝜷(𝒎))[1 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))]}, 

where 𝑗 = 1,… , J, 𝑙 = 1,… 𝐽, 𝑘 = 1,… , 𝑇 − 1 and 𝑘′ = 1,… , 𝑇 − 1. 
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Analogously, for normal error models on the mth outcome variable, the elements 

in 𝒇(𝑦(1)𝑖, 𝜷(𝟏)) or 𝒉(𝑦(2)𝑖, 𝜷(𝟐)) are  

𝜕𝜇(𝑚)𝑖𝑠(𝜷(𝒎))

𝜕𝛽(𝑚)𝑗
[𝑘]

[𝑦(𝑚)𝑖𝑡 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))] = 𝑥(𝑚)𝑖𝑠𝑗 [𝑦(𝑚)𝑖𝑡 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))] 

and thus, in calculating the asymptotic variance of �̂�𝑮𝑴𝑴, each row of (

𝜕𝑓(𝑦(1)𝑖,�̂�𝑮𝑴𝑴(𝟏))

𝜕𝜷(𝟏)

𝜕ℎ(𝑦(2)𝑖,�̂�𝑮𝑴𝑴(𝟐))

𝜕𝜷(𝟐)

) 

is computed as 

𝜕 {[
𝜕𝜇(𝑚)𝑖𝑠(𝜷(𝒎))

𝜕𝛽
(𝑚)𝑗

[𝑘] ] [𝑦(𝑚)𝑖𝑡 − 𝜇(𝑚)𝑖𝑡(𝜷(𝒎))]}

𝜕𝛽(𝑚)𝑙
[𝑘′]

= −𝑥(𝑚)𝑖𝑠𝑗𝑥(𝑚)𝑖𝑠𝑙 

for 𝑗 = 1,… , J, 𝑙 = 1,… 𝐽, 𝑘 = 1,… , 𝑇 − 1 and 𝑘′ = 1,… , 𝑇 − 1. We provide a SAS 

macro to fit this model at https://github.com/kirimata/Simultaneous-GMM. 

4.4 Numerical Example 

Alcohol use and smoking have long been identified as strongly related (Guydish, 

et al. 2011; Kozlowski, Jelinek, and Pope 1986). Recent studies, such as the National 

Comorbidity Study have reported smoking prevalence of 56.1% for Americans with 

alcohol disorders (Lasser, et al. 2000). We analyzed data from the National Longitudinal 

Study of Adolescent Health (Add Health) (Harris and Udry 2016). These data come from 

a longitudinal study of health-related behaviors in adolescents. The measurements were 

collected from 80 different high schools and 52 middle schools in the U.S., with 

information on 2,712 different students gathered across four waves starting in 1994 and 

ending in 2008. We investigated two binary outcomes representing smoking status and 
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social alcohol drinking at each measurement. The data included time-dependent 

covariates for physical activity level, depression level and self-reported health status. We 

also included a time-independent covariate, representing race as white or non-white. For 

further comparison, we considered a third binary outcome representing obesity status, as 

calculated from each child’s BMI. 

4.4.1 Simultaneous Modeling of Smoking and Alcohol Use 

We considered two outcome variables for smoking status and social alcohol 

drinking, thus for this analysis 𝑀 = 2. There was substantial association between these 

two outcome variables, with correlation �̂� = 0.40, and with 𝑉2 = 𝜒2/𝑁 = 0.161. Thus, 

since 𝑉2 exceeded the 0.15 threshold discussed by Irimata and Wilson (2017), there was 

significant correlation between these outcomes, warranting consideration in the model. 

We fitted a simultaneous GMM model to estimate the regression for the two outcome 

variables simultaneously. In addition we consider two partitioned GMM models 

separately, using the Lalonde, Wilson and Yin (2014) method to identify valid moment 

conditions. There were differences in the significance of the covariates between these two 

models. In particular, for the social alcohol usage model, we saw that depression had a 

significant one-period lagged coefficient when two separate models were fit. However, 

this relationship was not significant when the correlation between smoking and social 

alcohol usage was accounted for through the simultaneous GMM. We found that 

depression level was significant at a two time-period lag under the simultaneous GMM 

model, though the two separate models did not identify this relationship as significant. 

