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ABSTRACT 

 

Immunosignature is a technology that retrieves information from the immune 

system. The technology is based on microarrays with peptides chosen from random 

sequence space. My thesis focuses on improving the Immunosignature platform and using 

Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization 

of the immunosignature platform by introducing scoring metrics to select optimal 

parameters, considering performance as well as practicality. Next, I primarily worked on 

identifying a signature shared across various pathogens that can distinguish them from the 

healthy population. I further retrieved consensus epitopes from the disease common 

signature and proposed that most pathogens could share the signature by studying the 

enrichment of the common signature in the pathogen proteomes. Following this, I worked 

on studying cancer samples from different stages and correlated the immune response with 

whether the epitope presented by tumor is similar to the pathogen proteome. An effective 

immune response is defined as an antibody titer increasing followed by decrease, 

suggesting elimination of the epitope. I found that an effective immune response usually 

correlates with epitopes that are more similar to pathogens. This suggests that the immune 

system might occupy a limited space and can be effective against only certain epitopes that 

have similarity with pathogens. I then participated in the attempt to solve the antibiotic 

resistance problem by developing a classification algorithm that can distinguish bacterial 

versus viral infection. This algorithm outperforms other currently available classification 

methods. Finally, I worked on the concept of deriving a single number to represent all the 

data on the immunosignature platform. This is in resemblance to the concept of temperature, 
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which is an approximate measurement of whether an individual is healthy.  The measure 

of Immune Entropy was found to work best as a single measurement to describe the 

immune system information derived from the immunosignature. Entropy is relatively 

invariant in healthy population, but shows significant differences when comparing healthy 

donors with patients either infected with a pathogen or have cancer. 
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INTRODUCTION 

Research overview 

The immune system is rich with information. Immunosignature diagnostics is a 

technology that can retrieve the antibody information from the immune system. The 

platform is composed of peptides chosen from random sequence space that is able to bind 

complex mixtures of antibodies. My thesis is focusing on improving the immunosignature 

platform, using immunosignatures to characterize the immune system and improving 

current diagnosis both for pathogen infection and cancer.  

 

Current status of healthcare system 

Increasing healthcare expenditure is a major burden for every citizen. In the US, 

healthcare expenditures always increase at faster rate than GDP and now accounts for 17.8% 

of GDP in year 2015 (Martin, Hartman et al. 2016). One major reason for this is the primary 

focus on treating patients with late-stage diseases. Hundreds of thousands of dollars can be 

spent to extend life for a few months for one late-stage cancer patient. The new checkpoint 

inhibitor and CAR-T treatments are estimated to cost over $200,000.  These new treatments 

may be much more effective but are also much more expensive. To help change the 

situation, focus should be shifted to diagnosis of diseases early and treatment of patients 

early. Research has shown that if diagnosed early, breast cancer patients would have low 

mortality rate (Tabar, Gad et al. 1985). So if we can have a diagnosis technology that is 

both cheap and accurate in identifying patients with early stage diseases, we can lower the 
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overall cost of treatment and potentially increase the survival rate. As a result, diagnosis 

should be the focus of future healthcare system. This thesis illustrates in detail that the 

Immunosignature technology may be the diagnosis platform that could totally change the 

paradigm of healthcare system through its ability in performing diagnosis accurately for 

various diseases. 

 

Biomarkers used in diagnosis 

There are lots of biomarkers being studied in research labs and being used in clinical 

settings to help with diagnosis of diseases. They can be classified into several groups. DNA, 

RNA, protein and carbohydrate biomarkers (Mishra and Verma 2010). DNA and RNA 

biomarkers are generally used for non-infection diseases, including cancer, auto-immune 

diseases and Alzheimer disease et al (Wang, Fan et al. 1998, Begovich, Carlton et al. 2004, 

Zhao, Li et al. 2004, Li, Wetten et al. 2008), although they are also used as pathogen 

biomarkers (Periyannan Rajeswari, Soderberg et al. 2017). Single nucleotide 

polymorphism (SNP) is a major type of DNA biomarkers (Hueber, Utz et al. 2002) and 

miRNA is one class of RNA biomarkers (Uhlmann, Brinckmann et al. 2002, Gunderson, 

Steemers et al. 2005, Raghavan, Lillington et al. 2005, Mitchell, Parkin et al. 2008, 

Duttagupta, Jiang et al. 2011, Pritchard, Kroh et al. 2012). Carbohydrate biomarkers are 

changes in glycoproteins, glycolipids or proteoglycans. They are generally very stable and 

can be used as biomarkers for pathogen and chronic diseases (Liang, Wu et al. 2008, Packer, 

von der Lieth et al. 2008, Lawrence, Brown et al. 2012).  
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Of these biomarkers, proteins are the most important, because proteins are the major 

functional bio-molecules in any organism (Rifai, Gillette et al. 2006). As a result, they are 

more closely related to disease initiation and progression. Protein biomarkers can be used 

for infectious diseases and chronic diseases like autoimmune diseases, Alzheimer’s 

diseases and cancer (Qiu, Madoz-Gurpide et al. 2004, Georganopoulou, Chang et al. 2005, 

Haab 2005, Keating 2005, Lueking, Huber et al. 2005, Kingsmore 2006). There are 

currently various technologies using proteins as probes including mass spectrometry (MS), 

protein or peptide microarrays and bead based immunoassay (Tanaka, Waki et al. 1988, 

Choi, Oh et al. 2002, Templin, Stoll et al. 2002, Aebersold and Mann 2003, Angenendt, 

Glökler et al. 2003, Angenendt 2005, Yang, Lien et al. 2008).  

Antibody biomarkers are the most important type of protein biomarker. There are 

several advantages of antibodies as biomarkers. First, an antibody response can be elicited 

towards any disease. This allows the use of antibodies as a universal biomarker for any 

diseases (Andresen and Grotzinger 2009, Ballew, Murray et al. 2013). Second, the antibody 

response can be magnified in titer. Upon encountering foreign molecules, the immune 

system will generate antibodies in extremely high amount, making antibodies a better 

biomarker than the foreign molecules. Third, antibodies can be measured in serum and are 

very stable. This allows the process of diagnosis to be simpler and more accurate (Cole, 

DeNardo et al. 1987, Geijersstam, Kibur et al. 1998).  
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Current microarray based diagnostic technologies 

Microarrays are widely used as a diagnostic technology.  They can be low in cost and 

can analyze thousands of proteins in single assay (Navalkar 2014). Microarrays can be 

customized to a specific disease according to the need of researchers (Russo, Zegar et al. 

2003). As a result, there are various types of microarrays, including DNA, RNA, protein 

and peptide microarrays.  

DNA microarrays are a common type of microarray. They are mostly used to profile 

human gene expression in different diseases (Heller 2002). The idea is that diseases can 

cause differential gene expression compared to healthy individuals and this can be used as 

diagnosis or be treated as risk factor. Pathogen DNA can also be printed onto the array to 

directly monitor for diagnosis of specific pathogens (Leinberger, Schumacher et al. 2005, 

Cleven, Palka-Santini et al. 2006). DNA microarrays have been used for diagnosis of 

infectious diseases, cancer and other chronic diseases (Cummings and Relman 2000, Chen, 

Liu et al. 2001, Chizhikov, Rasooly et al. 2001, Li, Chen et al. 2001, Petrik 2001). There 

are several commercially available DNA microarray platforms from Affymetrix (High-

Density microarrays), Nanogen (Microelectronic array), and new technologies are being 

developed (Diehl, Grahlmann et al. 2001, Degliangeli, Kshirsagar et al. 2014, Li, Zhao et 

al. 2014, Rödiger, Liebsch et al. 2014, Moran, Arribas et al. 2016). 

RNA microarrays are relatively less used because RNA is less stable (Scherrer, Latham 

et al. 1963, Salser, Janin et al. 1968, Auer, Lyianarachchi et al. 2003). RNA is usually 

reverse transcribed into cDNA followed by printing on to a cDNA microarray for diagnosis 

(Hegde, Qi et al. 2000, Seki, Ishida et al. 2002). RNA microarrays generally have similar 
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usage to DNA microarrays and have shown applications in various diseases (Zhou, 

Thompson et al. 2002, Gottardo, Liu et al. 2007). 

Protein microarrays are becoming more and more important in diagnosis because they 

can be used to study interaction between proteins, peptides and other molecules (Ge 2000, 

Angenendt, Glökler et al. 2003). There are several types of protein arrays: detection 

(analytical), functional and reverse phase microarrays, with analytical microarray being the 

most common one (Bertone and Snyder 2005, Hall, Ptacek et al. 2007). Antibody 

microarrays are a type of detection microarray. Protein microarrays, especially antibody 

microarrays, have been applied in diagnosis in various infectious and chronic diseases 

(Davies, Liang et al. 2005, Zhong, Hidalgo et al. 2005, Zhu, Hu et al. 2006, Kwon, Lee et 

al. 2008, Hartmann, Roeraade et al. 2009, Bilek 2014, Hu, Niu et al. 2015, Werner, Chen 

et al. 2015, Borrebaeck 2017, Lessa-Aquino, Lindow et al. 2017).  

Peptide microarrays are highly similar to protein microarrays, except here a relatively 

short peptide is used instead of long protein (Cretich, Damin et al. 2006). There are several 

advantages for using peptide array compared with protein array. First, peptides are shorter 

than proteins, which makes it possible to partition and identify specific region of the 

binding interaction. Second, peptide microarrays only require very small amount of sample 

and minimal preparation steps. Peptide microarrays that measures antibody binding are the 

most commonly used peptide array. Peptide microarrays are widely used to diagnose 

pathogen infections, cancer and other chronic diseases (Duburcq, Olivier et al. 2004, 

Gaseitsiwe, Valentini et al. 2008, Maksimov, Zerweck et al. 2012, Stafford, Cichacz et al. 

2014).   
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Immunosignature 

Immunosignature is a technology developed at the Center for Innovations in Medicine 

at Biodesign Institute, Tempe, AZ. It is a peptide microarray technology that incorporates 

advantages of both using antibodies and peptide as probes on the platform.  The unique 

feature of immunosignature is that instead of printing or synthesizing biological peptide 

sequences, non-biological peptides selected from random sequence space are used. Since 

immunosignature is not using sequences from any specific organism, it can be used to 

perform diagnosis on any diseases including infections, cancer and other chronic diseases 

(Restrepo, Stafford et al. 2011, Restrepo, Stafford et al. 2012, Legutki, Zhao et al. 2014, 

Navalkar, Magee et al. 2014, Stafford, Cichacz et al. 2014, Richer, Johnston et al. 2015).  

The general workflow of how immunosignature works starts from a drop of blood. Less 

than 1 µl of sample is needed in each assay (Chase, Johnston et al. 2012). Serum is 

incubated on the immunosignature array to allow interaction between antibodies in the 

serum with peptides on the array. Theoretically, a specific antibody will bind to peptides 

that are similar to the antibody’s original epitope. After incubation, serum is washed off, 

leaving only antibodies that are bound to peptides on the array. Fluorescent secondary 

antibodies are used to visualize the binding of primary antibodies (Stafford, Cichacz et al. 

2014). The basic premise of immunosignatures is that different diseases will reproducibly 

elicit the same antibodies that can be detected on the array. As a result, diagnosis can be 

performed by comparing disease sample versus healthy sample and analyze the differential 

antibody binding pattern. 
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There are several versions of immunosignatures. The earliest version consisted of 

10,000 peptides whose sequences were generated by a random amino acid selection process. 

