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ABSTRACT

Over the past three decades, particle image velocimetry (PIV) has been continuously

growing to become an informative and robust experimental tool for fluid mechanics

research. Compared to the early stage of PIV development, the dynamic range of PIV

has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al.,

2013). Further improvement requires a breakthrough innovation, which constitutes the

main motivation of this dissertation. N -pulse particle image velocimetry-accelerometry

(N -pulse PIVA, where N ≥ 3) is a promising technique to this regard. It employs bursts of

N pulses to gain advantages in both spatial and temporal resolution. The performance

improvement by N -pulse PIVA is studied using particle tracking (i.e. N -pulse PTVA), and

it is shown that an enhancement of at least another order of magnitude is achievable.

Furthermore, the capability of N -pulse PIVA to measure unsteady acceleration and force

is demonstrated in the context of an oscillating cylinder interacting with surrounding

fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted

on the cylinder are successfully measured. On the other hand, a key issue of multi-camera

registration for the implementation of N -pulse PIVA is addressed with an accuracy of

0.001 pixel. Subsequently, two applications of N -pulse PTVA to complex flows and

turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated

to accurately resolve particle unsteady drag in post-shock flows. It is found that the

particle drag is substantially elevated from the standard drag due to flow unsteadiness,

and a new drag correlation incorporating particle Reynolds number and unsteadiness is

desired upon removal of the uncertainty arising from non-uniform particle size. Next,

the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data

within a small domain of an optimally determined size. The estimation of mean velocity,

mean velocity gradient and isotropic dissipation rate are presented and discussed by
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means of synthetic turbulence, as well as a tomographic measurement of turbulent

boundary layer. The results indicate the superior capability of the N -pulse PTV based

method to extract high-spatial-resolution high-accuracy turbulence statistics.
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INTRODUCTION

Since its invention about 35 years ago (Adrian, 1984), particle image velocimetry

(PIV) has been continuously and substantially improved in almost all aspects, along with

the advances in laser and camera technologies. In the initial stage of PIV development,

experimentalists faced numerous options in light source, recording strategy, particle

type, and interrogation (Adrian, 1986). With the considerations in velocity fidelity of

tracer particles, image signal-to-noise ratio, and robustness of interrogation algorithms,

the practice with pulsed Nd:YAG lasers, micron-sized tracer particles (a few microns

for gas and a few tens of microns for liquid), and statistical correlation analysis stood

out among other options to become the basic standard form of dual-pulse PIV. In early

years, PIV images were recorded on photographic films that possessed extremely high

spatial resolution, but the data analysis often required a tedious procedure. In this regard,

the later development of digital PIV really enhanced the usability and popularity of the

technique (Willert and Gharib, 1991; Westerweel, 1993). The fast development of camera

technology in terms of pixel resolution, data transfer speed and signal-to-noise ratio

made PIV with digital imaging become the standard starting in mid-1990s.

Aside from correlation-based analysis, the interest of performing interrogation by

tracking individual particles also has a long history. Such analysis scheme is convention-

ally termed as particle tracking velocimetry (PTV). The very early motivation of doing PTV

was probably its low computational cost considering the limited computer capabilities

in late 1980s. Subsequent advances in PTV demonstrated its capability of measuring 3-D

flow fields by triangulation of 3-D particle positions from multiple cameras (Nishino et al.,

1989; Malik et al., 1993), or by inferring depth from defocused and modulated particle

images (Willert and Gharib, 1992). One important advantage of PTV is the spatial resolu-
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tion of each measured velocity vector is comparable to the size of a particle image (20-50

microns), which is considerably finer than what is achievable from correlation-based

PIV. However, as low seeding density was preferred for reliable triangulations as well as

correct pairing of particles in two successive frames, PTV once suffered low data yield

making it not informative about flow structures. Valuable works towards high data yield

of planar PTV were reported (Keane et al., 1995; Ohmi and Li, 2000), but the accuracy was

still not satisfactory due to the high noise level imbedded in individual particle images.

Therefore, PTV appeared to reach a bottleneck in early 2000s (Stanislas et al., 2005, 2008).

Meanwhile, the vast development of PIV techniques enabled it to be a dominant tool for

accurate, time-resolved and volumetric flow field measurement.

Early practice of PIV correlation was in the form of auto-correlation as the camera

interframe time was not short enough for singe-exposure, double-frame recording. As

a result, the dynamic range, given by the ratio between the maximum velocity and the

smallest resolvable velocity in the field (Adrian, 1997), was severely limited (below 10:1),

which prevented PIV from being applied in serious fluid mechanics research. The issue

was then partially compensated when cross-correlation became the standard proce-

dure with the development of frame-straddling PIV cameras. Since then, numerous

interrogation algorithms emerged to significantly improve the accuracy and dynamic

range of PIV, including window shift (Westerweel et al., 1997; Gui and Wereley, 2002),

image deformation (Scarano, 2001), etc. Further improvement of PIV performance was

achieved by virtue of enhanced camera framing rate that allowed time-resolved measure-

ment of liquid flows with low to moderate velocity. Several interrogation algorithms for

time-revolved PIV data were developed to optimize the separation between two images

being correlated to thus increase the overall dynamic range (Hain and Kähler, 2007;

Sciacchitano et al., 2012). Besides the attempts on accuracy, efforts were also made
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towards measuring high-spatial-resolution turbulence statistics by correlation-based PIV

(Meinhart et al., 2000; Westerweel et al., 2004; Kähler et al., 2006).

Another remarkable improvement of PIV was the capability of measuring fully 3-

dimension 3-component (3D3C) velocity fields in densely seeded flows. Precedent works

aiming at more than two velocity components in a plane included stereoscopic PIV

(Arroyo and Greated, 1991; Prasad, 2000), multi- and dual-plane PIV (Kähler and Kom-

penhans, 2000; Ganapathisubramani et al., 2005), and holographic PIV (Sheng et al.,

2006, 2008). The wide application of PIV for fully 3D3C velocity measurement was then

initiated by the groundbreaking tomographic PIV work of Elsinga et al. (2006), followed by

a series of development for reconstruction techniques (Atkinson and Soria, 2009; Novara

et al., 2010; Discetti and Astarita, 2012c) and 3-D interrogation algorithm (Discetti and As-

tarita, 2012a). Tomographic PIV stimulated a continuously increasing interest in 3D flow

measurements, which led to new insights into turbulence coherent structures (Scarano

and Poelma, 2009; Elsinga et al., 2010; Schröder et al., 2011), as well as a few other 3D flow

measurement techniques (Cierpka et al., 2010; Belden et al., 2010; Fahringer et al., 2015).

While the advances of PIV in accuracy and 3-D accessibility have been sensational, the

limitations in further improved accuracy, spatial resolution and capability of measuring

higher-order flow quantities and turbulence statistics were also well recognized. The

hindrance of further achievement in accuracy lay in the conventional way of estimating

particle motion using a straight trajectory with constant velocity (Boillot and Prasad, 1996;

Westerweel et al., 2013). The limited spatial resolution is a nature of PIV, i.e. velocity is

averaged over all particles within the interrogation spot. Another factor that presents the

spatial resolution from being further improved is the positioning accuracy of a velocity

vector is not satisfactory with the straight trajectory approximation, especially in highly

vortical flows. For tomographic PIV, the spatial resolution is restricted by the maximum
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number of particles an image sensor can hold, which results in the trade-off between

the measurement volume thickness and the smallest achievable interrogation volumes

size. The constraints of velocity accuracy and spatial resolution make the dynamic range

of current PIV systems hardly beyond 100:1 (Adrian, 2005). Consequently, it makes PIV

not very attractive for higher-order flow quantities (acceleration, force, pressure, etc.)

and turbulence statistics (Reynolds stress, dissipation, etc.), considering the errors are

amplified during differentiations and multiplications.

In the regard of improving PIV performance with innovative ideas and techniques,

N -pulse particle image velocimetry-accelerometry (N -pulse PIVA, where N ≥ 3) becomes

a promising candidate. The fundamental advantage of N -pulse PIVA comes from that,

by estimating the trajectory of a single particle or a group of particles from more than

two pulses, curvature and velocity variation are taken into account to yield more accu-

rate velocity estimate and vector positioning. The extent to which PIV performance is

improved by additional pulses motivates the theoretical study described in Chapter 1,

which is also an extension of the author’s Master thesis (Ding, 2014). The study uses PTV

as a logical starting point, which suggestively treats a group of particles as a single ‘super

particle’ whose deformation is accounted for by common image deformation methods.

High temporal resolution is another advantage of N -pulse PIVA from the practical point

of view. An N -pulse PIVA system employs multiple independently triggered lasers and

multiple cameras to record particle images in fast bursts (which distinguishes N -pulse

PIVA from time-resolved PIV with continuous, slow and equidistant pulses). Combined

with enhanced accuracy, the sufficient temporal resolution enables reliable estimation of

flow acceleration and force. This is demonstrated in Chapter 2 in the context of unsteady

flow-structure interaction. In N -pulse PIVA, the use of multiple cameras is the conse-

quence of insufficient framing rate of current video cameras. The challenge in setting up
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multiple cameras is that small misalignment could cause significant bias in acceleration.

Such issue is discussed and addressed in Chapter 3.

Besides the strategy of multiple pulsing, other attempts to break through the lim-

itations of PIV turned out to move the focus back to PTV. This is not a surprise given

enhanced camera quantum efficiency and advanced algorithms for 3-D particle position

identification (Schanz et al., 2012; Wieneke, 2012), both of which reduced the uncertainty

in locating individual particles and thus improved the overall accuracy. Therefore, the

theoretical advantage of high spatial resolution possessed by PTV became more realistic

(Kähler et al., 2012a) without the sacrifice in noise level. In addition, the final gap between

the theory and applications of PTV, i.e. the low data yield in 3-D flow measurements and

the high percentage of ghost particles, was filled by the outstanding work of Schanz et al.

(2016) and a successor (Novara et al., 2016). Given the above, PTV is growing to be more

attractive than ever before.

In virtue of the promising advances in PTV techniques, Chapter 4 and 5 concern

applications of N -pulse PTVA to investigating particle-shock physics and turbulence.

A special 8-pulse measurement of particle dynamics in a post-shock flow constitutes

Chapter 4, in which it will become evident N -pulse analysis can be even more powerful

when it is possible to adopt a fitting model incorporating particle dynamics. On the

other hand, the desire of estimating turbulence statistics with high spatial resolution,

comparable to or even better than that of hot-wire anemometry (HWA) and laser-Doppler

velocimetry (LDV), stimulates the work in Chapter 5. The method is an extension of the

ensemble PTV analysis reported previously (Kähler et al., 2012b; Discetti et al., 2015),

utilizing recent achievements in volumetric PTV.
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Chapter 1

OPTIMIZATION OF N -PULSE PARTICLE TRACKING

VELOCIMETRY-ACCELEROMETRY1

ABSTRACT

N -pulse particle tracking velocimetry-accelerometry (N -P PTVA, where N ≥ 3) ex-

tends conventional 2-pulse PTV by employing three or four laser pulses in a burst, aiming

at more accurately resolving particle trajectories and thus improving the performance

of current PIV systems. Simultaneous velocity and acceleration are obtained by differ-

entiating the particle trajectory estimated by polynomial curve fitting. We conducted a

theoretical study of 3- and 4-P PTVA to thoroughly understand the behaviors of rms errors

in position, velocity and acceleration in a 4-D space consisted of four non-dimensional

parameters – normalized time, normalized displacement (sweeping angle), normal-

ized particle locating noise, and acceleration factor. The normalized rms errors were

computed with respect to a reference trajectory assumed to be a circular pathline with

constant angular acceleration. Elevated rms errors occur when increasing the normal-

ized displacement and the acceleration factor. The 4-pulse analysis with interpolation

produces the least bias error but the largest random error, whereas the 3-pulse method

and the 4-pulse with least squares are capable to reduce the random error. It is also

showed that the acceleration field tends to be much noisier than the simultaneous veloc-

ity field. To achieve the best performance, cost functions taking into account the vector

1This chapter is reformatted from a manuscript prepared for publication in Measurement Science and
Technology.
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positioning uncertainty were used to find the optimal times to evaluate velocity and

acceleration. Furthermore, we calculated the dynamic range ratios between N -P and 2-P

PTVA to quantify the performance improvement. The results indicate that N -P PTVA is

able to improve the overall performance by 10 to 50 times, which could be even better

when the development in camera technology allows a further reduction of the locating

noise. The dynamic ranges for acceleration measurement were also calculated using

example numbers. This work demonstrates the great potential of N -P PTVA/PIVA as the

next-generation PIV to enhance the performance of existing PIV systems, and provides

guidances for experimentalists to optimize their measurement accuracies.

Keywords: particle tracking velocimetry-accelerometry (PTVA), particle image

velocimetry-accelerometry (PIVA), N -P PTVA/PIVA, optimization, uncertainty, dynamic

range

1.1 Introduction

Particle image velocimetry (PIV) is a dominant technique for accurate fluid velocity

field measurements. The performance of PIV has been continuously enhanced over the

past 30 years thanks to the advances in camera technology and PIV algorithms (Adrian,

2005; Adrian and Westerweel, 2011). However, further improvements require funda-

mental innovations from the traditional 2-pulse method, which has recently motivated

the use of more than two fast pulses to sample the flow field (Adrian, 2010; Westerweel

et al., 2013). When the displacement of a small group of particles is measured by cross-

correlation analysis of N successive frames, this type of analysis is referred to as N -P

PIVA. Its superior capability for measuring higher order quantities (e.g. acceleration,

force, pressure, etc.) was demonstrated by Ding and Adrian (2016); Lynch and Scarano
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(2014); Liu and Katz (2006), among others. When statistical cross-correlation is replaced

by tracking individual particles, it is referred to as N -P PTVA. The advantage of high

spatial resolution of particle tracking, combined with better resolving velocity variation

and trajectory curvature, makes the improvement of performance by N -P PTVA become

promising.

Before we discuss the performance of a PIV system, it is useful to first distinguish the

measurement error from the measurement uncertainty. The measurement error is the

differential between a measured value and the true value. In contrast, an uncertainty is

given by a range with a confidence level (percentage) indicating the probability of the true

value to fall in that range. For realistic measurements, while absolute errors are difficult to

calculate from unknown true values, the root mean square (rms) of a measured quantity

at identical (or nearly identical) experimental conditions is often representative of the

measurement uncertainty. Herein, the rms, sometimes termed ‘rms error’, is calculated

with respect the true value, and it can be decomposed into bias (or systematic) error and

random error. Mathematically, the square of rms error is the sum of squares of bias and

random error:

σ2
ξ =σ2

bias,ξ+σ2
rnd,ξ (1.1)

wherein σ2
bias,ξ = (〈ξ〉−ξtrue)2 and σ2

rnd,ξ = 〈(ξ−〈ξ〉)2〉 for a measured quantity ξ with 〈 〉

denoting ensemble averaging.

One way to characterize the performance of a PIVA/PTVA system for measuring

velocity is the dynamic velocity range (DVR), given by the ratio of the full-scale velocity to

the velocity rms error (Adrian, 1997),

DV R = umax

σu
(1.2)

Many factors influence σu , including but not limited to particle image size, seeding

density, velocity gradient, curved streamline and interrogation algorithm. There has been
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a history of investigators extensively studying the uncertainty to optimize correlation-

based PIV by simulations using synthetic particle images (Keane and Adrian, 1992; Willert,

1996; Huang et al., 1997; Scarano and Riethmuller, 2000; Foucaut et al., 2004, among

others). In recent years, a posteriori uncertainty quantification ((UQ) methods have

erupted (Timmins et al., 2012; Sciacchitano et al., 2013; Charonko and Vlachos, 2013;

Wieneke, 2015), and a benchmark experimental database was established to assess their

performances (Neal et al., 2015; Sciacchitano et al., 2015).

In contrast, relatively few studies focused on the uncertainty of PTV in the past. It is

probably because the robustness of PTV was limited by low data yield and large rms error

(Stanislas et al., 2005, 2008). The low data yield of triangulation-based 3-D PTV mostly

attributes to the difficulty in searching for particle correspondences from multiple cam-

eras when the seeding density is high (Nishino et al., 1989; Robinson and Rockwell, 1993;

Virant and Dracos, 1997). In addition, the percentage of spurious matching elevates when

tracking particle pairs in densely seeded flows. In this regard, substantial efforts have

been increasingly reported thanks to enhanced camera signal-to-noise ratio, pixel reso-

lution and framing rate. Predictions using flow temporal information and neighboring

particles were used to track particles in high seeding density with high reliability (Malik

et al., 1993; Keane et al., 1995; Ohmi and Li, 2000; Fuchs et al., 2017). Wieneke (2012)

developed an iterative particle reconstruction (IPR) method to accurately determine

particle 3-D positions utilizing locally varying optical transfer functions (OTFs) (Schanz

et al., 2012). Schanz et al. (2016) extended the IPR algorithm by adding the dimension

of time to eliminate ghost particles in tomographic reconstructions, opening the way

to resolving turbulence small scale motions using PTV (Kähler et al., 2016). With these

considerations, one can expect the performance of PTV approaches or even surpasses

PIV, increasing the importance of investigating PTV uncertainty.
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In this work, we consider three sources contributing to the uncertainty of N -P PTVA:

(i) particle locating noise, (ii) curved streamlines and (iii) particle in-line acceleration. It is

conceptually obvious that N -P PTVA promises improvements since it allows a longer time

delay to reduce the relative locating noise and meanwhile addresses trajectory curvature

and velocity variation. However, there is still lacking the quantification of rms error

reduction. Moreover, as the additional pulses enable an estimate of time-dependent

particle velocity, whether or not there exists an optimal time to evaluate the velocity

needs to be answered.

In addition to the velocity uncertainty, the vector positioning uncertainty (position

rms error) is an equally important issue and must be addressed in PIV measurements. In

other words, measured vectors need to be correctly assigned to Eulerian positions in the

field to faithfully represent the flow. The vector positioning uncertainty also relates to the

dynamic spatial range (DSR, or more precisely, velocity-DSR, VDSR), which characterizes

the capability of a PIV system to resolve motions of different scales in turbulence (Adrian,

1997). On the basis that two independent vectors should not be located closer than the

positioning uncertainty (two or three rms), quantification of the positioning uncertainty

provides an upper bound for DSR. Such way to interpret DSR is especially suitable for

ensemble PTV measurements (Discetti et al., 2015; Kähler et al., 2012b) in which the data

spacing of turbulence statistics is not limited by particle overlaps but rather by the particle

locating uncertainty and the vector positioning uncertainty. The optimization of vector

positioning of 2-pulse PTV/PIV was investigated in several early works. Adrian (1995)

and Wereley and Meinhart (2001) proposed to assign velocity vectors to the midpoints of

particle displacement vectors to achieve second-order accuracy; Scharnowski and Kähler

(2013) showed further improvement of the positioning error by estimating the streamline

10



curvature from neighboring vectors. The quantification and optimization of the vector

positioning uncertainty of N -P PTVA is the scope of the present work.

The above discussion on the velocity and position uncertainty can be easily extended

to the measurement of acceleration using N -P PTVA. Correspondingly, we can define

dynamic acceleration range (DAR) and acceleration-DSR (ADSR). Early investigations on

the rms errors in position, velocity, and acceleration of N -P PTVA include Haranandani

(2011); Ding (2014), both of which preliminarily showed reduced rms errors. We follow

this direction in this work to thoroughly study the performances of 3- and 4-P PTVA.

Section 1.2 introduces the methodology of our N -P PTVA simulation, followed by the

behaviors of rms errors in Section 1.3 and the optimization of evaluating velocity and

acceleration in Section 1.4. With these results, Section 1.5 focuses on the improvement of

dynamic ranges by N -P PTVA.

1.2 Methodology

In our N -P PTVA analysis, we estimate a particle trajectory by fitting a curve to three

or four measured particle locations, and differentiate the curve to obtain particle velocity

and acceleration. The study compares the difference between an estimated trajectory

and the reference (ground truth) assumed to be a circular pathline with a radius of

curvature R. In realistic flows, the circular pathline represents a local segment of a

long-time particle trajectory, or the strong swirling flow near a vortex core. If we further

assume the reference trajectory has a constant angular acceleration,
..
ϑ0, then the angular

displacement profile ϑ(t ′) is

ϑ(t ′) =
.
ϑ0t ′+ 1

2

..
ϑ0t ′2, (1.3)
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wherein
.
ϑ0 =

.
ϑ(0) and

..
ϑ0 =

..
ϑ(0) are the initial angular velocity and acceleration, respec-

tively. Hereafter, the prime notation indicates the variable is referenced to the beginning

time. For instance, t ′ = t − t0, t ′ ∈ [0,∆t ], where ∆t is the time delay from the first to the

last pulse. Given Equation (1.3), the reference particle trajectory XXX ′
p (t ′) is

XXX ′
p (t ′) = R

[
1− cos(

.
ϑ0t ′+ 1

2

..
ϑ0t ′2)

]
iii +Rsi n(

.
ϑ0t ′+ 1

2

..
ϑ0t ′2)jjj , (1.4)

We investigated three analysis methods – the 3-pulse analysis interpolates a quadratic

curve to three measured particle locations, whereas the 4-pulse analysis either inter-

polates a cubic curve or fits a quadratic curve with least squares using four measured

particle locations. In the following discussions, we use abbreviations ‘3-P’, ‘4-P INT’ and

‘4-P LSQ’ to distinguish them. Explicit forms of the rms errors for 3-P and 4-P INT are

derived in Section 1.2.1 and 1.2.2, respectively. The study of 4-P LSQ employed a Monte

Carlo simulation, which is described in Section 1.2.3.

1.2.1 3-P PTVA

A 3-pulse measurement records three particle locations at t ′ = 0, α∆t ,∆t . Suppose

the three random particle locating errors are δXXX pi , i = 1,2,3. Then the three measured

particle locations are

XXX ′
p1,m = XXX ′

p (0)+δXXX p1 = δXXX p1, XXX ′
p2,m = XXX ′

p (α∆t )+δXXX p2, XXX ′
p3,m = XXX ′

p (∆t )+δXXX p3,

(1.5)

wherein the subscript ‘m’ denotes measured quantities with errors. An estimate of the

particle trajectory, X̂XX ′
p (t ′), is then obtained by fitting a quadratic curve to XXX ′

pi ,m :

X̂XX ′
p (t ′) = δXXX p1 + (ccc i · ttt∗3P)XXX ′

pi ,m , i = 1,2,3, (1.6)
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with ttt∗3P =
(

t ′

∆t
,

t ′2

∆t 2

)
= (

t∗, t∗2) and coefficient vectors

ccc1 =
(
−1+α

α
,

1

α

)
, ccc2 =

(
1

α(1−α)
,− 1

α(1−α)

)
, ccc3 =

(
− α

1−α ,
1

1−α

)

The difference between Equations (1.6) and (1.4) defines the position error for any t ′

along the trajectory. Thereby, the position rms error, σXp (t ′), with respect to the reference

is given by

σ2
Xp

(t ′) =
〈∣∣∣X̂XX ′

p (t ′)−XXX ′
p (t ′)

∣∣∣
2
〉

. (1.7)

wherein the angle brackets indicate ensemble averaging. Likewise, we can calculate the

rms errors in velocity and acceleration as

σ2.
Xp

(t ′) =
〈∣∣∣

.
X̂XX ′

p (t ′)−
.

XXX ′
p (t ′)

∣∣∣
2
〉

, σ2..
Xp

(t ′) =
〈∣∣∣

..
X̂XX ′

p (t ′)−
..
XXX ′

p (t ′)
∣∣∣
2
〉

. (1.8)

wherein
.

( ) and
..
( ) denote the derivatives with respect to t ′. For generality, we normalize

the rms errors using the characteristic scales. The position error is normalized using the

total length of the trajectory Rϑ(∆t ),

σ∗
Xp

=
σXp

Rϑ(∆t )
; (1.9)

the velocity error using the time-averaged velocity
1

∆t

∫ ∆t

0
|

.
XXX ′

p |d t ′ = Rϑ(∆t )

∆t
,

σ∗.
Xp

=
σ .

Xp
∆t

Rϑ(∆t )
; (1.10)

and the acceleration error using a convenient and reasonable acceleration scale
2Rϑ(∆t )

∆t 2
,

σ∗..
Xp

=
σ ..

Xp
∆t 2

2Rϑ(∆t )
. (1.11)

Justification of choosing this acceleration scale is explained in Section 1.2.5. Substituting

(1.3)–(1.8) into (1.9)–(1.11) and organizing terms, it is found that the total rms error
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comprises two components – the bias error arising from the 3-pulse interpolator and

the random error arising from δXXX pi . We also assume δXXX pi is zero-mean and statistically

independent with identical probability density profile, i.e.

〈δXXX pi 〉 =000, 〈δXXX pi ·δXXX p j 〉 = 〈
∣∣δXXX p

∣∣2〉δi j , i , j = 1,2,3, (1.12)

Then we can write the normalized bias error in terms of three non-dimensional parame-

ters, namely the normalized time,

t∗ = t ′/∆t , (1.13)

the normalized particle displacement (or the total sweeping angle),

ϑ(∆t ) = Rϑ(∆t )/R =
.
ϑ0∆t + 1

2

..
ϑ0∆t 2, (1.14)

and the acceleration factor,

ζ=
1
2

..
ϑ0∆t 2

.
ϑ0∆t

=
..
ϑ0∆t

2
.
ϑ0

. (1.15)

We can also write the normalized random error in terms of t∗ and the normalized particle

locating noise,

δ∗ = 〈
∣∣δXXX p

∣∣2〉1/2

Rϑ(∆t )
. (1.16)

Consequently, the square of the rms error is the sum of squares of the bias error and the

random error,

(
σ∗3P

q

)2
=

[
σ∗3P

bias,q

(
t∗,ϑ(∆t ),ζ;α

)]2
+

[
σ∗3P

rnd,q

(
t∗,δ∗;α

)]2
, (1.17)

wherein the subscript q = Xp ,
.

Xp and
..
Xp denoting position, velocity and acceleration,

respectively. The complete form of (1.17) is provided in Appendix A.
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1.2.2 4-P PTVA with Interpolation

The derivation of the rms errors of 3-P can be easily extended to the case of four

pulses. 4-P PTVA measures four particle locations at t ′ = 0, β∆t , γ∆t ,∆t :

XXX ′
p1,m = δXXX p1, XXX ′

p2,m = XXX ′
p (β∆t )+δXXX p2, XXX ′

p3,m = XXX ′
p (γ∆t )+δXXX p3, XXX ′

p4,m = XXX ′
p (∆t )+δXXX p4

(1.18)

The particle trajectory is then estimated by fitting a cubic curve to the four measured

particle locations:

X̂XX ′
p (t ′) = δXXX p1 + (ddd i · ttt∗4P INT)XXX ′

pi ,m , i = 1,2,3,4 (1.19)

with ttt∗4P INT =
(

t ′

∆t
,

t ′2

∆t 2
,

t ′3

∆t 3

)
= (

t∗, t∗2, t∗3) and the coefficient vectors

ddd 1 =
1

βγ

(−βγ−β−γ,1+β+γ,−1
)

, ddd 2 =
1

β(1−β)(γ−β)

(
γ,−γ−1,1

)
,

ddd 3 =
1

γ(1−γ)(γ−β)

(−β,β+1,−1
)

, ddd 4 =
1

(1−β)(1−γ)

(
βγ,−β−γ,1

)
.

Subtracting (1.4) from (1.19) and normalizing in the same way as in (1.9)–(1.11), we

obtain the rms errors of 4-P INT with similar forms to (1.17),

(
σ∗4P INT

q

)2
=

[
σ∗4P INT

bias,q

(
t∗,ϑ(∆t ),ζ;β,γ

)]2
+

[
σ∗4P INT

rnd,q

(
t∗,δ∗;β,γ

)]2
, (1.20)

wherein q = Xp ,
.

Xp and
..
Xp . The complete form of (1.20) is provided in Appendix A.

1.2.3 4-P PTVA with Least Squares

4-P LSQ fits a quadratic curve to the four measured particle positions given in (1.18).

While the least-square solutions are analytically obtainable, the equations are too com-

plicated to be presented here. Instead, we performed a Monte Carlo simulation that
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generated 50,000 Gaussian-distributed random locating error for each pulse. The stan-

dard deviation of the Gaussian distribution was set to be δ∗Rϑ(∆t). The computation

was implemented on a GPU (NVIDIA GeForce GTX 645) to significantly reduce the pro-

cessing time by parallelization. The equivalence between a Monte Carlo simulation and

an analytical study was validated by Haranandani (2011).

1.2.4 Parameter Space

We studied the rms errors in a 4-D space spanned by four non-dimensional parame-

ters – t∗, ϑ(∆t ), ζ and δ∗. The parameter space was selected to cover a wide range of flow

conditions and experimental conditions. Apparently, t∗ = t ′

∆t
∈ [0,1]. The normalized

particle displacement, ϑ(∆t), can be alternatively interpreted as the sweeping angle

a particle travels over with respect to the center of curvature. Considering a N -pulse

experiment with an optimal ∆t to have a total particle displacement of 10-50 pixels, a

very small ϑ(∆t ) implies a nearly straight trajectory, whereas a large ϑ(∆t ) corresponds to

a strongly curved pathline. We set ϑ(∆t ) ∈ (0,3] to cover trajectories from a straight line

to almost a half circle. The acceleration factor, ζ, is the ratio of the displacement arising

from the angular acceleration,
..
ϑ0, to the displacement arising from the initial angular

velocity,
.
ϑ0. We choose −0.5 for the lower bound, when the particle decelerates to zero

velocity at t ′ =∆t , and 0.5 for the upper bound, when the particle accelerates to twice of

its initial speed at the end. The noise level in locating the particle, δ∗, is the ratio of the

locating rms error to the total particle displacement, Rϑ(∆t ). Depending on the image

quality and the algorithm, the rms locating error is typically of the order of 5%-10% of the

particle diameter (Adrian and Westerweel 2011, Section 7.3.3). This implies a maxium

rms locating error of about 1.5 pixels, if we allow a particle image diameter up to 15
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Parameter t∗ ϑ(∆t ) ζ δ∗

Range [0, 1] (0, 3] [-0.5, 0.5] [0, 0.2]

Table 1.1: Parameter space for 3- and 4-P PTVA simulations.

pixels, which is possible for experiments with high magnification. On the other hand,

an optimally designed N -pulse experiment should have a total displacement of at least

8-10 pixels to reduce the percentage of random error. These considerations in effect

suggest an upper limit of approximately 0.2 for δ∗. Table 1.1 summarizes the ranges of all

parameters. Our study only considers equal time spacing, i.e. α= 1

2
for 3-P PTVA, and

β= 1

3
, γ= 2

3
for 4-P PTVA.

While we choose [0, 0.2] for δ∗ without loss of generality, for most experiments the

locating noise may be much lower than 0.2. Note that the way we define δ∗ in (1.16)

enables us to relate it to the DVR in a 2-pulse measurement:

DV R2P ≈ ∆Xp,max

σ∆X
= Rϑ(∆t )maxp

2〈
∣∣δXXX p

∣∣2〉1/2
= 1p

2δ∗
(1.21)

The above ‘≈’ results from the approximations umax ≈
∆Xp,max

M0∆t
and σu ≈ σ∆X

M0∆t
if we

consider in 2-pulse PIV each particle trajectory is approximated by a straight line with

constant velocity. Usually, the time delay of a 2-pulse PIV experiment is properly selected

so that the straight lines are good estimates. Westerweel et al. (2013) reviewed some

benchmark 2-pulse PIV measurements of turbulent flows, in which most DVRs ranged

from 59 to 122 corresponding to δ∗2P = 0.005 ... 0.012, which is representative of the

performance of current 2-pulse PIV systems. In Section 1.5, we discuss the improvement

of DVR and DSR by N -P PTVA for δ∗2P = 0.001 ... 0.01, covering current 2-pulse PIV
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systems and envisioning the future when camera technology allows the reduction of δ∗

by a factor of 4 ∼ 5.

1.2.5 Acceleration Scale

Given the parameter space in Table 1.1, we are now able to reconsider the acceleration

scale used in (1.11). As a matter of fact, two orthogonal components contribute to

the acceleration scale – the tangential acceleration, R
..
ϑ0, and the averaged centripetal

acceleration,
Rϑ2(∆t )

∆t 2
. Thus, the total acceleration is

Rϑ(∆t )

∆t 2

[
ϑ2(∆t )+

( ..
ϑ0∆t 2

ϑ(∆t )

)2] 1
2

= Rϑ(∆t )

∆t 2

[
ϑ2(∆t )+

(
2ζ

1+ζ

)2] 1
2

(1.22)

In a flow field measured by PIV, while the length scale Rϑ(∆t) and the velocity scale

Rϑ(∆t )

∆t
typically vary within a decade, the acceleration scale (1.22) could range over sev-

eral decades. Extremely high accelerations occur, for instance, near vortex cores (Lynch

and Scarano, 2014) or stagnation points (Ding, 2014), whereas the rest of the field exhibit

very small acceleration. Thus, using (1.22) to normalize the acceleration rms error could

result in extremely high σ∗..
Xp

, even though the absolute error may be insignificant relative

to the maximum acceleration. In this regard, it would be more reasonable to use an ac-

celeration scale in the same order of magnitude as the maximum acceleration. We chose

2Rϑ(∆t )

∆t 2
considering

[
ϑ2(∆t )+

(
2ζ

1+ζ

)2] 1
2

is in the range of (0, 3.6] according to Table

1.1. It is worth mentioning that

[
ϑ2(∆t )+

(
2ζ

1+ζ

)2] 1
2

is independent of t∗. Replacing it

with a constant does not change the optimal t∗ minimizing the rms error.

18



(a) ζ=−0.5 (b) ζ= 0 (c) ζ= 0.5

Figure 1.1: Velocity rms error of 3-P.

1.3 Behaviors of Rms Errors

Figure 1.1 presents the velocity rms error of 3-P, σ∗3P.
Xp

, with ζ=−0.5,0,0.5. For each ζ,

t∗–ϑ(∆t ) planes are displayed at δ∗ = 0, 0.05, ..., 0.2. It is evident that large rms error shows

when the trajectory is strongly curved, i.e. ϑ(∆t ) is large. Velocity variations, acceleration

(Figure 1.1(c)) and especially deceleration (Figure 1.1(a)), cause the elevation of rms error

, which is consistent with the conclusion by Boillot and Prasad (1996). It is also observed

that the rms error of ζ=−0.5 is more noticeable compared to that of ζ = 0.5. This is related

to the position of the middle particle image, which is schematically illustrated in Figure

1.2. When a particle decelerates, the middle image deviates more significantly from the

axis of symmetry compared to an accelerating particle with the same |ζ|. Thereby, the

polynomial representation becomes less accurate for negative ζ.

The color contours in Figure 1.1 also imply the existence of minimums of the rms

error at certain times, answering the question we brought up in the introduction. These

optimal times, t∗opt , vary with ϑ(∆t), δ∗ and ζ. Figure 1.3 shows the transitions of t∗opt
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Figure 1.2: Comparison of quadratic interpolations for accelerating and decelerating
particles.

from low to high δ∗ for σ∗3P.
Xp

at selected ϑ(∆t ) and ζ. The dependences on the parameters

are clear – the transition switches direction when ζ changes sign; the transition occurs at

a larger δ∗ and becomes less steep when ϑ(∆t ) or |ζ| increases. For σ∗3P.
Xp

shown in Figure

1.3, t∗opt is approximately 0.21 for ζ > 0 and 0.77 for ζ <0 when δ∗ is small, and gradually

collapses at t∗ = 0.5 for large δ∗. For δ∗ between 0.001 and 0.01, which is representative

of most PIV systems as we have discussed in Section 1.2.4, t∗opt mostly takes 0.21 or 0.77

except when the transition starts early with small ϑ(∆t ) and |ζ|.
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a. ◦ → ⋄, ϑ(∆t) ր
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Figure 1.3: Transition of t∗opt for the velocity rms error (or the velocity cost function, Kv )
of 3-P.

