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ABSTRACT

A novel Monte Carlo rejection technique for solving the phonon and electron

Boltzmann Transport Equation (BTE), including full many-particle interactions, is

presented in this work. This technique has been developed to explicitly model

population-dependent scattering within the full-band Cellular Monte Carlo (CMC)

framework to simulate electro-thermal transport in semiconductors, while ensuring

the conservation of energy and momentum for each scattering event. The scattering

algorithm directly solves the many-body problem accounting for the instantaneous

distribution of the phonons. The general approach presented is capable of simulating

any non-equilibrium phase-space distribution of phonons using the full phonon disper-

sion without the need of the approximations commonly used in previous Monte Carlo

simulations. In particular, anharmonic interactions require no assumptions regarding

the dominant modes responsible for anharmonic decay, while Normal and Umklapp

scattering are treated on the same footing.

This work discusses details of the algorithmic implementation of the three particle

scattering for the treatment of the anharmonic interactions between phonons, as well

as treating isotope and impurity scattering within the same framework. The approach

is then extended with a technique based on the multivariable Hawkes point process

that has been developed to model the emission and the absorption process of phonons

by electrons.

The simulation code was validated by comparison with both analytical, numerical,

and experimental results; in particular, simulation results show close agreement with

a wide range of experimental data such as the thermal conductivity as function of the

isotopic composition, the temperature and the thin-film thickness.
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Chapter 1

INTRODUCTION

Effective thermal management and controlled heat dissipation have always been

considered key aspects of device engineering because of the role they play on both

the device performance and the reliability. In addition, sophisticated heat manage-

ment techniques are required due to the increasing density and operation frequency of

active and passive components. The particle-based Monte Carlo approach has been

previously used [1–12] to solve the heat transport problem by simulating phonons

explicitly. However, most of the previous works treat the three-state interactions

of simulated phonons as one-state by assuming either near-equilibrium or the relax-

ation time approximation. At the end of each time step, particles are removed from

the simulation domain according to a scattering rate expressed in the form Γ(q, T ).

Then, a set of newly initialized phonons is introduced in the system according to a

distribution function, aimed at restoring thermal equilibrium and conserve energy.

The energy of the ensemble is statistically conserved, but momentum conservation is

either not addressed or treated only partially [4, 12]. Furthermore, in particle-based

Monte Carlo, the electron-phonon scattering is modeled either indirectly via macro-

scopic parameters [13–15] such as temperature and heat-generation rate, or via a one

dimensional histogram [16] where a virtual phonon is added/deleted every time an

emission/absorption occurs. In the first approach, the phonon distribution has some

pre-defined shape, usually the Bose-Einstein. In the second one, the histogram is

computed over one particular component of the wavevector [17] or via the magni-

tude of the phonon wavevector [16] (the phonon momentum space is assumed to be

isotropic).
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The present work proposes a Monte Carlo scattering algorithm designed to model

non-equilibrium phonon distributions. The algorithm has been developed within the

3D Cellular Monte Carlo (CMC) full-band (dispersion) numerical framework [18],

where transition probabilities between states before and after the scattering are pre-

computed and stored in a look-up table, which is loaded at the beginning of the

simulation.

During the simulation, the precomputed table is used to determine the three states

involved in the scattering, and a rejection technique is used to solve the scattering

operator based on the local current phonon distribution without assumptions on its

shape. All the states interact simultaneously, which allows enforcing the conservation

of energy and momentum in each scattering event. Within this approach, all scat-

tering processes are treated equally, and no formal distinction is required between

Umklapp and Normal processes, while selection rules and decay paths are the results

of momentum and energy conservation, rather than externally imposed hypotheses.

The population-dependent scattering technique introduced for phonons interac-

tions is then extended to model electron-phonon scattering when both populations

are treated as synchronous ensembles of simulated particles. In particular, the prob-

lem of modeling the interaction of simulated particles representing populations of

largely different size is discussed. Two approaches are proposed to solve this problem:

the first approach is simply based on modeling phonon emission and absorption as a

Poisson distribution, while the second approach is based on the more sophisticated

multivariable Hawkes point process.

Chapter 1 offers an overview on the BTE and the Monte Carlo method. Chap-

ter 2 investigates the theoretical aspects of the rejection technique and presents the

implementation within the CMC framework. The modeling of the electron-phonon

interactions in terms of The Poisson distribution and Hawkes process is presented

2



in Chapter 3, electrons and phonons collision mechanisms are discussed in Chapters

4 and 5 respectively. Chapter 6 presents the models for the particle dynamics algo-

rithm, while 7 presents the data structures employed in this work. Finally, in Chapter

8 the numerical results are presented.
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Chapter 2

FULL BAND PARTICLE-BASED METHOD

This chapter examines the full band cellular Monte Carlo (CMC) approach for the

particle-based simulation of electron devices. The first section discusses the history of

the method and the assumptions leading to the formulation of Boltzmann Transport

Equation (BTE) for the electrons and the analogous expression for the phonons.

Section 2.2 offers an overview of the particles-based Monte Carlo as a technique

to solve the BTE. Finally, the last two sections focus on the CMC particle-based

simulation by discussing the basic implementation of the algorithm and the reasons

behind this approach.

2.1 The Boltzmann Transport Equation

Within the semi-classical approach, charge transport in semiconductors can be

described by the seven-dimensional distribution function f (r, q, t), which carries in-

formation about the position r and the wavevector q of the particles at any time t.

In other words, f (r, q, t), provides a statistical description of the time evolution of

the distribution of carriers in both momentum and position space, and it can be used

to obtain various quantities of interest such as the mean energy of the carriers, their

drift velocity, etc.

The time evolution of f (r, q, t) is described by the Boltzmann Transport Equa-

tion [19]:
∂f
∂t

+
∂r

∂t
· ∇rf +

∂q

∂t
· ∇qf =

∣∣∣∣∂f
∂t

∣∣∣∣
Col

, (2.1)

where the right side of the equation represent the collision integral describing the rate

4



of change of f because of the interactions of the carriers with their environment.

This equation was originally derived by Ludwig Boltzmann (1872) by merging

mechanical concepts and statistical considerations to describe a gas of undeformable

spheres. In particular, the BTE is a consequence of the Liouville theorem [20] and

describes the effect of collisions on the carriers density in phase space under the

following three assumptions: the system operate in the Boltzmann-Grad limit [21],

that is the dimension of the particles tends to zero while the mean free path remains

finite, the collisions are elastic, and two particles are uncorrelated before collisions

(this is also known as the Stosszahlansatz or Molecular Chaos hypothesis). The first

assumption requires particles to interact only via binary collisions, so interactions in-

volving more than two particles are neglected; in addition, the collisions or scattering

events must be localized in both space and time. The assumption of elastic collisions

ensures the conservation of both momentum and energy. The last assumption al-

lows the derivation of the time-asymmetric behavior of macroscopic systems from the

chaotic, but time-symmetric, behavior of the microscopic dynamics. The breaking of

the time-reversal symmetry ultimately ensures that the entropy increases only in the

future. In other words, systems described within the framework of the Boltzmann

equation obey the second law of thermodynamics and do indeed reach an equilibrium

distribution.

Since a finite thermal conductivity requires accounting for three-particle (phonon)

scattering (see Ch. 6), and the transport equation derived by Boltzmann assumes

binary collisions, thermal transport in solids cannot be modeled by the BTE as de-

scribed above. However, Rudolf Peierls [22], inspired by Boltzmann work, employed a

similar statistical approach to model heat transport in terms of particles. His formu-

lation allows for non-binary collisions, but it requires two additional assumptions: the

occupation number contains all the information that is obtainable about the system,
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and the phonon states are quantized. The result is an equation formally identical to

the BTE which is referred to as the Peierls-BTE (PBTE), or the phonon BTE:

∂f
∂t

+
∂r(ql)

∂t
· ∇rf =

∣∣∣∣∂f
∂t

∣∣∣∣
Col

, (2.2)

where ql is the momentum of the l-th phonon mode.

If we drop the mode index for the sake of clarity, the collision integral on the right

side of Eq. 2.2 can be written as follows:∣∣∣∣∂f
∂t

∣∣∣∣
Col

=
∑
q⊂BZ1

M∑
m=1

∑
q1,...,qm

Γ+(q, q1, ..., qm, f )− Γ−(q, q1, ..., qm, f ), (2.3)

where BZ1 is the first Brillouin zone, m represents the number of states interacting

with the initial state q, M is the total number of phonon states, and Γ+(q, .., f )

and Γ−(q, .., f ) represent the rate of decrease and increase of phonons in the state q,

respectively.

In general, a close-form solution of this equation cannot be obtained without

severe approximations being made on the nature of the collision integral (e.g. the

relaxation time approximation [23]) or on the distribution function itself (e.g. the near-

equilibrium approximation [24]). For this reason, both deterministic and stochastic

integration schemes [3, 5, 9–11, 25–29] have been developed to determine numerically

the distribution function. Deterministic approaches are often based on the lower order

terms of the moment expansion of the distribution function [30], and approximations

are always needed to obtain closure. In particular, the numerically calculated phonon

dispersion cannot be included in such models.

Therefore, although these models have relatively low computational cost, they

usually require reliable closure relations relating transport parameters [31, 32] and

their validity domain is limited [33] by the accuracy of such parameters. Alternatively,

the particle-based Ensemble Monte Carlo (EMC) method [34] provides a space-time

solution of the full BTE which is exact [25] in statistical terms.
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Within the EMC framework, a representative sample of the particle population in

the system is directly simulated as individual particles. The simulated trajectories of

the particles are tracked both in position and momentum space, while a Monte Carlo

(stochastic) algorithm is employed to model the scattering processes. Finally, any

physical information of interest (e.g. energy, particle concentration, diffusivity, etc.)

can be easily extracted by averaging over the ensemble of simulated particles.

Compared to deterministic approaches, stochastic methods require less draconian

approximations and offer an intuitive approach to modeling. However, these methods

are based on complex and computationally intensive algorithms.

2.2 The Ensemble Monte Carlo Method

The EMC method has proven successful in modeling complicated phenomena in

terms of elementary interactions [25], and by solving the BTE without the need

of relying on the accuracy of macroscopic transport parameters, which are often an

output of the EMC simulation itself. Moreover, EMC simulations allow for a valuable

analysis of the microscopic individual phenomena responsible for the macroscopic

behavior of the system as a whole.

Figure 2.1 shows the flowchart of a generic particle-based Monte Carlo algorithm.

During the initialization step, the initial carrier distribution inside the computational

domain representing the semiconductor device is computed according to some ex-

ternally imposed conditions. These conditions correspond to imposing local charge

neutrality and thermal equilibrium of the simulated particles. After the initialization,

the main loop consists of four steps: data gathering, Cauchy problem solving, free

flight, and scattering. The data gathering step collects, formats, and records the data

to be used by other steps and for post-processing. Subsequently, one or more Cauchy

problems [35] (typically field equations) are solved based on the system under study.
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Figure 2.1: Flowchart of the particle-based Monte Carlo simulator. The right
side expand on the differences between the EMC and the CMC approach. The EMC
method has low memory requirements but is computationally intensive while the
CMC requires more memory but is less computationally intensive.

This step allows accounting for the forces responsible for the carrier dynamics. For ex-

ample, when simulating electrons, the charge distribution and the contact potentials

are used to solve Poisson’s equation [36] and to obtain the electric field distribution.

Since carriers are moving, the carrier dynamics has to be periodically stopped and

the field must be updated often enough so as to resolve plasma oscillations [37].

The free flight step calculates the carrier trajectories by employing a ray tracing

algorithm to account for the device geometry, and a time integration scheme that

accounts for the forces obtained in the previous step.

A stochastic Monte Carlo procedure is used to solve the collision integral by mod-

eling the scattering as a Markovian process: the particle wavevector is changed in-

stantaneously, with no memory of the state before the collision. The scattering rates

in the collision integral are related by a recurrence relation, this reflects [38] the

fact that carriers transition from one state to another in sequence. One should note

that the rates of scattering are pre-calculated and tabulated according to material
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characteristics such as the band structure, doping density, isotopic composition etc.

In the case of steady-state processes, the stability of the simulation allows to ex-

press the distribution function as the result of a convergent iterative process [38],

where scattering is regarded as sequence of events causing the distribution to ap-

proach the steady state. The distribution function itself is formally expressed as the

solution of a homogeneous integral equation. This allows to simplify the scattering

algorithm by defining a new scattering process rate which leaves the state of a particle

unchanged, this process is referred to as “self-scattering” [38], The self-scattering has

no physical consequence: it modifies the probability functions while leaving the form

of the recurrence relation unaltered.

A suitable 1 choice of the “self-scattering” rate allows equating each scattering to

a time increment of the physical system. In other words, this approach allows the

execution of the Monte Carlo algorithm for all particles at a constant time interval.

From the numerical point of view, an iterative solution of the integral-differential

Boltzmann equation requires both differentiation and integration. In our approach,

however, the iteration cycle involves only integration. Since errors in the numerical

representation of a function tend to be accentuated by differentiation but reduced

by integration, this approach is expected to have some numerical advantages over

directly trying to solve iteratively the integro-differential BTE.

2.3 Cellular Monte Carlo Method

Traditional EMC simulators require a search over the whole discretized Bril-

louin zone after the occurrence of a scattering event in order to invert the en-

ergy/momentum relation, and find all the energy-conserving candidate cells in the
1The self scattering makes no net contribution to the rate of change of the distribution due to

scattering and it could be arbitrarily defined. However, the self-scattering rate must be positive in
order to model the distribution function as the result of a convergent iterative process
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Figure 2.2: Scattering table for the particle-based Cellular Monte Carlo simulator.
Each initial state state is connected to an ordered array with all of the possible final
states and their scattering rates.

momentum space. Furthermore, the transition rate needs to be computed for each

candidate in order to choose the final state. The Cellular Monte Carlo (CMC) algo-

rithm [18] was developed to reduce the extremely high computational demand of the

EMC scattering algorithm described above. To do so, the CMC algorithm employs

a pre-computed transition look-up table for the probability of scattering, for each

mechanism, from every initial state to every possible final state.

A schematic diagram of such a look-up table is shown in Fig. 2.2, where all of

the possible initial states are represented in the vertical array. Each of those states

is connected to an ordered list (horizontal array) of the possible final states and the

corresponding scattering rate. When a scattering occurs, the carrier final momentum

is chosen directly from candidates in the horizontal array simply by generating a
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random number, which allows the efficient simulation of a large number of scattering

events. Therefore, the CMC approach [18] trades the EMC intense computation

burden with a large, but realistic, need of fast storage (RAM). However, the basic

CMC approach achieves an efficient use of the memory by storing only the total rate;

information is lost about the exact type of scattering process involved in the transition

(e.g., the mode of the involved phonon, the temperature). This work expanded the

basic approach by employing a rejection technique based on a new look-up table

designed to retain all these information on the scatter events.

Finally, we note that this work employs the full-band representation of both the

electronic band structure and the phonon spectra. In this approach, the energy

dispersion for electrons and phonons are not analytically approximated but com-

puted and tabulated across the whole first Brillouin zone (BZ1), which represents the

Wigner–Seitz cell of the reciprocal lattice of the semiconductor crystal.

In particular, the full-band electronic structure is obtained with the non-local

empirical pseudo-potential method [39, 40], while the phonon dispersion is computed

by employing the 14 parameters valence shell model [41].

2.4 Format of the Transition Table

The CMC scattering algorithm employs a rate, R, representing the frequency of a

specific particle transitioning between eigenstates. However, the result of the Fermi

Golden Rule [20, 42] represents the total transition rate Γ between the initial and final

eigenstates. In other words, while Γ describes the cumulative rate for all the carriers

occupying the initial eigenstate, each particle transitions to the final eigenstate at

a different rate, R. In the case of particles obeying the Pauli Exclusion Principle,

such as electrons, Γ is equivalent to R. However, more than one phonon may, and

in general do, occupy an initial eigenstate, and R must be obtained from Γ. This
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important aspect will be further addressed in Chapter 6.

Moreover, in order to store all possible scattering rate in a look-up table of rea-

sonable size, the entire (BZ1) of the crystal is discretized into an inhomogeneous

tensor-product grid.

Formally, the scattering rate are expressed as the probability for a particles to

transition from the initial state q to a small region (cell) Ωq′ in momentum space

centered around the point q′:

R(q,Ωq′) =

∫
Ωq′

dq′R(q, q′) (2.4)

The cell Ωq′ is assumed to be small enough for the transition rate to have small

variations within Ωq′ , and the scattering rate can be approximated as:

R(q,Ωq′) ' R(q, q′)D(E(q′),Ωq′) (2.5)

where D
(
E(q′),Ωq′

)
is the density of state in Ωq′ at the expected final carrier energy

E(q′).
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Chapter 3

THE REJECTION TECHNIQUE

This chapter discusses an improved scattering algorithm used in the CMC method.

The first section offers the motivations of the new approach, while sections 3.2 and 3.3

offer its theoretical framework. In particular, section 3.2 discusses the rejection tech-

nique in the context of a generic Monte Carlo method, while section 3.3 presents the

rejection technique within the specific framework of the CMC method used in this

work. Finally, the last section of this chapter discusses how to compute a crucial

parameter for the implementation of the rejection technique, the occupation number.