The peptides were synthesized commercially and printed onto glass slides. The later 

versions consist of in situ synthesized arrays of 120,000~330,000 peptides. Programs were 

developed to choose the peptides from random sequence space that maximize chemical 

diversity. The boost in peptide number enables better distinguishing power because more 

peptides will allow for more precise binding and can better stratify the antibodies. The use 

of in-situ synthesis is an important advance for immunosignature. It can improve the 

quality of peptides because peptides will be synthesized in batch compared with printing 

each peptide individually. Thus the in-situ method can produce low variability in the 

quality between peptides. And in-situ synthesis gives the ability to synthesize much higher 

number of peptides at lowered cost. Purchasing peptides individually can be expensive 

compared with in-situ synthesis. Synthesizing more peptides in-situ only has minimal 

effect on cost. The only limitation of how many peptides to synthesize is space on the array.  

Early immunosignature tests used glass microscope slides (Stafford, Halperin et al. 

2012). The newer in-situ synthesized immunosignature are manufactured on silicon wafers 

(Donnell, Maurer et al. 2015). The manufacturing process is through photolithography that 

is similar to how Intel synthesizes CPUs and will be elaborated in Chapter 2 (Baidya, 

Dandekar et al. 2016). Briefly, peptides to be synthesized are re-coded into photomasks. 

Then each photomask is used in sequential order. At each step, a specific amino acid will 

be added onto the sequence at locations specified by the photomask. This process is 

repeated until all photomask are used and the desired peptides are synthesized on the 
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immunosignature array (Stafford, Cichacz et al. 2014, Donnell, Maurer et al. 2015). After 

synthesis, the wafer is cut into standard glass microscope slide size for further processing. 

Each wafer can be cut into 12 slides and each slide can process 24 independent assays 

simultaneously. 

The immunosignature technology itself is still evolving. There have been 

improvements in synthesis as described above. New sample preparation methods are being 

developed for immunosignature (Chase, Johnston et al. 2012). More advanced analytical 

methods of the signatures are being applied and optimized for immunosignature (Brown, 

Stafford et al. 2011, Kukreja, Johnston et al. 2012, Whittemore 2014, Donnell, Maurer et 

al. 2015). ASU spinout company HealthTell (www.healthtell.com) was founded to explore 

commercial usage of the immunosignature technology.  

Immunosignature has been used in performing diagnosis of various diseases. Navalkar 

et al used immunosignature to diagnose valley fever (Navalkar, Magee et al. 2014, 

Navalkar 2014, Navalkar, Johnston et al. 2015). Legutki et al used immunosignature to 

distinguish 6 types of pathogens and healthy individuals from each other (Legutki, Zhao et 

al. 2014). Richer et al used immunosignature to perform diagnosis on 7 types of infections 

and identified disease-specific epitopes (Richer, Johnston et al. 2015). Johnston et al 

showed immunosignature can be used to perform diagnosis for canine lymphoma (Johnston, 

Thamm et al. 2014). Stafford et al managed to distinguish 14 different diseases including 

various cancers and infectious diseases in parallel using immunosignature (Stafford, 

Cichacz et al. 2014). Restrepo et al showed immunosignature can be used to diagnosis 

Alzheimer’s disease (Restrepo, Stafford et al. 2011, Restrepo, Stafford et al. 2012). Singh 



9 
 

et al showed that immunosignature can distinguish chronic fatigue patients from healthy 

controls (Singh, Stafford et al.). All these results show the feasibility of using 

immunosignature as a diagnosis platform for various diseases of human or other animals 

with antibody-based immune systems. 

In addition to performing traditional diagnosis, Immunosignature is also a powerful 

research tool. The construct of using non-biological sequences enables unbiased study of 

various diseases at the same time. This allows researchers to find commonality and 

dissimilarity for diseases. For example, is it possible that all infectious disease share 

common signatures (Chapter 3)? Does the same cancer at different stages have different 

epitopes and how is it changed (Chapter 4)? Can our immune system itself distinguish 

bacterial versus viral infection (Chapter 5)?  

My research relies on Immunosignature technology throughout this thesis. I used the 

platform to performed diagnosis and answer fundamental biological questions.  

 

The use of antibiotics and challenges of antibiotics overdose problem 

Antibiotics are drugs used to treat or prevent bacterial infections. They can kill or 

inhibit growth of bacteria (Walsh 2003). One of the best well-known of antibiotics is 

penicillin, which can be dated back into 1920s (Abraham, Chain et al. 1941). Penicillin is 

best-known for its use during World War II that reduced mortality of wounded soldiers 

(Kardos and Demain 2011). After World War II, penicillin was quickly made available to 

the public for civilian use in multiple countries (Ligon 2004). The penicillin drug group 
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itself has seen several major developments, from ampicillin that offered broader spectrum 

in 1961, to carbenicillin that offers protection against Gram-negative bacteria (Knudsen, 

Rolinson et al. 1967, Anderl, Franklin et al. 2000).  

Antibiotics can be classified into several groups based on mechanism of action, 

spectrum or structure (Schwalbe, Steele-Moore et al. 2007). By mechanism, it can be 

divided into Bactericides and Bacteriostatic agent (Finberg, Moellering et al. 2004). 

Bactericides directly kills bacteria while Bacteriostatic antibiotics prevent bacteria from 

dividing (Pankey and Sabath 2004). Bactericides can be further divided into antibiotics that 

target the cell wall, cell membrane or essential enzymes. Penicillin is an example of an 

antibiotic that targets the cell wall. By spectrum, antibiotics can be divided into broad-

spectrum and narrow-spectrum (Rea, Dobson et al. 2011). As the name indicates, broad-

spectrum antibiotics work against a wide range of bacteria, while narrow-spectrum 

antibiotics only target specific types of bacteria. Ampicillin, which belongs to the penicillin 

group, is an example of broad-spectrum antibiotic (Montecalvo, Horowitz et al. 1994). By 

chemical structure, antibiotics can be divided into over 20 types. Some of the major types 

include penicillin, peptide, aminoglycoside and glycopeptide (Cunha 2010). 

The effectiveness of antibiotics makes society to rely more and more on them. 

However, the general usage of antibiotics is causing problems. Because bacteria are always 

evolving new antibiotics are needed (D'costa, King et al. 2011). An antibiotic can kill 

bacteria subtypes that are not resistant to it, while in the meantime promote the growth of 

a bacteria subtype that is resistant that antibiotic (Goossens, Ferech et al. 2005). As a result, 

antibiotics that used to be useful can stop being effective after years of clinical usage 



11 
 

(Hawkey and Jones 2009). New antibiotics need to be developed to counter this challenge. 

And the resistant bacterium can be more difficult to treat, especially if it is resistant to 

multiple antibiotics at the same time (Mitscher, Pillai et al. 1999). We can easily imagine 

the future where there are limited or no options to treat some bacteria.  Many reviews have 

called attention to this serious crisis. (Bell, Schellevis et al. 2014, Camargo, García et al. 

2014, Rossolini, Arena et al. 2014, Ghotaslou, Leylabadlo et al. 2015, Lainson, Fuenmayor 

et al. 2015, Teillant, Gandra et al. 2015, Gupta, Lainson et al. 2016, Sharma, Johnson et al. 

2016, Gupta, Lainson et al. 2017). 

As it has been described above, antibiotics can only be used to treat bacterial 

infection, with some examples of treating protozoa (Felsenfeld, Volini et al. 1950, Krupp 

and Madhivanan 2015, Park 2016). But they are not used to treat viral infections. The 

public generally does not know this is the case, and often requests doctors to prescribe 

antibiotics when they have flu, which is actually the major type of misuse of antibiotics 

(McNulty, Boyle et al. 2007). This misuse and overdose can cause resistance while at the 

same time do no good for the patient (Huttner, Goossens et al. 2010).  

In addition to the mistaken opinion of the public, one major reason for antibiotics 

over-usage is the lack of accurate diagnosis. Bacterial and viral infections can have the 

same symptoms, which makes it hard for doctors to diagnosis the type of diseases. Using 

respiratory tract infection as an example, it refers to various infectious diseases involved 

in the respiratory tract. This includes bacterial infections like Bordetella pertussis, 

Mycoplasma pneumoniae, Streptococcus pneumoniae and Haemophilus influenza and 

viral infections like influenza, Adenovirus, Herpes simplex virus and respiratory syncytial 
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virus (Eccles, Grimshaw et al. 2007, Ruuskanen, Lahti et al. 2011). Respiratory tract 

infections occurs more frequently in children and lower respiratory tract infections are 

actually the leading cause of death considering all infectious diseases (Organization 2004). 

Doctors are usually faced with the dilemma of without knowing the type of infection, 

whether antibiotics should be prescribed immediately to save the life of the child or be a 

little bit more cautious for the prescription. If an accurate diagnosis for distinguishing 

bacterial and viral infection existed, doctors do not need to make the choice and can handily 

decide on the correct treatment immediately.  

In Chapter 5 I will describe a diagnosis test to distinguish between bacterial 

infection and viral infection using immunosignature.  

 

Entropy as a measurement of system orderness 

Immunosignature may be powerful in terms of performing diagnosis. However, the 

high-dimensional nature of immunosignature makes it hard for people without 

bioinformatics background to interpret (Stafford, Cichacz et al. 2014). It would be best to 

summarize an immunosignature result into one single measurement so that the result can 

be interpreted by anyone. This idea should work like the concept of temperature. If your 

number of temperature is within a specific range, then you are probably healthy. If your 

temperature is higher or lower than the specific range, then you may become ill and should 

take appropriate preventative measures. This measurement does not need to be perfectly 

accurate, but should be able to reflect the health status of individual with relatively good 

accuracy. Note that since we are collapsing high-dimensional data into one single 
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measurement, this measurement will have less accuracy than the result by directly 

analyzing high dimensional data.  

There are various measurements can be tested for the feasibility of application to 

Immunosignature. These measurements can be divided into three major groups: central 

tendency , dispersion measurements and shape measurements (Chandler 1987, Dodge 

2006). Central tendency measurements aim at finding the “center” of the distribution. The 

most common types of central tendency measurement include mean and median. 

Dispersion measurements try to measure the stretchiness of a distribution. For example, 

variance measures how spread out is the distribution. Other common measurements include 

range, interquartile range (IQR), coefficient of variance (CV) and entropy. Shape 

measurements describe the shape of the distribution. Skewness and kurtosis are the major 

examples in this group (Mardia 1970). This means skewness will tell you whether most 

data are shifted to the left, to the right, or equally balanced for both ends. Skewness 

measures asymmetry of the distribution, while kurtosis measures the “tailness” of the 

distribution (Joanes and Gill 1998). All of these measurements have the potential to be 

used as the single statistical measure to describe the immunosignature distribution. 

However, as will be discussed in detail in chapter 6, entropy is found to be the best 

measurement.  

Entropy measures the randomness or uncertainty of the distribution (Rényi 1961). 

In equivalence, it measures the information contained from the distribution content. More 

information equals less uncertainty.  A coin toss is an example of high entropy, because 

the probability of the next result is totally unknown, with both sides having equal chance 



14 
 

to appear. As a result, a coin toss contains minimal information and has maximum 

randomness. An opposite example is the English text (Shannon 1951). Even though we 

cannot predict with 100% accuracy which word will follow another one, we do know that 

certain characters are used more than others and certain words will have higher probability 

to follow a specific word. There is research that shows missing a small portion of words in 

a sentence or paragraph does not influence the understanding of the content (Honeyfield 

1977, Beck, McKeown et al. 1983). As a result, English text contains lots of information 

and lower uncertainty, and is an example of low entropy. The equation of Shannon’s 

entropy is written as follows: 

H(X) = − ∑ 𝑃(𝑋𝑖)

𝑛

𝑖=1

log𝑏 𝑃(𝑋𝑖) 

X is the random variable with possible values of X1… Xi. P(X) is the probability 

function. This concept was first introduced by Claude Shannon in 1948 (Shannon 1948). 

