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ABSTRACT

In this research, I try to solve multi-class multi-label classification problem, where

the goal is to automatically assign one or more labels(tags) to discussion topics seen

in darkweb. I observed natural hierarchy in our dataset, and I used different tech-

niques to ensure hierarchical integrity constraint on the predicted tag list. To solve

‘class imbalance’ and ‘scarcity of labeled data’ problems, I developed semi-supervised

model based on elastic search(ES) document relevance score. I evaluate our models

using standard K-fold cross validation method. Ensuring hierarchical integrity con-

straints improved F1 score by 11.9% over standard supervised learning, while our

ES based semi-supervised learning model out-performed other models in terms of

precision(78.4%) score while maintaining comparable recall(21%) score.
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Chapter 1

INTRODUCTION

The ability to traverse the internet with complete anonymity provides online plat-

forms for illegal activities such as credit card fraud, identity theft, leaks of sensitive

information and sharing hacking information [Chertoff and Simon (2015)]. One of

the most prevalent cyber environments that emerged in the last decade and con-

tributed to the achievement of those criminal tasks are darkweb forums [Abbasi et al.

(2014)], since they include encryption technology to prevent monitoring and also pro-

vide protection from unauthorized users. Table 1.1 provides the details of thirteen

broad categories of data seen in web based hidden services on darkweb [Moore and

Rid (2016)], having discussion forums as the main supplier platform for the spread of

criminal activities.

Considering the enormity of the data in those environments, there is an impending

need to go beyond this broad categorization, providing to security researchers a more

granular, structural and interdependent classification of the available information.

The deepweb data can be classified into different domains such as hacking, whistle-

blowing, financial-fraud, drugs, counterfeit, books, porn, etc.

In this work, we aim to provide an intelligent system capable of classifying the

information extracted from darkweb forums in a hierarchical structure of tags. Tech-

nically, we aim to address a multi-class and multi-label classification problem, au-

tomatically assigning one or more tags to the topics of the forums analyzed. Such

classification would help us to proactively identify cyber threats in very early stages,

allowing for a preemptive response by distributing the relevant data to interested

groups - government, cybersecurity professionals, financial institutions, etc.
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Category Percentage

Violence 0.3

Arms 0.8

Social 1.2

Hacking 1.8

Illegimtimate pornography 2.3

Nexus 2.3

Extremism 2.7

Unknown 3.0

Other illicit 3.8

Finance 6.3

Drugs 8.1

Other 19.6

None 47.7

Table 1.1: Web Based Hidden Services in February 2016Moore and Rid (2016).

In order to accomplish our goal, we addressed two problems – scarcity of labeled

data, and imbalanced classes in the ground truth. Standard classifiers require a large

number of labeled training examples to learn accurately. Currently, we rely on the

field experts on labeling the training set, but this is a time-consuming process and

often doesn’t scale considering the fact that our dataset is constantly increasing. The

class imbalance problem typically occurs when, in a classification problem, there are

many more instance of some classes than the others.

Specific contribution of this paper include, 1) We observed that there was natural
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hierarchy structure in our tags. We use multiple approaches to ensure that the tag

hierarchy is respected in prediction list. Imposing hierarchical integrity constrains

improved precision, recall and f1 scores by 3%, 9% and 12.2% respectively. 2) The

implementation and evaluation of semi-supervised learning model based on elastic

search document similarity score to solve class imbalance problem. This approach

improved precision, recall, f1 scores by 7.3%, 9.9% and 13.4% respectively.

The rest of this document is organized as follows, chapter 2 provides the back-

ground information about the darkweb/deepweb primer and the related work, chapter

3 describes technical preliminaries necessary to understand the whole document, chap-

ter 4 describes the different approaches we use in our research, chapter 5 describes

the experiments and the results of those experiments, and chapter 6 provides the

conclusion of this research.
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Chapter 2

BACKGROUND

2.1 Darkweb/Deepweb Primer

The dark web forms a small part of the deep web that is not indexed by web search

engines. Darknet websites provide a underground communication and are accessible

by special software like Tor(The Onion Router) and I2p Invisible Internet Project.