ζ = -0.5
ζ = 0.1
ζ = 0.5
ϑ(∆t) = 0.58 (all colors)
ϑ(∆t) = 1.79 (all colors)
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The complete set of plots in the 4-D parameter space for position, velocity and

acceleration rms errors of 3-P, 4-P INT and 4-P LSQ are included in Appendix B (Figure

B.1, B.3, B.5). If we also extract the t∗opt vs. δ∗ curves from those plots, we observe the

transition of t∗opt occurs at different t∗ with varying slope. The underlying reason is in fact

revealed from the constitutions of the rms errors given in (1.17) and (1.20). The bias error

is independent of δ∗, whereas the random error is proportional to δ∗ but independent of

ϑ(∆t ) and ζ. Thereby, the total rms error is dominated by the bias error when δ∗ is small,

and then grows with increasing δ∗ and appears nearly independent of ϑ(∆t ) and ζ. These

are evident in Figure 1.1 as well as the plots in Appendix B. Thereby, the transition of t∗opt

is the consequence of the random error competing with the bias error. When ϑ(∆t ) or |ζ|

is large, the bias error is significant, resulting in late and slow transitions as seen in Figure

1.3.

Furthermore, we compared different analysis methods from the perspective of bias

and random error. When particle locations are measured accurately, a higher-order
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4-P INT

4-P LSQ

Figure 1.4: Comparison of the velocity rms error at t∗opt against δ∗ for different analysis
methods. ζ=−0.5, ϑ(∆t ) = 1.51.
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method is more capable to represent the particle motion. However, since a higher-

order method has more degrees of freedom, the locating noise at each particle location

accumulates to generate a greater impact to the total rms error. In the context of our study,

it is revealed from the growth rate of rms errors against increasing δ∗. Figure 1.4 compares

the growths of velocity rms errors at ζ=−0.5 and ϑ(∆t ) = 1.51 as an example to illustrate

the above inferences. Clearly, 4-P INT produces the smallest bias error but the largest

random error compared to the other two methods. The rapid transition to the state of

ϑ(∆t )–independent for 4-P INT is graphically evident in Figure B.3. In addition, Figure 1.4

implies 4-P LSQ is preferable for noisy measurements. These behaviors are in agreement

with the experimental investigation by Ding and Adrian (2016) in which the authors

compared the random and bias errors of the measured velocity and acceleration fields

around an oscillating cylinder. It is worth noting that, while the preceding discussion

is mainly based on the velocity rms error, they also generally apply to the position and

acceleration rms errors.
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Figure 1.5: Comparison of position, velocity and acceleration rms errors of 3-P at t∗opt .
ζ=−0.5, ϑ(∆t ) = 1.51.
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Another dimension of our study is to compare the magnitudes of position, velocity

and acceleration rms errors. As an example for illustration, Figure 1.5 presents those of

3-P at ζ=−0.5 and ϑ(∆t) = 1.51. It shows that rms error of acceleration is greater than

that of velocity by up to an order of magnitude, and so is the rms error of velocity to

that of the position. The separation in magnitude is observed for all analysis methods

across the full ranges of ϑ(∆t ) and ζ, as seen from Figure B.2, B.4, B.6 in Appendix B (note

the different color scales used). These plots are the rms errors at t∗opt so that the data

are compressed into a 3-D space. Christensen and Adrian (2002) also proved magnified

acceleration rms error from their analyses showing the acceleration noise embodied the

fluctuating random and bias error from both PIV cameras. This result is important for the

designs of PIVA/PTVA experiments and the interpretation of measured acceleration fields.

In general, acceleration measurements are more sensitive to displacement error and

appear noisier than the simultaneous velocity fields. To achieve satisfactory accuracy of

acceleration, one needs to extend∆t to reduce δ∗ as much as allowed by other limitations.

In Figure B.2, B.4 and B.6, the axes of δ∗ use logarithmic scale intended to amplify the

range 0.001≤δ∗≤0.01, which is representative of most PIV systems. Within this range,

σ∗
Xp

is up to about 0.01, σ∗.
Xp

is up to about 0.1, and σ∗..
Xp

is mostly below 0.4, except when

ζ is close to −0.5 and ϑ(∆t ) approaches 3, σ∗3P..
Xp

and σ∗4P LSQ..
Xp

rise up to about 1.

1.4 Optimal Times to Evaluate Velocity and Acceleration

As discussed in the introduction, the uncertainties of velocity and acceleration involve

not only the magnitude and direction, but where to assign the measured vectors. In the

context of our PTV study, that means a fair measure of the uncertainties needs to take

into account the rms error of position as well. In this regard, we define two cost functions
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Figure 1.6: t∗opt of Kv for different analysis methods.
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ϑ(∆t) = 0.58 (all colors)
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for velocity and acceleration, respectively,

Kv = ησ∗
Xp

+ (1−η)σ∗.
Xp

, (1.23)

and

Ka = ησ∗
Xp

+ (1−η)σ∗..
Xp

. (1.24)

The weighting factor η is set to be 0.5 to equally emphasize their importances. Conse-

quently, the t∗opt s to evaluate velocity and acceleration are the times minimizing Kv and

Ka , respectively.

In fact, due to the considerable separation of magnitude, the t∗opt of Kv coincides

with that of the velocity, and so does the t∗opt of Ka with that of the acceleration. We have

already discussed the t∗opt of Kv for 3-P in Figure 1.3. Figure 1.6(a) shows the t∗opt of Kv for

4-P INT. As δ∗ increases, t∗opt starts at 0.5 and moves to 0.24 for ζ> 0 and 0.76 for ζ<0, with

the transitions appearing in the form of discontinuities. We checked the discontinuity

was not an artifact due to insufficient sampling rate by asymptotically adjusting δ∗ near

the jump and observing t∗opt . The t∗opt of Kv for 4-P LSQ, shown in Figure 1.6(b), appears

nearly identical to that of 3-P in Figure 1.3 as they are both quadratic methods. An
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Figure 1.7: t∗opt of Ka for different analysis methods.

ζ = -0.5
ζ = 0.1
ζ = 0.5
ϑ(∆t) = 0.58 (all colors)
ϑ(∆t) = 1.79 (all colors)
discontinuity (all colors)

exception is that t∗opt at low δ∗ is close to 0.23 (ζ > 0) or 0.75 (ζ<0), slightly differing from

that of 3-P.

Figure 1.7(a) presents the t∗opt of Ka for 4-P INT, in which t∗opt is 0.3 for ζ > 0 and 0.7

for ζ <0 initially and then collapses to 0.5. The dependence on ϑ(∆t ) and ζ are similar to

what we have discussed for Figure 1.3. The transitions of Ka for 4-P LSQ and 3-P exhibit

some interesting behaviors, as seen in Figure 1.7(b) and 1.7(c). The transitions take the

form of bifurcation or discontinuity. When δ∗ ≤ 0.02, the t∗opt s of Ka for 4-P LSQ and 3-P

are close to 0.5, a simple and unified result to be used in experiments. This also implies

the acceleration bias error by lower-order methods could be quite dominant so that the

transition does not occur until a large δ∗.
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Figure 1.8: Particle trajectory measured by 2-P and N -P PTVA with extended time delays.

1.5 Dynamic Range

1.5.1 Velocity

In this section, we study the improvements of DVR and VDSR by N -P PTVA compared

to 2-pulse PTV. The results in previous sections have indicated δ∗ plays a key role in

the total rms error. Thereby, the comparisons of dynamic ranges in this section are

on the basis of extended time delays intended to reduce δ∗. Suppose a 2-pulse PTV

employs a time delay of ∆τ. Then we set the time delays of 3- and 4-P PTVA to be 2∆τ

and 3∆τ, respectively. The corresponding trajectories are continuations of the circular

path (the reference) between the first two pulses, as illustrated in Figure 1.8. From the

extended time delay, we expect to have reduced δ∗ and increased |ζ| and ϑ(∆t). Table

1.2 summarizes the calculations of corresponding parameters for N -P PTVA. We restrict

ϑ(∆τ) below 0.78 and |ζ2P| below 0.16 such that the parameters of 4-P PTVA do not exceed

the limits listed in Table 1.1.
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The DVR in the context of our PTVA study is given by

DV R = umax M0

σ .
Xp

= umax M0∆t

σ∗.
Xp

Rϑ(∆t )
, (1.25)

where M0 is the lateral magnification; σ .
Xp

is calculated at a representative location in the

field of view. We set the comparison in the situation when one applies both 2-P and N-P

PTVA to measuring a flow field concurrently. Thus, umax and M0 cancel out in the DVR

ratio with respect to DV R2P:

DV R∗N P = DV RN P

DV R2P
= (N −1)ϑ(∆τ)

ϑ[(N −1)∆τ]

σ∗2P.
Xp

σ∗N P.
Xp

. (1.26)

Likewise, we define the VDSR to be

V DSR = Lx

2σXp

= Lx

2σ∗
Xp

Rϑ(∆t )
(1.27)

implying two neighboring vectors are at least 2σXp apart. Then the VDSR ratio is

V DSR∗N P = V DSRN P

V DSR2P
= ϑ(∆τ)

ϑ[(N −1)∆τ]

σ∗2P
Xp

σ∗N P
Xp

(1.28)

The rms errors of 2-pulse PTV, σ∗2P.
Xp

and σ∗2P
Xp

, were calculated with the same method

described in Section 1.2.1 assuming the estimated trajectory is a straight line between

two measured particle locations. The optimal time of 2-pulse PTV was found to be 0.5,

which is in agreement with Adrian (1995) and Wereley and Meinhart (2001). σ∗N P.
Xp

and

Example

ϑ(∆t ) ζ δ∗ ϑ(∆t ) ζ δ∗

2-P ϑ(∆τ) ζ2P δ∗2P 0.78 0.16 4.0e-03

3-P ϑ(2∆τ) = 2ϑ(∆τ)

1+ζ2P
+ 4ϑ(∆τ)ζ2P

1+ζ2P
ζ3P = 2∗ζ2P δ∗3P = δ∗2P ϑ(∆τ)

ϑ(2∆τ)
1.78 0.32 1.8e-03

4-P ϑ(3∆τ) = 3ϑ(∆τ)

1+ζ2P
+ 9ϑ(∆τ)ζ2P

1+ζ2P
ζ4P = 3∗ζ2P δ∗4P = δ∗2P ϑ(∆τ)

ϑ(3∆τ)
2.99 0.48 1.0e-03

Table 1.2: Calculation of the parameters for N -P PTVA with extended time delays.
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σ∗N P
Xp

at the t∗opt of Kv are used for the comparisons, and they are readily obtainable from

the results in Section 1.3 and 1.4.

Figure 1.9 shows DV R∗, V DSR∗ and their products for varying δ∗ and flow conditions.

Each data point displayed here is calculated with the analysis method that yields the

smallest Kv at t∗opt . Different methods are marked with different symbols. Data in the

shaded region show the improvement for δ∗ achievable by current 2-pulse PIV systems,

i.e. δ∗2P = 0.004 ... 0.01, as discussed in Section 1.2.4. Within this range, when the

particle trajectory is nearly a straight line with constant velocity (Figure 1.9(a)), the

overall performance, characterized by the product of DV R∗ and V DSR∗ (Adrian, 1997),

is improved by about a half order of magnitude. With the presence of moderate curvature

(Figure 1.9(b)) or acceleration (Figure 1.9(c)), the ratio increases to an order of magnitude,

especially when δ∗2P gets close to 0.004. Further increases of |ζ2P| and ϑ(∆τ) result in

0.001 0.002 0.004 0.01

δ∗2P

10
0

10
1

10
2

D
R

 r
a
ti
o

(a) ζ2P = 0, ϑ(∆τ) = 0.03

0.001 0.002 0.004 0.01

δ∗2P

10
0

10
1

10
2

D
R

 r
a
ti
o

(b) ζ2P = 0, ϑ(∆τ) = 0.26

0.001 0.002 0.004 0.01

δ∗2P

10
0

10
1

10
2

D
R

 r
a
ti
o

(c) ζ2P = 0.08, ϑ(∆τ) = 0.03

0.001 0.002 0.004 0.01

δ∗2P

10
0

10
1

10
2

D
R

 r
a
ti
o

(d) ζ2P = – 0.16, ϑ(∆τ) = 0.52

0.001 0.002 0.004 0.01

δ∗2P

10
0

10
1

10
2

D
R

 r
a
ti
o

(e) ζ2P = 0.16, ϑ(∆τ) = 0.78

Figure 1.9: DVR and VDSR ratios for varying δ∗ and flow conditions. Data in the shaded
region show the improvements for δ∗ achievable by current 2-pulse PIV systems.
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a more significant improvement of up to 50 times, as seen from Figure 1.9(d). If future

camera technology allows δ∗2P to reach 0.001, the overall performance could be enhanced

by up to two orders of magnitude as indicated in Figure 1.9(b) and 1.9(d). Interestingly,

Figure 1.9(e) shows reduced overall performance improvement when the strong ζ2P and

ϑ(∆τ) lead to very large ϑ(3∆τ) (see the example in Table 1.2). It suggests that, to gain the

most improvement from the additional pulses, the time delay of 4-P PTVA needs to be

properly adjusted to avoid strongly curved trajectories (ϑ(∆t ) ∼ 3) constantly occurring

in the field of view. Moreover, the results in Figure 1.9 imply that the best performance

is achieved by either 4-P INT or 4-P LSQ, and the latter one is advantageous when the

trajectory is close to a straight line (Figure 1.9(a) and 1.9(c)), or δ∗ is relatively high

(Figure 1.9(b) and 1.9(c)). However, the 3-P PTVA could be a less expensive option whose

performance in velocity and acceleration measurements is comparable to a 4-P system

under some circumstances. An example PIVA work is (Ding and Adrian, 2016), in which

the authors also outlined some other considerations for choosing a 3-P or 4-P system

besides the regards of dynamic range and rms error. In addition, it is evident that the

VDSR has a greater potential than the DVR to significantly contribute to the improvement

of overall performance. Typically, the DVR ratio is under 5, whilst the VDSR ratio could be

up to 50-100.

1.5.2 Acceleration

For acceleration measurements, we use some example numbers to calculate the

dynamic ranges. We define the dynamic acceleration range (DAR) as the ratio of the
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maximum acceleration to the acceleration rms error,

D AR = amax M0

σ ..
Xp

= amax M0

σ∗..
Xp

2Rϑ(∆t )/∆t 2
= A∗

max

σ∗..
Xp

(1.29)

wherein

A∗
max = amax M0∆t 2

2Rϑ(∆t )
(1.30)

is the normalized maximum acceleration. As we discussed in Section 1.2.4, the accelera-

tion scale
2Rϑ(∆t )

∆t 2
is set to be in the same order of the maximum acceleration, so here

we choose A∗
max = 3 as an example to calculate DAR.

The acceleration dynamic spatial range (ADSR), similar to VDSR, characterizes the

number of independent acceleration measurements that can be made across the linear

dimension of the field. The ADSR in our calculation is defined as

ADSR = Lx

2σXp

= Lx/Rϑ(∆t )

2σ∗
Xp

. (1.31)
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Figure 1.10: Example DAR and ADSR for varying flow conditions and locating noise.
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It is important to note that, although the ADSR is of the same form as the VDSR in (1.27),

the σ∗
Xp

in (1.31) and the σ∗..
Xp

in (1.29) are evaluated at the t∗opt of Ka . The numerator in

(1.31) is the ratio of the linear dimension of the field to the length of the trajectory. We use

Lx/Rϑ(∆t ) = 100 as an example for our calculations, which indicates a trajectory length

of 40 pixels if the imaging sensor is 4,000-pixel wide.

Figure 1.10 shows example numbers of DAR and ADSR. Noticeably, the ADSR is always

greater than the DAR by about two to three orders of magnitude. When a particle moves

along a nearly straight pathline with no acceleration (Figure 1.10(a)), the ADSR ranges

from 104 to 105 when δ∗ varies from 0.01 to 0.001; meanwhile, the corresponding DAR

is between 102 and 103. If we compare Figure 1.10(b) and 1.10(c) to Figure 1.10(a), it

indicates that the presence of strong velocity variation has a negligible impact on DAR

and ADSR, whereas even a moderate increase of ϑ(∆t) could cause reductions of both

DAR and ADSR by a factor of 2 to 3 at the low δ∗ end (δ∗ ≈0.001). In other words, the

curvature of a particle trajectory, i.e. the centripetal acceleration, is more difficult to be

captured by polynomial fits. Further increases of |ζ| and ϑ(∆t) (Figure 1.10(d)) reduce

DAR below 10 and ADSR below 104.

1.6 Summary and Conclusions

We have theoretically studied the performance and optimization of N -pulse PTVA

(N = 3 or 4). Using a circular pathline as the reference trajectory, we quantified the

normalized rms errors in position, velocity and acceleration for varying flow conditions

and particle locating noise. The results indicate elevated rms errors for strong curvature

and velocity variation as well as large locating noise. The investigation of bias and random

errors of different analysis methods suggests 4-P INT is advantageous when δ∗ is low to
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produce the smallest bias, whereas 4-P LSQ is capable to reduce the random error but at

the cost of strong bias. The acceleration error is more significant than the simultaneous

velocity error. Enhancement of acceleration accuracy requires employing an extended

time delay, and further enhancement may rely on the development of camera technology

for improved image signal-to-noise ratio.

Cost functions combining the uncertainty of position with that of velocity and accel-

eration were used to find the optimal times for velocity and acceleration measurements.

When the locating noise increases, the optimal times exhibit transitions as the conse-

quence of the random error gradually dominating the total rms error.

With the normalized rms errors, we calculated the ratios of DVR and VDSR between

N -pulse and 2-pulse PTVA on the basis of extended time delays. For locating noise

achievable by current 2-pulse PIV systems, the 4-P PTVA can improve the overall per-

formance by 10 to 50 times, except when the trajectory is nearly straight with negligible

velocity variation. If future camera technology reduces the locating noise by a factor

of 4 to 5, we showed the overall improvement could be up to two orders of magnitude.

The contribution of VDSR to the overall performance improvement is greater than that

of DVR. In addition, 4-P LSQ is preferable for large locating noise and small curvature,

whereas 4-P INT yields better performance in other situations.

We propose to use DAR and ADSR to characterize the performance of N -P PTVA

for acceleration measurements. The calculations using example numbers indicate the

overall performance of acceleration measurement could increase by one to two orders of

magnitude if the locating noise is reduced from 0.01 to 0.001. Moreover, accurate mea-

surement of the centripetal acceleration appears to be more challenging for a polynomial

fit compared to the tangential acceleration.
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The present work provides guidances for experimentalists to optimize their

PIVA/PTVA measurements. It is worth mentioning that our methodology of study-

ing the optimization problem can be extended to experiments employing more light

pulses (Martinez et al., 2015) or different fitting models (Wagner et al., 2012).
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Chapter 2

N -PULSE PARTICLE IMAGE VELOCIMETRY-ACCELEROMETRY FOR UNSTEADY

FLOW-STRUCTURE INTERACTION2

ABSTRACT

Flow-structure interaction experiments are a major area of application of instruments

capable of simultaneously measuring instantaneous fields of velocity and acceleration.

An N -pulse particle image velocimeter-accelerometer (N -P PIVA) employing bursts of N

pulses, where N =3 or 4, and operating in the high-image-density particle seeding mode is

described and demonstrated in the context of a representative flow-structure interaction

experiment. The instrument employs two double-pulsed lasers and a high-resolution,

fast-framing camera to acquire successive particle images having time separations small

enough to perform good interpolation or finite differencing. The interrogation procedure

locates the same group of particles at each pulse time using multiple cross-correlations,

and a predictor-corrector algorithm enhances the strength of the cross-correlations by

centering the windows on the particle groups at each time. Data from 2-, 3- and 4-pulse

systems are compared to assess their relative performance. Measurements from the 4-

pulse method with interpolation have smaller mean bias errors than the 3-pulse method

with interpolation or the 4-pulse method with least squares, but larger random error. A

flow-structure experiment was performed in liquid surrounding a horizontal cylinder

suspended by two thin, flexible, vertical rods from a slider block driven horizontally and

2This chapter is reformatted from an article co-authored with Dr. Ronald J. Adrian and published in
Measurement Science and Technology (Ding and Adrian, 2016).
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sinusoidally. The value of the Keulegan-Carpenter number is KC = 4.85 and the frequency

parameter (or Stokes number) is β = 7.2. To make measurements close to the surface

of the cylinder, a method using near-wall transformation and correlation analysis on a

transformed grid is developed. Image processing used to determine the position, velocity

and acceleration of the center of the cylinder is described. These measurements, together

with the N -P PIVA data allow complete evaluation of each term in the exact, stationary

control surface formulation of the fluid force applied to the cylinder surface (Noca, 1997;

Noca et al., 1997, 1999; Unal et al., 1997), demonstrating the ability to measure unsteady

fluid force on the cylinder

Keywords: particle image velocimetry (PIV), particle image velocimetry and ac-

celerometry (PIVA), N -pulse PIVA, flow-structure interaction, moving cylinder

2.1 Introduction

N -pulse particle image velocimetry-accelerometry (N -pulse PIVA or N -P PIVA) is a

generalization of the fundamental double-pulse particle image velocimetry (PIV or more

precisely 2-P PIV) method that has been standard for more than two decades. As a class,

N -P PIVA contains N -P PIV, wherein acceleration is not measured; time-resolved PIV (T-R

PIV), wherein many frames in a sequence of images are recorded either cinematically or

video-graphically to create a movie of a time-varying velocity field; and long-time multi-

pulse particle tracking in which single particles are tracked over long trajectories. In either

case the image density may be low enough to track individual particles (particle tracking

velocimetry, or PTV) or high enough to track groups of particles by cross-correlation

(PIV).
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Surprisingly, the modern time-resolved PTV is predated by the work of Nayler and

Frazer (1917) almost one century ago. Modern time-resolved work follows very similar

lines, except that all methods are computerized and virtually all experiments use video-

graphic recording, with the exception of the cinematic PIV experiment by Lin et al. (1995).

T-R PTV has been employed widely in measurements of three-dimensional volumetric

velocity fields (Malik et al., 1993; Virant and Dracos, 1997; Robinson and Rockwell, 1993;

Nishino et al., 1989), and it has proved to be very effective for the Lagrangian tracking of

particles over long-periods using experimental setups similar to T-R PIV/T-R PTV (Virant

and Dracos, 1997; La Porta et al., 2001; Mordant et al., 2004; Ferrari and Rossi, 2008; Rossi

and Lardeau, 2011). Given a particle’s trajectory, both velocity and acceleration of the

fluid can be measured in the pure Lagrangian sense, to the extent that the particle is

imbedded in the fluid without slipping. The Lagrangian acceleration field can also be

found by using high image density velocity measurements from two double-pulsed PIV

systems plus the equation for the substantial or material derivative,

D

Dt
= ∂

∂t
+uuu ·∇ (2.1)

Velocity fields at two slightly different times are measured to get the Eulerian acceleration,

∂uuu/∂t (Perret et al., 2006), and the material derivative is found by adding the uuu ·∇uuu term

(Christensen and Adrian, 2002). Note that measurements performed in a frame moving

with velocity uuu require no correction for the second term (Liu and Katz, 2006).

Alternatively, high image density PIV can also measure Lagrangian acceleration by

determining the trajectory from multi-pulse images of groups of particle images. The

small groups of particle images act as markers of the fluid they are imbedded in. Tracking

the group by cross-correlation allows reconstruction of the group’s trajectory, and subse-

quent differentiations yield velocity and acceleration of the group (Lynch and Scarano,

2014). This transition from PTVA to PIVA is a conceptually simply matter of replacing
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a single particle with a small group of closely neighboring particles. But, a group of

particles deforms with the fluid, whereas a single particle does not.

Any measurement of acceleration requires three or more pulses, so in effect all PIVA

and PTVA instruments are N -pulse devices of some order. Rather than the long series

of images from T-R PTVA or T-R PIVA, it is possible to make good measurements of

acceleration employing only 3- or 4- pulses (Adrian, 2010; Haranandani, 2011; Lynch and

Scarano, 2013; Ding, 2014), or more (Martinez et al., 2015).

Ground breaking work by Noca (1997); Noca et al. (1997, 1999); Unal et al. (1997)

showed how the total unsteady fluid force on a body could be evaluated knowing the

fluid velocity and acceleration in a control volume. Their finding materially elevated

the importance of measuring acceleration in flow-structure research. The slow framing

rates of film cameras severely limited the maximum measurable velocity, so they are

seldom used. Digital cameras frame faster, and make it easy to record and off-load long

sequences of images for PIV interrogation and analysis. If pairs of images are interrogated

from a TR-PIV time series, acceleration can be measured by finite differences, provided

that the time between frames is small enough (Hain and Kähler, 2007; Sciacchitano et al.,

2012 among others). Currently, fast digital cameras having more than one-megapixel

format frame up to 25 kHz (corresponding to maximum velocities of order 5 m/s if the

maximum displacement between pulses is restricted to be less than 0.2 mm). In faster

flows dual-frame PIV cameras can reduce the inter-frame time below one-microsecond,

allowing up to 200 m/s velocity, but without continuous time resolution owing to the

limited off-load speeds of these cameras. These considerations make systems using 3-,

4-, or even more pulses attractive.

N -pulse PIVA provides benefits that may be more significant than the measurement

of acceleration. Based on the observation that neither the spatial resolution nor the dy-
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namic velocity range had increased significantly for more than a decade, it was proposed

that an innovation was needed to get more information from the images. Specifically,

the extra information could be obtained by adding light pulses to achieve significantly

improved performance (Adrian, 2010). Relative to the standard double-pulse PIV, it was

hypothesized that additional pulses would: 1) improve spatial resolution; 2) increase

dynamic velocity range; and 3) add the capability to measure fluid acceleration. The

proposed innovation extended PIVA to 3- or 4-pulses.

Until recently, the optimization and potential performance of N -P PIV has been

evaluated by analyzing the simpler case of N -pulse particle tracking velocimetry-

accelerometry (N -P PTVA), wherein the multiple pulses mark the locations of a single

particle along its trajectory. Analyses of uncertainty of velocity and acceleration mea-

surements made by N -P PTVA operating over a wide range of conditions and operating

parameters (pattern of the pulses, time between first and last pulses, noise in the particle

image, curvature of the particle pathline, acceleration along the pathline, and maximum

velocity) have been analyzed extensively (Haranandani, 2011; Westerweel et al., 2013;

Ding, 2014; Ding and Adrian, 2017). The results show performance significantly superior

to double-pulse PTV. For example, when the pathline has small curvature but large ac-

celeration along it, the velocity error and position error can be reduced up to one order

of magnitude. Based on the performance results from the aforementioned analyses of

3-P and 4-P PTVA, 3-P and 4-P PIVA using cross-correlation to determine displacements

also appear promising. Contemporaneously with the PTVA studies (Westerweel et al.,

2013; Ding, 2014) the feasibility of 4-pulse PIVA using cross-correlation methods was

demonstrated experimentally by Lynch and Scarano (2014) in an air flow separated from

a reward facing step.
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The present work applies 3-pulse and 4-pulse PIVA to simultaneous measurements of

velocity and acceleration fields in flow around an oscillating cylinder, with adaptations for

high image density correlation interrogation and measurements close to the accelerating

fluid-solid interface. Our purpose is to compare the performance of 3- and 4-pulse PIVA

in an interesting unsteady flow-structure interaction experiment using optimization

concepts based on the results by Westerweel et al. (2013); Ding (2014) and to demonstrate

a powerful tool for investigating such flows.

2.2 Experimental Apparatus and Data Acquisition

The test section, shown in Figure 2.1(a), consists of a 355.6 mm (L)× 203.2 mm (W)×

235.0 mm(H) aquarium and a pendulum comprised of a transparent Plexiglas cylinder

(diameter D = 25.4 mm, span b = 114.3 mm) supported by two threaded Nylon 6/6 rods

(4-40 thread) from above. The cylinder is immersed in fluid and positioned in the center.

The elastic rods are 177.8 mm long (from the hinge base to the center of the cylinder)

with 71.4 mm immersed the fluid. The distance between the two rods is 91.9 mm. To

illuminate both sides of the cylinder,the working fluid is a refractive-index-matching

(RIM) solution made with 30.35% sodium iodide (NaI), 14.57% water and 55.08% glycerin

by weight, matching the refractive index of Plexiglas of 1.49. The RIM solution has a

density of 1.42 g/mL and a kinematic viscosity of 60 cSt. The pendulum is driven by a

step motor (VXM) controlled translation slider and oscillates sinusoidally. Figure 2.1(b)

compares the positions of the driving slider and the cylinder as measured from direct

imaging. The slider oscillates with a peak-to-peak amplitude of 38.1 mm and period T0

= 1/ f0 = 1.496 s. The cylinder oscillates with the same period but with a slightly larger

amplitude of 39.2 mm and a phase delay of 3π/5; i.e. ϕc (t) = ϕ(t)− 3π/5, where ϕc
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Figure 2.1: (a) Test section. (b) Positions of the driving slider and the cylinder. ϕ and ϕc

are the phases of the driving slider and the cylinder, respectively, and ϕc (t ) =ϕ(t )−3π/5.

and ϕ denote the phase of cylinder and driving slider, respectively (ϕ = 0 is defined

when the driving slider is at its right-most position). The Keulegan-Carpenter number,

KC = 2πA/D , of the cylinder oscillation is 4.85, where A is the oscillation semi-amplitude

and D is the cylinder diameter. The Reynolds number based on the maximum velocity of

the cylinder is 35, and thus the frequency parameter (or Stokes number) is β = Re/KC =

7.2. To avoid the surface wave that could affect the cylinder oscillation, the liquid surface

is covered by a plastic plate with two slots, along which the elastic rods can move freely.

Our 3- and 4-pulse PIVA system hardware consists of four Nd:YAG lasers (Quantel) and

a high speed CMOS camera (Vision Research Phantom v641) that serves as a convenient

surrogate for the 3- or 4-frame camera envisioned for true N -P PIVA. The four lasers

are triggered independently and their beams are aligned collinearly by precise beam-

combining optics to achieve 95% overlap at the test section. Pulse energies exceed

100mJ/pulse for good particle image signal-to-noise ratio. The illumination system is

well-suited for moderate to high-speed flows due to the combination of great timing
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flexibility and high pulse energy, capabilities not normally found in high-repetition-rate

lasers. The camera collects up to 1,450 fps at the full resolution of 2560×1600 pixels. A

section of 2560×1440 pixels is selected in the present experiment to ensure full image

illumination by the laser. The light sheet is perpendicular to the cylinder and positioned

at the midspan. PIVA images are captured at f # = 8 with magnification 0.145.

Figure 2.2 presents the timing diagram of our experiment. Two BNC565 pulse/delay

generators (#1 and #2) trigger flashlamps and Q-switches, respectively, firing four laser

pulses with 10 ms apart. Another BNC box (#3) is set as the master to synchronize laser

pulses and camera exposures with the phases of the pendulum oscillation. That is, at

the beginning of each half cycle (ϕ = 0 and π/2), BNC#3 receives a signal from the step

motor driver, and send signals to BNC #1 and #2 to fire lasers. Meanwhile, four channels

of BNC #3 trigger the camera for four fast exposures with the four light pulses centered

at each one. By setting all BNC channels to burst mode of eight pulses, the flow field is

sampled by four fast frames at every phase, i.e. ϕ = 0, π/8, 2π/8,...,15π/8, within each

cycle. Hereafter, we use ti , i = 1,2,3,4, to denote the time instants of the four pulses, and

the total time delay ∆t= t4 − t1 = 30 ms.

Figure 2.2: Timing diagram of 4-P PIVA measurement. Four fast frames are captured at
each phase.
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(a)

r

(b) (c)

Figure 2.3: Segmentation of the solid region (cylinder and rod) from particle images. (a)
Original particle image. (b) Detection of the cylinder circular contour (red dashed line)
and the boundaries of the region blocked by the rod (yellow line). (c) Image with the solid
region masked.

2.3 Position, Velocity and Acceleration of the Cylinder

A typical side-view image of the particles and the moving cylinder is shown in Figure

2.3(a). The RIM solution enables illumination of the entire field of view. The slightly

dim region behind the cylinder is caused by attenuation of the light intensity when

passing through the cylinder. The particle image signal-to-noise ratio decreases gradually

from left to right due to divergence of the light sheet. A Circular Hough Transform

(CHT) method (Atherton and Kerbyson, 1999) is adopted to detect the contour of the

cylinder/light sheet cross-section with speed and accuracy. Figure 2.3(b) shows the result

of the cylinder detection, in which the cross-section is given by its center and radius. The

region blocked by the elastic rod is segmented by Otsu’s thresholding algorithm (Otsu,

1975), followed by third-order polynomial fit to the left and right boundaries. It should

be noted that the thresholding process can be accelerated if performed only within a

prescribed region above the cylinder. In addition, the region for CHT searching the circle
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can also be limited within the area over which the cylinder oscillates, further decreasing

the processing time. Figure 2.3(c) shows the segmented image with the solid region

masked.

The cylinder trajectory is measured by tracking the centers, as shown in Figure 2.4(a).

The trajectory follows a “figure-eight” pattern with a slight left-right asymmetry possibly

due to imperfect mounting of the pendulum. Curve fitting is performed for the cylinder

center positions with the following Fourier series model up to the third harmonic,

x̂xxc (t ) =aaa0 +
3∑

k=1
[aaai cos(kωt )+bbbi si n(kωt )], (2.2)

where ω = 2π/T . In the x-direction, the amplitude of the second and third harmonics (k

= 2, 3) are less than 0.5% of that of the fundamental frequency (k = 1); in the y-direction,

the strongest harmonic occurs at k = 2, and the amplitude of k = 3 is less than 1.5% of

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

x [m]

-3

-1.5

0

1.5

3

y
[m

]

×10
-3

(a) cylinder trajectory

0 1 2 3

ϕc/2π

-0.02

0

0.02

x
c
[m

]

0 1 2 3 4

ϕ/2π

-2

0

2

y c
[m

]

×10
-3

(b) position

0 1 2 3

ϕc/2π

-0.1

0

0.1

u
c
[m

/s
]

0 1 2 3 4

ϕ/2π

-0.02

0

0.02

v c
[m

/s
]

(c) velocity

0 1 2 3

ϕc/2π

-0.5

0

0.5

a
cx

[m
/s

2
]

0 1 2 3 4

ϕ/2π

-0.2

0

0.2

a
cy

[m
/s

2
]

(d) acceleration

Figure 2.4: Tracking of the cylinder motion. “+": center positions obtained from CHT; “—”
curve fitting. (a) cylinder oscillation trajectory over four periods. (b) cylinder position vs.
time. (c) velocity vs. time. (d) acceleration vs. time. Blue is for x-component and red for
y-component. Both ϕc and ϕ are indicated on the time axes.

