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ABSTRACT

Hypertensive disorders of pregnancy (HDP) affect up to 5%-15% of pregnancies

around the globe, and form a leading cause of maternal and neonatal morbidity and

mortality. HDP are progressive disorders for which the only cure is to deliver the baby.

An increasing trend in the prevalence of HDP has been observed in the recent years.

This trend is anticipated to continue due to the rise in the prevalence of diseases that

strongly influence hypertension such as obesity and metabolic syndrome. In order to

lessen the adverse outcomes due to HDP, we need to study (1) the natural progression

of HDP, (2) the risks of adverse outcomes associated with these disorders, and (3)

the optimal timing of delivery for women with HDP.

In the first study, the natural progression of HDP in the third trimester of preg-

nancy is modeled with a discrete-time Markov chain (DTMC). The transition prob-

abilities of the DTMC are estimated using clinical data with an order restricted

inference model that maximizes the likelihood function subject to a set of order re-

strictions between the transition probabilities. The results provide useful insights

on the progression of HDP, and the estimated transition probabilities are used to

parametrize the decision models in the third study.

In the second study, the risks of maternal and neonatal adverse outcomes for

women with HDP are quantified with a composite measure of childbirth morbid-

ity, and the estimated risks are compared with respect to type of HDP at delivery,

gestational age at delivery, and type of delivery in a retrospective cohort study. Fur-

thermore, the safety of child delivery with respect to the same variables is assessed

with a provider survey and technique for order performance by similarity to ideal

solution (TOPSIS). The methods and results of this study are used to parametrize

the decision models in the third study.
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In the third study, the decision problem of timing of delivery for women with

HDP is formulated as a discrete-time Markov decision process (MDP) model that

minimizes the risks of maternal and neonatal adverse outcomes. We additionally for-

mulate a robust MDP model that gives the worst-case optimal policy when transition

probabilities are allowed to vary within their confidence intervals. The results of the

decision models are assessed within a probabilistic sensitivity analysis (PSA) that

considers the uncertainty in the estimated risk values. In our PSA, the performance

of candidate delivery policies is evaluated using a large number of problem instances

that are constructed according to the orders between model parameters to incorporate

physicians’ intuition.
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Chapter 1

INTRODUCTION

Hypertensive disorders of pregnancy (HDP) are a set of medical complications

associated with high blood pressure and proteinuria. Proteinuria is a condition in

which the urine contains protein at an abnormally high level. Hypertension with

proteinuria is defined as preeclampsia. It is a hypertensive disease with multi-system

involvement that happens only during pregnancy. It usually occurs after 20 weeks of

gestation and typically near term. HDP are progressive disorders, and the only cure

is to deliver the baby (Barton et al., 2001; Duley, 2009; Haddad et al., 2007; Kuklina

et al., 2009; Foo et al., 2015; Magee et al., 2016). HDP impact up to 5% to 15%

of pregnancies globally (ACOG, 2013b; Bazzano et al., 2016). Therefore, they are

considered a common complication, and a primary cause of maternal (of or relating

to a mother) and neonatal (of or relating to a newborn) mortality and morbidity in

the world (ACOG, 2013b; Gillon et al., 2014).

It is estimated that preeclampsia causes about 50,000-60,000 deaths per year

around the globe (Duley, 1992; Van Lerberghe et al., 2005; ACOG, 2013b). The

number of women who endure life threating complications due to preeclampsia is

about 50-100 times higher than the preeclampsia caused deaths in the U.S. according

to the recent estimates (Callaghan et al., 2008; Kuklina et al., 2009; ACOG, 2013b).

Women with preeclampsia have an increased risk of severe complications such as

abruptio placentae, thrombocytopenia, disseminated intravascular coagulation, pul-

monary edema, and aspiration pneumonia. In addition, blood transfusion and me-

chanical ventilation are required much more frequently in these patients (Zhang et al.,

2003).
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HDP form a major factor for prematurity, which brings significant risks of death

and lifelong problems to infants (ACOG, 2013b). Preeclampsia is the cause of 25-

43% of all medically indicated preterm (i.e., less than 37 weeks of gestation) births.

Babies born from pregnancies complicated with preeclampsia are more likely to have

health problems such as chronic hypertension, stroke, insulin resistance, mental and

neurological disorders (Tranquilli et al., 2012).

In a typical case of HDP, a pregnant woman is first diagnosed with hypertension;

then hypertension may lead to preeclampsia (with or without severe features). The

longer the pregnancy is, the higher the risks are for the mother to develop pregnancy-

related complications, and for such complications to worsen. For the baby, delivery

before the full term (37-40 weeks of gestation) is not desirable due to severe com-

plications that prematurity may bring. The fact that delivery is the only cure for

HDP makes the timing of delivery a challenging decision (Barton et al., 2001; Magee

et al., 2016). If the mother is diagnosed with preeclampsia too early, the decision of

delivery becomes even more challenging. In that case, the baby needs time to grow

and mature, and on the other hand, the mother should be protected from the risk of

serious complications that HDP may bring on.

For a complicated pregnancy, the timing of delivery is determined by a sequence

of vital medical decisions. In each week of gestation, the possible actions to choose

are waiting for labor, inducing labor, or delivering with cesarean delivery. Inducing

labor and cesarean delivery are the two types of interventions to deliver the baby at

a time decided by the physicians and the pregnant woman. Cesarean delivery is an

intervention that involves a major abdominal surgery to deliver the baby. Induction

of labor involves inducing the labor with induction medications and methods when

the spontaneous labor is not present.
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A delivery is typically classified according to the route that the baby is delivered.

The route of delivery can be either vaginal delivery or cesarean delivery. Vaginal

delivery happens naturally in the presence of spontaneous labor. In the absence of

spontaneous labor, the labor can be induced to deliver the baby vaginally. Whether it

is induced or not, having labor may result in either a vaginal delivery or an emergency

cesarean delivery. Emergency cesarean delivery may be required due to a variety of

reasons such as non-progressive labor and fetal distress.

1.1 Classification of Hypertensive Disorders

HDP is classified into four categories: (1) gestational (pregnancy-induced) hyper-

tension, (2) preeclampsia, (3) chronic hypertension, and (4) chronic hypertension with

superimposed preeclampsia (ACOG, 2013b; Bazzano et al., 2016). Gestational hyper-

tension is usually diagnosed by new-onset elevations of blood pressure observed after

20 weeks of gestation (often near term) (ACOG, 2013b). Some women experience

blood pressure elevations so severely that the health outcomes may be comparable to

preeclampsia (Buchbinder et al., 2002). Besides, many of the women with gestational

hypertension may develop preeclampsia before proteinuria. As a result, gestational

hypertension demands enhanced surveillance even when the blood pressure elevations

are mild (ACOG, 2013b).

Preeclampsia, the disease in the second category, is the most common type of

HDP. It is mostly diagnosed by new-onset hypertension and new-onset proteinuria.

Although proteinuria is often present in the cases of preeclampsia, it is certainly not

necessary for the diagnosis of preeclampsia. When combined with pregnancy-induced

hypertension, factors such as impaired liver function, renal insufficiency, visual or

cerebral disturbances may also lead to the diagnosis of preeclampsia with severe

features (ACOG, 2013b; Magee et al., 2016). Eclampsia is considered as one of the
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most severe manifestations of preeclampsia that involves convulsions (ACOG, 2013b),

and is also included in this category.

In this study, our focus is on gestational hypertension and preeclampsia. There are

two forms of preeclampsia, namely, mild preeclampsia (preeclampsia without severe

features) and severe preeclampsia (preeclampsia with severe features). By conven-

tion, the terms mild and severe are used to classify the severity of preeclampsia.

This classification should not be misleading for the reader since the risks of morbid-

ity and mortality significantly increase even in the cases of mild preeclampsia, i.e.,

preeclampsia without severe features (ACOG, 2013b).

Chronic hypertension, the disease in the third category, is defined as high blood

pressure diagnosed before the beginning of pregnancy or 20 weeks of gestation (ACOG,

2013b). Preeclampsia may complicate this hypertensive disorder, and become chronic

hypertension with superimposed preeclampsia, which is the disease in the fourth cat-

egory. Since the diagnosis of preeclampsia for women with chronic hypertension is

difficult and introduces significant risk of misclassification bias, we do not consider

the patients with chronic hypertension in this study.

1.2 National Guidelines for the Management of HDP

Task Force on Hypertension in Pregnancy of American College of Obstetricians

and Gynecologists (ACOG) published a comprehensive report in 2013 that includes

evidence-based clinical practice recommendations in the management of HDP. Ac-

cording to these recommendations, women with gestational hypertension and mild

preeclampsia should be closely monitored with serial assessment of maternal symp-

toms and fetal movement. For these women, blood pressure should be measured at

least twice weekly, and platelet counts and liver enzymes should be assessed once in

a week. Strict bed rest is not suggested for the women without severe features of
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preeclampsia. Expectant management, i.e., waiting for spontaneous labor without

an intervention to deliver the baby, is the recommended action before the 37th week

of gestation. At or after that week of gestation, delivery instead of continued close

monitoring is recommended (ACOG, 2013b).

For women with severe preeclampsia, expectant management is recommended

before the 34th week of gestation with close observation if the maternal and fetal

conditions are stable. Delivery is recommended at and after the 34th week of gestation,

and if the maternal or fetal conditions are unstable at any gestational age. The care for

a woman with severe preeclampsia should be undertaken in a facility with maternal

and neonatal intensive care resources. The mode of delivery does not need to be

cesarean delivery for women with mild or severe preeclampsia. It should be decided

based on gestational age, presentation of the fetus in the uterine, cervical status, and

maternal and fetal conditions (ACOG, 2013b).

1.3 Contributions of the Dissertation

In addition to close monitoring of the pregnant woman, the optimal management

of HDP involves delivery at the optimal time for the well being of both the mother and

the baby ACOG (2013b). Clinical practice guidelines fail to establish a consensus on

the recommended time of delivery for HDP, and there are noteworthy inconsistencies

in the timing of delivery for pregnancies complicated with preeclampsia (Gillon et al.,

2014). The decision of timing of delivery is still a challenge for clinicians, since

early delivery which increases the risks for the fetus is the only definitive cure for

preeclampsia (Kuklina et al., 2009). Especially for gestational ages of 34-36 weeks, the

guidelines of major institutions such as ACOG (US) and National Institute of Health

and Care Excellence (UK) are inconclusive in the timing of delivery for preeclampsia

(Bazzano et al., 2016). Substandard care of patients with preeclampsia and other
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forms of HDP play a part in maternal and neonatal adverse outcomes including death

that might have been preventable (Van Dillen et al., 2010; ACOG, 2013b; Gillon et al.,

2014). As a result, we are in urgent need of new best practice recommendations to

guide obstetricians in the care of women with HDP, and future research focusing on

the optimal timing of delivery (ACOG, 2013b; Gillon et al., 2014).

The purpose of this dissertation is to address the optimal timing of delivery for

women with HDP with an objective of minimizing the maternal and neonatal adverse

outcomes due to childbirth. The work for this dissertation can be grouped under

three studies as follows:

1. The natural history modeling of HDP progression in a retrospective observa-

tional cohort study (Chapter 2),

2. The assessment of the risks of maternal and neonatal adverse outcomes in HDP

using patient data, and the assessment of childbirth safety in HDP using a

provider survey (Chapter 3), and

3. The study of the optimal timing of delivery for women with HDP using a Markov

Decision Process (MDP) model and a robust MDP (RMDP) model (Chapter 4).

In Chapter 2, we model the natural progression of HDP with a discrete time

Markov chain, and estimate the probabilities of HDP progression. In Chapter 3, we

first estimate the risk of childbirth morbidity for the mother and the newborn using

patient data. In this chapter, we secondly measure the safety of childbirth complicated

with HDP that is perceived by providers using a survey. We use technique for order

performance by similarity to ideal solution (TOPSIS) to evaluate the survey results.

The results and methods of Chapters 2 and 3 are used to parametrize the MDP and

the RMDP models in Chapter 4.
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In Chapter 4, we build an MDP model of the decision problem of the optimal

timing of delivery for women with HDP. We evaluate the results of this model using

a probabilistic sensitivity analysis to guard against the estimation errors in the risks

of adverse outcomes. In addition, we study the same problem with a robust MDP

model that provides the optimal timing of delivery that is robust to estimation errors

in transition probabilities. We also evaluate the results of the RMDP model using

our probabilistic sensitivity analysis framework that involves generation of problem

instances by imposing a set of order restrictions between the risk values. Finally,

in Chapter 5, we summarize the contributions of the dissertation and directions for

future research.

This research is conducted in collaboration with Dr. Dean Coonrod, Chair of

Department of Obstetrics and Gynecology at Maricopa Integrated Health System

(MIHS). MIHS is the source of all clinical data used in this study. The institutional

review board of MIHS approved the study and the use of patient data.
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Chapter 2

THE NATURAL HISTORY OF HYPERTENSIVE DISORDERS OF

PREGNANCY

2.1 Introduction

Although the prevalence of hypertensive disorders of pregnancy (HDP) has in-

creased, our understanding of how HDP progresses throughout pregnancy is not

complete. We need models of HDP progression that are easy to communicate with

physicians, and able to provide meaningful results. As such, the objectives of this

study are (1) to model the natural progression of HDP by retrospectively observing a

large cohort during the third trimester of pregnancy, and (2) to estimate the probabil-

ities of a pregnant woman to develop hypertensive disorders and go into spontaneous

labor as the pregnancy progresses in each week of gestation in the third trimester.

The estimated probabilities show how the risks of developing gestational hyper-

tension and preeclampsia change with gestational age. The estimations are obtained

using HDP diagnosis data collected during the prenatal care, and the delivery out-

come data collected during the delivery hospitalization. The estimated probabilities

are used to construct the transition probability matrix (TPM) under the action of

waiting, i.e., when the decision is to take no intervention in our Markov decision

process (MDP) model described in Chapter 4.

To the best of our knowledge, no study in the medical literature estimates the

probabilities to develop hypertensive disorders as a function of gestational age. How-

ever, there are medical studies on the overall risk of developing hypertensive disorders

at any time during pregnancy. One study focuses on the predictability of hypertensive
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disorders with blood pressure tracking in pregnancy, and demonstrated that blood

pressure changes from the second to the third trimester increase the risks of gesta-

tional hypertension and preeclampsia (Gaillard et al., 2011). Another study measures

the rate of progression from mild gestational hypertension (for a singleton pregnancy

between 24 and 35 weeks of gestation) to preeclampsia (Barton et al., 2001). In ad-

dition, a number of studies investigate the impact of nutrition and physical activity

on the risk of developing gestational hypertension and preeclampsia as compared to

control groups (Levine et al., 1997; Saftlas et al., 2004; Rumbold et al., 2006; Roberts

et al., 2010). Moreover, a recent study reviews the physiological processes in the

progression of hypertensive disorders such as placental factors in the development of

preeclampsia (Foo et al., 2015).

We model the natural progression of HDP as a discrete-time Markov chain (DTMC).

Beck and Pauker (1983) introduce the use of DTMCs in medical prognosis by propos-

ing a general purpose model for the progression of a chronic disease that has partic-

ular health states. Since then, Markov modeling has been employed in modeling the

natural progression of a variety of diseases including diabetic retinopathy, systemic

inflammatory response syndrome, Crohn’s disease, Parkinson’s disease, human papil-

lomavirus infection and cervical carcinogenesis (Dasbach et al., 1991; Frausto et al.,

1998; Silverstein et al., 1999; Myers et al., 2000; Costin and Geman, 2013).

The research goal of this study is to address the lack of understanding in the

natural history of HDP and how it progresses during the third trimester of pregnancy

by building a mathematical representation of the development and progression of

the disease that is parametrized using clinical data. Our DTMC model is easy to

communicate and understand, and produces reliable estimations based on patient

data from a large cohort and validated trends in disease progression. This model

can set a foundation in natural history modeling of HDP by producing data-driven
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estimations of risks of disease progression. The estimations of risks will be informative

for the care decisions including the timing of delivery faced by clinicians in the care

of patients with HDP.

The organization of this chapter is as follows. In Section 2.2, we present the

methods in modeling the natural history of HDP. In Section 2.3, we describe the

cohort under study, and present the results. Finally, in Section 2.4, we discuss the

outcome of this study.

2.2 Methods

In this retrospective observational cohort study, we model the natural progression

of HDP with a DTMC, and estimate the transition probabilities based on patient

data. The patient data is provided by Maricopa Integrated Health System (MIHS)

which is a public healthcare system in Maricopa County of Arizona. Our data includes

HDP diagnoses during the prenatal care, and all delivery related diagnoses (including

HDP) during the delivery hospitalization. Our cohort includes the pregnant women

who sought care at MIHS over the course of prenatal to postpartum period, and gave

birth between March 2012 and December 2015. The institutional review board of

MIHS approved the study and the use of patient data.

We consider the development of gestational hypertension (GH) and its possi-

ble progression into preeclampsia until spontaneous labor arrives during the third

trimester of pregnancy that spans 28 weeks of gestation to delivery. We consider

two types of preeclampsia differing in severity, namely mild preeclampsia (mPE,

preeclampsia without severe features), and severe preeclampsia (sPE, preeclampsia

with severe features). This convention is also consistent with the diagnosis coding in

the patient data under study. In cases of deliveries with induced labor and cesarean
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deliveries prior to labor that are observed in the data, we include the duration of

pregnancies only until the gestational age of the intervention into our estimations.

Our cohort includes the women who delivered at a gestational age greater than

or equal to 28 weeks. We do not include the women who delivered at gestational

ages earlier than 28 weeks, since there were only a few number of such women. We

exclude the women that have multiple pregnancy, stillbirth, and missing information

on the type and gestational age of delivery. Since the diagnosis of preeclampsia

for women with chronic hypertension is difficult and introduces significant risk of

misclassification bias, we additionally exclude the women diagnosed with chronic

(essential) hypertension (with or without superimposed preeclampsia). As a result,

we focus on gestational hypertension together with its progress into preeclampsia.

Moreover, we also exclude women diagnosed with secondary hypertension caused

mainly by another medical condition such as renal disease, since such conditions are

expected to strongly influence blood pressure and the progression of HDP. If a woman

has more than one delivery during the time period of the data, we randomly select

one of her deliveries to include in our estimations.

Maternal factors such as maternal age and body mass index (BMI) are also con-

sidered as candidate inclusion-exclusion criteria. Studies show that the risk of HDP

is not significantly affected by advanced maternal age (Sibai et al., 1997; Jacobsson

et al., 2004). Besides, less than 4% of the women in our cohort have maternal ages

greater than 40. Therefore, we do not exclude women with advanced maternal age.

On the other hand, the risk of HDP may be affected by BMI of the mother. However,

there is no reliable data on maternal BMI at the beginning of pregnancy to include

in our study.
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2.2.1 Discrete Time Markov Chain Model

We define the state of the DTMC as the triplet s = (h, t, d). The first dimension

h is the maternal health, and h ∈ H where H includes (1) severe preeclampsia (sPE),

(2) mild preeclampsia (mPE), (3) gestational hypertension (GH), and (4) no diagnosis

of HDP (N). We order maternal health from the most severe (sPE) to the least severe

(N), and number them from 1 (=sPE) to 4 (=N). The second dimension t is the

gestational age, and t ∈ T where T = {28, 29, . . . , T} and T = 42. We include t as a

state variable (instead of modeling it as the stage of the Markov chain) so that the

DTMC represents natural history with stationary transition probabilities.

We use the third dimension of the state to differentiate between the continuation

and the end of pregnancy. As a result, we have d ∈ {P, S} where P denotes being

pregnant and S denotes delivering with spontaneous labor. To sum up, we define

the state space as follows: SDTMC = {s = (h, t, d) : h ∈ H, t ∈ T , d ∈ {P, S}}. We

refer to the states with d = P and d = S as “pregnancy states” and “labor states”,

respectively. Here, it should be noted that the state definition is extended in the

MDP model presented in Chapter 4 to include the modes of delivery that are only

possible with interventions to deliver the baby.

The state space SDTMC is composed of transient states representing the progres-

sion of pregnancy (pregnancy states), and absorbing states representing the end of

pregnancy with spontaneous labor (labor states). The only exception to this is for the

pregnancy states at the end of post-term pregnancy, i.e., the 42nd week. We treat these

states as absorbing states for the completeness of the Markov model, and do not calcu-

late the probabilities of going further from these states since it would be very unlikely

to go beyond 42 weeks of gestation. As a result, the set of absorbing states is defined as

ŜDTMC = {s = (h, t, d) : h ∈ H, t ∈ T , d = S}
⋃
{s = (h, t, d) : h ∈ H, t = T, d = P}.
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Accordingly, the set of transient states is defined as SDTMC \ ŜDTMC = {s = (h, t, d) :

h ∈ H, t ∈ T \ {T}, d = P}.

Figure 2.1 depicts the transitions from a pregnancy state s = (h, t, P ) as gesta-

tional age proceeds from week t to week t+ where t+ = t+1. If there is no spontaneous

labor at pregnancy state s = (h, t, P ), the pregnancy continues with the same or a

worse maternal health at gestational age t + 1, and the chain reaches a pregnancy

state (h′, t+, P ) with h′ ≤ h. If spontaneous labor arrives by the end of week t, the

pregnancy ends with the same or worse maternal health, and the chain moves to a

labor state (h′, t+, S) with h′ ≤ h. Since labor states are absorbing, there is a self-loop

from/to the state (h′, t+, S) which occurs with probability one.

Figure 2.1: Transitions Between the States of DTMC as Gestational Age Increases

from Week t to Week t+ 1

We denote the transition probability from state s = (h, t, d) to s′ = (h′, t′, d′)

where s, s′ ∈ SDTMC with P(s′|s) (or, equivalently P(h′, t′, d′|h, t, d)). The tran-

sitions with a non-zero probability from a pregnancy state only include moving

to another pregnancy state or a labor state with the same or a worse maternal

health in the next gestational age. Since HDP are progressive disorders, our DTMC

does not make transitions to a state with better maternal health in terms of HDP.
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As a result, we have P(h′, t+, P |h, t, P ) = 0 and P(h′, t+, S|h, t, P ) = 0 for all

(h, t, P ), (h′, t+, P ), (h′, t+, S) ∈ SDTMC such that h′ > h and t < 42. Addition-

ally, we do not allow transitions from week t to any other week than week t+ 1. For

all absorbing states s ∈ ŜDTMC, we have P(s|s) = 1.

2.2.2 The Estimation of Transition Probabilities

The construction of transition probability matrix includes the estimation of con-

ditional probabilities of going from transient pregnancy states s = (h, t, P ) to the

other pregnancy states s′ = (h′, t+, P ), or to labor states s′ = (h′, t+, S) for h′ ≤ h

and t < 42 where t+ = t + 1. To estimate these probabilities, we first construct the

path of disease progression for each pregnancy in the cohort under study. At this

step, we assume that the maternal health stays as healthy (i.e., h = N) until an HDP

diagnosis is made, changes at the time of the diagnosis, and stays the same until a

diagnosis of worse maternal health is made.