Tor software uses onion routing protocol to provide anonymity for both the service

user and the service provider. Tor uses onion routing protocol to provide anonymity

for the users. Onion routing is a technique where messages are repeatedly encrypted

and then sent through several network nodes, called onion routers. Like someone

peeling an onion, each onion router removes a layer of encryption to uncover routing

instructions, and sends the message to the next router where the process is repeated.

This technique prevents intermediary nodes from knowing the origin, destination and

contents of the message 2017a” (2017).

In this research, we are interested in darkweb forums that are anonymously hosted

and are identified by the domain ‘.onion’. Forums are online discussion sites where

like-minded community can hold conversations. These anonymous hosting forums

discuss on various cyber-security related topics such as worms, botnet, zero-days,

hacking tools, backdoor services and etc.

2.2 Related Work

[Nunes et al. (2016)] presents a system that helps gather cyber threat intelligence

from various social platforms on the darknet and deepnet. They gather data from
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both the hacker forum discussions and marketplacess offering products and services.

They use data mining and machine learning models to find relevant information from

noise in the dadta collected from the online platforms. They use binary classifier on

the collected data to find whether the products in marketplaces and topics on forum

post contain communication relevant to malicious hacking.

[Samtani et al. (2016)] describes a prototype of the malware analysis portal. This

portal collects and analyzes malicious assets directly from the online hacker commu-

nities. They collect data from only 14 malware portals and use supervised learning

technique to categorize the conversations into 3 classes - ‘web’, ‘system’, and ‘net-

work’. They use hand-labelled data as ground truth. This research considers limited

number of malware sites. However, they consider limited number of sites and do not

address problem of scarcity of labeled data when we try to scale by increasing the

number of sites.

[Marin et al. (2016)] describes the systems involved to collect data from the market

places and present effective unsupervised learning techniques to categorize the data.

They collect data from 17 marketplaces and use K-means algorithm to categorize the

products. Again, they rely on field experts on labeling the training set which is a

time consuming process. They do not address the problem of scarcity of labeled data.
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Chapter 3

TECHNICAL PRELIMINARIES

3.1 Problem Statement

Classification of darkweb-deepweb forum discussions is a multiclass-multilabel

classification problem, where the goal is to automatically assign one or more labels

to each discussion topics. Formally, let X be a set of forum topics, y = {0, 1}k, let

k be possible tags and D be an unknown distribution on the product space X × Y .

Each element (x,y) in this space is composed of an instance x and a label vector y,

which is a vector of indicators y = [y1, ....., yk] that specifies classes associated with x.

A classifier is a function h: X → Y , that maps instance x to a label vector y = h(x)

[Dekel and Shamir (2010)]. For example, the sample forum topic ‘warning enigma

badlock - upcoming smb/cifs and samba vulnerability’ belongs to three classes - vuln,

smb and file-share.

3.2 Description of the Dataset

We have crawled data from 283 cyber security related online forums. From the

collected html pages we parse for important fields such as topic title, posts, user

name, title posted date, user ratings, number of replies, etc. Our dataset includes

discussions related to 486996 different topics with 4188345 posts and 748698 users

participating in those topics.

The ground truth to build machine learning model is hand labelled by field experts.

We have 2046 labelled topics as training set and they belong to 226 unique tags.

Figure 3.1 shows the tag frequency in the training set. Some tags have more than

6



Figure 3.1: Frequency of Tags in the Training Set

400 topics in the training set while some have just one topic. Table 3.1 provides the

sample ground truth topics and the tags associated.

3.3 Feature Extraction

We perform textual feature extraction on topic title using Doc2vec vectorization

technique. Doc2vec is an extension of word2vec that relies on the idea that words

which appear in the similar context have the same semantic meaning [Harris (1954)].

Word2vec is computationally-efficient predictive model that uses shallow 2 layer neu-

ral network for learning word embeddings. We use Distributed Memory Model of

Paragraph Vectors(PV-DM) Doc2vec architecture which is based on Continuous Bag

Of Words(CBOW) word2vec architecture. PV-DM architecture is faster to train and

has better accuracy for frequent words [Rong (2014)].