3.1 Improving the CMC Scattering Algorithm

The algorithm that models scattering mechanisms within the CMC framework [18]

is extremely efficient. Nevertheless, as it has been described in section 2.3, it cannot

efficiently account for variations of local parameters, such as temperature and doping

concentration, which affect the scattering probability. Indeed, different static look-up

tables could be used to account for the different values of such parameters. However,

such an approach would require an unrealistic number of rather large look-up tables,

and corresponding fast memory devices (RAM), in order to treat all the possible

combinations of these quantities. This work improves the modeling capability of the

basic particle-based CMC scattering algorithm by employing a stochastic rejection

technique to accept or reject scattering events based on parameters that are local

in time and/or space. Such technique is based on an individual look-up table, and

therefore comes with no overhead in terms of the required storage. The computational

overhead results to be minimal.
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3.2 Rejection Algorithm

The Monte Carlo rejection sampling is typically used to generate observations

for a specific probability density function (pdf) f(x), from a different pdf g(x) by

using a stochastic selection involving the ratio of the two pdf to accept or reject

samples. The desired pdf f(x) is usually referred to as the target distribution, while

the second pdf g(x) is usually referred to as the proposal distribution. In order to

simplify the notation, the uppercase letters X and Y will be employed to represent

random variables, while lowercase letters x, x′, and %u will be employed to represent

real numbers. Under this notation, the value g(x)dx represents the probability of the

random variable X to fall within the interval [x, x+ dx].

The technique, also known as the acceptance-rejection method [43], is usually

employed when the target pdf f(x) is difficult to sample but easy to evaluate, or when

it is not known a priori. The proposal pdf g(x) is chosen to be easy to sample with

the condition "c g(x) ≥ f(x)", where c is a constant positive real number.

The flow-chart of the rejection algorithm is shown in Fig 3.1: first, a sample

number x′ is generated from the proposal pdf g(x), and a random number %u is

independently extracted from the uniform distribution U(0, 1). Then, the rejection

probability is computed as Prej = f(x′)/
(
c g(x′)

)
. Finally, if %u < Prej the sample is

accepted, otherwise it is rejected.

Figure 3.2 provides a geometric interpretation of the rejection sampling algorithm

for a simple one-dimensional case. The horizontal axis represents the possible values

x for the random variable X. Each of the possible outcomes of the rejection algorithm

can be described by the two values x and %u, these two values are then associate to

a point of the plane of coordinate (x, %u c g(x)). The dashed line identifies the points

corresponding to the case of %u = 1, which correspond to the distribution cg(x). Since
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Figure 3.1: Flowchart of a generic acceptance/rejection algorithm.

the value of %u is in the interval [0, 1], any point (x, %u c g(x)), corresponding to an

iteration of the algorithm, must lay in the region between the horizontal axis and the

dashed line.

Samples are rejected by the algorithm if %u > Prej; a simple algebraic substi-

tution shows that these occurrences correspond to points with ordinate larger than

Prejcg(x) = f(x). In other words, all instances of the algorithm rejecting samples

are represented by points which laying above the target distribution f(x) (solid line),

while the accepted points lay under it. Intuitively, the algorithm works because the

points corresponding to the accepted sample reproduce the area defined by the target

distribution f(x).

More formally, the distribution resulting from the algorithm is the conditional

probability density function of x given the occurrence of %u < Prej. We prove now

that p(X = x|%u < Prej) = f(x), where p denotes a pdf. The value of the pdf can be
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Figure 3.2: Graphical representation of the acceptance-rejection sampling in one
dimension. The possible values of x and %u are associated to a point of coordinate(
x, %u c g(x)

)
. The curves for the proposal (dashed line) and target (solid line) distri-

bution define the region for the accepted and rejected points. The algorithm samples
uniformly under c g(x), keeping only the points that fall under f(x).

obtained from the definition of conditional probability [43]:

p(X = x|%u < Prej) =
p(%u < Prej|X = x) ∗ g(x)

p(%u < Prej)
. (3.1)

The distribution function for an accepted sample after a specific x has been se-

lected is Prej:

p(%u < Prej|X = x) = Prej =
f(x)

c g(x)
. (3.2)

The pdf of p(%u < Prej) can therefore be computed as 1 :

p(R < Prej) =

∫
dxp(%u < Prej|X = x) g(x) =

1

c

∫
dxf(x) =

1

c
. (3.3)

1Given two random variable X, Y , and their joint distribution function pX,Y (x, y), the following
equation are valid [43]: pX(y) =

∫
dx pX,Y (x, y) and pX,Y (x, y) = pX(x|y)pY (y).
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Finally, the substitution of Eq. 3.2 and Eq. 3.3 in Eq. 3.1 supplies our proof:

p(X = x|%u < Prej) =
f(x)

cg(x)
∗ g(x)

1

1/c
= f(x). (3.4)

3.3 Rejection Sampling in the CMC Scattering Algorithm

This work models scattering by following an approach similar to the one described

in [44]: the tabulated transition rate between two states is replaced by its maximum

expected value for some parameter(s); when a transition occurs, the rejection tech-

nique is used to compare the maximum rate to its actual value as simply determined

by the local value of the parameter(s). If the transition is rejected, the event is treated

as a ‘self-scattering’ [38], in the sense that the final state is taken to be equal to the

initial one, i.e. the particle state is unchanged.

More formally, employing the rejection sampling technique within the CMC frame-

works requires defining in the space of possible final state q′ the proposal g(q′) and

the target distribution f(q′), alongside the constant c for an initial state qini. The

proposal pdf is obtained by normalizing values of the scattering rates Rmax(q
ini, q′)

stored in the look-up table and corresponding to the maximum value of some param-

eter(s):

g(q′) =
Rmax(q

ini, q′)∑
q Rmax(qini, q)

. (3.5)

A similar approach is used to define the target distribution:

f(q′) =
Rloc(q

ini, q′)∑
q Rloc(qini, q)

, (3.6)

where Rloc(q
ini, q′) is the transition rate from qini to q′ given by the local values of

the parameter(s).

In order to ensure a positive self-scattering rate, the value stored in the look-up

table must by higher than the locally computed rate for each qini and q′. Since
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Rmax(q
ini, q′) > Rloc(q

ini, q′) for each q′, the constant c can be simply set to:

c =

∑
q Rmax(q

ini, q)∑
q Rloc(qini, q)

. (3.7)

This choice of c not only ensures that c g(q′) > f(q′) for each q′, but it also allows

the computation of the rejection probability simply as the ratio of the target and the

sampling probability:

Prej(q
′) =

f(q′)

c g(q′)
=

Rloc(q
′)

Rmax(q′)
. (3.8)

A crucial simplification of the rejection probability due to the common terms between

Rloc(q
′) and Rmax(q

′) will be discussed in Chapter 5 and 6, for electron and phonon

scattering, respectively.

As stated before, this technique requires that each transition rate Rmax(q
′) stored

in the look-up table is larger or equal to any rate Rloc(q
′) expected during the simula-

tion. For example, in the case of phonon simulation, the scattering rate is maximized

by assuming the values of parameters such as a temperature and doping concentra-

tion to be much larger than the realistically expected simulation values. Compared

to the traditional CMC scattering, this technique has a computational overhead due

to oversampling and to the computation of Prej(q′).

We note that the traditional CMC scattering algorithm [18] employs a look-up

table optimized for memory requirement. This is achieved by employing a lossy com-

pression method which merge together transition with the same qini and q′ and dis-

cards information on the nature of the scattering mechanism causing each transition.

However, the rejection technique requires all these information in order to compute a

new transition rate based on the local values of the parameter(s). Therefore, a new

modular look-up table able to retain information about the exact type of scattering

process involved in the transition has been designed and implemented. Details on

the structure and the compression algorithm employed by the new look-up table are
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given in Chapter 8.

3.4 Occupation Number

In the case of scattering involving phonons, the rejection technique requires the

value of the local and instantaneous occupation number n(r, q, t) for the phase-space

state involved in the scattering. A possible approach is to assume local thermal

equilibrium and a consequent ‘local’ temperature T . The expected value of n can

then be predicted by the Bose-Einstein distribution [20]:

n0(ω, T ) =

(
exp

(
~ω
kBT

)
− 1

)−1

, (3.9)

where ~ is the reduced Plank constant, ω is the frequency of the phonon, and kB is

the Boltzmann constant, and the phonon mode index has been omitted for the sake

of clarity.

In a more general approach, n must be evaluated by sampling the population

of simulated particles. This is achieved by approximating n with its average in the

phase space volume identified by the volume Vr in position space and the volume Ωq

in momentum space:

n(r, q, t) ≈ η(Ωq, Vr, t)(8π
3)

ΩqVr
, (3.10)

where Vr is centered on the position vector r, Ωq is centered around the momentum

q, and η(Ωq, Vr, t) is the number of phonons with momentum within Ωq located in

the volume Vr at time t.

While Vr is obtained by simply defining a volume in the system geometry around

the position r, Ωq requires further consideration. First, Ωq must be defined accounting

for the crystal periodicity. For example, a spherical Ωq of radius ∆q can be defined

as the collection of states q′ in the first Brillouin zone BZ1, whose Euclidean distance
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from q is smaller than ∆q:

Ωq =
{
q′ ⊂ BZ1: |q′ − q +G| < ∆q

}
(3.11)

where G is a reciprocal lattice vector and accounts for the periodicity of BZ1.

Moreover, n(q, r, t) has an exponential dependence with the energy, and using a

purely geometrical description of Ωq it may not be enough to ensure n(r, q, t) ' 〈n〉

unless Ωq is “small enough”. This problem is approached by employing an additional

constraint on the maximum energy span allowed in Ωq.

Finally, an ellipsoid is used in place of a sphere to define Ωq. This approach gener-

alizes the spherical case and provides more flexibility when dealing with asymmetric

Brillouin zones. In this case, Ωq is defined as:

Ωq =
{
q′ ⊂ BZ1: |ω′ − ω| < ∆ωMAX

∧ |q
′
x − qx +Gx|2

∆q2
x

+

∣∣q′y − qy +Gy

∣∣2
∆q2

y

+
|q′z − qz +Gz|2

∆q2
z

= 1
}, (3.12)

where ω′ represents the energy of the state with momentum q′, ∆ωMAX is the maxi-

mum allowed energy difference between two states, the subscript x, y, and z represent

the vector projections on the main axes, and finally, ∆qx, ∆qy, and ∆qz are the length

of the semi-principal axes that identify the ellipsoid in momentum space.

The bottleneck of this technique is the calculation of η(Ωq, Vr, t). In particular,

the algorithm must evaluate all the simulated particles and decide which one must be

considered and which one can be discarded. In order to reduce the number of particles

to be evaluated, each cell in position space has a linked list of all the carriers present

in the cell itself. Moreover, each cell in position space has another list containing all

the other cells within a distance d in position space. Regarding the reciprocal space,

the data required to define Ωq is precomputed and saved in the band structure data.

In particular, a hash function based on the memory location is used to associate each
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cell to an integer number, this approach allows the use of an efficient integer-based

search algorithm. For each q at the center of a reciprocal space cell an ordered list

S(Ωq) containing the hash number of all the cells intersecting Ωq is computed and

stored alongside the value of Ωq. In order reduce the computing time, the required

controls are performed in sequence from the fastest to the slowest. The first control

verifies if the particle is in the same phonon mode of q, the second control ensures

that the energy restriction on Ωq is respected. In the last step, a dichotomic search

algorithm is employed to verify if the momentum of the simulated particle is included

in the volume Ωq. When the simulated phonon passes all these tests, the value of

η(Ωq, Vr, t) is incremented.
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Chapter 4

ELECTRON-PHONON INTERACTION

This chapter discusses the modeling of the electron-phonon interactions when the

two populations of particles are synchronous; both the theoretical and the algorith-

mic aspects of such simulations are described here. The first section of this chapter

presents the challenges of simulating these interactions within a Monte Carlo frame-

work, while in the following sections, two different stochastic techniques to address

such challenges are offered. In particular, section 4.2 presents a technique of modeling

the process of emission and absorption of phonons in terms of the Poisson probability

distribution. While this technique is highly effective for systems in steady-state, it

presents difficulties in simulating the transient regimes. Section 4.6 offers an alternate

technique that is more suitable for simulation of transient, which is based on the more

complex mathematical framework discussed in section 4.4 and 4.5.

4.1 Challenges

The interaction of electrons with the crystal lattice can be expressed in terms of

absorption and emission of phonons. In the context of a thermo-electric simulation

with heat modeled as particles, these processes correspond to the addition and removal

of simulated phonons from the simulation domain. However, the process of emission

or absorption cannot be simply modeled by creating or removing a simulated phonon

as the result of the scattering with a simulated charged particle. This is due to the

fact that there is not a one-to-one correspondence between the real particles and the

simulated ones; in other words, each simulated particle represents an arbitrary number

of real particles. In particular, let’s say that a simulated charge carrier represents W c
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physical electrons, and a simulated phonon represents W p physical phonons. In a

simulated electron-phonon scattering event, the scattering represents an interaction

of W c electrons with W p phonons. It appears obvious that, for this model to be

statistically accurate, W p should equal W c. However, in a typical semiconductor, the

density of phonons is orders of magnitude higher than the density of free charges. This

means that the W p = W c condition would require a number of simulated phonons

orders of magnitude larger than the number of simulated charged particles, which

is not realistic from a computational view point. A more sensible choice employs a

similar number of simulated particles for both phonons and charged particles with

the weight factor W p orders of magnitude larger than W c. Because of this difference,

the processes of emission and absorption cannot be correctly simulated as one-to-one

interactions between simulated phonons and simulated electrons. In order to address

this problem, we developed two stochastic techniques that model the interactions

between simulated particles with different weights while allowing for a statistically

accurate representation of the carriers dynamics in the thermo-electric system.

4.2 Phonon Absorption and Emission in Steady-State

In a steady-state system, the number of phonons emitted in a given time interval

can be assumed constant, therefore, the emission process can be described by the

Poisson probability distribution [45, 46]:

V
(
k, λe(q)

)
=

(
λe(q)

)k
e−λ

e(q)

k!
, (4.1)

where the parameter λe(q), referred to as rate or intensity, is the expected (or aver-

age) number of phonons emitted during a time interval dt into the state q, and the

superscript e referring to the emission process. In particular, during dt , the intensity
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is equal to the average number of emission scattering events per unit of time:

λe(q) =
E [ηce(q, t+ dt)− ηce(q, t)]

dt
= ηcΓce(q), (4.2)

where ηce(q, t) is the total number of (real) charges emitting a phonons into the

state q up to the time t, ηc represents the number of charged particle (either holes

or electrons), and Γce is the charge-phonon emission rate. Finally, the symbol E

represents the expectation operator [45], such that the expected value of the random

variable X, E [X], is the mean value of X. In the context of CMC simulations,

the number of phonon emissions caused by simulated charged particles has a similar

expression:

λce(q) =
E [N ce(q, t+ dt)−N ce(q, t)]

dt
=

ηc
W c

Γce(q) =
λe(q)

W c
, (4.3)

where the capital letter N denotes the number of simulated particles, each one rep-

resenting W c charged particles. Dividing the expected number of emitted phonons,

λe(q), by the weight of the simulated phonon, W p, gives the expected number of

simulated phonons to be added to the simulation:

λpe(q) =
λe(q)

W p
. (4.4)

The simple approach of generating a new simulated phonon with each scattering

of a simulated charge would create λce(q) simulated phonons in average. However,

it is clear from Eq. 4.4 and Eq. 4.3 that λce(q) differs from λpe(q); in particular,

λce(q) > λpe(q) since W c < W p. Consequently, this simple approach cannot be used.

The intuitive solution is to create a new simulated phonon as result of only a

fraction of the scattering events while preserving the Poisson nature of the phonon

generation process. Indeed, a widely used variation on the rejection algorithm pre-

sented in Chapter 3 section 3.2, called thinning [47], allows to achieve our goal. The
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algorithm generates events obeying a Poisson distribution, which will be referred to

as the target distribution, by down-sampling events obeying a different Poisson dis-

tribution, which will be referred to as the sampling distribution. In other words, the

algorithm reproduces the target distribution by randomly selecting a subset of events

from a suitable sampling distribution. In particular, the events of the sampling distri-

bution must be more frequent than the events of the target distribution; so that the

sampling Poisson distribution is said to be stochastically dominating [48] the target

distribution. The requirement of stochastic domination results in a lower bound for

the Poisson intensity of the sampling distribution λ∗(t):

λ∗(t) > λ(t) ∀t, (4.5)

where λ(t) is the intensity of the target distribution. The events are then retained

with probability λ(t)/λ∗(t) or rejected with probability 1−λ(t)/λ∗(t). Finally, λ∗(t) is

typically chosen to be a constant in order to simplify the algorithm which generates

the sampling distribution. In the specific case of phonon emission, λce(q) is the

intensity of the dominating distribution while λpe(q) is the intensity of the target

distribution.

In practice, after a simulated charged particle scatters, the thinning procedure

employs the same rejection technique discussed in section 3.2 where the rejection

probability is computed as:

Prej =
λpe(q)

λce(q)
=
W c

W p
. (4.6)

When the process is accepted, a new simulated phonon is created in the same position

of the simulated charged particle. The average number of simulated phonons created

by the rejection algorithm is therefore given by:

E
[
Npe(q, t+ dt)−Npe(q, t)

∣∣∣%u < Prej

]
= E [dN ce(q)]Prej =

dt λe(q)

W p
, (4.7)
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Where Npe(q, t) is the total number of simulated phonons in the state q created

by an emission process up to the time t, %u is a number randomly extracted from

the uniform distribution U(0, 1),
∣∣ is the conditional expectation operator1[45], and

dN ce(q) = N ce(t + dt , q) − N ce(t, q). The previous equation shows that the aver-

age number of simulated phonons created by the rejection algorithm corresponds to

the expected value λpe(q) calculated in Eq. 4.4. A similar treatment in the case of

phonon absorption leads to a similar algorithm employing the same rejection probabil-

ity in 4.6. In this case, a simulated phonon to be removed is chosen while calculating

the local and instantaneous occupation number as described in section 3.4. In par-

ticular, the algorithm selects the simulated particle with the smallest deviation from

the target value of ~ωq. The rather limited capability of this approach to model a

transient regime will be discussed in the following section.