43



that. The cylinder velocity, (uc , vc ), and acceleration, (acx , ac y ), are then calculated by

differentiating x̂xxc (t ), and the results are shown in Figure 2.4(b) – 2.4(d). The maximum

magnitudes of velocity occur when the cylinder is moving through the center of its

trajectory, whereas the maximum magnitudes of acceleration occur when the cylinder is

turning to the opposite direction at the left- and right-most positions of the trajectory.

2.4 Velocity and Acceleration Fields of the Fluid

2.4.1 N -pulse PIVA Analysis

The particle-filled fluid region with particles is processed using adaptive window-

based cross-correlation to track the same groups of particles in four consecutive frames

at t1, t2, t3 and t4. The iterative image deformation technique proposed by Scarano (2001)

is applied to improve the accuracy. The 3-pulse analysis correlates the images from pulse

2 to 1, and from pulse 2 to 4, yielding two displacement vectors,∆xxx21 and∆xxx24, with both

starting points located at the window center of pulse 2. The window-averaged trajectory

is then estimated by a second-order polynomial fitted to the three positions, ∆xxx21, 000,

and ∆xxx24. The strategy of performing cross-correlation starting from the middle frame

(pulse 2) avoids the possible weak correlation signals due to in-plane and out-of-plane

loss of pairs (Adrian and Westerweel, 2011) if otherwise correlating from pulse 1 to 2, and

from pulse 1 to 4. The use of pulse 1,2,4 for triple-pulse analysis instead of pulse 1,2,3

is to (1) have the same ∆t as quadruple-pulse analysis for a valid comparison of their

performances; and (2) reduce the random noise level by using a longer ∆t (Ding and

Adrian, 2017). The 4-pulse analysis estimates the trajectory by fitting a polynomial to

four positions, ∆xxx21, 000, ∆xxx23 and ∆xxx24.

44



Figure 2.5: Schematic of the interrogation scheme for window-based 4-pulse PIVA analy-
sis

We investigate two fitting methods – third-order polynomial and second-order poly-

nomial by least squares, referred to as 4-pulse with interpolation and 4-pulse with least

squares, respectively. The latter intends to reduce the influence of the random errors

embedded in displacement measurements. ∆xxx21 and ∆xxx23 are measured directly by

cross-correlation with iterative image deformation. The measurement of ∆xxx24 employs a

predictor-corrector interrogation scheme (Figure 2.5), similar to fluid tracking correlation

(FTC) for TRPIVA (Lynch and Scarano, 2013). Vector fields ∆xxx34 are first measured on

the same grid as ∆xxx23, and then interpolated onto a grid defined by the ending points of

∆xxx23 yielding ∆xxx ′
34. We use ∆xxx23 + ∆xxx ′

34 as the initial prediction for ∆xxx24, which is then

corrected by two iterations of deformation and update using images of pulse 2 and 4. The

velocity and acceleration of triple- and quadruple-pulse analyses are calculated by differ-

entiating the time-dependent trajectories at t = t2, and assigned to the window centers

at pulse 2, yielding vectors on regular grids. More accurate estimates of the velocity and

acceleration may be achieved by assigning each vector obtained by cross-correlation to

the centroid of the particle group and calculating velocity and acceleration at the optimal

times proposed by Ding and Adrian (2017) from their N -P PTVA simulation. However,

the calculations of the vorticity, viscous stress tensor, and many other quantities require

data interpolation on grid points, which may bring in extra error to an unknown degree.
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The present method of assigning vectors to window centers and evaluating velocity and

acceleration at t = t2 is a convenient and near-optimum strategy.

2.4.2 Treatment of the Near-Wall Region

The aforementioned schemes were employed to measure the flow fields far away

from the moving cylinder surface. In our early tests, tracking near-wall particle groups

by N -P PIVA analysis using the digital mask technique of Gui et al. (2000) produced

significant numbers of invalid vectors, an effect attributed to the difficulty of properly

performing deformation interpolation near the moving curved surface. Near-wall particle

images and the surface are often distorted undesirably during the iterations of image

deformation. This problem appears more severe for N -pulse analysis that searches

three or four consecutive frames for matching particle groups. To achieve accurate

measurement close to the surface, we follow the same strategy as in Nguyen et al. (2010)

A
D

B
C

(x, y)

(a)

A D

B C(x̃, ỹ)

(b)

Figure 2.6: (a) A circular band to be transformed near the surface, outlined by the yellow
dashed line. (b) The resulting rectangle in the transformed domain. Corresponding
corners are labeled with A, B, C and D.
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and Jeon and Sung (2011) that transforms the near-wall region to a rectangle, which

is more amenable to N -P PIVA analysis with image deformation. The transformation

method proposed here is simple but more general for various applications.

Near-wall region transformation. Local tangent and normal coordinate systems

sometimes fail to describe the local geometry, especially if the region to be transformed

is bounded by another object or by the boundaries of the image. To be more flexible for

various geometries, the proposed method maps the four corners of a prescribed near-

wall region in the physical domain to the four corners of a rectangle in the transformed

domain. Figure 2.6(a) shows a circular band to be transformed in the vicinity of the

cylinder with an interior boundary ÙAD and an exterior boundary ÙBC . The corresponding

corners after transformation, labeled A, B, C and D, are shown in Figure 2.6(b). The

transformation is mathematically represented by a vector function FFF , relating the physical

domain (x, y) to the transformed domain (x̃, ỹ),

(x, y) =FFF (x̃, ỹ), or (x̃, ỹ) =FFF−1(x, y). (2.3)

The length of ÙAD and ÙBC are denoted l1 and l2, respectively, and the transformed rectan-

gle has a length of l̃ and a width of w̃ . Then the transformation function FFF is

FFF (x̃, ỹ) = (1− ỹ

w̃
)HHH 1(

x̃

l̃
l1)+ ỹ

w̃
HHH 2(

x̃

l̃
l2), (2.4)

in which HHH 1 and HHH 2 calculate the positions along ÙAD and ÙBC where the cumulative

lengths are equal to
x̃

l̃
l1 and

x̃

l̃
l2, respectively. In practice, ÙAD and ÙBC are represented by

a series of discrete point positions, and the cumulative length is estimated by adding the

straight distances between neighboring points. HHH 1 and HHH 2 are then fitted to relate the

cumulative length to the point positions using cubic-spline. For pixelized digital images,

the transformation function FFF∗ of the (m̃, ñ)th pixel in the transformed image with M̃ ×Ñ
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pixels can be written as

FFF∗(m̃, ñ) = (1− ỹ∗

Ñ
)HHH 1(

x̃∗

M̃
l1)+ ỹ∗

Ñ

∗
HHH 2(

x̃∗

M̃
l2), (2.5)

where (x̃∗, ỹ∗) = (m̃ −0.5, ñ −0.5) is the center of the (m̃, ñ)th pixel. Consequently, the

intensity of the (m̃, ñ)th pixel in the transformed image, Itr ans(m̃, ñ), is interpolated as

Itr ans(m̃, ñ) = Iphy s(FFF∗(m̃, ñ)), (2.6)

where the Iphy s is computed with a user-preferred interpolation method, such as bilinear,

or cubic-spline (present work), for example. The resolution of the transformed image

needs to be comparable to that in the physical domain to avoid loss of intensity infor-

mation. The near-wall band should be relatively narrow to avoid strong distortion in the

transformed image due to significant magnification variation. Meanwhile, it should allow

at least 6-8 vector spacings for reliable interrogation and validation of PIVA. It is worth

noting that, although the foregoing description is based on the current geometry, this

transformation method can be easily applied to arbitrarily shaped surfaces, provided

they are smooth enough to prevent extreme distortion around kinks.

Displacement vector inverse transformation. Displacement fields ∆xxx21, ∆xxx23 and

∆xxx24 in the transformed domain are measured by window-based N -P PIVA analysis

as described in section 2.4.1. Displacement vectors in the physical domain are then

obtained by inverse transformation. Note that the starting and ending points of a vector

need to be transformed by different transformation functions. That is, if FFF a and FFF b

denote the transformation for the starting and ending frames in cross-correlation analysis,

respectively, the corresponding vector, uuuphy s , in the physical domain is

uuuphy s =FFF b(x̃b , ỹb)−FFF a(x̃a , ỹa), (2.7)

where (x̃a , ỹa) and (x̃b , ỹb) are the starting and ending points respectively for a vector in

the transformed domain.
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Data interpolation onto Cartesian grid. Figure 2.7 illustrates the three regions of the

field that we treat differently in the analysis. The entire field is divided into two mutually

exclusive partitions – the interpolation region (IR) that covers the solid phase (cylinder +

rod) and its vicinity, and the outer region (OR) that occupies the rest of the field. The near-

wall region (NWR) is where we perform the transformation and the displacement vector

inverse transformation, overlapping with IR and OR. The velocity and acceleration of

NWR are calculated in the physical domain using the displacement vectors obtained from

inverse transformation. The resulting vectors are distributed in a polar-type grid around

the cylinder, whereas the vectors in OR are on a Cartesian grid. To achieve the vectors

on a uniform Cartesian grid throughout the field, we perform interpolation (Matlab v4

algorithm) in IR using the velocity and acceleration data from NWR and OR. Note that the

overlap between OR and NWR assures smooth interpolation at the boundary between

the polar-type grid and Cartesian grid.

Figure 2.7: Illustration of data interpolation and region assembly. Velocity and accelera-
tion data in NWR (yellow dashed line) are on a polar-type grid, whereas the data in OR
(red dash-dot line) are on a Cartesian grid. Interpolation is performed in IR using the
NWR and OR data to achieve a uniform Cartesian grid throughout the field.
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2.4.3 Instantaneous and Phase Averaged Velocity and Acceleration

Velocity and acceleration fields are measured at fixed phases in each cycle with

final interrogation window size 2.2 mm × 2.2 mm and vector spacing 1.1 mm. Figure

2.8 compares the instantaneous velocity and acceleration fields from different analysis

methods at ϕc /2π = 0.7 (ϕ/2π = 0), when the cylinder is accelerating in the positive

x-direction. The surrounding fluid circulates around the cylinder, and recirculates in

the downstream wake. Pronounced centripetal acceleration occurs on the top and the

bottom of the cylinder due to strongly curved streamlines. The comparison is among

different analyses – 2-pulse, 3-pulse, 4-pulse with interpolation, and 4-pulse with least

squares. The 2-pulse velocity field is conventionally calculated from
∆xxx23

(t3 − t2)
. All velocity

fields are almost identical and smoothly varying, while the acceleration fields manifest

observable differences, implying acceleration is more sensitive to measurement noise.

4-pulse analysis with interpolation produces the noisiest acceleration field, which is

also evident from the root-mean-square (rms, with respect to the averaged field at each

phase) acceleration fields shown in Figure 2.9. Considering the flow is phase-locked

and non-turbulent, the rms fields primarily reveal the level of random error. The N -P

PTVA simulation conducted by Ding and Adrian (2017) also shows that 4-pulse with

interpolation presents larger random error than 3-pulse with interpolation because the

normalized particle locating errors of four particles accumulate when they are large.

In the present experiment, this can be equivalently interpreted as the accumulation of

normalized displacement random errors (normalized by the total displacement during

∆t) when measuring ∆xxx21, ∆xxx23 and ∆xxx24. In the region far from the cylinder where

the fluid is slightly disturbed by the oscillating cylinder, the normalized displacement

random error is significant, making the acceleration field of 4-pulse with interpolation
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noisier than the 3-pulse. The comparisons in Figure 2.8 and 2.9 also show that the

4-pulse analysis with least squares is capable of suppressing random error, yielding

slightly better results than the 3-pulse analysis. The larger rms acceleration around the

cylinder implies the transformation and interpolation of the near-wall treatment could

introduce additional noise. It is worth mentioning that, for flows with strong 3-D motion

and turbulence, the random error of 3-pulse analysis is expected to grow more rapidly

than the 4-pulse analysis when performing planar PIVA measurements. This is because

the correlation signal is weakened by greater loss of pairs during longer inter-frame

time given the same ∆t . Shortening ∆t is risky for 3-pulse measurements because the

normalized displacement random error is inversely proportional to the total time delay.

While the forgoing discussion implies that the 4-pulse analysis with least squares

has the advantage of smaller random error and better cross-correlation signals, the

comparison of the mean bias error presented in Figure 2.10 suggests otherwise. The

mean bias is calculated by taking the magnitude of the mean acceleration measured by

4-pulse analysis with interpolation as our ‘ground truth’ data. This is because earlier work

(Lynch and Scarano, 2013; Ding and Adrian, 2017) has shown that higher-order fitting

estimates curved trajectories more accurately, regardless of noise. The results in Figure

2.10 are the differences between the other fields and the ground truth field normalized

by the full scale acceleration of the field (≈ 0.7 m/s2). It is noticed in Figure 2.9 that the

interpolation in the region blocked by the rod introduces additional random error. Thus,

to objectively assess the bias error generated from different analysis methods only, Figure

2.10 presents the mean bias error in the lower half of the field. Clearly 4-pulse analysis

with least squares and 3-pulse analysis both present non-negligible bias error. The largest

bias, up to 10% of the full scale, occurs underneath the cylinder where streamlines are

strongly curved and centripetal acceleration is considerable. It is also evident that the
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4-pulse analysis with least squares reduces the random error at the cost of larger bias

error than the 3-pulse analysis.

Phase-averaged velocity and acceleration fields are calculated using quadruple-pulse

analysis with interpolation over 105 periods. A half cycle is presented in Figure 2.11.

From ϕc /2π = 0.7 to 0.825, when the cylinder quickly passes through the center, the wake

recirculation region elongates with attenuating vorticity intensity. Two counter rotating

vortices are formed symmetrically about the cylinder advancing direction. The vortex

pair stays attached to the cylinder, as seen at ϕc /2π= 0.95, and it stops developing until

the cylinder reaches the right-most position. At ϕc /2π = 0.95, right after the cylinder

reverses, the cylinder collides with the vortex induction, forming a stagnation point. The

vortices in the former wake are mixed and cancelled by the newly-formed boundary layer

with vorticity of the opposite sign. The fluid adjacent to the leading and trailing surfaces

of the cylinder always accelerates and decelerates synchronously with the cylinder. The

strongest centripetal acceleration of the fluid curving around the cylinder at the top and

the bottom occurs when the cylinder reaches its velocity maximum. The KC number and

βnumber of present experiment (KC = 4.85,β = 7.2) belong to flow regime A∗ proposed by

Tatsuno and Bearman (1990) for cylinder in-line oscillation, in which no vortex shedding

occurred in accordance with the velocity fields described above. However, secondary

streaming reported by the authors is not observed in the present work.

52



velocity acceleration

2-
p

u
ls

e
3-

p
u

ls
e

4-
p

u
ls

e
IN

T
4-

p
u

ls
e

LS
Q

Figure 2.8: Instantaneous velocity and acceleration fields showing every other vector at
ϕc /2π= 0.7 (ϕ/2π= 0) from 2-, 3-, and 4-pulse PIVA analyses. Colors in the velocity fields
represent the vorticity. Colors in the acceleration fields represent the x-component of
acceleration. The inset indicates the cylinder location at ϕc /2π= 0.7.
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Figure 2.9: Comparison of the rms acceleration from different analysis methods at
ϕc /2π= 0.7 (ϕ/2π= 0).
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Figure 2.10: Comparison of the mean bias acceleration with respect to the 4-pulse anal-
ysis with interpolation at ϕc /2π= 0.7 (ϕ/2π= 0). The mean bias errors are calculated
as

(|aaa|4p,intp −|aaa|4p,lsq
)

and
(|aaa|4p,intp −|aaa|3p

)
, and they are normalized by the full scale

acceleration of the field (≈ 0.7 m/s2).
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Figure 2.12: Control volume CV (t ) bounded by an interior surface, C Sb(t ), following the
cylinder, and an exterior surface, C Se . Parametric study of the force measurement is
conducted by varying C Se (t ) between CV 1 and CV 8.

2.5 Force Evaluation by 4-P PIVA Data and Control Volume Approach

Noca (1997) showed that the fluid force acting on a body can be evaluated with an

exact control volume formulation that involves only velocity fields and their derivatives.

Figure 2.12 shows the configuration of the control volume, CV (t), in the present work.

The interior surface, C Sb(t), follows the moving cylinder surface; the exterior surface,

C Se (t), enclosing the cylinder oscillation trajectory, is either fixed or moving with the

cylinder. The flow at Re = 35 and KC = 4.85 is assumed to be two-dimensional over most

of the cylinder (Tatsuno and Bearman, 1990) so that the measurements in the mid-plane

are representative of the three-dimensional flow. Applying the formulation to our case,

the total fluid force on the cylinder is the sum,

FFF =FFF vol +FFF mf +FFF str. (2.8)

The volume term,

FFF vol =− d

d t

∫

CV (t )
ρuuudV , (2.9)
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is the time rate of change of the momentum in the control volume. The term of momen-

tum flux on C Se (t ) is

FFF mf =−
∮

C Se (t )
ρnnn · (uuu −uuus)uuudS (2.10)

wherein uuus is the velocity of a surface element dS on C Se (t). The last term, the stress

term, is

FFF str =
∮

C Se (t )

[
1

2
|uuu|2nnn −un(xxx ×ωωω)−

(
xxx · ∂uuu

∂t

)
nnn +xn

∂uuu

∂t
+ν(xxx ·∇2uuu)nnn −νxn∇2uuu + TTT n

ρ

]
ρdS,

(2.11)

wherein ( )n = nnn ·( )( )( ). TTT is the viscous stress tensor,ωωω the vorticity, ν the kinematic viscosity

of the working fluid, and xxx the position vector. It can be shown that FFF str is equal to the

surface integral of the pressure and viscous stress on C Se (t ) (Noca, 1997). Note that dV

has the dimension of area, and dS has the dimension of length when evaluating sectional

force in the plane of the PIVA measurement. The original force equation in Noca (1997)

had another term describing the momentum flux on the interior control surface; this

term vanishes in our case as uuu = uuus on C Sb(t ).

N -P PIVA data allow for the complete evaluation of each term in (2.9) – (2.11). In

our analysis, the volume term, FFF vol, is estimated by fitting a parabola to the volume

integrals of three successive velocity fields uuu(ti ) =
∆xxxi ,i+1

ti+1 − ti
, i = 1,2,3, and differentiating

at t = t2. The displacement fields ∆xxxi ,i+1 are obtained by performing cross-correlation

of neighboring frames with iterative image deformation. The momentum flux, FFF mf, is

evaluated using the velocity fields from the 4-pulse analysis with least squares for less

random error. The stress term, FFF str, is evaluated using central differencing in space forωωω,

TTT , and ∇2uuu, and central differencing in time for
∂uuu

∂t
, i.e.

uuu34 −uuu12

t3 − t1
.

Fluid forces acting on the cylinder surface are computed using (2.9) – (2.11), and they

are normalized by the maximum cylinder velocity in the x-direction, uc,max , to calculate
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Figure 2.13: Instantaneous x− and y−direction force coefficients and contributions
from each term calculated with CV 4 (fixed) shown in Figure 2.12. ©, unfiltered total
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force coefficients,

Cα(t ) = Fα(t )
1
2ρDu2

c,max

, (2.12)

where the subscript α denotes directions (x or y) or different terms (volume term, mo-

mentum flux, stress term). A 10th-order Butterworth low-pass filter with cutoff frequency

fc = 2 Hz is applied to attenuate fluctuations at high frequencies. Note that the cylinder

oscillates at f0 = 0.68 Hz, and the sampling frequency of the force measurement is fs

= 10.84 Hz. Results calculated using CV 4 (fixed) are presented in Figure 2.13. In the

x-direction, the unfiltered total force is smooth and stable in amplitude. The volume

term and the stress term are comparable in amplitude, and they exhibit slight phase shifts

of opposite sign with respect to the total force. The momentum flux on C Se is negligibly
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small as the disturbance is confined within close vicinity of the cylinder. The force in

the y-direction is noisier than that in the x-direction, which is probably due to the fact

that the flow field is dominated by flow in the x-direction so that measurements in the

y-direction encounter larger normalized displacement random error. The stress term

of the y-direction appears in phase with the total force, whilst the volume term shows

an approximately 150° phase shift. Figure 2.14 plots the variations in amplitude of each

force term as well as the total force when increasing the size of fixed control volume from

CV 1 to CV 8 (Figure 2.12). The peak-to-peak amplitudes are calculated by averaging over

m = 6 cycles, i.e.

Aα(CV ) = π

mT

∫ mT

0

∣∣F∗
α(t ;CV )

∣∣d t , (2.13)

where F∗
α(t ;CV ) denotes the filtered force data for control volume CV . It is evident

that the total force amplitudes stay almost unaltered for both directions, in accordance

with the results from Noca (1997); Noca et al. (1999). For the x-direction, moving C Se

outwards causes an increase in the amplitude of the stress term and a decrease for the

volume term. In the y-direction, as the stress term and volume term are out of phase, the

amplitudes both increase, canceling each other. The momentum flux terms stay small,

and present a slightly decreasing trend in both directions. In addition, for the scenario of

C Se (t ) moving with the cylinder, we calculated the total force amplitudes of CV 1 to CV 5,

which show consistency with the results of fixed C Se . Figure 2.15 (left) presents the power

spectra of the total force coefficients presented in Figure 2.13. The strongest harmonics

occur at f T0 = 1 and f T0 = 2 for the x- and y-direction, respectively. The rest of the

spectra appear likely to be white noise, albeit there may exist weak signals at f T0 = 3, 4,

. . . . The signal-to-noise ratios (SNR), shown in Figure 2.15 (right), are calculated between

the summed square of the force coefficients (or equivalently the integral of the power

spectrum) and the summed square of the noise by excluding the first three harmonics.
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Figure 2.15: Power spectra of Cx (left top) and Cy (left bottom) plotted in Figure 2.13. The
SNR is the ratio between the summed square of the signal and that of the noise. The
computation of the noise excludes the first three harmonics in the power spectrum.

The decrease of SNR in the y-direction suggests that it may be disadvantageous to set

up the control volume including a significant part of the undisturbed field where large

normalized displacement random error exists, although it may make the viscous stress

and the momentum flux negligible.
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The in-line force per unit length acting on an oscillating cylinder in stationary fluid

can be characterized by Morison equation (Morison et al., 1950),

F =−1

2
ρDCd |uc |uc −

1

4
πρD2Ci

duc

d t
(2.14)

where uc is the cylinder velocity, and Cd and Ci are drag and added mass coefficients,

respectively. Calculation of Cd and Ci using the x-direction force data computed from

the phase-averaged fields yields Cd = 2.95, Ci = 1.51. Other experiments and numerical

simulations studying Cd and Ci (in the case of oscillatory flow around a fixed cylinder,

Ci is replaced by the inertia coefficient Cm = Ci +1 ) for in-line oscillation of a cylinder

at low β numbers can be found in Bearman et al. (1985) (β = 196); Lin et al. (1996) (β =

76); Dütsch et al. (1998) (β = 20, 35); Iliadis and Anagnostopoulos (1998) (β = 34, 53). Our

results at KC = 4.85 and β = 7.2 are compared to those in literature at KC = 5 in Figure

2.16. Clearly our results constitute reasonable continuations of the increasing trends for

Cd and Ci when β gets smaller, albeit the small-amplitude oscillation superimposed in

the y-direction adds uncertainties to the comparison. Future assessment of the force

accuracy could be achieved by adding force sensors to our facility or redesigning the

experiment for more direct comparisons with experiments in the literature, but neither

are within the scope of the present work.

The supplementary material of this article includes a movie that shows simultaneous

fluid velocity and acceleration fields, cylinder velocity and acceleration traces, and the

force exerted on the cylinder, providing a clear picture of the outcomes from N -P PIVA. An

immediate and important observation from the movie is that the maximum force along

the x-direction occurs slightly after the maximum acceleration and before the maximum

velocity of the cylinder. In other words, the peak force is the combined contribution by

the added mass force and the traction forces in the boundary layer. At this moment, the
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Figure 2.16: Cd and Ci of the present measurement at KC = 4.85 and β = 7.2 compared
with other works in literature at KC = 5 and β = 20 – 196. Dark symbols are Cd and white
ones are Ci . Flow regimes proposed by Tatsuno and Bearman (1990) are marked along β.

field shows bulk acceleration in the opposite direction of the force, and the velocity field

indicates the initiation of the viscous boundary layer roll-up after the cylinder reverses

direction, which later forms vortex pairs.

2.6 Summary and Conclusions

The N -pulse particle image velocimeter-accelerometer is intended to establish a new

generation of PIVA instruments by increasing the velocity dynamic range, improving the

spatial resolution and adding the capability to measure instantaneous acceleration fields.

These improvements are accomplished by adding one or two additional light pulses

to extract information sufficient to construct an estimate of the fluid trajectory over a

short time. As in Liu and Katz (2006) and Lynch and Scarano (2014), small groups of

particles are tracked by cross-correlation. The tracking procedure employs iterative image

deformation and a predictor-corrector interrogation scheme to enhance detectability of

the cross-correlation peaks.
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The feasibility of employing the planar 3- or 4-pulse PIVA method in an unsteady flow-

structure interaction experiment has been demonstrated, and the results are encouraging.

The experiment concerned a horizontally driven cylinder supported in liquid by elastic

rods. The cylinder interacted strongly with the surrounding fluid. In addition to the

driving frequency and the eddy shedding frequency, the flexibility of the support rods

introduced a third, pendulum frequency. The cylinder’s motion and the velocity and

acceleration fields of the fluid motion are measured after isolating their respective images

by segmentation. Velocity and acceleration near to the wall of the moving cylinder

are resolved well by means of a special treatment employing image transformation, a

method considered to be more adaptable to various boundary geometries than previously

reported procedures. Comparisons of the rms and mean bias of the instantaneous fields

obtained by the different methods of analysis indicate that the 3-pulse analysis and

4-pulse analysis with least squares produce less random error than 4-pulse analysis

with interpolation at the cost of larger mean bias. The choice between 3- and 4-pulse

systems is a trade-off between performance, cost and flexibility. It is worth noting that 3D

measurements such as tomographic PIV/PTV, 3D PTV eliminate the problem of out-of-

plane motion. Removing this restriction should make the 3-pulse method more amenable

to challenging 3D measurements.

Phase-averaged velocity and acceleration fields are calculated, highlighting the pro-

cesses occurring in the oscillating flow. The formation of a pair of attached counter-

rotating vortices, the stagnation point after the cylinder reverses direction, and the

canceling of the vortex pair by the newly-formed boundary layer are clearly resolved.

Measuring the force on the moving cylinder has been conducted with considerable

success using 4-P PIVA data and a control volume approach. The behaviors of each

force term are studied. It is shown that the contribution of the momentum flux on the
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exterior control surface is small compared to the volume term and the stress term, and

the amplitudes of the latter two vary monotonically with increasing control volume size.

The decrease in SNR implies that it is disadvantageous to set up an exterior control

surface in the very remote region of the cylinder. The drag and added mass coefficients,

Cd and Ci , are measured to be 2.96 and 1.52, respectively. They are compared to measure-

ments and simulations in the literatures at KC = 5 and β = 20 – 196, showing reasonable

continuations of the increasing trends for Cd and Ci .

A movie integrating simultaneous measurements of fluid motion, cylinder motion,

and fluid force is presented as supplementary material.

The current work successfully demonstrates 3-pulse and 4-pulse PIVA has the poten-

tial to be a successful and highly informative tool for simultaneous velocity, acceleration

and force measurements in fluid-structure interaction experiments.
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Chapter 3

HIGH-ACCURACY CAMERA REGISTRATION FOR

MULTI-CAMERA PLANAR N -PULSE PIVA3

ABSTRACT

N -pulse particle image velocimetry-accelerometry (PIVA) is a new-generation PIV

developed to improve the performance of current 2-pulse PIV systems. Its applications

to high-speed flows require high-accuracy registration of multiple cameras viewing the

same object space. Five registration methods are described in this work, including two

global methods, one local method and two advanced ones combining the global and local

procedures. Numerical test with synthetic particle images and experimentally extracted

disparity fields demonstrates the two advanced methods are capable to reduce the mean

residual disparity down to 0.001 pixel, which is substantially lower than the residuals

reported in the literature. We also discussed the mechanism of the residual disparity for

different registration methods by comparing their topologies. In addition, a sensitivity

study of the rms residual shows superior performances of the two advanced methods

subjected to increasing noise level. Experimentally, a 3-pulse PIVA measurement of

an impinging air jet was conducted to validate the proposed registration procedures.

We calculated the mean centerline acceleration and the divergence of the acceleration

estimate, both of which imply significant improvement in measurement quality after

correcting the registration error. This work opens a way to employing multiple cameras

3This chapter is reformatted from a manuscript prepared for publication in Measurement Science and
Technology.
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for N -pulse PIVA to accurately measure velocity, acceleration and pressure of high-speed

flows.

Keywords: camera registration, N -pulse PIVA, multi-camera PIVA, acceleration, im-

pinging jet, high-speed flow

3.1 Introduction

N -pulse PIVA extends the conventional 2-pulse PIV by employing bursts of N pulses

(N >= 3), aiming at improving the performance of PIV systems (Westerweel et al., 2013;

Ding and Adrian, 2016, 2017). The superior capability of N -pulse systems, including time-

resolved systems, as a tool for enhancing measurement accuracy, measuring higher-order

quantities (acceleration, force, etc.) and understanding complex flow phenomena has

been demonstrated by many researchers (Schanz et al., 2016; Lynch and Scarano, 2014;

Unal et al., 1997; La Porta et al., 2001, among others).The implementation of multiple

pulsing relies on high-frame-rate cameras and high-repetition-rate light sources (lasers

or LEDs). One way to achieve a very short time delay (∼10 µs) between successive light

pulses is to combine multiple independently triggered Nd:YAG lasers by beam-combing

optics. If one carefully aligns the optics, the spatial overlap between the beams is typically

around 95% (Murphy and Adrian, 2010). This translates to about 5% loss-of-pairs in

correlation analysis or particle tracking, which is well acceptable in terms of the valid

detection probability given sufficient seeding density (Keane and Adrian, 1990). A single

CW laser or Nd:YLF laser is an alternative option, but the recorded images usually suffer

from high noise level due to streaky particle images (CW laser) or insufficient pulse energy

(Nd:YLF laser).
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On the other hand, it is relatively difficult to achieve a very short interframe time for

an N -pulse imaging system. One option is to use a single high-speed video camera with

the advantage of easy setup. But the low frame rate often limits its applications towards

high speed flows. Currently, high-speed cameras available on the market can typically

frame up to 20 kHz at one-megapixel format, corresponding to flow velocities in the

order of 5 m/s if the maximum displacement is restricted to be under 0.2 mm. Faster

flows require the sacrifice in format (i.e. reduced pixel resolution) or continuous time

resolution if dual-frame PIV cameras are used to record images. A better option to achieve

both image format and continuous time resolution is to combine multiple cameras

viewing the same field of view. This can be realized by a beam-splitting camera with

multiple imaging channels (Ding, 2014; Murphy and Adrian, 2010) or multiple high-speed

video cameras/PIV cameras with external beam splitters and polarizers (Christensen

and Adrian, 2002; Liu and Katz, 2006). In these multi-camera setups, registration is a

critical step to align images from different cameras that belong to the same object space.

Unsuccessful registration results in systematic error in PIV cross-correlation analysis,

which could significantly affect the accuracy of velocity and especially acceleration. In a

previous work by the author (Ding, 2014), a residual registration error of 0.02 pixel, which

is usually acceptable for velocity, led to an acceleration error of 1,500 m/s2, compared to

the full scale acceleration 20,000 m/s2 of the flow.

Different procedures and accuracies for registering cameras have been reported in

the literature. Mechanical registration typically yields the residual misalignment between

two cameras in the order of 1 pixel (Bian et al., 2010; Christensen and Adrian, 2002).

Self-calibration is considered to be a registration procedure for stereo-PIV (SPIV) and

tomographic PIV (TPIV) in the sense that it refines the mapping function to have the

images from the same particle back-projected to a common point in the measurement
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plane (SPIV)/volume (TPIV). The outcomes of self-calibration are the elimination of sys-

tematic error due to misalignment between the light sheet and the calibration target for

SPIV (Wieneke, 2005) and the enhancement of reconstruction quality for TPIV (Wieneke,

2008). The residual disparity reported by Wieneke (2005, 2008) for self-calibration is in

the order of 0.1 pixel. As a matter of fact, reliable acceleration/pressure measurements

from PIV data require the residual registration error to be in the order of 0.01 pixel or even

lower. In this regard, Liu and Katz (2006) proposed a local deformation method to align

vectors measured from different cameras, and their test with synthetic images showed

the method was able to reduce the registration residual down to 0.01 pixel. However,

this method did not address the problem of correcting the registration error when PIV

cross-correlation is performed across cameras, which is necessary for many advanced

interrogation algorithms (Hain and Kähler, 2007; Sciacchitano et al., 2012; Lynch and

Scarano, 2013, among others).

In this work, we aim to further improve the accuracy of registration towards 0.001-

pixel residual. The proposed procedures apply to the scenario when cross-correlation

is performed across cameras in a planar N-pulse PIVA system. Section 3.2 will discuss

two possible camera configurations in an N -pulse system and compare their advantages

and disadvantages. Several registration methods will be described in Section 3.3, and

their performances are assessed using synthetic images in Section 3.4. A 3-pulse PIVA

experiment measuring the mean acceleration field of an impinging air jet is used to

validate the registration methods, and the results and discussions will be presented in

Section 3.5.
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(a) Collinear configuration (b) Angular configuration

Figure 3.1: Schematics of camera configurations and corresponding recorded/dewarped
images. In each case, only two cameras are displayed to illustrate a multi-camera system
for simplicity.

3.2 Camera Configuration

To have the multiple cameras in a N -pulse imaging system view the same object

space, it is necessary to consider special optical arrangements and camera configurations.

Figure 3.1 illustrates two possible ways to set up the cameras. The collinear configuration

in Figure 3.1(a) features all cameras viewing the flow perpendicularly by means of one

or more beam splitters (and mirrors). If one carefully aligns the cameras and the optics,

the magnifications are nearly identical for all cameras and uniform over the field of

view. Particle images captured by different cameras at the same time are also nearly

identical. Any small systematic discrepancy that indicates the residual misalignment can

be corrected by the methods described later in this paper. Thus, images acquired with

this collinear configuration are well suitable for cross-correlation and particle tracking

analyses across cameras. Examples of the collinear configuration include Murphy and

Adrian (2010); Christensen and Adrian (2002); Liu and Katz (2006) among others. The
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drawback of this configuration may be the increasing complexity in aligning multiple

cameras and optics with increasing number of pulses. Another issue may be that the

collinear configuration does not allow a correction of magnification error arising from the

misalignment between the calibration target and the mid-plane of light sheet. However,

this issue can be compensated by employing an additional camera at a different angle

following Discetti and Adrian (2012).

In contrast, the angular configuration, depicted in Figure 3.1(b), avoids the tedious

optical alignment by arranging all cameras looking directly into the flow. The different

viewing angles of the cameras allow accurate determination of the warping relation from

the light sheet mid-plane to each camera by self-calibration (Wieneke, 2005). For this

configuration, cross-correlation or particle tracking analysis is performed for images

dewarped back to the object space. However, the real trouble in analyzing the dewarped

images is the perspectives resulting in weakly correlated particle images. This is graphi-

cally explained in Figure 3.1(b) where the dewarped images of camera A and B exhibit

different particle patterns at the same time due to their different perspectives. As a

result, the correlation signal between image A and B becomes smeared out or completely

indistinguishable with an increasing angle between the cameras or increasing light sheet

thickness. Thereby, the angular configuration may be applicable only when the flow

is strongly 2-D so that a very thin light sheet (<0.5 mm) can be used to illuminate the

particles. In the following sections, we will discuss the registration methods in the context

of the collinear configuration.
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Figure 3.2: Disparity vectors characterizing the disparity field from camera A to B.