He tried to use entropy to measure the uncertainty in messages for the application of 

encoding information. However, the concept was quickly adopted by researchers from 

various fields for new tasks. For example, entropy has been used to describe diversity of 

species (Jost 2006). It has been used to calculate stochastic process information rate (Cover 

and Thomas 2012). And entropy has been used in improving financial decisions (Tang, 

Leung et al. 2006).  

Entropy has also been used extensively in various aspects of biological research. It 

is applied to research on evolution (Gladyshev 1999). It is used in analyzing functional 

genomics (Butte and Kohane 2000). Neurologist performed research using entropy (Shaw, 
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Seneff et al. 2014). However, no one has used entropy to do diagnosis using microarray 

data. In Chapter 6, I will describe the feasibility of using entropy to describe the health 

status using Immunosignature technology.  

 

Project description 

This thesis focuses on using Immunosignature technology to answer various new 

questions about infection and health status.  

In Chapter 2, I described the contributions I made in optimizing the 

Immunosignature technology. This improvement enables Immunosignature to represent 

much larger sequences space and potentially increasing disease distinguishing power. I 

developed various scoring metrics to evaluate the performance of different 

immunosignature versions, shed light on potential biases in sequence synthesis and helped 

to gain better understanding of the platform itself. 

Chapter 3 describes an unusual phenomenon of all pathogens sharing the same 

signature. I first observed it and tested it on various datasets and various diseases. I then 

identified the epitopes behind the signature and proposed possible biological relevance of 

the common signature. The possible usages of this finding are in population monitoring for 

an unknown disease outbreak and broadly protective vaccines against a large group of 

pathogens. 

The next Chapter investigates the cancer epitope evolution from early to late stage. 

I found the epitopes are different at different stages. The immune response is different to 
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different epitopes and suggested the immune response is efficient towards pathogen-like 

epitopes, indicating the immune system might have limitation and can only work against 

specific epitopes. 

In Chapter 5, I contributed to the clinical relevant problem of distinguishing 

bacterial infection from viral infection. Using the Immunosignature technology I am able 

to develop a classifier that is >10% more accurate than current diagnostics. I further 

identified the peptides that are most important in the diagnosis and identified the function 

sequences of those peptides. 

Chapter 6 presents the finding of using single measurement (entropy) to represent 

the complex Immunosignature readings. Various factors that can influence entropy values 

are first investigated. The distribution of entropy is different between patients with 

infectious diseases or cancer from the healthy group.  

To summarize, this thesis represents my work from optimizing the platform to using 

Immunosignature to answer various questions that are either clinically relevant or of 

theoretical research interest. All these results show that Immunosignature is a powerful tool 

that can be used in diagnosis of various diseases and perform fundamental biological 

research.  
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OPTIMIZATION OF IMMUNOSIGNATURE PLATFORM WITH MASK DESIGN 

Abstract 

Immunosignaturing is a method by which random-sequence peptides in microarray 

format are used to assess antibody properties from persons suffering from chronic or 

infectious disease.  With 10,000 random-sequence peptides, antibodies against diseases 

exhibit concerted behaviors allowing disease prediction through deconvolution of 

antibody-peptide interactions.  Early efforts proved feasibility with only 4000-10,000 

peptides per array.  With more peptides, the precision with which antibody behavior can 

be determined increases far more than might be predicted.  Physically printing peptides, 

even with high precision non-contact printers, will not enable the density necessary for 

high content peptide microarrays.  However, lithography systems and in-situ synthesis will.  

Shadow mask technology is very robust, enabling millions of peptides to be created on a 

standard microscope slide.  A downside of this technology is the upfront cost of masks.  

For creation of a 17mer peptide with 20 different amino acids, one needs 340 masks, and 

340 synthesis steps.  High numbers of masks are expensive and impose a risk of failure.  

By reducing the number of masks, one decreases the number of 

protection/deprotection/synthesis steps.  We evaluated 2 Mask generation methods with 

different parameters using various bioinformatics scoring metrics.  Results indicate that a 

more sophisticated filtering system for peptide selection coupled with mask reduction can 

enable a very diverse peptide library with a minimum of repetition. 



18 
 

Introduction 

The identification of biomarkers for classification of existing diseases could 

provide a rapid and inexpensive adjunct to standard diagnosis.  Immunosignature 

technology has provided researchers with a tool for diagnosing disease with a single drop 

of blood, and leverages the interaction of serum antibodies with random-sequence peptides.  

The initial product was a 10,000 peptide microarray on which was spotted pre-synthesized 

17mer peptides with a constant 3mer linker.  This array is responsible for numerous 

successful disease classifications and analytical techniques specific to immunosignaturing 

(Legutki, Magee et al. 2010, Brown, Stafford et al. 2011, Restrepo, Stafford et al. 2011, 

Chase, Johnston et al. 2012, Restrepo, Stafford et al. 2012, Stafford, Halperin et al. 2012, 

Navalkar, Magee et al. 2014, Stafford, Cichacz et al. 2014).  Advantages of this system are 

purity and ease of mass spectrometry from HPLC-purified peptides, and long shelf-life of 

lyophilized peptides.  The production of the microarray is rapid and simple - by diluting a 

master mix of peptide into 384-well plates and printing onto commercially produced 

aminosilane-coated glass slides using commercial non-contact piezo printing (AMI, Tempe, 

AZ), the cost per slide is fixed and predictable, and the quality is high.  However, this 

manufacturing paradigm does not scale well, with the costs remaining fixed rather than 

scaling with volume.  Also, one can only print ~30,000 spots easily on a microscope slide 

because the solubility of random peptides differs based on sequence, and thus their printing 

performance is quite variable.  Ironically, random peptides suffer from this much less than 

life-space peptides due to random distribution of pI and hydrophobicity (Bigelow 1967, 
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Parks 1967, Rose, Geselowitz et al. 1985).  Life-space peptides are often quite hydrophobic 

due to the way nature evolved proteins to interact with water and with cellular membranes. 

Computer manufacturers have been able to leverage optical lithography to 

continually reduce the size of electronic features that can be etched, enabling greater 

computation speed, reduced energy usage, and reduced cost as feature sizes shrink.  There 

are optical and electronic barriers to this process, but so far Moore’s Law has been upheld 

(Schaller 1997).  Manufacturing of peptide microarrays must be made scalable if 

immunosignaturing is to be useful as a method to continuously monitor health (Stafford, 

Wrapp et al. 2016).  We have developed a method that uses semiconductor-grade 

equipment to generate peptides on a silicon surface, and have increased the number of 

peptide features from 10,000 per slide to over 8M peptides per slide.  To create the same 

random library found on the 10,000 peptide glass slides, one needs 340 different masks. 

Photolithography of peptides can use either light-activated amino acids that couple 

upon exposure to light (PepperPrint) or use photoacid or photobase (PAG or PAB) 

generators that enable BOC or F-MOC synthesis (LC Sciences) (Levenson, Viswanathan 

et al. 1982, Nuwaysir, Huang et al. 2002).  We chose the more conservative approach of 

using photoacids and BOC synthesis with features of 10um in width spaced at 15um center-

to-center distance.  This method can use either mask-based illumination or digital light 

projection (DLP) to produce the acid.  We chose the more precise mask-based system 

because of the number of features that can be created and the precision of near-contact 

mask-based lithography.  This would yield 330,000 peptides per 7mm square area, with 24 

different arrays per 1x3” microscope slide, or 342 replicate arrays per 8 inch wafer.  To 
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reduce mask complexity, we removed 4 amino acids from the selection pool due to their 

redundancy and lack of importance in previous studies:  C, I, Q and M were left out yielding 

a 17mer with 16 different amino acids, or 16*17=272 masks for a fully unbiased random 

set.  We developed an algorithm that used the number of masks to restrict the amino acids 

in a growing peptide.  Thus, for any number of masks less than 272, we create peptides that 

are non-random.  Because of the first selection process, the peptides were highly biased at 

the C and N-terminus due to the selection of amino acids during virtual mask generation.  

We synthesized a number of wafers using the peptides thus generated, then revisited the 

peptide generation software to create a version 2.   

In this chapter, I performed extensive bioinformatics analyses on the peptides 

produced and present several attributes that should be considered when designing masks 

for immunosignaturing microarrays. The performance of old Mask generation method and 

new generation method are compared to understand the improvements in various metrics 

scores and stability. 

 

Method  

Peptide Generation 

Peptides are generated using the script written in Matlab by Dr. Neal Woodbury. 

Variables can be changed including number of Masks and which amino acids to use. For 

both Mask generation methods, we used 18 amino acids excluding C and M.  When 16 

amino acids were used, that eliminates I and T, and the 14 amino acid set excludes E and 
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S. For the “new generation method”, peptides are generated with initial parameters of 

maximum length of 16 aa, minimum length of 10 aa, minimum new pentamer of 5, 

maximum percent of each amino acid at the N-Terminus of 10% and number of N-terminus 

amino acids to constrain of 1. Output from the analysis is sequences of numbers, which are 

then assigned amino acids in alphabetical order, and then sequence reversed to get the 

Nterm to Cterm standard nomenclature sequence peptides. The pure random peptide set is 

generated using a random number generator in R software with length of 17 aa for all 

peptides. The generated peptide libraries are listed in Table 2.1. 

old design new design 

Mask # aa # 

Success or 

not Mask # aa # Success or not 

340 20 Yes 340 20 Yes 

272 20 Yes 272 20 Yes 

140 20 Yes 140 20 Yes 

140 18 Yes 90 20 Yes 

140 16 Yes 90 18 Yes 

140 14 Yes 90 16 Yes 

70 20 Yes 90 14 No 

35 20 Yes 70 20 Yes 
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Pure random 20 Yes 35 20 No 

 

Table 2.1. Mask design settings used in this study. 

Both old and new Mask generation methods are used. The number of Masks ranges from 

35 to 340. The number of amino acids ranges from 14 to 20aa. 18 separate sets were used 

in this paper, including 17 sets using the Mask design algorithm and 1 set of pure random 

sequence peptides generated using a random number generator, which is used as the gold 

standard to compare the randomness of different Mask settings. Some Mask settings in the 

new design are tested but are not able to generate 330,000 peptides. They are not used in 

the subsequent studies. 

 

PI distribution analysis 

PI value of each peptide is calculated using the ProtParam tools in Biopython 

(Gasteiger, Hoogland et al. 2005). Distribution is obtained by normalizing the values in 

each setting with mean of 7 and standard deviation of 1. A distribution figure is generated 

using SAS software. The difference index is calculated with the formula above and figure 

generated in Excel.  

 

Pentamer coverage calculation 
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Each peptide is dissembled into continuous pentamers. All pentamers from the 

same Mask setting are analyzed using R to retrieve the percentage. Note that the total 

number of all possible combination changes with the total number of amino acids used.  

 

Amino acid position bias calculation 

Sequences are imported and percentage calculated in SAS. Peptides are aligned at 

the N-Terminus. Missing values are introduced at position more than 10 amino acids away 

from N-Terminus and are disregarded during analysis. Data are then imported into Excel 

to make the graph. 