4.3 The Limits of the Poisson Model

The limits of the technique presented in the previous section are shown when

describing the expected rate at which energy is lost and gained by the two simulated

populations.

In particular, the expected energy loss by simulated charged carriers in an infinites-

imal time interval dt , dEce, can be computed by adding together the contribution of

each scattering:

E [dEce] = E [Ece(t+ dt)− Ece(t)] = E

[ ∑
q⊂BZ1

~ωqW cdN ce(t, q)

]
, (4.8)

where the symbol E represents the expectation operator [45], ωq is the frequency

of the state q, dN ce(t, q) has the same expression as in Eq. 4.7, and represents the
1A
∣∣B is the expected value of A computed with respect to the conditional probability distribution

p
(
A
∣∣B).
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number of scattering between phonons in the state q and simulated charged particles

in the interval [t+ dt , t], each one representing W c charged particles. The linearity of

the expectation operator [45] allows us to write the previous equation as:

E [dEce] =
∑
q⊂BZ1

~ωqW cE [dN ce(t, q)] =
∑
q⊂BZ1

~ωqW c dt λce(q, t), (4.9)

where the product dt λce(t, q) is the expectation, or the average value, of dN ce(t, q).

Similarly, the expected energy gained by the population of simulated phonons

during dt , Epe(t), is calculated by adding the contribution of each newly created

particle:

E [dEpe(t)] =
∑
q⊂BZ1

~ωqW pE [dNpe(t)] =
∑
q⊂BZ1

~ωqW p dt λpe(t, q), (4.10)

where dNpe(t, q) = Npe(t+ dt , q)−Npe(t, q), Npe(t, q) is defined in Eq. 4.7, and W p

is the number of phonons represented by each simulated phonon. Finally, the product

dt λpe(t, q) is the expectation of dNpe(t, q).

Since the thinning algorithm imposes λpe(t, q) = λce(t, q) ∗W c/W p, the average

energy lost by the population of simulated charged carriers equals the energy gained

by the population of simulated phonons. A similar approach can be applied to analyze

the thinning algorithm applied to the emission process. In this case, the equations

show that the energy gained by the population of simulated charged carriers via

absorption, dEca, equals the energy lost via removal of simulated phonons, dEpa.

The corresponding central variances for 4.8 and 4.10 are2,3, respectively:

Var (dEce(t)) =
∑

q⊂BZ1 (dt ~ωqW c)2λce(q)

Var (dEpe(t)) =
∑

q⊂BZ1 (dt ~ωqW p)2λpe(q) =
∑

q⊂BZ1 (dt ~ωq)2W pW cλce(q)

(4.11)
2If x is a random variable with a Poisson distribution of intensity λ and a is a real number, the

random variable y = ax has average aλ and variance a2λ.
3If x and y are independent random variables Var(x+ y) = Var(x) + Var(y).
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Since W p > W c (typically, it is W p >> W c), the variance of the energy gained by

the simulated phonon population is larger than the variance of the energy lost by

the simulated charge population: Var(dEpe) > Var(dEce). In the case of phonon

absorption, the same argument gives in Var(dEpa) > Var(dEca).

In the steady state regime, instantaneous differences between the energy gained

by the simulated phonon population, dEpe(t), and the energy lost by the simulated

charged carriers, dEce(t), have no lasting effect since, from 4.7, both quantities have

the same average value. The total energy of the charge-phonon system is therefore

conserved on average, and the effect of the difference in variance is an increase in noise

in the energy of the simulated phonon population as compared to the simulated charge

population. Therefore, the relative difference between the energy of the two popula-

tions existing before the steady-state regime will remain unaltered. More explicitly,

the conditions present at the end of a transient are preserved in the steady-state

regime, as they should be. Following the same argument, any random fluctuation of

the difference in energy dEpe(t) − dEce(t) present at the end of a transient will be

preserved in the steady state regime. In other words, the statistical fluctuation of the

transient regime carries over in the steady state regime. This creates an irremovable

discrepancy between the energy gained by the simulated crystal and the energy lost

by the simulated charge particles. The larger the fluctuation, the larger the error in

the conservation of energy. This problem needs to be addressed by the algorithm.

It is possible to employ a book-keeping scheme to account for the error in the

energy exchanged between the two populations. This approach allows compensating

for any error by adding or removing the appropriate number of simulated phonons,

when the energy discrepancy justifies it. However, this method requires somewhat

arbitrary decisions on the state of the simulated phonon to be removed and on which

state a new simulated phonon should be created. In order to avoid such arbitrary
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decisions, a method based on the mathematical model called point process [49] is

used in place of the model presented in section 4.2. This framework allows modeling

the creation and removal of simulated phonons in a way that statistically enforces

the conservation of the system energy. The mathematical basis for the modeling of

absorption and emission point process will be offered in the next sections 4.4 and 4.5.

The model employed in this work will be finally discussed in section 4.6.

4.4 Point Process

A point process [50], can be described as a sequence of points randomly located

in some space. However, the only type of point process (PP) considered in this work

will be defined on the one-dimensional time space, represented by the letter t. In

this context, a PP can be simply thought of as being a collection of points (events)

randomly placed on the time line. The specific location patterns and these points

constitute the process itself. In this framework, the process will therefore denote a

collection of events occurring in time, and the term stochastic process will identify a

process that develops in time according to some probabilistic rule. A point process

is typically described in terms of its counting measure [49, 51, 52], M (t), which

represents the cumulative count of events in a process. This means that for any two

times t1 and t0, such that t1 > t0, the value M (t1) − M (t0) is a positive integer

representing the number of events occurring in the time interval [t1, t0]. Moreover,

M (t) is called a random counting measure when the counted events are parts of a

stochastic process.

More formally, M (t) defined for time t > 0 is said to be a counting measure

if [49, 51]:

• M (0) = 0
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• M (t) is a positive integer ∀t > 0

• M (t) is non-decreasing, right-continuous step function with jumps of finite size.

The counting function is typically expressed as a summation of step functions [45]:

M (t) =
∞∑
i=1

Ji(t), (4.12)

where the step function Ji(t) is defined as:

Ji(t) =

 1 t ≥ ti

0 t < ti

, (4.13)

where ti is the time of the i-th event. Figure 4.1 shows an graphical representation
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Figure 4.1: Example of a one dimensional PP. The solid line represent the corre-
sponding intensity of the PP as a function of time, while each dot on the time line
marks an event. A higher clustering of events corresponds to a higher intensity.

of a PP. The solid line represents the PP intensity as a function of time, while the

dots on the time line mark the corresponding events. The average distance between

events centered around a specific time t has an inverse relationship with the corre-

sponding intensity, λ(t). In other words, a higher intensity results in a higher density
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of events while a lower intensity results in a more sparse distribution of events. In this

particular case, the alternation between high and low intensity produces clustering

effects centered around the peak of intensity.

A notable example of PP is obtained by defining the probability for new events

to occur during dt as:

lim
dt→0+

P [M (dt +t)−M (t) = j]


o(dt) j > 1

λ(t) dt +o(dt) j = 1

1− λ(t) dt +o(dt) j = 0

, (4.14)

where the P [A] is the probability of the event A, M is the random counting measure

of the PP, λ(t) is referred to as intensity, o(dt) is the Bachmann-Landau (little o)

notation [49], that explicitly indicates that the probability of two events happening

at the same time tends to vanish. A point process with this property is said to

be simple [49, 50]. Moreover, this property allows us to relate the probability, the

intensity and the expected value [49, 52] of new events occurring in a time interval

dt . In particular, for small values of dt , o(dt) = 0 and the previous quantities are

simply related by:

P
[
M (t+ dt)−M (t) = 1

]
= dt λ(t) = E [M (t+ dt)−M (t)] . (4.15)

When λ(t) is a deterministic function, the number of events in an interval dt obeys

a Poisson distribution with intensity λ(t). Therefore, the quantity M (t+ dt)−M (t)

is a non-homogeneous Poisson random variable with intensity λ(t) [45, 49]. In this

general case, the PP is referred to as a non-homogeneous Poisson point process. When

λ(t) is simply a constant, the quantity M (t + dt) −M (t) is a homogeneous Poisson

random variable. In this case, the PP is referred to as a homogeneous Poisson point

process. Moreover, this definition of Poisson PP in terms of counting measure allows

the derivation of all the properties of the Poisson distribution [45, 46]. If λ(t) is not

31



a deterministic function but another independent Poisson random variable, the PP

is referred to as a Cox Doubly Stochastic Poisson Process [46, 53, 54], or simply Cox

process. As such, the Cox process is usually considered a generalization of the Poisson

process where the intensity itself is a random variable. For simplicity, this case can

be thought of in terms of local behavior: in a small time interval, the Cox PP has

a Poisson-like behavior with intensity λ(t); however, at each time the value of the

intensity is given by an independent Poisson random variable. The term Cox process

is also commonly used in the literature to describe any PP with a Markovian [49]

intensity λ(t). In the case of a non-Markovian intensity, the PP is commonly referred

to as a Hawkes process [46, 49, 53], named after the work of Alan G. Hawkes, who

employed a PP with non-Markovian intensity to model clustering behavior [53]. In

the same way, the Cox process can be considered a generalization of the Poisson

process, the Hawkes process can be thought of as a non-Markovian extension of the

Poisson PP. In a sense, the Hawkes PP is a Poisson PP which accounts for the effect

of past events. For this reason, an approach based on the Hawkes PP seems a natural

extension to the model based on the Poisson distribution presented in section 4.2. It

may seems unusual to use a non-Markovian approach to model a Markovian systems.

However, this method can be intuitively thought of as a sophisticated statistical form

of book keeping.

4.5 Phonon Absorption and Emission as Hawkes Process

The point process (PP) used in this work to model the absorption and emission of

simulated phonons is a Hawkes [53] point process. This type of PP models systems

where each new event impacts the whole stochastic process. More explicitly, the

chance of a new event depends on the sequence of events that preceded it. This

type of process is typically employed to model systems where the observed events

32



tend to cluster in time. For example, seismic events present short-term clustering;

an earthquake main-shock is both preceded (fore-shock) and followed (after-shock)

by intermediate-size events [55]. Hawkes processes have been employed to model

criminal activity such as property crime, gang violence, and terrorism. Each initial

event increases the likelihood of more events, as a successful offender(s) tends to

replicate the crime in nearby location in the following weeks [56]; or, in the case of

gang violence, each violent event tends to ignite retaliation [57].

In the past years, this statistical model became popular in the fields of finance

and economics [58] to model the dynamics of trades and prices, especially in order to

predict price changes in the context of high frequency finance. This later application

employed a multivariate form of the Hawks process. In this approach, several events

interact with each other to determine the probability of an event occurring in the near

future. For example, it is well known that in the financial market the trading activity

tends to cluster in time. In particular, Hewlett [59] successfully fitted order arrivals

data by employing a model where each new sell offer increases the expected number

of both buy requests and sell offers for a short time, and vice versa. In all these

examples, each event makes the occurrence of the following events more probable

for some period of time, and this type of PP are referred to as Self-Exciting Point

Processes. Formally, this behavior can be expressed in terms of counting measure as:

cov (M (t1)−M (t0),M (t2)−M (t1)) > 0, (4.16)

for any t0 < t1 < t2, where cov denotes the covariance of the two quantities. When

the covariance is negative, the PP is called self-correcting or self-regulating; in that

case each event makes the occurrence of the following events less probable for some

period of time.

The Hawkes process is defined by relating the counting measure to the collection
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of previously occurred events, which will be represented by the symbol H (t) and

referred to as history4. In particular, the Hawkes process is defined by expressing the

conditional probability of observing a particular counting function given the history:

lim
dt→0+

P
(

M (t+ dt)−M (t) = m
∣∣∣H (t)

)
=


o(dt) m > 1

λ
(
t,H (t)

)
dt +o(dt) m = 1

1− λ
(
t,H (t)

)
dt +o(dt) m = 0

,

(4.17)

where
∣∣∣ represent the conditional probability operator5 [45], and λ

(
t,H (t)

)
is referred

to as the intensity of the process. For example, in the case studied by Hawkes [53]

the intensity takes the form:

λ
(
t,H (t)

)
= λ0 +

∫ t

0

aeb(t−s)dM (s), (4.18)

where λ0 is the background intensity of the process, a and b are positive real constants,

and the term dM (s) is:

dM (t) = M ′(t) dt =
∞∑
i=1

δ(t− ti) dt , (4.19)

where ti is the time of the i-th event, M is replaced by the definition in in 4.12, and

the delta function is the derivative of the step function. The previous equation allows

us to rewrite 4.18 as:

λ(t,H (t)) = λ0 +
∑
ti<t

ae−b(t−ti) (4.20)

It is now clear that each event instantaneously increases the arrival intensity by A,

and this influence decays exponentially over time.
4In measure theory, H is called a filtration or history [49], that is an increasing sequence of

σ-algebras on the measurable space.
5P
(
X < x0

∣∣∣Y < yy

)
is the probability of the event X < x0 occurring given the event Y < y0

has occurred.
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In more general terms, the intensity of a non-linear Hawkes process can be written

as [49, 60]:

λ
(
t,H

)
= ϑ

(
ζ(t) +

∫ t

−∞
h (t, s) dM (s)

)
, (4.21)

where the function ϑ is such that ϑ : R → R+, and the function ζ accounts for the

evolution of the stochastic process in absence of events, in other words, it provides

a background intensity to the PP. The term h is referred to as the exciting function,

and can be rewritten by using the definition of dM (s) in Eq 4.19 as:∫ t

0

h (t, s) dM (s) =
∞∑
i=1

∫ t

0

h (t, s) δ(s− ti)ds. (4.22)

where the summation and integration order has been reversed. The final integration

can be split in two cases:

∫ t
0

h (t, s) δ(s− ti)ds = h (t, ti) ∀ti ≤ t∫ t
0

h (t, s) δ(s− ti)ds = 0 ∀ti ≥ t
. (4.23)

These last two equations allow us to rewrite Eq. 4.21 as:

λ
(
t,H

)
= ϑ

(
ζ(t) +

∑
ti<t

h (t, ti)

)
. (4.24)

This expression clearly shows the relationship between the exciting function, past

events and the intensity. More explicitly, each past event influences the future inten-

sity λ
(
t,H

)
with the weight h .

In the multivariate case [60], the effect of all the variates on the i-th one is

represented in the exciting function:

λi
(
t,H

)
= ϑ

(
ζ(t) +

Nv∑
j

∫
h ij(t, s)dM j(s)

)
, (4.25)

where Nv is the number of variates, h ij defines how the j-th variate affect the i-th

variate, and M j is the random counting measure of the j-th variate.
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In this work, the process of creation and removal of simulated phonons is modeled

in terms of a multivariate Hawkes PP in order to minimize the effects of the statistical

fluctuations on the conservation of the system energy. In particular, the PP must

ensure that the variation of energy in the phonon population closely mirrors the

variation in the population of simulated charges, in spite of the difference between

the weight of the particles in the two populations. In other words, in order to achieve

high accuracy when modeling transients, the model must alter the rate of generation

or removal of simulated phonons to adjust the instantaneous conservation of the

system energy.

In this context, four type of variates allow representing all the energy exchange

happening between the simulated populations. In particular, each phonon state with

momentum q is connected to four variates:

• simulated electron emission scattering with phonons in q, represented by ce

• simulated electron absorption scattering with a phonon in q, represented by ca

• simulated phonon created with momentum q by emission scattering, represented

by pe

• simulated phonon with momentum q removed from the simulation by absorption

scattering, represented by pa.

These four types of variates allow the definition of the energy exchange between the

two population in terms of an energy balance equation:

dE(t) = dEpe(t) + dEpa(t)− dEce(t)− dEca(t), (4.26)

where the notation dE(t) represents E(t + dt) − E(t), and the superscript ce, ca,

pe, and pa represent the four type of variate as previously described. In particular,
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expressions for dEce and dEpe have been explicitly defined in section 4.3 in the case

of phonon emission. The quantities dEca(t) and dEpa(t) are similarly defined for the

case of phonon absorption:

dEca(t) =
∑

q⊂BZ1 ~ωqW cdN ca(q, t)

dEpa(t) =
∑

q⊂BZ1 ~ωqW pdNpa(q, t)
(4.27)

The time integral of dE(t) is a measure of the error in the conservation of energy

between the simulated populations.

The expected value, or expectation, of dE(t) when generation and removal of

simulated phonon are modeled as Hawkes PP can be written as:

E [dE(t)|H ] =
∑
q

~ωqW p(E [dNpa(q, t)|H ]− E [dNpe(q, t)|H ])

− ~ωqW c(E [dN ca(q, t)|H ]− E [dN ce(q, t)|H ])

, (4.28)

where the sum has been separated because of the linearity of the expectation operator.

The definition of PP intensity and 4.15 allows the rewriting of the previous equation

in terms of the intensities:

E [dE(t)|H ] = dt
∑
q

~ωqW p(λpa(q, t)− λpe(q, t))− ~ωqW c(λca(q, t)− λce(q, t)),

(4.29)

where λca(q, t) and λce(q, t) are the intensities corresponding to the scattering of

simulated charged particles as defined in section 4.3. λpa(q, t) and λpe(q, t) are the

intensities corresponding to the removal and generation of simulated phonon respec-

tively. A simple algebraic substitution shows that the thinning algorithm presented

in section 4.2 produces in an expected value of zero for dE(t) at steady state.