3.3 Registration Methods

The first step is to obtain the disparity field characterizing the camera misalignment.

As illustrated in Figure 3.2, grids (X A,YA) and (XB ,YB ) on camera A and B respectively

correspond to the same grid (x, y) defined in the object space. Due to the presence

of registration error, (X A,YA) and (XB ,YB ) do not possess the same spatial location of

respective cameras. Here, we define the vectors connecting corresponding grid points to

be the disparity vector field. Note a disparity field is defined with directional information.

There are two common ways to obtain a disparity field. The first one is to explicitly

measure disparity vectors by correlating particle images recorded on different cameras

at the same time, while the second way is by imaging a calibration target inserted in

the test section. For the image dewarping method introduced later in this section, the

information obtained from the calibration target is used to dewarp particle images back

to the object space. This means the latter method implicitly reveals the disparity fields

from the warping functions. In addition, the latter method is presumably less accurate
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than the first one with a degree depending on the adopted warping function model,

quality of the calibration target, etc. However, it may become useful when acquiring a

large number of densely seeded particle images is not feasible for some experiments, e.g.

shock tube measurements.

3.3.1 Global Fitting (GF) Method

Suppose P+1 cameras are employed in an N -pulse imaging system and denoted by

indices 0, 1, ..., P ; An object grid (x, y) corresponds to an image grid (Xi ,Yi ) for the i -th

camera where i = 0, 1, ..., P . The global fitting method then follows these steps:

(a) Select a reference camera using which to determine the magnification/mapping

relation. Without loss of generality, camera 0 is set to be the reference for later

discussions. In practice, the camera with the least number of optics in its imaging

path can be used as the reference as it presumably has the smallest distortion.

(b) Obtain disparity fields ddd 0i , i = 1,2, ...,P . Here, the subscript ‘0i ’ indicates the direc-

tion of the disparity fields, i.e. from the reference camera to others. Disparity fields

are measured by correlating simultaneously recorded particle images and ensemble

averaging the correlation maps (Meinhart et al., 2000) for fast convergence.

(c) Fit transformation functions GGG 0i , i = 1,2, ...,P . GGG 0i adopts a form with reciprocal

terms:

(Xi ,Yi ) =GGG 0i (X0,Y0) =aaa1,i

X 2
0

+ aaa2,i

X0Y0
+ aaa3,i

Y 2
0

+ aaa4,i

X0
+ aaa5,i

Y0
+aaa6,i

+aaa7,i X0 +aaa8,i Y0 +aaa9,i X 2
0 +aaa10,i X0Y0 +aaa11,i Y 2

0 (3.1)

which has proved to perform superiorly based on our test compared to a polynomial

model. Coincidentally, a similar transformation that involves negative exponents
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is often implemented by the image processing community for image registration

(Brown, 1992).

(d) Transform the flow images recorded on camera 1,2, ...,P . Pixel intensities are

interpolated with proper interpolation schemes (Astarita and Cardone, 2005) onto

a grid calculated using GGG 0i . In this way, camera 1,2, ...,P are registered with respect

to camera 0.

(e) Perform PIVA or PTVA analysis with transformed images in the image space, and

calculate the quantities in the object space using the magnification/mapping rela-

tion determined for camera 0.

3.3.2 Image Dewarping (ID) Method

With this method, cameras are registered during the process of image dewarping. The

warping function for each camera is first determined by inserting a calibration target into

the test section. We adopted in this work the pinhole camera model (Tsai, 1987) for the

warping function. PIVA or PTVA analysis is then carried out with dewarped flow images

in the object space. As discussed earlier, the performance of this method depends on the

warping function model, quality of the calibration target , etc.

3.3.3 Local Correction (LC) Method

The GF and ID methods globally register the images before cross-correlation or par-

ticle tracking . In contrast, this third method corrects the registration error locally for

a measured displacement vector. As illustrated in Figure 3.3, for a camera pair A and

B, a particle (or a small group of particles) at xxx A on camera A moves to xxxB on camera B
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Figure 3.3: A local correction δuuu applied to a measured displacement vector uuum from
camera A to B.

during two successive pulses. If there exists misalignment between A and B, it would

embed into the measured displacement vector, uuum = xxxB −xxx A. With the knowledge of the

disparity field, a correction vector δuuu is possible to calculate. It is preferable to use the

inverse disparity field ddd B A, which is in the direction opposite to that of the displacement

measurement, to interpolate at xxxB for δuuu. The benefit of doing so is the interpolation can

be performed with gridded data for high accuracy and reduced computational cost. If

disparity field ddd AB is used otherwise, one needs to perform scattered data interpolation

that may be less reliable. Note ddd AB and ddd B A in fact represent the same disparity informa-

tion but are sampled on different grids with opposite directions, making it nontrivial to

optimize the cross-correlation analysis for determining the disparity field. Consequently,

the corrected displacement vector is obtained as uuuc =uuum +δuuu.

3.3.4 Global Fitting/Local Correction (GF/LC) Method

For the GF method, because we empirically choose a model for GGG 0i to transform

images, it is always expected to have some residual disparity ddd ′ after transformation. ddd ′
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may still be detrimental with a degree depending on the initial disparity and adopted

transformation function. To further enhance the registration accuracy, the LC method

can be combined with the GF method to correct ddd ′, which is implemented as follows.

After step (c) of the GF procedure, the simultaneously recorded images are transformed

using GGG 0i and cross-correlated to calculate ddd ′. Displacement vectors measured with the

transformed flow images are then corrected for the residual disparity ddd ′ using the LC

method.

3.3.5 Image Dewarping/Local Correction (ID/LC) Method

Likewise, the ddd ′ after image dewarping can be corrected by the LC method too. The

implementation is also similar – determine ddd ′ by correlating the simultaneously recorded

images after dewarping. Displacement vectors measured with the dewarped flow images

are then corrected for the residual disparity ddd ′ using the LC method.

3.4 Synthetic Image Test

We assessed the performances of the registration methods by simulations using

synthetic particle images. The particle images have a mean diameter of dτ = 3 pix. The

seeding density was set to be 20 particles per 32-by-32-pixel window, corresponding to

approximately 0.02 ppp (particle per pixel). The particle physical diameter dp follows a

log-normal distribution with µdp = 1 and σdp = 0.2 (arbitrary unit) to allow nonuniform

particle image intensities (∝ d 2
p ). These images were generated in pairs with predefined

flow fields and distorted based on realistic disparity fields. We tested three flows given by

the following displacement fields:
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(1) Stagnation flow (FF1): u =λ(xp − lx/2); v =λ(ly − yp ) with λ= 3/160;

(2) Sinusoidal flow (FF2): u = umaxsin(4πyp /ly ) with umax = 12 pix; v = 0;

(3) Vortex (FF3): uθ =
r

b
e− r

a with r =
√

x2
p + y2

p , a = 256 pix and b = 8 pix;

wherein lx = 960 pix and ly = 640 pix are the linear dimensions of the field of view. All

relevant variables are in pixel units. Two disparity fields, referred to as ‘DF1’ and ‘DF2’,

were extracted from the experimental data of a beam-splitting camera (see Figure 3.7 in

Section 3.5) and used to distort the image pairs. For each flow field and disparity field,

250 image pairs were analyzed with an in-house PIV code combined with the proposed

registration methods. In order to test the local correction, 500 pairs of simultaneously

recorded images (i.e. identical image pairs) were distorted and analyzed to determine the

inverse (residual) disparity fields for the LC, GF/LC and ID/LC methods. We compared

the resulting displacement fields to the PIV results from 250 undistorted image pairs,

intended to eliminate the systematic error associated with the PIV algorithm and study

merely the residual disparities.

Table 3.1 lists the statistics of the residual disparity in the x-direction for each flow

field and disparity field (the results in the y-direction are very similar). The residual

disparity field, ddd ′′, is defined to be the differential of the displacement vectors resulting

from the distorted and undistorted image pairs, respectively. We calculated the µ|d ′′
x | in

Table 3.1 by first averaging over the 250 image pairs to obtain d ′′
x and then over the field

of view using
∣∣∣d ′′

x

∣∣∣, i.e.

µ|d ′′
x | = avg

FOV

∣∣∣d ′′
x

∣∣∣= avg
FOV

∣∣∣∣∣
1

250

250∑

k=1
d ′′

x,k

∣∣∣∣∣ (3.2)

Likewise, the field root-mean-square (rms) σFOV

d ′′
x

is computed as

σFOV

d ′′
x
= rms

FOV

(
1

250

250∑

k=1
d ′′

x,k

)
(3.3)
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whereas the ensemble rms σENS

d ′′
x

is given by

σENS

d ′′
x
= avg

FOV

[
1

249

250∑

k=1

(
d ′′

x,k −d ′′
x

)2
]− 1

2

(3.4)

to show the spread associated with the randomness in particle distribution. Clearly,

the two advanced methods (GF/LC, ID/LC) yield the lowest residual disparity with µ|d ′′
x |

and σFOV

d ′′
x

in the order of 0.001 pixel. The µ|d ′′
x | and σFOV

d ′′
x

for the GF and ID methods are

approximately 0.01 pixel, whereas the performance of the LC method is slightly better

with reduced µ|d ′′
x | and σFOV

d ′′
x

. σENS

d ′′
x

is in the order of 0.01 pixel and very similar for all

registration methods, implying the random particle distribution predominantly causes

the data spread.

GF LC ID

µ|d ′′
x | σFOV

d ′′
x

σENS

d ′′
x

µ|d ′′
x | σFOV

d ′′
x

σENS

d ′′
x

µ|d ′′
x | σFOV

d ′′
x

σENS

d ′′
x

(×10-2pix)(×10-2pix)(×10-2pix) (×10-2pix)(×10-2pix)(×10-2pix) (×10-2pix)(×10-2pix)(×10-2pix)

FF1/DF1 1.058 1.290 0.787 0.591 0.732 0.758 0.872 1.056 0.786

FF2/DF1 1.063 1.295 1.708 0.605 0.726 1.680 0.878 1.066 1.708

FF3/DF1 1.067 1.298 0.869 0.522 0.608 0.838 0.875 1.067 0.869

FF1/DF2 0.982 1.159 0.790 0.595 0.734 0.760 1.182 1.281 0.790

FF2/DF2 1.010 1.197 2.398 0.599 0.702 2.372 1.206 1.325 2.398

FF3/DF2 0.986 1.163 0.877 0.513 0.595 0.841 1.188 1.301 0.877

GF/LC ID/LC

µ|d ′′
x | σFOV

d ′′
x

σENS

d ′′
x

µ|d ′′
x | σFOV

d ′′
x

σENS

d ′′
x

(×10-2pix)(×10-2pix)(×10-2pix) (×10-2pix)(×10-2pix)(×10-2pix)

FF1/DF1 0.083 0.105 0.787 0.079 0.099 0.786

FF2/DF1 0.144 0.179 1.708 0.141 0.175 1.708

FF3/DF1 0.084 0.105 0.869 0.081 0.102 0.869

FF1/DF2 0.078 0.098 0.790 0.079 0.098 0.790

FF2/DF2 0.198 0.248 2.398 0.197 0.248 2.398

FF3/DF2 0.083 0.104 0.877 0.083 0.103 0.877

Table 3.1: Statistics of the residual disparity ddd ′′, given in Equation (3.2) – (3.4), for different
registration methods, flow fields and disparity fields.
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Figure 3.4: Contours of mean residual disparity d ′′
x .

To thoroughly understand the mechanism of the residual disparity ddd ′′, we examined

and compared the topologies of d ′′
x for different flow fields and disparity fields using their

contour plots presented in Figure 3.4. It is evident that the d ′′
x of GF and ID are dependent

on the tested disparity fields and registration methods, but nearly independent of the

flow fields. Thereby, it indicates the incapability of the transformation/warping function

to fully represent the disparity field is responsible for the residual. On the other hand,

the d ′′
x of the LC method exhibit a correlation with the flow field, but do not alter much

for the two disparity fields. Possibly, the systematic error of the local interpolation

scheme (cubic-spline interpolation was implemented in this work) varying as a function

of the sub-pixel displacement contributes to most of the residual disparity. For the two

advanced methods, the overall magnitude significantly decreases. The topologies are
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mostly flow-dependent, which is consistent with the observation from the LC method as

they both apply LC in the final step.

Furthermore, we studied the sensitivity of ddd ′′ subjected to random noise present in

measuring the initial disparity field. Five noise levels ranging from 0.1% to 10% of the

maximum disparity magnitude (about 2.5 pix in the simulation) were tested. For each

noise level, 100 Gaussian random noise fields were generated. For the GF and ID method,

the noise fields were added to the disparity vectors/calibration target images before fitting

the transformation/warping function; For the LC method, the noise fields were added

to the inverse disparity field. Note that the image pairs should still be distorted using

the exact disparity fields (DF1 or DF2). Figure 3.5 shows the rms residual of different

registration methods against increasing noise level. The rms’s were calculated over

the 100 independent noise fields followed by averaging over the field of view. Clearly,

the LC method is the most sensitive to noise as the noise propagates into the local

Figure 3.5: Residual disparity rms subjected to increasing noise level.
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correction vector (δuuu) without a suppressing mechanism. In contrast, the GF and ID

methods are able to alleviate the impact of noise as the transformation/warping function

is determined using analytical models in the least square sense. The best performance is

achieved by the two advanced methods, of which the curves stay low and flat for a wide

range of noise level. It is interpreted that the GF and ID procedures correct majority of

the disparity, and the LC further refines the correction. As the LC only deals with the

residual arising from the GF or ID method, the resulting rms residual exhibits nearly no

dependence on the noise level.

3.5 Experimental Validation

A 3-pulse PIVA experiment measuring the acceleration of an impinging air jet was

conducted to validate the registration methods. Figure 3.6 shows the schematic of the

experimental setup. This is an 8-pulse PIVA system with eight independently triggered

Nd:YAG lasers (Quantel) and a beam splitting camera (HSFC-Pro) having four imaging

channels, each of which is equipped with a CCD sensor capable of running in a PIV

dual-frame mode. Three lasers were collinearly aligned by the beam combining optics

to illuminate the center plane of the jet. Imaging channels C1, C2 and C3 were used to

record three successive frames separately with an interframe time 30 µs. Their disparity

fields, obtained by correlating 2,000 simultaneously recorded image pairs, are presented

in Figure 3.7. The maximum disparity is approximately 2.5 pixels for both CCD pairs.

As to the test section, the jet exited at a velocity UJ = 22.5 m/s from the nozzle with a

diameter D = 21.59 mm. An impinging plate was placed at H = 4D below the nozzle. The

region of interest for our measurement was 3D(w)×2D(h) above the plate.
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Figure 3.6: Schematic of the experimental setup. C1 - C4: Imaging channels 1-4; BPs:
Beam splitters; BCO: Beam combining optics.

Figure 3.7: Disparity fields (magnitude) from C3 to C1 (left) and from C3 to C2 (right).

PIV images recorded by three fast frames were analyzed by an in-house PIV code

featuring image deformation algorithm (Scarano, 2001), yielding displacement vectors

with 3.2 mm×3.2 mm final interrogation spot and 1.6 mm vector spacing. The registration

methods described in Section 3.3 were implemented to correct the registration errors.

For the GF method, we chose C3 to be the reference camera as images were formed

straight on C3 without reflection. For the ID method, a calibration target plate (TSI) with

20 mm dot spacing was placed in the test section to calculate the warping function for

81



each CCD. The residual disparity ddd ′ after transformation of the GF method has an rms of

approximately 0.02 pixel, whereas that of the ID method is an order of magnitude larger,

indicating the high uncertainty level of the ID method in determining the initial disparity.

The material acceleration was then estimated by a 3-pulse estimator,

âaa3p = 4

∆t 2 (∆xxx23 +∆xxx21) (3.5)

wherein ∆xxxi j denotes the displacement measured by cross-correlation from frame i to j ;

∆t = 60µs is the total time delay from the first to the third frame. Herein, the interrogation

strategy of starting from the center frame benefits the data analysis in several aspects as

discussed in Ding and Adrian (2016). As seen from Equation (3.5), the residual disparity

ddd ′′ embeds in the displacements and thus propagates into the acceleration measurement.

Thereby, we can assess the performances of the registration methods by comparing the

acceleration results.

We first looked at the mean centerline acceleration averaged over 2,000 flow fields.

As the jet is statistically stationary, the mean centerline material acceleration only has

contribution from the convective part. Thereby, it can be calculated by velocity ux

measured from 2-pulse PIV of frame 2 and 3:

〈
âx,2p

〉
cl
=

〈
ux
∂ux

∂x

〉
cl
= 1

2

∂〈u2
x〉cl

∂x
(3.6)

wherein positive x is along the mean flow direction. We evaluated the derivative by

fitting a 9th order polynomial to 〈u2
x〉cl and analytically differentiating the profile. The

accuracy of the resulting acceleration profile was verified by comparing its magnitude

to that obtained by finite differencing. To infer the residual disparity ddd ′′ for different

registration methods, we compared âaa3p at the centerline to 〈âx,2p〉cl . The latter one

was treated as the reference for two reasons: (1) As discussed in Ding and Adrian (2017),
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Figure 3.8: Comparisons of the mean centerline material acceleration obtained using
2-pulse PIV and 3-pulse PIA, given in Equation (3.6) and (3.5), respectively. Top left to
right: GF, LC, ID; bottom left to right: GF/LC, ID/LC, no correction.

velocity is considerably less sensitive to the noise in displacement measurement; thus

the influence of ddd ′′ to velocities is almost negligible; (2) The noise was further suppressed

by polynomial fitting.

Figure 3.8 presents comparisons of the mean centerline material acceleration ob-

tained by the 2-pulse and the 3-pulse methods, respectively. For approximately x ′/D>1.5

(x ′ is upward from the plate) where the flow velocity is constant, the 3-pulse estimator

should yield identically zero acceleration if ddd ′′ = 0 for both ∆xxx21 and ∆xxx23. In other

words, non-zero âaa3p in this region indicates the residual disparity ddd ′′ arising from the
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registration method. (The chance of the ddd ′′s for ∆xxx21 and ∆xxx23 cancel each other is quite

rare.) Below x ′/D ≈1.5 where the flow starts decelerating, it is expected that deviations

have contribution from ddd ′′ as well as the systematic error of âaa3p with the magnitude

depending on local flow acceleration (Ding and Adrian, 2017). It is evident from the

comparisons that the GF/LC and ID/LC methods give the best match, i.e. the smallest

residual disparity. The considerable near-wall discrepancies probably attribute to the

limited spatial resolution of window-based PIV analysis. The acceleration estimate of the

GF method is smooth but noticeably biased, while that of the LC method is noisy but the

bias appears to be smaller. These observations are consistent with the mechanisms of the

residual disparity we have discussed in Section 3.4. The significant bias of the ID method

results from the large ddd ′ of the warping function. The comparisons imply substantial

improvement over the case when no correction of registration error is performed, the

result of which is also presented in Figure 3.8 for reference.

Figure 3.9: PDFs of the divergence of the 3-pulse acceleration estimate given in Equation
(3.5).
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In addition to the centerline acceleration, the statistics of the mean acceleration field

is another indicator of the measurement quality. It can be shown from Equation (3.5) that

the estimator âaa3p is solenoidal given ddd ′′ = 0 for ∆xxx21 and ∆xxx23. (Note the acceleration

itself is not solenoidal). Thereby, the probability density function (PDF) of ∇·〈âaa3p〉 should

spread around zero, and the width of the PDF is associated with the spatial resolution

and random noise level as well as the residual disparity ddd ′′. In our measurement, the

divergence of the mean acceleration can be computed completely using the in-plane

components ax and ar , as the mean azimuthal acceleration is zero for an axisymmetric

jet. The distributions of ∇· 〈âaa3p〉 for different registration methods are plotted in Figure

3.9. We observe the PDFs of the GF/LC and ID/LC methods are more concentrated

around zero compared to the LC and especially the ID methods, implying reduced ddd ′′ by

the two advanced methods. Interestingly, the GF method produces a comparable PDF to

the two advanced methods, which means ∇·ddd ′′ of the GF method is small relative to the

spread due to limited measurement resolution and random noise. Again, the comparison

to the PDF without correction indicates substantially enhanced measurement quality.

3.6 Summary

Accurate camera registration is critical to reliable N -pulse PIVA measurements em-

ploying multiple cameras. We have proposed and studied several registration methods

in this work. The GF and ID methods globally transform or dewarp recorded images

before PIV analysis, while the LC method calculates a local correction to each measured

displacement vector. Two advanced methods, GF/LC and ID/LC, apply local correction

to the residual disparity arising from the GF and ID procedures.
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We assessed the performances of different registration methods using synthetic parti-

cle images distorted by experimentally extracted disparity fields. It was shown that the

two advanced methods were able to reduce the mean disparity over the field of view

down to 0.001 pixel, which is an order of magnitude lower than previously reported

accuracies from the literature. The topologies of the residual disparity fields helped

us understand their mechanisms, which in turn explained the rms residuals of GF/LC

and ID/LC methods were nearly invariant for increasing noise in determining the initial

disparity field.

The registration methods were experimentally validated by a 3-pulse PIVA measure-

ment of an impinging air jet. The mean centerline acceleration was compared to the

reference obtained by 2-pulse PIV to indicate the residual disparity. In addition, the

divergence of the 3-pulse acceleration estimate was examined using the PDFs resulting

from different registration methods. Both results showed substantial improvement in

measurement quality by the registration procedures, and the best accuracy was achieved

by GF/LC or ID/LC.

In summary, we successfully demonstrated two registration procedures (GF/LC and

ID/LC) both with high accuracies. While the single-camera PIVA has to wait for future

camera technology to reach a sufficiently high framing rate, the proposed registration

methods enable accurate velocity, acceleration and force measurements with multi-

camera N -pulse PIVA. It is also worth mentioning that, although our discussion is for

planar PIVA systems, it is possible to apply similar procedures to registering multiple

tomographic systems employed in N -pulse volumetric flow measurements (e.g. Lynch

and Scarano, 2014; Novara et al., 2016).
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Chapter 4

IMPROVED N -PULSE PTVA ANALYSIS FOR PARTICLE DRAG HISTORY IN

POST-SHOCK FLOWS4

ABSTRACT

An improved data analysis method for measuring post-shock particle drag in an

8-pulse particle tracking velocimetry-accelerometry (PTVA) experiment is described. We

represent the particle drag history, CD (t ) , using a polynomial of order up to 3. A model

for particle trajectory is then derived from the particle dynamics equation and fitted to

measured particle positions to determine CD . To assess and optimize the performance,

we conducted PTVA simulations using the standard drag and an empirical drag correla-

tion based on experimental data. The simulation results indicate a significant reduction

in the rms error by the proposed method compared to two piecewise methods reported

in the literature. We also find that for a realistic range of noise level the best performance

in terms of the bias and random errors is achieved by lower order (quadratic or linear)

CD (t) models. Potential optimizations include taking data in a low-rms-error interval

in time and densely arranging the early pulses.. The experimental validation consists

of the analyses of two datasets using the proposed method. We thoroughly discuss the

measurement quality based on the conclusions from simulation. The noise level and the

early pulse separate appear to be two important parameters for the overall accuracy. The

resulting drag correlation is considerably higher than the standard drag, suggesting the

necessity of a new model for unsteady drag correlation. In the end, we show the data

4This chapter is reformatted from a manuscript prepared for journal publication.
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scattering is likely caused by the uncertainty of particle size, and propose a theoretical

framework for accurate determination of drag correlation.

Keywords: N -pulse PTVA, uncertainty, particle drag, particle-shock physics, unsteady

drag correlation, subcritical Mach number, particle sizing

4.1 Introduction

Particle response to shock passage has been extensively studied as a fundamentally

important two-phase flow phenomenon. For a particle of mass mp moving at velocity vp ,

the governing equation of the particle dynamics, following Mei (1996), is given by

mp
d vp

d t
= FG−B +FQS +FH +FAM +FF S +FL (4.1)

wherein FG−B is the gravity minus the buoyance; FQS is the quasi-steady force; FH is the

history term or the Basset force (Basset, 1888); FAM is the added mass force; FF S is the

net force due to the variation of the fluid stress around the particle, which is essentially

the pressure gradient in our analyses; and FL is the lift force. Terms of interest during

a particle-shock interaction are FQS , FH (viscous unsteady), and FAM +FF S (inviscid

unsteady). Since Stokes (1851) first analytically obtained the drag on a stationary sphere

in an incompressible steady flow in the limit of zero Reynolds number, numerous ex-

periments have been conducted to extend the result to finite Reynolds number up to

106. This led to the celebrated standard drag curve (see, e.g. Bailey, 1974) describing the

quasi-steady drag coefficient of a particle as a function of the particle Reynold number,

Rep = |u f − vp |dp

ν f
(4.2)

wherein vp , dp , u f and ν f are the particle velocity, particle diameter, flow free-stream

velocity and flow kinematic viscosity, respectively. Based on the standard drag curve,
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various forms of empirical drag correlation (i.e. CD vs. Rep ) have been fitted over a wide

range of Rep (Ingebo, 1956; Clift and Gauvin, 1970; Clift et al., 1978), and Henderson

(1976); Loth (2008); Parmar et al. (2010) extended the drag correlation to compressible

flows. The added mass force arises from the fact that a particle moving through fluid

at a varying velocity needs to accelerate or decelerate its surrounding fluid, resulting in

an additional inviscid force. A generalized expression for the added mass force at finite

Reynolds numbers was derived by Auton et al. (1988). The history term is associated with

the retarded vorticity diffusion from the particle surface to the free-stream flow. Basset

(1888) analyzed the unsteady creeping flow around a particle, and proposed to evaluate

the history term with an integral kernel proportional to t−1/2, which appeared in the

famous BBO (Basset-Boussinesq-Oseen) equation and the Maxey-Riley equation (Maxey

and Riley, 1983). Mei and Adrian (1992) extended the kernel to finite Reynolds numbers,

and Parmar et al. (2011) developed a generalized BBO equation in which the history term

as well as the added mass force was modified for compressible flows.

The interaction between a shock and a single particle can be considered in two

regimes – the passage of the shock over the particle and the post-shock regime. During

the shock passage, the particle gains a finite momentum in a typically short time scale,

dp /us , where us is the shock speed. (Based on this time scale, we can define a normalized

time τs = tus/dp . Note the shock passes over the particle at τs = 1.) The forces responsible

for the impulsive increase of particle velocity when τs < 1 are the quasi-steady force, the

pressure gradient, and the unsteady forces (FAM +FH ). Parmar et al. (2009) modeled all

those forces but the Basset force and resolved a sharp peak in drag at approximately τs =

0.5, agreeing with the experimental and numerical results by Sun et al. (2005); Skews et al.

(2007). According to the breakdown of force terms, Parmar et al. (2009) attributed the

sharp peak to the sudden change of pressure across the shock and the added mass force
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adapted for compressible flows. In the post-shock regime (τs À1), the particle accelerates

and approaches the post-shock flow velocity asymptotically. Numerous experiments

measuring post-shock particle motions (Rudinger, 1970; Igra and Takayama, 1993; Suzuki

et al., 2005; Jourdan et al., 2007; Wagner et al., 2012) have observed elevated particle

accelerations compared to that predicted by the standard drag, implying substantially

enhanced particle drag. Compressibility and unsteadiness have been conventionally

considered to be the two factors responsible for the elevation in drag. When the particle

Mach number, defined with respect to the post-shock speed of sound c,

Mp = |u f − vp |
c

(4.3)

is below the critical Mach number (Mp,cr ≈0.6), the flow surrounding the particle is fully

subsonic and the compressibility effect is negligible. The unsteadiness of the particle,

following Crowe et al. (1963), is characterized by a non-dimensional parameter Ac given

by

Ac =
.

vp dp

(u f − vp )2
(4.4)

When Ac ¿ 1, the particle motion is usually considered to be steady or quasi-steady. For

the compressibility effect, past investigations appear to have achieved a decent progress

towards consistency. Some experiments isolating the compressibility effect (see Bailey

and Starr, 1976; Jourdan et al., 2007; Wagner et al., 2012, in which Ac <0.01) reported

drag correlations that are consistent under the framework of Parmar et al. (2009) for

compressible quasi-steady drag. On the other hand, the studies of elevated drag due

to the unsteadiness seem to have not reached further than experimental observations

(Karanfilian and Kotas, 1978; Bordoloi et al., 2017). The physical mechanism behind

the elevation is still unclear, and there seems no current models or simulations able to

predict it (Bordoloi et al., 2017). The question of which unsteady force(s) (Basset, added

mass or others) is/are responsible for the elevation needs to be answered.
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Understanding the mechanism of elevated particle drag in post-shock flows remains

challenging partially due to the fact that, while the elevation is experimentally evident,

the data spread appears to be significant (see e.g. Figure 5 in Suzuki et al., 2005, Figure 14

in Jourdan et al., 2007, Figure 1 in Wagner et al., 2012). Two primary reasons for the large

spread are the high-noise-level nature of acceleration measurements (Christensen and

Adrian, 2002; Ding and Adrian, 2017) and the uncertainty in the nominal particle diameter

used in data analyses. From the noise reduction point of view, various noise filtering

algorithms for PTVA were reported in the literature. Among others, Lüthi et al. (2005)

solved an overdetermined linear system deduced from the first-order Taylor expansions

of neighboring velocities for velocity spatial and temporal derivatives with reduced noise

level, followed by weighted polynomial fit to further suppress noise. Mordant et al. (2004)

employed a second-order Gaussian differentiating kernel to simultaneously filter out

noise and calculate acceleration by convolving the kernel with particle position data.

Voth et al. (2002) measured particle Lagrangian accelerations by piecewise parabolic

fitting with the weight of each data point inversely proportional to the local error, thus

reducing the noise propagating into acceleration estimates.

N -pulse PIVA/PTVA is a new-generation PIV developed to improve the performance

of conventional 2-pulse PIV systems. Ding and Adrian (2017) theoretically showed the

significant improvements in dynamic ranges by 4-pulse PTVA. An N -pulse system usually

includes multiple independent pulsed lasers and cameras to provide sufficiently short

inter-frame time for high-speed flows. Martinez et al. (2015); Bordoloi et al. (2017)

employed an 8-pulse system in their shock tube facility measuring shock accelerated

microparticles. While the 8-pulse system ensured the temporal resolution required by

micron-sized particles, the limited number of particle positions raised the difficulty in

their data analysis. In their early test, conventional polynomial fit to particle positions
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yielded strong bias often leading to unphysical particle velocity and acceleration history.

In order to thoroughly understand the particle-shock physics as our ultimate goal, we

address in this work the first-order business – reliable measurement of particle drag

history with an N -pulse system (N ≤8). We focus on the data analysis and accuracy

optimization for the experiments by Martinez et al. (2015); Bordoloi et al. (2017).

The subsequent sections are organized as the follows. The shock-tube facility and the

8-pulse data acquisition system is briefly outlined in Section 4.2. Section 4.3 describes in

detail the novel curve fitting method, the performance of which is validated and assessed

numerically in Section 4.4. The experimental results are presented in Section 4.5. The

effect of particle size distribution on the data scattering is discussed in Section 4.6.

4.2 Experimental Setup and Data Acquisition

The details of the shock tube design and operation as well as the 8-pulse data acqui-

sition system can be found in Martinez et al. (2015); Bordoloi et al. (2017). Some key

aspects of the experimental setup are outlined here.

The experiment was conducted in a horizontal shock tube (HST) 6.5 m long with

a cross-section 76.2 mm × 76.2 mm. Shock waves were generated by a diaphragmless

pneumatic piston driver with high repeatability and full automation. Multiple pressure

transducers were incorporated along the tube to measure the shock speed and to trigger

the imaging system. Particles entered upstream and exited downstream the tube through

a pipe loop driven by a low-speed fan. The seeding density was low enough to ensure no

particle collisions and thus to enable us to study purely the single particle response in

the post-shock flow.
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The 8-pulse system consists of eight independently triggered Nd:YAG lasers and a

4-CCD high-speed framing camera. Each CCD is capable to run in a dual-frame PIV mode

such that eight successive snapshots of particle positions were recorded in eight frames.

An in-line shadowgraph system with a pulsed LED was integrated into the imaging system

and synchronized with camera exposures to determine the accurate shock location. The

shock location combined with the shock speed obtained from the pressure transducers

was used to estimate the time when the shock reached each particle. An image processing

procedure was implemented for accurate determinations of particle sub-pixel locations

from noisy and distorted particle images.

4.3 Method Description

As discussed in the introduction, the N -pulse (N ≤8) particle position data demand

a reliable fitting method other than the polynomial fitting widely used in the literature.

While the generality of polynomial fitting makes it a nearly universal curve fitting tool,

better applicabilities to specific problems may be lost. In this regard, we introduce a novel

fitting method incorporating particle dynamics for particle-shock PTVA analysis. It is

based on Wagner et al. (2012) in which the authors derived a fitting model by integrating

the equation defining the particle drag coefficient CD :

..
xp (t )

[
u f − .

xp (t )
]2 = κCD , (4.5)

wherein κ= 3ρ f
/

4ρp dp
with ρ f and ρp being particle density and post-shock fluid density,

respectively; u f is the post-shock flow velocity; xp (t ) is one-dimensional particle position

history; and
.

( ) denotes the derivative with respect to t . In their analysis, CD was assumed

to be constant during a short time window and determined as a fitting parameter. How-

ever, to ensure CD being constant a valid assumption in the present case with only eight
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pulses, we need to set a very short inter-frame time, which undesirably result in the loss

of continuous temporal resolution. Moreover, a piecewise scheme progressively using a

constant CD for each 3- or 4-pulse piece (see e.g. Bordoloi et al., 2017) may yield high

uncertainties due to the lack of global constraints in each piece. Thereby, we propose to

use a time-resolved representation of CD , i.e. CD =CD (t ), to derive the fitting model as

follows. Suppose particle positions xp,i are measured at ti , i = 0,1, ..., N −1. Rewriting

Equation (4.5) in terms of normalized time t∗ = (t − t0)
/

T , where T = tN−1 − t0, gives

d 2xp

d t∗2

u f T −

d xp

d t∗




2 = κCD (t∗) (4.6)

Integrate (4.6) from t∗ = 0 to t∗ = τ∗:

1

u f T −
d xp

d t∗

=
1

u f T −
d xp

d t∗

∣∣∣
t∗=0

+κI (τ∗) (4.7)

wherein I (τ∗) =
∫ τ∗

0
CD (t∗)d t∗. Another integration of Equation (4.7) then yields an

integral form for xp (t∗):

xp (t∗) = xp,0 +u f T t∗−
∫ t∗

0

dτ∗

κI (τ∗)+ [(
u f − vp,0

)
T

]−1 (4.8)

wherein xp,0 and vp,0 are the particle position and velocity at t∗ = 0, respectively. Equa-

tion (4.8) is the model we fitted to measured particle locations xp,i to determine CD (t∗).

It has a clear physical meaning – the first two terms constitute the particle displacement

as if the particle perfectly followed the post-shock flow; the integral term, which is essen-

tially the time integral of the slip velocity u f − vp , calculates the distance of the particle
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lagging behind the flow. This latter term is where the particle dynamics is involved in the

form of particle drag history CD (t ).