 

Blast experiment procedure 

Peptides are blasted against Nr database using the blastp program offered by NCBI 

(Johnson, Zaretskaya et al. 2008, Madden 2013). The command used to blast is attached 

below: 

“blastp -db nr -query input -out output  -outfmt "6 qseqid sgi sacc evalue length nident" -

task blastp-short -gapopen 10 -max_target_seqs 100 -num_threads 12 -evalue 10000”  

Sequences are required to give at most 100 output under e-value of 10000. All 

output from the same Mask setting are imported into SAS. The frequency of each protein 

is calculated and then matched with their lengths. The results from different Mask settings 
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are compared to retrieve the one million proteins that have the largest standard deviation 

of frequency. Data are at last imported into JMP Pro 10 to make the graph.  

 

Mask deletion experiment 

The mask file is imported into R to perform the mask deletion and random selection. 

The subsequent experiments are carried out using the same methods as above. 

 

Result 

Testing in-silico produced peptide characteristics 

Physical characteristics of the peptides were tested to see whether we can mimic 

the performance of pure random peptide set. Pure random set contains peptides generated 

using random number generator. We examined molecular weight, isoelectric point (pI) and 

hydrophobicity all of which are generated using the ProtParam tools with Python. 

Distribution of molecular weight and hydrophobicity are the same for all Mask settings. PI 

distributions are able to illustrate the difference between different Mask settings for both 

old mask generation method (Figure 2.1) and current new mask generation method (Figure 

2.2). Basically, with the decrease of total Mask number, the pI distribution deviates more 

from the pure random set, which is considered the standard of best performance. But 

overall, the old Mask generation method yield distribution that are less like random set 

while the new generation method is able to keep similarity to the random set. This means 
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the information loss accompanying reduction of mask number is significant in old mask 

generation method but is kept at minimal level for new mask generation method. 

 

Figure 2.1. pI distributions for designs using old Mask generation method show large 

variation. 

Designs using old Mask generation method with different parameters are generated and 

pI for each design is calculate. The figure shows various designs have distinctive pI 

distributions. As the mask number is reduced, the distribution becomes more and more 

different compared with the random set distribution. 
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Figure 2.2. pI distributions for designs using new Mask generation method show large 

variation. 

Designs using new Mask generation method with different parameters are generated and 

pI for each design is calculate. The figure shows various designs have similar pI 

distributions. As the mask number is deduced, the distribution has minimal changes 

compared with old Mask generation method. 

 

Figure 2.3 shows the difference index change with total Mask number and amino 

acid choices. Difference index is measured using the equation below: 
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Difference index = ∑ 𝑎𝑏𝑠(lg (𝑝𝐼(𝑠𝑒𝑡1) /𝑝𝐼(𝑠𝑒𝑡2))) 

Abs is absolute value. PI is the isoelectric point. 

The pI of each peptide in one set is ranked from low to high and normalized with 

mean of 7 and standard deviation of 1. Each pI with the same rank in two sets are compared 

to get the difference index. The more similar the two distributions, the smaller the 

difference index will be. We compared all Mask settings to the pure random set, each with 

three replicates. The quantified result shows the same trend. When decreasing the total 

number of Masks or amino acid choices, the difference index increases. However, the index 

increases much more in the old Mask algorithm than in the new Mask algorithm.  

  

Figure 2.3. Difference index of pI distributions for designs using different Mask 

generation method. 
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Each Mask design is compared with the pure random set to calculate the difference index. 

As the number of Mask or amino acids is reduced, the different becomes more significant 

for both old and new generation method. However, the new Mask generation method 

remains more similar to random set compared with old Mask generation method. And the 

stability is also increased for new Mask generation method, as it is shown in the figure, old 

designs have large standard error.  

 

Testing Random Space Coverage 

Immunosignature is used to capture the antibody activity in human. Since there is 

a large pool of antibodies, which can bind to almost any possible sequence, we want to 

make sure on our immunosignature the epitopes for every antibody exists, along with their 

mimotopes, so that we can capture all possible antibody composition in that specific sample. 

By covering random space, we mean to cover all possible combination of amino acids, 

which will require infinite number of peptides to accomplish. And since we are limited by 

manufacture consideration, only certain number of peptides will be used. Through 

calculation, all tetramers can be covered multiple times. And all pentamers can be covered 

once if no pentamer is highly repeated. Hexamers can be only covered for a small portion. 

Effort is made to optimize the pentamer composition for the new Mask design. No 

optimization of this kind is performed for the old Mask design. Figure 2.4 shows the 

pentamer coverage plot for all the Mask designs. When decreasing the total Mask number, 

the system becomes less complex, more pentamers are missed because not many choices 

are offered. When decreasing the total number of amino acid choices, since the total 
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number of possible pentamers are fewer, which is n^5, n is the total number of amino acid 

choices, the total coverage percent increases significantly. By comparing the old Mask 

design and the new Mask design, with the same Mask number, the new Mask design always 

perform better than the old one.  

 

Figure 2.4. Pentamer coverage graph for different Mask designs. 

Sequences from each Mask design library are cut into pentamers and counted distribution. 

New Mask generation method generally can represent more pentamers compared with old 

Mask method with same parameters.  
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Testing Amino Acid Position Bias 

In order to get an unbiased result, each amino acid should be represented evenly at 

each position of the peptide from the N-Terminus to the C-Terminus. When using less 

Masks in the old Mask design (shown in Figure 2.5), bias becomes more obvious. It can be 

generated at any position and at any amino acid, adding instability to the system. However, 

for the new Mask design, bias is minimal compared to old design. Bias begins to appear at 

90 Masks and only appear at the C-Terminates of the first few amino acids. 

 

Figure 2.5. Amino acid position bias for different Mask designs. 
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X axis are the different Mask settings, with 20 amino acids within each Mask setting. Y axis 

are the position of the amino acid on the peptide from the N terminates to C terminates. Z 

axis is the percentage of occurrence of the amino acid at specific position. Some amino 

acids within certain Mask settings are 0% at all position because they are not utilized in 

that setting.  First two rows are designs with old Mask generation method with increasing 

number of Masks. Lower two rows are designs with new Mask generation method with 

decreasing number of Masks. New Mask generation method overall has lower amino acid 

position bias compared with old design. 

 

Testing Natural Space Coverage 

Since antibodies are mostly targeting proteins in the nature, we also tested the 

random space coverage of each Mask setting using the blast program. Each peptide in a 

specific Mask design is blasted against the NR (Non-Redundant) database of NCBI and 

100 matches retrieved or all matches below e-value of 10,000, whichever is smaller.  All 

the output from a Mask design should represent the natural space, or biological space that 

set of peptides can cover. Because we want to capture all possible antibody activity, better 

natural space coverage should be optimal. And because to make sure the peptides are 

random, which means they should be not be biased towards certain patterns or sequences, 

we also measured the correlation of the number of times a protein was hit during the blast 

search with its length. If the peptides are random, the proteins should be hit with a length-

dependent manner: the longer the protein, the more times it gets hit.  
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In Figure 2.6 we can see most Mask settings are almost the same and behave in a 

length-dependent manner. The 35Masks setting in the old Mask design is the only 

exception. Many short proteins are hit much more times than longer ones, indicating that 

in this setting, the peptides are looking for specific pattern of sequences and the sequences 

are probably far more similar to each other than to potential proteins.  If a given protein 

has that particular overrepresented pattern, it will get hit that protein many times. If a 

protein does not have the pattern, even if it is very long, it is unlikely to be hit.  

Notice the transition zone from 140Masks, 20aa setting in the old Mask design to 

35Masks setting in the old Mask design. The light blue region becomes broader as the total 

number of Masks or amino acid choices become smaller. This suggests that the blast 

program is less sensitive to length. And less sensitivity to length indicates the peptides are 

becoming less random.  

For the coverage of Non-Redundant (NR) database, the complexity of the setting 

positively correlates with the coverage percentage well. The more Mask used and more 

amino acid choices, the better the coverage. Notice that both in the old and new Mask 

setting, the setting using 18aa is always performing better than the setting using 20aa with 

the same number of Masks.   
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Figure 2.6. Blast experiments against NR database. 

This graph shows the analysis of the output from blasting all peptides within each Mask 

setting against the NR database. X axis are the designs. Order the same as figure 2.6. Y 

axis are one million proteins selected from NR database ranked by their length from short 

to long. Color in the graph represents the number of times the specific protein is hit during 

the blast search within each Mask setting (more hits from colder to warmer colors). The 

histogram below is the percentage of hit proteins within the NR database. Rules for 

selecting the one million proteins is they must have the largest standard deviation for the 

value, which is represented by color. 
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Defining roles of Masks at different position 

The 90 Masks are carefully designed with sequential order. As a result, Masks at 

different position should have different functions and we could expect random sampling of 

the Masks in a different order will distort the design and result in huge performance 

decrease in all measurements.  

The Mask setting that will be used in this experiment is the set that will be used for 

our next generation immunosignature platform, which includes 90 Masks and uses 18 

amino acids (excluding C and M).  To test the function of Mask at the C-Terminus, N-

Terminus and the middle, we delete the corresponding Masks to test the effect, leaving 60 

Masks in each subset. Also, to test the effect of random sampling, 60 Masks are randomly 

selected and placed in random order.  

The peptide sets are then used to retrieve their length distribution and pentamer 

coverage as before. Results of length distribution is shown in figure 2.7. The pentamer 

coverage result is listed in table 2.2. From the result, it is easy to see that each part of the 

masks has distinctive roles. The N-Terminus Masks are used to balance the amino acid 

position bias at the N-Terminus as they were designed to be. The middle Masks are used 

to extend the pentamer coverage. And the C-Terminus Masks are used to offer pentamer 

coverage to some level and ensure peptides meet the minimum length requirement. As can 

be expected, random sampling of the masks cause the design to fail dramatically. 
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Figure 2.7. Length distribution after deleting specific parts of Masks. 

The same Mask setting is used to generate the 4 (6) subset. The length distribution is shown 

in the table. Deleting Masks near the N-Terminus results in significant reduction in length 

of peptides. 

 

Peptide set Pentamer coverage 

Delete C-Ter 39% 

Delete mid part 33% 

Delete N-Ter 45% 

Random set 17% 

Table 2.2. Pentamer coverage after deleting specific parts of Masks. 
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The same Mask setting is used to generate the 4 (6) subset. The pentamer coverage is shown 

in the table. Deleting Masks near the mid part results in significant reduction in pentamer 

coverage. 

Discussion 

In silico experiments can be extremely useful in determining how constraints 

imposed upon a random-sequence generator affect the peptides.  In order to reduce mask 

cost and manufacturing time for creating an in situ-based peptide microarray, we examined 

methods to reduce these parameters while still producing a ‘random’ sequence peptide.  

These methods are not necessary when creating an epitope array, since the sequences are 

predetermined and must be created in the original order.  For random sequences however, 

the number of masks can be reduced yet the sequence of resulting peptides can be pseudo-

random.  For reduced masks, the random number generator suggests a particular amino 

acid for a particular position in a particular peptide.  Two Mask designs are currently 

available. Older design was used to generate CIM 330k version 1 chip. And newer design 

will be used to generate CIM 330k version 2 arrays. In the old Mask design, total Mask 

numbers are pre-assigned and then 17 Masks among them will be random selected. Each 

Mask will be randomly assigned an amino acid. For the new Mask design, pure random 

sequences are first generated. Total Mask number will be assigned and sequences will be 

tested to fit into the Masks. Some peptides can fully fit into the Pre-assigned Masks and 

some can only fit partially. Sequences with fitted length of less than 10 will be discarded. 

Other requirements the peptides need to meet to be incorporated into the candidate list are: 

each amino acid cannot be over ten percent at the N- terminus and each new peptide must 
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present a certain number of new pentamers. When decreasing the total Mask number, the 

effect would be the complexity of the peptides will be reduced since there are less choices 

for which amino acid can appear at which location, but how much and what is the effect? 