Word2vec CBOW. In this architecure the model predicts the current word from

7



Topic titles Tags

enigma badlock - upcoming smb cifs and

samba vulnerability.
vuln, smb, file-share

u nessus vulnerability scan vuln, pentest, network

warning enigma badlock - upcoming smb/cifs

and samba vulnerability.
vuln, smb, file-share

question about school-sponsored wifi? wifi, inquiry

technical question about wifi cards wifi, inquiry

(b) paypal unchecked accounts (s) btc ac-

count

financial-fraud, darkweb product,

paypal, payment-services, market

there are phishing attempts reported! phishing

[u’[payload] sharing some payloads!’] malware, payload, hack

Table 3.1: Sample Ground Truth

a sliding window of context words. Figure 3.2 shows the simple CBOW architecture

with just one word considered per context. Consider the settings with V as vocubulary

size and N as hidden layer size. The input is a one-hot encoded vector i.e for a given

input context word only one of the V units, {x1, x2,...., xv}, is 1. Weights between

input and hidden layer is represented by W which is of dimensions V × N . The

activation function for hidden layer is linear. Formally, row i of W and for a given

context word w,

h = Wᵀ × x := vᵀ
w (3.1)

vw is the the vector representation of the input word w. From the hidden layer to the

output layer, there is different weight matrix W ′ which is of dimensions N × V . We

8



Figure 3.2: A Simple Word2vec Cbow Model in with Only One in the Context. [Rong

(2014)]

compute a score uj for each word in the vocabulary,

uj = v′ᵀ
wj
h (3.2)

where v′ᵀ
wj

is the j-th column of the matrix W′. A log-linear softmax function is

applied to obtain posterior distribution of words. Formally, yj is the output of jth

unit in the output layer.

yj =
exp(uj)∑V

j′=1 exp(uj′)
(3.3)

We update the weights(W and W′) using logarithmic loss function with backpro-

pogation method. After updating the weights, we use vw for word w from equation

3.1 as the ‘input vector’ word embedding [Rong (2014)].

Doc2vec PV-DM. Paragraph vector is an supervised framework that learns contin-

uous distributed vector representations for documents instead of words. The text in

the documents can be of variable-length. As shown in Figure 3.4, every paragraph is

mapped to a unique vector, represented by a column matrix D and every word is also

mapped to a unique vector, represented by a column in matrix W . The paragraph

9



Figure 3.3: Word2vec CBOW Framework for Learning Word Vectors. Context of

Three Words Is Used to Predict the next Word. Le and Mikolov (2014)

Figure 3.4: Doc2vec Pv-dm Framework for Learning Vectors. Context of Three

Words, and Paragraph Vectors Is Used to Predict the next Word.[Le and Mikolov

(2014)]
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vector and word vectors are averaged or concatenated to predict the next word in a

context. The only change in this model compared to word2vec framework is addition

of paragraph vector along with the word vectors [Le and Mikolov (2014)].

(a)
(b)

(c)

Figure 3.5: Sample of Tag-Hierarchical Structure

3.4 Tags and the Hierarchy Among Tags

In the ground truth, each topic is associated with multiple tags. We observed that

there is a natural hierarchical structure in our tags. There are group tags (parent

tags) that can be seen as the ”broader term” for its set of specific tags(child tags).

Nesting specific tags under group tags creates a hierarchy of tags. Figure 3.5 shows

an example of the hierarchical structure in the training data set. Here, external-

world tag is the more generic parent tag for social-realm and health tag. Similarly

social-realm and health tags are children tags to external-world tag.

Formally, hierarchy constraint is given by a set H = {H1, H2, ....Hn} where Hi is

a tree. For all the tags T , a set of tags S (S ⊆ T ) are said to be consistent if every

tag t(t ⊂ S) satisfies either of the two conditions:

1. pt = t i.e t is a root node

11



2. pt is consistent wrt H

where pt tag is parent of tag t.
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Chapter 4

APPROACH

4.1 Baseline Approach

For the baseline approach, we use SVM, decision tree and random forest classifiers

to perform multi-class and multi-label classification.