We used polynomials of different orders to represent CD (t∗):

CD (t∗) =
Γ+1∑

j=1
jα j t∗( j−1), (4.9)

with Γ = 1, 2, 3. The coefficients α j are determined as fitting parameters. Although

other representations are possible (e.g. cubic splines), our test showed they were not

advantageous over polynomials due to limited number of particle positions (N =8). With

Equation (4.9), I (τ∗) can be readily calculated:

I (τ∗) =
Γ+1∑

j=1
α j t∗ j . (4.10)

The least-square fitting of xp,i with Equation (4.8) was performed using the nonlinear

algorithm reported by Coleman and Li (1996), which is conveniently provided in Matlab.

Equation (4.8) was evaluated numerically during the fitting process as the analytical

result of the integration is not easily obtainable.

In addition to α j , our analyses also included xp,0 and vp,0 as another two fitting

parameters to account for the uncertainty in determining the time when the shock starts

interacting with the particle. This is necessary for our analyses because the duration

of the shock passage is less than 0.1 µs during which the particle velocity dramatically

increases (Parmar et al., 2009).

It is worthing noting that the way we calculate CD in Equation (4.5), in which the

drag is proportional to the slip velocity, complies with the conventional definition of

quasi-steady drag. However, in the case of unsteady forces existing, Equation (4.5) gives

the effective drag coefficient, i.e. the drag force exerted on the particle normalized by

the slip velocity square. This is necessary to be understood as the total force may also

depend on the particle acceleration in the unsteady regime (Ac ∼1).
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To have a comparative assessment of the present method, we also implemented two

other PTVA analyses similar to Voth et al. (2002) and Bordoloi et al. (2017), respectively,

both of which are piecewise algorithms. For each 4-pulse piece, {xp,n , ..., xp,n+3}, n =

0, 1,..., N -4, the first piecewise analysis fits a parabola to the four positions with equal

weights (the adaptive weighting by Voth et al. (2002) is not applicable here). Then the

particle velocity and acceleration are evaluated at (xp,n+1 +xp,n+2)
/

2 by differentiating

the parabola. The second piecewise analysis fits Equation (4.8) with Γ= 0, i.e. constant

CD , to each piece with α1, xp,0 and vp,0 being the three fitting parameters. Note that

for the nth piece xp,0 and vp,0 are the particle position and velocity at t∗n = (tn − t0)/T .

In the subsequent sections, these two piecewise analyses are referred to as ‘piecewise

polynomial (PW poly)’ and ‘piecewise integrated dynamic equation (PW IDE)’.

4.4 Performance Assessment

We performed PTVA simulations to assess the performance of the proposed method.

The objectivity of the assessment was strengthened by testing two drag correlations

shown in Figure 4.1(a):

(i) an empirical correlation beyond the quasi-steady regime based on experimental

results,

CD =−0.6579+5.382Re
− 1

3
p +99.88Re

− 2
3

p −226.3Re−1
p +436.8Re

− 4
3

p (4.11)

for 20.Rep . 700. See Section 4.6 for how we obtained Equation (4.11).

(ii) the standard drag correlation in Clift and Gauvin (1970),

CD = 24

Rep

(
1+0.15Re0.687

p

)
+0.42

(
1+ 42500

Re1.16
p

)−1

(4.12)
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The particle position history xp (t ) of each test case was calculated by integrating the

CD –Rep correlation using initial conditions xp,0 = 0 and vp,0 = 28 m/s. We estimated vp,0

using the force models of Parmar et al. (2009) at the time when the shock passed over the

particle . Note the particle size and the optical setup in our experiments did not allow

resolving the shock passage over a particle. Thereby, we approximated the velocity initial

condition using a step at t∗=0. It is evident in Figure 4.1(b) that the empirical correlation

results in stronger acceleration and the particle approaches the post-shock flow velocity

faster. This also explains the empirical drag correlation in Figure 4.1(a) spans over a wider

Rep range. We set the durations of the particle trajectories such that the total particle

displacements matched with that in Martinez et al. (2015). This ensures the position

noise level to be comparable to realistic experiments (see Equation (4.15)). We also chose

other simulation parameters based on the experiment by Martinez et al. (2015), and they

are listed in Table 4.1a. In addition, we specified reasonable bounds for the parameters

determined from the nonlinear least-square fittings (see Table 4.1b) to improve fitting

reliabilities. The α j bounds ensure CD (t∗) to have the correct slope and convexity.

(a) drag correlation (b) particle position (c) particle drag

Figure 4.1: Simulated particle trajectories based on the two drag correlations given in
Equation (4.11) and (4.12).
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Empirical Standard

T [µs] 56 70

∆xp,tot [pix] 778.28 834.26

δxp [pix] 0.01 – 10

M0 [µm/pix] 9.3

dp [µm] 80

ρp [kg/m3] 15

ρ f [kg/m3] 1.4122

µ f [Pa·s] 2.0926×10−5

u f [m/s] 155.61

(a) simulated experimental conditions

Method Bounds

Γ = 3 -0.2 mm ≤ xp,0 ≤ 0.2 mm;
0 ≤ vp,0 ≤ 50 m/s; α1, α2 ≥ 0

Γ = 2 -0.2 mm ≤ xp,0 ≤ 0.2 mm;
0 ≤ vp,0 ≤ 50 m/s; α1, α2, α3 ≥ 0

Γ = 1 -0.2 mm ≤ xp,0 ≤ 0.2 mm;
0 ≤ vp,0 ≤ 50 m/s; α1, α2 ≥ 0

PW IDE For the first piece: -0.2 mm
≤ xp,0 ≤ 0.2 mm; 0 ≤ vp,0 ≤ 50 m/s;
For the nth piece (n ≥2):
x̂n−1

p (t∗n )-0.2 mm ≤ xp,0 ≤
x̂n−1

p (t∗n )+0.2 mm; 0.8v̂n−1
p (t∗n )

≤ vp,0 ≤ 1.2v̂n−1
p (t∗n );

(b) fitting bounds

Table 4.1: Simulation parameters. x̂n−1
p (t∗n ) and v̂n−1

p (t∗n ) are the position and velocity
estimates at t∗n using the the (n −1)th piecewise fit.

To simulate an 8-pulse PTVA experiment, 8 particle positions were generated equidis-

tantly in time along each simulated trajectory . Gaussian random noise with a standard

deviation δxp ranging from 0.01 to 10 pix was added to each particle position. 200 in-

dependent realizations were simulated for each noise level allowing us to calculate the

mean bias, the random error and thus the total rms error. Here, the rms error of CD , σCD ,

is decomposed into the bias and the random error:

σ2
CD

= 〈(ĈD −CD,true
)2〉 = (〈ĈD〉−CD,true

)2

︸ ︷︷ ︸
bias

+〈(ĈD −〈ĈD〉)2〉︸ ︷︷ ︸
random

(4.13)

wherein 〈 〉 denotes ensemble average; ‘ ˆ ’ indicates an estimate. In the above equation,

the time dependence is not explicitly revealed for simplicity. However, one needs to bear

in mind the errors vary in time along the trajectory.

In Figure 4.2, the time-averaged, normalized CD rms error, σ∗
CD

, for each analysis

method is plotted against increasing noise level. σ∗
CD

is calculated by first normalizing
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(a) empirical drag (b) standard drag

Figure 4.2: CD rms errors with increasing locating noise. The inset in (b) uses a linear
scale for the vertical axis to compare the growth rate.

σCD with the true CD (t∗) and then averaging over 0 ≤ t∗ ≤ 1:

σ∗
CD

=
∫ 1

0

σCD (t∗)

CD,true(t∗)
d t∗ (4.14)

The noise level δ∗xp
is given by the particle locating rms error δxp normalized by the total

displacement ∆xp,tot :

δ∗xp
= δxp

/
∆xp,tot (4.15)

It is evident from both test cases that the two piecewise analyses yield high rms errors

over the entire range of δ∗xp
. At small δ∗xp

where bias error dominates, the constancy of

CD (PW IDE) or acceleration (PW poly) within each 4-pulse piece leads to strong bias;

when δ∗xp
increases, the piecewise methods produce rapidly increasing rms errors due

to the lack of global constraints in each piecewise fit. In contrast, the continuous, time-

resolved representations of CD used in the proposed method exhibit reduced rms errors.

At large δ∗xp
, lower order models (Γ = 1, 2) are able to suppress random noise, whereas the

cubic model (Γ = 3), similarly to the piecewise methods, has a large rms error due to the
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(a) empirical drag, Γ = 2 (b) standard drag, Γ = 1

Figure 4.3: Rms error decomposition – bias and random error.

increased degree of freedom. On the other hand, their performances at small δ∗xp
depend

on their functional forms and the shape of the true CD (t∗). As seen in Figure 4.1(c),

the CD (t∗) of the empirical correlation is noticeably curvilinear, whereas the standard

drag yields a nearly linear drag history. Thereby, the best performances at the lowest

δ∗xp
are achieved with Γ=3 and Γ=1 for the empirical correlation and the standard drag,

respectively. For δ∗xp
between 10−4 and 5×10−2, corresponding to 0.1 pix ≤ δxp ≤ 3 pix, an

error range encountered in most PTV measurements, the preferable models are Γ=2 and

Γ=1 for the empirical and the standard drag correlation, respectively. For 0.1 pix ≤ δxp ≤

3 pix, the normalized rms errors, σ∗
CD

, of both test cases range approximately from 10−2

to 10−1.

With the preferable models, Figure 4.3 presents the decomposition of the total rms

errors into bias and random errors. As expected, the random error surpasses the bias

error when δ∗xp
increases and eventually becomes dominant. Interestingly, the bias error

of either case initially stays flat and then rises up dramatically at δ∗xp
≈ 5×10−4, implying

the nonlinearity of the fitting model. Moreover, it is necessary to isolate the bias error,
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(a) empirical drag (b) standard drag

Figure 4.4: Comparison of bias errors.

which may be more meaningful for statistical studies and may provide a picture different

from that of the total rms error. Figure 4.4 compares the bias errors of different fitting

models. It is observed that the piecewise method has a wider plateau but its overall bias is

high. The smallest bias for 0.1 pix ≤ δxp ≤ 3 pix is achieved by Γ = 1 or 2 model, depending

on the shape of the true CD (t∗).

The time dependences of the errors are showed in Figure 4.5 for the empirical drag

correlation. (The standard drag correlation has a qualitatively similar result.) It is clear

that local minimums or an interval of low rms error exist along the trajectory. The

(a) rms error (b) random error (c) bias error

Figure 4.5: Time dependences of the errors for the empirical drag correlation with Γ = 2.
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Figure 4.6: Pulse timing configuration parameterized by a single parameter r . Displayed
is for r =1/3.

minimums at small δ∗xp
arise from the shape of the bias error, and then gradually become

aligned with those of the random error when δ∗xp
increases. These observations about the

local minimums are qualitatively consistent with Ding and Adrian (2017), in which the

authors used the minimums to optimize velocity and acceleration evaluations. However,

in the present work, we do not use them to evaluate instantaneous CD since the drag

history is of the most interest. The interval of low rms error appears approximately

between t∗ = 0.2 and 0.5 for a wide range of δ∗xp
, suggesting one could optionally use only

a portion of CD (t∗) for improved data accuracy.

Another investigation focused on the optimization of pulse timing configuration,

seeking for potential reduction of the rms error. We parameterized the pulse timing using

a single parameter r defined as the ratio between the early and the late interframe times.

As illustrated in Figure 4.6, the first three and the last four interframe times are set equal

and denoted as δt1 and δt2, respectively. r is then given by r = δt1
/
δt2. Our preceding

discussions were for a uniform pulse timing, i.e. r =1. Here, we extend the study of σ∗
CD

subject to increasing noise level to 1/3 ≤ r ≤ 3. The improvement turns out to be only

noticeable at the early time, 0 ≤ t∗ ≤ 0.2. As shown in Figure 4.7(a), the reduction of

σ∗
CD

for 0.1 pix ≤ δxp ≤ 3 pix (10−4 ≤ δ∗xp
≤ 5×10−2) is approximately 20% – 50% when r

varies from 3 to 1/3. It suggests that one could possibly extend the total time duration of

measurement for a reduced δ∗xp
benefiting the overall accuracy, and rearrange the pulses

to achieve a moderate compensation for the early time.
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(a) 0 ≤ t∗ ≤ 0.2 (b) 0.2 ≤ t∗ ≤ 1

Figure 4.7: The rms errors of CD at early and late times for different pulse timing configu-
rations (Γ = 2). The inset plots use a logarithm scale for the vertical axes.

4.5 Experimental Result and Discussion

We analyzed two datasets of different particle types and experimental setups (see

Table 4.2). Both datasets have the ranges of particle Mach number in the subcritical

regime. The different particle diameters result in two separate Rep ranges in our analysis.

Dataset A has an averaged ∆xp,tot approximately 35% greater than that of dataset B,

implying an overall reduced noise level of dataset A. The ranges of Ac , estimated with Γ

= 2, indicate the particle motions in our experiment are significantly beyond the quasi-

steady regime (Ac <0.01, according to Crowe et al., 1963). For dataset A, the 8 pulses

were set uniformly with an interframe time δt indicated in the table. For dataset B, the

time between the first two pulses was extended (∆t 1-2 = 4 or 8 µs) to easily determine

the particle pre-shock locations, and subsequent pulses were arranged 1 µs apart. The

times of recorded particle locations with respect to t0 = 0 were calculated using each

particle’s pre-shock location and the shock location and speed (see Bordoloi et al., 2017).

In our data analysis, t0 = 0 corresponds to the time when the shock aligns with a particle’s
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Dataset A Dataset B
particle

no.
δt ρ f u f µ f ∆xp,tot Ac

[µs] [kg/m3] [m/s] [10-5Pa·s] [pix]

particle type copolymer Nylon A1 5 1.412 155.61 2.093 509.92 [0.09, 0.46]

size range [µm] [60,90] [1,7] A2 7 1.409 154.82 2.091 435.03 [0.06, 0.63]

d p [µm] 80 4 A3 7 1.409 154.82 2.091 572.25 [0.04, 0.28]

res. [µm
/

pix] 9.3 2.14 A4 10 1.411 155.35 2.092 829.01 [0.04, 0.95]

ρp [kg/m3] 15 1140 A5 10 1.411 155.35 2.092 868.54 [0.07, 1.53]

Ms 1.3 1.2 A6 10 1.411 155.35 2.092 781.20 [0.03, 0.21]

Mp <0.4 <0.3 A7 10 1.411 155.35 2.092 620.65 [0.02, 0.11]

Rep 20 - 1000 0.1-20 B1 1 1.254 109.27 2.022 283.36 [0.13, 0.63]

B2 1 1.257 110.06 2.024 459.69 [0.01, 5.70]

B3 1 1.259 110.57 2.024 687.91 [1e-3, 1.29]

B4 1 1.258 110.29 2.024 555.03 [0.02, 4.37]

B5 1 1.263 112.05 2.027 318.04 [0.04, 0.30]

B6 1 1.263 112.05 2.027 619.87 [1e-5, 0.93]

Table 4.2: Experimental parameters. Ms is the shock Mach number; δt is the interframe
time; ρ f , u f and µ f are the post-shock flow properties. Ac ranges are estimated with Γ =
2.

center. The time duration of shock passage is considered infinitesimally small due to

insufficient spatial resolution (see also the discussion about the particle initial velocity

in Section 4.4). Depending on which frame was synchronized with the shadowgraph

system, we obtained 7 or 8 particle locations for each post-shock particle trajectory. We

also removed particle location outliers by visual inspections. For the particles listed in

Table 4.2, only one location (of particle B1) appeared to be an outlier. Consequently, for

nearly all particles, we have 7 or 8 particle locations to perform PTVA drag analyses with

the fitting models described in Section 4.4. Note the Γ = 3 model requires at least 7 data

points for a least-square fit. (Particle B5 only has 6 data points due to the particle moving

out of the laser sheet.)

The complete set of plots for particle position, velocity, acceleration and drag co-

efficient are presented in Appendix C. The results obtained by Γ = 1, 2, 3 and PW IDE
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are included. Comparing them along with the conclusions from our simulation, we

summarize our observations and conjectures as follows.

(1) The Γ=3 model seems to consistently overestimate CD at the late time (approxi-

mately t∗>0.8). We tend to consider these high values of CD to be systematic biases

based on the simulation result of large bias error of Γ = 3 indicated in Figure 4.4.

(2) Some CD (t ) results by the Γ = 3 model (e.g. B5, B6) and PW IDE (e.g. B2, B3, B5, B6)

are apparently unphysical. It is probably associated with the high rms errors of the

Γ = 3 model and PW IDE as evident in the simulation.

(3) The acceleration history curves consistently exhibit distinct peaks at small positive

t , i.e. short after the shock passes over the particle. The time scales of these peaks

suggest they are systematic biases rather than the peak during the shock passage

predicted by Sun et al. (2005); Parmar et al. (2009). There is a tendency of the peaks

occurring at relatively late times when vp,0 is overestimated (see e.g. A1, A2, B2,

B3). It is mathematically consistent with the way we calculate ap :

ap = κCD (u f − vp )2 (4.16)

in which ap is inversely proportional to vp at early time.

(4) The overestimated vp,0 appears to correlate with the time between the first two

pulses, ∆t 1-2. When ∆t 1-2 is relatively large (e.g. B2, B3, B6), we are likely to miss

the strong acceleration near t = 0. It is interpreted that, with a large ∆t 1-2, the

fitting of xp,i loses the clamped boundary condition that constrains the early slope.

The observed behaviors at the early time conceptually agree with our simulation

results showing elevated rms error when the first few pulses are loosely distributed.

In contrast, when ∆t 1-2 is comparable to or smaller than the other interframe

times, ap (t ) results become more satisfactory (e.g. A3 – A7). In addition, the Γ = 2
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model appears less sensitive to ∆t 1-2 in terms of the early acceleration prediction

compared to other models.

(5) In terms of the above discussions, the results of dataset A are generally cleaner

than those of dataset B, consistent with our expectation from the low noise level of

dataset A.

(6) Among the fitting models we tested in this work, the Γ=2 model appears to be

the most consistent and reliable one. The Γ = 3 model and PW IDE both suffer

high bias and random errors. The linear form of the Γ = 1 model may limit its

wide applicability and may result in underestimated CD , unless the noise levels in

certain experiments are extremely high. This conjecture about the Γ = 2 model is in

agreement with the simulation results of the empirical drag.

With the particle velocities, CD – Rep correlation curves are readily calculated and

presented in Figure 4.8. For each particle trajectory, we obtained a single CD – Rep

curve, and presented is the collection of all particles listed in Table 4.2. It is apparent

that some extremely small values of CD are predicted at the early time (i.e. large Rep

in each dataset), especially from the Γ=3 model, which is probably nonphysical. We

found these unphysically small CD values came from the particles measured with a

relatively long ∆t 1-2 (B2, B3, B6), which again prove the advantage of shortening ∆t 1-2.

The strong increasing trends of the Γ = 3 model and PW IDE at small Rep of each dataset

are clear as also evident in the CD (t) plots. It is worth to clarify that, although the

continuous trend between the two datasets in the PW IDE results appears favorable, there

is a lack of logical reasoning behind it. As clearly shown in Figure 4.8(f), the unsteadiness

parameter Ac differs by a decade at the Rep where the two datasets connect. Thereby,

different CD should be expected if we consider CD is a function of both Rep and Ac , i.e.

CD =CD (Rep , Ac ).

106



(a) Γ = 3 (b) Γ = 2 (c) Γ = 1

(d) PW IDE (e) superposed (f) Ac (Γ = 2)

Figure 4.8: CD – Rep correlations. Each curve represents a single particle’s drag history.
Negative values in the PW IDE curves are ignored for logarithm-scale plots. The standard
drag uses the fit by Clift and Gauvin (1970).

Based on the above discussion, we removed the early 10% (t∗<0.1) data points of CD

for the particles having unphysically small CD at the early time (i.e. particle no. B2, B3,

B6). The cleaned drag correlation is presented in Figure 4.9(a), in which the elevation

relative to the standard drag is noticeable. Regarding the ranges of Mp and Ac given in

Table 4.2, it is conjectured the unsteadiness is mainly responsible for the increase in drag.

Karanfilian and Kotas (1978) fitted their unsteady particle drag data using an empirical

model in terms of Ac and standard drag CDS :

CD =CDS(1+ Ac )1.2±0.03 (4.17)

for approximately 100<Rep <5000. In spite of the different Rep range, we examined our

data in the same fashion by plotting the modified drag coefficient, C̃D =CD
/

(1+ Ac )1.2,
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(a) cleaned drag correlation (b) modified drag coefficient

Figure 4.9: Cleaned CD – Rep correlation after removing the early 10% data of selected
particles (B2, B3, B6). The modification of CD for unsteadiness follows Karanfilian and
Kotas (1978), i.e. C̃D =CD

/
(1+ Ac )1.2.

against Rep (see Figure 4.9(b)). Apparently, the standard drag is not recovered, suggesting

CD (Rep , Ac ) of a different form. However, the lack of accurate size measurement for each

single particle prevents us from fitting the data with confidence. In the next section, we

will discuss the particle size effect to the measured drag correlation and how to potentially

eliminate data scattering due to particle size polydispersity.

4.6 Particle Size Effect

There is one important observation in Figure 4.8 or 4.9(a) that we have not mentioned

above. That is, the CD –Rep curves of different particles in the logarithm-scale plot mani-

fest translations with each other. These particles were measured under nearly the same

experimental condition, so they should in principle follow an universal drag correlation

after normalization. The translational scattering, which appears to be not a random
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Figure 4.10: Particle position histories and corresponding drag correlations. The curves
are color coded to indicate correspondences.

behavior, obviously suggests there exists an artificial mechanism causing the problem. If

we examine the CD – Rep results along with the corresponding particle position histories,

as shown in Figure 4.10, we can immediately see slow-moving particles have low CD

estimates. As the particle samples are polydisperse, the slow-moving particles under

the same post-shock condition should have relatively large diameters. This suggests the

translational scattering may result from the fact that we used the same nominal particle

diameter, i.e. the mean diameter d p of a particle batch, in the analyses of all particles.

A further evidence of the translational scattering being caused by particle polydisper-

sity comes from the following mathematical deduction. Suppose the ratio between the

nominal diameter and a particle’s true diameter is ξ, i.e.

dp,nom

dp,tr ue
= ξ. (4.18)

In the fitting model (4.8), the only term involving dp is κI (τ∗) = 3ρ f

4ρp dp

∫ τ∗

0
CD (t∗)d t∗ in

the integrand. Thereby, if dp is scaled by ξ, then the measured CD must also be scaled by

the same factor to satisfy the same xp (t∗), i.e.

CD,meas

CD,tr ue
= ξ. (4.19)
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Likewise, since Rep ∝ dp , we also have

Rep,meas

Rep,tr ue
= ξ. (4.20)

Furthermore, if we useΦ to denote the true drag correlation in a logarithm scale:

logCD,tr ue =Φ
(
logRep,tr ue

)
, (4.21)

wherein ‘log’ is the common logarithm with base 10, then using Equation (4.19) and

(4.20) it immediately follows

logCD,meas =Φ
(
logRep,meas − logξ

)+ logξ, (4.22)

Equation (4.22) implies that the measured CD – Rep curve is the true one translated by

an offset vector rrr = (logξ, logξ) in a logarithm-scale plot. When ξ>1, i.e. the particle

size is overestimated, the measured CD – Rep curve appears above the true one, and it is

opposite when ξ<1 (see Figure 4.11).

The above analysis in fact establishes a mapping relation between rrr and dp . Since

the direction of rrr is invariant despite the sign, we can alternatively use a scalar to express

the relation for simplicity:

r = log
dp,nom

dp
, (4.23)

wherein dp,tr ue is replaced by dp to generally denote a varying dp . Although it is difficult

to determine dp for individual particles, the particle size distribution, pdp , can be reliably

measured by techniques such as direct imaging, sedimentation, laser diffraction, etc.

(Crowe et al., 2011). Then the probability density function (pdf) of r , pr , can be derived:

pr (r ) = 2.3026 ·10−r dp,nom ·pdp (10−r dp,nom), (4.24)

in which r = 0 corresponds to dp = dp,nom . On the other hand, the pdf of the measured

offsets, p ′
r , can be determined experimentally from a big collection of CD – Rep curves.
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Figure 4.11: Schematic of translational scattering of the drag correlation caused by
particle polydispersity.

In practice, the offsets can be measured with respect to an arbitrary reference position.

Consequently, the correlation between pr and p ′
r should in principle yield the offset

r̃ corresponding to dp,nom , i.e. p ′
r (r̃ ) = pr (0). Thus, we can obtain an accurate drag

correlation free of the uncertainty due to particle size polydispersity. Note the above

discussion did not take into account particle clumping due to electrostatic charge. If the

clumped particles occur at a significant frequency, it requires a reasonable model of the

clumping process to obtain a reliable size distribution pdp .

Finally, it is ready to explain the empirical drag correlation used in the simulation.

Since the scattering is the consequence of particle size uncertainty, a correction procedure

translating the CD – Rep curves according to the particle diameter ratio is necessary. As

the particle size information is unknown, we hypothetically shift all curves so that they

cross a common (CD ,Rep ) position beyond the quasi-steady regime for the purpose of

providing a reference to the simulation. As seen in Figure 4.12, the measured CD – Rep
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Figure 4.12: A hypothetical and empirical drag correlation based on experimental data .

curves are all brought to (CD ,Rep ) = (40, 100), and an empirical fit is obtained using the

form appearing in Equation (4.11).

4.7 Summary

We reported an improved N -P PTVA (N ≤8) analysis method for measuring particle

drag in post-shock flows. The advantage of the method lies in the fitting model incorpo-

rating particle dynamics. The method was numerically validated by PTVA simulations

using two different drag correlations. It was found, depending on the shape of the true

drag correlation, the Γ = 2 or Γ =1 model showed the best performance in terms of the to-

tal rms error, the bias and the random error within a realistic range of the noise level. The

time-averaged, normalized rms error manifested in the simulation ranged between 1%

to 10%. The simulation also suggested reduced rms error was achievable in a subrange of

time. In addition, we demonstrated shortening the spacing of the first few pulses helped

reduce the early time rms error.
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Two datasets of shock-tube experiments having separate ranges of Rep were analyzed

using the proposed method. Based on the simulation results, we thoroughly discussed

our observations and conjectures about the measurement quality. We found the two

key parameters affecting the overall accuracy were the particle total displacement, i.e.

the noise level, and the time between the first two pulses. Particles measured with a low

noise level and a short ∆t 1-2 generally yielded good results based on our conjectures. In

addition, the Γ = 2 model appeared to be the most reliable one for the tested datasets.

The CD – Rep correlation estimated with Γ = 2 exhibited significant elevation relative

to the standard drag, which we attributed to the flow unsteadiness. The examination

using an unsteady CD model from the literature suggested the necessity of new unsteady

model as well as to understand the underlying particle-shock physics.

Last but not least, we explained how particle size polydispersity caused the transla-

tional scattering of measured CD – Rep curves, and proposed a theoretical framework to

accurately determine the drag correlation. As our ultimate goals, the new unsteady drag

correlation and the unsteady particle dynamics in post-shock flows need further experi-

mental investigations, especially the efforts on particle size distribution and dynamic

particle sizing.
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Chapter 5

ESTIMATION OF TURBULENCE DISSIPATION RATE AND OTHER STATISTICS FROM

ENSEMBLE N -PULSE PTV DATA5

ABSTRACT

A novel PTV-based method for estimating turbulence isotropic dissipation rate and

other statistics is presented. The method is based on the Taylor expansion of each

velocity inside a resolution domain with respect to the domain center. We first derive

the theoretical bases for mean velocity and mean velocity gradient, followed by the

dissipation estimation utilizing the velocity differential of two closely positioned particles

to infer the instantaneous flow strain rate. The mechanisms of two types of error are

discussed, including the error due to finite-time averaging that leads to rms fluctuation,

and the error arising from particle tracking with limited number of pulses. To validate

the method and to understand the effects of different errors, a PTV simulation with

synthetic turbulence is performed. It is found in the simulation that the PTV bias error is

associated with the shape and length of a particle trajectory, whereas the PTV random

error merely depends on the particle locating uncertainty. As a result, for the mean

velocity and the mean velocity gradient, the PTV error only contributes usually negligible

rms fluctuation. However, for the dissipation estimation, it constitutes a bias error

inversely proportional to the square of the domain size L. On the other hand, we will

show the rms fluctuation due to finite-time averaging determines the overall estimation

accuracy. With the understanding of the errors, we developed a procedure of rational

5This chapter is reformatted from a manuscript prepared for journal publication.
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analysis to reliably extract turbulence statistics. The procedure either determines an

optimal L for averaging, or performs a curve fitting to the estimates at different L. Last,

the method is applied to the tomographic measurement of an adverse-pressure-gradient

turbulent boundary layer with Reτ ≈ 3000. We successfully measured the mean velocity

profile over 0.3 < y+ < 30 with high accuracy and high spatial resolution. The result of

the mean velocity gradient is satisfactory compared to the reference obtained from a

generalized Spalding’s fit to the mean velocity. Finally, the isotropic dissipation rate near

wall (y+<12) is estimated with a slightly modified method to account for the strong rms

fluctuation. The comparison with DNS studies at lower Reynolds numbers implies a

reasonable measurement quality.

Keywords: dissipation, turbulence statistics, particle tracking velocimetry, optimiza-

tion, adverse pressure gradient, turbulent boundary layer, high Reynolds number

5.1 Introduction

Dissipation rate is a key statistic for understanding turbulent kinetic energy (TKE)

budget, energy cascade and turbulence scaling. Most complete turbulence studies

involving the dissipation rate were in the form of direct numerical simulation (DNS) for

its superior accuracy and data accessibility (Spalart, 1988; Moser et al., 1999; Kaneda

et al., 2003; Donzis et al., 2008). Reliable estimation of dissipation from experiments is yet

challenging. Traditional point-wise techniques (hot wire anemometry and laser Doppler

velocimetry) relied on Taylor’s hypothesis that relates spatial derivatives with single-point

temporal derivatives to estimate dissipation. The resulting accuracy is questionable

(Dahm and Southerland, 1997), and the validity of Taylor’s hypothesis is restricted despite
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its overuse under a wide range of flow conditions. In addition, it is usually difficult for

point-wise measurements to obtain all nine components of the rate-of-strain tensor.

With the tremendous effort in advancing particle imaging techniques over the past few

decades, the opportunity of obtaining fully 3-D, high-spatial/temporal-resolution and

high-accuracy turbulence data in experiments has been continuously increasing (Adrian,

1991, 2005; Adrian and Westerweel, 2011; Westerweel et al., 2013; Kähler et al., 2016).

However, dissipation rate is still one of the most challenging quantities to be measured

because of the amplification and propagation of noise during the differentiation and the

square operation. Mathematically, the TKE dissipation rate is given by

εT = ν〈u′
i , j u′

i , j 〉+ν〈u′
i , j u′

j ,i 〉 (5.1)

wherein u′
i , j is the derivative of velocity fluctuation u′

i in the x j direction; the prime

notation denotes a fluctuating quantity after subtracting the mean; and ν is the fluid

kinematic viscosity. The first term on the right is the homogeneous isotropic dissipation,

while the second term exists only when the flow exhibits inhomogeneity. Using the

velocities measured by particle image velocimetry (PIV) to directly evaluate 〈u′
i , j u′

i , j 〉

introduces two possible types of bias error. When the spacing between adjacent veloc-

ities is smaller than or comparable to Kolmogorov length scale η, the instantaneous

random velocity errors result in a positive mean bias for the isotropic dissipation. This

is because, despite the random error causing over- or underestimated instantaneous

velocity gradient, the square operation always makes it a positive contribution to the

mean. Tanaka and Eaton (2007) proposed a correction scheme for this overestimation

occurring for a small mesh size utilizing the estimations at two different mesh sizes. They

numerically demonstrated satisfactory accuracy for a mesh size between 0.1η and η, but

did not address larger mesh sizes that are more realistically encountered. As the second

type of bias error, many experimentalists have observed underestimated dissipation rate

116



due to insufficient spatial resolution to resolve small scale velocity fluctuations (Saaren-

rinne and Piirto, 2000; Sharp and Adrian, 2001; Baldi and Yianneskis, 2003; Racina and

Kind, 2006; Tokgoz et al., 2012; Discetti et al., 2013). Among many others, Sharp and

Adrian (2001) measured the dissipation rate near the tips of a Rushton turbine using

planar PIV with symmetry and isotropy assumptions, and the resolved dissipation was

about 70% of the full dissipation rate. Tokgoz et al. (2012) systematically studied the

performance of tomographic PIV by measuring the dissipation rates of Taylor-Couette

flows at different Reynolds numbers. From their results, the ratio between the measured

dissipation and the reference dissipation, obtained from torque measurements, was

about 0.5 at a moderately small shear Reynolds number (Res=3800), and dropped below

0.05 at Res=47000.

The hindrance of dissipation estimation with correlation-based PIV is the spatial

averaging effect of the window-based analysis. The typical size of an interrogation spot

in tomographic PIV is greater than 1 mm3, while the length scale at which most viscous

dissipation occurs is no more than 0.1 mm for moderate to high Reynolds numbers.

Past studies on PIV measurements of dissipation have suggested the distance between

adjacent velocity vectors to be about 3-5 η meanwhile using the smallest possible in-

terrogation spot size (given by the valid detection probability, see Keane and Adrian,

1990) and a proper window overlap (50% or 75%) (Lavoie et al., 2007; Worth et al., 2010;

Tokgoz et al., 2012). This is apparently hard to satisfy in most experiments considering

the facts: (1) when setting up a multi-camera tomographic system, the optical access

required by such high magnification may not be possible in the test section; (2) the size of

a particle image scales with the magnification, and large particle images prevent the use

of small interrogation spots, which to some extent counteracts the benefit of using a high

magnification. To compensate for the dissipation at unresolved scales, Sheng et al. (2000)
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developed a large eddy PIV method that estimated the dissipation from the sub-grid scale

(SGS) energy flux. The unresolved dissipation is somewhat recovered by the large eddy

PIV, but further improved dissipation estimation is still desired (Tokgoz et al., 2012).

Recent advances in particle tracking velocimetry (PTV) demonstrated its potential of

surpassing the performance of correlation-based PIV. In early years, PTV suffered low data

yield and high noise due to the limitations in recorded image quality, particle tracking

algorithms and 3-D particle triangulation (Stanislas et al., 2005, 2008). In this regard,

substantial efforts have been made thanks to the development of camera technology in

terms of signal-to-noise ratio, pixel resolution and framing rate. The flow information

in time and space has helped materially improve the data density and accuracy of PTV

measurements (Malik et al., 1993; Keane et al., 1995; Ohmi and Li, 2000; Fuchs et al., 2017).

A recent pioneering work by Schanz et al. (2016) utilizing iterative particle reconstruc-

tions (Wieneke, 2012) and flow temporal information opened the way to experimentally

resolving turbulence small scale motions.