We examined several Mask settings in both the old and new Mask design along with a pure 

random peptide set. 

Before we created any real peptides, we examined the physical characteristics of 

resulting peptides from our algorithms, including isoelectric point (pI), molecular weight 

and hydropathicity. Molecular weight and hydropathicity do not illustrate too much 

difference between different Mask settings. The result of pI distribution shows profound 

difference between different settings and is given much investigation. Typically, when 

using the pI distribution for the pure random set as a baseline, more deviation occurs when 

less Masks or amino acids are used because there is a bias imposed by the lack of choices 

in amino acids and positions. The final peptide design is increasingly biased as masks are 

reduced and generate pseudorandom sequences. Some information in the immunosignature 

assay is lost because of the bias, as demonstrated by binding and analyzing nearly 300 

different monoclonals. Within each Mask setting, the replicates can vary a lot, far more 

than when more Masks are used, indicating the overall system is less stable and bias can 

be generated in disparate directions. What is desirable is the set that shares the same 

distribution as the random set and yet use the minimum number of Masks. We found that 

using more amino acids does not necessarily guarantee a better distribution. In the new 

Mask design, the set using 90 Masks and 18 amino acids has more similarity to the set 

using 90 Masks and 20 amino acids. This should be the result of bias correction introduced 
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by limiting amino acid choices. When limiting the number of Masks, certain biases can be 

introduced. However, when limiting amino acid choices, another kind of bias is introduced, 

and it seems in this case, the second kind of bias serves as correction for the first bias, 

making the total distribution more similar to random. There is a biological impact of 

restricting amino acids, though.  Fewer amino acids means fewer perfect matches to 

existing proteins.  Most proteins take advantage of the full set of naturally occurring amino 

acids.  By restricting the number of amino acids and reducing the mask number, we reduce 

the amino acid/position bias but impose a less ‘total-variability’ peptide, which is fine if 

the universe used only those amino acids.  However, in the natural world, that restriction 

must have some impact which at this point is unknown. 

Up to this point, we have worked on the first generation 330k array. The setting we 

chose is the one using 140 Masks and 16 amino acids, excluding C, Q, M and I using 

previous immunosignature data as a guide.  Although the average performance for this 

setting is not perfect, since there is a very large error bar across three replicates, we can 

still get one set that performs well. And that is what we did: generating many sets and 

choosing the best among them. Also, from the antibody experiments, a big improvement 

of performance happens at changing from 70 Masks to 140 Masks. Based on this evidence, 

we made our first generation 330k array, which is been replaced by the second generation 

of 330k array using the new mask algorithm. 

When constructing the new algorithm, more requirements are considered in order 

to achieve better performance. In the old algorithm, there is actually no upper limit and no 

lower limit on the number Masks, except that the Mask number need to be larger or equal 
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to the peptide length. There is no selection of sequences generated, replicates can occur in 

the same set of peptides. And since all the sequences are generated randomly within the 

given Mask setting, what we will get are sequences with normal distribution. What we 

actually want is uniform distribution, where all sequences are represented equally. So 

sequences in the new design are not purely random by definition, but are biased in a way 

like uniform distribution. New selection criteria are used to meet the need. 

Since we want the sequences to spread out and we only have limited number of 

sequences, it is not possible to represent all peptides. What would be a logical idea is to 

optimize in order to represent certain n-mers. If n is too big, we cannot get good coverage. 

We decided to optimize the representation of pentamer space, because with 330k peptides, 

we can cover almost 100%, theoretically. These studies show pentamers are most important 

for antibody binding (Rubinstein, Mayrose et al. 2008, Sun, Xu et al. 2010, Kringelum, 

Nielsen et al. 2013).  

In the pentamer coverage graph, the distribution for the pure random set clearly 

shows a normal distribution with large deviation. Note that the percent of zero occurrence 

pentamer is very low. So the overall performance of this setting is not bad. However, we 

can change the distribution to make it more like uniform distribution, where the distribution 

has a much smaller deviation. In that way, there will be fewer unrepresented peptides and 

there will be fewer over-represented peptides. And as can be expected, the percent of 

unrepresented pentamers goes higher when limiting the number of Masks. And with the 

same Mask number, the percentage goes lower when limiting amino acid choices, because 

the total possible combinations are fewer. However, for the settings in the old Mask design, 
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the distributions are skewed towards the unrepresented and over-represented pentamers, 

which is opposite to what we planned. Too many over-represented pentamers also restrict 

other pentamers to be represented. However, this is what we can do with the old Mask 

design and we have to choose one to build the first generation 330k array. For the new 

mask design, since we are requiring new peptides to present new pentamers, what can be 

expected is under-represented pentamers are always dominating throughout the Mask 

settings. Over-represented pentamers are never significant among any setting. The 

distribution from 340 Masks to 140 masks are the same, skewed towards under-represented 

pentamers with a small deviation, which is exactly what we want. Information begins to 

change at 90 Masks. We are able to represent all possible pentamers when limiting amino 

acid choices to 16 and represent ~80% when limiting to 18. Using 16 amino acids seems 

to be the best choice in this experiment. However, as it is shown in the pI distribution and 

the following experiments, deleting too many amino acids is not the optimal choice. Using 

18 amino acids should allow a high level of coverage yet without losing too much 

information.  

For the amino acid position bias, as stated in the result part, bias can be generated 

at any position and at any amino acid in the old Mask algorithm and can only be generated 

at the starting position of C Terminus and only for the first few amino acids. And the bias 

can be extreme in the old Mask design, while the bias is only minimal in the new design. 

So overall, the new Mask design has almost no preference to any amino acids at any 

position, which makes the new algorithm far more superior in eliminating bias compared 
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to the old design. The overall trend for both designs is still more bias with fewer Mask 

number.  

For the new Mask design, there is no obvious bias at the N terminus because we 

are restricting each amino acid to be less than 10% arbitrarily. Without that restriction, 

similar bias can be expected at the N terminus like the C terminus. Notice that biggest bias 

also occurs at the termini. When investigating what might be the reason for this, some 

innate shortcoming of the Mask design were discovered. When designing the algorithm, 

we thought using 340 Masks allows all amino acids to appear at each position, which 

should mean it is purely random. However, as shown in the Figure 2.5, the old design using 

340 Masks still contains bias, albeit small. This makes it different from the purely random 

set, where there is no bias at all. This is because in the old Mask design, sequences are 

generated within the Masks.  Although all possible peptides can be generated, they are not 

of equal probability. This doesn’t happen in the new Mask design because the sequences 

are generated a priori using a random number generator without the influence of Masks. 

When trying to fit the peptides into the Masks, there will be no problem with higher Mask 

numbers, as shown in the Figure 2.6.  No bias is generated from 340 Masks down to 140 

Masks. However, when with low Mask numbers, bias still exists because we wish to fit in 

at least 10 amino acids into the given Masks, and peptides starting with the first few amino 

acids have higher chance to pass these criteria, for the same reason as above.  

The reason for the bias from the old Mask design is because we are randomly 

assigning amino acids to each mask instead of assigning amino acids in a specific order.  

We want everything to be as random as possible in the old Mask design. When the mask 
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number is high, there is not much problem. When the Mask number goes down to lower 

ones, the sample size is too small that the outcome is usually unpredictable. This should be 

the main reason for in the old Mask design, large error bar and deviation is shown among 

replicates.  

Although we designed the program, we do not know exactly what the roles are of 

the masks at different position. By deleting the corresponding masks, we can see the effect 

of losing those masks and know their functions. From the result, deleting the middle masks 

yields the longest peptides, indicating there are the fewest amino acids generated using 

those masks. While deleting the C-Terminus masks yields the shortest peptides, indicating 

most amino acids are added in those masks. When looking at the pentamer coverage, 

deleting the middle masks yields the worst pentamer coverage, indicating those masks are 

crucial to supply the diverse pentamer coverage.  

 Overall, this chapter represents a method that can be used to generate peptide 

sequences for Immunosignature. Performance comparisons are made between old and new 

Mask generation method. The new Mask generation method is superior in all scoring 

metrics. The improvements in peptide library sequences will enable Immunosignature 

platform to perform better on distinguishing diseases, since the possibility to catch more 

antibody binding. And in the following chapters, Immunosignature arrays generated from 

new Mask algorithm are both used.  
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A COMMON ANTIBODY RESPONSE IS INDUCED BY A WIDE VARIETY OF 

HUMAN PATHOGENS 

Abstract 

An infection is managed by both an innate and an adaptive immune response to the 

pathogen.  It is thought that native antibodies present at the time of infection are a 

component of the innate response and may play a role by retarding the pathogen 

(Ochsenbein, Fehr et al. 1999). This delay allows the second arm, the adaptive response, 

to be activated and evolve to contain the infection (Medzhitov 2007).  We have discovered 

a third arm of the antibody response to infection.  We find that 12 different pathogens, 

including viruses, bacteria and eukaryotes, induce a common set of IgG reactivity.  This 

response was discernible using the immunosignature technology which entails profiling 

sera antibodies on high-density (125-330k features) peptide arrays (Stafford, Halperin et 

al. 2012, Sykes, Legutki et al. 2012). The peptides are chosen from random sequence space 

to maximize chemical diversity.  Using sera from 405 infected and non-infected people we 

find that almost all the infected samples can be sorted by pattern from non-infected people. 

A signature that separates a single infection type from non-infected consists of both the 

common signatures and the specific adapted signature.  The common signature peptides 

can be used to separate any other infection from controls.  A common signature is not 

evident in comparison of 4 cancer types to non-cancer subjects.  A comparison of the 

peptides in the common signature to the Immune Epitope Database (IEDB) identified 44 

amino acid sequences that are shared between many pathogens in the IEDB and are in the 
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common signature we identified (Vita, Overton et al. 2014).  We propose that viruses, 

bacteria and eukaryotes that have evolved to become a human pathogen elicit a common 

IgG antibody response to a limited number of shared epitopes.  This common response 

may, like the native antibodies, serve to modulate the infection in the early stages until the 

specific adaptive response matures.   

 

Introduction 

Antibodies play a key role in the adaptive immune system. Each time the host is 

infected with a pathogen and the innate immune system fails to clear the invader, stimulated 

progenitor B cells followed by short-lived and long-lived plasma cells will produce 

antibodies that bind to a pathogen and offer partial or in some cases, neutralizing protection 

(Medzhitov 2007). It is logical then that with each exposure, antibodies will be produced 

specifically for that pathogen.  Subsequent cross-reactivity are usually regarded as 

imprecision of the immune system. However, there has been no systematical study to test 

what the general limit is of antibody cross-reactivity or if there is any biological relevance 

of such phenomenon, mainly because there is no appropriate platform with which to study 

general cross reactivity . 

Immunosignatures are patterns of reactivity between serum antibodies and random-

sequence peptides.  An immunosignature can detect differences between people based on 

their history of vaccines and cumulative environmental exposures, as well as differences 

based on HLA and other genetics of the humoral immune system.  It can also detect 

common reactivity in people exposed to the same pathogen (Chase, Johnston et al. 2012, 
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Hughes, Cichacz et al. 2012, Malin, Kovvali et al. 2012, Restrepo, Stafford et al. 2013, 

Sykes, Legutki et al. 2013, Stafford, Cichacz et al. 2014). Immunosignatures are inherently 

multiplexed: they contain enough signals that cross-talk and signature overlap is rare.  In 

one study, 14 different diseases were distinguished simultaneously (Stafford, Cichacz et al. 