The diagnosis codes of gestational hypertension, mild and severe preeclampsia are

grouped into maternal health according to the state definition of our DTMC. The

diagnoses of elevated blood pressure are not taken into account, since blood pressure

readings are not sufficient to make an HDP diagnosis. The date of diagnosis is taken

as the date of admission, and it is translated into the gestational age of diagnosis (in

weeks) by using the gestational age at the time of delivery (in weeks) and the date

of delivery in the data. After constructing the paths of disease progression, we count

the frequencies of transitions between the states of DTMC in the constructed paths.

Finally, we calculate the maximum likelihood estimates and confidence intervals (CIs)

of transition probabilities using these frequencies.

We denote n(s, s′) as the number of occurrences that a transition happens from

state s to state s′ in the constructed paths of disease progression for the entire cohort
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under study. Then, the maximum likelihood estimate of the probability P(s′|s) is

given by Equation (2.1).

P̂(s′|s) =
n(s, s′)∑

s′∈SDTMC

n(s, s′)
(2.1)

The denominator of the right-hand side of Equation (2.1) is equal to the number

of transitions from state s to all other states in SDTMC . Craig and Sendi (2002)

describe a similar method of estimation of transition probabilities for the cases in

which the observation intervals are the same with the duration of transitions in a

Markov model. For the estimate of the probability P(s′|s), we calculate 95% CIs

with the adjusted Wald method (Agresti, 1996; Wilson, 1927). In this method, the

CI limits are derived by adjusting Wald’s formula by adding the squared z-critical

value to the denominator, and half of the squared z-critical value to the numerator of

the proportion estimate. This method is shown to provide good coverage probabilities

when the sample size is not large (Agresti and Coull, 1998; Sauro and Lewis, 2005;

Lewis and Sauro, 2006). All calculations are performed using Python programming

language.

The HDP diagnoses data set provides the required information to mark the changes

in maternal health in paths of disease progression. The maternal outcome data set

is used to determine the gestational age of the delivery and the presence of sponta-

neous labor. The presence of spontaneous labor is determined for each delivery as

follows. If it is a vaginal delivery, and there is no element of induced labor (such as

dinoprostone) used in the delivery, it is considered as a delivery with spontaneous

labor. A cesarean delivery is also considered as a delivery with spontaneous labor, if

there is an element of labor augmentation such as artificial rupture of membranes, or

a diagnosis code indicating the presence of spontaneous labor. A validated algorithm
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to identify laboring women provides the diagnoses codes (Henry et al., 1995; Korst

et al., 2004).

Although we have reasonable sample sizes to estimate the probabilities of tran-

sitions from pregnancy states with GH and N, instances of data on transitions from

pregnancy states with mPE and sPE are quite scarce. Table 2.1 presents the number

of observations used in the estimation of probabilities of transitions from the preg-

nancy state s = (h, t, P ) to the pregnancy states s′ = (h′, t+, P ), or to the labor

states (h′, t+, S) with h′ ≤ h. That is, it shows the denominator of Equation (2.1),

which can be expanded as follows for all s = (h, t, P ) with t ≤ 41.

∑
s′∈SDTMC

n(s, s′) =
∑
h′≤h

[
n(h′, t+, P |h, t, P ) + n(h′, t+, S|h, t, P )

]
(2.2)

According to Table 2.1, the sample sizes for pregnancy states with mPE and

sPE vary between 0 and 21. For four particular pregnancy states (i.e., (sPE, 28, P ),

(sPE, 29, P ), (sPE, 41, P ), (mPE, 41, P )), there are no more than two observations.

On the other hand, the sample sizes for pregnancy states with GH and N vary between

28 and 98, and between 2,631 and 8,154 (for t ≤ 40), respectively (see GH and N

columns of Table 2.1). There is an imbalance in the sample sizes of estimations, and

the estimations with low sample size adversely impact the accuracy of natural history

model built with our DTMC. As a result, we build and solve an order restricted

inference model to improve the estimations with small sample size with the help of

the estimations with larger sample size and the order relations between both types

of estimates. The order relations are established with the observed trends in the

data and clinical experience. We include the observations at gestational week 27 into

the calculations since they help in the estimations of following weeks through order

relations.
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Gestational age
Number of observations

sPE mPE GH N

27 1 2 27 8,270

28 2 4 28 8,258

29 1 4 35 8,244

30 4 5 36 8,230

31 4 7 46 8,199

32 6 8 53 8,154

33 6 13 57 8,101

34 6 19 74 7,991

35 12 16 81 7,836

36 12 21 98 7,476

37 9 19 98 6,726

38 7 6 91 5,308

39 13 5 50 2,631

40 5 5 26 768

41 0 1 3 57

Table 2.1: The Number of Observations at Pregnancy States Used in the

Estimations of Transition Probabilities

2.2.3 Order Restricted Inference Model

Maximum likelihood estimation of ordered multinomial parameters are obtained

with order restricted inference (ORI) models which maximize the likelihood function

subject to the constraints imposing order restrictions by treating multinomial prob-

abilities as variables (Jewell and Kalbfleisch, 2004; Lim et al., 2009). We build an

optimization model (ORI-TPM model) to obtain maximum likelihood estimates of

transition probabilities that satisfy the order restrictions. Our goal is to incorporate

the observed trends in the data and the clinical experience in the estimation process,

and improve the estimations of transition probabilities with low sample size. In this

model, we treat transition probabilities as variables allowed to vary within their CIs

calculated with the available data.
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Although some of the estimations are based on small samples, we are able to ob-

serve trends in the estimated transition probabilities with respect to maternal health

and gestational age. We have validated these trends with a medical expert with more

than 25 years of experience in obstetrics, and confirmed that they can be added as

order restrictions in ORI-TPM model. We include the validated trends as constraints

that represent order restrictions in the ORI-TPM model. As a result, the ORI-TPM

model improves the estimates for transitions with low sample size using the other

estimates obtained using higher sample size by considering the medically established

order relations.

The decision variables of ORI-TPM model are as follows. Xhh′t and Yhh′t are the

estimates of P(h′, t+, P |h, t, P ) and P(h′, t+, S|h, t, P ) for all h, h′ ∈ H, t ∈ T and

t ≤ T−1 where t+ = t+1, respectively. That is, Xhh′t is the estimate of the probability

of maternal health to change from h to h′ at gestational age t as pregnancy continues

by one week, and Yhh′t is the estimate of the probability of having spontaneous labor

with the same or different maternal health at gestational age t.

As input parameters, ORI-TPM model requires upper and lower bounds of CIs,

and the number of observed transitions from state (h, t, P ) to state (h′, t+, P ), or to

state (h′, t+, S). The notation used for the parameters are as follows.

mhh′t : The number of observed transitions from state (h, t, P ) to state (h′, t+, P )

nhh′t : The number of observed transitions from state (h, t, P ) to state (h′, t+, S)

LXhh′t : Lower bound of the CI for estimate of P(h′, t+, P |h, t, P )

UX
hh′t : Upper bound of the CI for estimate of P(h′, t+, P |h, t, P )

LYhh′t : Lower bound of the CI for estimate of P(h′, t+, S|h, t, P )

UY
hh′t : Upper bound of the CI for estimate of P(h′, t+, S|h, t, P )
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The objective is to maximize the likelihood function given in Equation (2.3).

Equivalently, we maximize the logarithm of this likelihood function which is given in

Equation (2.4).

Maximize L =
∏
h∈H

∏
h′∈H

∏
t<T

(Xhh′t)
mhh′t × (Yhh′t)

nhh′t (2.3)

Maximize logL =
∑
h∈H

∑
h′∈H

∑
t<T

mhh′t log(Xhh′t) +
∑
h∈H

∑
h′∈H

∑
t<T

nhh′t log(Yhh′t) (2.4)

The constraints of the model are enumerated as follows.

1. The estimates should be within the given lower and upper bounds.

LXhh′t ≤ Xhh′t ≤ UX
hh′t for h, h′ ∈ H, t ∈ T , and t ≤ T − 1

LYhh′t ≤ Yhh′t ≤ UY
hh′t for h, h′ ∈ H, t ∈ T , and t ≤ T − 1

2. The probability of maternal health to get better as gestational age increases is

zero.

Xhh′t = 0 for h, h′ ∈ H, h < h′, t ∈ T , and t ≤ T − 1

Yhh′t = 0 for h, h′ ∈ H, h < h′, t ∈ T , and t ≤ T − 1

3. The sum of transition probabilities from a pregnancy state is equal to one.∑
h′∈H
{Xhh′t + Yhh′t} = 1 for h ∈ H, t ∈ T , and t ≤ T − 1

4. The worse the maternal health h is at a given gestational age t, the more likely

that the maternal health will become even worse. For instance, the probability

for a woman with GH to develop mPE (or sPE) is higher than the same for
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a woman with no hypertensive problems. Similarly, the probability for a woman

with mPE to develop sPE is higher than the same for a woman with GH.

X41t + Y41t ≤ X31t + Y31t for t ∈ T , t ≤ T − 1

X42t + Y42t ≤ X32t + Y32t for t ∈ T , t ≤ T − 1

X31t + Y31t ≤ X21t + Y21t for t ∈ T , t ≤ T − 1

5. The probability for a woman with no HDP to develop a type of HDP (GH,

mPE, or sPE) increases as gestational age increases.

X43t + Y43t ≤ X43t+ + Y43t+ for t ∈ T , t ≤ T − 2

X42t + Y42t ≤ X42t+ + Y42t+ for t ∈ T , t ≤ T − 2

X41t + Y41t ≤ X41t+ + Y41t+ for t ∈ T , t ≤ T − 2

6. The probability for a woman with GH to develop mPE (or sPE) increases as

gestational age increases.

X31t + Y31t ≤ X31t+ + Y31t+ for t ∈ T , t ≤ T − 2

X32t + Y32t ≤ X32t+ + Y32t+ for t ∈ T , t ≤ T − 2

7. The probability for a woman with mPE to develop sPE increases as gestational

age increases.

X21t + Y21t ≤ X21t+ + Y21t+ for t ∈ T , t ≤ T − 2

8. The probability of spontaneous labor increases as gestational age increases.

Y44t + Y43t + Y42t + Y41t ≤ Y44t+ + Y43t+ + Y42t+ + Y41t+ for t ∈ T , t ≤ T − 2

Y33t + Y32t + Y31t ≤ Y33t+ + Y32t+ + Y31t+ for t ∈ T , t ≤ T − 2

Y22t + Y21t ≤ Y22t+ + Y21t+ for t ∈ T , t ≤ T − 2

Y11t ≤ Y11t+ for t ∈ T , t ≤ T − 2
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9. The probability of spontaneous labor increases with deteriorating maternal

health at a given gestational age t.

Y44t + Y43t + Y42t + Y41t ≤ Y33t + Y32t + Y31t for t ∈ T , t ≤ T − 1

Y33t + Y32t + Y31t ≤ Y22t + Y21t for t ∈ T , t ≤ T − 1

Y22t + Y21t ≤ Y11t for t ∈ T , t ≤ T − 1

10. Non-negativity constraints.

Xhh′t, Yhh′t ≥ 0 for h, h′ ∈ H, t ∈ T , and t ≤ T − 1

We implement the ORI-TPM model in AMPL (A Modeling Language for Mathe-

matical Programming), and solve it with one of AMPL’s nonlinear solvers (Knitro).

The output of the ORI-TPM model is the order restricted estimation of transition

probabilities of the DTMC model.

We validate the ORI-TPM model by simulating the disease progression with the

transition probabilities estimated using the ORI-TPM model. We build a simulation

model in which we superimpose the decision of intervention to deliver the baby prior

to spontaneous labor with the goal of reflecting what is happening in practice. We

run the simulation model 1,000 times with 8,300 women (total number of women

in the data included in probability estimations), and construct the CIs of numbers

of women observed at each pregnancy state. The ORI-TPM model is validated by

confirming that the numbers of women observed at pregnancy states in the patient

data generally fall within the CIs constructed with the simulations.

Figure 2.2 shows the plots drawn for the validation of the ORI-TPM model. Each

plot is drawn for the number of women observed at pregnancy states with a given

maternal health (N, GH, mPE, and sPE). In these plots, solid lines show the number

of women observed in the data, and dashed lines show the average number of women
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observed in the simulations. Gray vertical lines are the error bars depicting the CIs of

numbers of women observed at each pregnancy state that are built with simulations.

The error bars at the top plot are very small due to high sample sizes, and as a

result, they are not visible. According to the plots of Figure 2.2, the numbers of

women observed at pregnancy states in the patient data generally fall within the CIs

built with the simulations.

2.3 Results

The patient data under study has HDP diagnosis and delivery outcome informa-

tion on 10,248 pregnancies. After the exclusions given in Figure 2.3, the number of

pregnancies included in the calculations is 8,300. Out of 8,300 women, 1,231 (14.8%)

women developed gestational hypertension and/or preeclampsia. Table 2.2 demon-

strates the demographics of the study population under study. The study population

mostly includes Hispanic or Latina women regarding race and ethnicity, and mostly

Medicaid-paid births since the data source is a safety-net institution in the Southwest

of U.S.

Using the estimated transition probabilities of DTMC, we calculate the risks of

worsening maternal health (in terms of HDP) as gestational age proceeds by one

week. Figure 2.4 shows the estimated probabilities for a woman with no HDP (i.e.,

h = N at gestational age t) to develop GH, mPE, or sPE (h = GH, mPE, or sPE at

gestational age t+ = t + 1) in each gestational age. In this figure, the probability of

developing GH is calculated with the sum P(GH, t+, P |N, t, P )+P(GH, t+, S|N, t, P )

for a given gestational age t (t ≤ 41). That is, it is calculated as the sum of the

probability of developing GH as pregnancy continues at gestational week t, and the

probability of developing GH and having spontaneous labor within gestational week t.

The probabilities of developing mPE and sPE are calculated similarly.
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Figure 2.2: The Number of Women Observed in the Data (Solid Black Lines), and

Average Number of Women Observed in the Simulations (Dashed Black Lines)

Together with Their CIs (Vertical Gray Lines)
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Figure 2.3: Summary of the Application of Exclusion Criteria
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Variable Number of observations (%)

Maternal Age

<20 745 (9.0%)

20-24 1,839 (22.2%)

25-29 2,041 (24.6%)

30-34 1,981 (23.9%)

≥35 1,689 (20.3%)

Unknown 5 (0.1%)

Race and Ethnicity

Asian 199 (2.4%)

Black or African American 722 (8.7%)

White/Caucasian 680 (8.2%)

Hispanic/Latino 6,390 (77.0%)

Other 119 (1.4%)

Unknown 190 (2.3%)

Smoking

Smoker 388 (4.7%)

Non-smoker 7,912 (95.3%)

Insurance Status

Private insurance/government payer 424 (5.1%)

Medicaid 6,743 (81.2%)

Self-pay 1,128 (13.6%)

Unknown 5 (0.1%)

Marital Status

Married 3,494 (42.1%)

Not married 4,733 (57.0%)

Unknown 73 (0.9%)

Table 2.2: Demographics of the Study Population
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Figure 2.4: The Estimated Probabilities of Developing HDP for a Woman with No

HDP

“N → GH” denotes the event of developing GH when there is no diagnosis of hypertensive

disorders. “N → mPE” and “N → sPE” denote the same for mPE and sPE, respectively.

Additionally, we calculate the risk of developing preeclampsia for a woman with

GH as the gestational age advances by one week. Figure 2.5 demonstrates the esti-

mated probabilities for a woman with GH to develop preeclampsia. In this figure, the

probability of developing mPE is calculated with the sum P(mPE, t+, P |GH, t, P ) +

P(mPE, t+, S|GH, t, P ) for a given gestational age t (t ≤ 41). That is, it is calculated

as the sum of the probability of developing mPE from GH as pregnancy continues

at gestational week t, and the probability of developing mPE from GH and having

spontaneous labor within gestational week t. The probabilities of developing sPE

are calculated similarly. The probability of developing preeclampsia is calculated

by adding the probabilities of developing mPE or sPE with or without spontaneous

labor. As a result, each point corresponds to the sum P(mPE, t+, P |GH, t, P ) +

P(sPE, t+, P |GH, t, P ) +P(mPE, t+, S|GH, t, P ) +P(sPE, t+, S|GH, t, P ) for a given

gestational age t.
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Figure 2.5: The Estimated Probabilities of Developing Preeclampsia for a Woman

With GH.

“GH → mPE” denotes the event of developing mPE when there is a diagnosis of GH. “GH

→ sPE” and “GH → PE” denote the same for sPE and preeclampsia (PE), respectively.

Finally, we calculate the probabilities of having spontaneous labor to explore the

impact of HDP on the chances of spontaneous labor. Figure 2.6 shows the esti-

mated probabilities of having spontaneous labor as gestational age proceeds by one

week when a woman has N, GH, mPE, or sPE. The probability of spontaneous la-

bor is calculated by summing up the probabilities of going into spontaneous labor

with or without deteriorating maternal health. For instance, the probability of hav-

ing spontaneous labor with GH is calculated with the sum P(GH, t+, S|GH, t, P ) +

P(mPE, t+, S|GH, t, P ) +P(sPE, t+, S|GH, t, P ). That is, it is calculated as the sum

of the probability of continuing GH and having spontaneous labor within gestational

week t, and the probability of developing mild or severe preeclampsia from GH and

having spontaneous labor within gestational week t.

Figure 2.4 shows how the risks of developing GH, mPE and sPE increase with

gestational age for a normotensive woman as imposed by the order restrictions. Ac-
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Figure 2.6: The Estimated Probabilities of Having Spontaneous Labor When the

Maternal Health Is N, GH, mPE, or sPE

cording to these estimations, the risks increase more rapidly between 35 and 38 weeks

of gestation. Additionally, the estimated risk of developing GH is higher than the

same of sPE and mPE at any gestational age, which is not included as an order

restriction. Figure 2.5 depicts how the risks of developing mPE and sPE increase

with gestational age for a woman with GH as imposed by the order restrictions. In

this figure, the estimated risk of developing sPE is mostly higher than the same of

mPE, which is not included as an order restriction. Figure 2.6 demonstrates how the

presence of a type of HDP increases the risk of preterm labor.

Figures 2.7-2.9 show the risks calculated with the maximum likelihood estimates

of DTMC’s transition probabilities without order restrictions. It is worthwhile to

note that the results depicted in Figures 2.8 and 2.9 show significant fluctuations

due to the limited number of observations. The ORI model helps us improve the

estimations by removing excessive noise and fluctuations that make it hard to come

up with meaningful conclusions.
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Figure 2.7: The Estimated Probabilities of Developing HDP for a Woman with No

HDP Without Order Restrictions

“N → GH” denotes the event of developing GH when there is no diagnosis of hypertensive

disorders. “N → mPE” and “N → sPE” denote the same for mPE and sPE, respectively.

Figure 2.8: The Estimated Probabilities of Developing Preeclampsia for a Woman

With GH Without Order Restrictions

“GH → mPE” denotes the event of developing mPE when there is a diagnosis of GH.

“GH → sPE” and “GH → PE” denote the same for sPE and PE, respectively.
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Figure 2.9: The Estimated Probabilities of Having Spontaneous Labor When the

Maternal Health Is N, GH, mPE, or SPE Without Order Restrictions

2.4 Conclusions

In this study, we model the natural progression of HDP in the third trimester

of pregnancy with a DTMC, and estimate its transition probabilities with an ORI

model that maximizes the likelihood function subject to a set of order restrictions

between the transition probabilities. In the estimation of these probabilities, we use

data on HDP diagnosis collected during prenatal care spanning 28 weeks of gestation

to delivery, and data on delivery admission. The estimated transition probabilities are

used to calculate (1) the risk of developing gestational hypertension or preeclampsia

for a woman with no HDP, (2) the risk of worsening health by developing preeclampsia

for a woman with gestational hypertension, and (3) the probability of developing labor

when there is a type of HDP. We present the trends in these risks with respect to

gestational age (see Figures 2.4-2.6).

One strength of the study is the use of reasonable population size in the estima-

tions. In addition, the data is obtained from one institution, which limits the bias

that may happen due to variations in the diagnosis of HDP. On the other hand, the
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limitations of the study include the lack of BMI data, which does not allow us to use

BMI in exclusion criteria. Besides, we could not model entire duration of the preg-

nancy due to limited data on HDP prior to 28 weeks of gestation. Moreover, these

results are from a study population that is mostly Hispanic or Latina that sought

care with Medicaid, and they may not be generalizable. Studies using data from a

wide range of institutions would provide better results regarding generalizability.

Markov chain models are considered as a natural approach to adopt in modeling

the natural history of a disease that has a sequence of health states (Welton and

Ades, 2005). These models have advantages in healthcare applications such as being

simple to develop and communicate. However, the Markovian property can be very

limiting for modeling disease progression since it requires transition probabilities to

be independent of the factors such as time spent in the current state and the history

of past states. These factors are likely to be significant in determining the course of a

disease and may allow for further refinement of risk determination. In that case, they

can be incorporated into the Markov model by creating additional variables, which

can potentially amplify the model size and make the model difficult to parametrize

(Siebert et al., 2012). Due to the limited size of our cohort, we could not address

this issue. It should be addressed with a larger population study, since an increase

in model size would require an increase in total sample size required for probability

estimations.

The estimations show how the risk of developing a type of HDP for a woman with

no HDP and the risk of developing mild or severe preeclampsia for a woman with

gestational hypertension increase with gestational age. Additionally, the estimations

demonstrate the magnitude of elevation in the risk of preterm labor due to the pres-

ence of gestational hypertension and preeclampsia. The study can be replicated using

study populations with different demographics, and the trends in risk estimations can
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be used to counsel patients and manage patient care in determining the intensity of

follow-up appointments and the timing of possible interventions.
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Chapter 3

ASSESSING THE RISKS OF MATERNAL AND NEONATAL MORBIDITY IN

HYPERTENSIVE DISORDERS OF PREGNANCY

3.1 Introduction

For making informed decisions in the care of women with hypertensive disorders

of pregnancy (HDP), it is essential to shed light on the risks of maternal and neonatal

adverse outcomes of childbirth, and how these risks change with respect to gestational

age. Such an understanding of the associated risks can help us uncover various trade-

offs involved in the decisions of timing and mode of delivery. In this chapter, we

assess the risks of maternal and neonatal adverse outcomes of childbirth with respect

to gestational age at delivery in two different studies.

In the first study, we estimate the risks of significant morbidities with a composite

measure of childbirth morbidity by retrospectively observing a cohort of patients. The

measure that we use is childbirth composite morbidity (CCM) rate which is recently

introduced by Korst et al. (2014). In the second study, we use a provider survey and

technique for order performance by similarity to ideal solution (TOPSIS) to assess the

safety of child delivery in terms of adverse health outcomes. In this provider survey,

the physicians are asked to rate the safety of child delivery with respect to maternal

and neonatal adverse outcomes in the cases of different HDP diagnoses, timings and

modes of delivery. We evaluate the responses to provider survey with TOPSIS which

is a multi-criteria decision-making tool.

The goal of this chapter is to compare either the risk of adverse outcomes of

childbirth or the safety of childbirth for the mother and the baby with respect to
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the presence of HDP at the time of delivery, gestational age at delivery, and mode

of delivery. Therefore, in both studies, the calculations are performed as functions of

maternal health (in terms of HDP), gestational age at delivery, and mode of delivery.

