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ABSTRACT  

   

The ultimate goal of human movement control research is to understand how 

natural movements performed in daily activities, are controlled. Natural movements 

require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of 

arm joint control during daily functional tasks were examined, which are performed 

through rotation of the shoulder, elbow, and wrist with the use of seven DOF: shoulder 

flexion/extension, abduction/adduction, and internal/external rotation; elbow 

flexion/extension and pronation/supination; wrist flexion/extension and radial/ulnar 

deviation. Analyzed movements imitated two activities of daily living: combing the hair 

and turning the page in a book. Kinematic and kinetic analyses were conducted. The 

studied kinematic characteristics were displacements of the 7 DOF and contribution of 

each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional 

vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net 

torque (NT) at the shoulder, elbow, and wrist. Using a relationship NT = MT + GT + IT, 

the role of active control and the passive factors (gravitation and inter-segmental 

dynamics) in rotation of each joint was assessed by computing MT contribution (MTC) 

to NT. MTC was computed using the ratio of the signed MT projection on NT to NT 

magnitude. Despite the variety of joint movements required across the different tasks, 3 

patterns of shoulder and elbow coordination prevailed in each movement: 1) active 

rotation of the shoulder and predominantly passive rotation of the elbow; 2) active 

rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive 

rotation of both joints. Analysis of wrist control suggested that MT mainly compensates 

for passive torque and provides adjustment of wrist motion according to requirements of 
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both tasks. The 3 shoulder-elbow coordination patterns during which at least one joint 

moves largely passively represent joint control primitives underlying performance of 

well-learned arm movements, although these patterns may be less prevalent during non-

habitual movements. The advantage of these control primitives is that they require 

minimal neural effort for joint coordination, and thus increase neural resources that can 

be used for cognitive tasks.  
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INTRODUCTION 

In order to fully understand joint control in human arm movement, it is important 

to consider all variables at play during these movements. Previous studies have simplified 

analysis by eliminating or controlling for certain variables: the role of gravity has been 

removed or minimized by using movements across a horizontal or angled stationary 

surface (Dounskaia and Wang, 2014; Wang and Dounskaia, 2015) and the movements 

selected have been primarily regular strokes confined to a single plane (Dounskaia and 

Wang, 2014; Wang and Dounskaia, 2015, 2016). Research has been limited in how the 

findings of these studies apply to activities of daily living (ADL) tasks. With the ultimate 

goal of human movement control research being the understanding of how natural 

movements are performed, the examination of ADL tasks is necessary as it allows 

subjects to perform motions as they typically would rather than as a laboratory task 

dictates. 

 A significant benefit to allowing for more natural, unconstrained movement is the 

increased redundancy in degrees of freedom (DOF) that allows for the same tasks to be 

performed with a number of different movements. The arm has seven total DOF, with 

three at the shoulder, two at the elbow, and two at the wrist: shoulder flexion/extension, 

abduction/adduction, and internal/external rotation; elbow flexion/extension and 

pronation/supination; and wrist flexion/extension and radial/ulnar deviation. It has been 

the goal of many studies to determine how the central nervous system (CNS) determines 

control when presented with multiple options for joint motion.  

 A control pattern that has been frequently observed is the trailing joint control 

pattern. This suggests that in multi-joint movements, one “leading” joint tends to rotate 
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actively through torques produced by the muscles, while the remaining “trailing” joints 

involved in the movement assume a passive role and are rotated through passive torques 

such as interactive and gravitational torques. The CNS can focus movement on the 

leading joint, while the multi-link nature of the arm allows the trailing joint to rotate due 

to the motion-dependent mechanical interaction with the leading joint. Many studies have 

supported this through evidence of control coordinated in terms of leading and trailing 

joints (Dounskaia and Goble, 2011; Dounskaia et al., 2011, 2014; Goble et al., 2007; 

Wang and Dounskaia, 2012, 2015, 2016). However, there are cases in which this control 

pattern is not used, such as movements in nonpreferred directions (Wang and Dounskaia, 

2015). These cases tend to occur when the movement limits the DOF available for use, 

and a possible reason for this could be that the lack of redundancy forces the CNS to use 

an alternate, less optimal method of joint control.  

 Here, joint control was tested for tasks that imitated two representative ADL 

movements: combing the hair and turning the page of a book. Trunk motion was limited 

verbally during hair-combing and with a physical restraint during page-turning in order to 

limit the movements to only the DOF of the arm. These specific movements were 

selected due to their kinematic and planar differences: the hair-combing task occurs 

primarily in the sagittal plane and through the use of shoulder and elbow flexion; the 

page turning task occurs primarily in the frontal plane with the addition of internal 

rotation at the shoulder. Due to the full range of DOF available for these ADL 

movements, it was hypothesized that the trailing joint control pattern would be observed. 