2014).  Thus, this unbiased platform seems ideal to look for sequences that may be 

represented in many different pathogen exposures. 

Here we present data that reveals the extent of cross-reactivity among many 

individuals’ humoral immune response to 7 different pathogens.  We included viral, 

bacterial, and eukaryotic parasite pathogens to ensure representation.  We followed an 

analytical approach where no assumptions were made concerning the infected cohorts, no 

accommodation made for virus, bacteria or fungus even though the proteome sizes differ 

considerably, and no compensation was made for number of diagnostic peptides per disease.  

We asked whether there is a unique and common peptide motif that appears in patients 

exposed to human pathogens, and did not appear in healthy volunteers.  We further asked 

whether any common signature appeared in cancer patients, and whether a common 

signature would appear in various pathogen proteomes, even those which were not tested 

in this experiment.  Negative controls for human pathogens include plant pathogens, which 

would not be expected to share motifs with human pathogens if co-evolution was occurring.  

This study examines, for the first time, signals in the human antibody repertoire that may 

suggest that there are common antigenic signatures in human pathogens that may have co-

evolved with humans.  This new finding suggests new methods for developing broadly 

protective vaccines against multiple infections at the same time. 
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Methods 

Materials 

 Human sera samples exposed to various pathogens were used.  Table S1 shows 

the total cohort used in this study.  Immunosignature arrays are manufactured in batches of 

312.  Each array is in situ synthesized, and consists of 125,000 or 330,000 random-

sequence peptides with average length of 12 amino acids.  Among these controls are single 

and double amino acid missense sequences, designed to identify improper sequence 

synthesis.  Also, 250 blank spots are used to estimate local background and spatial 

variations in global background signals.  

Immunosignature assay 

Sample buffer contains 3% BSA in 1x PBST, pH 7.3.  Secondary incubation buffer 

contains 0.75% Casein in 1x PBST with 0.05% Tween20. Serum samples in 50:50 glycerol 

were diluted into sample buffer at ratio of 1:1500, then incubated on Immunosignature 

array with volume of 150ul for a final concentration of 1:750. Incubation was 1h at 37 oC 

with rotation. Arrays were washed 3 times with 1x PBST and rinsed 3 times with ddH2O. 

4nM secondary anti-IgG antibodies conjugated with Alexa-Fluor 555 (Life Technologies, 

St. Louis, MO) was added to the secondary incubation buffer and then added onto entire 

Immunosignature microarray for a final volume of 2.5 ml to detect the primary antibody 

binding in the serum. The incubation is 1h at 37 oC with gentle agitation, then slides were 

rinsed with blocking buffer, then washed 3x with 1x PBST and 3x ddH2O then dried. Slides 

were then scanned at 555nm with Innoscan 910 scanner at 1.0um resolution to acquire the 
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image.  Feature intensities were extracted using the GenePix Pro 6.0 software (Molecular 

Devices, Santa Clara, CA). 

Statistics and Analysis 

Analysis was performed using the JMP software (SAS Institute Inc.), R (CRAN 

repository) and python. Raw data is fetched from each GPR file output by GenePix and 

normalized to the median before analysis. Whole Immunosignature clustering is performed 

using all data points for all samples using the hierarchical clustering method. Ward is the 

distance measure between the samples (columns in heatmaps) and the peptides (rows in 

heatmaps). Two-tail Student’s T-Test is used for feature selection, cutoff is set at either the 

top 50 or 100 peptides with the best p-value from T-Test.  For each set of t-test, the p-value 

is controlled to be <1/330,000, allowing at most one false positive in 330,000 parallel 

comparison. 

Epitope identification 

The algorithm used to identify significant epitopes is described in detail in (Richer, 

Johnston et al. 2015). The top 1000 peptides from T-Test obtained by comparing normal 

samples (control) versus all infected (case) samples are used to identify the epitopes. 

Epitopes are restricted to 5-mer sequences, ungapped. Once significant epitopes are 

identified, GLAM2 (http://meme-suite.org/tools/glam2) from the MEME suite software is 

used to identify the consensus (Frith, Saunders et al. 2008, Bailey, Boden et al. 2009).  

BLAST searches 
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BLAST (Basic Local Alignment Search) was used to identify matches in the 

pathogen proteomes. BLASTP by NCBI via web interference is used with default 

parameters other than not adjusted for short input sequences (the automatic adjustment for 

short input sequences yields search parameters that are still too relaxed for sequences as 

short as 5 amino acids), hitlist size = 100, gapcosts = 15 for existence and =2 for extension. 

Matrix is set to be PAM30 and word size is at 2. Expect threshold is set at 10^10 to ensure 

we will have desired number of output. Entrez Query is set with “all [filter] NOT predicted 

[title] NOT hypothetical [title]” to remove predicted and hypothetical proteins. Note that 

here the E-value is not important, because the input sequence is short, so we will always 

hit sequences by chance, which is the definition of E-value. RefSeq database is used as the 

target database for BLASTP because of better annotation and less redundancy (Pruitt, 

Tatusova et al. 2005). The sequences from the 7 pathogens in the RefSeq database are used 

in this experiment. Query search against IEDB is performed by finding the exact match of 

putative conserved sequences (obtained empirically) in the database. BLAST search to 

identify enrichment of the sequences in the RefSeq database is performed using the 

BLASTP suite as described above, against all RedSeq proteins. The enrichment is 

measured by counting the number of unique hits in bacteria and eukaryote and obtaining 

the percentage of output from bacteria and virus. This information is generated from the 

BLAST results page from the taxonomy report. Blast search against IEDB and plant 

pathogens in Figure 6 is performed by using the blast command line program. For each 

input peptide, the number of matched sequences is recorded. Then a group-wise 

comparison is performed between the 500 peptides from the disease common signature and 
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500 randomly selected peptides by T-Test and non-parametric tests. The plant pathogen 

database is retrieved from Comprehensive Phytopathogen Genomics Resource (Hamilton, 

Neeno-Eckwall et al. 2011), containing 82 pathogens.  

Result 

The immunosignature diagnostic platform has been shown to separate the immune 

responses of a variety of infections from non-infected sera samples, as well as different 

infections from each other (Legutki, Magee et al. 2010, Restrepo, Stafford et al. 2011, 

Restrepo, Stafford et al. 2012, Johnston, Thamm et al. 2014, Navalkar, Magee et al. 2014, 

Stafford, Cichacz et al. 2014, Donnell, Maurer et al. 2015).  We first demonstrated that the 

samples we used (Table 3.1) were also distinguishable on this platform.  In Figure 3.1, the 

samples from 5 different infections (BPE, HBV, Dengue, Malaria and Syphilis) are readily 

distinguished from each other using 500 peptides from the array as a classifier.  These 

peptides are chosen based on their ability to distinguish each infection from the others.  

Table 3.1. Samples cohort used in this study. 

Seven types of infections along with the normal donor control group are used in this study, 

with a total sample size of 118. 

Group Count

Borrelia 8

BPE 12

Dengue 9

HBV 15

Malaria 13

ND 32

Syphllis 8

WNV 21

Total 118
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Figure 3.1. Hierarchical clustering of 5 infections shows separation of each disease. 

100 peptides are selected for each disease by One-versus-all T-Test comparison. 500 

peptides are then combined for use in the clustering. Each disease has its own signature 

and is different from other diseases. 

The same array data was reanalyzed without separation based on infection type.  

All 8 sample sets in Table 3.1 were included. Two-way hierarchical clustering of the whole 

immunosignature with 330,000 features was performed. The result of this clustering 

(Figure 3.2) shows that most of the non-infection donors (blue label ND) can be 
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differentiated from the 7 pathogens (red label DI) while the infection samples did not fall 

into obvious groupings by type of infection.  To test the robustness of this observation, we 

performed the same type of analysis including different samples of the 8 groups in Table 

3.1, adding 5 different infection types (Flu, HIV, Tuberculosis, Chagas, Valley Fever (a 

fungus)) and using a different array format containing 125,000 different peptides.  As 

evident in Figure 3.3, most of the 12 different types of infection samples clustered 

separately from the non-infection samples. 

 

Figure 3.2. Whole immunosignature clustering of 7 pathogens versus healthy donor. 

Pathogens share red label indicated using DI. Healthy donors are blue indicated by ND. 

Samples are placed row-wise. All 330,000 peptides are shown in column-wise direction. 

Pathogens taking together can be clustered apart from healthy donor, while the pathogens 

cannot be differentiated with each other. All pathogens share large group of common 

signature responsible for this hierarchical clustering result 
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Figure 3.3. Whole Immunosignature clustering of 12 pathogens versus healthy donor. 

This analysis used a totally different samples from that in Figure 1, adding Flu, HIV, 

Tuberculosis, Chagas, VF infections and on a different Immunosignature array with 

125,000 peptides to replicate the result as in Figure 1. The same clustering pattern is 

produced: the infections can be distinguished from the non-infected, while the pathogens 

are mixed together with each other. 

This analysis implies that very different infections elicit antibodies that bind the 

same peptides on the array. To test this concept from another angle we individually 

compared each infection sample set to the non-infection group and selected the top 100 
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peptides (by p-value) for each comparison.  Of the 700 peptides selected in this manner, 

200 peptides appeared in at least two pathogens. These sequences were pooled and two-

way hierarchical clustering was performed for the 7 infections and the non-infection 

samples. The results are presented in Fig 3.4a, showing that these peptides can also be used 

to separate all infections from non-infection samples.  Principle component analysis (Fig 

3.4b) of this data shows that the first component accounts for over 50% of the variance and 

using only one component can repeat the same separation result as the clustering. 

 

Figure 3.4. Using selected peptides can repeat the separation of pathogens as a group 

to healthy donor. 
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(a)Peptides selected from pair-wise T-Test between each pathogen vs Healthy combined 

together shows separation between the 2 groups. (b) PCA analysis shows same separation 

and Component 1 accounts for over 50% of the variance. (c) Using peptides from T-Test 

between healthy donors with only one pathogen (BPE) can also separate all the pathogens 

from healthy together 

The implication from the results in Figure 3.4a, b is that a signature distinguishing 

any infection from non-infection will be composed of a common and a specific signature. 

To test this prediction, we used the 100 peptides chosen that distinguished BPE from non-

infection as the basis to cluster the other 6 infection groups from non-infection.  As shown 

in Figure 3.4c, even though these peptides were not chosen against the other six infections, 

they were very efficient in making the separation between them and the non-infection 

group. These data support the concept that there is a common set of IgG antibodies elicited 

by infections. 

One possibility is that any disease would elicit a common set of antibodies.  For 

example, there are many different types of cancer and they might also elicit a common 

signature, possibly the same as by infections.  To test this, we analyzed the 

immunosignatures of 4 different cancers (breast, brain, multiple myeloma and pancreatic) 

in the same manner as we had for the infection samples. As shown in Figure 3.5, there was 

no clear clustering of cancer versus non-cancer samples.   
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Figure 3.5. Cancers cannot be differentiated from healthy using the same method. 

The cancer antibody repertoire will either appear to be normal or different with equal 

probability. This suggest the immune system of 50% of the cancer patients are suppressed 

A common signature would imply that there are common epitopes in diverse 

pathogens that elicit an antibody response.  The 330,000 peptides on the array used are on 

average 12aa long and represent approximately 50% of 5mer peptide space.  The 

implication from the common signature is that these peptides would be related to actual 

pathogen protein sequences.  We took two approaches to test this. First, we searched the 

common signature to identify series of enriched pentamers using methods described in 

Richer et. Al (Richer, Johnston et al. 2015). The enriched pentamers were then analyzed in 

GLAM2 to identify consensus epitopes (Bailey, Boden et al. 2009).  One dominant epitope, 
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ARLKR, was found (Figure 3.6a). This linear epitope was present in 6 of the 7 pathogens 

used, with hepatitis B virus the exception (Fig 3.6b).  A second approach was to divide all 

the peptide sequences in the IEBD into pentamers. The IEDB is a database of verified 

epitopes in infections.  A list of the top 2000 recurrent pentamers from the IEDB was 

compared to the peptides in the common signature.  Fourty four pentamers were identified 

(Table 3.2).  These peptides are presumably at least part of the link between the immune 

response to infection and the common signature.   