When the creation and the removal of simulated phonons are modeled as Hawkes

processes, the intensities λpe(q, t) and λpa(q, t) are designed to minimize the error in

the conservation of energy between the simulated populations, which is represented by
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the integral
∫
dE(t) dt . In particular, the desired properties for the intensity λpa(q, t)

are as follows:

• λpa(q, t) has a background intensity of λca(q, t) ∗W c/W p

• λpa(q, t) has an inverse dependence on
∫
dE(t)

• λpa(q, t) has a maximum intensity of λca(q, t).

The first property ensures that in absence of an error the process behaves like the

Poisson model described in the previous section, the second property imposes a nega-

tive feedback on the value of
∫
dE(t), and the final property allows the simplification

of the algorithm by ensuring that each simulated charged particle interacts with no

more than one simulated phonon.

In a similar fashion, the desired properties for the intensity λpe are:

• λpa(q, t) has a background intensity of λca(q, t) ∗W c/W p

• λpa(q, t) has a forward dependence on
∫
dE(t)

• λpa(q, t) has a maximum intensity of λca(q, t).

There is a variety of definitions of λpe and λpa which can satisfy these properties,

and each definition has its own merits and drawbacks. The most basic approach

would employ a step-like intensity, for example:

λpe(q, t) =

 λce(q, t)W
c

W p

∫
dE(t) ≤ 0

λce(q, t)
∫
dE(t) > 0

. (4.30)

The implementation of this approach would result in an extreme burden on the al-

gorithm by continuously imposing an unnecessary amount of removal and creation of

simulated phonons. Moreover, the intensity reduces to the Poisson model presented
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in section 4.2 only when
∫
dE(t) = 0, which is not a likely event. This means that at

steady state, the removal and creation of simulated phonons will largely differ from

the expected Poisson distribution. This problem could be mitigated by using some

constant E∗max as a threshold:

λpe(q, t) =

 λce(q, t)W
c

W p

∫
dE(t) < E∗max

λce(q, t)
∫
dE(t) ≥ E∗max

. (4.31)

This approach does not burden the algorithm and it reproduces the desired Poisson-

like distribution behavior for
∫
dE(t) < E∗max. However, there is no effect on the

intensity until
∫
dE(t) ≥ E∗max, and this can result in large delay between the algo-

rithm response and the moment a statistical fluctuation causes the error in
∫
dE(t).

This effect results in a statistical difference between the momentum distribution of

the created phonons and the phonon states which created the error by scattering

with the simulated charge carriers. In other words, the momentum distribution of

the generated phonons does not correspond to the variation in the momentum of the

scattered charged particles.

This issue can also be mitigated by employing some type of transition function

between the maximum and minimum value of the intensity. The simplest approach

is to employ a linear relationship in the definition of intensity:

λpe(q, t) = λce(q, t)
W c

W p
+ a

∫
dE(t), (4.32)

where the proportionality constant a determines the sensitivity of the intensity. Small

values of a closely reproduce the Poisson-like presented in section 4.2 but allow for

large values of the error
∫
dE(t) dt . In contrast, while large values of a limit the

magnitude of the error, the behavior of the intensity would largely differ from the

Poisson case presented presented in section 4.2.

This work employs a log-linear model to balance the efficiency of the algorithm, the

39



need for an instantaneous response, and the need to limit the error
∫
dE(t) dt . This

approach provides an immediate and modulated response to the error represented by∫
dE(t) dt . In particular, the effect is minimal and the rate of removal and creation

of simulated phonons does not diverge much from the Poisson model presented in

section 4.2. As the error grows, the effect on the intensity becomes more pronounced

ensuring the desired small delay between the insurgence of an error and the algorithm

response.

4.6 Log Linear Hawkes Process

In general, a log-linear approach models functions whose logarithm equals a linear

combination of parameters. In this case, it is the logarithm of the intensity that is

proportional to a linear function. This is simply achieved by imposing ϑ in Eq. 4.24

to be an exponential function. In particular, λpe(q, t) and λpa(q, t) are respectively:

λpe
(
q, t,H

)
= exp

(
Lpe(q, t) +

∑
q

∫ t
−∞ h

pe(q, t, s)dM (s)
)

λpa
(
q, t,H

)
= exp

(
Lpa(q, t) +

∑
q

∫ t
−∞ h

pa(q, t, s)dM (s)
) . (4.33)

In the absence of the exciting function h , the intensity should reduce to the Poisson

model presented in section 4.2. This allows to derive expressions for the terms Lpe(q, t)

and Lpe(q, t) by imposing:

W c

W pλ
ce = λpe

(
q, t,H

)
= exp (Lpe(q, t))

W c

W pλ
ca = λpa

(
q, t,H

)
= exp (Lpa(q, t))

, (4.34)

which lead us to rewrite Eq. 4.33 as:

λpe
(
q, t,H

)
= W c

W pλ
ce exp

(∑
q

∫ t
−∞ h

pe(q, t, s)dM (s)
)

λpa
(
q, t,H

)
= W c

W pλ
ca exp

(∑
q

∫ t
−∞ h

pa(q, t, s)dM (s)
) . (4.35)
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The exciting functions must be proportional to the measure of error presented in

Eq 4.8, and the two intensity should have opposite behavior:

hpe(q, t, s) = −hpa(q, t, s) = aq
(
dEpa(q, t)− dEpe(q, t)− dEca(q, t) + dEce(q, t)

)
.

(4.36)

This equation allows us to explicitly write the arguments of the exponentials in

Eq. 4.35: ∑
q

∫ t
−∞ h

pe(q, t, s)dM (s) = +a
∫ t
−∞ dE(t)∑

q

∫ t
−∞ h

pa(q, t, s)dM (s) = −a
∫ t
−∞ dE(t)

, (4.37)

where the factor aq = a is assumed constant in q, the summation and integration

order have been reversed, and dE(t) is the same as in Eq. 4.26.

Finally, the intensities for the creation and removal of simulated phonons are,

respectively:

λpe
(
q, t,H

)
= min(W

c

W pλ
cee+a

∫
dE(t), λce)

λpa
(
q, t,H

)
= min(W

c

W pλ
cae−a

∫
dE(t), λca)

, (4.38)

where the minimum function accounts for the limit imposed to the maximum intensity.

The factor a has the dimensions of the inverse of an energy, intuitively this factor

determines the sensitivity of the intensity to changes in
∫
dE(t).

In the specific case of:

λpa = W c

W pλ
cae−a

∫
dE(t)

λpe = W c

W pλ
ceea

∫
dE(t)

, (4.39)

the expectation in 4.29 can be simplified as:

E [dE(t)|H ] = dt
∑
q

~ωqW c
(
λca(q, t)(e−a

∫
dE(t) − 1)− λce(q, t)(1− ea

∫
dE(t))

)
= dt(e−a

∫
dE(t) − 1)Eca(t)− dt(ea

∫
dE(t) − 1)Ece(t)

.

(4.40)
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These equations allow us to write the expected values for the integral of dE(t) in

terms of a recurrence relation [61]:

E
[∫ ti+1

−∞
dE(t)|H

]
= Ei+1 = Ei + (e−aEi − 1) dt Eca − (eaEi − 1) dt Ece, (4.41)

where ti is the time of the i-th event. A simple substitution allows us to prove that

Ei+1 = 0 in the special case of Ei = 0. Since at the start of the simulation, the

net energy exchange between the simulated populations is zero E0 = 0. Therefore,

Ei = 0 for each n, and the expected value for the integral of dE(t) must be zero

for each t. Since
∫
dE(t) is a measure of the error in the conservation of energy in

scattering between the simulated populations, the energy gained by the simulated

phonon population must be equal to the energy lost by the population of simulated

charged particles.

Finding the analytical expression for the variance of
∫
dE(t) is challenging and

beyond the scope of this work. However, an upper bound to the central variances can

be computed by employing the Popoviciu’s inequality [62]. In particular, the variance

of a random variable x is bound by:

Var(x) ≤ (max(x)−min(x))2/4, , (4.42)

where max(x) and min(x) represents the maximum and minimum value of x respec-

tively.

In order to compute the extreme of
∫
dE(t), we consider separately the cases of

small and large values of a. For large values of a, the intensities defined in Eq. 4.38

oscillate between zero and the maximum value. In this case, the integral
∫
dE(t) is

bounded by the discrete energy of the simulated phonons:

−W p~ωmax <
∫

dE(t) < +W p~ωmax, (4.43)

where ωmax is the maximum phonon energy.
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For small values of a, the extreme of
∫
dE(t) can be obtained from the definitions

of intensity in Eq. 4.38. In particular, for positive values of
∫
dE(t) the upper bound

is computed by imposing λpe ≤ λce:∫
dE(t) < +

1

a
ln
W p

W c
. (4.44)

Similarly, for negative values of
∫
dE(t) the lower bound is computed by setting

λpa ≥ λca: ∫
dE(t) > −1

a
ln
W p

W c
. (4.45)

The inequalities in Eq. 4.43, 4.44, and 4.45 provide the final bound to
∫
dE(t):∫

dE(t) < + 1
a

ln W p

W c +W p~ωmax∫
dE(t) > − 1

a
ln W p

W c −W p~ωmax
, (4.46)

Finally, the upper bound to the central variances is computed from Eq. 4.42 as:

Var

(∫
dE(t)

)
<

(
1

a
ln

(
W p

W c

)
+W p~ωmax

)2

. (4.47)

This equation confirms the intuitive notion that the variance depends on the rela-

tionship between W p and W c. Moreover, the equation provides a practical approach

for the selection of the parameter a by choosing the magnitude of the variance.

4.7 Simulation of Hawkes Process

The literature proposes various sampling algorithms [63–66] to generate samples

of point processes. This work employs a technique based on Ogata’s [65] thinning

approach.

Ogata frames the thinning algorithm in terms of a target and a sampling PP

when both PP s are simple, as defined in section 4.4. In this context, the rejection

probability is expressed as a ratio of the PP intensity [49, 65]. If the intensities

of both PP are deterministic, as in a Poisson PP, the thinning procedure follows
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the basic thinning algorithm [47]. However, when at least one of the intensities is a

random variable, as in a Hawkes processes, the algorithm must account directly [49]

for the inequality in 4.5. That is, at any time the intensity of the sampling PP

must be larger than the intensity of the target PP. Ogata achieves this goal by

employing a sequential variant of the thinning algorithm. In this sequential approach,

the inequality is ensured by recomputing the intensity of the sampling PP after each

event alongside to the value of the intensity of the target PP.

In the case of the log-linear model presented in this work, the intensities of the

Hawkes PP, as defined in Eq. 4.38, are bounded random variables. This condition

allows to largely simplify the sampling algorithm by selecting an appropriate sampling

PP which ensure the inequality in Eq. 4.5. The definition in Eq. 4.38 provides that the

intensity for the generation of simulated phonons is always smaller than the intensity

for the emission scattering of simulated charge carriers. Similarly, the intensity for the

removal of simulated phonons is always smaller than the intensity for the absorption

scattering of simulated charge carriers. These two relationships allow to implement

the thinning procedure by simply following the procedure detailed in section 4.2 while

employing the following rejection probabilities:

P a
rej =

λpa
(
q,t,H

)
λca(q,t)

= W c

W p e
−a

∫
dE(t)

P e
rej =

λpe
(
q,t,H

)
λce(q,t)

= W c

W p e
a
∫
dE(t)

, (4.48)

where P a
rej and P e

rej represent the probability of removing and creating a simulated

phonon respectively, a is the same as in Eq. 4.38. and
∫
dE(t) is defined in Eq. 4.26.

44



Chapter 5

ELECTRON SCATTERING

This chapter offers an overview of the scattering mechanisms involving electrons and

how the rejection technique is applied to model them. The first three sections discuss

scattering between the electrons and their environment, while the last section analyze

the modeling of electron-electron interactions. In all equations of this chapter the

phonon mode index and the electron band index have been dropped for the sake of

clarity.

5.1 Deformation Potential Scattering

Interactions between the Bloch electron and the deformations of the crystal peri-

odicity caused by the thermal vibrations of the lattice atoms are commonly referred

to as deformation potential scattering. This phenomenon can be expressed as either

the absorption or the emission of an elementary quantum of thermal energy (phonon).

In particular, an electron with wavevector k interacting with a phonon of wavevector

q acquires a new wavevector k′ = k±q where ”+” and ”-” refer to the absorption and

the emission of the phonon, respectively. Moreover, the energy exchanged during the

process is obviously: E(k′) = E(k)± E(q).

According to the approach discussed in section 2.4, the transition rate to be stored

in the look-up table is expressed as the probability for a carrier with initial wavevector

k to scatter to the cell Ωk′ centered around k′ [36]:

Γdef (k,Ωk′) =
πD(E(k)± E(q)),Ωk′

ρE(q)
|Ξdef (k, q,k

′)|2 |I(k,k′)|2
(
n+

1

2
∓ 1

2

)
,

(5.1)
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where D(E ,Ωk′) is the density of states with energy E in Ωk′ , ρ is the semiconductor

density, Ξdef (k, q,k
′) is the deformation potential parameter [36], I(k,k′) is the over-

lap integral [36] between the initial and final states, and n is the number of phonons

with wavevector q. The rate Γdef can be written as the products of a constant term

dependent only on the wavevectors k, k′, and q, and a second term dependent on

n(q), which is the phonon occupation number. In the local equilibrium approxima-

tion, this second term is simply a function of the (local) crystal temperature.

In the case of absorption, an electron has the same chances of absorbing each of

the n indistinguishable phonons in the state q, as is reflected in the scattering rate

that is linearly dependent on n. This obviously implies that the absorption process

requires the presence of at least one phonon in the state q.

An electron has also the same chances of interacting with each of the n indistin-

guishable phonons in the state q. In this interaction, the charge will lose energy by

emitting a phonon. Moreover, a phonon emission in the state q can happen even in

the absence of phonons in that state. This two mechanisms are reflected in the total

emission rate which is varying linearly with n+ 1.

Since the rejection probability is expressed by the ratio between the locally com-

puted scattering rate and the tabulated scattering rate, the constant terms are com-

mon and can be simplified.

The rejection probability employed by the scattering algorithm is therefore:

P def
rej =

Γdefloc (k,Ωk′)

Γdefmax(k,Ωk′)
=

(
nloc + 1

2
∓ 1

2

)(
nmax + 1

2
∓ 1

2

) (5.2)

where nloc is the local number of phonons with wavevector q, and nmax is the num-

ber of phonons with wavevector q computed at the maximum expected temperature

Tmax used to compute the look-up table. Importantly, this approach allows to employ

the rejection technique without the need of the expansive calculation of the defor-
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mation potential parameter, the overlap integral and the density of states after each

scattering, so the numerical overhead of the rejection is almost negligible.

5.2 Polar Interactions

When phonons distort the lattice of a polar material, the local electric charge

neutrality is destroyed. This effect causes an electric polarization and an associ-

ated macroscopic electric field to which the electron responds [67]. Similar to the

deformation potential case, this interaction results in an exchange of energy and mo-

mentum between the Bloch electron and the crystal via the emission and absorption

of phonons.

Polar interactions between electrons and optical phonons are referred to as polar

optical scattering and can be expressed [37, 68–71] as:

Γpol(k,Ωk′) = D(E ,Ωk′)
2πe2

~ |q|2
|Ξpol(k, q,k

′)|2 |I(k,k′)|2
(
n+

1

2
∓ 1

2

)
, (5.3)

where e is the elementary charge, q is the wavevector of the phonon, and Ξpol(k, q,k
′)

is the polar scattering parameter. Since Γpol and Γdef share a similar mathematical

structure the considerations made for the deformation potential scattering also apply

to the polar optical case.

In the case of polar optical scattering, the simplified rejection probability is:

P pol
rej =

Γpolloc(k,Ωk′)

Γpolmax(k,Ωk′)
=

(
nloc + 1

2
∓ 1

2

)(
nmax + 1

2
∓ 1

2

) . (5.4)

Polar disturbances of the electron dynamics related to an acoustic phonon are

referred to as piezoelectric scattering. This scattering is usually treated as elastic

because of the predominance of interactions with low energy phonons near the gamma

valley. The scattering rate can be expressed as [67]:

Γpiezo(k,Ωk′) = D(E(k),Ωk′)
2π

~
K2
av

e2kBT

|q|2 ε∗
|I(k,k′)|2, (5.5)
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where K2
av is the electro-mechanical coupling constant.

For this scattering mechanism, the rejection probability further simplifies to:

P piezo
rej =

Γpiezoloc (k,Ωk′)

Γpiezomax (k,Ωk′)
=

Tloc
Tmax

, (5.6)

where Tloc is the temperature at the scattering electron location, and Tmax is the

maximum expected temperature used to compute the look-up table.

5.3 Ionized Impurities

Ionized impurities in the lattice are also treated as a source of elastic scatter-

ing [34, 72], in the sense that only the direction of electrons’ motion is changed by

the scattering. Since this scattering mechanism is related to the concentration of

impurities, as the impurity concentration increases, the carriers are subject to more

scattering, consequently increasing the randomization of the carriers velocities.

While the scattering with ionized impurities hardly affects the saturation drift

velocity [73] and the transport at high field, it is crucial in low field transport. Indeed,

as the ionized impurities scattering increases, the mobility of carriers decreases, and

a correct modeling of the mobility is important for accurate predictions of device

performances. Moreover, the randomization of the carrier velocity via impurities

increases the output current noise, so the doping concentration must be kept relatively

low along the conduction path (channel), especially for low power analog applications.

Ridley’s statistical screening model [74] allows modeling the ionized impurities

scattering for a wide range of impurities concentration by combining the Brooks-

Herring (BH) approach [75] with Conwell-Weisskopf (CW) model [76]. All these

approaches assume that electrons interact with only one scattering center at a time.