With these advanced PTV algorithms and the inherent advantage of PTV in spatial

resolution, accurate dissipation estimation becomes promising. The high spatial reso-

lution achieved by PTV is twofold. First, each measured velocity vector represents the

velocity of the fluid material occupying the same space as the particle as if there is no

particle, instead of the averaged velocity inside an interrogation spot as in PIV. Thus,

high-frequency modes in a flow can be well resolved by PTV (Kähler et al., 2012a). Second,

the fit of a particle trajectory using successive particle positions gives accurate position

history of a fluid parcel, and thus reduces the uncertainty in positioning the velocity vec-

tor. Ding and Adrian (2017) theoretically showed that N -pulse PTV was capable to reduce

the positioning uncertainty by a factor of 10-50 compared to 2-pulse PTV. Furthermore,

ensemble PTV recently has drawn some attentions for measuring turbulence statistics
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with high resolution. The basic idea is to average PTV measurements at different times

inside individual bins to get the statistical estimates at bin centers. The attractive feature

of ensemble PTV is that the achievable bin size generally scales inversely with the total

number of samples, and thus high resolution can be realized provided sufficiently large

dataset. This ensemble PTV method has gained success in measuring mean velocity pro-

files (Kasagi and Nishino, 1991; Kähler et al., 2012b; Schröder et al., 2015) and Reynolds

stress (Discetti et al., 2015).

In this work, we extend the ensemble PTV method to dissipation measurement based

on the fact that the differential between two closely positioned velocity vectors measured

at the same time reveals the instantaneous velocity gradient. In addition, since the

estimation of dissipation rate involves first estimating the mean velocity and the mean

velocity gradient, we will also cover these two statistics from a rigorous mathematics point

of view. It will be seen that, instead of using the ensemble PTV method in a somewhat

empirical way as in previous works, this work provides rational analyses in order to

optimize the accuracy. Consequently, it will become evident that, following the same

line of our derivations, the ensemble PTV method also has the potential to estimate

many other turbulence statistics including Reynolds stress, TKE viscous diffusion, TKE

production, etc.

5.2 Theoretical Background

5.2.1 Mean Velocity

Although the validity of estimating the mean velocity by averaging particle velocities

inside a subvolume (bin) seems straightforward, the derivation and discussion for the
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mean velocity provide a more complete picture in terms of the truncation error, the rms

error and the optimal subvolume size for averaging. We also in this section establish

the notation system for the subsequent sections on the mean velocity gradient and the

dissipation.

The problem is to estimate the mean velocity at a prescribed location xxx∗ using velocity

estimates from tracer particles that randomly occur in a small domain around xxx∗ over a

long period of time. Suppose, at a sampling time t (q), particle velocity estimates within a

domain D centered at xxx∗ are located at xxx(p,q), p = 1, ..., P (q). The Taylor expansion of a

particle velocity, u(p,q)
i = ui (xxx(p,q), t (q)), with respect to xxx∗ is

u(p,q)
i = u∗

i +u∗
i ,l (x(p,q)

l −x∗
l )+ 1

2
u∗

i ,mn(x(p,q)
m −x∗

m)(x(p,q)
n −x∗

n)+O (L3) (5.2)

wherein Einstein notation is used, and the superscript asterisks in u∗
i , u∗

i ,l , etc., indicate

the quantities are taken at xxx∗. The time dependences of asterisked variables are omitted

for simplicity, and one should infer they belong to time t (q) in Equation (5.2) and sub-

sequent equations. L represents the linear dimension of D. Hereafter, our discussion

assumes a cubic domain D with an edge length L unless otherwise specified. Some other

notations frequently used in this paper are listed in Table 5.1. We now define a spatial

average of a variable α(p,q) for all xxx(p,q) ∈D at t (q):

≺α(p,q) ÂD≡
1

P (q)

P (q)∑
p=1

α(p,q). (5.3)

The above average is denoted with curly angle brackets, as the number of particles, P (q),

is usually a small finite number insufficient for a well converged average. We also define

the long time average for a variable β(q) in its conventional way:

〈β(q)〉T→∞ ≡ lim
Q→∞

1

Q

Q∑
q=1

β(q) (5.4)
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Notation Description Example

subscripts i , j velocity component indices ui , u j

subscripts l , m,
n

spatial coordinate indices xl , xm

superscript (q) sampling time index t (q)

superscript (p, q) the p-th estimate at time t (q) u(p,q)
i

D resolution domain –

P (q) number of estimates in D at time
t (q)

–

P total number of estimates over all
sampling times

–

Q total number of sampling times –

Qψ number of sampling times given a
condition ψ

QP≥2

≺ · ÂD spatial average of a variable over
all estimates in D at a certain time

≺ u(p,q)
i ÂD

〈·〉T→∞ long time average 〈u∗
i 〉T→∞

〈·〉T finite time average 〈u∗
i 〉T

〈·〉 ensemble average 〈u∗
i 〉

αr ms or σα rms of a variable α ur ms , σu

Table 5.1: List of notations.

Applying the spatial average and then the long time average to Equation (5.2), we eventu-

ally obtain

〈≺ u(p,q)
i ÂD〉T→∞ = 〈u∗

i 〉+O (L2) (5.5)

The derivation of Equation (5.5) relies on several facts and assumptions explained below.
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(i) The ergodicity of measured turbulent flows allows the long time average and the

ensemble average are interchangeable, i.e.

〈·〉 = 〈·〉T→∞ (5.6)

(ii) Variables evaluated at xxx∗ behave like constants when applying the spatial average

at time t (q). For instance,

≺ u∗
i ÂD = u∗

i , (5.7)

≺ u∗
i ,l (x(p,q)

l −x∗
l ) ÂD = u∗

i ,l ≺ x(p,q)
l −x∗

l ÂD (5.8)

(iii) Given a time t (q), xxx(p,q) is random and independent of the flow field. Thereby,

the ensemble average of the product between flow variables and spatial position

variables is equal to the product of their respective averages. For instance,

〈u∗
i ,l ≺ x(p,q)

l −x∗
l ÂD〉 = 〈u∗

i ,l 〉〈≺ x(p,q)
l −x∗

l ÂD〉 (5.9)

(iv) For a function

Γ(xxx(p,q)) =
3∏

l=1

(
x(p,q)

l −x∗
l

)sl
(5.10)

wherein sl is an arbitrary integer power, it can be shown that

〈≺ Γ(xxx(p,q)) ÂD〉 = 〈Γ(xxx)〉, ∀xxx ∈D (5.11)

wherein we use xxx without the superscript (p, q) to emphasize the ensemble average

is over all individual estimates in D regardless of t (q). Furthermore, the three spatial

coordinates are independent to each other, so we also have, for instance,

〈(x(p,q)
m −x∗

m)(x(p,q)
n −x∗

n)〉 = 〈x(p,q)
m −x∗

m〉〈x(p,q)
n −x∗

n〉 (5.12)

when m 6= n.
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(v) If homogeneous seeding can be assumed, following Equation (5.11) and (5.12), we

have

〈(xl −x∗
l )2s+1〉 = 0, s ∈Z (5.13)

This identity is favorable as the first order term in Equation (5.2) vanishes after

averaging. In addition, the second order term becomes

〈u∗
i ,mm〉〈(xm −x∗

m)2〉 = 〈u∗
i ,mm〉L2/12 (5.14)

which is absorbed into O (L2) in Equation (5.5).

Equation (5.5) implies a method to estimate the mean velocity with second-order accu-

racy, namely the truncation error is proportional to L2.

Moreover, if the mean gradient at x∗, i.e. 〈u∗
i ,l 〉, is known a priori, we can subtract the

mean gradient term to achieve faster convergence. This is because, while in principle the

term 〈u∗
i ,l ≺ x(p,q)

l −x∗
l ÂD〉 is identically zero when homogeneous seeding is assumed, in

reality with finite time averaging, it fluctuates about zero with a root-mean-square value

having a positive contribution from 〈u∗
i ,l 〉. This in fact suggests an improved procedure

to estimate the mean velocity:

〈≺ u(p,q)
i −〈u∗

i ,l 〉(x(p,q)
l −x∗

l ) ÂD〉 =〈u∗
i 〉+〈u′∗

i ,l 〉〈≺ x(p,q)
l −x∗

l ÂD〉+O (L2)

=〈u∗
i 〉+O (L2) (5.15)

The rms errors related to finite time averaging will be further discussed in Section 5.3.

Equation (5.15) represents a method of faster convergence to estimate the mean velocity.

The implementation requires an iterative process to evaluate the mean velocity and the

mean velocity gradient. The estimation of the latter one is derived in the next section.
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5.2.2 Mean Velocity Gradient

Subtracting the mean velocity 〈u∗
i 〉 from both sides of Equation (5.2) and multiplying

the equation by (x(p,q)
l ′ −x∗

l ′) gives

(u(p,q)
i −〈u∗

i 〉)(x(p,q)
l ′ −x∗

l ′) = u′∗
i (x(p,q)

l ′ −x∗
l ′)+u∗

i ,l (x(p,q)
l −x∗

l )(x(p,q)
l ′ −x∗

l ′)+O (L3) (5.16)

If we average Equation (5.16) in space and then in time as in the mean velocity derivation,

with the facts and assumptions (i) – (v), if follows

12

L2
〈≺ (u(p,q)

i −〈u∗
i 〉)(x(p,q)

l ′ −x∗
l ′) ÂD〉T→∞ = 12

L2
〈u′∗

i 〉〈≺ x(p,q)
l ′ −x∗

l ′ ÂD〉+〈u∗
i ,l 〉δl l ′ +O (L2)

= 〈u∗
i ,l ′〉+O (L2) (5.17)

whereinδl l ′ is the Kronecker delta arising from the identity 〈≺ (x(p,q)
l −x∗

l )(x(p,q)
l ′ −x∗

l ′) ÂD〉 =

δl l ′L
2
/

12. Equation (5.17) implies a method to estimate the mean velocity gradient with

second-order accuracy. The contribution from the mean velocity to the rms fluctuation

is subtracted similarly to subtracting the mean velocity gradient for estimating the mean

velocity.

It becomes clear now that the estimations of the mean velocity and the mean ve-

locity gradient, given in Equation (5.15) and (5.17), respectively, can be implemented

reciprocally and iteratively to improve their both accuracies.

5.2.3 Isotropic Dissipation Rate

We now derive the theoretical basis for estimating the isotropic dissipation rate,

ε= ν〈u′
i ,mu′

i ,m〉 (5.18)

The starting point is to realize the fact that the differential between two closely positioned

velocity vectors measured at the same time reveals the instantaneous strain rate. Thus,
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we consider two velocity estimates at xxx(p,q) and xxx(p ′,q) at time t (q). Writing Equation (5.2)

for both velocity estimates, and their difference is

u(p,q)
i −u(p ′,q)

i = u∗
i ,l (x(p,q)

l −x(p ′,q)
l )+O (L2) (5.19)

To access the fluctuating velocity gradient responsible for the dissipation rate, the mean

velocity gradient is subtracted from both sides of equation (5.19):

u(p,q)
i −u(p ′,q)

i −〈u∗
i ,l 〉(x(p,q)

l −x(p ′,q)
l ) = u′∗

i ,l (x(p,q)
l −x(p ′,q)

l )+O (L2). (5.20)

For succinctness, we use G∇u′
i

to denote the left side of the above equation, i.e.

G∇u′
i
= u(p,q)

i −u(p ′,q)
i −〈u∗

i ,l 〉(x(p,q)
l −x(p ′,q)

l ) (5.21)

Then averaging G∇u′
i
G∇u′

i
in space and time yields

〈≺G∇u′
i
G∇u′

i
ÂD〉T→∞ = 〈u′∗

i ,mu′∗
i ,n〉〈≺ (x(p,q)

m −x(p ′,q)
m )(x(p,q)

n −x(p ′,q)
n ) ÂD〉+O (L4), (5.22)

wherein the spatial average of a variable α(p,p ′,q) = α(xxx(p,q),xxx(p ′,q), t (q)) involving two

estimates in D at the same time t (q) is defined as

≺α(p,p ′,q) ÂD≡
2

P (q)
[
P (q) −1

]
P (q)∑

p,p ′=1
p<p ′

α(p,p ′,q) (5.23)

We use the following facts in combination with (i) – (v) from Section 5.2.1 to continue our

derivation.

(vi) For a function

Γ(xxx(p,q),xxx(p ′,q)) =
3∏

l=1
(x(p,q)

l −x(p ′,q)
l )sl (5.24)

wherein sl is an arbitrary integer power, it can be shown that

〈≺ Γ(xxx(p,q),xxx(p ′,q)) ÂD〉T→∞ = 〈Γ(xxx,x ′x ′x ′)〉, ∀xxx,xxx ′ ∈D (5.25)
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(vii) In a more general case, if the resolution domain D is a rectangular box of size

L1 ×L2 ×L3, we have

〈≺ (x(p,q)
m −x(p ′,q)

m )(x(p,q)
n −x(p ′,q)

n ) ÂD〉 = δmnL2
m

/
6. (5.26)

Thereby, the homogeneous isotropic dissipation is obtained by taking the average in a

cubic domain with Lm = L:

6

L2
〈≺G∇u′

i
G∇u′

i
ÂD〉T→∞ = 〈u′∗

i ,mu′∗
i ,m〉+O (L2) = ε+O (L2) (5.27)

Equation (5.27) represents a method to estimate the homogeneous isotropic dissipation

with second-order accuracy.

5.3 Error Analysis

The derivations in Section 5.2 were purely theoretical in the sense that we assumed

exact particle velocities and infinite-time averages. In this section, we discuss the errors

encountered in situations departing from the ideal case. Three categories of error are of

our interest:

(a) the errors of the mean velocity and the mean velocity gradient;

(b) the errors due to finite-time averaging;

(c) the bias and random error of PTV.

The consideration of the first category is nontrivial for the reciprocal and iterative evalua-

tions of the mean velocity and the mean velocity gradient, as the errors would propagate

from the previous iteration into the next. These errors are considered to be systematic

errors fixed in each iteration, and we use n∗
b,〈ui 〉 and n∗

b,〈ui ,l 〉 to denote them with the

subscript ‘b’ implying they are bias errors. Regarding the second category, fluctuation

around the true mean is introduced by finite-time averaging, for which we use 〈·〉T to
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distinguish it from the true mean. Lastly, when the errors of PTV are considered, a velocity

estimate û(p,q)
i contains both bias and random error, i.e.

û(p,q)
i = u(p,q)

i +n(p,q)
b,ui

+n(p,q)
r,ui

(5.28)

Consequently, with these errors taken into account, the equation of the mean velocity

estimation becomes

〈≺û
(p,q)
i −(〈u∗

i ,l 〉−n∗
b,〈ui ,l 〉

)(x
(p,q)
l −x∗

l )ÂD〉T =〈u∗
i 〉+

[〈u∗
i 〉T −〈u∗

i 〉
]+〈u′∗

i ,l ≺ x(p,q)
l −x∗

l ÂD〉T︸ ︷︷ ︸
(b)

+O (L2)

+〈≺ n(p,q)
b,ui

ÂD〉T +〈≺ n(p,q)
r,ui

ÂD〉T
︸ ︷︷ ︸

(c)

+n∗
b,〈ui ,l 〉〈≺ x(p,q)

l −x∗
l ÂD〉T

︸ ︷︷ ︸
(a)

. (5.29)

The equation for the mean velocity gradient is

12
L2 〈≺[û

(p,q)
i −(〈u∗

i 〉−n∗
b,〈ui 〉

)](x
(p,q)
l ′ −x∗

l ′ )ÂD〉T

=〈u∗
i ,l ′ 〉+

12

L2 〈u
′∗
i ≺ (x(p,q)

l ′ −x∗
l ′ ) ÂD〉T +

[
〈u∗

i ,l ′〉T −〈u∗
i ,l ′〉

]
+ 12

L2 〈u
∗
i ,m ≺ (x(p,q)

m −x∗
m)(x(p,q)

l ′ −x∗
l ′ ) ÂD〉T

︸ ︷︷ ︸
(b)

+O (L2)

+12

L2 〈≺ n(p,q)
b,ui

(x(p,q)
l ′ −x∗

l ′ ) ÂD〉T + 12

L2 〈≺ n(p,q)
r,ui

(x(p,q)
l ′ −x∗

l ′ ) ÂD〉T

︸ ︷︷ ︸
(c)

+ 12

L2 n∗
b,〈ui 〉〈≺ (x(p,q)

l ′ −x∗
l ′ ) ÂD〉T

︸ ︷︷ ︸
(a)

, (5.30)

wherein m 6= l ′. Lastly, for the dissipation estimation, with noise terms Equation (5.20)

becomes

Gnoi
∇u′

i
= û(p,q)

i − û(p ′,q)
i − (〈u∗

i ,l 〉−n∗
b,〈ui ,l 〉)(x(p,q)

l −x(p ′,q)
l )

= u′∗
i ,l (x(p,q)

l −x(p ′,q)
l )+O (L2)+n(p,p ′,q)

br,ui
+n∗

b,〈ui ,l 〉(x(p,q)
l −x(p ′,q)

l ) (5.31)

wherein

n(p,p ′,q)
br,ui

= n(p,q)
b,ui

+n(p,q)
r,ui

−n(p ′,q)
b,ui

−n(p ′,q)
r,ui

(5.32)
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Then the equation for the isotropic dissipation estimation is

6
L2 〈≺Gnoi

∇u′
i
Gnoi
∇u′

i
ÂD〉T =〈u′∗

i ,l u′∗
i ,l 〉+〈u′∗

i ,l u′∗
i ,l

[
6

L2 ≺ (x(p,q)
l −x(p ′,q)

l )2 ÂD −1

]
〉T

︸ ︷︷ ︸
(b)1

+ 6

L2 〈u
′∗
i ,mu′∗

i ,n ≺ (x(p,q)
m −x(p ′,q)

m )(x(p,q)
n −x(p ′,q)

n ) ÂD〉T

︸ ︷︷ ︸
(b)2

+ 6

L2 〈≺ n(p,p ′,q)
br,ui

n(p,p ′,q)
br,ui

ÂD〉T

︸ ︷︷ ︸
(c)

+...+O (L2) (5.33)

wherein m 6= n. In Equation (5.29), (5.30) and (5.33), error terms are labeled according to

their corresponding categories. Note the argument in (iii) does not hold for finite-time

averaging, so the relevant terms in the above equations are not separated into respective

means. The terms of category (b) listed above are all zero-mean, so their contributions

are in the form of rms fluctuations. Categories (b) and (c) are the focus of subsequent

discussions, and errors of category (a) are dependent on these two error sources.

5.3.1 Error from Finite-Time Averaging

The ensemble and the long-time averages appearing in Section 5.2 were assumed to

be the true means in the limit of infinite number of recordings. In realistic data analysis,

an average is always evaluated within finite time, making the estimated mean deviate

from the true mean. Generally, the rms of the mean estimate of a random variable ξ using

N independent samples is given by

σ〈ξ〉T
=σξ

/p
N (5.34)

In our data analysis, the number of velocity fields that can be used for averaging is a

function of the domain size L and the seeding density C , i.e. number of particles per unit

volume. More specifically, the number of velocity estimates in D is a random variable

following the Poisson distribution, and the probability of κ velocity estimates occurring
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in D at time t (q) is given by

Prob
{

number of u(p,q)
i = κ

∣∣∣ xxx(p,q) ∈D
}
= Λ

κ

κ!
e−Λ (5.35)

whereinΛ=C L3 is the mean number of velocity estimates in D. Therefore, as the average

operations in the mean velocity and the mean velocity gradient estimation require at

least one velocity estimate in D, the number of velocity fields for averaging is

QP≥1 =Q(1−e−Λ) (5.36)

with Q denoting the total number of velocity fields. Likewise, the dissipation estimation

requires at least two velocity estimates in D at the same time, so the number of velocity

fields for averaging is

QP≥2 =Q(1−e−Λ−Λe−Λ) (5.37)

With the above knowledge, the rms of
[〈u∗

i 〉T −〈u∗
i 〉

]
in Equation (5.29) is readily

obtained:
[〈u∗

i 〉T −〈u∗
i 〉

]
r ms = (u∗

i )r ms
/√

QP≥1 (5.38)

Furthermore, plugging Equation (5.36) into the above and considering 1− e−Λ ≈Λ for

Λ¿ 1, Equation (5.38) becomes

[〈u∗
i 〉T −〈u∗

i 〉
]

r ms =





(u∗
i )r ms

/√
Q, forΛÀ 1

(u∗
i )r ms

/√
QC L3, forΛ¿ 1

(5.39)

For the first-order term 〈u′∗
i ,l ≺ x(p,q)

l −x∗
l ÂD〉T in Equation (5.29), we need to take into

account the spatial average in D that effectively reduces the rms by adding samples. For

the rms of ≺ x(p,q)
l −x∗

l ÂD , when ΛÀ1, a reasonable estimate is by considering it as a

finite-sample average withΛ samples, i.e.

[
≺ x(p,q)

l −x∗
l ÂD

]
r ms

≈
[

x(p,q)
l −x∗

l

]
r ms

/p
Λ; (5.40)
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whenΛ¿1, as only those velocity fields with at least one velocity estimates occurring in

D are used, the rms of ≺ x(p,q)
l −x∗

l ÂD should approach
[

x(p,q)
l −x∗

l

]
r ms

. Therefore, we

can define an effective mean occurrence Λ̃:

Λ̃=





Λ, ifΛ> 1

1, ifΛ< 1

(5.41)

and we have

[
〈u′∗

i ,l ≺ x(p,q)
l −x∗

l ÂD〉T

]
r ms

=

(
u′∗

i ,l

)
r ms

[
≺ x(p,q)

l −x∗
l ÂD

]
r ms√

QP≥1
≈

(
u′∗

i ,l

)
r ms

[
x(p,q)

l −x∗
l

]
r ms√

QP≥1Λ̃

(5.42)

wherein the repeated l does not imply summation. The derivation of the above relation

uses the following identity about the rms of the product of two independent random

variables u and v :

σ2
uv =σ2

u〈v〉2 +σ2
v〈u〉2 +σ2

uσ
2
v (5.43)

The validity of the approximation in Equation (5.42) is confirmed by a numerical test

with Q = 1e05, and the result is presented in Figure 5.1 (more details about the numerical

simulation can be found in Section 5.4). We see the model agrees satisfactorily well with

the numerical result for a wide range ofΛ. Furthermore, if we plug Equation (5.36) and

(5.41) into Equation (5.42), then we get

[
〈u′∗

i ,l ≺ x(p,q)
l −x∗

l ÂD〉T

]
r ms

=





(
u′∗

i ,l

)
r ms

/√
12QC L, forΛÀ 1

(
u′∗

i ,l

)
r ms

/√
12QC L, forΛ¿ 1

(5.44)

i.e. two identical relations for large and smallΛ.

The preceding derivations have used the mean velocity equation as the example, in-

ferring those error terms of category (b) for the mean velocity gradient and the dissipation

are also obtainable in a similar way.
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Figure 5.1: Comparison between the model and the numerical result for the rms’s of the
spatial-average quantities encountered in the estimations of mean velocity (left) and
dissipation (right).

Figure 5.2: Schematic of the bias and the random error arising from PTV.

5.3.2 Error from PTV

The bias and random error of PTV stem from the discrepancy between an estimated

trajectory and the true trajectory, as schematically illustrated in Figure 5.2. When exact

particle locations are used to interpolate the trajectory (red curve), the resulting velocity
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error is a bias error. Using the notations given in Figure 5.2, we define the bias error as

nnnb = v̂vv p (topt )−uuu[x̂xxp (topt ), topt ]. (5.45)

Namely, nnnb is the difference between the estimated particle velocity v̂vv p and the fluid

velocity uuu, both of which are evaluated at the estimated particle position x̂xxp (topt ) at the

optimal time topt . The optimal time is the time when the combined particle position

and velocity rms error is minimized (Ding and Adrian, 2017). It is worth noting that

the way we quantify the bias error, i.e. evaluating the velocity error at the estimated

particle position, simplifies the error analysis by not explicitly calculating the particle

position error. This is valid because, provided particle positions are random and seeding

is homogeneous, the estimated particle positions are also random and homogeneously

distributed. In a more strict sense following Ding and Adrian (2017), the velocity bias is

given by

nnn′
b = v̂vv p (topt )−uuu[xxxp (topt ), topt ]. (5.46)

which is the difference between the estimated and the true particle velocity assuming no

slip. Comparing nnn′
b to nnnb , it immediately follows

nnnb =nnn′
b + [xxxp (topt )− x̂xxp (topt )] ·∇uuu

∣∣∣
x̂xxp (topt )

+h.o.t . (5.47)

which implies the bias error could benefit from the reduction in either the velocity error

or the position error.

When particle locations are measured with noise (blue circles), the resulting velocity

error contains both bias and random error. Similarly to the bias error, the random error

is quantified as

nnnr = v̂vvnoi
p (topt )−uuu[x̂xxnoi

p (topt ), topt ]−nnnb . (5.48)
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Hitherto, we have derived and explained how to calculate different error terms. The

quantitative results of the errors will then be obtained once the flow field and the particle

distribution are given. This is addressed in Section 5.4 using synthetic turbulence.

5.4 PTV Simulation with Synthetic Turbulence

5.4.1 Generation of Synthetic Turbulence

Synthetic turbulence has been employed widely as a powerful tool for studying tur-

bulence properties and validating measurement techniques. It offers the convenience

and flexibility to control turbulence parameters that are usually difficult to customize

with DNS data. Perfect modeling of real turbulence is almost impossible, but it is often

sufficient to have a synthetic turbulent flow only satisfy the features of most interest, e.g.

spectrum, isotropy, etc. In this respect, three commonly adopted methods of generating

synthetic turbulence are respectively based on random Fourier modes (Kraichnan, 1970,

1976; Fung et al., 1992), random vortices (Avellaneda et al., 1991; Tanaka and Eaton, 2007)

and stochastic differential equations (Haworth and Pope, 1986; Careta et al., 1993). In this

work, we follow the random Fourier method in Kraichnan (1970) to generate synthetic

turbulence fields for PTV simulations. The implementation is outlined below.

The synthetic turbulence consists of a mean velocity field in the x-direction and a

small-scale fluctuating field assumed to be homogeneous and isotropic. The random

fluctuating field is a superposition of N independent Fourier modes:

uuu′(xxx, t ) =
N∑

n=1

[
aaan cos(κκκn ·xxx +ωn t )+bbbn sin(κκκn ·xxx +ωn t )

]
(5.49)
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wherein

aaan =ζζζn ×κκκn
/|κκκn |, bbbn =ξξξn ×κκκn

/|κκκn | (5.50)

which guarantees flow incompressibility, i.e. κκκn ·aaan =κκκn ·bbbn = 0, and the independence

of aaan and bbbn on the wave number |κκκn |. ζζζn and ξξξn are both isotropically distributed 3-D

vectors with each of their component independently following a Gaussian distribution

centered at zero with a standard deviationσ. κκκn is also isotropically distributed in the 3-D

space with each component obeying a distribution satisfying a desired energy spectrum.

A model spectrum from Kraichnan (1970) well serves our purpose:

E(κ) ∝ κ4e−2κ2
/
κ2

0 (5.51)

wherein κ0 defines the peak. The corresponding one-dimensional spectrum E11(κ1) is

then given by

E11(κ1) ∝ e−2κ2
1

/
κ2

0 (5.52)

which is a Gaussian profile with a standard deviation κ0
/

2. (The relation between E(κ)

and E11(κ1) can be found in section 7.6.3 of Bernard and Wallace, 2002.) Alternatively,

one could use the model spectrum proposed by Pope (2000) for a more realistic tail at

large κ. Equation (5.52) suggests that each component of κκκn should follow a Gaussian

Figure 5.3: One-dimensional spectrum (left), TKE (middle) and Taylor microscale (right)
of the simulated synthetic turbulence.
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distribution with a standard deviation κ0
/

2. This is because, with aaan and bbbn given in

Equation (5.50), each Fourier mode contributes equally to the turbulent kinetic energy.

Therefore, E11(κ1) is directly determined from the distribution of a single component of

κκκn . Consequently, Equation (5.49) represents a statistically isotropic synthetic turbulent

flow with a well-defined energy spectrum given in Equation (5.51) or (5.52). As evident in

Figure 5.3 (left), the spectrum from our simulation agrees well with the target spectrum.

The TKE, k = 3u2
r ms

/
2, of the synthetic turbulence is a direct consequence of the

superposition of Fourier modes. Each mode has a contribution of σ2, so the total TKE is

k = Nσ2, (5.53)

and it immediately follows

ur ms =
√

2Nσ2
/

3 (5.54)

The TKE relation (5.53) is also confirmed by the simulation results shown in Figure 5.3

(middle). The longitudinal and transverse Taylor microscale, λ f and λg , are determined

numerically using their definitions:

〈u2
1,1〉 = u2

r ms

/
λ2

g = 2u2
r ms

/
λ2

f (5.55)

and plotted against κ0 in Figure 5.3 (right). The proportionality of Taylor microscale to

κ−1
0 ,

λg = 2.586
/
κ0, (5.56)

is expected as the turbulence length scale should be only determined from the character-

istic wave length. With ur ms and λg , the isotropic dissipation rate is readily calculated:

ε= 15νu2
r ms

/
λ2

g (5.57)

In addition to the length scale, the temporal evolution of the flow field is characterized by

the parameter ωn . We picked ωn following a Gaussian distribution with a standard devia-
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tion ω0, and the resulting time-delay correlation of the velocity field is also a Gaussian

function:

Ru′u′(τ)
/

u2
r ms = e− 1

2ω
2
0τ

2
(5.58)

we generated the synthetic turbulence in a cubic domain of edge length 10λg , i.e.

x, y, z ∈ [−5λg ,5λg ]. The key parameters of the flow are summarized in Table 5.2. The

Taylor-scale Reynolds number Reλ = ur msλg
/
ν is relative low compared to realistic

turbulent flows. This is an artifact arising from ur ms and λg being two independent

parameters in the random Fourier model (ur ms ∼
p

Nσ2, λg ∼ κ−1), which is typically not

true for realistic turbulence (λg
/

ur ms is roughly proportional to Re− 1
2 , see Pope, 2000).

However, since a low Reλ yields a large Kolmogorov length scale η (η ∼ λg Re−1/2
λ

), it

benefits our simulation with reduced computational cost considering, for instance, QP≥2

at L ∼ η¿ 1 scales as η6. Although a more realistic set of parameters may be employed,

the present synthetic turbulence has the two most desired properties – randomness and

isotropy. Therefore, it suffices for developing and validating our method to estimate

turbulence statistics.

Parameter Value

N 32

κ0 [mm−1] 10

σ [mm/s] 10

ω0 [s−1] 10

ur ms [mm/s] 46.2

λg [mm] 0.258

η [mm] 0.147

Reλ 0.8

C [counts/mm3] 32

Table 5.2: Simulation parameters. η and Reλ are computed with ν = 1.5e-05 m2/s.
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Figure 5.4: The mean velocity profile model for the simulation.

The mean velocity field is along the x-direction with a y-dependent profile, which is

a logarithmic function added to a linear function, :

〈u〉/ur ms = c0 + c1 y
/
λg + c2 log(y

/
λg +e2) (5.59)

The merit of such functional form is the ease of controlling the shape and the magnitude,

as well as the mean flow field is infinitely differentiable. We picked c0 = –3.2, c1 = 0.6 and

c2 = 7.2 to satisfy 〈u〉 > 0 for all y and ur ms
/〈u〉 ≈ 0.1 at the center. The resulting velocity

profile is shown in Figure 5.4.

5.4.2 PTV Errors

To study the PTV errors in the context of PTV measurement of turbulent flows, we

computed the particle tracks in the time-dependent velocity fields by numerically solving

.
xxxp (t ) =uuu[xxxp (t ), t ] (5.60)

wherein xxxp denotes the particle position, and uuu is the superposition of uuu′ and 〈u〉êeex

respectively given in Equation (5.49) and (5.59). Q = 1e05 independent velocity fields
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were generated with an average of C (10λg )3 = 553 particle tracks in each field. Particle

positions were solved at four pulse times with an uniform inter-pulse time δt = 0.001ω−1
0

to simulate 4-pulse PTV measurements. Each particle track was estimated by fitting a

cubic curve to the four computed particle positions. The optimal particle position and

velocity were then evaluated at the one-quarter time between the first and the last pulse.

Here, the determination of the optimal time topt follows the conclusion in Ding and

Adrian (2017). We picked the topt value for the high noise level range because the rms

error at low noise level is overall small.

We calculated the bias error for each particle track in the way described in Section

5.3.2. Figure 5.5(a) shows the pdf of each component of nb . The symmetries of the

pdfs are apparent, implying the nb,ui -related terms in Equation (5.29) and (5.30) are

zero-mean and only contribute rms fluctuations. The symmetric pdfs result from the

isotropic fluctuating field as well as the unidirectional homogeneous mean flow field. If

the flow experiences a non-zero pressure gradient, the flow acceleration or deceleration

may cause a skewed nb distribution, as the bias error is strongly dependent on the

acceleration factor of a particle trajectory (Ding and Adrian, 2017). Another observation

in Figure 5.5(a) is that the width of nb,u distribution is smaller than those of nb,v and nb,w

whose pdfs are nearly identical. If we project a particle trajectory onto the x-direction and

the y − z plane respectively, the dominant mode in the x-direction is a constant-velocity

motion provided the particle is not near y
/
λg =−5, whereas the projection on the y − z

plane is a random curve with no directional preference. Thus, it is interpreted that the

bias error of a nearly straight trajectory is less significant than that of a curved trajectory,

which is consistent with the findings in Ding and Adrian (2017). Furthermore, as both

the velocity and the position error scale with the length of a particle trajectory, the nb

distribution should also have a dependence on the mean velocity 〈u〉. In this regard,
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(a) pdf of nb (b) rms of nb

Figure 5.5: Statistics of PTV bias error. cb,u = 4.832e-06; cb,v = 9.085e-06.

we computed the rms of nb at different y locations, and plot the result as a function of

〈u〉/ur ms in Figure 5.5(b). Clearly, the rms of nb rises with increasing 〈u〉, and for the

current test case the curves follow power laws with the same exponent of approximately

2.7.

For the PTV random error resulting from the random particle locating noise, we

investigated a range of locating rms error (δxp )r ms from 10−4λg to 10−2λg , corresponding

to 1.6e-03 to 1.6e-01 voxel with a reconstruction resolution of 64 vox/mm. As expected,

the random error is independent of the shape and length of a particle trajectory, but rather

it is a function of the locating noise (δxp )r ms . The distribution of nr has a Guassian-like

pdf that retains the shape at different y positions, as illustrated in Figure 5.6(a) in form

of a scatter plot. Figure 5.6(b) manifests the linear dependence of (nr )r ms on (δxp )r ms ,

which again agrees with the result in Ding and Adrian (2017).

These findings of nb and nr are favorable for the estimations of the mean velocity

and the mean velocity gradient, as the error terms of category (c) in Equation (5.29) and

(5.30) are all zero-mean and only add rms fluctuations to the results. However, due to the
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(a) pdf of nr (b) rms of nr

Figure 5.6: Statistics of PTV random error. cr = 52.58.

square operation in the dissipation estimation, the category (c) term in Equation (5.33) is

always positive with a magnitude proportional to (nb)r ms and (nr )r ms .

5.4.3 Mean Velocity and Mean Velocity Gradient

To validate our ensemble PTV method, and to further investigate the effects of dif-

ferent errors on the statistics, we applied the method to the synthetic turbulent flow to

estimate the mean velocity and the mean velocity gradient. As both the truncation error

and the finite-time-averaging error are dependent on the domain size L, we primarily

present the results in terms of varying L to facilitate our discussion.