 

 

Figure 3.6. Analysis of the common signature reveals dominant epitope that is 

enriched in pathogen space. 

(a) ARLKR epitope was identified as the top consensus epitope after analyzing peptides 

from the common signature. (b) Blast the epitope against the 7 pathogens found the epitope 

in most proteomes.  
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 GSNKG  LSPRG 

 

RGLFG 

 

VYLLP 

 HFDLS 

 

NKPSK 

 

RGSGK AGPKG 

 

Table 3.2.  List of the identified enriched epitopes from IEDB. 

The top 2000 occurring epitopes from IEDB are extracted and tested on immunosignature. 

44 epitopes are identified to be enriched. 

We propose that the common signature is the product of the proteomes of diverse 

pathogens being constrained by the human immune system. If so, one would predict that 

plant pathogens would not exhibit the same constraints (Jones and Dangl 2006, Király, 

Künstler et al. 2013).  To test this, we first analyzed 500 sequences from the common 

signature with the highest p-values and 500 randomly picked peptides from the array not 

in the common signature.  Each set was blasted against the IEDB peptides.  As shown in 

Figure 3.7a, the common signature peptides had significantly more hits than the random 

peptides. This implies that the common signature peptides resemble the IEBD epitopes 

more than other peptides on the array.  We then did the same type of analysis but blasting 

against a plant pathogen database (Hamilton, Neeno-Eckwall et al. 2011).  Interestingly, 

the common signature peptides were significantly less similar to the plant proteins than 

random peptides. This may reflect that the plant proteome is also under sequence 

constraints, but different than from antibodies, due to interactions with plant hosts.   
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Figure 3.7. Two sets of sequences blasted against IEDB and plant pathogens. 

500 peptides from the common signature is compared with 500 randomly selected peptides. 

Peptides from the common signature shows more similarity to sequences in IEDB. When 

compared with plant pathogens, 500 common peptides are less similar to them than 

randomly selected peptides from the immunosignature. 

Discussion 

Other researchers have noted cross reactive antibodies.  Natural antibodies, defined 

as having germline or near germline variable sequences, bind a wide variety of proteins 

(Notkins 2004), but are not induced on infection. Usually they are IgM class.  In contrast, 

the common signature antibodies are IgG and are only in infected people.  Others have 

noted cross reactive IgG antibodies (Warter, Appanna et al. 2012, Cywes-Bentley, Skurnik 

et al. 2013).  For example, using protein arrays of Yersina pestis, Urlich and co-workers 

found significant cross reactivity with sera from other gram-negative infections (Keasey, 

Schmid et al. 2009). In at least one example, it was proposed to be caused by reaction to 

conserved proteins across the gram-negative bacteria.  While it is possible there is overlap 
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between previous array based cross reactivity and the common signature we think this is 

unlikely.  The common signature is only approximately 2-fold above the signal in non-

infected people, where the adaptive, pathogen specific signal is usually 10-100 fold higher.  

The immunosignature assay is 10-100x more sensitive than ELISA-type assays (Sykes, 

Legutki et al. 2012).  This level of sensitivity is probably necessary to recognize the 

common signature.   

The B-cells that produce the common signature could be germline cells, as for 

native antibodies (Ochsenbein, Fehr et al. 1999, Zhou, Zhang et al. 2007). There are native 

B cells in higher vertebrates (Ochsenbein, Fehr et al. 1999).  However, they would need to 

be induced on infection.  On the other hand, these B-cells could have been induced by 

previous infections and are reactivated on a subsequent infection.  Isolation and sequencing 

of these B-cells should resolve this issue.  

The existence of the common signature, and the common epitopes across most 

human pathogens that may induce them, has interesting evolutionary implications.  One 

idea is that any persistent human pathogen must have these common epitopes.  The 

antibodies comprising the common signature would constrain the infection enough to allow 

the host to mount a protective response. It would be beneficial for the pathogen so as to not 

kill the host (Cressler, McLEOD et al. 2016).  In the simplest terms, to evolve to be a 

human pathogen the organism would have to produce the common signature epitopes.  If 

not, it would kill the host too quickly.  The implication is that new, highly lethal pathogens 

from other hosts may not have the common signature epitopes.  
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Finally, would this common signature have any clinical value?  We note that the 

level of these antibodies is low relative to the adaptive response.  The samples used in this 

study were from infected people with clinical symptoms so the common signature was not 

fully protective, though it may have moderated the infection.  However, it may be possible 

to augment the low response, by vaccination, to a level that is more protective. Such a 

vaccine could have broad value.     
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THE IMMUNE PROFILE OF STAGES OF HEMANGIOSARCOMA CANCER IN 

DOGS CHANGES DRAMATICALLY 

 

Abstract 

It has been amply demonstrated that different stages of a type of cancer can have 

very different transcriptional profiles.  Even one type of cancer at the same stage can 

present variations in gene expression profiles.  The conclusion, at least at the gene 

expression level, is that tumors are quite variable and the variation extends over time in the 

evolution of a tumor.  We are interested how the immune profile of a cancer changes.  The 

immunosignature technology permits this type of analysis. It involves reacting serum 

antibodies with arrays of 125K peptides chosen from random sequence space.  We have 

investigated the immunosignatures of Stage 1, 2 and 3 of hemangiosarcoma (HSA) cancer 

in dogs.  HSA is a leading form of cancer in dogs that is usually fatal. It arises in the blood 

vessels and the spleen and liver forms are highly metastatic. We find that it is possible to 

define an immunosignature that is diagnostic all three stages. However, we find that all 

three stages also have a distinctive signature with essentially no overlap of highly 

significant features between Stage 1 and 3. Further, the signature peptides at each stage 

present very different patterns over the other stages.  Remarkably, the peptides at Stage 1 

have much higher similarity to pathogen epitopes than those from Stages 2 and 3.  Though 

these profiles are of antibodies as opposed to T-cells, they may reflect the evolution of the 

immune system with the tumors.  
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Introduction 

 

The oncogenic process evokes considerable and variable cellular changes relative 

to the tissue of origin.  These features evolve in the lineage of a particular cancer, are 

evident in cancers of the same tissue source and can vary widely between different cancers 

(Ford, Easton et al. 1998, Reya, Morrison et al. 2001, Marusyk, Almendro et al. 2012, 

Lawrence, Stojanov et al. 2013, Meacham and Morrison 2013).  Considerable effort has 

been devoted to relate these difference to diagnosis, prognosis and identifying therapeutic 

targets.  The most useful form of characterization has relied on gene expression profiling, 

using microarrays or RNAseq (Nguyen and Rocke 2002, Wang, Gerstein et al. 2009, 

Young, Wakefield et al. 2010, Ren, Peng et al. 2012, Patel, Tirosh et al. 2014, Best, Sol et 

al. 2015).  We are interested in expanding cancer profiles to the immune responses to the 

evolution of tumors.   

Gene expression analysis of normal and cancer cells by microarrays, and more 

recently by RNAseq, has been the most informative aspect of characterization.  The 

analysis of 1000s of tumors has shown that they can differ widely in their variance from 

the cells of origin (Weinstein, Collisson et al. 2013, Aran, Sirota et al. 2015, Andor, 

Graham et al. 2016).  Hierarchal analysis of expression patterns has revealed subtypes, for 

example with breast cancer, that were not evident by classical histology (Ivshina, George 

et al. 2006).  In some cases, the gene expression pattern can strongly correlate with 

prognosis or indicate a specific treatment.  However, the gene expression is not useful in 

analysis of the immune response. While the specific expression of immune regulatory 
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genes can be seen to vary in some tumors, this does not provide antigen specificity.  Gene 

expression measures native genes while it is increasingly clear that it is the immune 

response to neo-antigens that is important in tumor evolution (Rizvi, Hellmann et al. 2015, 

Schumacher and Schreiber 2015).  With the increasing importance of immunotherapeutics 

and vaccines in treating cancer it would be helpful to be able to measure the immune profile 

as broadly as has been done for gene expression patterns (Snyder, Makarov et al. 2014, 

Erkes, Mohgbeli et al. 2015, Rizvi, Hellmann et al. 2015, Vétizou, Pitt et al. 2015, Riaz, 

Morris et al. 2016).  In this vein, we here explore whether the immunosignature technology 

could be used to profile the immune response to different stages of cancer.  

Immunosignatures (IMS) broadly and unbiasedly profile the antibodies in an 

individual (Stafford, Halperin et al. 2012). IMS uses arrays of 125,000 peptides chosen 

from random sequence space to maximize chemical diversity.  Diluted blood is applied and 

the pattern of antibodies binding is detected with a secondary antibody.  The same array 

can be used to profile any condition in any species. IMS has been used as a diagnostic for 

Alzheimer’s disease, diabetes, chronic fatigue syndrome, various infections and cancers 

(Legutki, Magee et al. 2010, Brown, Stafford et al. 2011, Restrepo, Stafford et al. 2011, 

Chase, Johnston et al. 2012, Restrepo, Stafford et al. 2012, Stafford, Halperin et al. 2012, 

Legutki and Johnston 2013, Johnston, Thamm et al. 2014, Navalkar, Magee et al. 2014, 

Navalkar, Johnston et al. 2015). In the case of cancer, 14 different types of cancer, mostly 

late stage, were distinguished simultaneously (Stafford, Cichacz et al. 2014).   Here we 

apply the IMS to different stages of the same cancer, hemangiosarcoma (HSA), in dogs.  
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Although very infrequent in humans, HSA is one of the most prevalent cancer in 

dogs. It is estimated to account for 7% of malignant tumors in canines (Vail and Macewen 

2000). HSA is more prevalent in breeds like Golden Retrievers and German Shepherd 

(Ettinger and Feldman 2009). The cancer originates in the endothelium of blood vessels.  

The patient usually does not show clinical signs until late stage. A common cause of death 

for this disease is tumor rupture (Simansky, Schiby et al. 1986).  There is no diagnostic for 

the early detection of HSA, thus most dogs are diagnosed at late stage of the disease.  There 

is interest in developing a biomarker, particularly a blood biomarker, for early diagnosis.   

In applying the IMS technology to HSA we find that each of the three stages has a 

distinct set of features characteristic of that stage relative to dogs without HSA.  For 

example, peptides that are highly reactive in Stage 1 are not reactive in Stage 3 cancer.  

Remarkably, Stage 1 reactive peptides have more similarity to know pathogen epitopes 

than Stage 2 or 3.  The IMS appears capable of staging HSA through its reaction with the 

humoral immune system.   

Material and methods 

Array Platforms 

Immunosignature platform consisting arrays of 125k peptides are used in this study. 

The 125k platform is in-situ synthesized on silicon wafer(Richer, Johnston et al. 2015, 

Stafford, Wrapp et al. 2016).  Arrays were deprotected after synthesis, soaked in DMF 

overnight and then transitioned to aqueous solution.  The residual DMF was removed by 

washing 5 min twice in distilled water and arrays were soaked with PBS30 min, followed 

by blocking with incubation buffer (consisting of 3% BSA in Phosphate Buffered Saline, 
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0.05% Tween 20 (PBST)). Arrays were then washed, spun dry and ready for the 

experimenting with sera. 