In particular, the BH approach assumes that the distance between scattering

centers is larger than the screening length and is valid when the screening effect is
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strong. Under this assumption, the scattering can be treated as a two-body problem

by using a screening parameter that accounts for the many-body effects [77]. The CW

approach models the case of high impurity concentration or low temperature, when

the screening effect is weak. This approach imposes a cut-off radius by assuming that

the effects of all center lying further away than half the average distance between

centers add up to zero.

Ridley’s [74] approach to the problem was to quantify statistically the assumption

that only one center is active. This approach effectively allows for a reconciliation [74]

of the BH and the CW models as:

Γion(k,Ωk′) = D(E(k),Ωk′)
|v(k)|

(2π Zc)
−1/3

[
1− exp

(Γbh(k,k′)(2π Zc)
−1/3

|v(k)|

)]
. (5.7)

where |v(k)| is the carrier velocity, Zc is the ionized impurity concentration, and

Γbh(k,k′) is [37]:

Γbh(k,k′) =
Z2
d Zc e4

4π2~ε0
|I(k,k′)|2

(β2
s + |k − k′|2)

2 δ(E(k)− E(k′)), (5.8)

where the quantity eZd is the charge of the dopant species, and βs is the screening

parameter depending on carriers concentration and distribution. Typically βs is as-

sumed to be equal to the Debye-Hückel [78] screening for non-degenerate systems.

In general, the ionized impurity concentration is a spatial parameter Ni = N(r),

while the screening depends both on time and position βs = βs(r, t). The model for

this scattering mechanism does not allow for a substantial simplification on of the re-

jection probability. However, the rejection algorithm still offers results similar to the

standard EMC method while retaining an overwhelming computational advantage.

Indeed, each scattering in the EMC approach requires building a small transition

table by first selecting all the possible final state candidates, then computing the
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corresponding rates for all the candidates, and the total partial sums, finally a final

state can be statistically chosen. In contrast, the rejection algorithm requires comput-

ing only one transition rate for the preselected final state, then a simple comparison

chooses between self scattering and scattering in the new state.

5.4 Carrier-Carrier Coulombic Interactions

Carrier-carrier coulombing interactions are particularly difficult to model effi-

ciently, because the strength of the interactions depends on the local distribution

function.

For this reason, the problem of modeling these phenomena is typically approached

by treating separately interactions between carriers distant form each other (long

range) and interactions between carriers in proximity to each other (short range).

The overall effect of long range interactions is a net force acting on the parti-

cles. This effect is accounted for throughout Hartree-Fock method by solving self-

consistently Poisson’s equation. The short-range Coulombic interactions are included

throughout a screening length βs by assuming a Debye-Hückel potential [79]:

βs =
ηe2

VcεkBTe

F−1/2(Ef (kBTe)
−1)

F1/2(Ef (kBTe)
−1)

(5.9)

where η is the number of carriers, Vc is the volume of the crystal, e is the elementary

charge, kB is the Boltzmann constant and Te is the electron temperature, F is the

Fermi integral, and Ef is the Fermi energy. In the case of non degenerate semicon-

ductors, the carriers distribution is roughly Maxwellian, and the ratio of the Fermi

integrals can be approximated to 1. As stated in previous sections, the screening

length plays a crucial role in ionized impurities scattering that strongly affects the

mobility at low electric field. For this reason, a local electron temperature Te(r, t) is

computed during the simulation by inverting the relationship between temperature
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and average carrier energy E [E ] for a Maxwellian distribution. In particular, < E >

is computed by employing a running exponential average, while the temperature is

calculated as:

Te =
2E [E ]

3kB
. (5.10)

Carrier-carrier scattering does not dissipate either energy or momentum, but it

influences the shape of the distribution function. These interactions can affect quan-

tities which are more sensitive to the particular shape of the distribution function

However, the literature [79] suggests electron-electron (or hole-hole) scattering has no

first-order effect on the mobility. In particular, when the carrier concentration is low

(as in high purity samples), the electron-electron scattering is infrequent, therefore,

the effect on the mobility is not significant. At very large carrier concentrations, the

conservation of energy and momenta near the Fermi surface implies that the distribu-

tion is practically unaltered by the electron-electron scattering, in this case the effect

on the mobility is also expect to not be significant.

However, electron-electron scattering can play an important role in far from equi-

librium situation, for example it can affect the hot-carrier degradation depending on

the channel length and applied bias [80] and it may dominate the initial response

of laser-excited carriers in bulk and quantum-well [44]. Since this process is fairly

complex to model and not the focus of this work, electron-electron scattering is not

included in the present code.
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Chapter 6

PHONON MODELING

This chapter discusses the modeling of heat transport in solids, within the particle

based framework discussed in the preceding Chapters. The first part reviews the

theoretical aspects of heat transport modeling, while in the second part the modeling

of crystal dynamics in the framework of particle-based CMC simulation is discussed.

In particular, the first section offers an introduction to the classic and the quantum

theory of the harmonic crystal. The second section discusses the motivation and the

history of the development of a phonon BTE. The third and fourth sections offer

a formal treatment for the harmonic and anharmonic terms of the potential energy

expansion, respectively. Finally, section 6.5 and 6.6 examine scattering mechanism

involving phonons and how the rejection technique is applied to them. In all the

equations of this chapter the phonon mode index has been dropped for the sake of

clarity.

6.1 The Harmonic Crystal

In solids, thermal energy takes the form of collective atomic vibrations that

are usually modeled by assuming both the adiabatic and the harmonic approxima-

tions [81, 82]. The adiabatic approximation is based on the observation that the

electron velocity is typically orders of magnitude higher than the typical ion velocity.

Since the particle dynamics operate on different timescales, one assumes that the

ionic motion and the electron dynamics can be treated separately.

Within the harmonic approximation, the Taylor expansion of the crystal potential
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energy, U tot, is separated in three components:

U tot = U eq + Uharm + Uanh, (6.1)

where U eq is the equilibrium potential energy, which is constant, Uharm is the second

order (harmonic) term of the potential expansion, Uanh contains the higher order

(anharmonic) terms of the expansion.

The harmonic approximation postulates that the constant term, U eq, has no effect

on dynamical problems, and that the quadratic (harmonic) term dominates over

higher order (anharmonic) terms.

The classic harmonic model based on these assumptions has two limitations: it

cannot predict the relationship between crystal energy and temperature (heat ca-

pacity), and it cannot predict the relationship between energy flux and temperature

gradient (thermal conductivity).

In the classic approach based on the equipartition theorem, the thermal energy

density U tot is given by the average of the possible ionic configuration weighted by

exp(−E/KBT ) [82]:

U tot =

∫
dχ exp( Hc

kBTc
)Hc∫

dχ exp( Hc

kBTc
)
, (6.2)

where Tc is the crystal temperature, kB is the Boltzmann constant, and Hc is the

crystal Hamiltonian.

The differential dχ represents for the volume element in crystal’s phase space:

dχ =
∏
r

ubP(Rb) (6.3)

where Rb is an equilibrium position of the Bravais lattice, while ub and P(Rb) are the

deviations from equilibrium and the momentum of the ion whose equilibrium position

is Rb, respectively. Equation 6.1 in the harmonic approximation reduces to:

U tot = U eq +
3NakBTc

Vc
, (6.4)
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where Vc is the crystal volume, and Na is the number of atoms in the crystal. The

volumetric heat capacity, Cv, predicted by this model is constant:

Cv =
∂u

Vc∂Tc
=
NakB
Vc

. (6.5)

This result is in contrast with the experimental data, that show clearly that the

heat capacity increases with the temperature. While such discrepancy at higher tem-

perature could be explained as a limit of the harmonic approximation, this model

fails even at lower temperatures, where the harmonic approximation should be reli-

able. The failure of the model is rooted in the underlying continuum hypothesis in

Eq. 6.2. This hypothesis assumes that the states of the crystal momentum are part

of a continuous space. Indeed, the correct behavior for the thermal capacity can be

obtained via quantum mechanical modeling of the crystal momentum. In this case,

heat is a collection of non-interacting quantum harmonic oscillators, therefore, the

total thermal energy is calculated as:

U tot =
∑
i

~ωi(ni(Tc) +
1

2
), (6.6)

where ωi and ni are the angular frequency and the (temperature dependent) excitation

number of the i− th normal mode [81, 82], respectively. The heat capacity therefore

becomes:

Cv =
1

Vc

∑
i

∂~ωini
∂T

, (6.7)

which depends both on the frequency spectrum of the normal modes and on the

temperature through the excitation number.

6.2 Thermal conductivity in the Harmonic Crystal

The description of heat based on non-interacting quantum harmonic oscillators

allows to successfully predict the temperature dependence of the thermal capacity.
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After this early success, some authors thought that this idealized model was also

suitable to treat quasi-stationary problems. In particular, Schrödinger [83] and Kár-

mán [84], attempted to prove that the assumption of quantum harmonic oscillator

give rise to a finite thermal conductivity. However, this attempt has been rebutted by

Ornstein and Zernjke [85], who proved that the conduction of heat is infinite within

the harmonic model.

Their argument can be qualitatively explained by observing that energy exchanges

between different waves are prevented by the conservation of momentum and energy.

In other words, the harmonic model describes the motions of the atoms in terms

of mutually independent sound waves. Since the vibrations are not interacting, any

arbitrary initial energy distribution will be time independent and last forever. In this

framework, there is not a thermal equilibrium which can be established. Indeed, the

very concept of temperature loses its meaning since there cannot be an equilibrium

distribution corresponding to the configuration of maximum entropy. Therefore, a

thermal conductivity defined by the relationship between the net energy flux and

the gradient of the temperature cannot be obtained. Moreover, this model also fails

when modeling thermal transport directly in terms of energy. In this approach, the

temperature is replaced by the energy density, and a quantity analogous to the thermal

conductivity is defined as the ratio between the energy flux and the gradient of the

energy density. In this framework, the absence of energy exchanges between states

results in a stationary energy distribution with a net flux of energy but without

energy gradient, which corresponds to an infinite value for the thermal conductivity

analogous. In other words, the states in stationary distribution can provide a net

transport of energy between two regions of space in equilibrium with each other,

which is obviously unphysical.

Debye first observed that introducing the cubic terms of the potential expansion in
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the harmonic sound waves model leads to normal modes that change with time. This

model considered a wave-packet scattering against static deformations of the lattice

which give rise to statistical (thermal) equilibrium between normal modes, allowing for

the concept of temperature. In this model, imposing a stationary distribution results

in a zero net energy flux and hence there cannot be any net transport of energy

between two regions of space in equilibrium with each other. In other words, this

model ensures that any net transport of energy requires the presence of a temperature

gradient. Consequently, a finite thermal conductivity can always be obtained. In

addition, the Debye model introduces the concept of lifetime and mean free path for

an acoustic wave-packet.

While Debye noticed the importance of the anharmonic terms in modeling thermal

transport phenomena, Ornstain and Zernick [85] observed that his assumption of

static deformations of the lattice is not admissible. They argued that, since the

deformations are created by propagating wave packet, the deformations themselves

should propagate with the same speed. They proposed a model based on a one-

dimensional elastic continuous with propagating deformation to show how the energy

is exchanged between states.

Their approach results in a model where the energy flux remains unchanged when

two waves interacts; this allows for the existence of stationary distributions with non-

zero energy flux, thus infinite thermal conductivity. Indeed, Peierls [86] proved that

the continuum assumption, which neglects the atomic structures, results in infinite

thermal conductivity also in the three-dimensional case and even when including

arbitrary high terms of the potential expansion. This can be intuitively explained by

observing that the conservation of energy and momentum in a continuum momentum

space allows for the existence of a closed group of states where the exchange of energy

does not alter the collective flux. In other words, there is a group of states such that
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each state can exchange energy only with other states within the group, and each

exchange of energy conserves the total energy flux of the state involved.

In contrast, accounting for the atomic structure results in a quantized and peri-

odic momentum space, which provides an additional path for the energy exchanges

between vibrational states. Indeed, the energy transfer between states that conserve

momentum within the BZ1 periodicity (Umklapp processes) is allowed. These type

of processes ensure [86] that there cannot exist a group of states which exclusively

exchange energy with other states within the same group, while simultaneously con-

serving the group energy flux with each exchange. For this reason, the literature

usually differentiate between Umklapp processes and energy exchanges that conserve

momentum explicitly (called Normal processes).

In addition, a quantized approach allows modeling the crystals vibrations as a

linear combination of normal modes of vibration with quantized energy [81]. In this

case, each elementary excitation can be associated to a quasi-particle called a phonon.

Peierls noticed the similarity between the problem of phonons motion in solid and

the problem of gas dynamics, and developed his theoretical framework by employing

a procedure similar to the kinetic theory of gases. This approach accounts for the

existence of an equilibrium phonon distribution and produces [22] a transport model

for phonons formally similar to the BTE.

6.3 Normal modes of vibration

The total potential energy of the crystal can be expressed as the summation of

the contribution of potential energy Φ between each pair of ions:

U tot =
1

2

Na∑
b

Na∑
b′

Φ(Rb −Rb′ + ub − ub′) (6.8)
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where Na is the number of ions in the crystal, Rb and ub Are the equilibrium position

and the deviation from the equilibrium position of the b-th ions, respectively. This

potential energy can by expanded in a Taylor series for small values of ub − ub′ . In

this case, the equilibrium energy is:

U eq =
1

2

Na∑
b

Na∑
b′

Φ(Rb −Rb′). (6.9)

The first order, or linear term of the Taylor expansion is simply:

1

2

Na∑
b

Na∑
b′

[ub − ub′ ] · · · ∇Φ
∣∣∣
Rb−Rb′

. (6.10)

This term can be rearranged by separating the summations in:

1

2

Na∑
b

∑
Rb

ub · · ·
Na∑
b′

∇Φ
∣∣∣
Rb−Rb′

− 1

2

Na∑
b′

ub′ · · ·
Na∑
b

∇Φ
∣∣∣
Rb−Rb′

. (6.11)

Since Φ is a scalar potential, its gradient is a force. In particular,∇Φ
∣∣∣
Rb−Rb′

represents

the force between the atoms in Rb and Rb′ . Consequently, the term
∑Na

b′ ∇Φ
∣∣∣
Rb−Rb′

is the total forces exerted on the b-th atom. There are no net forces on any ion in

the equilibrium position, therefore, this linear term must vanish.

The second order, or the harmonic term of the expansion is:

Uhar =
1

4

Na∑
b

Na∑
b′

(ub − ub′)HΦ

∣∣
Rb−Rb′

(ub − u(Rb′)
T ) (6.12)

where HΦ

∣∣
Rb−Rb′

is the Hessian matrix of Φ evaluated at Rb −Rb′ . This expression

is usually rearranged as:

Uhar =
1

2

Na∑
b

Na∑
b′

ubD(Rb −Rb′))u
T
b′ (6.13)

where the D is a symmetric matrix resulting from the algebraic rearrangement of the

summations [82]. In this framework, the equation of motion of the ions in the crystal

becomes:

M ü(Rb) = −
Na∑
b′

D(Rb −Rb′)ub′
T , (6.14)
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where ub is the deviation from equilibrium of the b-th ions.

This equation of motion allows for solutions in the form of plane waves [82]:

ub = ε exp(q ·Rb − ωt), (6.15)

where ε is known as the polarization vector, q is the wavevector, and ω is the angular

frequency of the plane wave. This expression for ub can used in Eq. 6.14 to obtain:

ω2ε = D(q)ε (6.16)

where D(q), known as the dynamical matrix, has the form:

D(q) =
1

2

Na∑
b

D(Rb) exp(q ·Rb). (6.17)

Finally, the application of the Born-von Kármán periodic boundary condition pro-

duces quantized normal modes of vibration by restricting the allowed wavevector q

to the form:

q =
j1

J1

b1 +
j2

J2

b2 +
j3

J3

b3, (6.18)

where the bi are reciprocal lattice vectors, lowercase ji represent an integer, and the

uppercase Ji represent three integers such that J1 + J2 + J3 = Na, which is the total

number of atoms in the crystal.

In the general case of a crystal with p bases, Eq. 6.16 becomes a set of p equations.

In particular, the i-th equation is:

ω2εi =

p∑
j=1

Di(q)εTj . (6.19)

It can be shown [82] that solving this eigenproblem leads to 3p vibration modes. In the

three solutions with lower energy, the ions in the unit cell move in parallel with equal

amplitude, and their frequencies vanish at q = 0. These are called acoustic modes

since their behavior is characteristic of the displacement in an elastic continuum that

propagates sound waves.
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Figure 6.1: Diagram of three phonon scattering. On the left a phonon decays into
two, on the right two phonons recombine into one.

In the remaining 3p−3 solutions, the ions of the base vibrate with respect to each

other even when the center of mass remains fixed at q = 0. These modes of vibrations

induce in the crystal a net fluctuating dipole moment that can interact with external

electromagnetic fields. For this reason, these modes are usually referred to as optical

modes.

6.4 Anharmonic Interaction

As discussed in the previous sections, the harmonic term of the potential en-

ergy expansion allows describing the crystal vibrations as a linear combination of

normal modes of vibration with quantized energy. Consequently, the higher terms

(anharmonic) can be treated as discrete energy exchanges between these modes. In

this framework, each elementary excitation is associated to a quasi-particle called a

phonon [81]. This approach allows us to model the interactions between the normal

modes in terms of generation and annihilation of phonons. In particular, the anhar-

monic interactions are expressed in terms of phonons being annihilated in some state

and new phonons been created in others. The use of perturbation theory [81, 87] in

this phonons model shows that the n-th term of the potential expansion corresponds

to a process involving n particles. As shown in section 6.2, the existence of these

anharmonic terms give rise to the finite thermal conductivity of solids.