First, we look at the mean velocity with merely the finite-time-averaging errors, i.e.

with nb,ui = nr,ui = 0. Figure 5.7 shows the estimates of 〈u〉 at (x, y, z) = (0,0,0) for 0.1 ≤

L
/
λg ≤ 10. The vertical axis represents the absolute difference between the estimated

and the true mean velocity, i.e.

|δ〈u〉| = |〈̂u〉−〈u〉| (5.61)
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Figure 5.7: Estimates of the mean velocity at (x, y, z) = (0,0,0) for varying L without
PTV errors. Results from 50 independent datasets are superposed to illustrate the rms
fluctuation.

The results from 50 independent datasets, each dataset having Q = 1e05 velocity fields,

are superposed to illustrate the rms of 〈̂u〉. At large L, δ〈u〉 is dominated by the truncation

error O (L2). As L decreases, while the truncation error keeps going down, the fluctuation

of δ〈u〉 becomes significant due to the increases in the rms’s of the finite-time-averaging

terms. For the mean velocity, the dominant rms fluctuation is from
[〈u∗

i 〉T −〈u∗
i 〉

]
. It stays

constant at large L and then increases as L−3/2 towards small L. The turning point occurs

where C L3 ≈ 1, as implied in Equation (5.39). Such observation suggests an optimal

domain size Lopt at which the ratio between the truncation error and the dominant rms

fluctuation is, say, roughly 5-10. For the data presented in Figure 5.7 , Lopt ≈ 2λg , and the

resulting δ〈u〉 is roughly 2% of ur ms and thus 0.2% of 〈u〉. Improved accuracy is achievable

with larger Q and/or C since (〈u∗〉T )r ms scales as (QC )−1/2 as also implied in Equation

(5.39).
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Figure 5.8 presents the results when PTV errors are taken into account. Data of two

extreme locating noise levels, i.e. the smallest and the largest (δxp )r ms
/
λg , are displayed.

With the discussions and results in Section 5.3.1 and 5.4.2, the rms fluctuations arising

from the PTV bias and random error are calculable. Specifically, for both ΛÀ 1 and

Λ¿ 1,

(〈≺ nr,u ÂD〉T )r ms =
(nr,u)r ms√

QP≥1Λ̃

≈ (nr,u)r ms[(δxp )r ms]
√

QC L3
, (5.62)

and

(〈≺ nb,u ÂD〉T )r ms ≈
(nb,u)r ms(L)

√
QC L3

, (5.63)

both of which scale as L−3/2. Note the dependence of (nr,u)r ms on (δxp )r ms and the

dependence of (nb,u)r ms on L. The former is given in Figure 5.6(b), whereas the latter

requires a deduction using the result shown in Figure 5.5(b) and the mean velocity profile

(5.59). It is evident that, with the 4-pulse PTV algorithm, the bias error fluctuation is

negligibly small. The random error fluctuation strongly depends on the locating noise

level, but it is not an influential factor until (δxp )r ms exceeds 0.01λg (0.16 vox), which

Figure 5.8: Estimates of the mean velocity at (x, y, z) = (0,0,0) for varying L with the PTV
errors taken into account.
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is considered to be a fairly large number in most experiments. Thereby, the simulation

results suggest that the rms fluctuations arising from PTV errors are not prominent for

mean velocity estimation, especially when particle positions are accurately determined

using advanced algorithms (e.g. Wieneke, 2012; Schanz et al., 2012).

In addition to evaluating the mean velocity at Lopt , another way to achieve high

accuracy is by utilizing the well-behaved truncation error as a function of L. Based on

preceding derivations, when L falls in the range where the rms fluctuations are negli-

gible, the estimated mean velocity can be expressed using only the true mean plus the

truncation error:

〈̂u〉 = 〈u〉+a2L2 +a4L4 +h.o.t , (5.64)

which clearly suggests us to excavate an accurate 〈̂u〉 by determining the coefficient a2n .

This can be done by fitting the following model to 〈̂u〉:

〈̂u〉(Li ) =
N∑

n=0
a2nL2n

i (5.65)

Figure 5.9: Estimates of the mean velocity after correction. Results from 50 independent
datasets are superposed to illustrate the rms fluctuation.
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wherein Li is picked from the range with low rms fluctuation, which in our case corre-

sponds to L > 2λg . For the L range shown in Figure 5.7, it suffices to use N = 2, but a

higher order may be necessary for an extended L range. Clearly, a0 determined from

Equation (5.65) can be the new 〈̂u〉. However, our implementation uses a different model

derived from Equation (5.65):

∆〈̂u〉(Li ) = 〈̂u〉(Li+1)−〈̂u〉(Li ) =
N∑

n=1
a2n(L2n

i+1 −L2n
i ) (5.66)

This allows us to get a good sense of the rms fluctuation level as the noise stands out

when compared to the difference of the estimates at two adjacent Li . The new estimate

at Li is then obtained:

〈̂u〉cr t (Li ) = 〈̂u〉(Li )−
N∑

n=1
a2nL2n

i (5.67)

wherein we use a superscript ‘crt’ to indicate the new estimate after the correction

procedure.

The new 〈̂u〉 after correction is presented in Figure 5.9. It is seen that δcr t
〈u〉 is approxi-

mately aligned with (〈u∗〉T )r ms , which is what we expect after subtracting the systematic

truncation error. δcr t
〈u〉 at large L represents the achievable accuracy, which is comparable

to ur ms
/√

Q. In addition, one could further reduce the uncertainty by averaging 〈̂u〉cr t

over the same L range used in the data fitting, i.e. L > 2λg for the present case. The

resulting rms of δcr t
〈u〉 is approximately 0.15% of ur ms , which is an order of magnitude

lower than the δ〈u〉 at Lopt . Note the above correction procedure works only when a fitting

model for the truncation error can be inferred with confidence from flow properties. The

tested synthetic turbulence is ideal in terms of homogeneity and isotropy. Realistic flows

may result in more complicated shapes of the truncation error with varying L. Under

those circumstances, it may still be advantageous to use Lopt to evaluate 〈̂u〉. This is

further illustrated in Section 5.5 with experimental data.
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A similar analysis for the mean velocity gradient yields quantitatively consistent

conclusions. Figure 5.10 (top) presents ˆ〈u1,2〉 for 0.33 ≤ L
/
λg ≤ 10. The observations are

similar to those in the mean velocity plot, except the dominant rms fluctuation has a

steeper increase towards small L. It stems from the zero-th order term in the Taylor’s

expansion, i.e. the fluctuating velocity u′∗, being divided by L to reveal the velocity

Figure 5.10: Estimates of the mean velocity gradient before (top) and after (bottom)
correction. Results from 50 independent datasets are superposed to illustrate the rms
fluctuation
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gradient. The dominant rms fluctuation is given by

12

L2
(〈u′∗

1 ≺ x(p,q)
2 −x∗

2 ÂD〉T )r ms ≈
12

L2

(u′∗
1 )r msL

/√
12Λ̃

√
QP≥1

≈
p

12(u′∗
1 )r ms√

QC L5/2
(5.68)

for both ΛÀ 1 and Λ¿ 1, which scales as L−5/2. Figure 5.10 also indicates Lopt ≈ 4λg ,

and |δ〈u1,2〉| at Lopt is approximately 2% of ur ms
/
λg and 1% of 〈u1,2〉. After a similar

correction procedure as for 〈̂u〉, the rms of |δcr t
〈u1,2〉| drops slightly below (〈u1,2〉)r ms at large

L, which is possibly because, in our data fitting, the spacing between adjacent Li for

the mean velocity gradient was smaller than that of the mean velocity. Nevertheless,

(δcr t
〈u1,2〉)r ms and (〈u1,2〉)r ms are comparable at large L, consistent with the observation for

the mean velocity estimation.

In virtue of the preceding discussions on the rms fluctuation, it now becomes more

convincing that the mean velocity and the mean velocity gradient need to be subtracted

for the estimations of the mean velocity gradient and the mean velocity, respectively,

as seen in Equation (5.15) and (5.17). Namely, by removing their contributions to the

Figure 5.11: Estimates of mean velocity and mean velocity gradient with the reciprocal
and iterative strategy.
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Figure 5.12: Schematic of the effect of rms fluctuation on estimation accuracy. Displayed
is in logarithm scale.

rms fluctuation, improved accuracies could be achieved with the same Q and C . In this

regard, we tested the reciprocal and iterative strategy for evaluating 〈u〉 and 〈u1,2〉. Note,

for the tested synthetic turbulence, 〈u1,2〉 is the only non-zero mean gradient; for realistic

flows with other non-zero gradients of velocity, Equation (5.15) actually implies all 〈u∗
i ,l 〉

terms need to be evaluated and subtracted. We started the process from evaluating 〈u〉

without subtracting 〈u1,2〉, and then iteratively evaluate 〈u1,2〉 and 〈u〉. The results of

six iterations are shown in Figure 5.11, in which we observe the initial improvement

of the mean velocity estimate. Again, δ〈u〉 and δ〈u1,2〉 are comparable to ur ms
/√

Q and

(u1,2)r ms
/√

Q, respectively.

Thus far, our discussion has implied the rms fluctuation arising from finite time

averaging plays a key role in determining the overall accuracy. Although this is quite an

intuitive conclusion, our analysis provides a quantitative and elaborated explanation of

the mechanism, which is schematically summarized in Figure 5.12. The turning point in

the plot, at which the rms fluctuation starts rising, is approximately given by C−1/3. Thus,
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as the seeding density C increases, the turning point moves towards small L, and so does

Lopt . When Q increases, the rms fluctuation overall attenuates, so the estimate can be

evaluated at a smaller Lopt with an improved accuracy. Additionally, a large Q is beneficial

considering the accuracy achieved after the correction procedure is comparable to the

level of rms fluctuation at large L.

5.4.4 Isotropic Dissipation Rate

The fundamental difference of the estimation of dissipation rate compared to first-

order statistics, e.g. 〈u〉 and 〈u1,2〉, is that the PTV errors are amplified and not averaged

out due to the square operation. This is evident in Equation (5.33), in which the category

(c) term, scaling as L−2, is the square of the combined error from two particles. Figure 5.13

presents the estimates of dissipation rate at different noise levels with Q = 1e05. When

the noise level is negligible, as seen in Figure 5.13(a), the dependence on L is similar to

what we observed in the mean velocity result. That is, the truncation error decreases

when L gets smaller until the rms fluctuation becomes dominant. Here, the dominant

rms fluctuations, i.e. the rms’s of the (b)1 and (b)2 term in Equation (5.33), increase as

L−3. With an elevated noise level, as seen in Figure 5.13(b), the shape of |δε| changes

significantly, and it follows a L−2 trend at small L. This adds complexity to the strategy of

accurately determining ε: with very small noise level, it is still possible to pick an optimal

L to evaluate ε; However, when the noise level is prominent, a correction procedure,

similar to that for the mean velocity estimation but with a modified fitting model, is

required. The consideration for choosing a proper fitting model is twofold. First, it needs

to incorporate an L−2 term to account for prominent PTV error. Second, it is noticed that

the truncation error of dissipation estimate deviates rapidly from the leading order term
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L2. This is attributed to the cross products between lower- and higher-order terms during

the square operation. Therefore, we add more truncation terms to the fitting model:

∆ε̂(Li ) = ε̂(Li+1)− ε̂(Li ) = a−2(L−2
i+1 −L−2

i )+
N∑

n=1
a2n(L2n

i+1 −L2n
i ) (5.69)

with N = 4−8, and the dissipation estimate at Li after correction is

ε̂cr t (Li ) = ε̂(Li )−a−2L−2
i −

N∑
n=1

a2nL2n
i (5.70)

As reported in numerous literatures, accurate estimation of dissipation rate is much

more difficult than mean velocity and mean velocity gradient. Based on our test results,

there seems no universal rule for the implementation of the proposed framework using

ensemble PTV data. However, we would discuss a few empirical rules that help improve

the performance most of the time.

(1) The most powerful way to improve the accuracy is to increase the total number of

velocity fields, Q.

When the PTV error is negligibly small, as the case in Figure 5.13(c), the benefit of a

large Q is similar to what we have discussed in Section 5.4.3, i.e. it allows using a smaller

Lopt to obtain a more accurate ε̂. When the PTV error is significant, as the case in Figure

5.13(d), a large Q improves the reliability of the curve fitting in the correction procedure.

This is demonstrated in Figure 5.14, in which the enhanced smoothness of ∆ε̂ is apparent

with an increasing Q.

(2) When the PTV error is not significant, one should set a−2 = 0 in the fitting model

given in Equation (5.69) to reduce uncertainty. For instance, it suffices to use only

the positive-exponent terms for the case shown in Figure 5.13(c).
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(3) When ∆ε̂ is noisy, perform the curve fitting in the region with relatively less noise.

For instance, in Figure 5.14(a), only the data of Li
/
λg > 100.25 could be used for the

curve fitting.

(4) While it is difficult to claim an optimal N , one could possibly obtain a robust

estimate of the dissipation rate by observing the trend of ε̂ over a range of N , or by

a histogram-based method explained below.

Besides the fitting model (5.69) primarily used in our analysis, we also tested a simple

(a) (δxp )r ms
/
λg = 1.9e-04 (b) (δxp )r ms

/
λg = 1e-02

(c) (δxp )r ms
/
λg = 1.9e-04 (d) (δxp )r ms

/
λg = 1e-02

Figure 5.13: Dissipation estimates at different noise levels. The curves of ‘PTV error ’ ,
‘(b)1’ and ‘(b)2’ are given in Equation (5.33). Top: |δε|; bottom: ε̂. The true dissipation
rate 15 (after normalization) is indicated.
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(a) Q = 1e05 (b) Q = 1e06 (c) Q = 1e07

Figure 5.14: Effect of Q on the smoothness of ∆ε̂ and the pdf of ε̂cr t . The pdfs are
calculated using all data points displayed in their respective figures.

version similar to that of the mean velocity given in Equation (5.65):

ε̂(Li ) = a0 +a−2L−2
i +

N∑
n=1

a2nL2n
i , (5.71)

and used a0 as ε̂cr t (one single a0 for each N ). Figure 5.15 displays a0 as a function of N

for three different cases. Here, we remove the a−2L−2 term for the low-noise-level case in

Figure 5.15(a), but retain it for the other two cases in which the PTV error is influential. It

is observed that the most accurate estimate of the dissipation rate occurs approximately

at an optimal order, Nopt , where the curve changes its geometric property. In Figure

5.15(b), it is the inflection point of the curve, while in 5.15(a) and 5.15(c) they correspond

to the turning points. This is probably not a coincidence, but rather it arises from the

mechanisms responsible for the shapes of the two segments (below and beyond Nopt )

being different. With small N , the model is incapable to predict the rapid deviation from

L2, so the estimates asymptotically approach the true value when increasing N ; passing

Nopt , the high-order polynomial model starts adapting itself to the imbedded noise,

which leads to the different geometry of the curve. Note this model combined with the

reasoning from the curve geometry sometimes works better than the model in Equation
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(a) (δxp )r ms
/
λg = 1.9e-04 (b) (δxp )r ms

/
λg = 3.7e-03 (c) (δxp )r ms

/
λg = 1e-02

Figure 5.15: Dissipation estimates with varying N using the fitting model (5.71). For the
low-noise-level case in (a), the term a−2L−2 is removed. The true dissipation rate 15 (after
normalization) is indicated.

(5.69), especially when the noise level is considerable. This is probably because, without

using ∆ε̂, the noise appears relatively small, which helps improve the fitting reliability.

Another strategy to extract the dissipation rate, possibly more robust, is to locate the

peak in the histogram of ε̂cr t (Li ). With the correction procedure described by Equation

(5.69) and (5.70), at each Li , we obtain a new estimate ε̂cr t (Li ). Marching over N = 4−8,

the statistics of ε̂cr t (Li ) turns out to be informative about the true dissipation rate. In

our implementation, the final estimate of dissipation is the averaged ε̂cr t (Li ) within the

highest bin. According to our test, a bin width ofνu2
r ms

/
λ2

g works well. The corresponding

histograms of the data shown in Figure 5.14 are presented in the insets. The change in

the peak location and the data spread with increasing Q is a good indication of improved

measurement quality. Note the histogram in Figure 5.14(a) was calculated using all ∆ε̂

data points shown in the figure, including the noisy range Li
/
λg < 100.25. As a result, the

histogram has a peak at ε̂cr tλ2
g

/
(νu2

r ms) = 14, which leads to an error of approximately

7% of the true dissipation. This can certainly be improved by using only the data points

in Li
/
λg > 100.25, as we suggested above.
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Employing the above discussed empirical rules, the achievable accuracy in our sim-

ulation with Q = 1e05 is within 2% of the true dissipation rate, which can be further

improved with a larger Q.

5.5 Experiment in APG-TBL

5.5.1 Experimental Setup and Data Acquisition

A tomographic PIV experiment was conducted in the Eiffel-type atmospheric wind

tunnel at Bundeswehr University in Munich. The wind tunnel has a 22-m-long test

section with a 2×2 m2 cross section. A 7-m-long steel model consisting of two s-shaped

sections and a 4-m-long flat plate was mounted vertically to the side wall to form three

zones with, respectively, favorable pressure gradient (FPG), zero pressure gradient (ZPG)

and adverse pressure gradient (APG). (See the sketch in Figure 5.16) The main stream

velocity was set to 5 m/s to avoid noticeable vibration of the wind tunnel. A flexible

tube with a line of holes and connected to a Laskin nozzle at the tunnel entrance was

attached to the same side wall vertically at the beginning of the test section to provide a

satisfactory seeding density downstream near wall.

The data was taken in the APG zone through a glass window precisely flushed to the

steel wall. As shown in Figure 5.17, four high-speed cameras (LaVision Imager Pro HS),

each equipped with a 2x teleconverter and a Scheimpflug mount, were employed to si-

multaneously record particle images from different angles. A 768-by-552-pixel subregion

of each imaging sensor was used to capture images for the sake of sufficient framing rate.

Camera calibration was done by traversing a calibration target (Edmund Optics) along
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Figure 5.16: Schematic of the experimental setup.

Figure 5.17: Camera configuration of the tomographic TBL measurement.

the wall-normal direction in 0.25-mm steps covering a distance of 4.25 mm from the

wall. The calibration dots are 0.5 mm in diameter with a spacing of 1 mm. The mapping

function was calculated using the third-order polynomial model proposed in Soloff et al.

(1997). A registration procedure using recorded particle images (Wieneke, 2008) was

implemented to reduce the mean residual disparity to below 0.05 pixel. The magnifica-

tion, estimated from the mapping function, was approximately 0.75, corresponding to 70
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pix/mm. A high-repetition-rate Nd:YLF laser was set up on the opposite side of the test

section to emit a laser beam perpendicular to the glass window. The cross sectional area

of the beam is approximately 8 mm (x) × 2 mm (z). A total of 10 datasets, each containing

10000 recordings of the turbulent boundary layer, was obtained at a framing rate of 9

kHz.

5.5.2 Data Processing

Due to the limited laser pulse energy at the high repetition rate (9 kHz), the particle

image signal-to-noise ratio was not ideal. Therefore, we preprocessed the recorded

images to enhance their quality. The historical mean was first removed from each image

in the sequence, followed by adding back 12 intensity counts. This is nearly equivalent to

subtracting the historical minimum that is usually applied to remove the background,

except it is more robust for those pixels having at least one extremely low reading. (We

observed an extremely low reading likely occurred after an over exposure.) The intensity

level of each image was then normalized with respect to the first frame. In addition, we

subtracted the sliding minimum using a 3×3 kernel, and convolved the images with a

3×3 Gaussian kernel to recover particle tails.

The rest of the data processing consisted of two parts: (1) 3-D particle position

reconstruction and (2) particle tracking. We reconstructed the particle positions in the

measurement volume primarily following the algorithm reported in Fuchs et al. (2016),

which combines tomographic reconstruction and 3-D particle triangulation to materially

reduce the percentage of ghost particles. The implementation of the algorithm is outlined

as follows, in which the criterion for determining a ghost particle is slightly modified

compared to the original one.
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With the preprocessed images, 3-D intensity distributions were reconstructed by

surface segmentation technique inside a volume of 4 mm (x) × 4 mm (y) × 1.875 mm

(z) with a 64 vox/mm reconstruction resolution. Reconstructed particles were then lo-

cated by convolving each reconstruction volume with a 5×5×5 Gaussian blob. On the

other hand, individual particle images were identified on recorded images using a 5×5

Gaussian template. With particles identified in both the image space and the objective

space, if a reconstructed particle is projected onto all four cameras, on each camera,

there should be one matched particle image. Here, If a particle image is only associated

with an unique reconstructed particle, we call this an unique matching; if there are

multiple reconstructed particles corresponding to the same particle image, we call it an

ambiguous matching. In the original work by Fuchs et al. (2016), the authors proposed to

completely reject a reconstructed particle if it had more than two ambiguous matchings.

Such criterion succeeded to reduce the percentage of ghosts to below 1%. However, it

also caused the percentage of correctly reconstructed particles to drop quickly with an

increasing image density. This is because, in principle, a ghost reconstruction has am-

biguous matchings on all cameras, but not vice versa. Therefore, in our implementation,

we retained a reconstructed particle either when it had at least two unique matchings, or

when the projected particle location was the nearest to the matched particle image on at

least three cameras. Finally, the 3-D position of each retained reconstructed particle was

calculated by triangulation from four matched particle images.

Each particle was then tracked over four successive frames. The non-iterative particle

tracking algorithm developed by Fuchs et al. (2017), combined with predictors based

on flow spatial and temporal information, was adopted to yield reliable result with light

computational burden. For the first two frames, the instantaneous velocity field was

initially estimated on a coarse grid, which allowed us to define a reasonable search
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volume for each particle in the second frame. Out of all possible candidates within the

search volume, the correct match was then determined if the resulting displacement

was the closest to the peak of the histogram collecting all possible displacements of all

neighboring particles. Here, the neighbors of a particle of interest are defined inside an

ellipsoid that is 1.25 mm wide in both the x and z direction and 0.25 m high in the y

direction. For frame 3 and 4, the process was similar except the search volume was a

sphere of a 0.6-mm diameter around the position predicted from the already measured

particle displacement.

An example field of 4-pulse particle tracks is presented in Figure 5.18. An average of

127 particle tracks were obtained for each velocity field, which translates to a seeding

density of 4.23 particles/mm3. Particle velocities and the positions to assign velocity

vectors were calculated with the method described in Section 5.4.2. With a total of 100000

Figure 5.18: An example field of 4-pulse particle tracks. Particle positions are color coded
from blue to red to indicate the time order.
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recordings, we obtained Q = 25000 velocity fields for averaging. We used these data to

estimate the mean velocity, the mean velocity gradient and the isotropic dissipation rate,

which are discussed in later sections.

5.5.3 Seeding Homogeneity

To examine the extent to which the assumption of homogeneous seeding holds,

Figure 5.19 presents the distribution of estimated particle location, x̂xxp , i.e. the location to

assign a velocity vector. Due to the fact that a particle track is identified only if all four

particle positions occur within the reconstruction box, the boundaries essentially act as

filters modifying near-boundary distributions. For instance, near x = 4mm, we observe

decreasing number of velocity vectors when the averaged trajectory length increases

towards y = 4 mm. The explanation is also schematically illustrated in Figure 5.20. Such

issue is less severe near x = 0 mm since each velocity vector is evaluated at the one-quarter

time along a trajectory. The rapid drop near y = 4 mm is due to the top boundary sifts out

those particle tracks with positive v-components. However, these boundary effects can

be a trivial matter considering the data near boundaries can be discarded. In contrast, the

inhomogeneous seeding near y = 0 mm, as evident in Figure 5.19(a), is more problematic

for estimating near-wall statistics. It probably arises from the diffusion occurring when

tracer particles travel from the upstream seeding tube to a far downstream location. In

this regard, a special near-wall treatment will be discussed later. It is also noticed that,

away from the boundaries, the pdf of ŷp is slightly convex downwards, which may be

an artifact in our data processing. Further investigation is needed to fully understand

the cause. In Figure 5.19(b), the distribution in the z-direciton reveals the laser intensity

profile, which appears to be nearly a parabola. Note only the z-direction dimension of
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(a) joint pdf of x̂p and ŷp (b) pdf of ẑp

Figure 5.19: Distribution of estimated particle location, x̂xxp . The red curve in (a) represents
the pdf of ŷp .

Figure 5.20: Schematic of the boundary effect causing inhomogeneous near-boundary
distribution. Identified and unidentified particle tracks are drawn in black and gray,
respectively. Each red cross denotes the location to assign the velocity vector, which is
the one-quarter point in time.

the reconstruction volume is close to the actual laser beam thickness. For the x- and

y-direction, the reconstruction was well within the illuminated volume.
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The aforementioned inhomogeneity of x̂xxp certainly introduces errors to the statistical

estimates, which will be discussed along with the results in the subsequent sections.

5.5.4 Mean Velocity and Mean Velocity Gradient

Using the ensemble of particle velocities, we estimated the mean velocity and the

mean velocity gradient for 0.02 mm ≤ y ≤ 3.9 mm at x = 2 mm and z = 1.6875 mm, i.e.

along the wall-normal axis of symmetry of the reconstruction volume. The evaluation was

an iterative and reciprocal process as described in Section 5.4.3. Figure 5.21 (left) presents

a typical result of the dependence of 〈̂u〉 on varying domain size after two iterations. It

was obtained by using a domain with Lx = 2Ly and Lz = 1.875 mm and centered at each xxx∗,

intended to include more particles for reduced rms fluctuation. Using the full thickness in

the z-direction in principle does not affect the truncation error considering all spanwise

Figure 5.21: Estimates of the streamwise mean velocity (left) and the wall-normal mean
velocity gradient (right) using a resolution domain of varying size centered at xxx∗ = (2, 1,
1.6875) mm. The domain size is given by Lx = 2Ly and Lz = 1.875 mm.
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derivatives are zero. It is observed that the rms fluctuation becomes influential below

approximately Ly = 0.2 mm. Beyond this point, the smoothness of the curve suggests a

systematic variation of the truncation error with increasing Ly . The trend at large Ly is

quadratic, agreeing with the theory and the simulation result. However, the increase in the

region 0.1 < Ly < 0.5 is not predicted, and it appears to result from a linear dependence

on Ly . The possibility of the inhomogeneity of x̂xxp causing 〈u∗
1,2 ≺ y (p,q) − y∗ ÂD〉T to vary

linearly with Ly was ruled out as the estimation with the actual distribution of x̂xxp (see

Figure 5.19) did not give matched order of magnitude. Thus, without fully understanding

the functional form of the truncation error, we did not perform the correction scheme

described in Section 5.4.3. Instead, the mean velocity estimate was taken at the smallest

Ly below which the rms fluctuation starts amplifying. We observed from our data that

Ly,opt = 0.2 mm was a good universal choice for this purpose.

A typical result of the mean velocity gradient estimate, ˆ〈u1,2〉, is displayed in Figure

5.21 (right). The rapid change at small Ly was indeed seen from the simulation, but the

behavior of the truncation error is again puzzling. So we also take 〈u1,2〉 at an optimal Ly ,

which appears to be approximately 0.75 mm, as shown in the inset in Figure 5.21 (right).

Note the measurement noise is amplified during differentiation, so the estimation of

mean velocity gradient has to use an Ly larger than that of the mean velocity.

The above strategy is only applicable to the region away from the wall, as decreasing

Ly from both sides of xxx∗ is not feasible for y near zero. To this regard, we adopted a

special near-wall treatment utilizing the linear velocity profile in the viscous sublayer

with a single-sided domain. More specifically, the resolution domain is above y∗ with

a height of Ly
/

2. As a result of that, the first-order term is no longer zero-mean, but

instead increases linearly with Ly with a slope equal to 〈u∗
1,2〉. Moreover, the linear term

〈u∗
1,2 ≺ y (p,q) − y∗ ÂD〉T is the only non-zero truncation term as the linearity of 〈u〉 in the
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Figure 5.22: Estimates of the mean velocity at y = 0.02 mm (left) and the corresponding
mean deviation in the y-direction (right) using a single-sided domain (i.e. y (p,q) ≥ y∗).

viscous sublayer ensures higher-order derivatives to be zero. Figure 5.22 (left) shows the

dependence of 〈̂u〉 on Ly using such a single-sided domain at y∗ = 0.02 mm. The trend is

linear except for the small distortion near Ly = 0, which appears to be mostly attributed

to the inhomogeneous near-wall seeding. This is supported in Figure 5.22 (right) with

the plot of the actual mean deviation, ˆ〈δyp〉 = 〈≺ y (p,q) − y∗ ÂD〉T , calculated from the

experimental data. It is apparent the inhomogeneous near-wall seeding causes the curve

to slightly depart from a straight line. The above discussion in fact suggests that 〈u∗〉

and 〈u∗
1,2〉 in the viscous sublayer can be estimated respectively from a1 and a2 in the

following fit:

〈̂u〉 = a1 +a2
ˆ〈δyp〉 (5.72)

We applied this strategy for 0.02 mm≤ y ≤ 0.28 mm, which later will be seen to correspond

to 0.32 ≤ y+ ≤ 2.37. The strategy of using an optimal Ly is otherwise applied.

Compiling the results obtained in the two different regions with the above discussed

rational analysis, Figure 5.23 (left) presents the mean streamwise velocity for 0.02 mm
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Figure 5.23: Comparison with the bin-average method and the linear profile in the viscous
sublayer.

≤ y ≤ 3.9 mm. The result is compared to that calculated by a bin-average method (Kähler

et al., 2012b), in which the reconstruction volume was divided into 0.02 mm bins in

the wall-normal direction, and all velocity estimates within each bin were averaged to

estimate the mean at the bin center. The noticeable discrepancy occurs at y > 2 mm,

which we believe is primarily related to the the second-order truncation term of the x-

direction. This is because, as the full span in the x-direction is used for bin averaging, the

truncation term 〈u∗
1,11 ≺ (x(p,q) −x∗)2 ÂD〉T is more significant than that in our rational

analysis. In addition, as seen in Figure 5.23 (right), the result of the bin-average method in

the viscous sublayer appears to be slightly noisier compared to the smooth linear profile

obtained by the rational analysis.

As a bonus of the high-resolution mean velocity measurement in the viscous sublayer,

the friction velocity uτ is directly measured from the slope of the linear profile:

uτ =
[
ν〈u1,2〉

∣∣∣
y+<5

]− 1
2

(5.73)
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Figure 5.24: Mean velocity profile in wall units. The determined von Kármán coefficients
are compared to the empirical fit given in Nagib and Chauhan (2008). The dashed lines
in the right figure indicate the data spread in the original plot.

The linear fit is plotted in Figure 5.23 (right) on top of the mean velocity data, in which we

see the fit is nearly perfect. It is also noticed the linear line intersects with the horizontal

axis at y ≈−0.02 mm, which indicates the first y-position in our calibration was in fact

approximately 20 µm above the actual wall. This is a fairly reasonable error when we

manually pushed the calibration target against the glass window. Consequently, the

mean velocity profile is plotted in wall units in Figure 5.24 after shifting the wall-normal

coordinate to the actual wall position, i.e.

y+ = (y + yshi f t )uτ
/
ν (5.74)

The resulting y+ ranging from 0.3 to 30 primarily falls in the viscous sublayer and the

buffer layer. To determine the von Kármán coefficients κ and B as a validation of our

measurement, we computed a generalized Spalding’s fit (Spalding, 1961):

y+ = u++e−κB
[

eκu+ −1−κu+− (κu+)2/2− (κu+)3/3!− (κu+)4/4!
]

(5.75)

The result, κ = 0.38 and B = 3.50, is compared to the empirical fit given in Nagib and
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Chauhan (2008):

κB = 1.6
(
e0.1663B −1

)
, (5.76)

which was calculated based on a comprehensive collection of experiment results of wall-

bounded turbulence covering a wide range of pressure gradient. As evident in Figure 5.24

(right), our result agrees with the empirical fit very well and is well within the data spread

shown in the original plot (Figure 5 in Nagib and Chauhan, 2008).

The estimated mean velocity gradient 〈u1,2〉 is presented in Figure 5.25, along with

the derivative of the generalized Spalding’s fit as a reference. The estimates in the re-

gion where we take ˆ〈u1,2〉 at the optimal Ly , i.e. y+ > 2.37, are in good agreement with

the reference, except the noticeable discrepancy at y+ > 25. Two reasons are possibly

responsible for that: (1) The measurement noise becomes relatively prominent as the

magnitude of u+
1,2 gets small at large y+; A larger dataset would help alleviate this prob-

Figure 5.25: Mean velocity gradient 〈u1,2〉 in wall units.
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lem; (2) The inhomogeneous distribution of x̂xxp near the top boundary adds extra bias

error, making the result less reliable than that away from the boundary. Additionally,

a systematic underestimation of about 10% is revealed in the near-wall region where

we inferred ˆ〈u1,2〉 from the slope of 〈̂u〉 when varying the size of a single-sided domain.

While the mechanism of the underestimation is not yet fully understood, one potential

source of error arises from the fact that a Taylor series expansion is not always globally

converged. In other words, when we express a velocity far from the wall using a Taylor

series expansion with respect to a near-wall location, extra terms other than the Taylor

series may be needed.

It is worth mentioning that, besides 〈u1,2〉, other non-zero mean velocity gradients in

an APG-TBL include 〈u1,1〉, 〈u2,1〉 and 〈u2,2〉. However, because the flow near wall (y+ <

30) almost fully adapts itself to the boundary geometry, those three gradients are too

small to be estimated given the size of the current dataset. A rough estimate of 〈u1,1〉 (and

thus 〈u2,2〉 = −〈u1,1〉) by computing the mean streamwise velocity profiles at x = 1.8, 1.9,

. . . , 2.2 mm showed 〈u1,1〉 increased from 0 to about 20 s−1 when moving from the wall

to the top boundary. As a comparison, 〈u1,2〉 is about 1000 s−1 at the wall and drops to

about 100 s−1 at y+ ≈ 30.

5.5.5 Near-Wall Dissipation Rate

Because not all the mean velocity gradients can be reliably measured in the present

experiment, we will only focus on the estimate of isotropic dissipation rate below y+ < 12,

where the only mean gradient that needs to be considered is 〈u1,2〉. This is because of the

homogeneity and symmetry of the mean field in the spanwise direction, as well as 〈u1,1〉

= −〈u2,2〉 = 0 as the flow is nearly parallel to the boundary for the y+ range considered.
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In addition, the contribution from x-direction derivatives, i.e. 〈u′
i ,1u′

i ,1〉, was neglected

in our dissipation estimation considering the pressure gradient is not strong enough to

make 〈u′
i ,1u′

i ,1〉 near wall comparable to other terms. Therefore, we have evaluated the

following 6 terms:

〈u′
1,2u′

1,2〉+〈u′
1,3u′

1,3〉+〈u′
2,2u′

2,2〉+〈u′
3,2u′

3,2〉+〈u′
2,3u′

2,3〉+〈u′
3,3u′

3,3〉 (5.77)

These terms are all closely related to the flow structures in the TBL. The first term arises

from the strong near-wall shear; the second term is associated with the near-wall al-

ternating high and low speed streaks; and the last fours terms have their roots in the

quasi-streamwise vortices.