For this hypothesis to be supported, the movements would consist typically of cases 

where the shoulder acts as the leading joint while the elbow rotates passively, or where 
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the elbow is driven actively while the shoulder rotates passively. In most previous 

studies, despite the kinematic freedom provided to the wrist joint, the wrist DOF are 

primarily fixed voluntarily. Although there may be additional movement at the wrist as 

demanded by the ADL tasks, it is expected that the wrist will be primarily fixed to further 

simplify control.  
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METHODS 

Participants 

14 young adult subjects (7 males and 7 females, 21.7 ± 2.2 years of age) participated in 

this study. They were recruited from the Arizona State University community and all 

provided informed consent. The institutional review board at ASU approved the 

experimental protocol. All subjects were right-handed as verified through a questionnaire 

adapted from the Edinburgh Handedness Inventory (Oldfield, R.C., 1971). 

Tasks 

 The setup for the hair-combing task had the participant seated freely on a stool 

such that the motion of the arm was not restricted. The initial position for the motion was 

the right hand hanging freely by the side, and a plastic comb was provided to aid in 

simulating a natural scenario. The subject was instructed to reach the hand up to the front 

of the head and complete one pass across the top of the head from front to back with the 

comb bristle-side up to avoid resistance from the hair. The subject then brought the hand 

back down to the starting position. The subject was instructed not to move the trunk 

during performance of the task. 

 The page-turning movement began with the subject seated in front of a table with 

the chest pressed against the side of the table and a strap placed diagonally across the 

body over the left shoulder to prevent motion of the trunk. The right arm remained free to 

move without restriction. An open textbook of length 29 cm and width 23 cm was placed 

on the table, with the participant holding a page on the right side with the hand resting on 

the table in the starting position. The participant was asked to turn the page to the left, 

pause for a few seconds, and then bring the page back to the starting position.  



  5 

Three trials of each movement were performed, with rest between trials as needed 

by the participants. While instruction was provided on the starting position and action of 

the movements, the subjects were free to determine posture and movement speed so as to 

more closely match the subjects’ natural speed when completing the ADL tasks. The 

subjects were allowed several practice motions before each task to fully understand the 

movement.  

 

Motion Capture 

 Motion during the tasks was recorded using Cortex Version 6.0 software in 

conjunction with eight Kestrel motion capture cameras (Santa Rosa, CA, US). 12 retro-

reflective markers were placed at specific places on the trunk and right arm: the xyphoid, 

the seventh cervical vertebra, the right clavicle, the right acromion, the head of the biceps 

brachii, the lateral epicondyle, the medial epicondyle, the center of the forearm, the ulnar 

styloid, the radial styloid, the second metacarpophalangeal joint, and the fifth 

metacarpophalangeal joint. Movement was recorded at a sampling frequency of 200 Hz. 

The data were filtered using a 7 Hz low-pass 2nd-order Butterworth digital filter.   

 

Kinematic Analysis 

The start of this period for both hair-combing and page-turning was defined as the 

time at which velocity of the endpoint of the hand reached 5% of its maximum velocity. 

The end of the page-turning period was defined as the point at which this velocity crossed 

this 5% threshold once again. The hair-combing movement did not reliably cross this 

final threshold since the hand did not stop moving for most subjects; the endpoint of the 
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movement was thus defined as the first minimum in endpoint velocity following the 

maximum velocity which consistently corresponded to the end of the forward movement. 

Angular velocities at each joint and DOF were calculated using the methods 

employed by Hirashima et al. (2007), which were conducted using the method by Feltner 

and Nelson (1996) to determine the position and orientation of the trunk, upper arm, 

forearm, and hand segments. Angular velocity at each joint was computed as the 

difference in the vectors of angular velocities of the proximal and distal segments of each 

joint. Angular velocity at each DOF was calculated using the angular velocities at the 

respective joint and the axis of rotation of the respective DOF. Excursions at each DOF 

were calculated as the integral of the angular velocity at the respective DOF. 

Contributions of DOF to hand velocity were computed using the following equation for 

the vector of hand translational velocity v: 

                                                   |�| = ∑ (�� ∙ ��)
���                                                       (1) 

Here, vu represents the unit vector of the translational velocity of the hand, with the hand 

being defined as the midpoint between the markers at the 2nd and 5th metacarpophalangeal 

joints. vi represents the vector of hand translational velocity produced by rotation about 

the DOF i (Feltner and Nelson 1996; Hirashima and Ohtsuki 2008, Dounskaia and Wang, 

2014). The expression for vi is the cross product of wi and pi, where wi represents the 

angular velocity vector at DOF i and pi represents the vector from the joint center to the 

hand. The joint center of the shoulder was defined as the marker on the acromion; the 

joint center of the elbow was defined as the midpoint between the markers on the lateral 

and medial epicondyles; and the joint center of the wrist was defined as the midpoint 

between the markers on the radial and ulnar styloids. Using this equation, the 
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contribution of DOF i to the production of hand velocity can be computed as the 

projection of vi on the unit vector vu.  

 

Kinetic Analysis 

Torques were computed using inverse dynamics equations in accordance with the 

method by Hirashima et al. (2007). Torques were calculated with respect to time for each 

joint and at existing DOF for both the hair-combing and page-turning movements. This 

model relied on the inputs of angular velocity at each joint, calculated as stated above. 

The torques at each joint were also decomposed into torques about the effective axes of 

each DOF (Hirashima et al., 2007).  