In practice, the tree-phonon scattering plays a predominant role in phonon dy-
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namics while other anharmonic effects are expected to be negligible at room temper-

ature [81]. For this reason, this work focuses on modeling the tree-phonon scattering,

which will be simply referred to as anharmonic scattering.

The diagrams in Fig. 6.1 show the possible anharmonic interactions between a

high energy state with momentum q and two lower energy states with momentum q′

and q′′. In the left diagram, a phonon in state q is annihilated and phonons in state

q′ and q′′ are created in a process that here will be referred to as phonon decay. The

right diagram represents a process reciprocal to the decay: a phonon in q′ and one

in q′′ disappear, while a new phonon is created in the state q. This process will be

referred to as recombination.

The Hamiltonian matrix element of the anharmonic scattering is written as the

product of an anharmonic perturbation coefficient and the creation and annihilation

operators [88, 89]:

H(q, q′, q′′) = Ξanh(q, q
′, q′′)a(∓q)a(±q′)a(±q′′), (6.20)

where the wave vector q is associated to the higher energy state, the notation a(+q)

and a(−q) represent the creation and annihilation operators, respectively, and Ξanh

represent the strength of the anharmonic interaction. The ’±’ and ’∓’ signs are

used to describe both the decay and the recombination process in one equation. In

particular, when only the upper signs are considered, the equation describes a decay

process, analogously, when only the lower signs are considered the equation describes

a recombination processes. Klemens [88] derived an approximated expression for

Ξ2
anh(q, q

′, q′′), which provides an accuracy within the order of magnitude in the case

of long-wave acoustic phonons scattering:

Ξ2
anh(q, q

′, q′′) = (
4γ2

3Nc

)(
M2

v2
)(ωω′ω′′)2, (6.21)

where γ is the Grüneisen parameter [81], and Nc, M , and v represent the number
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of elementary cell, the average atomic mass, and the sound speed in the crystal,

respectively. Ridley, Gupta [90], and Ferry [91] obtained expressions for the optical

phonon scattering rate that can be rewritten in a form similar to Eq. (6.21), where

the Grüneisen parameter is replaced by an optical counterpart G. For the above

stated reasons, this work employs Eq. (6.21), while adopting a constant generalized

anharmonicity parameter Gl for each phonon mode l. The Gl parameters are chosen

to fit the thermal conductivity at room temperature, and to ensure that in an isolated

system at steady-state the correct equilibrium distribution is reached. It should be

noted that the scattering algorithm implemented in this work has no requirement

regarding the method used to compute the matrix element. This semi-empirical

model has been chosen for its simplicity but more complex empirical or ab-initio

approaches can be used.

As customary, the Fermi’s Golden rule [42] is used to calculate the total transition

rate:

Γd,r(q, q′, q′′) =
2~
M3

Ξ2(q, q′, q′′)

ωω′ω′′
δ(ω−ω′−ω′′)F d,r(n, n′, n′′)δ(q−q′−q′′+iG), (6.22)

where t is time; n, n′, and n′′ represent the occupation numbers of the states q, q′,

and q′′, respectively; i is an integer, G is the reciprocal lattice, and the delta function,

δ(q− q′ − q′′ + iG), enforces the momentum conservation within the Brillouin zone

periodicity (Umklapp processes are allowed). Finally, F (n, n′, n′′) is a population-

dependent weighting factor due to the annihilation and creation operators and can

have two forms:

F d(n, n′, n′′) = n(n′ + 1)(n′′ + 1) (6.23)

F r(n, n′, n′′) = (n+ 1)n′n′′, (6.24)

where F d and F r represent the case of decay and recombination respectively. The

62



latter descriptions are used to compute the CMC look-up tables, the corresponding

rejection probabilities are presented in the next section.

6.5 Anharmonic Scattering Rate

The scattering rate R used in the CMC algorithm represents the probability of

a specific particle transitioning between two eigenstates. In the case of anharmonic

scattering, the conservation of energy and momentum allows describing the three-

particle processes in terms of two-particle interactions. In other words, during the

simulation the third state is recovered from the other two as a consequence of energy

and momentum conservation. In particular, the recombination scattering rate Rr can

be expressed, and tabulated as a function of only two states, as in Rr(q, q′, q− q′) ≡

Rr(q′ → q) and Rr(q, q′′, q − q′′) ≡ Rr(q′′ → q). Both rates are a representation of

the same process and are simply related to the rate in Eq. 6.22 by:

Γr(q, q′, q′′) = n′Rr(q, q′, q − q′) + n′′Rr(q, q′′, q − q′′) (6.25)

Consequently, the values stored in the CMC look-up tables are computed as:

Rr(q′ → q) ≡ Rr(q, q′, q − q′) = α
Γr(q, q′, q′′)

n′
(6.26)

Rr(q′′ → q) ≡ Rr(q, q′′, q − q′′) = (1− α)
Γr(q, q′, q′′)

n′′
, (6.27)

where α is a number between 0 and 1.

The rejection probabilities for the two representations above can be written as:

P r
rej(q

′ → q) =
Rr

loc(q′→q)

Rr
max(q′,q)

=
(nloc+1)n′′

loc

(nmax+1)n′′
max

(6.28)

P r
rej(q

′′ → q) =
Rr

loc(q′′→q)

Rr
max(q′′,q)

=
(nloc+1)n′

loc

(nmax+1)n′
max

, (6.29)

where the subscript loc indicates the values evaluated at a specific position at the

time of the scattering event, and the subscript max indicates the values stored in
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the look-up table; finally, n, n′, and n′′ are the occupation number of the state q,

q′, and q′′, respectively. During the simulation, a simulated particle with state q′

at position r can start the scattering event, corresponding to Γr(q, q′, q − q′), with

probability Rr
loc(q

′ → q). The state q′′ is then recovered from energy and momentum

conservation before proceeding with the scattering algorithm presented in Chapter 3.

This algorithm will require the computation of n′′; during this step, a candidate

particle in q′′ is chosen. If the scattering is not statistically rejected based on P r
rej,

the simulated particle in q′, which started the scattering event, and the candidate

particle in q′′ are removed from the simulation, and a new particle is generated with

momentum q at position r. In an analogous way, this same scattering event can

be started by a phonon in q′′ with probability Rr
loc(q

′′ → q). In this instance, q′ is

recovered before proceeding with the scattering algorithm. While this two cases seem

algorithmically different, they represent the same physical event.

A similar approach allows the calculation of the decay rate Rd to be stored in the

two-states look-up table:

Rd(q → q′) ≡ Rd(q, q′, q − q′) = β Γd(q,q′,q′′)
n

(6.30)

Rd(q → q′′) ≡ Rd(q, q′′, q − q′′) = (1− β)Γd(q,q′,q′′)
n

, (6.31)

where β is a number between 0 and 1. In both descriptions the rejection probability

is:

P d
rej(q → q′) = P d

rej(q → q′′) =
(n′loc + 1)(n′′loc + 1)

(n′max + 1)(n′′max + 1)
(6.32)

The scattering algorithm is similar to the recombination case: a simulated parti-

cle with state q at position r can either start the scattering event corresponding to

Γd(q, q′, q′′), with probability Rd
loc(q → q′) or with probability Rd

loc(q → q′′). Also

here, both rates represent the same physical event. The state of the third phonon
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is recovered during run-time before the rejection algorithm from energy and momen-

tum conservation. If the scattering is not statistically rejected based on P d
rej, the

phonon that initiated the process is removed from the simulation. Then, new energy-

conserving particles are generated in q′ and q′′.

Finally, the values of α and β may be chosen arbitrary between 0 and 1, and

we set them to 0.5 in order to simplify the rate calculation. It should be noted

that, contrary to other approaches, this algorithm ensures momentum and energy

conservation for each individual scattering process.

6.6 Isotope Scattering

An isotope is an atomic variant of an element with the nominal number of protons,

but a different number of neutrons and hence a different atomic mass. The isotopes of

an element show identical chemical behavior (except in the reaction speed) as well as

both crystal and electronic structure. However, the different mass of isotopes disrupts

the periodicity of the crystal enough to result in a large phonon scattering rate. The

overall effect of this is seen in a large reduction of the thermal conductivity tensor

(σ). The thermal conductivity of the natural crystal (σnat) and the isotopically pure

crystal (σiso) can differ by up to one order of magnitude at low temperatures [92].

At room temperature, the effect is more ambiguous, and even for a material studied

as extensively as silicon the reported σiso range is between 110% [92, 93] and 160%

[94, 95] of the σnat value.or these reasons isotope scattering cannot be overlooked in

the simulation of real semiconductor across different range of temperatures.

The matrix element for isotope scattering can be written as [81, 96]:

Ξiso(q, q
′) =

~
4ρNc

√
(ω, ω′)(ε∗ · ε′∗)Mq,q′a(−q)a(q′), (6.33)

where ρ is the material density, Nc is the number of elementary cells in the crystal, ε
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are the polarization vectors, and Mq,q′ is defined as

Mq,q′ =
∑
j

(M −Mj)exp[i(q− q′) · rj], (6.34)

where Mj and rj are the mass and the position of the j − th atom respectively, and

M is the average mass. Replacing the creation and annihilation operators by their

equivalent matrix representations and using Fermi’s Golden rule, the scattering rate

can be derived as:

Γiso(q, q′) =
πKiso

2Nc

ωω′ (ε∗ · ε′∗)2
δ(ω − ω′)n(n′ + 1), (6.35)

where ρ is the material density, and ε and ε′ are the polarization vectors of q and q′,

respectively. Finally, Kiso is [81, 96]:

Kiso =
∑
i

fi

∣∣Mi − M̄
∣∣

M̄
, (6.36)

where fi and Mi are the fraction and the atomic mass of the i − th isotopic specie,

respectively, and M̄ is the average mass. In this case, the scattering rate stored in

the look-up table is computed as:

Riso(q → q′) =
Γiso(q, q′)

n
, (6.37)

where n is the occupation number of the state q. The corresponding rejection prob-

ability P rej
iso is:

P iso
rej =

Riso
loc(q, q

′)

Riso
max(q, q

′)
=

(n′loc + 1)

(n′max + 1)
, (6.38)

where n′loc and n′max are the local number of phonons in q′ when the scattering oc-

curs, and the maximum value used to compute the rates stored in the look-up table,

respectively.
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Chapter 7

PARTICLE DYNAMICS

7.1 Initialization

The initialization procedure assumes local thermal equilibrium in each cell. Thus,

the number of phonons present in the cell is given by:

ηcell =
Vcell
8π3

∫
BZ1

dq n0(q, Tcell)D(~ω(q), BZ1), (7.1)

where Vcell is the cell volume, Tcell is the local temperature of the cell, and D is the

phonon density of states, n0 is the Bose-Einstein distribution as given by Eq. 3.9, ~

is the reduced Plank constant, and ω(q) is the frequency of the phonon in state q.

Since the number of phonons and atoms in the device are comparable, the explicit

simulation of every particle is usually impossible. For this reason, the actual number

of phonons is divided by the number of (desired) simulated phonons N∗ to obtain the

weight factor W p, which is assigned to each simulated particle.

Finally, the simulated particles are positioned initialized in each cell accordingly

to a uniform random distribution, and their the momentum is chosen according to

the Bose-Einstein distribution evaluated at the local temperature.

7.2 Contacts

Contacts are modeled as ideal reservoirs [97] of phonons with infinite thermal

capacity and constant temperature. In other words, the energy density and particle

distribution in the reservoir are unaffected by exchanges of particles between the

reservoir and the device. Consequently, each scattering affecting the reservoir is also
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assumed to thermalize instantaneously. This effect is modeled by forcing phonons

in the reservoir to self-scattering any time there is a scattering event. Moreover,

each simulated phonon crossing the contact boundary from the device is assumed to

thermalize instantaneously, and removed from the simulation domain.

Figure 7.1 shows a schematic representation of the contacts. The dashed line

represents the boundary between the reservoir contact,and the device. The reservoir

acts as a source of thermalized carriers, which are injected into the device simply

by crossing the surface boundary. The contact population itself is replenished by

injecting new particles from the interface boundary (dashed line) into the reservoir

itself. This approach results in the appropriate isotropic distribution in both position

and momentum space within the reservoir. The injection algorithm itself is a velocity-

weighted surface injection method [98]. This approach injects at the start of each time

step, ∆t, a number of simulated particles equal to:

Ninj =

∑
q⊂BZ1 n0(q, T )v⊥(q) ∗ dt

W p
(7.2)

where n0 is the Bose-Einstein distribution as given in Eq. 3.9, and v⊥ is the veloc-

ity component perpendicular to the surface. Each particle is randomly placed on

the boundary surface and the momentum q′ is chosen according to the probability

distribution:

Pinj(q
′) =

n0(q′, T )v⊥(q′)∑
q⊂BZ1 n0(q, T )v⊥(q)

. (7.3)

After the particle is initialized, a stochastic process selects a remaining free-flight

time for the created particle. This final step emulates the injection of carriers at

random times during the time step in order to prevent spatial clustering and spurious

correlations between carriers.
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Reservoir Device

Figure 7.1: Schematic diagram of the reservoir type contact (dashed box). From
the boundary between the device and the contact (vertical line at the center of the
diagram) particles are injected in the reservoir by employing a velocity-weighted sur-
face injection method [98]. On the right side a particle crossing into the reservoir
from the device side is removed from the simulation domain, while particles are free
to cross into the device from the reservoir.

7.3 Reflective Boundaries Conditions

The reflective surfaces are modeled [99, 100] by assuming that incident particles

reflect either specularly or diffusively. Therefore, surfaces are defined by the fraction

PF of specularly reflected particles. In this approach, PF is used in a stochastic

process to discriminate between specular and diffusive reflection.

In the specular case, the incident and reflected angle are the same, therefore the

initial and the final trajectories have maximum correlation. In the diffusive case,

the reflected angle obeys the Lambert Cosine Law [101]. In this case, the particle

loses memory of its previous state, hence the initial and the final trajectories are

uncorrelated. Figure 7.2 offers a schematic representation of Lambert Cosine Law by

comparing the incident and specularly reflected trajectories (dashed lines) with diffuse

trajectory (solid line). The length of the diffuse trajectory vector is proportional to

the reflection probability at that angle. In particular, the length of the vector is

proportional to the cosine of the angle between the vector and the surface normal,

hence the name cosine Law.

We implemented the Lambert Cosine Law by using the following probability dis-
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Figure 7.2: Comparison between the reflected trajectories in the case of specular
reflection (dashed line) and that of diffusive reflection (solid line). In the case of
diffusive reflection, the length of the vector is proportional to the reflection probability
for that angle.

tribution for the final, reflected, wavevector q′:

Pdif (q
′) =

v⊥(q′)δ(ω(q′)− ω)∑
q⊂BZ1 v⊥(q)δ(ω(q)− ω)

, (7.4)

where v⊥ is the velocity component perpendicular to the surface, ω is the particle

frequency, and the term δ(ω(q′)− ω) ensures the conservation of the particle energy.
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Chapter 8

DATA STRUCTURE

This chapter discusses the implementation of the rejection technique in the CMC

framework from the point of view of data organization, and shows results of simulation

in momentum space. The first two sections examine the structure of the look-up table

employed in this work to store the scattering rate. Section 8.3 offers a validation

of the look-up table approach presented in the two previous sections. Section 8.4

and 8.5 discuss the representation of the dispersion relation in momentum space and

its impact on the scattering algorithm.

8.1 Scattering Table

The original CMC approach [18] tried to obtain for the most efficient use of com-

puter memory and the consequent minimization of the transition table size. This

was achieved by employing a lossy compression algorithm that discards non-essential

information. However, some of that information is needed by the new scattering algo-

rithm based on the rejection technique. In particular, information regarding the exact

type of scattering process involved in the transition (e.g. the mode of the phonon

involved, the temperature) is crucial for the new algorithm.

For this reason, a new three-level look-up table has been designed. This new

structure allows storing all the information on the nature of each scattering event

while keeping the performance advantages of the CMC approach over traditional

EMC method. Figure 8.1 shows a graphical representation of the three level structure

employed in the new look-up table. The left-most long vertical array represents

the first level of the structure; this array represents all the possible particle states
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Figure 8.1: Graphical representation of the three-level data structure designed to
be employed with the rejection technique.

q in momentum space and it will be referred to as the initial state array. Each

element of the initial state array is linked to a scattering mechanism array, depicted

horizontally. The scattering mechanism array represents all the possible scattering

mechanism for the state q. Indeed, the elements of the scattering mechanism array

contain information used in a typical Ensemble Monte-Carlo code [34], such as the

mechanism identification and the total probability of scattering out of q. Finally,

each element of the scattering mechanism array is linked to a CA array, depicted

by the short vertical bars. The CA array represents all the possible final states,

q′ for a scattering particle in state q. In particular, each element of the CA array

contains the information on the final states q′ and the corresponding probability (for

that mechanism) to scatter from q to a small region (cell) Ωq′ centered around the
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final state q′. This CA array constitutes the main difference from a traditional EMC

table. When a particle scatters, an hash function efficiently associates the initial

particle state q to one element of the initial state array. This element is linked to the

scattering mechanism array that represents all the possible scattering mechanism for

a particle in q. The scattering algorithm for the new transition table is a four-step

process:

1. A hash function efficiently associates the initial particle state to one element of

the initial state array

2. A scattering mechanism is stochastically chosen from the corresponding scat-

tering mechanism array

3. A final state is stochastically chosen from the corresponding CA array

4. The rejection algorithm establishes if the scatter occurs or is rejected

In case of three-particle scattering, like for phonons, the third state is retrieved after

step 4 during run-time as consequence of the momentum and energy conservation.