The methods and results of this chapter are used in parameterizing the Markov de-

cision process (MDP) and the robust MDP models, and supporting the assumptions

made to generate results in Chapter 4.

The organization of this chapter is as follows. In Section 3.2, we present the

assessment of the risks of maternal and neonatal adverse outcomes with CCM rate.

In Section 3.3, we describe and discuss the assessment of childbirth safety with the

provider survey. In Section 3.4, we discuss the results and implications of both studies.

3.2 Assessment of the Risks of Childbirth Composite Morbidity

In this retrospective cohort study, our objectives are to quantify the risks of mater-

nal and neonatal adverse outcomes for women diagnosed with HDP with a composite

measure of childbirth morbidity, and to compare these risks with respect to the type

of HDP at the time of delivery, gestational age, and mode of delivery. The estimated

risks of maternal and neonatal adverse outcomes can be used to guide physicians in

the decisions of timing and mode of delivery for women diagnosed with HDP. The

measure that we adopt in this study is the CCM rate introduced by Korst et al.

(2014).

3.2.1 Background

There are wide varieties of maternal and neonatal adverse outcomes that may hap-

pen due to childbirth. Maternal adverse outcomes of childbirth include but not limited

to extended length of postpartum stay, postpartum hemorrhage, postpartum depres-

sion, admission to intensive care unit (ICU), perineal tear, need for blood transfu-
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sion, placental abruption, uterine rupture, convulsions, pulmonary edema, acute renal

failure, acute liver failure, acute respiratory distress, oliguria, liver hemorrhage, dis-

seminated intravascular coagulopathy, HELLP syndrome, neurologic complications,

and stroke (Mann et al., 2006; Gregory et al., 2009; Walker et al., 2010; Korst et al.,

2014). Neonatal adverse outcomes of childbirth include but not limited to admission

to neonatal intensive care unit (NICU), small-for-gestational-age (SGA) infant, puer-

peral infection, prematurity, low Apgar score, birth trauma, cerebral palsy, neonatal

seizures, neonatal sepsis, respiratory distress syndrome, bronchopulmonary dysplasia,

transient tachypnea, intracranial hemorrhage, periventricular leukomalacia, retinopa-

thy of prematurity, need for respiratory support, hypoglycemia, and necrotizing en-

terocolitis (Mann et al., 2006; Gregory et al., 2009; Walker et al., 2010; Howell et al.,

2014; Korst et al., 2014).

In obstetrical care, it has been difficult to identify measures to assess the care

quality in terms of childbirth morbidity. This difficulty is due to the challenges that

there is a wide range of adverse outcomes of childbirth that are rare, and the data

availability is often limited (Janakiraman and Ecker, 2010; Boulkedid et al., 2013a).

Besides, childbirth hospitalization is unique among other types of hospitalizations,

since it includes at least two patients, the mother and the baby (or babies), and

trade-offs may arise in the care of both parties (Howell et al., 2014; Korst et al.,

2014). To overcome these challenges, Mann et al. (2006), Gregory et al. (2009), and

Korst et al. (2014) propose composite measures that can be used to assess, control

and compare the quality of obstetrical care within and between hospitals regarding

maternal and neonatal health outcomes.

Mann et al. (2006) develop three obstetrical quality measures, namely the adverse

outcome index (AOI), the weighted adverse outcome index (WAOI), and the severity

index (SI) with the help of two consensus development conferences. AOI is defined
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as the percentage of deliveries with at least one adverse outcome from a set of six

maternal (i.e., maternal death, uterine rupture, ICU admission, return to operating

or delivery room, blood transfusion, and perineal tear) and four neonatal (i.e., in-

trapartum or neonatal death, birth trauma, NICU admission, and low Apgar score)

adverse outcomes. WAOI is the weighted AOI, which is calculated by dividing the

sum of adverse outcome scores (as weights) of all deliveries by the total number of

deliveries. SI is WAOI calculated after excluding the deliveries without an adverse

outcome from the set of chosen outcomes. It is calculated by dividing the sum of

adverse outcome scores of all deliveries by the number of deliveries with at least one

adverse outcome.

Gregory et al. (2009) present a list of significant maternal and neonatal child-

birth complications, and define an ideal delivery as a delivery without any of the

complications given in that list. Ideal delivery (ID) rate, the proportion of deliveries

without a complication, is proposed as a composite measure of quality in obstetrical

care that is easy to use and interpret. Korst et al. (2014) expand the list of childbirth

complications given by Gregory et al. (2009), and improve the notion of composite

childbirth morbidity, the presence of any significant maternal or neonatal morbidity

during childbirth, by incorporating additional maternal and neonatal complications.

The measure proposed by Korst et al. (2014) is the CCM rate which is the pro-

portion of deliveries with at least one significant maternal or neonatal complication.

The CCM rate can be interpreted as the reverse of the ID rate. The expanded list of

adverse outcomes includes a variety of maternal morbidities such as uterine rupture,

high degree perineal laceration, liver failure, kidney failure, postpartum hemorrhage,

anesthesia and wound complications, and a variety of neonatal morbidities such as

birth trauma and injuries, shock, renal failure, neurological and respiratory complica-

tions. Moreover, Korst et al. (2014) provide a detailed list of conditions to determine
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high-risk deliveries such as malpresentation, maternal kidney and liver disorders, di-

abetes, heart disease, antepartum bleeding, substance use, fetal intrauterine growth

restriction, and fetal congenital anomalies.

There are also other studies that investigate quality measures in obstetrics. Simp-

son (2005) explores failure to rescue, a quality measure of care for surgical patients, as

a method to assess quality of care during delivery and improve patient safety in cases

of common obstetric complications including eclampsia. This measure is proposed to

assess rescue processes that include monitoring the patients, timely identification of

the complications, appropriateness of the interventions, and role of care team mem-

bers. Since failure to rescue does not measure quality in terms of morbidities, and it

includes care factors that is beyond our scope such as role of team members, it is not

considered as a candidate measure in our study.

Say et al. (2009) propose a set of criteria to identify maternal near miss (MNM)

(a woman who survives a life-threatening condition), and the use of MNM incidence

ratio (the ratio of the number of MNM cases to total number of live births) as a quality

indicator in obstetrical care. The criteria to identify MNM cases include clinical and

laboratory-based criteria such as respiratory rate and blood creatinine levels. We do

not consider MNM incidence ratio as a candidate measure in our study, since it is not

possible to calculate it with the available diagnosis data.

In addition to composite measures described before, there are other common ob-

stetric quality measures such as the number of elective deliveries before 39 completed

weeks of gestation, and the number of pregnancies without risk factors delivered with

cesarean section (Janakiraman and Ecker, 2010). We choose not to discuss these

measures in detail since they are not suitable for assessing and comparing the risk

of childbirth morbidity for women with risk factors such as HDP. However, we refer

interested readers to Janakiraman and Ecker (2010) and Boulkedid et al. (2013a) for
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detailed discussions of obstetrical quality measures, and to Boulkedid et al. (2013b)

and Sibanda et al. (2013) for the latest efforts on reaching a consensus on the use of

quality indicators in obstetrical care.

3.2.2 Methods

In this study, our focus is on gestational (pregnancy induced) hypertension (GH) as

well as its possible progression into preeclampsia. There are two forms of preeclamp-

sia; namely, mild preeclampsia (mPE, preeclampsia without severe features), and

severe preeclampsia (sPE, preeclampsia with severe features). As a convention, we

use the terms mild and severe to classify the severity of preeclampsia, which is in line

with the medical diagnosis coding in the patient data we use in this study.

The source of our clinical data is Maricopa Integrated Health System (MIHS).

MIHS is a public healthcare system serving as a safety net for the underserved pop-

ulation from diverse cultures in Maricopa County of Arizona. The data under study

include pregnant women who received care from prenatal to postpartum period, and

gave birth at MIHS between March 2012 and August 2015. The electronic medical

records at MIHS are initiated in March 2012. We do not use the data after August

2015, since MIHS started to use ICD-10 coding system after that month, and the mea-

sure we adopt is based on ICD-9 codes. This study is approved by the institutional

review board of MIHS. The data sets and their contents are as follows:

• HDP diagnoses data set includes the diagnoses related to HDP from the prenatal

to the postpartum period. It contains the dates (both admission and discharge)

and codes of all HDP related diagnoses.

• Maternal outcome data set includes maternal discharge and encounter diagnoses

of visits and admissions from prenatal to postpartum period. It also contains
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information on the type and gestational age of deliveries, and the administration

of medications and procedures for induction and augmentation of labor.

• Neonatal outcome data set includes discharge and encounter diagnoses made

for the neonates since their birth. It also includes information on Apgar scores,

neonatal demise, and stillbirth.

• Blood transfusion data set includes maternal blood transfusion events during

the delivery admission. It also provides information on the date and amount of

blood transfusions.

• ICU admissions data set includes maternal admissions to ICU during the de-

livery admission. It contains information on the diagnoses of admissions, and

the dates of admission and discharge.

• NICU admissions data set includes admissions to NICU following the deliv-

ery. It contains information on the diagnoses of admissions, and the dates of

admission and discharge.

The data sets are linked together through mother and baby identifiers. Figure 3.1

summarizes the exclusion criteria used in our study. The deliveries with missing

information on gestational age or type of delivery are excluded from the study. In

addition, we exclude the deliveries with gestational age less than or equal to 32

weeks, since the sample sizes are too small to provide reliable estimates. Multiple

deliveries and deliveries with stillbirth are also excluded, and as a result, only live

singleton deliveries are included. Moreover, we exclude the deliveries of pregnant

women diagnosed with chronic hypertension to reduce misclassification bias. If a

woman has given birth more than once during the time range of data, we randomly

choose one of her deliveries, and include that delivery in our study.
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Figure 3.1: Summary of the Application of Exclusion Criteria
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The deliveries are grouped into three categories as follows: (i) delivery following

spontaneous labor, (ii) delivery following induced labor, and (iii) cesarean delivery

with no labor. The motivation behind such a grouping is to assess the difference in

risks of morbidity produced by the delivery decision of waiting for spontaneous labor,

inducing labor, or delivering with cesarean delivery prior to labor. This grouping is

implemented by determining the presence and the type of labor with the use of the

variables type of delivery (vaginal or cesarean delivery), element(s) of induced labor,

and element(s) of labor augmentation in the maternal outcome data set, and ICD-9

diagnosis codes in the maternal and neonatal outcome data sets. The diagnosis codes

are obtained from a validated algorithm to determine patients who labored (Henry

et al., 1995; Korst et al., 2004).

Figure 3.2 summarizes how the available data is used for grouping deliveries. If

at least one element of induced labor is used in a delivery (e.g., dinoprostone, and

oxytocin for induction), it is included in the group “delivery following induced labor”

whether or not it is a vaginal or a cesarean delivery. A delivery is included in the

group “delivery following spontaneous labor” if it is a vaginal delivery without induced

labor. It is also included in the group “delivery following spontaneous labor,” if it is a

cesarean delivery in which at least one element of labor augmentation (e.g., artificial

rupture of membranes, and oxytocin for augmentation) is used, or if it is a cesarean

delivery with at least one diagnosis code indicating labor. A delivery is included in

the group “cesarean delivery with no labor,” if it is a cesarean delivery, and there is

no indication for induced or spontaneous labor.

Korst et al. (2014) define a composite outcome as the occurrence of any significant

morbidity or mortality for mother or neonate due to childbirth. Accordingly, the

CCM rate is calculated as the percentage of deliveries with a composite outcome. We

disaggregate the definition of composite outcome to be able to estimate the risks of
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Figure 3.2: Flow Algorithm for the Classification of Delivery Groups
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adverse outcomes separately for the mother and the neonate. We define maternal

composite outcome as the occurrence of any significant morbidity or mortality to

mother due to childbirth. Similarly, we define neonatal composite outcome as the

occurrence of any significant morbidity or mortality to neonate due to childbirth.

The maternal (neonatal) CCM rate is calculated as the fraction of deliveries with a

maternal (neonatal) composite outcome.

Korst et al. (2014) provide tables of maternal and neonatal morbidities included

in the calculation of CCM rate together with their ICD-9 diagnosis codes. The de-

liveries with at least one diagnosis of significant maternal morbidity are identified

using the provided diagnosis codes, and maternal outcome data set. The same pro-

cedure is repeated with the diagnosis codes provided for neonatal morbidities, and

neonatal outcome data set. Korst et al. (2014) additionally provide procedure codes

that indicate maternal blood transfusion, maternal ICU admission (e.g., mechanical

ventilation and circulatory monitoring), and NICU admission (e.g., arterial catheter-

ization and gavage feeding) in the calculation of CCM rate. The available data sets

in this study do not include such procedure codes. However, we include the records

in the data sets of maternal blood transfusion events, ICU admissions, and NICU

admissions in our calculation of maternal and neonatal composite outcomes in place

of procedure codes.

The presence of maternal and neonatal composite outcomes is determined sepa-

rately for each delivery. A delivery has a maternal composite outcome if the mother

is diagnosed with at least one of the significant maternal morbidities listed by Korst

et al. (2014), is admitted to ICU, has a blood transfusion, or dies due to delivery.

Maternal mortality is not included in our calculations, since there is no such case

during the time period of the data. Similarly, a delivery has a neonatal composite

outcome if the neonate is diagnosed with at least one of the significant neonatal mor-
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bidities listed by Korst et al. (2014), the neonate is admitted to NICU, or it is a case

of neonatal demise.

We divide the cohort under study into subgroups with respect to the type of

HDP at delivery (i.e., no HDP, GH, mPE, and sPE), gestational age at delivery,

and delivery group. We gather gestational ages greater than 32 weeks into five non-

overlapping groups (i.e., 33-34, 35-36, 37-38, 39-40, and 41-42 weeks) to increase the

sample size in each estimation. We calculate maternal and neonatal CCM rates for

each subgroup.

Each calculated maternal (neonatal) CCM rate is treated as an individual bi-

nomial proportion for which the success probability is the probability of having a

maternal (neonatal) composite outcome. As a result, we are able to construct 95%

confidence intervals (CIs) around the probability of having these outcomes. Adjusted

Wald method is adopted in the construction of CIs, since it provides good coverage

probabilities for small samples (Agresti and Coull, 1998; Sauro and Lewis, 2005; Lewis

and Sauro, 2006).

Wilson’s estimates, the midpoints of adjusted Wald intervals, are also calculated

as better point estimates for small samples (Lewis and Sauro, 2006). The formulas

of Wilson’s estimate (p̂w, or p̂′w) and 100(1 − α)% adjusted Wald interval (Wilson,

1927; Agresti, 1996) for a sample size of n > 0 are given in Equations (3.1) and (3.2)

when the constructed CIs fall within the natural limits of [0,1], and in Equations (3.3)

and (3.4) when the case is otherwise. In these equations, x denotes the number of

successes, and z denotes the z-score of standard normal distribution.

p̂w =
x+ z2

α/2/2

n+ z2
α/2

(3.1)
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CI =

(
p̂w − zα/2

√
p̂w(1− p̂w)

n+ z2
α/2

, p̂w + zα/2

√
p̂w(1− p̂w)

n+ z2
α/2

)
(3.2)

p̂′w =
x+ z2

α/2

n+ z2
α

(3.3)

CI =

(
0, p̂′w + zα

√
p̂′w(1− p̂′w)

n+ z2
α

)
, or CI =

(
p̂′w − zα

√
p̂′w(1− p̂′w)

n+ z2
α

, 1

)
(3.4)

In an additional analysis, we construct two multivariable logistic regression mod-

els with outcome variables of maternal and neonatal composite outcomes. In both

models, the predictor variables are the type of HDP at delivery (i.e., no HDP, GH,

mPE, and sPE), gestational age at delivery (i.e., 33-34, 35-36, 37-38, 39-40, and

41-42 weeks), and the delivery group (delivery following spontaneous labor, delivery

following induced labor, cesarean delivery with no labor). The base values for the

predictor variables are taken as no HDP, 39-40 weeks of gestation, and delivery fol-

lowing spontaneous labor. We use JMP 12 statistical software for the construction of

these models, and report the results as odds ratios (ORs) with their 95% CIs. JMP

12 calculates CIs on ORs as likelihood ratio based.

3.2.3 Results

In total, we have data on 7,550 live singleton births after the exclusions depicted

in Figure 3.1. Our cohort has 370, 170, and 575 women who had sPE, mPE, and

GH at the time of delivery, respectively. In total, 1,115 deliveries from a total of

7,550 deliveries have a diagnosis of HDP. As a result, 14.8% of deliveries are used

to estimate the CCM rates with HDP. Table 3.1 gives demographics of our cohort

which mostly includes Hispanic or Latina women who receive care with Medicaid.
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Variable Number of observations (%)

Maternal Age

<20 680 (9.0%)

20-24 1,673 (22.2%)

25-29 1,850 (24.5%)

30-34 1,788 (23.7%)

≥35 1,554 (20.6%)

Unknown 5 (0.1%)

Race and Ethnicity

Asian 184 (2.4%)

Black or African American 657 (8.7%)

White/Caucasian 605 (8.0%)

Hispanic/Latino 5,836 (77.3%)

Other 96 (1.3%)

Unknown 172 (2.3%)

Smoking

Smoker 355 (4.7%)

Non-smoker 7,195 (95.3%)

Insurance Status

Private insurance/government payer 347 (4.6%)

Medicaid 6,193 (82.0%)

Self-pay 1,006 (13.3%)

Unknown 4 (0.1%)

Marital Status

Married 3,202 (42.4%)

Not married 4,288 (56.8%)

Unknown 60 (0.8%)

Table 3.1: Demographics of the Study Population

Tables 3.2 and 3.3 demonstrate how our cohort is distributed among the subgroups

determined with the type of HDP at delivery, gestational age at delivery, and delivery

group.

Tables 3.4-3.6 and 3.7-3.9 show the values of Wilson’s estimates together with

adjusted Wald 95% CIs of the maternal and the neonatal CCM rates calculated for

the subgroups of the cohort under study, respectively. The maternal and neonatal
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Maternal The number of deliveries

health Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42 Total

sPE
30

(24.0%)a

69

(15.6%)

134

(6.6%)

118

(2.8%)

19

(2.6%)

370

(4.9%)

mPE
4

(3.2%)

10

(2.3%)

63

(3.1%)

82

(1.9%)

11

(1.5%)

170

(2.3%)

GH
6

(4.8%)

29

(6.5%)

188

(9.3%)

294

(6.9%)

58

(8.0%)

575

(7.6%)

No HDP
85

(68.0%)

335

(75.6%)

1,632

(80.9%)

3,742

(88.3%)

641

(87.9%)

6,435

(85.2%)

Total 125 443 2,017 4,236 729 7,550

Table 3.2: The Number of Deliveries with Respect to Maternal Health and

Gestational Age at Delivery

a The percentages of deliveries with a type of HDP among all deliveries with the same

gestational age.

CCM rates should be interpreted as the risks of significant maternal and neonatal

morbidity, respectively. Tables 3.4-3.6 demonstrate a larger effect of HDP on maternal

CCM rates than gestational age, and overall lower maternal CCM rates in those with

induced labor than the other delivery groups. Tables 3.7-3.9 show the importance of

gestational age on neonatal CCM rates. These trends are tested by the multivariable

logistic regression models.

Tables 3.10 and 3.11 present the results obtained with the logistic regression mod-

els. The odds ratios for maternal CCM demonstrate that HDP plays a more important

role than gestational age in higher occurrence of maternal composite outcome. GH
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Delivery group
The number of deliveries

Vaginal

delivery

Cesarean

delivery
Total

Delivery following spontaneous labor 5,136 (91.5%) 475 (8.5%) 5,611

Delivery following induced labor 742 (81.9%) 164 (18.1%) 906

Cesarean delivery with no labor - 1,033 (100%) 1,033

Total 5,878 (77.9%) 1,672 (22.1%) 7,550

Table 3.3: The Number of Deliveries with Respect to Our Delivery Classification

(Delivery Groups) and Type of Delivery

Maternal

health

Wilson’s estimates and adjusted Wald 95% CIs

Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42

sPE 0.40

(0.15-0.65)

0.33

(0.17-0.49)

0.35

(0.23-0.46)

0.32

(0.22-0.42)

0.42

(0.13-0.70)

mPE
0.43

(0.06-0.80)

0.45

(0.16-0.75)

0.33

(0.19-0.48)

0.24

(0.13-0.35)

0.36

(0.08-0.65)

GH
0.18

(0.00-0.40)

0.24

(0.05-0.42)

0.31

(0.23-0.39)

0.28

(0.22-0.35)

0.32

(0.17-0.46)

No HDP
0.15

(0.06-0.24)

0.15

(0.10-0.19)

0.15

(0.13-0.17)

0.19

(0.17-0.20)

0.20

(0.16-0.24)

Table 3.4: Wilson’s Estimates and Adjusted Wald 95% CIs of Maternal CCM Rates

in the Subgroups with Delivery Following Spontaneous Labor
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Maternal

health

Wilson’s estimates and adjusted Wald 95% CIs

Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42

sPE 0.26

(0.04-0.49)

0.24

(0.08-0.40)

0.25

(0.13-0.37)

0.30

(0.15-0.46)

33

(0.06-0.60)

mPE -
0.37

(0.00-0.78)

0.23

(0.05-0.40)

0.27

(0.08-0.46)

0.24

(0.00-0.53)

GH -
0.18

(0.00-0.40)

0.17

(0.05-0.28)

0.22

(0.11-0.33)

0.23

(0.05-0.40)

No HDP
0.30

(0.01-0.58)

0.16

(0.03-0.30)

0.10

(0.04-0.15)

0.14

(0.10-0.18)

0.16

(0.11-0.21)

Table 3.5: Wilson’s Estimates and Adjusted Wald 95% CIs of Maternal CCM Rates

in the Subgroups with Delivery Following Induced Labor

Maternal

health

Wilson’s estimates and adjusted Wald 95% CIs

Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42

sPE 0.50

(0.22-0.78)

0.42

(0.20-0.64)

0.35

(0.16-0.53)

0.42

(0.13-0.70)

0.37

(0.00-0.78)

mPE
0.63

(0.22-1.00)

0.50

(0.09-0.91)

0.14

(0.00-0.32)

0.40

(0.09-0.70)

0.37

(0.00-0.78)

GH
0.37

(0.00-0.78)

0.45

(0.16-0.75)

0.15

(0.03-0.26)

0.30

(0.16-0.44)

0.24

(0.00-0.53)

No HDP
0.37

(0.19-0.55)

0.20

(0.11-0.29)

0.16

(0.11-0.21)

0.15

(0.12-0.18)

0.16

(0.04-0.27)

Table 3.6: Wilson’s Estimates and Adjusted Wald 95% CIs of Maternal CCM Rates

in the Subgroups with Cesarean Delivery with No Labor
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Maternal

health

Wilson’s estimates and adjusted Wald 95% CIs

Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42

sPE 0.10

(0.00-0.23)

0.24

(0.09-0.39)

0.10

(0.03-0.17)

0.12

(0.05-0.19)

0.25

(0.00-0.49)

mPE
0.24

(0.00-0.53)

0.36

(0.08-0.65)

0.09

(0.01-0.18)

0.08

(0.01-0.15)

0.27

(0.01-0.53)

GH
0.33

(0.02-0.64)

0.19

(0.02-0.36)

0.08

(0.03-0.13)

0.08

(0.04-0.12)

0.12

(0.02-0.22)

No HDP
0.22

(0.11-0.32)

0.21

(0.16-0.27)

0.07

(0.05-0.08)

0.06

(0.05-0.07)

0.07

(0.04-0.09)

Table 3.7: Wilson’s Estimates and Adjusted Wald 95% CIs of Neonatal CCM Rates

in the Subgroups with Delivery Following Spontaneous Labor

Maternal

health

Wilson’s estimates and adjusted Wald 95% CIs

Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42

sPE 0.47

(0.21-0.72)

0.34

(0.17-0.52)

0.23

(0.12-0.35)

0.21

(0.07-0.35)

33

(0.06-0.60)

mPE -
0.63

(0.22-1.00)

0.23

(0.05-0.40)

0.11

(0.00-0.23)

0.24

(0.00-0.53)

GH -
0.56

(0.23-0.88)

0.24

(0.11-0.37)

0.22

(0.11-0.33)

0.23

(0.05-0.40)

No HDP
0.50

(0.19-0.81)

0.47

(0.29-0.65)

0.17

(0.10-0.23)

0.13

(0.09-0.16)

0.09

(0.05-0.12)

Table 3.8: Wilson’s Estimates and Adjusted Wald 95% CIs of Neonatal CCM Rates

in the Subgroups with Delivery Following Induced Labor
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Maternal

health

Wilson’s estimates and adjusted Wald 95% CIs

Wk 33-34 Wk 35-36 Wk 37-38 Wk 39-40 Wk 41-42

sPE 0.42

(0.13-0.70)

0.26

(0.06-0.46)

0.27

(0.10-0.44)

0.25

(0.00-0.49)

0.37

(0.00-0.78)

mPE
0.63

(0.22-1.00)

0.71

(0.37-1.00)

0.27

(0.01-0.53)

0.16

(0.00-0.36)

0.37

(0.00-0.78)

GH
0.63

(0.22-1.00)

0.36

(0.08-0.65)

0.12

(0.01-0.22)

0.15

(0.04-0.26)

0.24

(0.00-0.53)

No HDP
0.26

(0.09-0.42)

0.23

(0.14-0.32)

0.15

(0.10-0.20)

0.12

(0.09-0.15)

0.21

(0.08-0.34)

Table 3.9: Wilson’s Estimates and Adjusted Wald 95% CIs of Neonatal CCM Rates

in the Subgroups with Cesarean Delivery with No Labor

and mPE have very close odds ratios (OR=1.74 for GH, and OR=1.77 for mPE) that

are both significant, which indicates that gestational hypertension may lead to mater-

nal adverse outcomes as often as mild preeclampsia. For the occurrence of neonatal

composite outcome, HDP is not a significant factor, and earlier gestational ages have

the highest significant impact (OR=3.41 for 33-34 weeks, and OR=3.59 for 35-36

weeks).