Decision trees are a non-parametric supervised learning method used for classifi-

cation and regression. They learn the simple decision rules from the data features to

predict the target label. Decision tree method is a recursive partitioning algorithm

that is widely used for classification problems. This algorithm aims to maximize the

information gain at every step.

Support Vector Machine is a supervised learning method that finds a hyper-plane

that differentiate two classes in a multi-dimensional feature space. In addition to per-

forming linear classification, SVMs can efficiently perform a non-linear classification

using kernel function, implicitly mapping their inputs into high-dimensional feature

spaces [Wikipedia (2017)]. We used SVM radial basis function(rbf) kernel with ”one-

vs-the-rest” strategy to perform multi-class multi-label classification [Pedregosa et al.

(2011)].

Random Forest classifier is an ensemble algorithm that creates different decision

trees by randomly selecting subset of training set and the subset of features. The

number of features that are searched at each split point is specified as the parameter.

To reduce memory consumption, the total number of trees and size of the trees should

be controlled. It then aggregates the votes from different decision trees to decide the

final class of the test object [Breiman and Cutler (2007)].

13



4.2 Overview of Problem Specific Challenges

Ensuring Consistency in Results Based on Hierarchy In our ground truth,

we observed that the tags had natural hierarchy. As our original ground truth is

hand labelled, we cannot expect all of the ground truth entries respect the tag hier-

archy due to human error. Therefore, we developed a simple automation script that

establishes the hierarchy in each of our topic titles in the ground truth. Now with

hierarchy established in the tags, our classifier provided detailed tag prediction for all

the documents.

Ideally the classifier should predict the hierarchical representation of tags i.e for a

predicted child tag every parent tag should also be predicted. However we observed

that for some tags returned by the classifier function, the corresponding parent tags is

not returned. This happens when either the tag is wrongly predicted (false positive)

or when some of the correct tags(false negatives) are not predicted.

Class Imbalance The class imbalance problem typically occurs when, in a classifica-

tion problem, there are many more instances of some classes than the others [Chawla

et al. (2002)]. In such cases, classifiers tend to be overwhelmed by the majority classes

and ignore the minority classes. These minority classes usually have lesser precision

and recall scores in the baseline approach.

Semi-supervised learning techniques are usually used to over-sample and under-

sample the minority or majority class for adjusting the class distribution of a dataset

[Chawla et al. (2002)].

4.3 Leveraging Tag Hierarchy

We use three approaches - adding parent tag, removing child tag, combination of

adding parent and removing child tag - to ensure tag hierarchy is maintained in the

14



prediction list.

Adding Parent Tag. If a child tag is predicted by the classifier and if the corre-

sponding parent tags in the hierarchy are not predicted then we add all the parent

tags to the prediction list. In Figure 3.5(b), with the tag hierarchy – external-world,

social-realm, health – if health tag is predicted without external-world and social-

realm, then we add external-world and social-realm tags to the prediction list.

Removing Child Tag. In this approach, we remove all predicted child tags that does

not have all the hierarchical parent tags. In Figure 3.5(b), with the tag hierarchy -

external-world, social-realm, health - if health tag is predicted without external-world

and social-realm, then we remove health tag from the prediction list.

Algorithm 1 Combination of Adding Parent Tags and Removing Child Tags (T)

Input: Prediction list of tags(T) for each document.

Output: Prediction list of tags that respect the tag hierarchy for each document.

1: β ← remove child threshold value

2: α← add parent threshold value

3: for t:= 1 to T do

4: p(t)← prediction probability of tag t.

5: if p(t) < β then remove all parent tags of tag t from prediction list

6: for t:= 1 to T do

7: p(t)← prediction probability of tag t.

8: if p(t) > α then add all parent tags of tag t from prediction list

return updated prediction list

Combination Of Adding Parent Tag And Removing Child Tag (CAR). In

this approach, we want to regulate the way we add parent tags and remove child tags

based on the probability of the predicted tag. We use threshold values - ‘add parent

15



threshold’(α) and ‘remove child threshold’(β) - to decide whether to add parent tag

or remove child tag. The procedure for this approach is described in Algorithm 1.