Net torque (NT) was calculated using the inverse dynamics equations, as well as 

the component torques which sum to NT: muscle torque (MT), interaction torque (IT), 

and gravitational torque (GT). The equations yielded NT, IT, and GT, and MT was 

calculated as NT – GT + IT, since NT represents the sum of the component torques. MT 

represents the effect of muscular forces in torque generation. IT represents the passive 

torque generated through interactions between joints in the movement chain. GT 

represents the torque generated due to gravitational force. Passive torque (PT) is defined 

as the summation of GT and IT, since these torques act to rotate the joints passively. 

Since MT is not calculated directly, it also includes any torques produced through the 

elastic properties of connective tissues; however, this factor is minimized by using 

movements that do not approach the anatomical limits of joint motions.  

Segment lengths, masses, and centers of mass were estimated from subject weight and 

gender using regression equations (De Leva, 1996).  
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A difficulty that arises when analyzing torques in three dimensions is the ability 

to examine these torques in a meaningful way using standardized metrics. To provide a 

two-dimensional presentation of the three-dimensional torques at each joint, the scalar 

projections of the MT, IT, and GT torque vectors were computed upon the NT vector. In 

this way, a positive value for any of these torques would indicate a positive contribution 

to NT, while a negative value would indicate an opposition to NT. NT magnitude was 

then used to describe NT. This method allowed for the representation of each torque as a 

scalar. A common metric for determining whether a joint rotates primarily actively or 

passively is muscle torque contribution (MTC), which is the ratio of the MT projection 

upon NT to NT magnitude bounded between 0 and 1. A value close to 1 indicates that the 

joint is rotating actively due to MT, while a value close to 0 indicates that the joint is 

rotating passively due to PT. MTC was computed using the following equation adapted 

from Dounskaia and Wang (2014) : 

                        �� =  ����/��10       �� 0 < ��� < ��,�� ���  ≥ ��,      �� ��� < 0.                                                  (2) 

Here MTNT represents the projection of MT on NT. MTC is equal to 1 when MT 

is greater than NT, since joint motion in this case is generated entirely by MT while PT 

resists movement. Similarly, MTC is equal to 0 when MT is opposite in sign to NT, since 

MT opposes the motion while rotation is generated by PT.  This method for computing 

3D torque contribution was developed to compute the passive torque contribution (PTC) 

(Dounskaia and Wang, 2014). Since MT and PT sum to NT, the sum of MTC and PTC is 

approximately equal to 1. This means that MTC not only describes the role of MT, but 



  9 

also of PT. MTC was computed across each data point for both movements across the 

shoulder, elbow, and wrist, and then averaged across time periods of interest.  

 

Statistical Analysis 

 The analysis for this study was conducted primarily with qualitative and 

quantitative observations rather than statistical analysis. Mean and standard deviation 

were computed across trials and subjects, but no statistical tests were required to draw 

conclusions. 
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RESULTS 

Hair-Combing 

Several metrics were computed to contribute to the analysis of the control patterns 

in both the hair-combing and page-turning movements. The period of examination for 

each task was only the forward portion of the movement. The hair-combing movement 

occurred primarily in the sagittal plane: the hand started from hanging down at the side of 

the body and moved in an arc to the top of the head (Figure 1A). The phases shown in 

this figure will be explained in detail later in this section. On average, the forward portion 

of the hair-combing movement took 1.09 ± 0.21 seconds and had a distance covered of 

1.12 ± 0.12 meters. Figure shows the excursions of the joints across all 7 DOF. These 

excursions were calculated as the integral of the angular velocity at each DOF. Positive 

excursions represent counter-clockwise rotation (flexion, abduction, internal rotation), 

while negative excursions represent clockwise rotation (extension, adduction, external 

rotation) (Table 1).  

Table 1 

DOF names and directions 

DOF Names DOF Directions 

Shoulder Flexion/Extension Flexion(+) /  Extension(-) 

Shoulder Abduction/Adduction Abduction(+) / Adduction(-) 

Shoulder Internal/External Rotation Internal(+) /     External(-) 

Elbow Flexion/Extension Flexion(+) /  Extension(-) 

Elbow Abduction/Adduction Abduction(+) / Adduction(-) 

Elbow Internal/External Rotation Internal(+) /     External(-) 

Wrist Flexion/Extension Flexion(+) /  Extension(-) 

Wrist Abduction/Adduction Abduction(+) / Adduction(-) 

Wrist Internal/External Rotation Internal(+) /     External(-) 
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This movement typically began with elbow flexion and elbow external rotation 

(supination). As the movement progressed, shoulder flexion began as the elbow rotation 

slowed. These results are also reflected in the contribution of the DOF to hand velocity. 

However, it becomes clear that the external rotation of the elbow did not contribute to 

hand movement; this movement was controlled almost exclusively by elbow flexion 

initially and shoulder flexion later in the movement.  

 

Figure 1. A representation of the kinematic and kinetic metrics for the hair-combing 

movement. The hand trajectory in the sagittal plane (A) during the forward considered 

portion of the movement showing the breakdown of this trajectory by MTC phases. DOF 

excursions (B) and contributions to hand velocity (C) with respect to time. Shoulder (D), 

elbow (E), and wrist (F) torques with respect to time. Phases as determined by MTC are 

shown with vertical dashed lines. 