Thus, strong correlation between smoking status and social alcohol drinking affects the 
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conclusions from a binary logistic regression model. In particular, the fit of two separate 

models is not the best choice in this scenario as it neglects the association between the 

outcomes, consistent with findings based on the correlation of the two outcomes (Irimata 

and Wilson 2017). The parameter estimates and standard errors from the Simultaneous 

GMM model, as well as the two separate Partitioned GMM models are included in Table 

4.4.1. Significant parameter estimates are denoted by bolded entries. 
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Table 4.4.1. Parameter Estimates and Standard Errors (SE) for the Smoking and Social  

Alcohol Models in Add Health Data 

Outcome 
Time-

Period 
Parameter 

Simultaneous GMM Separate Models 

Estimate SE Estimate SE 

Smoking 

Status 

Cross-

Sectional 

Intercept 0.849 0.152 0.824 0.155 

Race -0.757 0.068 -0.716 0.068 

Activity -0.023 0.022 -0.019 0.022 

Depression 0.806 0.086 0.811 0.088 

Health -0.259 0.030 -0.260 0.030 

Lagged 

One 

Period 

Activity -0.002 0.022 0.007 0.022 

Depression 0.002 0.089 0.018 0.091 

Health -0.089 0.023 -0.101 0.024 

Lagged 

Two 

Periods 

Activity 0.063 0.023 0.063 0.024 

Depression 1.154 0.101 1.171 0.101 

Lagged 

Three 

Periods 

Activity -0.002 0.028 0.004 0.028 

Depression -0.587 0.094 -0.606 0.094 

Social 

Alcohol 

Use 

Cross-

Sectional 

Intercept 0.208 0.156 0.207 0.159 

Race -0.562 0.065 -0.555 0.066 

Activity -0.067 0.023 -0.071 0.023 

Depression 0.864 0.101 0.877 0.103 

Health -0.110 0.029 -0.110 0.030 

Lagged 

One 

Period 

Activity 0.009 0.023 -0.002 0.023 

Depression -0.207 0.114 -0.257 0.113 

Health 0.004 0.024 0.016 0.024 

Lagged 

Two 

Periods 

Activity 0.039 0.032 0.033 0.033 

Depression 0.384 0.167 0.253 0.155 

Health 0.199 0.039 0.228 0.039 

Lagged 

Three 

Periods 

Depression -0.204 0.186 -0.313 0.177 

Health 0.134 0.040 0.164 0.041 

4.4.2 Simultaneous Modeling of Smoking, Alcohol Use, and Obesity 

We investigated obesity status in the children, while considering smoking and 

social alcohol usage. We calculated the partial correlations among the three outcome 

variables. Conditional on obesity, smoking and social alcohol drinking remained strongly 

correlated at a level of 0.399. Neither smoking nor social alcohol drinking had a strong 
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correlation with obesity, with 𝑉2 = 0.0041 and 𝑉2 = 0.0046, respectively (Irimata and 

Wilson 2017). Thus, we expect that the effect of simultaneously modeling obesity with 

smoking and social alcohol use is small, given the weak correlation. The partial 

correlations are provided in Table 4.4.2.  

 

Table 4.4.2. Partial Correlations / 𝑉2 Between Smoking, Social Alcohol Usage and  

Obesity in Add Health Data 

 Smoking Alcohol Obesity 

Smoking 1 0.399 / 0.161 0.040 / 0.0041 

Alcohol 0.399 / 0.161 1 0.046 / 0.0046 

Obesity 0.040 / 0.0041 0.046 / 0.0046 1 

 

We fitted the Simultaneous GMM for the three outcome variables. We compared 

the results obtained to the results from three separate Partitioned GMM models. Similar 

to the model which focused only on smoking and social alcohol usage, the results of these 

two approaches differed. Under the separate Partitioned GMM models, depression was 

significant at a one time-period lag in the social alcohol use model, though this was not 

significant under the simultaneous GMM. The simultaneous GMM identified depression 

as significant at a two time-period lag in the social alcohol use model, though the fit of 

separate Partitioned GMM models. Notably, the significance of the predictors in the 

obesity model did not vary between the two analyses, and the previously discussed 

discrepancies are the same as those identified Section 4.1. Thus, the correlation between 

smoking and social alcohol drinking continued to produce differences due to the 

magnitude of association between these outcomes. However, the inclusion of obesity had 

very little effect on the results, as implied by the small amount of correlation between 
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obesity and the other two outcomes. The respective parameter estimates and standard 

errors from the Simultaneous GMM model and the three separate Partitioned GMM 

models are given in Table 4.4.3, with significant regression parameters bolded. 
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Table 4.4.3. Parameter Estimates and Standard Errors (SE) for the Smoking, Social  