4.4 Dealing with Class Imbalance

The discussions in the dark forums are based on various topics which are unequally

distributed. Therefore, we observe class imbalance in our ground truth. In our

dataset, the ratio of the minority to the majority classes is 1:400 which is quiet drastic.

To deal with class imbalance problem, we use semi-supervised learning methods.

Semi-supervised learning is a class of supervised learning techniques that also make

use of additional unlabeled data to better capture the shape of the underlying data

distribution and generalize better to new samples [Pedregosa et al. (2011)].

4.4.1 SMOTE

We use Synthetic Minority Over-Sampling Technique(SMOTE) as a baseline ap-

proach to solve the class imbalance problem. Oversampling is to correct for a bias in

the original data set. In SMOTE, the minority class is over-sampled by taking each

minority class sample and introducing synthetic examples along the line segments

joining all of the k minority class nearest neighbors. Depending upon the amount

of over-sampling required, neighbors from the k nearest neighbors are randomly cho-

sen. Our implementation currently uses five nearest neighbors. Synthetic samples

are generated in the following way: 1) Take the difference between the feature vector

under consideration and its nearest neighbor 2) Multiply this difference by a random

number between zero and one 3) Add it to the feature vector under consideration

[Chawla et al. (2002)].
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4.4.2 Leveraging Document Similarity Through Elastic Search

One way to solve class imbalance problem is by increasing the ground truth size,

but that is difficult as we are dealing with human-labeled data-set. Therefore, we use

semi-supervised method to increase the sample size of the minority classes. Semi-

supervised learning methods make use of unlabeled data for training – typically a

small amount of labeled data with a large amount of unlabeled data [Rajaraman

(2011)]. For every sample in the minority class, we find the top similar documents

from the database using the elastic search similarity score and add them to the train-

ing data.

Elastic search is a high-performance, full-featured text search engine library. It’s

ranking function is applied to determine how relevant a retrieved document is to a

given query. The ranking function is based on a combination of Vector Space Model

and Boolean model of Information Retrieval. The main idea behind this approach

is more times a query term appears in a document relative to the number of times

the term appears in the whole collection, the more relevant that document will be to

the query [Sparck Jones (1972)]. The elastic search uses BM25 as the default ranking

function to provide the relevance score to a given search query. It is not a single

function, but a family of TF-IDF like retrieval functions [Okapi-BM25 (2017)]. One

of the most commonly used scoring function is described below. Given a query Q,

containing keywords q1,..,qn, the BM25 score of a document D is,

score(D,Q) =
n∑

i=1

IDF (qi).
f(qi, D).(k1 + 1)

f(qi, D + k1.(1− b+ b. |D|
avgdl

)
(4.1)

where f(qi, D) is qi’s term frequency in document D, |D| is the length of the document

D in words and avgdl is the average document length in the text collection from which

documents are drawn. k1 and b are free parameters, usually chosen, in absence of an

advanced optimization, as k1 ∈ [1.2, 2.0] and b = 0.75 [Sanderson (2010)]. IDF(qi) is
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the Inverse document frequency weight of the query term qi. It is usually computed

as:

IDF (qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(4.2)

where N is the total number of documents in the collection, and n(qi) is the number

of documents containing qi. BM25 ranking function is considered as state-of-the-art

in the Information Retrieval community [Pérez-Iglesias et al. (2009)]. The semi-

supervised relevance score based is described by algorithm 2.

Algorithm 2 Semi-Supervised Learning with Document Similarity (T, Tr(Ti, Tp),

F)

Input: Tags in training set T, Training set Tr with tuple (document titles Ti, tag

predictions Tp, Frequency of tags in training set F.

Output: Increased minority class samples from untrained dataset, Ims.