 

In determining participation of each joint in movement production, the joint 

excursions and contributions to hand velocity were used across each DOF. These metrics 
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allowed for determination of the role of each DOF and joint in the movements. Both wrist 

DOF had small excursions for both movement types, with the largest total excursion 

during a movement being approximately 8 degrees. Additionally, the contribution to hand 

velocity across all phases for these DOF were negligible, indicating that they played no 

role in the hand velocity. Since wrist DOF were primarily fixed during the movements, 

only the shoulder and elbow were considered for analysis. While elbow internal/external 

rotation (pronation/supination) had significant excursions for both movements, its 

contribution to hand velocity was insignificant for both hair-combing and page-turning. 

This suggests that this DOF was likely used to orient the hand appropriately for the task, 

without playing a role in overall hand velocity.  

The movement was separated into distinct phases using MTC at the shoulder and 

elbow. The wrist MTC was not considered since this joint was typically voluntarily fixed 

during both movements. Each point at which MTC at either joint crossed 0.5 defined the 

start a new phase, since this indicates a transition from an active to a passive rotation of a 

joint (from an MTC value greater than 0.5 to a value less than 0.5) or from a passive to an 

active rotation (from an MTC value less than 0.5 to a value greater than 0.5). Using these 

criteria, the hair-combing movement typically displayed four distinct phases. Phases 1 

and 3 were displayed in 100% of trials while Phases 2 and 4 were present in 95% of 

trials. During Phase 1, both the shoulder and elbow joints actively contribute to NET to 

initiate the movement. During Phase 2, the elbow moves passively while the shoulder 

drives the movement. In Phase 3, both joints rotate passively, and the NET torque is a 

result of PT. During Phase 4, the elbow rotates actively while the shoulder remains 

passive (Table 2).  
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Table 2 

 Mean and (SD) of MTC at each joint and percent time and distance for hair-combing 

 

Phase 1 

 

Phase 2 

 

Phase 3 

 

Phase 4 

 

Shoulder  

0.99   

(0.03) 

0.99   

(0.01) 

0.04   

(0.02) 

0.00   

(0.00) 

Elbow 

1.00   

(0.00) 

0.03   

(0.01) 

0.03   

(0.03) 

0.96   

(0.01) 

Wrist 

0.36   

(0.16) 

0.70   

(0.25) 

0.63   

(0.27) 

0.77   

(0.38) 

% Time 

30.20 

(9.59) 

21.19 

(8.46) 

16.05 

(9.64)  

20.45 

(7.37) 

% Distance 

27.98 

(8.09) 

34.67 

(12.24) 

19.48 

(5.57) 

13.05 

(4.09) 

Leading 

Both 

Active Shoulder 

Both 

Passive Elbow 

 

The mean and standard deviation for excursions and contributions to hand velocity by 

phase are presented in Table 3 for hair-combing and Table 5 for page-turning. Excursions 

were computed as the total excursion across the respective phase, with the sum 

representing the total excursion for the forward movement. Contributions to hand 

velocity were computed as the average for each phase, with “All Phases” representing the 

average across the entire forward movement.  

In order to provide a simpler presentation of the three-dimensional torques at each 

joint, the scalar projections of the MT, IT, and GT torque vectors were computed upon 

the NT vector. These projections were then plotted in addition to the NT magnitude. A 

representative plot of these torques is displayed in Figure 1, which includes the torques at 

all three joints. Since NT magnitude is displayed it is always positive; MT, IT, and GT 

are positive if they positively contribute to NT and negative if they oppose NT. The phase 

demarcations typically correspond to the points where MT crosses the x-axis, since a 
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positive MT projection tends to be significantly higher than NT magnitude which results 

in an MTC value of 1.  

In accordance with the description of the four phases, the MT at the shoulder was 

positive for Phases 1 and 2 and negative for Phases 3 and 4, while MT at the elbow was 

positive for Phases 1 and 4 and negative for Phases 2 and 3. The torque profile at the 

wrist did not strongly correspond to the phases, as suggested by the MTC values close to 

0.5 and relatively high standard deviations displayed in Table 2.  

Table 3 

Mean and (SD) of DOF excursions and contributions to hand velocity for hair-combing 

DOF 

Excursions 

(Degrees) 

Hair 

Comb 

Shoulder  

Flex/Ext 

Shoulder 

Abd/Add 

Shoulder 

Int/Ext 

Elbow 

Flex/Ext 

Elbow 

Int/Ext 

Wrist  

Flex/Ext 

Wrist  

Abd/Add 

Phase 

1 

 11.47 

(6.79) 

 11.61 

(6.29) 

 7.75   

(7.82) 

 35.02 

(8.78) 

-17.60 

(11.18) 

-4.70 

(5.26) 

-0.18 

(4.66) 

Phase 

2 

 26.42 

(8.46) 

 13.11 

(3.93) 

 2.79   

(8.48) 

 32.48 

(9.50) 

-22.71 

(10.71) 

-1.15 

(2.97) 

 4.65 

(3.91) 

Phase 

3 

 19.35 

(6.86) 

 4.92   

(4.07) 

-6.69   

(3.51) 

 9.37   

(5.85) 

-13.01 

(7.78) 

 0.24 

(1.93) 

 0.52 

(2.49) 

Phase 

4 

 17.45 

(8.34) 