The comparisons with respect to delivery groups reveal some interesting results.

Although induced labor has a significantly lower occurrence of maternal composite

outcome than spontaneous labor (OR=0.62), it has a significantly higher risk in terms

of neonatal composite outcome (OR=2.39). Cesarean delivery (with no labor) has a

lower risk of maternal morbidity (OR=0.87), and a significantly higher risk of neonatal

morbidity (OR=1.95) when compared to the delivery following spontaneous labor.
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Variable
Maternal

ORa (95% CI) P -valueb

HDP

sPE 2.50 (1.95-3.18) <.0001

mPE 1.77 (1.23-2.51) 0.0027

GH 1.74 (1.41-2.12) <.0001

No HDP Referent -

Gestational

age

(weeks)

33-34 1.06 (0.67-1.62) 0.80

35-36 0.86 (0.66-1.11) 0.26

37-38 0.82 (0.71-0.94) 0.0057

39-40 Referent -

41-42 1.09 (0.89-1.34) 0.40

Delivery

group

Delivery following

spontaneous labor
Referent -

Delivery following

induced labor
0.62 (0.51-0.76) <.0001

Cesarean delivery

with no labor
0.87 (0.73-1.04) 0.13

Table 3.10: Odds Ratios and P -Values of Predictor Variables in Logistic Regression

Model for Maternal Morbidity

a ORs are adjusted for all variables (HDP, gestational age and delivery group) included in

the model. b P -values are based on chi-squared test for nominal variables.
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Variable
Neonatal

ORa (95% CI) P -valueb

HDP

sPE 1.28 (0.93-1.74) 0.13

mPE 1.05 (0.60-1.72) 0.85

GH 1.23 (0.92-1.62) 0.16

No HDP Referent -

Gestational

age

(weeks)

33-34 3.41 (2.16-5.24) <.0001

35-36 3.59 (2.78-4.62) <.0001

37-38 1.17 (0.96-1.43) 0.11

39-40 Referent -

41-42 0.94 (0.69-1.26) 0.69

Delivery

group

Delivery following

spontaneous labor
Referent -

Delivery following

induced labor
2.39 (1.92-2.97) <.0001

Cesarean delivery

with no labor
1.95 (1.58-2.40) <.0001

Table 3.11: Odds Ratios and P -Values of Predictor Variables in Logistic Regression

Model for Neonatal Morbidity

a ORs are adjusted for all variables (HDP, gestational age and delivery group) included in

the model. b P -values are based on chi-squared test for nominal variables.
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3.2.4 Conclusions

We examine 7,550 live singleton births with gestational ages 33 to 42 weeks in

a retrospective cohort study with the goal of estimating the risks of maternal and

neonatal morbidity based on clinical data. We estimate the risks of maternal and

neonatal morbidity for the deliveries of women with HDP with a composite measure

of childbirth morbidity with respect to the type of HDP at delivery, gestational age at

delivery, and delivery group. From these factors, we show the significant contributors

to the risks of maternal and neonatal morbidity. The results of this study are for a

population that is mostly Hispanic and Medicaid patients.

Our motivations behind using the CCM rate can be summarized as follows. First,

it is the most comprehensive composite measure in terms of the variety of adverse

outcomes incorporated into the calculation. Secondly, when calculated separately for

the mother and the baby, it allows for a natural comparison between the well-being

of two parties without any need for adjustments since it is a binary score. Thirdly,

the composite outcome can be modeled as a binomial proportion where the success

probability is defined as the probability of having such an outcome. Finally, it is easy

to interpret and can be calculated with the available data.

Although the CCM rate is found to be the best for this study among available

measures, it has shortcomings. The CCM rate accounts for significant morbidities

without including the relative severities. In addition, it does not consider comor-

bidities, i.e., the occurrence of multiple morbidities simultaneously. Since it takes a

high number of morbidities into account, it requires more detailed discharge diagnoses

data, and it may be more prone to being impacted by coding errors.

The maternal and neonatal CCM rates exhibit mostly expected trends such as

being higher for the deliveries with HDP. However, we also have interesting observa-
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tions that are not anticipated prior to our study. The CCM rates of mild preeclampsia

and gestational hypertension are either close or very close, which points out that ges-

tational hypertension can have manifestations as severe as mild preeclampsia. This

observation supports other medical studies such as Buchbinder et al. (2002) that call

attention to the possible risks of gestational hypertension. It also supports the ACOG

Task Force’s recommendation to manage gestational hypertension and preeclampsia

without severe features similarly ACOG (2013b).

Another interesting observation is that the maternal CCM rates of induced labor

are mostly less than the same of cesarean delivery with no labor. They are also mostly

less than the same of spontaneous labor for mothers. As a result, induction of labor

should be considered as an important option for delivering the baby in the presence

of HDP while considering the neonatal impact. Our method may help physicians in

the process of deciding timing and mode of delivery by making the trade-offs between

maternal and neonatal morbidity more overt.

The results should be interpreted by considering strengths and limitations of our

study. We examine a relatively large sample of deliveries in a single institution,

which decreases the heterogeneity of clinical practice, and limits the heterogeneity of

diagnosis coding on which our results depend. MIHS includes a single practice group,

which further decreases the former effect. Moreover, we consider delivery groups

that depend not only on the route of delivery but delivery decisions. As a result,

we reflect the impact of delivery decisions on the comparisons of risk values. On the

other hand, our results may not be generalizable, since our cohort is from one hospital

with a population that may not be typical of other institutions. Besides, our study

uses composite maternal morbidity and delivery groups, which makes comparisons

to other studies that examine cesarean delivery as a maternal outcome of interest

challenging.
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Our study is one of the few studies which have considered decisions of timing and

mode of delivery for maternal and fetal well-being. One early randomized trial has

found that induction of labor leads to lower cesarean delivery rates with equivalent

neonatal outcomes for post-term pregnancies as opposed to expectant management

(Hannah et al., 1992). That study has led to the concept of preventive induction of

labor for maternal and fetal considerations. Other studies of expectant management

versus induction of labor have reinforced this concept; however, the randomized data

was limited to one study (Darney et al., 2013; Nicholson et al., 2015). Parallel to this,

there has been an examination of the effect of elective induction prior to 39 weeks of

gestation on the increased risk of neonatal morbidity, and as a result, this has become

an unacceptable practice (ACOG, 2013a).

HDP are a set of disorders for which non-elective delivery is indicated prior to 39

weeks (ACOG, 2013b), and for which there are randomized trial studies (Koopmans

et al., 2009; Broekhuijsen et al., 2015). Our study is largely confirming the results of

these recommendations and the studies indicating that mild preeclampsia and ges-

tational hypertension should not undergo delivery prior to 37 weeks due to resulting

neonatal morbidity. In line with the preventive induction concept, it may be of in-

terest to assess whether expectant management for those with rises in blood pressure

below diagnostic thresholds might benefit from early induction prior to term. Such a

study would require comparisons of expectant management versus early delivery as

has been suggested by a number of authors (Darney et al., 2013; Zhang et al., 2016).

3.3 Assessment of Childbirth Safety with Provider Survey

In this study, we have conducted a provider survey at MIHS to reveal clinicians’

perception of the safety of a child delivery as a function of the presence of HDP at

delivery, gestational age at delivery, and mode of delivery. The survey is created in
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a way that TOPSIS can be used to quantify the safety of childbirth with respect

to maternal and neonatal health outcomes. TOPSIS is a method of multi-criteria

decision making that aims to find the best alternative using the distance of alternatives

from the positive ideal solution (best possible solution) and negative ideal solution

(worst possible solution) with respect to multiple factors.

3.3.1 Background

First created by Ching-Lai and Yoon (1981), TOPSIS is extended for group deci-

sion making in fuzzy environments by Chen (2000) to incorporate human judgments

that cannot be estimated exactly with numerical values. In this extension, the impor-

tance weights of decision criteria and the ratings of alternative decisions are assessed

with linguistic variables instead of exact numerical values by each decision maker.

We use this extension of TOPSIS with the goal of comparing and ranking the safety

of childbirth under different states of maternal health (in terms of HDP), gestational

age at delivery, and mode of delivery with respect to maternal and neonatal health

outcomes.

In the preparation phase of the survey, samples of candidate survey questions

were given to Dr. Dean Coonrod and Dr. James Balducci who are obstetricians with

more than 25 years of experience. The final survey questions are shaped according

to their feedback. The safety of childbirth instead of the risk of adverse outcomes

is chosen for quantification in the survey, since the concept of safety is found to be

easier to communicate with future respondents. The survey is composed of three main

parts in which the participants are asked to do the following tasks: (1) determine the

importance of different maternal and neonatal health outcomes, (2) indicate the safety

of different delivery groups with respect to health outcomes in the cases of types of
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HDP and gestational ages at delivery, and (3) Provide general information about

themselves and their practice.

3.3.2 Methods

In the first part of the survey, the participants are asked to choose the importance

of health outcomes on a scale of 1 to 10 where 1 and 10 designate not important and

extremely important, respectively. This task corresponds to determining the impor-

tance weights of health outcomes which are the decision criteria in the framework of

TOPSIS. The health outcomes included in the survey are maternal mortality, ma-

jor maternal morbidities, minor maternal morbidities, perinatal/neonatal mortality,

major neonatal morbidities, and minor neonatal morbidities.

Minor maternal morbidities include morbidities such as postpartum depression,

postpartum hemorrhage, urinary tract infection, and anemia. Major maternal mor-

bidities include morbidities such as abruptio placentae, blood transfusion, pulmonary

edema, uterine rupture, stroke, HELLP syndrome, acute renal failure, acute liver fail-

ure, acute respiratory distress, convulsions, disseminated intravascular coagulopathy,

neurologic complications, ICU admission, and oliguria. Minor neonatal morbidities

include morbidities such as low Apgar score, SGA infant, transient birth injury, puer-

peral infection, suspected sepsis, and hyperbilirubinemia. Finally, major neonatal

morbidities include morbidities such as bronchopulmonary dysplasia, cerebral palsy,

hyaline membrane disease/respiratory distress syndrome, hypoglycemia, intracranial

hemorrhage, neonatal seizures, neonatal sepsis, necrotizing enterocolitis, periventric-

ular leukomalacia, retinopathy of prematurity, and need for respiratory support. This

description of health outcomes is provided to the respondents in the instructions of

the survey.
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In the second part of the survey, the participants are asked to consider only one

type of health outcome at a time, and rate the safety of delivery states with respect

to a given health outcome. This task corresponds to rating the alternatives (delivery

states) with respect to decision criteria (health outcomes) in TOPSIS. The linguistic

rating scale includes very safe, safe, neither safe nor unsafe, unsafe and very unsafe.

Each delivery state is treated as an alternative, where a delivery state is defined

as a combination of three variables which are maternal health (in terms of HDP) at

delivery, gestational age at delivery, and delivery group. This definition is similar

to how the state of the DTMC is defined in Section 3.2. Maternal health states are

sPE, mPE, GH, and no diagnosis of HDP. Gestational ages are divided into four

time buckets (24-28, 29-32, 33-36 and 37-42 weeks) to have a reasonable number of

questions in the survey. Delivery groups are delivery with spontaneous labor, delivery

with induced labor, and delivery with no labor as defined in Section 3.2.2. In total,

we have 48 delivery states.

The participants are instructed to consider that spontaneous labor and induced

labor may result in vaginal delivery, assisted vaginal delivery, or emergency cesarean

delivery, and respond the questions in the second part accordingly. In the instructions

of the survey, we also asked participants to assume that

• The fetus is stable on admission, and there is no reasonable chance of sponta-

neous labor in the next 24 hours, and

• The women do not have any medical conditions that strongly influence hyper-

tension and/or route of delivery such as chronic hypertension, preexisting re-

nal disease, preexisting cardiac problems, preexisting diabetes, placenta previa,

prior cesarean delivery, obesity, and other conditions.
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Finally, in the third part, the participants are asked to provide information about

themselves and their practice to determine the level of credibility of their answers.

The information that we would like to find out in this part of the survey are as follows:

• Average number of deliveries the respondent performs in a month (less than 10,

10-19, 20-29, 30-39, 40-49, or greater than or equal to 50, not applicable),

• What portion of the respondent’s practice is obstetrics (less than 25%, 25%-

50%, 50%-75%, 75%-100%),

• The description of the respondent’s job practice (resident, general obstetrics and

gynecology, nurse midwife or practitioner, maternal-fetal medicine, and other),

and

• The experience of the respondent in terms of how many years he/she had prac-

ticed obstetrics.

The survey is distributed in an educational resident meeting at MIHS on 10/3/2014.

In total, we had 48 respondents who were given a paper copy of the survey. We ex-

clude the surveys filled out by medical students and physicians with less than three

years of obstetrics experience. We also exclude the surveys that were not completely

filled out. After exclusions, the total number of respondents included in calculations

is 23.

The respondents included in calculations have 14.1 years of obstetrics experience

on average. 70% of included respondents perform more than 20 deliveries in a month.

For 18 out of 23 respondents, more than 50% of their practice is obstetrics. The

distribution of job practice together with obstetrics experience among the included

respondents is as follows:
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Rating of health outcomes Triangular fuzzy number

1 (Not important) (0.00, 0.00, 0.10)

2 (0.05, 0.15, 0.25)

3 (0.15, 0.25, 0.35)

4 (0.25, 0.35, 0.45)

5 (0.35, 0.45, 0.55)

6 (0.45, 0.55, 0.65)

7 (0.55, 0.65, 0.75)

8 (0.65, 0.75, 0.85)

9 (0.75, 0.85, 0.95)

10 (Extremely important) (0.90, 1.00, 1.00)

Table 3.12: Linguistic Rating of Health Outcomes and the Corresponding

Triangular Fuzzy Numbers

• 8 respondents are residents with an average of 3.5 years of obstetrics experience,

• 14 respondents are physicians in general obstetrics and gynecology with an

average of 19.4 years of obstetrics experience, and

• 1 respondent is a physician in maternal and fetal medicine with 25 years of

experience.

After obtaining the linguistic ratings from the respondents on health outcomes and

delivery states, the next step is the translation of linguistics variables into triangular

fuzzy numbers that can be used in calculations. A linguistic variable is defined as a

variable with a value in linguistic terms, and a triangular fuzzy number ñ is defined

as a triplet (n1, n2, n3) by Chen (2000). Tables 3.12 and 3.13 present the triangular

fuzzy numbers that corresponds to the linguistic variables that are used to rate health

outcomes and delivery states in the survey.
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Rating of delivery states Triangular fuzzy numbers

Very safe (VS) (0.90, 1.00, 1.00)

Safe (S) (0.60, 0.75, 0.90)

Neither safe or unsafe (N) (0.35, 0.50, 0.65)

Unsafe (U) (0.10, 0.25, 0.40)

Very unsafe (VU) (0.00, 0.00, 0.10)

Table 3.13: Linguistic Rating of Delivery States and the Corresponding Triangular

Fuzzy Numbers

In summary, the remaining steps in our application of TOPSIS are as follows:

1. The ratings given by respondents on each health outcome are aggregated to

obtain the aggregated fuzzy weight of each health outcome.

2. The ratings given by respondents on each delivery state with respect to a given

health outcome are aggregated to obtain the aggregated fuzzy rating of each

delivery state with respect to that health outcome. This step is repeated for all

health outcomes. As a result, we obtain aggregated ratings x̃ij for all delivery

states i ∈ {1, 2, . . . , 48} and health outcomes j ∈ {1, 2, . . . , 6}.

3. The fuzzy decision matrices are constructed separately for maternal and neona-

tal health outcomes. The maternal fuzzy decision matrix, D̃M , consists of ag-

gregated ratings x̃ij with j = {1, 2, 3}. Similarly, the neonatal fuzzy decision

matrix, D̃N , consists of aggregated ratings x̃ij with j ∈ {4, 5, 6}.

4. The weighted fuzzy decision matrices are constructed by incorporating the ag-

gregated weights into the fuzzy decision matrices. Since all fuzzy numbers are

already defined in [0, 1], there is no need for normalization at this step.
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5. Fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS)

are defined as (1,1,1) and (0,0,0), respectively.

6. The distance of each delivery state from FPIS and FNIS are calculated. We

denote the distance from FPIS and FNIS with respect to maternal (neona-

tal) health outcomes with dM∗i and dM−i (dN∗i and dN−i ), respectively. Equa-

tion (3.5) shows the calculation of distance between triangular fuzzy numbers

m̃ = (m1,m2,m3) and ñ = (n1, n2, n3).

d(m̃, ñ) =

√
1

3
[(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2] (3.5)

7. The closeness coefficients of each delivery state are calculated for maternal

(CCM
i ) and neonatal (CCN

i ) health outcomes with Equations (3.6) and (3.7).

CCM
i =

dM−i
dM∗i + dM−i

(3.6)

CCN
i =

dN−i
dN∗i + dN−i

(3.7)

The closeness coefficients, CCM and CCN , that are calculated at the 7th step

constitute measures of safety of delivery states in terms of maternal and neonatal

health outcomes, respectively. We use these two measures of safety to compare and

rank the delivery states with respect to maternal health, gestational age, and delivery

group. All calculations are performed using Python programming language.

3.3.3 Results

Tables 3.14 and 3.15 show the closeness coefficients of delivery states calculated for

maternal and neonatal health outcomes, respectively. According to the results shown

in these tables, the safety of childbirth decreases as maternal health gets worse for

63



Delivery group
Maternal
health

Maternal closeness coefficients

Wk 24-28 Wk 29-32 Wk 33-36 Wk 37-42

Delivery with
spontaneous
labor

sPE 0.34 0.36 0.46 0.46

mPE 0.52 0.52 0.63 0.64

GH 0.55 0.56 0.65 0.69

No HDP 0.62 0.63 0.67 0.75

Delivery with
induced labor

sPE 0.22 0.23 0.38 0.40

mPE 0.39 0.41 0.52 0.60

GH 0.46 0.45 0.52 0.64

No HDP 0.50 0.54 0.61 0.71

Cesarean
delivery with no
labor

sPE 0.32 0.32 0.40 0.42

mPE 0.40 0.42 0.54 0.59

GH 0.43 0.46 0.53 0.60

No HDP 0.46 0.48 0.58 0.66

Table 3.14: Maternal Closeness Coefficients Calculated with TOPSIS

both the mother and the neonate as expected. However, the extent of decrease is not

the same for the mother and the neonate. When we compare the safety of childbirth

with no HDP (with a given gestational age and delivery group) to the same with sPE,

we see that the average decrease in safety is 40.5% for the mother and 17.2% for the

neonate. In addition, the safety of childbirth decreases as gestational age decreases for

both parties. Similar to what we observe for maternal health, the extent of decrease

is not close for both parties. The average decrease in safety between a term birth

at 37-42 weeks of gestation and a preterm birth at 24-28 weeks of gestation is 28.4%

for the mother and 69.7% for the neonate. Interestingly, the safety of childbirth with

induced labor and no labor are generally very close.
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Delivery group
Maternal
health

Neonatal closeness coefficients

Wk 24-28 Wk 29-32 Wk 33-36 Wk 37-42

Delivery with
spontaneous
labor

sPE 0.19 0.30 0.43 0.62

mPE 0.27 0.34 0.53 0.72

GH 0.29 0.37 0.54 0.72

No HDP 0.29 0.39 0.58 0.74

Delivery with
induced labor

sPE 0.17 0.27 0.44 0.63

mPE 0.18 0.27 0.50 0.72

GH 0.19 0.29 0.50 0.72

No HDP 0.21 0.31 0.54 0.74

Cesarean
delivery with no
labor

sPE 0.18 0.28 0.45 0.62

mPE 0.19 0.27 0.50 0.70

GH 0.18 0.27 0.51 0.71

No HDP 0.20 0.29 0.54 0.73

Table 3.15: Neonatal Closeness Coefficients Calculated with TOPSIS

3.3.4 Conclusions

In this study, our goal is to measure the safety of childbirth as a function of the

type of HDP at delivery, gestational age at delivery, and delivery group with respect

to maternal and neonatal health outcomes. We conduct a provider survey, and eval-

uate its results with the TOPSIS extended to fuzzy environment. In our provider

survey, participants rate the safety of childbirth in different delivery states with lin-

guistic variables ranging from very safe to very unsafe. We define delivery states

with maternal health at delivery, gestational age at delivery, and delivery group (i.e.,

delivery with spontaneous labor, delivery with induced labor, and cesarean delivery

with no labor). We use the closeness coefficients of TOPSIS calculated with mater-

nal (neonatal) health outcomes as measures of childbirth safety for the mother (the

neonate).
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In summary, the results show that the safety of childbirth decreases as maternal

health worsens in terms of HDP, and if the delivery happens earlier than full term

for both the mother and the neonate. The type of HDP at delivery is the main

determinant of childbirth safety in terms of maternal health outcomes, and gestational

age plays a similar role in neonatal health outcomes. The closeness coefficients of

gestational hypertension and mild preeclampsia are either close or very close. As a

final remark in this section, it is worthwhile to note that these conclusions are based

on the safety perceived by providers, and as a result, they may not perfectly reflect

the reality.