1: Tmin ← array of minority classes

2: for t in T do

3: if F (t) < 150 then

4: Tmin ← add tag t

5: for ti in Ti do

6: tp← Tp(ti)

7: if tp in Tmin then

8: sd← use relevance score and find top similar documents from untrained data

9: Ims← add tuple(sd, tp)

10: Ims← add Tr

return Ims
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Chapter 5

EXPERIMENTS

5.1 Description of Systems Used to Conduct Experiments

Figure 5.1: System Overview

Fig 5.1 shows the overview of the system that we have developed. The system

consists of four main modules - Data collection, data-preprocessing, feature extrac-

tion, and classification. We use spider programs to discover darkweb forums and

human analysts filter these forums that are relevant to cyber security domain. On

these forum sites, we use tor based specialized crawlers to traverse the website and

retrieve HTML pages. Each site has a parser program that extracts important in-

formation, such as topic title, topic content, post content, topic author, post author,

author reputation, posted date for each title and posts, etc., from HTML pages. We

store all this information on database. Expert analysts use a fraction of this data to

prepare ground truth by labelling tags to topic titles. This ground truth forms the

basis for the next 3 modules to develop machine learning model.

Figure 5.1 shows the data preprocessing steps - eliminating duplicates in the
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ground truth, eliminating non-english content in both the ground truth and the test

data, tokenizing the data, removing stop words, and applying stemming and lemma-

tization processes on the data.

Tokenization. Given a sequence of characters, tokenization is the task of chopping

it up into pieces, called tokens, at the same time throwing away certain characters,

such as punctuation and non-ascii characters [Manning (2015)]. In the meanwhile,

we keep the useful characters, such as currency symbols, question mark etc that add

semantic meaning to the features.

Stop Word Removal. Extremely common words that appear in most of the docu-

ments are of little value in feature extraction. Therefore, they are removed from the

topic titles.

Stemming and Lemmatization. Stemming is the process for reducing inflected

or derived words to their stem, base or root form. Lemmatization, is the process of

grouping together the different inflected forms of a word so they can be analyzed as

a single item. Lemmatization and stemming are closely related. The small differ-

ence is that lemmatization uses the context, whereas stemming operates on a single

word [Manning (2015)]. For example, stemming process reduces the derived words -

caresses, ponies and cats to caress, poni, and cat respectively. On the other hand,

lemmatization reduces the derived word ‘saw’ to ‘see’ or ‘saw’ depending on whether

the use of token was a verb or a noun.

We have explained about feature extraction and classifier modules in Section 3.3,

and Sections 4 respectively.

5.2 Description of Software

Table 5.1 provides the summary of the software and version description for each

of the module used. For data-preprocessing, we used module textblob with version
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Module Software

Data preprocessing textblob ‘0.12.0’

Tokenization, Stemming and

Lemmatization

natural languange

toolkit(nltk) ‘3.2.4’

Doc2vec Gensim ‘2.3.0’

SVM, the decision tree and random

forest classifications

scikit-learn ‘0.19.0’

SMOTE imblearn ‘0.3.0’

Table 5.1: Software Description of the Modules.

‘0.12.0’ for part-of-speech tagging and natural language toolkit (nltk) library with

version ‘3.2.4’ for tokenization, stemming and lemmatization. For vectorization, we

used scikit-learn, sklearn version ‘0.19.0’ for Tf-IDF feature extraction and gensim

module version ‘2.3.0’ for doc2vec vectorization. For supervised classification, we

used svm, decision tree and random forest classifiers built in sklearn ‘0.19.0’. and for

SMOTE technique, we used imblearn module version ‘0.3.0’. All the above modules

are developed using python ‘2.7.13’ programming language. To find similar documents

using ES, we used elastic search version ‘5.3.2’ with backend lucene search engine

version ‘6.4.2’. We implemented all the systems in linux based Ubuntu 16.04 LTS

operating system.

5.3 Description of Metrics

We evaluate the performance of our classifier models based on four metrics -

precision, recall, F1 score, and percentage of documents titles with at least one correct

prediction tag. Precision, recall and F1 scores are calculated for each of the tags
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and for all the tags put together. Table 5.1 lists the formal definitions of precision,

recall and F1 scores. Precision score is defined as the fraction of correctly predicted

document titles from all the predicted document titles. Recall score is defined as the

fraction of correctly predicted document titles from the total number of document

titles. F1 measure is the harmonic mean of precision and recall score. We calculate

these precision, recall and F1 scores for individual tags and for the cumulative of all

the tags.