 2.60   

(2.86) 

-11.73 

(7.90) 

 4.21   

(5.68) 

-11.76 

(10.78) 

 0.87 

(3.37) 

-1.16 

(2.53) 

Sum  74.69 

(12.16) 

 32.24 

(9.13) 

-7.87   

(18.98) 

 81.08 

(14.05) 

-65.07 

(25.58) 

-4.74 

(8.93) 

 3.82 

(9.25) 

DOF 

Contributions 

to Hand 

Velocity 

(m/s) 

Phase 

1 

 0.24 

(0.15) 

 0.07 

(0.07) 

 0.02 

(0.04) 

 0.60 

(0.15) 

-0.01 

(0.01) 

-0.01 

(0.02) 

 0.01 

(0.01) 

Phase 

2 

 0.75 

(0.15) 

 0.00 

(0.08) 

 0.03 

(0.03) 

 0.77 

(0.16) 

 0.00 

(0.02) 

-0.01 

(0.01) 

 0.00 

(0.01) 

Phase 

3 

 0.67 

(0.12) 

-0.02 

(0.03) 

 0.12 

(0.08) 

 0.28 

(0.20) 

 0.01 

(0.02) 

 0.00 

(0.01) 

 0.00 

(0.01) 

Phase 

4 

 0.33 

(0.09) 

-0.01 

(0.01) 

 0.15 

(0.09) 

 0.09 

(0.17) 

 0.01 

(0.01) 

 0.00 

(0.01) 

 0.00 

(0.01) 

All 

Phases 

 0.41 

(0.07) 

 0.02 

(0.04) 

 0.07 

(0.03) 

 0.41 

(0.11) 

 0.00 

(0.01) 

 0.00 

(0.01) 

 0.00 

(0.00) 

 

Movement characteristics obtained in each trial were averaged for both movement 

types by phase and then averaged across the three trials of each movement type 

performed by each subject. Any phase produced which did not meet the criteria of greater 

than 5% of time or 5% of distance was discarded. An example of one such phase can be 
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seen in Figure 1, where there was an additional phase where both joints were active just 

before the end of the forward movement. However, being only 2.2% of time and 0.8% of 

distance, this phase was not considered in the analysis. Additionally, only phases that 

were present in greater than 50% of subjects after averaging the phase data for the three 

trials was included in the analysis. The averages for each phase were then taken across all 

subjects using the averaged subject data from the three trials. These results are presented 

in Tables 2-5.  

 

Page Turning 

The hand trajectory during the page-turning movement was primarily in the 

frontal plane, moving medially in an arc from the right side of the body to the left (Figure 

2). On average, the forward portion of the page-turning movement lasted 1.00 ± 0.14 

seconds and had a distance covered of 0.50 ± 0.13 meters. This movement was performed 

with approximately half the average speed of the hair-combing movement. In contrast to 

hair-combing, this movement was initiated primarily with shoulder flexion, with elbow 

flexion not displaying a significant excursion. As the movement progressed, shoulder 

internal rotation experienced a large excursion. Towards the end of the movement, there 

were minor rotations across the remaining DOF. However, examination of the 

contributions to hand velocity suggest that out of these remaining DOF, only shoulder 

abduction/adduction and elbow flexion/extension played a significant role in driving the 

movement. 
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Figure 2. A representation of the kinematic and kinetic metrics for the page-turning 

movement. The hand trajectory in the frontal plane (A) during the forward considered 

portion of the movement showing the breakdown of this trajectory by MTC phases. DOF 

excursions (B) and contributions to hand velocity (C) with respect to time. Shoulder (D), 

elbow (E), and wrist (F) torques with respect to time. Phases as determined by MTC are 

shown with vertical dashed lines. 

 

Despite the kinematic differences observed between the hair-coming and page-

turning movements, the same four phases as determined by MTC were observed for the 

page-turning movement. However, this movement typically was characterized by a fifth 

phase during which both joints were again rotated actively (Table 4). This 5-phase pattern 

of control for page-turning was not observed in the movements of three subjects. All 

these movements were characterized by multiple peaks in the velocity profile rather than 

a smooth, bell-shaped curve with a single peak (Figure 3). This indicates that these 
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movements were not performed optimally, and, therefore, were not included in the 

analysis.  

 

Figure 3. A representation of a multi-peaked velocity profile and contribution of DOF to 

hand velocity in a trial of page-turning in a subject not used in analysis 

 

Out of the results considered for this movement, Phase 1 was observed in 94% of 

trials, Phases 2 and 4 were observed in 79% of trials, and Phase 3 was present in 100% of 

trials. The additional Phase 5 was present in 82% of trials. Each of these phases was 

demonstrated in at least one trial by every subject except for a single subject that did not 

display Phase 4 in any trial and another subject that did not display Phase 5 in any trial.  
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Table 4 

Mean and (SD) of MTC at each joint and percent time and distance for page-turning 

 

Phase 1 

 

Phase 2 

 

Phase 3 

 

Phase 4 

 

Phase 5 

 

Shoulder 

1.00   

(0.01) 

0.97   

(0.02) 

0.02   

(0.01) 

0.03   

(0.02) 

0.96   

(0.02) 