In our data processing, the 6 terms were grouped into different directions of deriva-

tive. For each direction, we analyzed the dependence of the dissipation estimate on L

varying merely along that direction, which was intended to reduce the rms fluctuation by

averaging over more particles. When the domain size varies in a single direction, say, y ,

the equation for estimating dissipation, i.e. Equation (5.33), becomes

24

L2
y
〈≺Gnoi

∇u′
i
Gnoi

∇u′
i
ÂD〉T = 〈u′∗

i ,2u′∗
i ,2〉+

Π

L2
y
+O (L2) (5.78)

wherein Π incorporates the PTV error, 〈≺ n(p,p ′,q)
br,ui

n(p,p ′,q)
br,ui

ÂD〉T , and the contributions

from the other two directions, 〈u′∗
i ,1u′∗

i ,1〉L2
x +〈u′∗

i ,3u′∗
i ,3〉L2

z . Note, since Lx and Lz are fixed,

the dissipation estimate from Equation (5.78) scales as L−2
y at small Ly . This is verified in

Figure 5.26 showing the estimate of dissipation with varying Ly . The result was calculated

at y = 0.1 mm with Lx = 3 mm, Lz = 1.6 mm, and Ly decreasing from the side above y

= 0.1 mm. The L−2
y dependence at small Ly is evident, and the curve after subtracting

the Π
/

L2
y term appears to approach the true value before it gets noisy. Because of the

relatively high noise level, as well as the undetermined functional form of the truncation

error, the strategy to extract the dissipation from the experimental data slightly differs
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Figure 5.26: Estimation of the y-direction dissipation ε̌y with varying Ly . ε̌y is obtained
from Equation (5.78).

from the fitting method described in Section 5.4.4. Thus, we first determinedΠ by fitting

the following model to the data points of Ly / 0.25 mm:

ε̌y = b1 +b2
/

L2
y (5.79)

wherein ε̌y stands for the estimate for the y-direction dissipation given in Equation (5.78).

Note b1 is not a reliable estimate of 〈u′∗
i ,2u′∗

i ,2〉 due to its sensitivity to noise. A rational

estimation was then made from ε̌y −Π
/

L2
y . It was found that the noise level imbedded in

the ε̌y −Π
/

L2
y curve varied at different y , so we have chosen the median of the data over

approximately 0.4 mm < Ly < 0.7 mm to be a good estimate of the dissipation.

Marching over y from 0.05 to 1.5 mm with the above described strategy for both the y

and the z-direction, we obtained a profile of the isotropic dissipation rate accounting

for the majority of dissipation occurring near wall. The result after scaled with u4
τ/ν is

presented in Figure 5.27, and it is compared to other results from the literature. The
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Figure 5.27: Isotropic dissipation estimate scaled with u4
τ/ν for 0.5< y+ <12. The DNS

and LDV results are taken from Bernard and Wallace (2002).

friction Reynold number in our experiment, Reτ ≈ 3000, was estimated based on the

boundary layer thickness in another experiment conducted in the same facility under

similar flow conditions (Reuther et al., 2015). The dissipation data was smoothed by a

Butterworth low-pass filter with a cut-off frequency at 1/20 of the sampling frequency.

The DNS results from Spalart (1988) and Moser et al. (1999) represent the full isotropic

dissipation rate, i.e.

εi i
/

2 = 〈u′
i ,mu′

i ,m〉 (5.80)

wherein Einstein notation is used, and ε j k is the dissipation tensor. Although our result

is only compared to low-Reynolds-number flows due to the lack of simulations and

experiments matching the current Reτ, the comparison is qualitatively favorable. The

plateau starting at y+ ≈ 6 is consistently observed at different Reτ. The rapid increase of

dissipation near wall (y+ <5) is well resolved, and it appears to follow the same law as in

the low-Reynolds-number cases except with a larger magnitude. The LDV measurement
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by Karlsson and Johansson (1988) was not capable to resolve the dissipation profile close

to the wall, and it probably underestimated the near-wall dissipation considering the

Reτ is about twice of those of the DNS studies. It is not clear how the adverse pressure

gradient in the present experiment modifies the dissipation profile, which, however, is

probably not observable in the y+ range considered (Lee and Sung, 2008).

5.6 Summary

We presented a novel method for extracting turbulence statistics from ensemble

PTV data. The common starting point for different statistics is the Taylor expansion of

each velocity vector inside a resolution domain with respect to the domain center. We

showed that manipulations of the Taylor expansion equation lead to the approaches for

many turbulence statistics. The focus of the present work is the mean velocity, the mean

velocity gradient and the isotropic dissipation rate. The theoretical bases for some other

statistics are provided in Appendix D, including Reynolds stress, TKE production, TKE

viscous diffusion, and inhomogeneous dissipation rate.

We theoretically derived the equations for the mean velocity, the mean velocity gradi-

ent and the dissipation rate, identifying the leading order truncation terms. The mecha-

nisms of two error sources were discussed, including the rms fluctuation arising from

the finite-time averaging, and the random and bias error associated with the particle

tracking analysis.

A PTV simulation with synthetic turbulence was designed to validate the PTV-based

method and to assess the effects of different errors. The synthetic turbulence consists of

random Fourier modes matching a well-defined power spectrum. The flow parameters

including TKE and the Taylor microscales in both space and time are easy controlled.
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The PTV errors were studied by generating trajectories of randomly located particles

following the synthetic turbulent flow. We found the PTV bias error had a dependence on

the geometry of a trajectory, whereas the PTV random error was merely determined by

the rms particle locating noise. As a result, the PTV error translates to rms fluctuation

with zero mean for the mean velocity and the mean velocity gradient, and the fluctuation

amplitude is usually negligible. However, because of the square operation in calculating

the dissipation, the PTV error presents as a positive bias that could be significant at small

domain size L. This observation, combined with the underestimation at large L due to

the negative truncation terms, manifests the challenge for dissipation measurement. On

the other hand, the rms fluctuation arising from finite-time averaging competes with the

decreasing truncation terms when L decreases. We have demonstrated both theoretically

and numerically that the finite-time averaging results in growing rms fluctuation towards

small L. Thus, the amplitude of the rms fluctuation, scaling inversely with the total

number of velocity fields Q and the seeding density C , determines the optimal L to

evaluate the mean velocity and the mean velocity gradient, as well as the dissipation rate

if the PTV error is sufficiently small. In other words, Q and C are two decisive factors

for the overall measurement accuracy. In addition, we demonstrated the benefit of

reciprocally and iteratively evaluating the mean velocity and the mean velocity gradient

as a pair to reduce the rms fluctuation for both of them.

With the thorough understanding of different errors, we proposed to extract statistics

by means of a correction method that involves fitting a model to the statistic estimates

at different L. This correction method can yield improved accuracy provided good

knowledge of the functional forms of the truncation terms and the PTV error. For the

dissipation estimation with considerable PTV error, a fitting model incorporating an L−2

term to account for the PTV error at small L succeeded to yield an accurate dissipation
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result. We also discussed in depth the empirical rules regarding the optimization of the

correction method.

The proposed method for estimating turbulence statistics was applied to a tomo-

graphic measurement of an APG-TBL with Reτ ≈ 3000. Particles were identified inside a

small volume above the wall with an algorithm combining 3-D triangulation and surface

segmentation to avoid ghost reconstructions, and were tracked over four successive

pulses for reduced PTV error. We successfully measured the streamwise mean velocity

profile over 0.3 < y+ < 30 with high spatial resolution by a rational analysis for the optimal

L. As a benefit of the high spatial resolution, we also directly measured the friction veloc-

ity uτ from the near-wall velocity data. The determined von Kármán coefficients agree

well with an empirical fit based on a comprehensive collection of experimental results, in-

dicating excellent measurement accuracy. The mean velocity gradient was also estimated

with satisfactory accuracy, which can be certainly improved given a larger dataset. Lastly,

the isotropic dissipation was estimated for y+ <12 using 6 dominant terms neglecting

the streamwise terms. A special strategy was implemented to enable the estimation of

dissipation in each direction (the direction of the derivative), and meanwhile to account

for the noticeable rms fluctuation due to limited number of samples. The near-wall

dissipation profile was then compared to DNS and LDV results of ZPG-TBL with lower

Reτ. The consistency revealed from the plateau position and the sharp increase near wall

favorably implies reasonable measurement quality.
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Chapter 6

OTHER INVESTIGATIONS

6.1 Surface Segmentation for Tomographic PIV

6.1.1 Introduction

Tomographic PIV (tomo-PIV) is a 3-D flow measurement technique that employs

multiple cameras, typically 4 to 6, to view the same volume of interest from different

angles. The volumetric intensity distribution is reconstructed using the multiplicative

algebraic reconstruction technique (MART), and the 3D3C velocity field is calculated by

3-D cross-correlation (Elsinga et al., 2006; Westerweel et al., 2013).

Since the first publication on tomo-PIV (Elsinga et al., 2006), related works aiming at

improving its performance have explosively emerged. These include but not limited to,

correcting mapping function errors (Wieneke, 2008), reducing computational burden

(Atkinson and Soria, 2009; Worth and Nickels, 2008; Discetti and Astarita, 2012b), and

attenuating or eliminating ghost particles using temporal information (Novara et al., 2010;

Schanz et al., 2016). The latter two categories are critical for tomo-PIV when applied to a

large measurement volume. An example of the high computational cost of tomo-PIV can

be found in Discetti and Astarita (2012b), in which the reported processing time for a 643-

voxel volume with a 20 vox/mm resolution and a source density (Adrian and Westerweel,

2011) Ns = 0.3 is about an hour using the standard MART and about 20 minutes using an

optimized MART. In a realistic experiment, the measurement volume is often in the order

of 20 × 20 × 20 mm3 with a reconstruction resolution up to 64 vox/mm, and thousands
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Figure 6.1: Formation of ghost particles.

of realizations are required to get good convergence of statistics. All these considerations

make the data processing of tomo-PIV extremely challenging. On the other hand, the

high percentage of ghost particles is another obstacle that prevents tomo-PIV from being

a reliable technique to resolve small scale motions (Elsinga et al., 2011). The mechanism

of generating ghost particles is illustrated in Figure 6.1. When every line of sight of a point

A in the measurement volume intersects with a true particle, a ghost particle is formed

at A during reconstruction. The intensities of ghost particles are likely to be attenuated

during MART iterations (Atkinson and Soria, 2009), and the existence of a particle over

multiple successive frames can be used to reduce the ghost particle percentage.

While the majority of previous efforts have attempted to improve tomo-PIV for a large

measurement volume, surface segmentation was proposed by Ziskin et al. (2011) as a fast

and accurate method for 3-D flow measurement in a thin slab. The work presented in this

section is a continuous development of surface segmentation towards improved accuracy,

reduced processing time and application to curvilinear-coordinate reconstruction.
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6.1.2 Working Principle

Surface segmentation directly reconstructs the volumetric intensity distribution with-

out MART iterations. As illustrated in Figure 6.2, the working principle of surface segmen-

tation relies on the fact that each particle on a surface S in the physical domain must

generate a corresponding intensity peak on every camera. If we back project recorded

images with respect to S, the lines of sight of an in-surface particle would intersect at a

common point on S, whereas the lines of sight of an off-surface particle intersect with S

at different locations. Therefore, the product of all back-projected images with respect

to S forms intensity peaks only for those particles lying on S, but filters out off-surface

particles. An example of the filtering process is presented in Figure 6.3. It is clearly ob-

served that only a small amount of particles preserve as the number of cameras increases.

For realistic cases with voxelized volumes and finite particle size, the area of intersection

of a particle and S is reconstructed. The working principle is applicable to any surface

in the physical domain provided all lines of sight intersect with the surface only once.

The intensity distribution of the entire volume can be then reconstructed by stacking

reconstructed surfaces.

Figure 6.2: Working principle of surface segmentation.
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I1 I1I2 I1I2I3 I1I2I3I4

Figure 6.3: Filtering process of surface segmentation. Ii denotes the back-projected
image from the i -th camera.

6.1.3 Ghost Particle Percentage and Reconstruction Quality in a Thin Volume

Without MART iterations, surface segmentation significantly saves the computation

time but can only work with a thin volume to mitigate the issue of ghost particle. To

quantitatively study the reconstruction quality for a thin volume, we simulated the

reconstruction process of a 2-D volume using four line cameras. The 2-D volume, seeded

with randomly distributed particles, is 20-mm long with a thickness ranging from 1 to

6 mm; each line camera is 960 pixels in length; and the reconstruction resolution is 48

pix/mm. We conducted parametric studies of the ghost particle percentage (gpp) with

Figure 6.4: Example reconstruction of a 2-D volume. Red circles are known true particles.
Particles are magnified by convolution for better visibility.
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respect to true particles and the correlation coefficient Q between the reconstructed

and the reference volume. An example of the reconstruction is displayed in Figure 6.4,

wherein true particles are indicated by red circles and ghost particles exhibit comparable

intensities.

Figure 6.5 and 6.6 present Q and gpp for varying volume thickness ∆z0 and seeding

density C . The results were calculated by averaging 100 simulation realizations. If we

specify an acceptable reconstruction quality to be Q > 0.9 and gpp < 0.3, the result sug-

gests ∆z0 < 4 mm at C = 15 particles/mm2, and a further reduced ∆z0 when increasing C .

It is also noticed that gpp exponentially elevates when∆z0 increases, implying decreasing

∆z0 is an effective way to reduce ghosts.
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Figure 6.5: Correlation coefficient (Q) and ghost particle percentage (gpp) for varying
volume thickness ∆z0. The results are calculated with C = 15 counts/mm2.
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Figure 6.6: Correlation coefficient (Q) and ghost particle percentage (gpp) for varying
seeding density C. The results are calculated with ∆z0 = 3 mm.
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6.1.4 Surface-Based Interrogation for Volumetric Flows

As surface segmentation emphasizes the filtering process for a prescribed surface S,

we also developed an interrogation strategy based on 2-D surfaces. This is another aspect

of reducing the processing time for tomo-PIV by avoiding 3-D cross-correlation. In this

surface-based strategy, to have sufficient particles for reliable correlation, neighboring

reconstructed surfaces are summed up to form a superposed image, to which 2-D cross-

correlation is performed yielding the in-plane velocity components. If this process is

repeated across the volume in two orthogonal directions, we obtain the 3D3C velocity

field of the measurement volume.

The number of surfaces required for reliable 2-D cross-correlation is determined by

the seeding density C as well as the out-of-plane motion. For the latter, it needs to be

guaranteed that less than a quarter of the particles leave the superposed image over the

inter-frame time. Apparently, for flows with strong 3-D motions, the spatial resolution

would be severely limited. Therefore, an iterative procedure was implemented to account

for strong 3-D motion and thus to improve the spatial resolution and the velocity accuracy.

The implementation is an analog to the 2-D iterative image deformation technique

(Scarano, 2001), and it is outlined as follows:

(1) Cross-correlate superposed images in two orthogonal directions to predict a 3D3C

vector field with a coarse grid. The initial grid size needs to comply the one-quarter

rule for the out-of-plane motion (Adrian and Westerweel, 2011).

(2) Deform the volume based on the predicted vector field.

(3) Repeat the previous two steps until a good convergence is achieved for the current

grid size.

(4) Repeat step (1) with a reduced grid size.
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(5) Repeat step (2) to (4) until the minimum required particle number in an interroga-

tion cell (Keane and Adrian, 1990) is reached.

To assess the performance of the surface-based interrogation strategy, we simulated a

tomographic PIV measurement of a vortex ring. The measurement volume, seeded with

randomly located particles, is 20 mm (x) × 20 mm (y) × 4 mm (z) with a seeding density

15 particles/mm3. The thickness of the volume assures good reconstruction quality based

on the simulation in Section 6.1.3. As depicted in Figure 6.7, four cameras are set up

in the x-z plane to image the volume simultaneously. Synthetic particle images on the

cameras are generated based on projected particle locations. The intensity distribution in

the measurement volume is reconstructed using surface segmentation with a resolution

of 48 vox/mm. The 3D3C velocity field is analyzed using the proposed surface-based

interrogation strategy, and the final interrogation spot size in both directions is 1 mm × 1

mm (48 vox × 48 vox).

Figure 6.7: Setup of the tomo-PIV simulation of a vortex ring. The axis of revolution of
the vortex ring is aligned with the z-axis.
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Figure 6.8: Comparison between the single-pass and the iterative analysis. Top: vorticity
iso-surface (arbitrary unit); Bottom: middle z-plane vorticity contour. From left to right:
reference, single-pass and iterative.

δur ms [vox] δvr ms [vox] δwr ms [vox]

Single-pass 0.2178 0.2100 0.2996

Iterative 0.0969 0.0843 0.1652

Table 6.1: Comparison of global rms errors between the single-pass and the iterative
analysis.

Figure 6.8 presents the comparison between a single-pass analysis and the iterative

analysis described above. The single-pass analysis only implements step (1) without

iterative refinement. It is visually evident that the vorticity iso-surface is smoother after
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the iterative analysis, which also produces smaller bias of the vorticity magnitude in the

middle z-plane. Quantitatively, Table 6.1 shows the global rms errors calculated over the

volume. The rms errors of u and v are reduced to below 0.1 voxel, and the rms error of w

is approximately 0.15 voxel.

6.1.5 Reduction of Computational Cost

The reduction of computational cost by surface segmentation is realized in two

aspects, i.e. the direct reconstruction and the surface-based interrogation, as discussed

in previous sections. Following Atkinson and Soria (2009), we quantitatively compare

surface segmentation with other tomo-PIV algorithms in Table 6.2. It is noticed that the

reduction in reconstruction with respect to MART is considerable and the number of

operations is comparable to MLOS-SMART and MLOS-SART. Additionally, the surfaced-

based interrogation is approximately 25 times faster than the 3-D cross-correlation with

either FFT or sparse direct correlation.

Furthermore, we studied the rms error when reducing the number of surfaces re-

constructed within a fixed thickness. As the correlation analysis is performed on 2D

superposed images, further reduction in computation time can be achieved by reducing

the number of surfaces summed up to form the superposed image. In other words,

we try to determine the minimum number of cross-sections to sufficiently sample a

reconstructed particle having a 3D intensity profile. In this regard, the result in Figure

6.9 suggests the uncertainty of the measured velocity field stays constant as long as the

spacing between two neighboring reconstructed surfaces is smaller than 2 voxel units.
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Operation Example

Reconstruction

Surf. Seg. 120 Ncam Nvox 4.8e10

5 MART 5×4Ncam Nvox(8L+4) 2.5e13

MLOS + 5 SART 120Ncam Nvox +5(24Ncam +4)Nn.z.vox 1.0e11

MLOS + 5 SMART 120Ncam Nvox +5(24Ncam +3)Nn.z.vox 1.0e11

Interrogation

Surface-based, FFT 2×2N 2
I log2 NI 2.0e04

3D correlation, FFT 3N 3
I log2 NI 4.9e05

3D correlation, Direct 5%N 3
I ×1%N 3

I 5.4e05

Table 6.2: Comparison of number of operations for surface segmentation and other
tomo-PIV algorithms. Example numbers used for the calculation: Ncam = 4; Nvox = 2e08;
Non-zero voxels, Nn.z.vox = 5%Nvox = 1e07; Averaged length of line of sight, L = 200 vox;
Interrogation spot dimension NI = 32 vox. See details in Atkinson and Soria (2009).

Figure 6.9: Dependence of rms errors on the number of surfaces reconstructed in a
0.5mm-thick slab. The reconstruction resolution is 48 vox/mm.
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6.1.6 Towards Curvilinear Coordinate System Reconstruction

In effect, the working principle of surface segmentation allows the surface S to have

an arbitrary shape provided it intersects with all lines of sight only once. For many

realistic situations with flows in complex geometries, it would be necessary to extract flow

information on a curvilinear surface following the local boundary geometry. Examples

include Taylor-Couette flow between counter-rotating cylinders (Tokgoz et al., 2012), and

the flow in human carotid artery bifurcation (Buchmann et al., 2011).

As an example to demonstrate the capability of surface segmentation for curvilinear

coordinate system reconstruction, we simulated a tomo-PIV experiment measuring a

laminar Taylor-Couette flow. As illustrated in Figure 6.10, Surface segmentation was

applied to extract a mathematically prescribed azimuthal surface S. 2D interrogation

of S yields excellent accuracy: the global mean velocity is 7.638 pixel with a standard

deviation of 3e-04 pixel, compared to the ground-truth velocity of 7.627 pixel.

Figure 6.10: An azimuthal surface S of a laminar Taylor-Couette flow is reconstructed
using surface segmentation.
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6.2 Third-Order Correlation for 3-pulse PIVA

6.2.1 Introduction

In addition to the improvement achieved by PTVA analysis, N -pulse PIVA also has the

potential to enhance the performance of correlation-based PIVA analysis in terms of valid

detection probability. Keane and Adrian (1991) demonstrated a higher valid detection

probability of displacement vectors using multiple pulsed PIV with auto-correlation com-

pared to 2-pulse PIV. It implies an equally good measurement quality is achievable with

smaller interrogation spots, i.e. enhanced spatial resolution. Follow this line, we explore

the third-order cross-correlation for 3-pulse PIVA, aiming to establish a novel way to cor-

relate N -pulse particle images with improved performance. Preliminary investigations,

including the FFT implementation and the correlation peak sub-pixel interpolation, are

presented in this section.

6.2.2 FFT Implementation

The third-order correlation for images Ii recorded at time ti (i = 1, 2, 3) is defined as

C (rrr ,sss) ≡
∫

x∈W
I1(xxx, t1)I2(xxx +rrr , t2)I3(xxx +sss, t3)dxxx (6.1)

C (rrr ,sss) is a 4-D function whose highest peak contains the information of two displacement

vectors, i.e. rrr 0 between I1 and I2, and sss0 between I1 and I3. With the consideration of

reducing the computational cost, similar to that for the second-order correlation, we

intend to develop a FFT implementation of the third-order correlation. It turns out that,

if we apply 4-D Fourier transform to Equation (6.1), the right side can be written as the
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Figure 6.11: FFT implementation of the third-order correlation.

product of three 2-D Fourier transforms:

F4−D

[
C (rrr ,sss)

]
=F∗

2−D

[
I1

]
×F2−D

[
I2

]
×F2−D

[
I3

]
(6.2)

Where the superscript ‘∗’ denotes a complex conjugate. Note that, given spatial frequency

r̃rr and s̃ss respectively of I2 and I3, the Fourier transform of I1 needs to be evaluated at r̃rr + s̃ss.

With the fact that F∗
2−D

[
I1

]
is band-limited, the FFT implementation is summarized

using the flow-chart shown in Figure 6.11. The MATLAB code for computing the third-

order correlation is provided in Appendix E. Regarding the reduction of computation time,

a direct evaluation of the discrete version of Equation (6.1) requires O (M 6) multiplications

for a 2-D image with M ×M pixels, whereas the FFT implementation reduces that to

6M 2 log M +2M 4 +4M 4 log M ∼O (4M 4 log M).

6.2.3 Sub-Pixel Peak Location Interpolation

A key for PIV analysis to achieve high accuracy is the sub-pixel interpolation of

correlation peaks. For the second-order correlation, a Gaussian interpolation formula is

widely used to determine sub-pixel peak locations (Adrian and Westerweel 2011, Section

8.5.2). Likewise for the third-order correlation, we assume Gaussian particles to derive

the sub-pixel interpolation formula for the 4-D correlation map.
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Figure 6.12: Peak location and the neighbors used for Gaussian sub-pixel interpolation. j
= 1 or 2 denoting the x- or the y-direction.

The interpolation is performed separately in the x- and y-direction. That is, if we use

indices (r1,r2, s1, s2) to denote the four dimensions of the correlation map, the x-direction

sub-pixel displacement is calculated using only the peak value and the neighbors in the

r1 and s1 direction, and likewise for the y-direction. As illustrated in Figure 6.12, C00

is the height of the highest peak occurring at a location (r ∗
1 ,r ∗

2 , s∗1 , s∗2 ) (all are integer

indices). For each direction, three neighbors are used to determine the sub-pixel location:

C10 = C (r ∗
1 +δ1 j ,r ∗

2 +δ2 j , s∗1 , s∗2 ), C01 = C (r ∗
1 ,r ∗

2 , s∗1 +δ1 j , s∗2 +δ2 j ), C11 = C (r ∗
1 +δ1 j ,r ∗

2 +

δ2 j , s∗1 +δ1 j , s∗2 +δ2 j ), where δi j is the Kronecker delta. The sub-pixel peak location in

the j -direction, (r̂0, j , ŝ0, j ), is then given by

r̂0, j = r ∗
j +

1

3

lnC10 +2lnC01 −3lnC11

lnC10 + lnC01 − lnC00 − lnC11
(6.3a)

ŝ0, j = s∗j +
1

3

2lnC10 + lnC01 −3lnC11

lnC10 + lnC01 − lnC00 − lnC11
(6.3b)

Equations (6.3a) and (6.3b) are shown to be non-biased for symmetric Gaussian particles

recorded on pixels with unity fill factors.
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SUMMARY

As PIV approaches its 35th anniversary, numerous efforts have been made to enable

PIV to become a versatile and robust experimental tool for fluid mechanics research. The

advantage of PIV over conventional point-wise techniques, such LDV and HWA, lies in its

ability to offer non-intrusive and multi-point measurements of a wide range of flows. On

the other hand, the desire to further improve the performance of PIV, as well as to extract

more flow information from PIV, poses great challenges to the community. In this regard,

a new generation of PIV, i.e. N -pulse PIVA (N ≥ 3), has been developed aiming to break

through the limitations of traditional 2-pulse PIV. As an extension of 2-pulse PIV, N -pulse

PIVA employs bursts of N pulses to resolve the curvature of a particle trajectory and the

velocity variation that are not accessible by the 2-pulse method.

The fundamental question of how much improvement is achievable by the additional

pulses is answered in Chapter 1. The theoretical study was conducted in the form of

N -pulse particle tracking (N = 3 or 4). With the understanding of the behaviors of the

rms errors and the knowledge of the optimal times to evaluate particle velocity and

acceleration, we compared both DVR and DSR to those obtained by 2-pulse PTV. It was

shown that the overall performance, given by the product of DVR and DSR, could be

enhanced by a factor of up to 10-50, or even higher when future camera technology

allows more accurate determination of particle locations.

In addition to the enhanced spatial resolution and velocity accuracy, N -pulse PIVA

also offers the flow unsteadiness information with high temporal resolution, and thus

opens the way to direct estimation of fluid acceleration and force. This attractive capabil-

ity was demonstrated in Chapter 2 in the context of unsteady flow-structure interaction.

We succeeded to measure simultaneously the cylinder velocity and acceleration, the
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flow velocity and acceleration, and the fluid force acting on the cylinder. The near-wall

treatment for moving surfaces in fluid, as well as the interrogation strategy to track a

particle cluster in N successive frames, enables N -pulse PIVA to be an informative tool

for measuring complex flow-structure interaction.

Chapter 3 solved an important technical issue, i.e. multi-camera registration, for the

application of N -pulse PIVA to high-speed flows. The necessity of this investigation lies

in the insufficient framing rate of a single high-speed camera and the high sensitivity of

acceleration to small displacement errors. It was shown that, by combining the global

and local schemes, the mean residual disparity between a camera pair could be reduced

to 0.001 pixel, which is sufficient for measuring acceleration by correlation analysis across

cameras.

By virtue of the many advantages offered by N -pulse PIVA, the application was ex-

tended to two more challenging cases. In Chapter 4, a novel 8-pulse PTVA method was

developed to extract the particle drag in a post-shock flow by a fitting model incorporat-

ing particle dynamics. We found the particle drag coefficient was substantially higher

than the standard drag due to flow unsteadiness. The optimization of the 8-pulse PTVA

analysis was also thoroughly discussed.

The capability of N -pulse PTV to measure turbulence statistics was demonstrated in

Chapter 5. The method fully utilizes the advantage of N -pulse PTV in spatial resolution

and velocity accuracy. The theoretical basis was derived from the Taylor series expansion

of a velocity with respect to the point of interest, followed by the analysis of potential

error sources. The performance of this PTV-based method was assessed and optimized

by means of a PTV simulation with synthetic turbulence. Experimentally, we applied this

method to an APG-TBL with Reτ ≈ 3000, and succeeded to extract the mean velocity, the

mean velocity gradient and the isotropic dissipation rate near wall. The results suggested
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the superior ability of this N -pulse PTV based method compared to the correlation-based

PIV analysis and point-wise techniques (LDV and HWA).

Lastly, two other investigations towards improving the performance of PIV were

briefly discussed. The investigation of surface segmentation aimed to accurately measure

the 3-D flow field inside a thin volume with reduced computational cost. The third-

order correlation was developed to enhance the valid detection probability of particle

displacement by 3-pulse correlation analysis. For both topics, preliminary results were

presented to envision future explorations.
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See Equation (1.19) for the definitions of ttt∗4P INT and ddd i .
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Figure B.1: Position, velocity and acceleration rms errors of 3-P in 4-D space.

(a) position (b) velocity (c) acceleration

Figure B.2: Rms errors of 3-P at optimal times.
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Figure B.3: Position, velocity and acceleration rms errors of 4-P INT in 4-D space.

(a) position (b) velocity (c) acceleration

Figure B.4: Rms errors of 4-P INT at optimal times.
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Figure B.5: Position, velocity and acceleration rms errors of 4-P LSQ in 4-D space.

(a) position (b) velocity (c) acceleration

Figure B.6: Rms errors of 4-P LSQ at optimal times.
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D.1 Reynolds stress and TKE production

In this section, it will be seen that some manipulations of equation (5.2) will allow us

to estimate the Reynolds stress tensor,

Ri j = 〈u′
i u′

j 〉 (D.1)

Given the Reynolds decomposition,

ui = 〈ui 〉+u′
i (D.2)

we subtract the mean velocity , 〈u∗
i 〉, from both sides of equation (5.2), and multiply it

with a similar equation written for u j . The result is averaged in D and then in time, which

eventually gives us

〈≺ [u(p,q)
i −〈u∗

i 〉][u
(p,q)
j −〈u∗

j 〉] ÂD〉T→∞ = 〈u′∗
i u′∗

j 〉+O (L2) (D.3)

The derivation of (D.3) utilizes the facts and assumptions (i) – (v) discussed in Section

5.2. Thus, we obtain a method of second-order accuracy to estimate the Reynolds stress

tensor.

Furthermore, an improvement is achievable by a procedure similar to subtracting the

mean velocity gradient in the estimation of mean velocity (see Section 5.2.1 and 5.4.3).

The truncation term O (L2) in (D.3) can be further expanded:

[
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2
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i u′∗
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]
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m −x∗
m)2〉 (D.4)

Clearly, this implies the mean velocity gradients, 〈u∗
i ,m〉 and 〈u∗

j ,m〉, can be subtracted to

reduce the truncation error. Thus, we define a new variable Fu′
i
:

Fu′
i
= u(p,q)

i −〈u∗
i 〉−〈u∗

i ,l 〉(x(p,q)
l −x∗

l ), (D.5)
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and then the improved procedure to estimate Ri , j is described by the following equation:

〈≺ Fu′
i
Fu′

j
ÂD〉T→∞ =〈u′∗

i u′∗
j 〉+〈u′∗

i ,mu′∗
j ,m + 1

2
u′∗

i u′∗
j ,mm + 1

2
u′∗

j u′∗
i ,mm〉L2

12
+O (L4)

=〈u′∗
i u′∗

j 〉+O (L2) (D.6)

This is a method similar to that proposed in Discetti et al. (2015), in which the authors

considered subtracting up to the second-order derivative of mean velocity by fitting a

quadratic curve/surface to the mean velocity profile. Additionally, the TKE production,

〈ui , j 〉Ri j , is also obtained from the estimation of the mean velocity gradient and the

Reynolds stress.

D.2 TKE viscous diffusion

A further step from equation (D.6) leads to estimating the TKE viscous diffusion,

ν∇2K , where K = 〈u′
i u′

i /2〉. Let i = j , evaluate (D.6) with two different edge lengths, L and

ηL, satisfying η>1 and (η2 −1)/12 ∼ (η4 −1)/80. Then Ri , j is canceled out by calculating

their difference:
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Given the identity
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we have the following from (D.7):
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Thus, we have obtained a method of second-order accuracy to estimate the TKE viscous

diffusion.
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D.3 Inhomogeneous dissipation

For the inhomogeneous dissipation rate, the terms we need are

〈u′
i , j u′

j ,i 〉 = 〈u′2
1,1〉+〈u′2

2,2〉+〈u′2
3,3〉+2〈u′

1,2u′
2,1〉+2〈u′

1,3u′
3,1〉+2〈u′

2,3u′
3,2〉 (D.10)

The first three terms also appear in the homogeneous isotropic dissipation, which in fact

can be obtained from equation (5.22). The strategy is to vary the size of D in the corre-

sponding direction for each component, similar to how we obtained the TKE diffusion.

For instance, if we keep Ly = Lz = L, and evaluate (5.22) for i = 1 twice using Lx = L and

Lx = ηL (η> 1), then we will be able to estimate 〈u′2
1,1〉 by calculating their difference, i.e.

6

(η2 −1)L2

[
〈≺G2

∇u′
1
ÂD〉T→∞

∣∣∣
Lx=ηL

−〈≺G2
∇u′

1
ÂD〉T→∞

∣∣∣
Lx=L

]
= 〈u′2

1,1〉+O (L2) (D.11)

For the other three terms on the right side of equation (D.10), It is observed that they are

generated by the following operation:

〈≺
3∑

i , j=1
i< j

[
(x(p,q)

i −x(p ′,q)
i )G∇u′

i

][
(x(p,q)

j −x(p ′,q)
j )G∇u′

j

]
ÂD〉T→∞ (D.12)

wherein repeated i and j do not imply summations. If we use a cubic domain D, given

equation (5.20), the above eventually becomes

(
〈u′

1,1u′
2,2〉+〈u′

1,1u′
3,3〉+〈u′

2,2u′
3,3〉+〈u′

1,2u′
2,1〉+〈u′

1,3u′
3,1〉+〈u′

2,3u′
3,2〉

)L4

36
+O (L6) (D.13)

As the fluctuating velocity field is solenoidal, the first three terms in (D.13) can be calcu-

lated using equation (D.11) and the following identity

〈u′
1,1u′

2,2〉+〈u′
1,1u′

3,3〉+〈u′
2,2u′

3,3〉 =−1

2

(
〈u′2

1,1〉+〈u′2
2,2〉+〈u′2

3,3〉
)

(D.14)
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Thereby, the last three terms in equation (D.10) are obtained:

36

L4
〈≺

3∑

i , j=1
i< j

[
(x(p,q)

i −x(p ′,q)
i )G∇u′

i

][
(x(p,q)

j −x(p ′,q)
j )G∇u′

j

]
ÂD〉T→∞ + 1

2

(
〈u′2

1,1〉+〈u′2
2,2〉+〈u′2

3,3〉
)

= 〈u′
1,2u′

2,1〉+〈u′
1,3u′

3,1〉+〈u′
2,3u′

3,2〉+O (L2)

(D.15)

Consequently, combining Equation (D.11) and (D.15), we have derived a method of

second-order accuracy for estimating the inhomogeneous dissipation.
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APPENDIX E

MATLAB CODE FOR COMPUTING THIRD-ORDER CORRELATION
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APPENDIX F

REPORT FOR DOCTORAL DISSERTATION DEFENSE
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APPENDIX G

PERMISSION TO USE PUBLISHED WORK
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Dr. Ronald J. Adrian, the co-author of the published journal article ‘N -pulse particle

image velocimetry-accelerometry for unsteady flow-structure interaction’ (Ding and

Adrian, 2016), has permitted the use of the full paper in Chapter 2.
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