3.4 Discussion

In this chapter, we assess the risks of maternal and neonatal adverse outcomes

of childbirth with respect to gestational age at delivery in two different studies. In

the first study, we examine the clinical data on 8225 live singleton births with gesta-

tional ages of 33-42 weeks. We quantify the risks of maternal and neonatal childbirth

morbidities with a composite measure within the patient subgroups determined with

respect to the type of HDP at delivery, gestational age at delivery and delivery group

(i.e., delivery with spontaneous labor, delivery with induced labor, and cesarean de-

livery with no labor). In the second study, we use a provider survey and TOPSIS

to assess the safety of child delivery with respect to maternal and neonatal adverse

outcomes. In this provider survey, the physicians are asked to rate the safety of

child delivery with respect to maternal and neonatal adverse outcomes in the cases

of different types of HDP at delivery, timings of delivery, and delivery groups.

Both studies agree on the conclusion that the main determinants of maternal

and neonatal morbidities are maternal health (in terms of HDP) and gestational age

(at delivery), respectively. Therefore, the physicians’ perception of the factors that
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mainly derive maternal and neonatal morbidities seems to be accurate. Both the

CCM rates in the first study and the safety values in the second study calculated for

mild preeclampsia and gestational hypertension are either close or very close, which

indicates that gestational hypertension can be as critical as mild preeclampsia. This

observation supports earlier medical studies such as Buchbinder et al. (2002) which

emphasizes the severity of outcomes that gestational hypertension may bring about.

It also strengthens the ACOG Task Force’s recommendation to manage gestational

hypertension and preeclampsia without severe features similarly (ACOG, 2013b).

The methods and results of both studies presented in this chapter are used in

parameterizing the MDP and the RMDP models in Chapter 4, and establishing the

assumptions made to generate results. The method of the first study is used to cal-

culate the CCM rates for each week of gestation in the third trimester of pregnancy.

These CCM rates are used as values assigned to delivery states, each of which rep-

resents a delivery with given maternal health, gestational age, and delivery group, in

the value function of the MDP and the RMDP models.
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Chapter 4

THE OPTIMAL TIMING OF CHILD DELIVERY FOR WOMEN WITH

HYPERTENSIVE DISORDERS OF PREGNANCY

4.1 Introduction

In this chapter, we model the decision problem of timing of delivery in cases of

hypertensive disorders of pregnancy (HDP) as a Markov Decision Process (MDP)

by including the conflicting objectives of both the mother and the neonate. Our

research objective is to find the optimal timing of delivery in cases of HDP that

minimizes the risks of maternal and neonatal adverse outcomes that may happen

due to childbirth. We formulate a discrete-time, infinite-horizon MDP model that

minimizes the risks of maternal and neonatal adverse outcomes. The formulated

MDP model provides the optimal delivery strategies with two sets of input parameters

estimated with patient data: (1) transition probabilities (estimated in Chapter 2),

(2) the risks of maternal and neonatal adverse outcomes (estimated using childbirth

composite morbidity (CCM) rates as outlined in Chapter 3).

To shield the model results against uncertainty in the estimates of model param-

eters and the sensitivity of results to these estimates, first we use a robust MDP

(RMDP) model. In this model, we allow transition probabilities to change within

an uncertainty set defined by the confidence intervals (CIs) of transition probabilities

calculated with patient data. The goal is to find the worst-case optimal policy when

the transition probabilities are allowed to be determined by nature within their CIs

with the objective of maximizing the risk of adverse outcomes. Secondly, we evaluate

the results of MDP model in a probabilistic sensitivity analysis framework in which
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the risks of adverse outcomes are sampled according to the predetermined order re-

strictions. Thirdly, we include the RMDP model within the probabilistic sensitivity

analysis, and adopt nature’s transition probabilities in the evaluation of policies. We

gather the results of all analyses, and comment on the best structured policies and

how the recommended timing of delivery changes as we vary the weight given to

maternal (or neonatal) health outcomes.

The remainder of this chapter is organized as follows. In Section 4.2, we present

an overview of the medical literature relevant to our problem, the operations re-

search literature studying medical decision problems with MDPs, and the literature

on RMDPs. In Section 4.3, we describe our MDP and RMDP models, and provide

the structural properties of the models’ outputs under certain conditions. Section 4.4

presents the estimation of model parameters, and the results of numerical study in-

cluding a probabilistic sensitivity analysis with its robust counterpart. Finally, we

present the conclusions of our study, and discuss future research directions in Sec-

tion 4.5.

4.2 Literature

To the best of our knowledge, there is no operations research literature on the

decision problem of the timing of child delivery for women with HDP. However, there

is an extensive number of clinical studies that investigate care and delivery policies

in the management of HDP. Several clinical studies focus on expectant management

before 34 weeks of gestation for women with severe preeclampsia (sPE), and discuss

the adverse outcomes that expectant management may lead to based on retrospective

or prospective studies (Belghiti et al., 2011; Haddad et al., 2004; Hall et al., 2001b,

2000; Vigil-De Gracia et al., 2003). Another set of clinical studies address the same

issue of expectant management for women with sPE to provide recommendations on
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how to select patients for expectant monitoring (Hall et al., 2006; Sibai and Barton,

2007; Chammas et al., 2000; Shear et al., 2005). There are also clinical studies that

compare expectant management with interventionist care for women with HDP for

the gestational ages either less than 34 weeks or greater than 36 weeks (Magee et al.,

2009; Koopmans et al., 2007; Sibai, 2011). Finally, a number of studies compare

cesarean delivery against induction of labor in terms of maternal and/or neonatal

outcomes for the cases of sPE before 34 weeks of gestation (Hall et al., 2001a; Alanis

et al., 2008; Coppage and Polzin, 2002).

Medical studies focus on either a type of patient, a course of pregnancy or a

limited set of adverse outcomes, and mostly discuss descriptive results. Most of them

treat cesarean delivery as an adverse outcome, although it is generally considered

to be a mode of delivery that can be chosen by pregnant women even when there

is no medical indication. As a result, medical studies fail to handle the problem

comprehensively, and they do not provide instructive results that can guide clinicians

in the decision-making process. The trade-offs such as competing objectives of the

mother and the baby that prevail in the problem should be handled simultaneously

to provide meaningful medical guidelines.

The optimal control of the timing of child delivery is a sequential decision-making

problem under the uncertainty of disease progression and adverse outcomes. The

framework of MDPs fits well to this problem by capturing its fundamental features

such as the option of intervening at discrete time points as well as stochastic nature

of disease progression and spontaneous labor. Alagoz et al. (2010) state that MDPs

are powerful tools for probabilistic sequential decision-making that are underutilized

in medical decision-making compared to industrial and manufacturing applications.

Still, there are only a handful of studies that employ MDP in medical decision-making

especially for disease progression and intervention decisions.
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Shechter et al. (2008) study the optimal time to initiate HIV therapy with an

MDP model of HIV progression and treatment. Chhatwal et al. (2010) consider the

decision of biopsy based on mammographic features and demographic factors of a

woman when there is a suspicion of breast cancer according to mammogram results.

An MDP model is used to generate biopsy policies that are based on clinical data,

and perform better than the ones in use. He et al. (2010) study dosage decisions by

considering the trade-off between the risk of ovarian hyperstimulation syndrome and

the rate of pregnancy using an MDP model of the controlled ovarian hyperstimulation

cycle of the in vitro fertilization-embryo transfer therapy.

Denton et al. (2009) and Kurt et al. (2011) model the decision problem of optimal

timing of initiating statin therapy for patients with type 2 diabetes with an MDP

model by taking a societal perspective and the patient’s perspective, respectively.

Mason et al. (2012) study the impact of adherence on the optimal timing of initiating

statin therapy with an MDP model. Additionally for type 2 diabetes patients, Mason

et al. (2014) study the optimal timing of blood pressure and cholesterol medications.

Alagoz et al. (2004) study the optimal timing of living-donor liver transplant that

maximizes total reward of the patient. The single dimensional state of the MDP

model is patient’s health modeled by distinct levels. Alagoz et al. (2007a) consider a

similar problem of organ transplantation for patients with end-stage liver disease with

an available living donor. An MDP model is used to decide the timing of transplan-

tation, and the use of a cadaveric or a living-donor liver in case of a transplantation

decision. The state of the MDP model is described with the patient state and organ

quality. Alagoz et al. (2007b) address the organ accept or reject decision for patients

with the same disease on a waiting list of cadaveric liver transplantation. Patient

state and organ quality are included in the state of the process to determine if an

offered organ should be accepted or not. Sandıkçı et al. (2008) consider the same
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problem with a more inclusive state definition that additionally contains a measure

of patient’s ranking on the waiting list. An MDP model is used to find out patient’s

price of privacy, which is defined as the loss of expected lifetime because of incomplete

information on the waiting list.

Iyengar (2005) and Nilim and El Ghaoui (2005) independently propose robust

dynamic programming that includes a robust variant of Bellman recursion with the

mutual goal of dealing with the ambiguity in the transition probabilities due to esti-

mation errors. Robust MDPs have been applied to problems such as aircraft routing

(Nilim et al., 2002) and secure power control in cognitive radio networks (Xiao et al.,

2012) to find solutions robust to estimation errors in transition probabilities. In med-

ical decision-making, the only application of robust MDPs is the study of Zhang and

Denton (2016) to the best of our knowledge. In this study, a general robust MDP

model with transition probability matrices in a controllable uncertainty set is devel-

oped for medical treatment decisions, and the developed model is used to find optimal

treatment decisions for patients with type 2 diabetes by optimizing the sequence and

timing of medications for glycemic control.

The available studies on medical decision-making problems with MDP modeling

either do not include any analysis on the sensitivity of model parameters, or apply

deterministic sensitivity analysis by changing a subset of the model parameters within

predetermined ranges. However, the results of MDP models are often sensitive to

parameter estimates. The parameters are usually estimated based on clinical data

which may be limited in size and include errors. As a result, sensitivity analysis

should be regarded as crucial in MDP modeling. To the best of our knowledge, our

study is the first to incorporate probabilistic sensitivity analysis with order restrictions

between parameters, and combine robustness with respect to transition probabilities

within a probabilistic sensitivity analysis framework.
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4.3 Model Formulation

The decision problem under study is the timing of delivery in cases of pregnancies

with gestational hypertension and preeclampsia. As noted earlier, we consider both

maternal and neonatal health outcomes which often create conflicting objectives.

Maternal health and gestational age are the two main factors that are considered by

physicians to decide the timing of delivery when the fetus is medically stable, and

there is no reasonable chance of spontaneous labor in the next few days so that a

decision for an intervention would be meaningful.

We consider a pregnant woman in her third trimester of pregnancy receiving pre-

natal care and visiting her doctor or midwife periodically. The typical frequency for

prenatal visits is once in two to three weeks starting from the 28th to the 36th week,

and once-a-week after the 36th week. Prenatal visits are expected to be more frequent

if there is any sign or diagnosis of complications. A routine part of prenatal visits is

measuring blood pressure. Observation of blood pressure during the prenatal visits

is the initial step in the diagnosis of HDP. In case of a suspicious blood pressure el-

evation, the pregnant woman is monitored closely for the probable presence of HDP.

As a result, physicians typically have timely and perfect information regarding the

presence of any type of HDP for a woman in prenatal care during the third trimester

of pregnancy.

We formulate a discrete-time, infinite-horizon MDP model in which the objective

is to minimize the weighted risk of maternal and neonatal adverse outcomes1. We

denote the weight given to the maternal (neonatal) health outcome by α (1− α),

1We focus on health outcomes, and exclude financial costs associated with delivery or treatments

in case of adverse outcomes. However, the overall financial cost is expected to decrease with fewer

adverse outcomes.
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where 0 ≤ α ≤ 1. The state of the patient is denoted by s = (h, t, d), where h is the

maternal health, t is the gestational age, and d is the status of being pregnant or the

type of delivery if delivery has already happened.

The decision process is modeled for an infinite horizon using a multi-dimensional

state space in which the gestational age is one of the dimensions. Modeling the ges-

tational age as one of the state dimensions enables us to incorporate the dependency

of model parameters on gestational age, and avoid having non-stationary parameters

that would change with respect to gestational age as decision stages advance. As a

result, it also allows us to obtain optimal delivery strategies that are stationary.

The state space is defined as S = {s = (h, t, d) : h ∈ H, t ∈ T , d ∈ D}. The

elements of the set H from the most severe to the least severe (with their rankings)

are (1) sPE (severe preeclampsia), (2) mPE (mild preeclampsia), (3) GH (gestational

hypertension) and (4) N (normotensive). The set T includes gestational ages from

the 33rd (t = 33) week to the 42nd week (t = T = 42). The elements of set D are

P (continuing pregnancy), S (delivery with spontaneous labor), and I (delivery with

intervention).

A delivery with intervention is either a delivery with induced labor, or a (non-

emergent) cesarean delivery prior to labor. A delivery with spontaneous or induced

labor is either a vaginal delivery or a (emergency) cesarean delivery. Although de-

liveries are mostly grouped with respect to the actual route of delivery (i.e., vaginal

delivery and cesarean delivery) in the medical literature, we group deliveries accord-

ing to the intended route of delivery to obtain states representing the outcomes of

delivery decisions.

The state space S is composed of transient states representing the progression of

pregnancy (called pregnancy states) and absorbing states representing the termination

of pregnancy (called delivery states). Transient and absorbing states differ by their
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third state variable, d. The set of absorbing states is defined as Ŝ = {s = (h, t, d) :

h ∈ H, t ∈ T , d ∈ D \ {P}}, and the set of transient states is defined as S \ Ŝ = {s =

(h, t, d) : h ∈ H, t ∈ T , d = P}.

The possible actions to choose in a state of pregnancy s ∈ S \ Ŝ are (1) W:

waiting, i.e., doing nothing until the next decision epoch, (2) I: intervening to deliver.

The only exception is for the states of still being pregnant at the end of post-term

pregnancy, which corresponds to the 42nd week (t = T = 42). In that week, waiting is

no longer an option, since a pregnancy continuing beyond the 42nd week is undesirable

for the well being of both the mother or the baby. As a result, the set of admissible

actions is As = {W, I} for all s = (h, t, P ) such that h ∈ H, t ≤ T − 1, and As = {I}

for all s = (h, T, P ) such that h ∈ H. The set of actions is denoted with A, and

A =
⋃

sAs = {W, I}. The actions are taken at the beginning of each gestational week

starting from the 33rd week (t = 33), and the decision process terminates when a

delivery state is reached.

The probability of going from state s = (h, t, d) to s′ = (h′, t′, d′) where s, s′ ∈ S

under action a ∈ A is denoted with P(s′|s; a), or equivalently P(h′, t′, d′|h, t, d; a).

The transition probabilities and the resulting transition probability matrices under

each action a ∈ A are stationary, since the gestational age is included in the state

definition. If the chosen action is to wait in a pregnancy state s = (h, t, P ) ∈ S \ Ŝ

with t ≤ T − 1, the possibilities include moving to a pregnancy state with the same

or a worse1 maternal health in the next gestational week. It is also possible that

the wait action results in spontaneous labor, and hence, ending the pregnancy at

a delivery state with d = S. Therefore, we have P(h′, t+, P |h, t, P ; W) > 0 and

1We assume that it is not possible for maternal health to get better as gestational age advances,

since delivery is the only treatment of HDP, and there is no pharmacological cure (Duley, 2009; Foo

et al., 2015; Haddad et al., 2007). We revisit this as an assumption in Section 4.3.1.
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P(h′, t+, S|h, t, P ; W) > 0 for all h, h′ ∈ H such that h′ ≤ h and t ≤ T − 1 where

t+ = t + 1. Moreover, we have P(h′, t′, P |h, t, P ; W) = 0 and P(h′, t′, S|h, t, P ; W) = 0

for any t′ such that t′ 6= t+ 1. If the chosen action at a pregnancy state s ∈ S \ Ŝ

is not to wait (i.e., intervening via inducing labor or cesarean delivery), then the

pregnancy is terminated and the patient moves to a delivery state s ∈ Ŝ with the

same maternal health and gestational age. Therefore, we have P(h, t, I|h, t, P ; I) = 1

for all h ∈ H and t ∈ T .

Once the pregnancy ends with delivery, the decision process terminates by reaching

a delivery state for which the value of adverse health outcomes is assumed to be

known. The value of adverse health outcomes at delivery states are associated with

the maternal health and the gestational age at the time of delivery, as well as the

type of delivery. The goal is to take actions to move patients to the best delivery

states in the light of the known value of adverse health outcomes associated with the

delivery states. For simplicity, we refer the value of adverse health outcomes as costs

in the rest of the dissertation.

We denote the maternal and the neonatal costs of delivery states s ∈ Ŝ by ηM(s)

and ηN(s), respectively. Moreover, we have η(s) = αηM(s) + (1 − α)ηN(s) for all

s ∈ Ŝ as the weighted total cost of a delivery state where α ∈ [0, 1]. Bellman’s equa-

tion is given in Equation (4.1) in which υ(h, t, d) denotes the value of state s where

s = (h, t, d) ∈ S. We use η(s) (or, equivalently η(h, t, d)) as the value of delivery

state s ∈ Ŝ in Bellman’s equation. The value of pregnancy state s = (h, t, P ) for all

h ∈ H and t ≤ T − 1 is the minimum of the expected cost-to-go calculated for the

waiting action and the cost of intervention. At gestational age T = 42, the value of

pregnancy state s = (h, T, P ) for all h ∈ H is equal to the cost of intervention (i.e.,

η(h, T, I)) since waiting is not an option at t = T .
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Under the action of waiting at a pregnancy state (h, t, P ) with t ≤ T − 1, either

(1) the pregnancy continues with the same or a worse maternal health (i.e., the process

reaches the pregnancy state (h′, t+, P ) with h′ ≤ h by the next decision epoch), or

(2) the pregnancy terminates with spontaneous labor at gestational age t with the

same or a worse maternal health (i.e., the process reaches the delivery state (h′, t+, S)

with h′ ≤ h by the next decision epoch), and receives the cost of delivery state

(h′, t, S). The expected cost-to-go for the action of waiting at a pregnancy state with

t ≤ T − 1 is calculated using these two possibilities. There is no immediate cost

attached to choosing an action in any state, since there is no accumulation in costs.

υ(s) =



min

{ ∑
h′≤hP(h′, t+, P |h, t, P ; W)υ(h′, t+, P )

+
∑

h′≤hP(h′, t+, S|h, t, P ; W)η(h′, t, S),

η(h, t, I)

}
if h ∈ H, t < T, d = P

η(h, T, I) if h ∈ H, t = T, d = P

η(h, t, d) if h ∈ H, t ∈ T , d ∈ {S, I}
(4.1)

The MDP model can be solved using a value iteration algorithm, and is able to

produce the optimal decisions at pregnancy states with two sets of inputs: transition

probabilities under waiting action and the costs of delivery states. The solution

provides a set of optimal actions for the pregnancy states, i.e, a∗(h, t) such that

h ∈ H and t ∈ T . The optimal policy and the resulting decision rules are stationary.

We do not need to use discounted or an average cost criterion in the value function

unlike the majority of infinite horizon MDP models in the literature. The reason

is that the process ends up with a delivery state regardless of the state that it is
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initiated, and each delivery state is given a finite value in the value function without

adding a cost that accumulates through decision epochs.

In our problem, the transition probabilities under the action of waiting (i.e.,

P(h′, t+, P |h, t, P ; W) and P(h′, t+, S|h, t, P ; W) for all h, h′ ∈ H, h′ ≤ h, and t ≤ T − 1)

are maximum likelihood estimates (MLEs) from a set of patient data as described

in Chapter 2, and as a result, they are subject to estimation errors. Besides, they

do not include the variation that may stem from heterogeneity between individual

patients (Zhang and Denton, 2016). We use an RMDP formulation to deal with the

potential issue of uncertainty of transition probabilities with the goal of obtaining

optimal delivery strategies that are robust to estimation errors in these probabilities.

The approach in RMDP modeling leads to a game between the decision maker

and the nature. While the decision maker chooses between actions to minimize the

cost, the nature picks transition probabilities to achieve the exact opposite (Iyen-

gar, 2005). As a result, it gives the worst-case optimal policy (Iyengar, 2005; Nilim

and El Ghaoui, 2005). We define Qs as the stationary uncertainty set of the row of

transition probability matrix under waiting action that corresponds to the pregnancy

state s ∈ S \ Ŝ. Qs (or, equivalently Q(h,t,d)) is defined in Equation (4.2) according

to the interval matrix model given by Nilim and El Ghaoui (2005). In this equa-

tion, P l(s′|s, W) and Pu(s′|s, W) denote the lower and the upper bounds of P(s′|s, W),

respectively. The uncertainty set Q is defined as Q =
∏

s∈S\Ŝ Qs, and has the rect-

angular uncertainty property by definition. The decision of transition probabilities

at state s is independent of the decision of transition probabilities at state s′ where

s′ 6= s with this property.
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Qs =

{
P ∈ R|S|+ :

∑
s′∈S

P(s′|s, W) = 1, P l(s′|s, W) ≤ P(s′|s, W) ≤ Pu(s′|s, W)

}
∀s = (h, t, P ) : h ∈ H, , t ∈ T , t ≤ T − 1 (4.2)

Bellman’s equation of the RMDP model is given in Equation (4.3) in which

υR(h, t, d) denotes the robust value of state s where s = (h, t, d) ∈ S. It is similar to

the Bellman’s equation of the MDP model with one crucial difference in the calcula-

tion of the expected cost-to-go calculated for the waiting action at pregnancy states

with t ≤ T − 1. In this calculation, the nature decides on the transition probabilities

within Qs to maximize the expected cost of waiting at pregnancy states s = (h, t, P )

with t ≤ T − 1. According to Nilim and El Ghaoui (2005), we can assume that the

control and nature policies are stationary in the infinite horizon problem without loss

of generality. As a result, the nature picks a transition probability matrix which is

stationary in our problem. The RMDP model can be solved with robust dynamic

programming.