Elbow 

1.00   

(0.00) 

0.05   

(0.02) 

0.00   

(0.00) 

0.95   

(0.03) 

1.00   

(0.00) 

Wrist 

0.51   

(0.20) 

0.45   

(0.32) 

0.39   

(0.25) 

0.53   

(0.30) 

0.71   

(0.26) 

% Time 

17.40 

(3.94) 

12.16 

(6.26) 

35.19 

(7.85) 

12.10 

(5.85) 

20.47 

(3.83) 

% Distance 

9.58   

(3.88) 

15.45 

(8.27) 

50.59 

(9.09) 

14.46 

(6.85) 

10.94 

(3.28) 

Leading 

Both 

Active Shoulder 

Both 

Passive Elbow 

Both 

Active 

 

The torque profiles for the page-turning movement were very similar to those in 

the hair-coming movement, aside from the addition of Phase 5 during which the MT 

projection at both the shoulder and elbow joint was positive. Once again, the wrist torque 

projection did not correlate to the phases, and NT at the wrist was close to zero 

throughout the movement. Phase 3, during which both joints rotated passively, was 

significantly longer in terms of both time and distance in the page-turning movement 

(Table 4). This is likely due to the difference in the role of gravity during the two 

movements: the entirety of the forward hair-combing movement was opposed by gravity 

while this was only the case with the first half of the forward page-turning movement. 

 There were several additional phases that were seen in a minority of trials that 

typically lasted for short periods of time or distance and were not considered in the final 

analysis. The most prevalent phase not included in the results was a phase primarily seen 

at the end of the hair-combing movement during which both joints moved passively. This 

phase was present in 26% of trials for hair-combing and 6% of trials for page, occurring 
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between Phases 4 and 5. A less common phase that occurred directly after this passive 

phase was one during which the elbow moved actively while the shoulder moved 

passively. This was present in only 2% of hair-coming trials and 9% of page-turning 

trials. In page-turning alone, a phase following Phase 5 during which the elbow rotated 

actively and the shoulder passively was displayed in 9% of subjects. Two phases 

occurring prior to Phase 1 were present only in the hair-combing movement: the first was 

a phase where both joints rotated actively which was present in 10% of trials, while 

during the second the elbow rotated actively and the shoulder passively which was 

present in 5% of trials. Frequently, these additional phases were present in other trials, 

but were not considered due to accounting for less than 5% of the total time or distance. 

Since they typically occurred at the very beginning or end of the movement, they were 

likely involved in the finer control processes of starting and stopping the movement.  
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Table 5 

Mean and (SD) of DOF excursions and contributions to hand velocity for page-turning 

DOF 

Excursions 

(Degrees) 

Page Shoulder  

Flex/Ext 

Shoulder 

Abd/Add 

Shoulder 

Int/Ext 

Elbow 

Flex/Ext 

Elbow 

Int/Ext 

Wrist  

Flex/Ext 

Wrist  

Abd/Add 

Phase 

1 

 3.34   

(2.00) 

 0.94 

(1.15) 

 1.62   

(1.72) 

 4.66   

(1.57) 

 1.31   

(5.28) 

-0.70 

(1.63) 

-1.69 

(3.34) 

Phase 

2 

 7.14   

(4.47) 

 0.94 

(1.78) 

 5.96   

(4.01) 

 3.38   

(1.04) 

 3.31   

(4.69) 

-0.29 

(0.74) 

 0.30 

(1.94) 

Phase 

3 

 17.16 

(6.85) 

-7.16 

(5.84) 

 36.46 

(11.88) 

-9.25   

(6.19) 

 17.58 

(11.61) 

 1.26 

(2.54) 

 4.35 

(4.04) 

Phase 

4 

 0.41   

(0.92) 

-2.68 

(1.63) 

 7.63   

(3.30) 

-6.95   

(4.34) 

 4.06   

(2.80) 

-0.07 

(0.88) 

 3.98 

(3.34) 

Phase 

5 

-1.47   

(0.97) 

-1.17 

(1.08) 

 4.81   

(2.63) 

-5.48   

(3.04) 

 3.44   

(2.20) 

-0.28 

(0.82) 

 1.30 

(2.69) 

Sum  26.84 

(10.21) 

-8.92 

(7.23) 

 55.61 

(13.59) 

-12.64 

(11.56) 

 29.08 

(17.44) 

-0.03 

(3.75) 

 8.01 

(10.39) 

DOF 

Contributions 

to Fingertip 

Velocity 

(m/s) 

Phase 

1 

 0.09 

(0.05) 

 0.01 

(0.01) 

 0.01 

(0.01) 

 0.12 

(0.03) 

 0.00 

(0.01) 

 0.00 

(0.01) 

 0.00 

(0.00) 

Phase 

2 

 0.28 

(0.13) 

 0.00 

(0.01) 

 0.09 

(0.05) 

 0.13 

(0.05) 

 0.01 

(0.01) 

 0.00 

(0.01) 

 0.00 

(0.00) 

Phase 

3 

 0.11 

(0.06) 

 0.07 

(0.05) 

 0.38 

(0.09) 

 0.04 

(0.03) 

 0.00 

(0.01) 

 0.00 

(0.01) 

 0.00 

(0.00) 