Finally, we note that the basic CMC method could not provide accurate informa-

tion on the energy of the particle after the scattering. Therefore, particles scattering

from the initial state q into the region Ωq′ were simply placed by that algorithm in

the geometrical center of Ωq′ , which causes an error in the instantaneous conservation

of energy and momentum. This error was mitigated by reducing the volume of the

cell Ωq′ at the expenses of larger look-up tables. The original CMC method obtained

a balance between accuracy and computer memory requirement by employing a non-

uniform discretization scheme of the BZ1 [18] with smaller cells in those areas that

are more important for the transport phenomena.
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However, the information about the scatter mechanism contained in the new table

structure allows for a high accuracy in the determination of the final state energy.

In particular, the increased accuracy is made possible by the detailed knowledge of

the nature of the scattering mechanism, and its characteristic energy exchange. This

means that the final state of a particles scattering from the q into the region Ωq′ can

be chosen by first inverting the dispersion relation near q′ and then selecting a final

momentum with the desired target energy.

8.2 Table Compression

As depicted in Figure 8.1, the size of the table is definitely large. Indeed, the number

of elements in the look-up table is on the order of the square of the number of cells

in the first Brillouin Zone (BZ1) times the number of bands, and a naive approach

could results in look-up tables requiring hundreds of Gigabytes of RAM.

In this work, the storage issue is addressed by employing a compression algorithm

which exploit physical, geometrical, and numerical properties of the model. First, the

symmetry of the crystal is fully exploited so that the table is computed only for initial

states located in the irreducible wedge of the BZ1 [82, 102]. From an algorithmic point

of view, the initial state of the particle is rotated into the irreducible wedge prior to

the scattering, and then the (stored) inverse rotation matrix is applied to the final

state as selected with the CMC algorithm.

A data compression algorithm allows to efficiently store both the scattering rate

and the information on the location of the final state cell Ωq′ as one 4-Byte integer

number. The most significant bits of the integer number will encode the scattering

rate in the form of normalized partial sums, so that the whole number can be used in

the stochastic selection process with no need of separating the compressed data in its

two components. The least significant digits encode the information on the position

74



of the final state Ωq′ . This encoding is prepared in two steps: first a hash function

is used to assign a unique integer value to the state depending on the cell and band,

this hash code will be simply referred to as the ’address’ of the cell Ωq′ . Then, the

compression algorithm simply encodes the final cell address in term of relative distance

from a reference cell that depends on the initial state of the carrier. Moreover, the

address of the reference cell is numerically close to the address of final state cell. This

offset-based encoding allows to minimize the number of bits required to represent the

relative address, thus maximizing the numerical precision of the scattering rate. In

this "compressed" format, the size of the fast memory bank used for each table is

usually limited to a size in the order of magnitude of 10 GByte.

8.3 Model Validation and Performances

The look-up table structure introduced and described in section 8.1 has been

implemented and validated against both experimental data and previous CMC sim-

ulations.

Figure 8.2 shows the drift velocity vs electric field curves for electrons in Si as ob-

tained from momentum-space simulations performed assuming different temperature

and different scattering algorithms. The reference simulations (lines) are computed

by using the basic, fixed temperature, CMC look-up table and algorithm, therefore,

simulations of different temperatures require different scattering tables computed sep-

arately. Test simulations (dots) employ the rejection algorithm using temperature as

a driving mechanism and a scattering table build with the new structure discussed

in section 8.1. In particular, these simulations employ only one look-up table com-

puted by assuming a maximum crystal temperature of 400K. Since there is only one

scattering table, the difference in simulation results are due to the locally imposed

crystal temperatures and their effect on the scattering. At low values of the electric
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Figure 8.2: Si drift velocity as function of the electric field All the data is com-
puted by using the same 400K table with the rejection technique (dots) compared
to equivalent simulations computed with the basic CMC algorithm (lines) by using
a different scattering table for each temperature. The two approaches show excellent
agreement at low electric fields, the difference at high electric field is due to the ef-
fect of the coarse discretization of the BZ1 at high energy. Here the accurate energy
conservation produces a flatter velocity saturation in the curves obtained with the
rejection.

field, electrons are located close to the bottom of the conduction band. This is the

most important region for the conduction properties of the materials and the momen-

tum space discretization (cell size) is particularly fine. In this case, the drift velocity

curves obtained with the two algorithm perfectly match.

At higher values of the electric field, the electrons start populating areas of the BZ1

which are usually less important for the conduction properties of the semiconductor.

These areas have a coarser discretization in order to limit the table size. In this

regime, the more accurate energy conservation obtained with the rejection technique

results in a flatter velocity saturation corresponding to the correct physical behavior.
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Figure 8.3: Si Mobility Computed with the Rejection Technique

Si mobility computed with the rejection technique (squares) by using the same 400K

table and a concentration of 1019[cm−3] of n-doping. The results are compared with

similar data computed with the basic CMC algorithm (circles) and experimental

data (line) by Li and Thumber. At high concentrations, the energy conservation

algorithm and the adaptive run-time screening allow for a more accurate modeling

of the experimental mobility.

Figure 8.3 shows a comparison between the experimental data (solid line) for the

Silicon mobility at 300K as a function of doping and the simulation results (symbols).

The circles represent results computed by using the basic CMC approach with a dif-

ferent table for each doping concentration. These simulations show a good agreement

with the experimental data at low doping, but underestimate the mobility at higher

doping. The black squares represent results computed by using the rejection algo-

rithm and a 350K table assuming a maximum doping of 1018[cm−3]. For this table,

both temperature and doping concentration are employed by the rejection algorithm.

These simulations show a very good agreement with the experimental data both at

high and low concentration.

Finally, Fig. 8.4 shows more in detail the effects of the final state correction al-

gorithm by comparing the computed average electron distributions at different dop-

ing concentrations, with no externally imposed electric field, and assuming a 300K
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Figure 8.4: Low electric field electron distribution computed with the basic CMC
algorithm (lines) compared to the result obtained with the CMC and rejection algo-
rithm by using the same 400K table and a concentration of 1019cm−3 of n-doping. At
low energy, where the BZ1 has a fine discretization, the two algorithms show similar
results. Above a kinetic energy of 0.5 eV, where the BZ1 has coarser discretization,
the improved energy conservation allowed by the rejection algorithm provides the
correct physical behavior independent on the donor density.

crystal temperature. Near the bottom of the conduction band, the BZ1 has a finer

discretization and both the basic CMC (lines) and the CMC with rejection (symbols)

simulations show similar results. However, the basic CMC produces spread in the

distribution at high energy where the BZ1 discretization is coarser and the error on

the energy conservation is more pronounced. The improved energy conservation pro-

vided by the rejection algorithm reproduces the expected behavior and compensate

for the gridding issues.
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8.4 Dispersion Relationship

In order to compromise between accuracy and simplicity [37], the full-band energy

dispersion relationship is interpolated over the momentum space with a second-order

scheme in the discretized space. In particular, the values for the second order Taylor

expansion of the dispersion are pre-computed and stored only for the wavevectors qi

at the center of the i-th cell in the discretized momentum space. The dispersion in

other position q is obtained by employing a trilinear interpolation scheme [103]. This

approach requires first finding the cell containing q and the 7 nearest neighbors cells,

then the energy E(q) is computed by summing up the energy contributions from each

cell using the appropriate weights [37]:

E(q) =
8∑
l=1

wi(q) · Ei(q), (8.1)

where wi is the weighting factor for the trilinear interpolation:

wi(q) =

(
1− |qx − qi,x|

Li,x

)(
1− |qy − qi,y|

Li,y

)(
1− |qz − qi,z|

Li,z

)
, (8.2)

where Li,j is the size of the i-th cell, Ωqi , along the j direction. Each Ei(q) is obtained

from the quadratic expansion of the energy around the wavevector qi at the center of

the cell Ωqi :

Ei(q) ≈ E(qi) + (q − qi)T · ∇E |qi +
1

2
(q − qi)T · H(E)|qi · (q − qi), (8.3)

where the superscript T represent the vector transpose operator, and ∇E |qi is the

gradient of the dispersion calculated at qi. The H(E)|qi term in Eq. 8.3 represents

the Hessian matrix of the energy calculated at qi:

H(E)|qi =


∂2E
∂q2x

∣∣∣
qi

∂2E
∂qx∂qy

∣∣∣
qi

∂2E
∂qx∂qz

∣∣∣
qi

∂2E
∂qx∂qy

∣∣∣
qi

∂2E
∂q2y

∣∣∣
qi

∂2E
∂qy∂qz

∣∣∣
qi

∂2E
∂qx∂qz

∣∣∣
qi

∂2E
∂qy∂qz

∣∣∣
qi

∂2E
∂q2z

∣∣∣
qi

 , (8.4)
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where qx, qy, and qz represent the directions of the orthogonal basis in the momentum

space.

8.5 Energy Conservation Algorithm

When a scattering occurs, a final cell Ωqfin is selected by the scattering algorithm

and a new wavevector must be chosen within that cell. In principle, both energy

and momentum must be conserved, however a perfect conservation of both quan-

tities increases the algorithm complexity without offering any concrete advantage.

Within the CMC framework, small differences in momentum simply correspond to

small variations in the trajectories, however, this phenomenon is negligible compared

to the effect of external forces, such as the electric field and scattering, especially at

room temperature. Errors in the conservation of energy alter the population distri-

bution. In turn, these differences affect the particle dynamics by altering screening

factors, the tunneling probability and the population temperature. For these reasons,

after a scattering event, the new particle wavevector is selected by maximizing the

conservation of energy, while relaxing the constrains on momentum conservation.

The identification of wavevectors on the iso-energetic surface at the target energy

E ′ within Ωqfin requires inverting the function in Eq. 8.1. Since there is no close-

form for the inverse of this function, the new wavevector is chosen by employing a

numerical algorithm based on non-iterative successive approximation to minimize the

energy conservation error. The computations are executed in double precision, while

the final value is stored in single precision.

At the start of the algorithm a first candidate wavevector, qc1 is chosen by and

looking for potential wavevectors along the direction q̂ corresponding to the maximum
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rate of change:

q̂ =
∇E |qfin∣∣∣∇E |qfin

∣∣∣ . (8.5)

In particular, the candidate must be a wavevector of the type:

q1(α) = qfin + αq̂ (8.6)

where qfin is the wavevector at the center of Ωqfin and α is a real number.

The energy at q0(α) can be written as a function of α by using Eq. 8.3:

E(q1(α)) = E(qfin) + αq̂T · ∇E |qfin + α2q̂
T · H(E)|qfin · q̂. (8.7)

The previous equation allows writing a second order equation in α by imposing

E(q1(α))− E ′ = 0:

E(qfin) + αq̂T · ∇E |qfin + α2q̂
T · H(E)|qfin · q̂ − E ′ = 0. (8.8)

The solution in α of the quadratic formula allows computing the first candidate

wavevector by using Eq. 8.6. In particular, we chose the root with the smallest

amplitude to ensure that qc1 is close to qfin.

However, obtaining a reliable numerical solution for Eq.8.8 is not a trivial task.

Indeed, the numerical evaluation of the quadratic equation ax2 + 2bx+ c = 0 requires

accounting for the order of magnitude of its coefficients in order avoid unreliable

results and instabilities caused by the limited precision of floating point arithmetics.

Since only the root with the smaller amplitude is of interest, the solution of the

quadratic equation can be divided in two cases. In the first case b2 >> ac, this allow

us to numerically approximate the smallest zero of the equation as 1 :

x ≈ − b

2c
(1 +

ac

b2
). (8.9)

1This result derives directly from the properties of the modulus and from the Taylor expansion√
1− x = 1− x/2− x2/8 +O(x3).
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In the opposite case, the smaller root is computed without substantial loss of precision

by using the Citardauq formula [103, 104]:

x =
c

−b− sgn (b)
√
b2 − ac

, (8.10)

where sgn is the sign function. After the first candidate qc1 is selected, the algorithm

can identify the 8 cells/wavevectors employed in the interpolation scheme of Eq. 8.1.

In the next step of the algorithm, a search is made for a second candidate wavevector

qc2 in close proximity of qc1:

q2(α) = q1 + α · q̂. (8.11)

In this case, qc2 is chosen by evaluating the energy at q2(α) resulting from the inter-

polation scheme by imposing E(α) = E(q1 + αq̂), which results in:

E(α) =
8∑
i=1

(
1−

∣∣∆qi,x + α · q̂x
∣∣

Li,x

)(
1−

∣∣∆qi,y + α · q̂y
∣∣

Li,y

)(
1−

∣∣∆qi,z + α · q̂z
∣∣

Li,z

)
(

E(qi) + (αq̂ + ∆qi)
T · ∇E |qi +

1

2
(αq̂ + ∆qi)

T · H(E)|qi · (αq̂ + ∆qi)

)
,

(8.12)

where ∆qi = qc1 − qi, and H(E)|qi is the Hessian matrix as defined in Eq. 8.4.

In this case, the resulting polynomial is a fifth order equation in α:
5∑
i=0

Aiα
i, (8.13)

where the coefficients Ai are given by the following expressions:

A0 =
∑8

i=1 wi(qc) · ci (8.14)

A1 =
∑8

i=1 wi(qc) · bi + w1
i · ci (8.15)

A2 =
∑8

i=1 wi(qc) · ai + w1
i · bi + w2

i · ci (8.16)

A3 =
∑8

i=1 w1
i · ai + w2

i · bi + w3
i · ci (8.17)

A4 =
∑8

i=1 w2
i · ai + w3

i · bi (8.18)

A4 =
∑8

i=1 w3
i · ai (8.19)
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where wi are the weight as defined in Eq. 8.2, the factors ai, bi and ci are obtained

from the expansion of the energy dispersion:

ai =
1

2
q̂T · H(E)|qi · q̂ (8.20)

bi = q̂T · ∇E |qi + q̂T · H(E)|qi ·∆qi (8.21)

ci = Ei(qc), (8.22)

and the factors w1
i are given by:

w1
i = li,x · wi,y · wi,z + wi,x · li,y · wi,z + wi,x · wi,y · li,z, (8.23)

where the values of wi,j and li,j derive from the interpolation scheme in Eq.8.1 under

the assumption that αq̂j < ∆qi,j, (j represents a direction, while i is the index of the

neighbor cell):

1− |qj + αq̂ − qi,j|
Li,j

= 1− |qj − qi,j|
Li,j

+ sgn (∆qi,j)
α | ˆqi,j|
Li,j

= wi,j + αli,j. (8.24)

Finally, the values for w2
i and w3

i are:

w2
i = wi,x · li,y · li,z + li,x · wi,y · li,z + li,x · li,y · wi,z (8.25)

w3
i = li,x · li,y · li,z (8.26)

(8.27)

In general, fifth order polynomial equations have no algebraic solution 2 . Because

of that the balance between accuracy and efficiency is achieved by employing a two-

step algorithm.

The first step is to select a candidate value αc based on the quadratic truncation

of the polynomial:

A2 · α2 + A1 · α + A0 − E ′ = 0. (8.28)
2The Abel-Ruffini impossibility theorem [105] states that a polynomial equation of degree five

or higher with arbitrary coefficients has no closed-form algebraic expression, i.e. the roots cannot
be expressed in terms of its coefficients by using only addition, subtraction, multiplication, division,
and exponentiation.
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Figure 8.5: Error relative to the target energy at different points of the algorithm;
the values are obtained from a low electric field bulk simulation. The vertical line is
placed at single precision machine epsilon. The expected error is reduced at each step
of the algorithm, and in the majority of cases the error at the end of the algorithm is
smaller than the machine precision.

Eq 8.13 is then expanded around the candidate value αc:

(α− αc)2
4∑
i=0

(
αicAi+1

i+ 1

)
+ (α− αc)

(
3∑
i=0

αicAi+2

(i+ 1)(i+ 2)

)
+ E(q(αc))− E ′, (8.29)

The smallest root of this equation α′ is used to compute the final wavevector which

maximize energy conservation:

q′ = qc + α′ · q̂. (8.30)

In order to evaluated the performance of the algorithm, we run low electric field

simulations in momentum space with different selection schemes of the final energy

of the simulated particles, and record the energy of the simulated carrier after the

scattering, Efin in terms of relative distance from the expected target energy, E ′. In
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other words, with each scatter the recoded value is Efin/E ′ − 1. Figure 8.5 shows

the histogram of the analyzed data, the horizontal axis represent the possible value of

Efin/E ′−1 in logarithmic scale, the vertical axis represents the number of occurrences

as a percentage. The vertical line is placed at single precision machine epsilon accord-

ing to the ISO C standard, this value represents the relative distance between two

consecutive numbers. In other words, this value represents the maximum precision

achievable with the single precision arithmetic. The dashed line with dots represents

the results of the basic CMC algorithm where the particles are placed at the center

of Ωfin. The solid line with the triangles represents the error produced by stopping

the algorithm after the first step of the algorithm when a candidate wavevector qc1

is selected. In this approach the effect of the interpolation is not accounted for. The

diamonds and the square represent the case where the interpolation is accounted

for, and the dispersion relationship is represented by the fifth order polynomial in

Eq. 8.13. In particular, the dashed line with diamonds represent the error produced

by stopping at the second step of the algorithm after finding the value αc is from

Eq 8.28. Finally, the solid line with squares represents the relative error at the end

of the algorithm.

The figure shows that in 80% of the cases the error at the end of the algorithm is

smaller than the single precision machine epsilon. That is, the error is smaller than

a difference between two consecutive numbers in single precision.
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Chapter 9

SIMULATIONS

This chapter presents a series of simulations designed to test and validate the scat-

tering algorithm [106] implemented in this work. In section 9.1 the capability of the

technique to reach thermal equilibrium is investigated. Section 9.2 compares the sim-

ulated properties of Si at room temperature with available literature. Section 9.3 and

9.4 investigate the effects of isotope and boundary scattering, respectively. Section

9.5 offers a test of the scattering algorithm in transient simulations. Finally, section

9.6, 9.7 and 9.8 present simulations regarding the electron-phonon coupling.