Metric Formula

Precision

TP

TP + FP

Recall

TP

TP + FN

F1
2∗

precision ∗ recall
precision + recall

Table 5.2: EVALUATION METRICS. True Positives(TP) , False Positives(FP), False

Negatives(FN).

5.4 Results

In this section, we describe the results of different experiments; baseline classifiers,

classifiers with tag hierarchy considered, and classifiers with semi supervised learning

technique.

5.4.1 Results of Baseline Classifier

In all our experiments, we use training set with topic titles to perform 10-fold cross

validation to validate our models. With 10-fold cross validation, the ground truth
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Experiment Precision

%

Recall

%

F1

score %

Percentage of docu-

ments with at least one

correct prediction

Baseline Decision trees 58.3 6.41 11.54 24

Baseline SVM 67.2 8.51 15.1 27.9

Baseline Random Forest 71.1 11.3 19.7 31.37

Add parent 71.9 20.2 31.5 46.07

Remove Child 74 11.4 19.47 43.6

SMOTE 40.3 30.1 34.4 61.76

Semi-supervised learning based

on Elastic Search relevance score

78.4 21.2 33.1 54.9

Table 5.3: Experimental Results

Figure 5.2: Tag-wise Precision Scores for Each Experiment.

Figure 5.3: Tag-wise Recall Scores for Each Experiment.

data is randomly partitioned into 10 equal subsample buckets. Out of 10 buckets,

one bucket is used for testing the model and the rest of the ground truth is used for

training the model. Each of the 10 bucket subsample is used for testing the model

in cross validation. The aggregate of the accuracy scores of k scores is used as the
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Figure 5.4: Tag-wise F1 Scores for Each Experiment.

final accuracy score. As our ground truth data contains 2,046 titles, each of the 10

buckets consists of 204 samples for testing and 1842 for training the model.

We used Decision Tree, SVM and Random Forest to perform multi-class and

multi-label classification. For the decision tree classifier, we used pruning to avoid

overfitting, by setting the minimum number of samples required at a leaf node to 5%.

For SVM kernel, we used ‘one-vs-the-rest’ strategy with radial basis function(rbf)

kernel. For the random forest, we tuned the number of estimators of the tree pa-

rameter and found optimal results when number of estimators is 200. In the above

mentioned setting, the Random Forest performed best with the 71.1% precision score

and 11.3% recall score. Therefore, we used Random Forest as the default classifier

for all the experiments.

5.4.2 Change in Precision and Recall Scores for Each Tag Vs Frequency of Each

Tag in Training Set for Es Based Semi-supervised Technique

We used 3 different approaches - adding Parent tag, removing child tag, combi-

nation of adding parent and removing child tag - to preserve the tag hierarchy in all

our tag predictions.
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Adding Parent Tags

In every iteration of K-fold cross validation, if a child tag is predicted by the classifier

and if the corresponding parent tags in the hierarchy are not predicted then we add all

the parent tags to the prediction list. Adding parent tags decrease the false negatives

and increase true positives. Hence, the recall score would increase, but if the child

tag is wrongly predicted then the error is propagated and increases the false positives.

Thereby, decreasing the precision score. Our observation reveals that there is slight

decrease in the precision score, but the recall score improved significantly from 11.3%

to 20.2%.

Removing Child Tags

In every iteration of K-fold cross validation, we remove all predicted child tags that

does not have all the hierarchical parent tags. This experiment reduces the false

positives, and thereby increasing the precision. Our observation from this experiment

reveal that our precision increased from 71.1% to 74%, and the recall score did not

change from the baseline.

Combination of Adding Parent Tags and Removing Child Tags (CAR)

In this approach, we wanted to regulate the way we add parent tags and remove child

tags based on the probability of the predicted tag. We used add parent threshold(α)

or remove child threshold values(β) to decide on whether to add or remove a particular

tag respectively.