Phase 

4 

 0.01 

(0.02) 

 0.04 

(0.03) 

 0.28 

(0.09) 

 0.16 

(0.09) 

-0.01 

(0.01) 

 0.00 

(0.00) 

 0.00 

(0.01) 

Phase 

5 

 0.04 

(0.04) 

 0.00 

(0.01) 

 0.09 

(0.04) 

 0.09 

(0.04) 

-0.01 

(0.01) 

 0.00 

(0.00) 

 0.00 

(0.01) 

All 

Phases 

 0.09 

(0.05) 

 0.03 

(0.02) 

 0.20 

(0.05) 

 0.09 

(0.03) 

 0.00 

(0.01) 

 0.00 

(0.00) 

 0.00 

(0.00) 
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DISCUSSION 

Previous research using regular movement patterns such as linear stroke and line 

drawings have produced results to support the control mechanism of the trailing joint 

control pattern. However, the application of these studies to more natural ADL 

movements has been limited. This study focused on two such movements: hair-combing 

and page-turning. While subjects were given instruction for the basic pattern of the 

movement, the kinematic redundancy allowed through the seven DOF and temporal 

coordination of the joints provided subjects the ability to coordinate the motions as they 

would in the typical daily activities of combing one’s hair or turning the page of a book.  

  Despite the kinematic differences in the DOF responsible for the hair-combing 

and page-turning movements, both movements displayed the same primary phases as 

determined by MTC. The motion typically started with Phase 1, during which both joints 

were actively rotated through MT. This phase was likely responsible for overcoming 

gravity and lifting the hand. Phase 1 was significantly longer in terms of percent time and 

distance in the hair-combing movement. Phase 2 transitioned to a passive rotation of the 

elbow while the shoulder joint remained actively controlled by MT. Once again, this 

phase was longer during hair-combing. Phase 3 marked the shift to passive movement at 

both joints, with NT being generated through PT sources. This phase covered a greater 

percentage of time and distance in the page movement. During Phase 4, the elbow rotated 

actively while the shoulder moved passively. The page-turning movement typically 

involved a final Phase 5, during which both joints were rotated actively.  

 While this final phase for page-turning composed approximately 20% of the 

movement time, it only accounted for about 11% of the distance. This phase was likely 



  22 

responsible for counteracting gravity to stop the motion of the hand, since the forward 

portion of the page-turning movement ended with zero velocity before changing 

directions for the backward movement. The forward motion of hair-combing, which did 

not typically display Phase 5, did not end with zero velocity but rather only reached a 

velocity minimum before proceeding to the backward movement. The control patterns 

during these phases cannot simply be explained by the propensity to rotate a single joint 

and keep the other fixed, since both joints experienced significant excursions during each 

phase (Table 3, 5). This suggests that during Phase 2 the shoulder indeed moves actively 

while the elbow trails passively; similarly, during Phase 4 the elbow leads the movement 

while the shoulder rotates as a result of PT. This result supports the hypothesis that ADL 

movements indeed exemplify the trailing joint control pattern.  

 Studies which used faster movements found IT to be a significant passive torque 

source, but this is less apparent with slower and more controlled movements. In the case 

of this study, GT was the primary source of PT with IT playing only a minor role. This is 

displayed in the torque plots in Figures 1D-F and 2D-F. GT was consistently suppressed 

by MT at the leading joint and used for control of the trailing joint. These findings are in 

accordance with the study by Wang and Dounskaia (2016), in which movements under 

the effect of gravity followed the trailing joint control pattern and utilized GT to rotate 

the trailing joint. This is likely done to simplify the neural control of joint movement. 

Since GT is constantly acting on the joints involved in these movements, it follows that 

this torque would be exploited to aid in joint control.    

 The presence of Phase 3 during both movements is interesting, as both the 

shoulder and elbow were rotated passively during this portion of the movement. Using 
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the information theory (Hartley, 1928; Shannon, 1948) to assess the neurocomputational 

cost of joint coordination during a certain movement (Dounskaia and Shimansky, 2016), 

this cost function is minimized both through increasing the admissible error in MTC 

coding and by minimizing MTC at each joint. The trailing joint control pattern partially 

minimizes MTC by only requiring a high MTC value at the leading joint while the 

trailing joint rotates passively with an MTC value close to zero. However, to achieve the 

lowest neurocomputational cost, MTC must be minimized at both primary joints involved 

in the movement. This is not typically possible, as energy for achieving the goal of a 

particular movement must be generated through MT (Dounskaia and Shimansky, 2016). 

Some tasks that involve downward movement use this control scheme since gravity can 

produce the necessary energy for the movement (Wang and Dounskaia, 2016). However, 

in the case of this study, this minimization of MTC at both joints is observed as a 

significant portion of both hair-combing and page turning movements.  