υR(s) =



min

{
max

P(h′,t+,d′|h,t,P ;W)
∈Q(h,t,P )

{ ∑
h′≤hP(h′, t+, P |h, t, P ; W)υR(h′, t+, P )

+
∑

h′≤hP(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
,

η(h, t, I)

}
if h ∈ H, t ≤ T − 1, d = P

η(h, T, I) if h ∈ H, t = T, d = P

η(h, t, d) if h ∈ H, t ∈ T , d ∈ {S, I}
(4.3)
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4.3.1 Structural Properties

In this section, we present the structural properties of our MDP and RMDP mod-

els. These structural properties shed light on how certain parameter characteristics

provide desirable properties of the optimal actions and delivery policies. The insights

of this section are used to generate candidate policies in our numerical study. All

proofs are given in Appendix A.1. We use t+ and t− (similarly h+ and h−) to be

equal to t + 1 and t − 1 (h + 1 and h − 1), respectively. We start with defining

functions f(h, t) and fR(h, t) to be the expected cost and the expected robust cost

of being in a pregnancy state s = (h, t, P ) with a policy of waiting (a = W) for one

week and intervening to deliver (a = I) the following week (if the delivery does not

happen with spontaneous labor in that one week), respectively.

f(h, t) and fR(h, t) are defined with Equations (4.4) and (4.5), respectively. They

are defined for all h ∈ H and t ≤ T − 1, since waiting is an option until week

T − 1. The first term in Equation (4.4) is the expected cost of waiting for one week

at the pregnancy state of (h, t, P ) and intervening to deliver in the following week

if the pregnancy continues without spontaneous labor from gestational age t to t+.

Similarly, the second term is the expected cost of waiting at the pregnancy state of

(h, t, P ) and having delivery with spontaneous labor before the pregnancy reaches

the gestational age t+. We define function fR(h, t) to be similar to the function

f(h, t) with the difference that the nature decides on the transition probabilities

in fR(h, t). As a result, fR(h, t) is the maximum that f(h, t) can take when the

transition probabilities are picked from the uncertainty set Q(h,t,P ).

f(h, t) =
∑
h′≤h

P(h′, t+, P |h, t, P ; W)η(h′, t+, I) +
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

(4.4)
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fR(h, t) = max
P(h′,t+,d′|h,t,P ;W)
∈Q(h,t,P )

{∑
h′≤h

P(h′, t+, P |h, t, P ; W)η(h′, t+, I)

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
= max
P(h′,t+,d′|h,t,P ;W)
∈Q(h,t,P )

{
f(h, t)

}
(4.5)

Lemma 4.1 provides a sufficient condition for waiting to be uniquely optimal for

a given state of pregnancy in our MDP and RMDP models. In words, the sufficient

condition is the cost of delivering with an intervention at that state to be greater

than the expected cost of waiting for one week, and delivering with an intervention

in the absence of spontaneous labor in the following week. The difference between

the left-hand side and the right-hand side of the conditions in parts (a) and (b) for

a pregnancy state provides the expected decrease in the risk of adverse outcomes by

choosing waiting instead of intervening at that pregnancy state, and as a result, gives

us an indication on how confidently we can recommend the action of waiting.

Lemma 4.1. [Sufficient Condition for the Optimality of Waiting] For a given α ∈

[0, 1], h ∈ H, and t ≤ T − 1,

(a) In the MDP model, if η(h, t, I) > f(h, t) then a∗(h, t, P ) = W, uniquely, and

(b) In the RMDP model, if η(h, t, I) > fR(h, t) then a∗(h, t, P ) = W, uniquely.

Example 4.1. Consider the pregnancy states s1 = (sPE, 33, P ) and s2 = (GH, 38, P ).

Table 4.1 gives the values of η(h, t, I)−f(h, t) for these two particular pregnancy states

with different α values. The expected decreases in the risk of adverse outcomes by

choosing the action of waiting for one week instead of intervening at s1 are 0.25 and

0.01 when α is equal to 0.00 and 0.75, respectively. According to Lemma 4.1, the
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State α = 0.00 α = 0.25 α = 0.50 α = 0.75 α = 1.00

s1 = (sPE, 33, P ) 0.25 0.17 0.09 0.01 -0.07

s2 = (GH, 38, P ) 0.02 -0.01 -0.04 -0.08 -0.11

Table 4.1: The Difference Between η(h, t, I) and f(h, t) for the States Given in

Example 4.1

optimal action at s1 in both cases is waiting. However, we can be more confident

about the optimality of the waiting action when α = 0.00 considering the fact that

both the costs of delivery states and transition probabilities are subject to estimation

errors. We can make a similar comparison between the expected decreases in the risk

of adverse outcomes at s1 and s2 (0.25 and 0.02, respectively) when α = 0.00.

Lemma 4.2 gives an overview of relations between the optimality of actions in the

MDP and the RMDP models. Since the nature maximizes the cost of waiting in the

RMDP model, the cost of waiting at a pregnancy state in the MDP model cannot

be higher than the same in the RMDP model. Therefore, if the optimal action is

intervening in the MDP model (at a given pregnancy state), it is also optimal to

intervene in the RMDP model. Similarly, if the optimal action is waiting in the

RMDP model (at a given pregnancy state), it is also optimal to wait in the MDP

model.

Lemma 4.2. [Optimality of actions in MDP and RMDP models] For a given α ∈

[0, 1], h ∈ H, and t ≤ T − 1,

(a) If a∗(h, t, P ) = I in the MDP model, then a∗(h, t, P ) = I in the RMDP model,

and

(b) If a∗(h, t, P ) = W in the RMDP model, then a∗(h, t, P ) = W in the MDP model.
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Since HDP are a set of progressive diseases in which the maternal health is not

expected to improve, the probability of going to a state with better maternal health

as the gestational age advances is zero. This is formalized in Assumption 4.1. This

assumption is used to limit the transitions to happen only from one state to another

state with the same or a worse maternal health. As a result, we are able to derive

(1) the conditions for the optimality of the action intervening to deliver in a subset

of states determined by a given maternal health and gestational age, and (2) the

conditions for the optimality of a switching curve policy.

Assumption 4.1.

P(h′, t+, P |h, t, P ; W) = 0, ∀h, h′ ∈ H, h′ > h, t ≤ T − 1 (4.6)

Proposition 4.1 gives the necessary and sufficient conditions for intervening to be

the optimal action in a subset of the pregnancy states defined by h ≤ ȟ and t ≥ ť

for a given ȟ and a given ť where h, ȟ ∈ H, t, ť ∈ T , and ť ≤ T − 1. The subset of

the pregnancy states is depicted by boundaries on maternal health ȟ and gestational

age ť in Figure 4.1. This figure illustrates the optimal actions at pregnancy states

s = (h, t, P ) with t ≤ T − 1. The optimal action is to intervene in the darker area,

if and only if, the condition of Proposition 4.1 holds for all pregnancy states that

correspond to that area (i.e., pregnancy states with h ≤ ȟ and t ≥ ť). For the MDP

model (the RMDP model), the condition given by Equation (4.7) (Equation (4.8))

requires that the cost of intervention to be less than or equal to the cost (the robust

cost) of the policy in which the decision maker chooses to wait for one week and deliver

the baby in the absence of spontaneous labor with an intervention in the following

week.

Proposition 4.1. [Optimality Conditions] Under Assumption 4.1 and for a given

α ∈ [0, 1], ȟ ∈ H, and ť ≤ T − 1, a∗(h, t, P ) = I for all h ≤ ȟ and t ≥ ť if and only if,
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Figure 4.1: The Structure of Actions as Proposed by Proposition 4.1

(a) The following statement holds in the MDP model:

η(h, t, I) ≤ f(h, t) ∀h ≤ ȟ, t ≥ ť, t 6= T. (4.7)

(b) The following statement holds in the RMDP model:

η(h, t, I) ≤ fR(h, t) ∀h ≤ ȟ, t ≥ ť, t 6= T. (4.8)

Example 4.2. Consider the case when α = 1.00. Figure 4.2 gives the values of

η(h, t, I) − f(h, t) for all pregnancy states with t ≤ T − 1. According to the values

shown in this figure, η(h, t, I)− f(h, t) ≤ 0 (i.e., η(h, t, I) ≤ f(h, t)) for all pregnancy

states in the subsets defined by ȟ1 = N and ť1 = 38, and ȟ2 = GH and ť2 = 36. As

a result, we can conclude that the optimal action is to intervene at the states in the

darker area shown in Figure 4.2 without solving for the optimal actions with value

iteration algorithm.

A switching curve policy is characterized by critical indices (thresholds) on ges-

tational age (for each maternal health h ∈ H) after which the optimal action is to

intervene. Under certain conditions, such a policy is optimal and it is monotone in

maternal health as depicted in Figure 4.3. In this policy, the critical indices on ges-

tational age are non-decreasing in maternal health. We propose Conditions (1) and
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Figure 4.2: The Difference Between η(h, t, I) and f(h, t) for All Pregnancy States

with t ≤ T − 1 When α = 1.00

(2) (Conditions (3) and (4)) to show the existence of monotone switching curves in a

delivery policy provided by the MDP model (the RMDP model). For a given h ∈ H,

the critical indice t∗(h) is the lowest gestational age t that satisfies the conditions of

Proposition 4.1 in the subset of states defined with ȟ = h and ť = t.

Condition 1 f(h+, t)− f(h, t) ≤ η(h+, t, I)− η(h, t, I)

Condition 2 f(h, t−)− f(h, t) ≤ η(h, t−, I)− η(h, t, I)

Condition 3 fR(h+, t)− fR(h, t) ≤ η(h+, t, I)− η(h, t, I)

Condition 4 fR(h, t−)− fR(h, t) ≤ η(h, t−, I)− η(h, t, I)

Figure 4.3: The Structure of Optimal Delivery Policy as Proposed by Proposition

4.2
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Condition (1) suggests that there is more benefit of an intervention than waiting

when maternal health worsens. This has intuitive appeal since intervention becomes

more crucial as maternal health deteriorates both for the mother and the neonate.

Similarly, Condition (2) implies that there is more benefit of an intervention as ges-

tational age proceeds. This also intuitively sounds reasonable since delivery becomes

riskier for the mother as the baby grows in size. Hence, an intervention should have

more benefit at a later gestational age compared to an earlier one for the mother.

For neonates, the baby requires more time to fully grow at an earlier gestational age.

Hence, an intervention should have less benefit at an earlier gestational age compared

to a later one.

Under Conditions (1) and (2), the optimal delivery policy belongs to the class of

monotone switching-curve policies in the MDP model as suggested by Proposition

4.2. Similarly, we have Conditions (3) and (4) for the same goal in the RMDP model.

Proposition 4.2. [Switching-Curve Policy] Under Conditions (1) and (2), the

following statements hold for α ∈ [0, 1] in the MDP model:

(a) For states s = (h, t, P ) ∈ S \ Ŝ, there exists a critical index t∗(h) such that

waiting is preferred if, and only if, t ≤ t∗(h),

(b) Critical indices t∗(h) form a non-decreasing sequence: h1 ≥ h2 ⇒ t∗(h1) ≥ t∗(h2),

Under Conditions (3) and (4), the following statements hold for α ∈ [0, 1] in the

RMDP model:

(c) For states s = (h, t, P ) ∈ S \ Ŝ, there exists a critical index t∗R(h) such that

waiting is preferred if, and only if, t ≤ t∗R(h),

(d) Critical indices t∗R(h) form a non-decreasing sequence: h1 ≥ h2 ⇒ t∗R(h1) ≥ t∗R(h2).
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In the RMDP model, the nature picks the transition probabilities to maximize the

expected cost of waiting, and waiting becomes more costly as opposed to intervening

when compared to the MDP model. Therefore, we expect the critical indices t∗R(h)

to be not greater than the critical indices t∗(h) under Conditions (1)-(4). Figure 4.4

illustrates how the switching curve policies in the MDP and the RMDP models may

look like. Under Conditions (1)-(4), we show the order between the critical indices of

switching curve policies in the MDP and the RMDP models in Proposition 4.3. We

use Proposition 4.1 in the proof of Proposition 4.3 as given in Appendix A.1.

Proposition 4.3. [Order in Critical Indices] Under Conditions (1)-(4) and for

α ∈ [0, 1], t∗R(h) ≤ t∗(h) for h ∈ H.

Figure 4.4: The Structure of Optimal Delivery Policies as Proposed by Proposition

4.3

4.4 Numerical Study

We estimate the parameters of our MDP model with clinical data. The source of

clinical data is Maricopa Integrated Health system (MIHS), a teaching hospital and

healthcare system in Maricopa County of Arizona. Our cohort contains women who

received care throughout their pregnancy, and gave birth at MIHS between March

2012 and December 2015. The data used in the parameter estimations include the
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singleton pregnancies, and excludes the ones that ended with a stillbirth. It also

excludes the pregnancies complicated with chronic hypertension that is diagnosed

prior to pregnancy, since the focus of our study is pregnancy-induced hypertension.

If a woman gave birth more than once during the time period of the data, only one

of her pregnancies is randomly selected and included in the study.

We present the estimation of parameters (as an overview of estimations in Chap-

ters 2 and 3) together with the imputation of missing ones in Section 4.4.1. We discuss

the results of our MDP and RMDP models gathered with the estimated parameters

in Section 4.4.2. In Section 4.4.3, we describe the probabilistic sensitivity analysis of

our MDP and RMDP models on the costs of delivery states, and present the policy

recommendations. In Section 4.4.4, we discuss the implications of the results of our

numerical study.

4.4.1 Estimation and Imputation of the Model Parameters

The MDP and the RMDP models require the estimation of transition probabilities

and the costs of delivery states together with their CIs as parameters. For the esti-

mation of transition probabilities, we use the results of ORI-TPM model presented

in Chapter 2. We calculate the CIs of transition probabilities with the adjusted Wald

method. For the estimation of the costs of delivery states, we calculate maternal and

neonatal CCM rates at each gestational age t ∈ T as outlined in Section 3.2.2.

Since ηM(h, t, d) is estimated with the maternal CCM rate, it is the risk of maternal

composite outcome occurring due to childbirth. Therefore, it can be considered as

a binomial proportion for which the success probability is the probability of having

a maternal composite outcome. This is the same for ηN(h, t, d) and neonatal CCM

rate. Although we have a large sample size in total, some of the delivery states have

few observations due to the high number of delivery states, and uneven distribution
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of observations among these states. For instance, the sample size is smaller than 10

for 36% (29 out of 80) of the delivery states, and there are no observations for 5% (4

out of 80) of the delivery states.

As point estimates of ηM(h, t, d) and ηN(h, t, d), we use Wilson’s estimates (Wil-

son, 1927), which are shown to outperform MLEs for binomial proportions in case of

small sample sizes (Lewis and Sauro, 2006). Similarly, we employ the adjusted Wald

method to construct 95% CIs of ηM(h, t, d) and ηN(h, t, d) for all s = (h, t, d) ∈ Ŝ,

since this method gives good coverage probabilities when the number of observations

is small (Agresti and Coull, 1998; Sauro and Lewis, 2005; Lewis and Sauro, 2006).

In the estimation of the costs of delivery states, we use two different methods to

impute the missing values, and improve the estimates with small samples. The first

method is maximum likelihood estimation under order restrictions with respect to

maternal health, gestational age, and type of delivery. This method involves con-

structing a nonlinear optimization model in which the objective is to maximize the

likelihood function subject to the constraints that impose the order restrictions. The

model is named as the order restricted inference of the costs of delivery states (ORI-

CDS), and it is given in Appendix A.2. We gather a collection of estimations with

ORI-CDS by including order restrictions with respect to different sets of dimensions

of the delivery states. The order restrictions are explained in detail in Section 4.4.3.

We interpolate the costs of delivery states with no observations using the costs of the

nearest delivery states in terms of gestational age.

The second method is multiple imputation by chained equations (MICE) that

uses a random forest algorithm to impute the missing values (Raghunathan et al.,

2001; Van Buuren, 2007; Buuren and Groothuis-Oudshoorn, 2011; White et al., 2011).

Although we have observations to estimate the costs of 95% of the delivery states, a

significant portion of these states have low sample sizes. We treat these delivery states
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as states with missing values, and impute their estimations as well. We iteratively

enlarge the portion of the delivery states that we treat their costs as missing values

to impute, and gather different sets of estimations.

We determine the delivery states to include in the imputations based on the range

of the adjusted Wald CIs of cost estimations. In total, we gather five sets of costs by

imputing the costs of delivery states with CIs having ranges larger than 0.6, 0.5, 0.4,

0.3, and 0.2 in addition to the costs of delivery states with no observations. To gather

each set, we run MICE 100 times with the R package mice (Buuren and Groothuis-

Oudshoorn, 2011), and average the imputations over all runs for each delivery state.

We use Wilson’s estimates for the costs that are not imputed with MICE.

4.4.2 The Optimal Delivery Policies

We obtain the optimal actions at the pregnancy states by solving the MDP model

using a value iteration algorithm with transition probabilities estimated using the

ORI-TPM model and different sets of costs of delivery states. The sets of costs

of delivery states include MLEs, Wilson’s estimates, and the estimates found with

ORI-CDS model and MICE as discussed in Section 4.4.1. We calculate the costs of

delivery states for all α ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. The costs with α = 1.00

and α = 0.00 correspond to the maternal and the neonatal policies, respectively.

Additionally, we gather the worst-case optimal policies by solving the RMDP model

with robust dynamic programming with the same set of α values. In these solutions,

we use the 95% CIs of transition probabilities to define the uncertainty set given in

Equation (4.2). The optimal actions found with different α values and the costs of

delivery states are provided in Appendix A.3. We make the following observations

on the optimal actions based on the results gathered with the MDP and the RMDP

models.
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Observation 1 Optimal actions and resulting delivery policies are highly sensitive

to the costs of delivery states.

Observation 2 When the objectives of mother and neonate are combined with a

given α ∈ (0, 1), the optimal actions mostly do not form switching curve policies.

Observation 1 is not unexpected, since MDPs have the potential to be sensitive to

model parameters (Steimle and Denton, 2017). Since MDPs are sequential decision

models, a change in the cost of a delivery state is likely to impact the decisions

preceding its gestational age like a “domino effect”, as discussed by Chen et al. (2017).

The sensitivity of the optimal actions to the costs of delivery states makes it difficult to

determine delivery policies to recommend for clinical practice. Besides, the structure

of the recommended optimal policies is of critical importance in its implementation

in clinical practice (Puterman, 1994; Steimle and Denton, 2017). As Observation

2 indicates, the optimal actions do not constitute a policy with a certain structure

especially for α ∈ (0, 1). For the MDP model (the RMDP model), conditions (1) and

(2) (conditions (3) and (4)) of Proposition 4.2 mostly do not hold, and therefore the

optimal actions do not form a switching curve policy.

Observations 1 and 2 motivate us to employ a probabilistic sensitivity analysis

(PSA) approach as presented in Section 4.4.3. Our goals in adopting a PSA approach

are twofold. We first use PSA to explore the best switching-curve policy (or policies)

that can be recommended for use in practice under the light of the available data, and

established clinical information on the order of the model parameters. Secondly, PSA

is adopted to evaluate the sensitivity and confidence in the recommended structured

policies. The main motivation behind these two goals is the fact that we estimate

the costs of delivery states using a data set with limited sample size for a significant

portion of delivery states.
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Similar issues with limited or missing data can be seen in other medical decision

problems that involve diseases that are of critical importance but not seen widely in

population, or problems for which there is not an organized data collection effort.

Our PSA approach may lower the barrier of the need for ample data in sequential

medical decision-making problems, and be useful in solving the decision models that

would not be studied due to the lack of sufficient data to estimate all parameters.

4.4.3 Probabilistic Sensitivity Analysis

In this section, we examine the performance of a set of delivery policies (called

candidate policies) by probabilistically sampling the maternal and neonatal costs of

delivery states within their CIs constructed with the available patient data. We

incorporate the order restrictions between the costs in terms of maternal health,

gestational age, and type of delivery into their probabilistic sampling. These order

restrictions are deduced based on the clinical information established in the medical

literature and observed in our data.

In a problem instance, first we sample maternal and neonatal costs of all delivery

states. Then, we calculate the optimality gaps between the optimal policy for that

particular problem instance and the candidate delivery policies. The output of this

analysis is the optimality gap averaged over all problem instances for each candidate

delivery policy under study. The average optimality gap for a candidate delivery

policy is a measure of policy acceptability when the joint uncertainty of cost of delivery

states is taken into account.

The studies modeling medical decision-making problems with MDPs typically

either use deterministic sensitivity analyses in which they change the value of param-

eters within scenario analyses, or solve the MDP models only with point estimate of

parameters without evaluating the sensitivity of solutions to these parameters (Alagoz
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et al., 2004; Sandıkçı et al., 2008; Shechter et al., 2008; Chhatwal et al., 2010; Kurt

et al., 2011; Chen et al., 2017). However, these approaches fail to provide sufficient

information to evaluate the confidence in the recommendations produced with the

MDP models, and to translate the model outputs into clinical insights (Chen et al.,

2017).

PSA is a recommended approach by The ISPOR-SMDM Modeling Good Research

Practices Task Force in addition to a deterministic sensitivity analysis to assess the

impact of parameter uncertainty on model results (Briggs et al., 2012). Chen et al.

(2017) propose a probabilistic approach to conduct sensitivity analysis in sequential

decision problems that are solved with MDPs. The framework of our PSA approach

is different than the one proposed by Chen et al. (2017) in two ways. First, we

impose order restrictions between parameters in the process of probabilistic sampling.

Secondly, we compare a set of candidate policies with respect to their optimality gap

instead of building the analysis on a single base case policy.

One way of generating a problem instance is sampling maternal and neonatal costs

for all delivery states with uniform distribution from their CIs. If the generated prob-

lem instance satisfies the order restrictions between all delivery states, it is included

in the set of problem instances. Otherwise, it is discarded, and a new instance is

generated. Our initial experiments demonstrate that it is computationally ineffective

to collect a set of problem instances with this straightforward approach, since it is

required to sample a large number of problem instances to find one instance that

satisfies all order restrictions. Therefore, we first adjust the bounds of CIs according

to the order restrictions as outlined in Algorithm 1 prior to the generation of prob-

lem instances. We continue adjusting the bounds as costs are sampled in a problem

instance. The goal is to efficiently create problem instances that would be plausible

by satisfying the order restrictions between delivery states.
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Algorithm 1 Adjust lower and upper bounds of ηM(s)
1: Inputs:

lM(s), uM(s) Lower and upper bounds of CIs of ηM(s) for s ∈ Ŝ
2: while ∃ bounds of ηM(s) to update, do

3: for each delivery state s1 ∈ Ŝ do

4: for each delivery state s2 ∈ Ŝ do
5: if s1 <M s2 then
6: if lM(s1) < lM(s2) then
7: lM(s1)← lM(s2)
8: end if
9: if uM(s1) < uM(s2) then
10: uM(s2)← uM(s1)
11: end if
12: end if
13: end for
14: end for
15: end while

We define the relations
h
<M ,

t
<M and

d
<M (

h
<N ,

t
<N and

d
<N) to formulate the

order restrictions between two delivery states in terms of maternal (neonatal) cost

with respect to the state dimensions h, t, and d, respectively. For instance, s1

h
<M s2

(s1

h
<N s2) indicates that s1 is worse than s2 (or, equivalently s2 is better than s1)

in terms of h with respect to the risk of maternal (neonatal) adverse outcomes. We

have the order restriction s1 <M s2 if we have s1

h
<M s2, or s1

t
<M s2, or s1

d
<M s2.