Alcohol and Obesity Models in Add Health Data 

Outcome 
Time-

Period 
Parameter 

Simultaneous GMM Separate Models 

Estimate SE Estimate SE 

Smoking 

Status 

Cross-

Sectional 

Intercept 0.823 0.148 0.824 0.155 

Race -0.791 0.067 -0.716 0.068 

Activity -0.021 0.021 -0.019 0.022 

Depression 0.687 0.082 0.811 0.088 

Health -0.240 0.029 -0.260 0.030 

Lagged 

One 

Period 

Activity 0.001 0.022 0.007 0.022 

Depression -0.051 0.086 0.018 0.091 

Health -0.076 0.023 -0.101 0.024 

Lagged 

Two 

Periods 

Activity 0.075 0.023 0.063 0.024 

Depression 1.181 0.098 1.171 0.101 

Lagged 

Three 

Periods 

Activity 0.032 0.028 0.004 0.028 

Depression -0.704 0.092 -0.606 0.094 

Social 

Alcohol 

Use 

Cross-

Sectional 

Intercept 0.271 0.154 0.207 0.159 

Race -0.586 0.065 -0.555 0.066 

Activity -0.062 0.023 -0.071 0.023 

Depression 0.794 0.097 0.877 0.103 

Health -0.120 0.029 -0.110 0.030 

Lagged 

One 

Period 

Activity 0.035 0.023 -0.002 0.023 

Depression -0.209 0.111 -0.257 0.113 

Health -0.008 0.023 0.016 0.024 

Lagged 

Two 

Periods 

Activity 0.032 0.032 0.033 0.033 

Depression 0.331 0.156 0.253 0.155 

Health 0.217 0.038 0.228 0.039 

Lagged 

Three 

Periods 

Depression -0.244 0.179 -0.313 0.177 

Health 0.154 0.040 0.164 0.041 

Obesity 

Cross-

Sectional 

Intercept -0.252 0.230 -0.104 0.228 

Race 0.415 0.103 0.361 0.103 

Activity -0.567 0.054 -0.566 0.054 

Depression 0.562 0.118 0.589 0.117 

Health -0.526 0.047 -0.559 0.047 

Lagged 

One 

Period 

Depression 1.553 0.146 1.469 0.143 

Health -0.201 0.042 -0.183 0.041 
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4.5 Conclusions 

In longitudinal data analysis, there are multiple types of correlation that must be 

accounted for. There is correlation due to the repeated measures, and correlation between 

the covariates and the response over time. When there are multiple outcome variables of 

interest, the association between these outcomes must also be taken into account. The 

Simultaneous GMM model provides an alternative to joint modeling of logistic 

regression models with time-dependent covariates that avoids the need for additional 

distribution assumptions. This model accounts for the time-dependent covariates using 

partitioned coefficients to represent the effect of each predictor in different segments of 

time. The model also accounts for the correlation between the multiple outcomes of 

interest using a simultaneous minimization of an extended weight matrix, with 

concatenated moment conditions. In future works, this model can be used to explicitly 

model the feedback from the outcome onto the covariates simultaneously. 
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CHAPTER 5 

CONCLUSIONS 

In this dissertation work, I present three papers addressing correlation in binary 

outcome data. The first paper addresses a measure of intraclass correlation for three level 

hierarchical data. This measure provides a practical approach to estimating the 

association inherent due to clustering, as well as useful thresholds for identifying when 

the complexity of a mixed model is necessary in practice. This work has been published 

in Journal of Applied Statistics. The second paper of this work provides the Partitioned 

GMM approach to explicitly model the effects of time-dependent covariates on an 

outcome of interest over time. Specifically, this method incorporates additional 

parameters to explain the effect of each covariate on the outcome across time. This paper 

has been submitted, and is under review with Statistics in Medicine. The third paper 

discusses a simultaneous GMM model to jointly fit models for more than one outcome, 

while also accounting for the varying effects of time-dependent covariates. This model 

utilizes an extension of the Partitioned GMM in conjunction with an extended objective 

function to take into account the association that exists between multiple outcomes in the 

same data. This manuscript will be submitted to Statistics. Taken together, these three 

works provide useful methods of measuring and accounting for correlation inherent in 

longitudinal and hierarchical data structures. 
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