Page-turning is a primarily horizontal movement, with some downwards motion 

during the second half of the forward movement. The forward movement of hair-

combing, however, is entirely in opposition to gravity; it is an upward movement. While 

the percent duration of Phase 3 is relatively shorter in hair-combing as opposed to page-

turning, this phase was present in 100% of trials for both tasks. Additionally, Phase 3 for 

page-turning began during the upwards portion of the forward movement. In both tasks, 

this phase may serve to slow down the hand for the end of the movement so that MT need 

not be applied instead. During these tasks, the neurocomputational cost of movement was 

minimized not only using the trailing joint control pattern, but also to an even greater 

degree by allowing the energy generated during the first two phases of movement to carry 
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both joints passively for a significant portion of the movement. The fixation of the wrist 

during both movements is also considered to be a simplified method of control since it 

requires minimal information processing (Wang and Dounskaia, 2016). This fixation can 

be produced through a low-level control mechanism where CNS contribution is minimal 

(Gillard et al. 2000; Hirashima et al. 2003; Loeb et al. 1999).  

 The trailing joint control pattern was not apparent in Phase 1, as well as in Phase 

5 for the page-turning task; instead, both joints displayed high MTC. Both instances 

occur when motion is either beginning from or returning to rest. It appears that active 

rotation at both joints is the most effective way to start or stop a movement. While this 

method may incur a high neurocomputational cost during these phases since control of 

multiple joints must be executed, this may be a necessary function to transition to or from 

the trailing joint control pattern as efficiently as possible. The energy generated during 

this initial phase may facilitate the start of the shoulder-lead portion of the movement. 

Another possible explanation is that the force required to combat gravity at the beginning 

and end of the tasks cannot be produced by active torque at a single joint alone. Both the 

musculature for the shoulder and elbow joints may be required to overcome the 

gravitational torque.  

 The apparent prevalence of the observed phases of joint control within both tasks 

suggests that an underlying mechanism is responsible for coordinating joint control even 

in the case of kinematically different movements. This can be explained through the 

concept of motor primitives: the combination of multiple DOF into a single, dynamic 

system (Bernstein, 1966; Schutz and Schack, 2013). The DOF can be controlled as one 

unit rather than requiring commands to control each individually. In the case of the 
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trailing joint control pattern, the mechanism behind the motor primitives is the tendency 

of the CNS to rotate only a single joint across its required DOF through MT, which in 

turn rotates the trailing joint across the necessary DOF through the mechanical coupling 

between them (IT) and the influence of GT. These motor primitives can be exploited in 

the case of well-learned movements, as displayed in this study. However, it is likely that 

these systems are not as prevalent when completing non-habitual movements, as was 

observed in the three subjects that did not display smooth velocity profiles for the page-

turning movement.  

 Several limitations were present in this study. The purpose of the study was to 

examine joint control during natural ADL movements of the arm. However, natural 

movements are very diverse, and it is difficult to select tasks that generalize ADL 

movements as a whole. For this study, two representative tasks were selected due to their 

kinematic and planar differences. While the tasks do represent a diverse array of arm 

movements, it is not possible to encapsulate all movements with only two tasks. 

Additionally, while the chosen tasks attempt to imitate movements that would naturally 

be performed in daily life, they were performed in a lab setting with instruction on how to 

complete the movements. The tasks may not be performed in the same manner that they 

would be in a more natural setting. This may have been the case for the three subjects 

who displayed multi-peaked velocity profiles for the page-turning movement and were 

excluded from the analysis. The smooth curves visible for the remainder of the subjects 

during both tasks do support the idea that the movements represented well-learned ADL 

tasks.  
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 ADL tasks typically represent skillful, well-learned movements, which 

correspond to usage of the trailing joint control pattern. The trailing joint control pattern 

is associated with decreased neurocomputational cost, since the CNS must focus only on 

the active rotation of a single joint at a given time. This is coupled with the tendency 

observed in this study to rotate both the shoulder and elbow passively for a portion of the 

movement, which further decreases neurocomputational cost. This is significant, as 

during ADL tasks, motor tasks are typically combined with cognitive tasks. Since both 

movement and cognition require neural resources, the employment of the trailing joint 

control pattern allows additional resources to be applied to cognition. This is supported 

by the increased preference to utilize the trailing joint control pattern when performing a 

free-stroke drawing task in conjunction with a cognitive task as opposed to a drawing 

task alone (Dounskaia and Goble, 2011).  

The implications of this idea are that motor tasks performed simultaneously with 

cognitive tasks would benefit from the use of well-learned movements that can utilize the 

trailing joint control pattern. The results of the subjects that did not perform the page-

turning movement optimally suggest that movements that are not well-learned do not 

benefit from this control pattern. Since ADL movements should inherently represent 

well-practiced movements, performing motor tasks that imitate ADL tasks could allow 

for increased resources to be devoted to cognition. This has applications in the 

biomedical field. Patients suffering from stroke experience abnormal muscle synergies as 

a characteristic motor deficit (Kung et al., 2010). While these muscle coordination issues 

can be improved through physical therapy (Hu et al., 2013), it may be beneficial to 

incorporate an understanding of the trailing joint control pattern. If movements are used 
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that employ this control pattern efficiently and there is an understanding of how the joints 

are coordinated during the movements, verbal cues could be utilized to help the patients 

focus primarily on rotating the leading joint. The natural synergies produced through 

passive rotation of the other joint could help patients use efficient, simplified movements 

to complete tasks that they would typically perform in daily life. Future studies to 

examine the use of the trailing joint control pattern in other ADL movements would aid 

in the generalization of the findings of this study.   
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