The order restriction <N is defined similarly with the relations
h
<N ,

t
<N and

d
<N . The

order restrictions <M and <N are used in the probabilistic sampling of the maternal

and neonatal costs of delivery states.

Table 4.2 presents how each relation is translated into order restrictions for any

given two states s1 = (h1, t1, d1) and s2 = (h2, t2, d2) where s1, s2 ∈ Ŝ. As expected,

both maternal and neonatal costs of delivery states increases with decreasing h, i.e.,

deteriorating maternal health (Barton et al., 2001; Habli et al., 2007; Kuklina et al.,

2009; Bazzano et al., 2016). Maternal cost of delivery states decreases as gestational

age advances until the end of early term (37-38 weeks), and increases after the start of
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Relation Order in h Order in t Order in d

s1

h
<M s2 h1 < h2 t1 = t2 d1 = d2

s1

t
<M s2 h1 = h2

t1 < t2 and t1, t2 ≤ 38;

or t1 > t2 and t1, t2 ≥ 39
d1 = d2

s1

d
<M s2 h1 = h2 t1 = t2 d1 = S, d2 = I

s1

h
<N s2 h1 < h2 t1 = t2 d1 = d2

s1

t
<N s2 h1 = h2 t1 < t2 and t1, t2 ≤ 41 d1 = d2

s1

d
<N s2 h1 = h2 t1 = t2 d1 = I, d2 = S

Table 4.2: The Order Restrictions Implied by the Defined Relations

the full term (39-40 weeks) (Von Dadelszen et al., 2011). On the other hand, neonatal

cost decreases as the pregnancy prolongs since the fetus have more time to reach full

maturation in utero (Hutcheon et al., 2011; Auger et al., 2016; Magee et al., 2016).

Maternal and neonatal costs demonstrate opposite trends in terms of type of delivery

in our patient data. While maternal costs are higher in deliveries with spontaneous

labor, neonatal costs are less in the presence of spontaneous labor (Habli et al., 2007).

Before sampling the costs of delivery states, our PSA procedure starts with adjust-

ing the lower and upper bounds of CIs according to order restrictions “· <M ·” and

“· <N ·”. We denote lower (upper) bounds of ηM(s) and ηN(s) with lM(s) and lN(s)

(uM(s) and uN(s)), respectively. The bounds are adjusted by making comparisons be-

tween two states at a time. For instance, if we have s1 ∈ [0.14, 0.45], s2 ∈ [0.19, 0.23]

and s1 <M s2, we assume that ηM(s1) cannot be smaller than the lowest value that

ηM(s2) may have, and we adjust lM(s1) to be equal to lM(s2). Similarly, if we have

s1 ∈ [0.21, 0.25], s2 ∈ [0.14, 0.36], and s1 <M s2, then we assume that ηM(s2) cannot

be greater than the highest value that ηM(s1) may have, and we adjust uM(s2) to be
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CI range of ηM(s) values CI range of ηN(s) values

Statistics Before After Before After

Average 0.42 0.24 0.38 0.21

Median 0.37 0.22 0.32 0.13

Standard deviation 0.25 0.16 0.26 0.19

Table 4.3: The Statistics of CI Ranges Over All Delivery States Before and After

Adjusting Bounds

equal to uM(s1). The bounds of ηM(s) and ηN(s) are adjusted separately until there

are no possible adjustments left between any two delivery states.

Algorithm 1 formalizes the steps followed for the procedure of adjusting bounds

of maternal cost of delivery states. The same procedure is followed for the bounds of

neonatal cost of delivery states. On average, the CI ranges reduced approximately by

half after adjusting the bounds according to the order restrictions prior to probabilistic

sampling of costs. Table 4.3 presents the statistics of the CI ranges over all delivery

states before and after adjusting the bounds of maternal and neonatal costs of delivery

states. In our computations, the bounds of both ηM(s) and ηN(s) are adjusted by

visiting the while loop at line (2) of Algorithm 1 three times.

In PSA, new values of ηM(s) and ηN(s) are sampled for all delivery states s ∈ Ŝ

in each problem instance, and N̊ problem instances are generated in total. Algorithm

2 shows the steps to follow for sampling of maternal cost of delivery states (ηM(s))

in the generation of problem instances. The same steps are followed for the sampling

of neonatal cost of delivery states (ηN(s)) with inputs lN(s) and uN(s), and order

restriction “· <N ·”. In a problem instance, Algorithm 2 samples the cost of one

delivery state at a time until sampling is completed for all delivery states. We use
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Algorithm 2 Generate problem instances
1: Inputs:

N̊ The number of problem instances to generate

lM(s), uM(s) Adjusted lower and upper bounds of ηM(s) for all s ∈ Ŝ
2: Sort delivery states s ∈ Ŝ with respect to uM(s)− lM(s) in ascending order

3: for i = 1..N̊ do

4: input: lM(s), uM(s) for all s ∈ Ŝ
5: for š1 = 1..|Ŝ| do
6: for š2 = 1..(š1 − 1) do
7: if s1 <M s2 do
8: if lM(s1) < ηM(s2) < uM(s1) do
9: lM(s1)← ηM(s2)
10: end if
11: if ηM(s2) > uM(s1) do
12: c← c+ 1
13: end if
14: end if
15: if s2 <M s1 do
16: if lM(s1) < ηM(s2) < uM(s1) do
17: uM(s1)← ηM(s2)
18: end if
19: if ηM(s2) < lM(s1) do
20: c← c+ 1
21: end if
22: end if
23: end for
24: Generate uniform random variable a in [0, 1]
25: ηM(s1)← lM(s1) + a×

(
uM(s1)− lM(s1)

)
26: end for
27: end for

š (see lines (5)-(6) of Algorithm 2) to denote the order of delivery state s within all

delivery states in the sampling process.

Before sampling the cost of delivery state s1 with the order š1, its bounds are ad-

justed with respect to the costs sampled (of delivery states s2 with š2 ∈ {1, ..., š− 1})

before that particular state. The rationale behind the adjustment scheme is similar

with that of Algorithm 1. For a pair of states s1 and s2 where the maternal cost

of s2 is already sampled, if we have s1 <M s2 and lM(s1) < ηM(s2) < uM(s1),

we adjust lM(s1) to be equal to ηM(s2). Similarly, if we have s2 <M s1 and
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lM(s1) < ηM(s2) < uM(s1), we adjust uM(s1) to be equal to ηM(s2). The maternal

cost of s1 is sampled after all possible adjustments are completed, and the proce-

dure moves to the next delivery state with the order š1 + 1. After maternal costs of

all delivery states are sampled within a problem instance, the procedure starts the

sampling of next problem instance until N̊ problem instances are generated. Before

the generation of each problem instance, the lower and upper bounds are set to their

original adjusted values in line (4) of Algorithm 2.

Although they are rare, it is possible to have violations of order restrictions be-

tween pairs of states with Algorithm 2. For a pair of states s1 and s2 where the

maternal cost of s2 is already sampled, we have a violation if we have s1 <M s2 and

ηM(s2) > uM(s1), or s2 <M s1 and ηM(s2) < lM(s1). The variable c counts the

number of violations within a created problem instance in lines (12) and (20) of Algo-

rithm 2. The sampling process starts with sorting the delivery states with respect to

their CI ranges in ascending order (line (2) of Algorithm 2) in an effort to minimize

the count of violations. The average counts of violations are 1.7 and 0.2 over 1000

problem instances when the delivery states are sorted with respect to their CI ranges

in the sampling of ηM(s) and ηN(s), respectively. The same average counts are 7.0

and 8.3 when the costs are sampled in orders randomized in each problem instance.

If we do not adjust the bounds as outlined in Algorithm 1, and use this randomized

ordering, the average counts of violations are 40.3 and 42.7 in the sampling of ηM(s)

and ηN(s), respectively.

Similar to the notation used in Chen et al. (2017), we use πj and πiα to denote

the jth candidate delivery policy and the optimal delivery policy found with α for the

ith problem instance, respectively. V i
α(πj, s) denotes the expected cost of candidate

policy πj with α for the ith problem instance for pregnancy state s ∈ S \ Ŝ. υiα(s) is

the expected cost of pregnancy state s ∈ S \ Ŝ with the optimal delivery policy πiα
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Algorithm 3 Probabilistic sensitivity analysis
1: Inputs:
α The weight given to the maternal health outcomes, α ∈ [0, 1]

N̊ The number of problem instances to generate
Π Set of candidate delivery policies
P(s′|s, W) Transition probabilities under the action of waiting

lM(s), uM(s) Lower and upper bounds of CIs of ηM(s) for s ∈ Ŝ
lN(s), uN(s) Lower and upper bounds of CIs of ηN(s) for s ∈ Ŝ

2: Adjust lM(s), uM(s), lN(s), and uN(s) with Algorithm 1

3: Generate N̊ problem instances with Algorithm 2

4: for i = 1..N̊ do

5: Compute υiα (s) for all pregnancy states s ∈ S \ Ŝ with value iteration
6: end for
7: for j = 1..|J | do
8: for i = 1..N̊ do

9: Compute V i
α (πj, s) for all pregnancy states s ∈ S \ Ŝ

10: end for
11: end for

12: Calculate δα(πj, s) for all πj ∈ Π and s ∈ S \ Ŝ
13: Calculate ∆α(πj) for all πj ∈ Π

for the ith problem instance. Then, the optimality gap of the jth candidate policy at

pregnancy state s is defined as follows:

δα(πj, s) =

∑N̊
i=1

(
V i
α(πj, s)− υiα(s)

)
N̊

. (4.9)

The numerator of Equation (4.9) is defined as the absolute gap by Chen et al.

(2017). We measure the performance of each candidate policy with respect to the

maximum difference between its optimality gap and the minimum optimality gap

(attained by any candidate policy) at a pregnancy state. We denote this measure as

∆α(πj) for candidate policy πj, and define it with Equation (4.10). Algorithm 3 sum-

marizes the procedure of PSA. Its output is the maximum optimality gap ∆α(πj) of

each candidate policy included in set Π = {π1, π2, . . . , πJ} over N̊ problem instances.

∆α(πj) = max
s∈S\Ŝ

{
δα(πj, s)− min

πk∈Π

{
δα(πk, s)

}}
. (4.10)
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In this decision problem, the number of possible decision sequences is 236, which is

about 70 billion with 36 pregnancy states with As = {W, I}. Since it is not possible to

check all possible decision sequences, a small subset of these policies are included in

the set of candidate policies. The main goal is to include reasonable policies that can

be adopted in practice. As a result, these policies should be in line with the policies

discussed in clinical practice guidelines. These guidelines discuss delivery policies

based on a recommended gestational age for delivery with respect to the type of HDP

that the mother has (ACOG, 2013b; Magee et al., 2016).

The candidate delivery policies to be included in PSA are constructed as follows.

All policies are set to deliver after 40th week of pregnancy when the mother has no

HDP. Therefore, a candidate policy is denoted with three gestational ages (t1, t2, t3)

each denoting the minimum gestational age at which the action is to intervene in cases

of GH, mPE, and sPE, respectively. Only policies with a structure such that t1 ≥ t2 ≥

t3 are included, and t1, t2 and t3 are chosen as even numbers to have a reasonable num-

ber of candidate policies. In summary, the set of candidate delivery policies is defined

as Π = {π = (t1, t2, t3) : t1 ≥ t2 ≥ t3; and ti ≤ 40, ti ∈ T , ti ∈ 2Z ∀i ∈ {1, 2, 3}}, and

its size is 20.

We run PSA for α ∈ {0.00, 0.25, 0.50, 0.75, 1.00} with the same N̊ = 1000 problem

instances. We use the output of ORI-TPM model as estimates of transition proba-

bilities. Table 4.4 presents the results with the order restrictions on maternal health,

gestational age, and type of delivery given in Table 4.2. The smallest values of ∆α(πj)

over all candidate policies in Π are underlined in Table 4.4 for each α value. Since

the order restrictions with respect to delivery group have less evidence both for ma-

ternal and neonatal cost of delivery states, we additionally run PSA analysis without

these order restrictions. Although the values of ∆α(πj) are different, the candidate

deliveries giving the smallest of those values do not differ significantly.

100



Policy α = 0.00 α = 0.25 α = 0.50 α = 0.75 α = 1.00

(34,34,34) 0.375 0.287 0.201 0.149 0.113

(36,34,34) 0.375 0.287 0.201 0.149 0.113

(36,36,34) 0.375 0.287 0.201 0.144 0.094

(36,36,36) 0.216 0.143 0.078 0.035 0.009

(38,34,34) 0.375 0.287 0.201 0.149 0.113

(38,36,34) 0.375 0.287 0.201 0.144 0.094

(38,36,36) 0.216 0.143 0.078 0.026 0.013

(38,38,34) 0.375 0.287 0.201 0.144 0.094

(38,38,36) 0.197 0.106 0.022 0.029 0.072

(38,38,38) 0.091 0.038 0.000 0.061 0.142

(40,34,34) 0.375 0.287 0.201 0.149 0.113

(40,36,34) 0.375 0.287 0.201 0.144 0.094

(40,36,36) 0.216 0.143 0.078 0.043 0.083

(40,38,34) 0.375 0.287 0.201 0.144 0.094

(40,38,36) 0.197 0.106 0.022 0.043 0.083

(40,38,38) 0.091 0.036 0.014 0.061 0.142

(40,40,34) 0.375 0.287 0.201 0.144 0.123

(40,40,36) 0.197 0.106 0.022 0.059 0.123

(40,40,38) 0.091 0.036 0.018 0.061 0.142

(40,40,40) 0.000 0.000 0.020 0.075 0.166

Table 4.4: The Optimality Gaps of Candidate Policies Found with PSA

According to Table 4.4, the time to intervene is 40 weeks regardless of the maternal

health at α values favoring the neonatal health outcomes (i.e., α = {0.00, 0.25}). At

α values giving more weight to the maternal health outcomes (i.e.,α = {0.75, 1.00}),

the time to intervene is between 36 to 38 weeks, and it decreases with worse maternal

health. The time to intervene is 38 weeks when α = 0.50 which gives equal weights

to maternal and neonatal health outcomes.

We incorporate the RMDP model in PSA to additionally consider the impact of

uncertainty in transition probabilities on optimal delivery policies. In this approach,

we use lower and upper bounds of transition probabilities under the action of waiting

instead of their point estimates. In each problem instance, first we solve for the
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Algorithm 4 Probabilistic sensitivity analysis with nature’s transition
probabilities (rPSA)

1: Inputs:
α The weight given to the maternal health outcomes

N̊ The number of problem instances to generate
P l(s′|s, W), Pu(s′|s, W) Lower and upper bounds of CIs of transition

probabilities for all s, s′ ∈ S
lM(s), uM(s) Lower and upper bounds of CIs of ηM(s) for s ∈ Ŝ
lN(s), uN(s) Lower and upper bounds of CIs of ηN(s) for s ∈ Ŝ
{π1, π2, . . . , πJ} Set of candidate delivery policies

2: Adjust lM(s), uM(s), lN(s), and uN(s) with Algorithm 1

3: Generate N̊ problem instances with Algorithm 2

4: for i = 1..N̊ do

5: Compute υR,iα (s) and PR,i(s′|s, W) for all pregnancy states s ∈ S \ Ŝ
with robust dynamic programming

6: end for
7: for j = 1..|J | do
8: for i = 1..N̊ do

9: Compute V i
α (πj, s) with PR,i(s′|s, W) for all pregnancy states s ∈ S \ Ŝ

10: end for
11: end for

12: Calculate δα(πj, s) for all πj ∈ Π and s ∈ S \ Ŝ
13: Calculate ∆α(πj) for all πj ∈ Π

optimal value with the robust value function given in Equation (4.3). Outputs are

the optimal robust values at pregnancy states (denoted as υR,iα (s)), and the nature’s

transition probabilities (denoted as PR,i(s′|s, W)) in each problem instance. For each

candidate policy, we calculate V i
α (πj, s) and the optimality gap δα(πj, s) with υR,iα (s).

Algorithm 4 outlines the steps in PSA with nature’s transition probabilities (referred

as rPSA).

Table 4.5 presents ∆α(πj) values for all πj ∈ Π calculated with Algorithm 4 under

the order restrictions on maternal health, gestational age, and type of delivery given

in Table 4.2. The smallest values of ∆α(πj) over all candidate policies in Π are

underlined for each α value.
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Policy α = 0.00 α = 0.25 α = 0.50 α = 0.75 α = 1.00

(34,34,34) 0.363 0.270 0.177 0.100 0.022

(36,34,34) 0.363 0.270 0.177 0.100 0.022

(36,36,34) 0.363 0.270 0.177 0.100 0.028

(36,36,36) 0.190 0.109 0.039 0.000 0.050

(38,34,34) 0.363 0.270 0.177 0.100 0.055

(38,36,34) 0.363 0.270 0.177 0.100 0.055

(38,36,36) 0.190 0.109 0.039 0.008 0.055

(38,38,34) 0.363 0.270 0.177 0.100 0.132

(38,38,36) 0.190 0.093 0.013 0.072 0.132

(38,38,38) 0.082 0.027 0.013 0.099 0.195

(40,34,34) 0.363 0.270 0.177 0.100 0.114

(40,36,34) 0.363 0.270 0.177 0.100 0.114

(40,36,36) 0.190 0.109 0.040 0.071 0.114

(40,38,34) 0.363 0.270 0.177 0.100 0.132

(40,38,36) 0.190 0.093 0.040 0.072 0.132

(40,38,38) 0.082 0.027 0.040 0.099 0.195

(40,40,34) 0.363 0.270 0.177 0.101 0.172

(40,40,36) 0.190 0.093 0.073 0.101 0.172

(40,40,38) 0.082 0.046 0.073 0.101 0.195

(40,40,40) 0.021 0.046 0.073 0.106 0.198

Table 4.5: The Optimality Gaps of Candidate Policies Found with rPSA

According to Table 4.5, the time to intervene is 40 weeks regardless of the maternal

health when only the neonatal health outcomes are considered (i.e., α = 0.00). When

α = 0.25, the time to intervene decreases to 38 weeks for both mPE and sPE. At α

values giving more weight to the maternal health outcomes (i.e., α = {0.75, 1.00}),

the time to intervene is between 34 to 36 weeks, and it does not change with respect to

maternal health for a given α value. Similar to the PSA results, the time to intervene

is 38 weeks when α = 0.50.
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Maternal PSA rPSA

health 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

GH 40 40 38 38 36 40 38-40 38 36 34-36

mPE 40 40 38 36 36 40 38 38 36 34

sPE 40 40 38 36 36 40 38 36-38 36 34

Table 4.6: Time to Intervene with Different α Values

4.4.4 Discussion of Numerical Results

Table 4.6 shows the time to intervene under different α values found with PSA

and rPSA. The time to intervene found with rPSA is mostly earlier than the one

found in PSA as it can be seen in this table. The only exception is seen when α is

zero, i.e., when only the baby is considered. The difference between the results of

PSA and rPSA increases as α increases from 0 to 1, since the nature increases the

probabilities of reaching worse maternal health states, and maternal health outcomes

is more dependent on maternal health state.

When we compare the time to intervene for GH, mPE and sPE found using our

PSA (given in the PSA columns of Table 4.6) to the same found by solving the

MDP model with the costs of delivery states estimated using the ORI-CDS model

(given in Figure A.4), we see that the results mostly agree with each other. For

α ∈ {0.00, 0.25}, the time to intervene is the 40th week according to both methods for

all h ∈ {GH,mPE, sPE}. When only the maternal health outcomes are considered

with α = 1.00, both methods suggests that the time to intervene should be the 36th

week for all types of HDP. For α = 0.50, the optimal actions given by the MDP

model do not form a policy with a structure that can be compared to other α values,

and the time to intervene for sPE is beyond the 40th week which is not plausible.
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However, the results with PSA clearly show the relation between the weight given to

the maternal health outcomes and the time to intervene.

We also compare the time to intervene for GH, mPE, and sPE found using rPSA

(given in the rPSA columns of Table 4.6) to the same found by solving the RMDP

model with the costs of delivery states estimated using the ORI-CDS model (given

in Figure A.13). Unlike the results of the MDP model and the PSA, the results of

the RMDP model and the rPSA are mostly quite different from each other for all

α ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. The optimal actions found with the RMDP model

suggest that the time to intervene for sPE should be later than the same of GH and

mPE for all α ∈ {0.00, 0.25, 0.50, 0.75}, which is not realistic. Therefore, the results

of the RMDP model cannot be recommended for use in practice without the insights

gathered with our rPSA.

4.5 Conclusions

We develop an MDP model to discover the optimal gestational week to deliver

under a choice of weights given to maternal and neonatal health outcomes. In the

MDP model, the delivery states representing childbirth are assigned values with re-

spect to maternal health, gestational age (in weeks), and type of delivery in terms of

maternal and neonatal adverse outcomes. These values are referred as the costs of

delivery states, and quantified separately for the mother and the baby with a com-

posite outcome measure that includes a variety of serious morbidities and mortality.

We derive the structural properties of the MDP model, and propose conditions un-

der which the model produces switching curve policies. We solve the MDP model

using a value iteration algorithm with two sets of inputs estimated with patient data.

These input sets are transition probabilities and the costs (maternal and neonatal)

of delivery states.
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We estimate transition probabilities and the costs of delivery states with two sep-

arate order restricted inference models. In these models, the objective is to maximize

the likelihood function subject to the assumed orders between the values of parame-

ters. Since the available patient data is limited and not able to provide ample sample

size to estimate the costs of all delivery states, we additionally estimate these costs

with MICE method. The results gathered with value iteration algorithm show the

sensitivity of model outputs to the estimation of costs of delivery states. Therefore,

we develop a PSA framework which considers the joint uncertainty in the costs of de-

livery states in its search for the best switching curve delivery policies which minimize

the maximum optimality gap over all pregnancy states. We additionally consider the

uncertainty in transition probabilities with our RMDP model and rPSA approach.

As discussed, there are inconsistencies and gaps in the recommendations for timing

of delivery in clinical practice guidelines, and the decision of when to deliver is still a

challenge for clinicians (Kuklina et al., 2009; Gillon et al., 2014; Bazzano et al., 2016).

As a result, optimal timing of delivery for pregnancies with HDP should be addressed

with appropriate decision models. In this study, we consider this decision problem,

and model it as an MDP and a robust MDP. MDP modeling is a well-established

approach to capture the stochastic nature of disease progression in this problem sim-

ilar to other problems in previous MDP studies on medical decision-making such as

Alagoz et al. (2004); Shechter et al. (2008), and Sandıkçı et al. (2008). Unlike other

medical decision problems previously formulated with MDPs, this problem involves

two parties, the mother and the baby (or babies), that have conflicting objectives.

Our results demonstrate the impact of timing of delivery on the maternal and

neonatal health outcomes, and how the weight given to the maternal (or, neonatal)

health outcomes can influence the decision on timing of delivery. Overall, they em-

phasize the value of expectant management and pregnancy prolongation to improve
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neonatal health outcomes. The data under study mostly include Hispanic and Latina

patients who received care with Medicaid. As a result, the results of this study may

not be generalizable to wider populations.