Removing children reduces the false positives, increasing the precision score, while

adding parents reduces the false negatives, increasing the recall. We repeat the above

experiment for different remove child threshold(β) and add parent threshold(α). As

shown in the figure 5.5, with increase in add parent threshold(α) value, the recall
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Figure 5.5: Combination of Adding Parent Tags and Removing Child Tags with

Threshold.

score increased and precision score decreased. Conversely, with increase in remove

child threshold value(β), the precision increased and recall decreased. Our aim was

to find a optimum increase in F1 score with out drastically affecting the precision

score by tuning the (α) and (β) values. The best F1 score was achieved when we set

β = 0.5 and α = 0.9. The corresponding F1 score is 31.9%, precision score is 73.43%

and recall score is 20.4%.

5.4.3 Results for Experiments on Class Imbalance

We used semi-supervised learning methods to solve class imbalance problem by

making use of unlabeled data for training. For both SMOTE and elastic search, we

use the ground truth with tag hierarchy and preserve the tag hierarchy in prediction
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list by using ‘combination of adding parent tags and removing child tags’ method

with α = 0.5 and β = 0.9.

SMOTE Semi-Supervised Technique

In SMOTE, synthetic samples are introduced along the line segments joining all of

the k minority class nearest neighbors. In our experiment, we used 5 as the number of

nearest neighbours to construct synthetic samples. The minority classes targeted will

be over-sampled to achieve an equal number of sample with all the classes. With the

introduction of synthetic classes, we observed reduction in false negatives and increase

in false positives. Therefore, recall for SMOTE increased from 11.3% to 30.1% and

precision decreased from 71.1% to 40%. The overall F1 score increased from 19.7%

to 34.4%.

Figure 5.6: Change in Precision and Recall Scores for Each Tag Vs Frequency of Each

Tag in Training Set for Smote Technique

As shown in Figure 5.6, SMOTE technique was most effective in increasing the

recall score for the tags that had frequency between 95 to 300 in the ground truth.

For this range, the average increase in recall for a tag is 23.35%. But this technique
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was not very useful for the tags that had frequency fewer than 95 or for the tags that

had frequency higher than 300. For these ranges the average increase in recall was

just 8.33%. As shown in the Table 5.3, percentage of documents with at least one

correct prediction increased from 31.37% to 61.76% with SMOTE semi-supervised

learning.

Elastic Search Based Semi-Supervised Technique

In this experiment, we extend the training samples of the each minority class by using

document similarity score.

Using the above procedure, we extended the training samples of each of the minor-

ity classes to have 500 documents titles each. With this approach, precision increased

from 71.1% to 78.4%, recall increased from 11.3% to 21.1%, and F1 increased from

19.7% to 33.1%. Compared to SMOTE, precision increased from 40% to 78.4% but

there is a dip in recall from 30.1% to 21.1%. When augmenting synthetic samples with

the training set using SMOTE technique, we observed that false negatives decreased

and false positives increased with the introduction of synthetic samples. However

with ES based technique, the false negatives decreased and true positives increased.

As shown in the figure 5.7, precision and recall increased for most of the tags.

This technique was most effective for the tags that had frequency between 86 to 318.

For this range the average increase in precision was 52% and average increase in

recall was 12%. For the tags having frequency below 86, the increase in precision and

recall was just 2.86% and 5.6% respectively. As shown in the Table 5.3, percentage of

documents with at least one correct prediction increased from 31.37% to 54.9% with

this approach.
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Figure 5.7: Change in Precision and Recall Scores for Each Tag Vs Frequency of Each

Tag in Training Set for Es Based Semi-Supervised Technique
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Chapter 6

CONCLUSION

In this research, we implement a system to categorize the data from darknet and

deepnet into multiple domains. We use two novel approaches — enforcing hierarchi-

cal integrity constraint on the predicted tags and semi-supervised learning technique

using elastic search(ES) based document similarity – to solve multi-class multi-label

classification problem. Enforcing the hierarchical integrity constraint provides de-

tailed tag predictions and improves the performance of the baseline classifiers. Also,

we address class imbalance problem and scarcity of labeled data problem by using

semi-supervised learning technique using elastic search(ES) based document similar-

ity score. This method outperforms all other standard supervised and semi-supervised

methods.
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