9.1 Isolated System

In an isolated system at thermal equilibrium, the temperature Tc and the total

energy Ec are related by:

Ec(Tc) =
∑
q⊂BZ

(n0(q, Tc) + 1/2) ~ω, (9.1)

where n0(q, Tc) is the Bose-Einstein distribution as in Eq. 3.9. Equation 9.1 defines

a bijective function between Ec and Tc. Consequently, phonons in an isolated system

with energy Ec(Tc) will reach the thermal equilibrium distribution given by n0(q, Tc).

This behavior is tested for the purpose of validation by simulating an isolated cube

of Si initialized with a non-equilibrium phonon distribution. In particular, the initial

particle distribution is generated with the momentum and energy based on a 350K

Bose-Einstein distribution, while limiting the number of particles in the system in

order to achieve a total energy in the system corresponding to the 216K equilibrium

(full) distribution. The phonon dynamics simulation kernel is then activated until
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the system reaches a steady state solution. Figure 9.1 shows the results of this

simulation: the analytical 216K equilibrium distribution (solid line), and the initial

distribution (dots) obviously differ. However, after a transient of 400ps, the self-

consistent solution (dashed line) is in excellent agreement with the expected 216K

equilibrium distribution. The insert shows the time evolution of the deviation between

the reference and the simulated distribution as measured by the Jensen-Shannon

divergence [107]. The dot represents the difference between the reference distribution

and the self-consistent distribution.
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Figure 9.1: Phonon simulation of an isolated System. The CMC algorithm initial-
ized with an out of equilibrium distribution (dots) reaches a steady state solution
(dashed) comparable to a 216K equilibrium distribution (solid). The insert shows the
time evolution of the Jensen-Shannon divergence [107] between the reference and the sim-
ulated distribution; the dot represents the divergence between the reference and the final
distribution.
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9.2 Bulk Simulation at Room Temperature

An isolated system with specular boundaries initialized at 300K is simulated for

35 ns by using a scattering table computed for a maximum temperature Tmax =

400K. The resulting mean free path and relaxation time spectra are compared to

data available in literature. Figure 9.2 shows the simulated mean free path compared

with previous Monte Carlo [108] and molecular dynamics simulations [109]. All results

have the same order of magnitude and show similar behavior. However, compared

to the Monte Carlo simulations reported in ref. [108], the present work shows the

small variations associated with the full-band dispersion. In particular, the energy

corresponding to the peak density of states can be identified by the dip in the optical

phonon mean free path.

Figure 9.3 shows the relaxation time spectra of longitudinal acoustic phonons

compared with a first-principle study [110] and molecular dynamics [109] simulations.

All results show the same order of magnitude and shows similar behavior, in particular

this work and the molecular dynamics solutions are especially close. However, the

comparison with the first-principle study suggests that there is an overestimation in

the relaxation time of higher energy phonons which are close to the BZ1 boundaries.

9.3 Thermal Conductivity

The thermal conductivity for a Si cuboid of dimensions 2.00 × 3.12 × 20.5 mm3

is computed between 4K and 300K for both homogeneous isotopically enriched sili-

con, Si28 (14 protons and 14 neutrons), and silicon with naturally occurring isotopic

composition, Sinat (92.2% Si28, 4.6% Si29, 3.1% Si30) and compared to the values

measured by Inyushkin et al. [92]. The elements of the thermal conductivity tensor
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Figure 9.2: Bulk mean free path in Si computed at 300K (black lines) compared with
previous Monte Carlo (Mitttal and Mazumder [108]) and molecular dynamics (Henry and
Chen [109]) simulations. This work shows the spectral variations associated with a full-band
dispersion

are extracted according to [88]:

σk,j =
∑

q⊂BZ1

vkvjτ(q)
(~ω)2

kBT
n(q, T )(n(q, T ) + 1), (9.2)

where k and j represent a spatial direction, q is the phonon momentum, while v, τ ,

and ω represent the velocity, the average time between collisions, and the frequency

of the phonon q, respectively.

Figure 9.4 shows good agreement between the computed thermal conductivity

(circles) and the experimental data (lines) for both Sinat (open) and Si28 (solid).

The figure shows clearly the scattering-limited regime at temperatures above

30K, where the thermal conductivity is limited by anharmonic interactions, while

a geometry-limited regime occurs at lower temperatures, when the mean free path

is comparable with the device size and the thermal conductivity is limited by the

interactions with the device boundaries.
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9.4 Thin-Films

The 300K Sinat thermal conductivity, σtf , is investigated as function thickness htf of a

thin-film. As htf approaches the size of the phonon mean free path, the thermal conductivity

is reduced by diffusive scattering with the boundaries. For Sinat, the plot in fig. 9.2 suggests

that this effect becomes visible for htf on the order of the micrometer. For this reason, the

values of htf range between 5 nm and 1 µm. In all simulations the surfaces perpendicular to

the thickness are assumed fully diffusive, while the surfaces of the other 4 sides are assumed

perfectly specular. The thermal conductivity is computed by using Eq. (9.2), and similar

to [99, 100] [111], τ is only affected by interactions which randomize the momentum, and so

specular scattering does not contribute. In this approach, specular reflections have effects

similar to periodic boundaries and do not limit the thermal conductivity. Figure 9.5 shows
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Figure 9.4: Isotope effect on the thermal conductivity as a function of the temper-
ature: the natural silicon Sinat (92.2% Si28, 4.6% Si29, 3.1% Si30) is compared to a Si28

enriched sample. In the experimental results from Inyushkin et al. [92], the Si28 thermal
conductivity (solid line) is up to ten times higher than Sinat thermal conductivity (dashed
line). The CMC simulations (symbols) reproduce the dependence on temperature of both
thermal conductivities.

the predicted thermal conductivity (solid circles) compared to experimental results [112–115]

(open symbols). The simulations show good agreement with the experimental results.

9.5 Transient Device Simulation

Our simulation code has been tested by comparing the simulation results of a simple 1D

structure with an analytical solution.

A 2 µm long Si thermal resistor with initial temperature 290K has two side boundaries

set to temperatures TH = 310K and TL = 290K as shown above the graphs in Fig. 9.6.

The remaining boundaries are treated as specular boundaries. During the transient, an

effective temperature as function of position is extracted from the local energy by inverting

the energy-temperature relationship in Eq. (9.1). Here we simulate the time-dependent

evolution of the resistor temperature profile for a step function change on the temperature
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Figure 9.6: Schematic of the simulated Si thermal resistor, TH = 310K and TL =
290K, with the total length equal to 2.8 µm.

at the left contact.

The device operate on the limit for diffusive transport and some of the lower energy

phonons have mean free path comparable with the device dimension as shown in Fig. 9.2,

so the effects of ballistic phonons are visible in the steady-state solution, resulting in a tem-

perature step close to the hot contact. For this one-dimensional heat transient problem, the

evolution of the temperature distribution within the device can be determined analytically

by solving Fourier’s law of diffusion [116] by means of the Laplace transform [117]:

T (x, t)− TL
(TH − TL)

=

∞∑
n=0

erfc

(
Cn − x
2
√
tkD

)
− erfc

(
Cn + x

2
√
tkD

)
, (9.3)
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where T (x, t) is the estimated temperature, kD the thermal diffusivity (8 × 10−4m2/s for

Si [118]), L the length of the device, Cn = (2n + 1)L, and erfc is the complementary error

function.

Figure 9.7 shows the Monte Carlo results averaged over over 50 simulations, each realized

with a different seed of the pseudo-random number generator to improve the statistics.
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Figure 9.7: Comparison between the evolution of the temperature distribution
obtained analytically by Eq. (9.3) (dashed lines), and the Monte Carlo simulation
(solid lines). Each pane represents a snapshot of the temperature distribution at the
time indicated on the bottom left corner. The last panel also shows a comparison
with the steady state result of Lacroix et al. [5].

As it can be observed, the CMC simulations are in an excellent agreement with the

analytical solution during the time transient for each time snapshot, and achieve the proper

longtime limit of a linear temperature gradient as expected from Fourier’s law, apart from

the ballistic effects noted. The last panel shows a comparison with the steady-state result

of Lacroix et al. [5], represented by solid squares.
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Figure 9.8: Distribution of holes and electrons in the isolated cube of Si at time
t = 0.1 fs. The populations are concentrated at the initialization energy. Both charges
and phonon are simulated as particles.

9.6 Electron Decay

The full algorithm for the coupled electron-phonon dynamics has been tested by sim-

ulating the thermalization process of electron-hole pairs in an isolated cube of Si that is

initialized out of equilibrium. In particular, the simulated electrons are initialized with a

kinetic energy of 0.6 eV, and the simulated phonons are initialized at 100 K, the system is

left to relax. This simulation uses a scattering table computed for a maximum temperature

of 400K. The focus of this first test is to observe the energy exchange between charges and

phonons when modeling absorption and emission in terms of a Hawkes process, as discussed

in section 4.6.

Figure 9.8 and 9.9 show the distribution of holes and electrons at time 0.1 fs and 30.1

fs, respectively for a ratio W c/W p = 5.42 × 10−3 (see Eq. 4.47 in Section 4.6). These

plots represent the evolution of the charge population in the early transient period of the

simulation. In Fig. 9.8, few carriers have scattered and the majority of the charges are still
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Figure 9.9: Distribution of holes and electrons in the isolated cube of Si at t = 30.1
fs with a ratio W c/W p = 5.42× 10−3; the zero of the horizontal axis is placed at the
top of the valence band. This picture clearly shows that the relaxation process of the
charges results in regularly spaced peaks in the energy distribution. Fig 9.10 shows
an enlarged representation of this electron distribution, where the distance between
the peaks clearly corresponds to one optical phonon.

at the initial energy distribution.

The distributions in Fig. 9.9 show a clear pattern in the carrier decay. In particular, the

picture shows evenly spaced density peaks for both electrons and holes. In order to better

observe this behavior, Fig. 9.10 shows an enlarged picture of the electron distribution where

the distance between the minor vertical grid lines is set to 0.06 eV, or roughly the average

energy of an optical phonon. From this enlarged picture, it is clear that the density peaks

are evenly spaced. Moreover, the distance between consecutive peaks corresponds to the

energy of an optical phonon. Indeed, this behavior is expected since the emission of optical

phonon is the dominant scattering mechanism, and hence the energy relaxation process, for

high energy carriers out of equilibrium.
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Figure 9.10: Enlarged picture of the electron population depicted in Fig 9.9. In this
graph, the distance between the vertical grid lines has been set to 0.06 eV, which is
roughly the average energy of an optical phonon. It is clear that optical emission is the
dominant scattering mechanism since the distance between density peaks correspond
to one optical phonon.

9.7 Conservation of Energy

A second group of simulations test the influence of the scattering algorithm and the

weight of the simulated particles on the energy conservation of the system. The simulated

system is similar to the previous case: an isolated cube of Si with a charge population

initialized with a kinetic energy of 0.6 eV, and a phonon population initialized in thermal

equilibrium at 100K. This simulations uses the same scattering table of the previous case.

During the relaxation process, the instantaneous particles distribution is recorded at intervals

of 0.1 fs. Figures 9.11, 9.12, and 9.13 show the time evolution of the system in terms of total

energy lost of the charge population (dashed line) and the energy gained of the simulated

phonons (solid line) in three different cases. In other words, the energy gained by the

particles has positive sign for phonons and negative sign for charges. Since the scattering

events conserve energy, the two lines should superimpose perfectly in each plot.
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Figure 9.11: Evolution of the energy balance of charge and phonon population in
the isolated cube of Si. The quantities are expressed in terms of total energy total lost
by the simulated charges (dashed line) and the energy gained by simulated phonons
(solid line). Here the phonon emission and absorption is treated as a Hawkes process.

In Fig. 9.11 and 9.12, the electron-phonon interaction is treated as a Hawkes process,

as described in Ch. 4, with different W c/W p ratios. In particular, the simulation plotted

in Fig. 9.11 has a ratio W c/W p half compared to the case presented in Fig. 9.12. The

importance of this parameter is presented in Eq. 4.47 (Ch. 4), which suggests that the

average distance between the two curves should scale with the inverse square of W c/W p.

This means that simulations with a larger ratio W c/W p should perform better. Indeed,

compared to the case in Fig. 9.11 the plot in Fig 9.12 shows a much closer agreement

between the energy gained by the simulated phonons and the energy lost by the simulated

charges

Figure 9.13 shows what happens when the charge-phonon interaction is simply treated

in terms of Poisson probability distribution, as described in the first sections of Ch. 4. In

this case the ratio W c/W p is much larger than in the previous two cases, however, there is
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Figure 9.12: Evolution of the energy balance of charge and phonon population in
the isolated cube of Si. The quantities are expressed in terms of total energy lost
by the simulated charges (dashed line) and the energy gained by simulated phonons
(solid line). Here the phonon emission and absorption is treated as a Hawkes process.
In this case the two lines show excellent agreement.

a large difference between the energy gained by the simulated phonons and the energy lost

by the simulated charges. Indeed, this is the expected behavior predicted in Ch. 4. These

plots shows the importance of using an appropriate scattering algorithm and a sufficiently

large ratio W c/W p.

9.8 Electron Thermalization

In another test, all the simulated electrons in the isolated Si cube are initialized with

a kinetic energy of 20 meV and the simulated phonons are initialized at 300K. All these

simulation use the same scattering table computed for a maximum temperature of 400K. This

set-up tests the code’s capability to correctly thermalize the simulated population of particles

by both absorption and emission for different ratios of W c/W p. Figure 9.14 compares an

equilibrium reference distribution of the simulated electron (circles) against distributions
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Figure 9.13: Evolution of the energy balance of charge and phonon population in
the isolated cube of Si. The quantities are expressed in terms of total energy lost
by the simulated charges (dashed line) and the energy gained by simulated phonons
(solid line). Here the phonon emission and absorption is treated in terms of Poisson
probability distribution. While the ratio W c/W p is close to 10−2, this approach
performs much worse than the case in Fig 9.11 where W c/W p 10−4 but emission and
absorption are treated as Hawkes processes.

obtained at time 0.6 fs (dashed line) and 300 fs (solid line) with a ratio W c/W p ≈ 10−4.

At 0.6 fs, few electrons have scattered and the majority of the charges are still at the

initial energy distribution (dashed line). From the picture it is clear that the distribution

at 300 fs corresponds to the reference distribution, while the initialized population is out

of equilibrium. In section 9.6 optical phonons are the predominant scattering mechanism;

however, in this simulation the acoustic phonon plays the crucial role in defining the final

shape of the electron distribution function.

Fig. 9.15 compares the time evolution of the electron distribution for the simulation in

Fig. 9.14 (dashed line) and for two other ratios of W c/W p corresponding to 2.71 × 10−3

(solid line) and 2.71 × 10−3 (dotted line). In this picture, the distributions are expressed
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Figure 9.14: Thermalization of electrons in Si via electron-phonon scattering. The
reference equilibrium distribution of the simulated electrons (circles) is compared with
simulated distributions obtained at time 0.6 fs (dashed line) and 300 fs (solid line)
with a ratio W c/W p ≈ 10−4. The 300 fs closely match the reference distribution.

in terms of their distance from the reference distribution by employing the Jensen-Shannon

divergence. We can see in this figure small differences in the transient evolution: all three

cases reach steady-state at the same time, around the 150 fs mark. After this point, the

divergence value results from the statistical noise. The square indicates the divergence for

the distribution at 300 fs from Fig. 9.14, this plot clearly shows that the system is indeed

in steady state regime.

While all three cases reach steady-state at the same time, the solid and dashed lines are

sensibly less noisy during the 150 fs transient. This effect is caused by the use of a momentum

and time dependent occupation number (presented in Section 3.4) to dynamically evaluate

the the electron scattering rate via the rejection technique. Indeed, the three simulations

have the sameW c but differentW p. Since all simulation have the same starting temperature,

larger W p correspond to fewer simulated phonons. This causes a difference in the statistical

noise when computing the occupation number via Eq. 3.10.
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Chapter 10

CONCLUSION

A rejection technique to explicitly model population-dependent scattering while ensuring the

statistical conservation of energy and momentum has been presented. The technique has

been implemented in a full-band Cellular Monte Carlo (CMC) framework to simulate phonon

transport in semiconductors. The scattering algorithm explicitly solves the many-body

problem allowing for the simulation of an arbitrary non-equilibrium phase space distribution

of phonons with numerically calculated dispersion, without resorting to the linearization of

the BTE itself. The details have been presented for the algorithmic implementation of

both the three particle scattering for the treatment of the anharmonic interactions between

phonons, and the two-state scattering process used to model scattering with isotope.

Challenges to the modeling electron-phonon scattering when both populations are treated

as simulated particles have been investigated. Two possible families of solutions based on

the population-dependent scattering technique have been presented. The first approach

models phonon and emission absorption as a Poisson distribution and fails to reliably con-

serve energy during transient simulations. For this reason, a second approach based on the

multivariable Hawkes point process has been successfully developed. This second method

limit the maximum error in the conservation of the system energy by effectively acting as a

statistical form of energy book-keeping.

The simulation results have been successfully compared to data available in literature. In

particular, the numerical simulations show very good agreement with experimental results

for thermal conductivity of silicon as function of temperature, isotopes composition and

sample size.

Future work will continue testing the code by comparing electron-phonon simulations

to available optical experiments of coupled electron phonon decay. The final goal of this
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project is to use the code as a TCAD tool for early-stage design of real power electronic

devices.
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