Major clinical practice guidelines agree on recommending delivery after 37 weeks in

case of gestational hypertension and preeclampsia. Our results with α ≥ 0.5 support

this recommendation. On the other hand, immediate delivery is recommended in

case for severe preeclampsia regardless of the gestational age in the guidelines. Our

results with different α values show the trade-off between maternal and neonatal

outcomes in this recommendation. The guidelines do not agree on a recommendation

for gestational hypertension and preeclampsia at gestational age of 34-36 weeks. Our

results show how the risks for serious morbidities change during these weeks with

respect to timing of delivery. We refer interested readers to Bazzano et al. (2016) for

a discussion of recommendations of major HDP guidelines on timing of delivery.

One of the key challenges in this study lies in obtaining the patient data that

allows for connecting the information between mother and baby. National databases

in the United States such as The Nationwide Inpatient Sample (NIS) of the Healthcare

Cost and Utilization Project are de-identified, and as a result, it is not possible to

associate the neonatal health outcomes with maternal health. Another key challenge

is in the complexity of measuring the health outcomes in obstetrics. The problem

involves a variety of health outcomes with varying severity that are often rare, and

the composite measures developed to combine these outcomes are not widely used due

to difficulties in their interpretation. We refer interested readers to Ross (2007) for

a discussion on the use of composite measures in obstetrics research. We have found

CCM measure (Korst et al., 2014) to be the most suitable one to adopt in this study,

since it is the most comprehensive measure in the obstetrics literature that includes

a wide variety of serious morbidities. However, it can be only used with ICD-9-CM
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diagnosis coding, and the translation to next revision of diagnosis coding (ICD-10) is

not straightforward.

In summary, we address the decision problem of optimal timing of delivery for

women with HDP in this study. We develop an MDP model that considers the

uncertainty in the progression of hypertensive disorders in the course of a pregnancy.

This is the first study that handles this problem as a sequential and stochastic decision

problem in which the uncertainty and dynamism of disease progression are taken into

account. In addition, this study pioneers in considering the conflicting objectives of

the mother and the baby, and combining them in the same decision model.
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Chapter 5

CONCLUSIONS

In this chapter, we summarize the contributions of this dissertation, and outline

the directions for future research. The most important contribution of this disserta-

tion is to study the optimal timing of delivery in the cases of hypertensive disorders

of pregnancy (HDP) that minimize the adverse outcomes due to childbirth by con-

sidering both the mother and the baby. Below is the summary of all contributions

together with the chapters that they are included in.

We model the natural history of HDP progression in a retrospective observational

cohort study in Chapter 2. We build a discrete-time Markov chain (DTMC) model

that includes maternal health (presence and type of HDP), gestational age, and state

of being pregnant or having spontaneous labor in the state definition. We estimate the

transition probabilities of the DTMC for the third trimester of pregnancy based on

patient data using an order restricted inference model. Using the estimated transition

probabilities, we show the trends in the risks of developing HDP and going into

spontaneous labor with respect to maternal health and gestational age.

We assess the risks of maternal and neonatal adverse outcomes that may happen

due to childbirth in Chapter 3. In this part of the dissertation, we review current

obstetrical quality measures and evaluate their use in a medical decision making

framework. We estimate the risk of significant childbirth morbidities with respect to

maternal health (presence and type of HDP) at delivery, gestational age at delivery,

and mode of delivery separately for the mother and the newborn based on patient

data using a composite obstetrical measure. Additionally, we estimate the safety of

childbirth for the mother and the newborn with respect to the same variables with
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a provider survey and technique for order performance by similarity to ideal solution

(TOPSIS).

In Chapter 4, we study of the optimal timing of delivery for pregnancies com-

plicated with HDP. First, we build a Markov decision process (MDP) model that

provides the optimal timing of delivery with two sets of inputs: (1) transition prob-

abilities of HDP progression and going into spontaneous labor, (2) the risks of sig-

nificant maternal and neonatal morbidities due to childbirth stratified by maternal

health, gestational age and mode of delivery. Secondly, we build a robust MDP

(RMDP) model that gives the worst-case timing of delivery by taking the uncertainty

in the estimation of transition probabilities into account. We analytically explore

the structural properties of the MDP and the RMDP models to show how a certain

structure on the input may provide a certain structure on the optimal solution such

as monotone switching curve policies.

In Chapter 4, we solve our MDP and RMDP models to obtain the optimal timing

of delivery in cases of HDP with different weights given to maternal and neonatal

health outcomes. We analyze the results of both the MDP and the RMDP models

within a probabilistic sensitivity analysis (PSA) framework to consider the joint un-

certainty in the estimations of the risks of maternal and neonatal adverse outcomes.

In our PSA, we include the order restrictions between the risk estimates in the gener-

ation of problem instances to avoid having unrealistic instances. Since the outputs of

MDP models are often sensitive to parameter estimates which are usually obtained

using patient data which may be limited in size and include errors, the results of MDP

models should be evaluated with a sensitivity analysis. To the best of our knowledge,

our study is the first that incorporates PSA with order restrictions between param-

eters, and combine robustness with respect to transition probabilities within a PSA

framework.
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In future research, our decision model can be extended by including the blood

pressure values in the state definition to consider the impact of blood pressure ele-

vations in the disease progression. In a broader perspective, the decision of timing

of delivery is also vital in other maternal complications such as diabetes and chronic

hypertension. This study can lead the way to the adaptation of stochastic modeling

for other obstetric complications that makes timing of delivery challenging.

In addition to the timing of delivery, the type of intervention (induction of labor

vs. cesarean delivery) may be also crucial when the pregnant woman has a type of

HDP. Even for healthy pregnant women, the interventions of induction of labor and

cesarean delivery are still topics of debate and should be resolved based on evidence

on risks and benefits (Anderson, 2004). In this dissertation, we could not address the

optimal type of intervention due to the limited sample sizes to estimate the risks of

adverse outcomes (especially for induction of labor) in our patient data. However,

this issue should be addressed in the future by extending our MDP models with the

addition of delivery states representing different types of interventions.
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A.1 Proofs of Chapter 4

For Lemma 1 and Proposition 1, we demonstrate the proofs of only the parts

on the robust Markov decision process (RMDP) model. The parts on the Markov

decision process (MDP) model are proved when Q is considered as a singleton set

with one point estimate of transition probabilities.

Proof of Lemma 4.1. If η(h, t, I) > fR(h, t) for some s = (h, t, P ) where h ∈ H

and t ≤ T − 1, then the following inequalities hold:

η(h, t, I) > max
P(h′,t+,d′|h,t,P ;W)
∈Q(h,t,P )

{∑
h′≤h

P(h′, t+, P |h, t, P ; W)η(h′, t+, I)

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
≥ max
P(h′,t+,d′|h,t,P ;W)
∈Q(h,t,P )

{∑
h′≤h

P(h′, t+, P |h, t, P ; W)υR(h′, t+, P )

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
. (A.1)

The first inequality in Equation (A.1) is due to the definition of the function

fR(h, t). As a result of Bellman’s equation, we have υR(h, t, P ) ≤ η(h, t, I) for all

h ∈ H and t ∈ T . The first inequality can be preserved by replacing η(h, t, I) with

υR(h, t, P ). The second inequality implies that the cost of intervention is greater that

the expected robust cost of waiting. Therefore, a∗(h, t, P ) = W, uniquely. �

Proof of Lemma 4.2. Let c(h, t, P ) and cR(h, t, P ) denote the cost of waiting

at pregnancy state s = (h, t, P ) in the MDP and the RMDP models, respectively.

We define the functions c(h, t, P ) and cR(h, t, P ) with Equations (A.2) and (A.3) as

follows for t ≤ T − 1.

c(h, t, P ) =
∑
h′≤h

P(h′, t+, P |h, t, P ; W)υ(h′, t+, P ) +
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

(A.2)
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cR(h, t, P ) = max
P(h′,t+,d′|h,t,P ;W)∈Q(h,t,P )

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)υR(h′, t+, P )+

∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
(A.3)

Once we show that cR(h, t, P ) ≥ c(h, t, P ) for all pregnancy states s = (h, t, P ) ∈

S \ Ŝ, then the proof of Lemma 2 is straightforward. At gestational age T−1, we have

cR(h, T − 1, P ) ≥ c(h, T − 1, P ) for all h ∈ H. We show that cR(h, t, P ) ≥ c(h, t, P )

holds for week t by supposing that it holds for t+ (i.e., cR(h, t+, P ) ≥ c(h, t+, P )) for

all h ∈ H and t ≤ T − 2. At gestational age t+, if cR(h, t+, P ) ≥ c(h, t+, P ), then we

have υR(h, t+, P ) ≥ υ(h, t+, P ), and the inequalities shown below.

cR(h, t, P ) = max
P(h′,t+,d′|h,t,P ;W)∈Q(h,t,P )

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)υR(h′, t+, P )+

∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
≥ max
P(h′,t+,d′|h,t,P ;W)∈Q(h,t,P )

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)υ(h′, t+, P )+

∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
≥
∑
h′≤h

P(h′, t+, P |h, t, P ; W)υ(h′, t+, P ) +
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

= c(h, t, P ) (A.4)

�

Proof of Proposition 4.1. For a given α ∈ [0, 1], first suppose that a∗(h, t, P ) = I

for all h ≤ ȟ and t ≥ ť where h, ȟ ∈ H, t, ť ∈ T , and ť ≤ T − 1. As a result, we have

υR(h, t, P ) = η(h, t, I) for all h ≤ ȟ and t ≥ ť. We also know that υR(h, t, P )
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satisfies Bellman’s equation of RMDP which can be written as follows under Assump-

tion 4.1 for all h ≤ ȟ, t ≥ ť, t ≤ T − 1:

υR(h, t, P ) = min

{
max

P(h′,t+,d′|h,t,P ;W)∈Q

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)υ(h′, t+, P )

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
, η(h, t, I)

}
Additionally, we have υ(h, t, P ) = η(h, t, I) for all h ∈ H and t = T . Having

υ(h, t, P ) = η(h, t, I) for all h ≤ ȟ and t ≥ ť implies the following inequalities.

η(h, t, I) ≤ max
P(h′,t+,d′|h,t,P ;W)∈Q

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)υ(h′, t+, P )

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}

= max
P(h′,t+,d′|h,t,P ;W)∈Q

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)η(h′, t+, I)

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}

= f(h, t), ∀h ≤ ȟ, t ≥ ť, t 6= T.

The first inequality is an outcome of the minimum operator in the definition of

the value function for transient states s = (h, t, P ) ∈ S \ Ŝ. The equality following

that is derived from that by replacing υR(h′, t+, P ) with η(h′, t+, I) which are equal

since a∗(h, t, P ) = I for all h ≤ ȟ and t ≥ ť. The last equality is due to the definition

of the function fR(h, t) given by Equation (4.5) under Assumption 4.1. The first and

final lines correspond to the conditions given in the proposition.

For a given α ∈ [0, 1], secondly suppose that η(h, t, I) ≤ fR(h, t) for all h ≤ ȟ, t ≥

ť, t 6= T . Bellman’s equation is satisfied for the transient states with h ≤ ȟ and t ≥ ť

when we let υR(h, t, P ) = η(h, t, I) for all h ≤ ȟ and t ≥ ť as it is demonstrated

124



below. We start with writing Bellman’s equation under Assumption 4.1 and continue

with simplifying by using υR(h, t, P ) = η(h, t, I) separately for all h ≤ ȟ, t ≥ ť, t 6= T

and h ≤ ȟ, t = T .

υR(h, t, P ) = min

{
max

P(h′,t+,d′|h,t,P ;W)∈Q

{ ∑
h′≤h

P(h′, t+, P |h, t, P ; W)υ(h′, t+, P )

+
∑
h′≤h

P(h′, t+, S|h, t, P ; W)η(h′, t, S)

}
, η(h, t, I)

}
Replacing υR(h′, t+, P ) with η(h′, t+, I), and simplifying by using the function

fR(h, t) give us the following equalities. The last equality is due to the condition

η(h, t, I) ≤ fR(h, t) for all h ≤ ȟ, t ≥ ť, t 6= T .

υR(h, t, P ) = min
{
fR(h, t), η(h, t, I)

}
= η(h, t, I) ∀h ≤ ȟ, t ≥ ť, t 6= T

Similarly, for h ≤ ȟ, t = T , we have υR(h, t, P ) = η(h, t, I) due to Bellman’s equation.

As a result, a∗(h, t, P ) = I for all h ≤ ȟ and t ≥ ť since υR(h, t, P ) = η(h, t, I). �

Proof of Proposition 4.2. In this proof, we show that there exists a monotone

switching curve that separates the action of waiting from the action of intervention

under Conditions (1)-(2) in the MDP model. In order to do this, we prove that

a∗(h, t, P ) = W⇒ a∗(h+, t, P ) = W, and a∗(h, t, P ) = W⇒ a∗(h, t−, P ) = W. The proof

is similar for the RMDP model with Conditions (3)-(4).

For t = T , a(h, t, P ) = I; as a result h∗(T ) does not exist. So, consider t = T − 1

which is the largest t that has W ∈ As where s = (h, T − 1, P ). Let h̃ be the smallest

h such that a∗(h, T − 1, P ) = W. If there is no such h̃, we continue with t = T − 2 or

the largest t which has waiting as the optimal action for any h.

By Assumption 4.1 and a∗(h̃, T − 1, P ) = W, we have:∑
h′≤h̃

P(h′, T, P |h̃, T −1, P ; W)υ(h′, T, P )+
∑
h′≤h̃

P(h′, T, S|h̃, T −1, P ; W)η(h′, T −1, S)

< η(h̃, T − 1, I)
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We know that υ(h, T, P ) = η(h, T, I) since a(h, T, P ) = I. Adding this to the

above inequality gives:

∑
h′≤h̃

P(h′, T, P |h̃, T −1, P ; W)η(h′, T, I) +
∑
h′≤h̃

P(h′, T, S|h̃, T −1, P ; W)η(h′, T −1, S)

< η(h̃, T − 1, I).

Due to the definition of the function f(h, t) given by Equation (4.4), it follows

that

f(h̃, T − 1) < η(h̃, T − 1, I). (A.5)

Adding f(h̃+, T − 1) − f(h̃, T − 1) (the left-hand side of Condition (1.1)) to the

left-hand side and η(h̃+, T − 1, I) − η(h̃, T − 1, I) (the right-hand side of Condition

(1.1)) to the right-hand side in Inequality (A.5) provide:

f(h̃+, T − 1) < η(h̃+, T − 1, I).

As a result, we show that if the inequality given in Equation (A.5) holds for h̃, it

holds for h̃+ under Condition (1.1). Therefore, we have f(h̃, T − 1) < η(h̃, T − 1, I)

for all h ≥ h̃.

Similarly, adding f(h̃, T−2)−f(h̃, T−1) (the left-hand side of Condition (1.2)) to

the left-hand side and η(h̃, T − 2, I)− η(h̃, T − 1, I) (the right-hand side of Condition

(1.2)) to the right-hand side in Inequality (A.5) provide:

f(h̃, T − 2) < η(h̃, T − 2, I).

As a result, we show that if the inequality given in Equation (A.5) holds for s =

(h̃, T − 1, P ), it holds for s = (h, t, P ) where h ≥ h̃, t ≤ T − 1 due to Conditions (1.1)

and (1.2). Therefore, we have f(h, t) < η(h, t, I) for all h ≥ h̃ and t ≤ T − 1.

Due to above statements and the definition of f(h, t), the cost of waiting in state

(h, t, P ) and taking the optimal action for all possible next states cannot be worse
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than the cost of f(h, t). As a result, υ∗(h, t, P ) < η(h, t, I) for all h ≥ h̃ and t ≤ T−1.

As a result, a∗(h, t, P ) = W for all h ≥ h′ and t ≤ T − 1.

Next, consider t = T − 2 where h̃′ is the smallest h such that a∗(h, T − 2, P ) = W.

By a similar reasoning, we have a∗(h, t, P ) = W for all h ≥ h̃′ and t ≤ T − 2. Proceed-

ing with a similar fashion for other gestational ages, proves the parts (a) and (b) of

the proposition. �

Proof of Proposition 4.3. Under conditions (1)-(4), we know that there exists a

switching curve policy separately for the MDP and the RMDP models. Suppose that

we have t∗(ȟ) = ť for a given ȟ ∈ H in the MDP model. To prove Proposition 4.3.1,

we show that t∗R(ȟ) ≤ ť for any ȟ ∈ H in the RMDP model.

Since t∗(ȟ) = ť, then the following condition holds due to Proposition 1,

η(h, t, I) ≤ f(h, t), ∀h ≤ ȟ, t ≥ Ť , t ≤ T − 1. (A.6)

We also know that f(h, t) ≤ fR(h, t) for all h ≤ ȟ, t ≥ Ť , and t ≤ T − 1 due to

the maximization operator in the definition of fR(h, t). As a result, we have,

η(h, t, I) ≤ f(h, t) ≤ fR(h, t), ∀h ≤ ȟ, t ≥ Ť , t ≤ T − 1. (A.7)

By Propositon 1, we can conclude that a∗(h, t) = I for all states with h ≤ ȟ and

t ≥ Ť . As a result, we have t∗R(ȟ) ≤ ť = t∗(ȟ).

�

A.2 Order Restricted Inference Model of the Costs of Delivery States

We denote the order restricted inference model of the costs of delivery states

(CDS) with ORI-CDS. The decision variables of the ORI-CDS model are as follows:

Mhtd: The estimate of ηM(h, t, d) for all h ∈ H, t ∈ T and d ∈ {S, I},

Nhtd: The estimate of ηN(h, t, d) for all h ∈ H, t ∈ T and d ∈ {S, I}.
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The parameters of the ORI-CDS model are as follows. The confidence intervals

(CIs) are calculated with the adjusted Wald method.

nhtd : The number of child deliveries observed at state (h, t, d)

cMhtd : The number of maternal composite outcomes observed at state (h, t, d)

cNhtd : The number of neonatal composite outcomes observed at state (h, t, d)

LMhtd : Lower bound of the CI for estimate of ηM(h, t, d)

LNhtd : Lower bound of the CI for estimate of ηN(h, t, d)

UM
htd : Upper bound of the CI for estimate of ηM(h, t, d)

UN
htd : Upper bound of the CI for estimate of ηN(h, t, d)

The objective function is to maximize the likelihood function that includes the

estimations of ηM(h, t, d) and ηN(h, t, d) for all h ∈ H, t ∈ T and d ∈ {S, I} as given

in Equation (A.8). Equivalently, we maximize the logarithm of this objective function

which is given in Equation (A.9).

Maximize L

=
∏
h∈H

∏
t∈T

∏
d∈S,I

(
(Mhtd)

cMhtd(1−Mhtd)
(nhtd−cMhtd)

)
×
(

(Nhtd)
cNhtd(1−Nhtd)

(nhtd−cNhtd)
)

(A.8)

Maximize logL =
∑
h∈H

∑
t∈T

∑
d∈S,I

(
cMhtd logMhtd + (nhtd − cMhtd) log (1−Mhtd)

)
+
∑
h∈H

∑
t∈T

∑
d∈S,I

(
cNhtd logNhtd + (nhtd − cNhtd) log (1−Nhtd)

)
(A.9)
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The constraints of the model are enumerated as follows. Below, we have h+ = h+1,

and t+ = t+ 1.

1. The estimates should be within the given lower and upper bounds.

LMhtd ≤Mhtd ≤ UM
htd for h ∈ H, t ∈ T , and d ∈ {S, I}

LNhtd ≤ Nhtd ≤ UN
htd for h ∈ H, t ∈ T , and d ∈ {S, I}

2. The risk of maternal composite outcome increases with deteriorating maternal

health.

Mhtd ≤Mh+td for h, h+ ∈ H, t ∈ T , and d ∈ {S, I}

3. The risk of maternal composite outcome decreases with gestational age until

38th week, and increases after that week.

(a) Mhtd ≥Mht+d for h, h+ ∈ H, t < 38, and d ∈ {S, I}

(b) Mhtd ≤Mht+d for h, h+ ∈ H, t ≥ 38, and d ∈ {S, I}

4. The risk of maternal composite outcome is greater for delivery with spontaneous

labor than delivery with intervention.

MhtS ≥MhtI for h ∈ H, and t ∈ T

5. The risk of neonatal composite outcome increases with deteriorating maternal

health.

Nhtd ≤ Nh+td for h, h+ ∈ H, t ∈ T , and d ∈ {S, I}

6. The risk of neonatal composite outcome decreases with gestational age.

Nhtd ≥ Nht+d for h, h+ ∈ H, t < 41, and d ∈ {S, I}
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7. The risk of neonatal composite outcome is greater for delivery with intervention

than delivery with spontaneous labor.

NhtS ≤ NhtI for h ∈ H, and t ∈ T

8. Non-negativity constraints.

Mhtd, Nhtd ≥ 0 for h ∈ H, t ∈ T , and d ∈ {S, I}

A.3 The Optimal Delivery Policies

Figures A.1-A.9 and Figures A.10-A.18 show the optimal delivery policies found

with different sets of the CDS and α values using the MDP and the RMDP models,

respectively.

Figure A.1: The Optimal Policy Found with Maximum Likelihood Estimates of the

CDS
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Figure A.2: The Optimal Policy Found with Wilson’s Estimates of the CDS

Figure A.3: The Optimal Policy Found with the Estimates of ORI-CDS Model

Including the Order Restrictions on Maternal Health and Gestational Age
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Figure A.4: The Optimal Policy Found with the Estimates of ORI-CDS Model

Including All Order Restrictions

Figure A.5: The Optimal Policy Found by Imputing the CDS with CI Ranges

Larger Than 0.2
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Figure A.6: The Optimal Policy Found by Imputing the CDS with CI Ranges

Larger Than 0.3

Figure A.7: The Optimal Policy Found by Imputing the CDS with CI Ranges

Larger Than 0.4
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Figure A.8: The Optimal Policy Found by Imputing the CDS with CI Ranges

Larger Than 0.5

Figure A.9: The Optimal Policy Found by Imputing the CDS with CI Ranges

Larger Than 0.6
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Figure A.10: The Optimal Robust Policy Found with Maximum Likelihood

Estimates of the CDS

Figure A.11: The Optimal Robust Policy Found with Wilson’s Estimates of the CDS
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Figure A.12: The Optimal Robust Policy Found with the Estimates of ORI-CDS

Model Including the Order Restrictions on Maternal Health and Gestational Age

Figure A.13: The Optimal Robust Policy Found with the Estimates of ORI-CDS

Model Including All Order Restrictions

136



Figure A.14: The Optimal Robust Policy Found by Imputing the CDS with CI

Ranges Larger Than 0.2

Figure A.15: The Optimal Robust Policy Found by Imputing the CDS with CI

Ranges Larger Than 0.3
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Figure A.16: The Optimal Robust Policy Found by Imputing the CDS with CI

Ranges Larger Than 0.4

Figure A.17: The Optimal Robust Policy Found by Imputing the CDS with CI

Ranges Larger Than 0.5
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Figure A.18: The Optimal Robust Policy Found by Imputing the CDS with CI

Ranges Larger Than 0.6
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