Array procedures with samples 

The assay conditions have been published before (Halperin, Stafford et al. 2010, 

Brown, Stafford et al. 2011, Kukreja, Johnston et al. 2012, Kukreja, Johnston et al. 2012), 

but they will briefly be described here as well. Arrays were incubated for 1 hour at room 

temperature with incubation buffer and diluted sera at final concentration of 1:5000. Arrays 

were then washed and incubated with IgG secondary antibody with conjugated dye. After 

washing, the arrays were scanned to determine the signal intensity for each peptide feature 

at specified wavelength. 

After the TIFF image of the array was captured, the intensity values for each feature 

were extracted using GenePix (Molecular Devices, Santa Clara, CA).  The intensity values 

were used to calculate the analysis described in this paper. 

Software and statistics used for analysis 

R programming language and JMP were used for data analysis and to create the 

graphs. Feature selection is based on Two-Tail Student’s T-Test and sorted by p-value. 

Clustering and PCA analysis is generated with JMP. Confusion matrix and classification 

report is generated using R with 10-fold-cross validation with SVM classifier. Venn 

diagram is drawn using package “VennDiagram” in   R. Time series plot and pathogen 

similarity boxplot are generated using JMP.  
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Results 

Pooled stages of HSA samples can be distinguished from non-cancer samples  

The samples used in this study are given in Table 1.  The blood was collected as 

part of a prospective study with Canine Comparative Oncology and Genomics Consortium 

and from historical samples collected at the Flint Cancer Center at Colorado State 

University.   

We first determined if HSA cancer as one group, that is regardless of stage, can be 

distinguished from non-cancer samples.  A two-tail Student's t-test was performed on all 

the features’ normalized florescence between HSA versus non-cancer samples and 100 

peptides were selected based a p-value. This requires peptides that are commonly 

differentially reactive from samples across all stages relative to non-cancer samples.  These 

features had p-values <1.97*10-8. The Bonferroni correction of 0.05 with 125K features 

gives a p-value cutoff at ~4*10-7.   

The selected peptides were used to produce the hierarchical clustering heatmap and 

principle component analysis (PCA) in Figures 4.1a&b. These figures demonstrate a 

separation between HSA from the non-cancer group. Note in Figure 1a that peptides with 

more and less antibody binding contribute to the signature difference. To quantify the 

difference, we performed classification using a training and test set. Feature selection was 

based on two tail t-test. Support vector machine (SVM) was used as the classifier. 10-fold 

cross validation is performed to prevent overtraining, where in each set 90% of the samples 

were used as training set and an independent 10% as the test set. Feature selection and 

SVM were performed on the training set data then predicted the test set reiteratively. Only 
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the test sets performance was used for Figures 4.1c&d. At an accuracy of 77% the 

sensitivity was 76% and the specificity 77%.  

 

Figure 4.1. HSA samples can be distinguished from non-cancer controls. 

Top 100 peptides are selected by T-Test between HSA versus controls samples and sorted 

by p-value. Hierarchical clustering (a) shows separation of HSA from SE and PCA (b) also 

shows similar separation. (c) Confusion matrix of SVM classifier with 10-fold cross-

validation. (d) Specificity and sensitivity of the classifier. Accuracy at 77%. These HSA 

samples contain stage 1, 2 and 3 samples. Various stages still have common peptides to 

distinguish them from control 

Different stages of HSA have different peptide signatures  
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We next asked whether each stage of HSA had its own IMS. Pair-wise t-Tests were 

performed for each stage versus non-cancer dog donors. When a common p-value cutoff 

of 3.03*10-6 was used in peptide selection, there are 298 peptides for stage 2 and 169 

peptides for stage 3 meeting this cut-off. For stage 1, only 1 peptide met this criterion. 

Therefore, in the following experiments the top 50 peptides for stage 1 were used. A 

maximum of 11 peptides out of the 50 are expected to be false positive based on the p-

value of these 50 peptides.  

The peptides selected are significant in each stage against non-cancer donors. The 

Venn diagram in Fig. 4.2 shows that most significant peptides for each stage are unique to 

that stage. Stage 1 and 2 share 1 peptide, while stages 2 and 3 shares 39 peptides. Stages 1 

and 3 have no peptides in common. We conclude that the peptides that are significant in 

each stage against non-cancer dogs are largely unique.  
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Figure 4.2. Venn diagram for peptide overlap between stages. 

Peptides are selected by T-Test between specified stages versus non-cancer control. Most 

peptides belong to only 1 stage, with some peptides being shared between stages. Stage 1 

has 50 peptides (49 unique), Stage 2 has 298 peptides (258 unique), and stage 3 has 169 

peptides (130 unique). Stage 1 and 2 shares 1 peptides. Stage 2 and 3 shares 39 peptides. 

Stages 1 and 3 have no peptides in common. 

IMS peptides from each stage have distinctive stage-series profiles  

Ideally, we would want to analyze the IMS profile in each dog over time as it 

progressed through the stages of cancer – a time series analysis.  The samples we have 

collected were on different dogs at each stage.  This does allow us to construct a stage-
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specific profile for each set of peptides.  For example, the relative florescence of each of 

the 50 stage 1 IMS peptides can be displayed at stage 0 (non-cancer samples), stage 1, 2 

and 3.  As can be seen in Figure 3, each set of peptides has a unique pattern. 

The stage 1 peptides split in approximately half.  One half have less binding than 

in the stage 0 and the other half have higher binding than in stage 0.  The lower and higher 

binding peptides return to the stage 0 levels in stage 2 and 3.  If the amount of antibody 

produced is driven by the antigen, it would imply that there is less of antigen driving the 

high binders in stages 2 and 3.  However, since the low binding returns to the stage 0 level 

it implies the antibody binding was suppressed in some fashion but not irretrievably.   

Stage 2 also presents peptides binding more or less than stage 0.  This difference is 

evident in stage 1 and the difference increases at stage 2.  However, in contrast to the stage 

1 peptide pattern, this difference is retained in stage 3.  This implies that the antigen driving 

the high binding is continually present through the evolution of the stages.  The suppression 

of antibody for the low binders remains through all stages, potentially from eliminating the 

B-cells producing the antibodies. In contrast to stages 1 and 2 peptides, the distinguishing 

peptides for stage 3 display a constant increase over the evolution of the tumor.   
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Figure 4.3. Stage significant peptides change during cancer development. 

Time series analysis on how peptides signal change in different stages. Stage 0 is non-

cancer, while stage 1-3 corresponds to the real stage. Stage 1 significant peptides have 

different signals in stage 1, but return to similar level at stage 0, indicating the elimination 

of epitopes appeared at stage 1, while stage 2 and 3 peptides keeps increasing with stage, 

indicating the immune response against these epitopes failed to clear the epitopes, thus is 

ineffective.   

Epitope similarity with pathogen is associated with immune response’s ability to 

eliminate the epitope 

Studies have found the antibody repertoire is highly skewed by preferential VDJ 

recombination (Arnaout, Lee et al. 2011, Aoki-Ota, Torkamani et al. 2012). Memory 

responses for viral antigens are common even for unexposed adults probably due to cross-

reactivity with environmental antigens (Su, Kidd et al. 2013). It is highly possible that our 

immune system has been fine-tuned against environmental pathogens throughout the 

evolutionary process so that it is no longer effective against antigens not similar to 

pathogens. Some controversial studies suggest a relationship between the checkpoint 

inhibitor treatment benefit and the similarity of their tumor neo-antigens and those of 

pathogens (Snyder, Makarov et al. 2014). Other studies also show the gut microbiome 

might play an important role in eliminating cancer (Sivan, Corrales et al. 2015, Vétizou, 

Pitt et al. 2015). Based on these ideas we tested the similarity of the defining IMS peptides 

at each stage to the Immune Epitope Database (IEDB).  This database is a compilation of 

experimentally defined immune epitopes of pathogens.  
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All peptides sequences identified as significant between each stage and non-cancer 

samples were blasted against the IEDB. Using the same cutoff, the number of matches in 

IEDB is recorded for each peptide. The higher the number of matches the more presumed 

similarity to pathogen sequences. The blast hit number was log transformed to ensure a 

normal distribution. 

In Figure 4.4 the peptides in each group are presented in a boxplot.  As evident in 

Figure 4a, when all the significant peptides in each stage are compared, the stage 1 peptides 

are significantly more similar to the IEDB epitopes than stage 2 and stage 3.  Recall that 

each set of signature peptides for a stage consisted of peptides that were more reactive than 

non-cancer and ones that were less reactive than non-cancer.  Figure 3.4b shows that the 

similarity of stage 1 peptides to the IEDB is driven by the “up” peptides.  As presented in 

Figure 4.5 and 4.6, the “down” peptides in the stage 1 signature are not significantly 

different from the stage 2 or 3 “up” or “down” peptides.  We conclude that the peptides 

with higher reactivity in stage 1 signature have significantly more similarity that the stage 

2 or 3.  
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Figure 4.4. Blast against IEDB shows differential similarity with pathogen of peptides 

from different stages. 

Each peptide is blasted against IEDB and recorded the number of matches under a 

common cutoff. Peptides from same group are put into boxplot and represent the pathogen 

similarity of the group. (a) Stage 1 peptides are more similar to pathogen than stage 2 

peptides, (b) Stage 1 peptides are more similar to stage 2 peptide when using only the up 

peptides. 
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Figure 4.5. Blast against IEDB shows differential similarity with pathogen of peptides 

from different stages, down peptides only. 

The overall P-value for this comparison is not significant, but the trend is very clear: the 

down peptides become more and more like pathogen from stage 1 to stage 3. 

 

Figure 4.6. Comparison of blast results for peptides within same stages. 
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Peptides are grouped first by stage and then by whether they have signal that is higher 

than non-cancer samples or lower than non-cancer samples. In stage 1(a), the up peptides 

are a lot more like pathogen than the down peptides. In stage 2 and Stage 3, there is no 

statistical difference between the two groups. While the function of the down peptides are 

still unknown, this result shows there is extensive selection in stage 1 but not as much in 

stage 2 and stage 3 

Discussion 

In this chapter, we performed characterization of different cancer stages using the 

immunosignature platform. We first show that dog HSA samples from stage 1-3 combined 

share a common signature that distinguishes them from non-cancer samples, with a 

classification accuracy of 77%.  We then focused on understanding the differences between 

stages. We found stage 1, 2 and 3 have different signature peptides defining them from 

non-cancer. Most of the identified peptides are stage-specific, with a small proportion of 

the epitopes overlapping between stages.  Analysis of the florescence intensities of each 

signature peptide over the 3 tumor stages revealed three distinct patterns for each set of 

peptides.  While the peptides for the stage 3 signature increased from non-cancer to stage 

3, both stage 1 and 2 peptides included ones that declined in reactivity from non-cancer.  

Finally, based on earlier reports of a link between cancer and infection epitopes, we 

compared the signature peptides to the IEDB data base of infection epitopes. The stage 1 

“up” peptides were significantly more similar to the IEDB epitopes than the other signature 

types.   
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The IMS diagnostic has been applied to a number of diseases including cancers.  

We reported earlier on defining a signature for the reoccurrence of lymphoma in dogs.  

Generally, it has been more difficult to find pan-cancer signature peptides than stage 

specific peptides.  Here we report a signature for HSA that includes all three stages 

examined, relative to dogs without HSA.  The accuracy was 77%.  The mis-calls were not 

biased by stage.  Though low this accuracy may be clinically useful, considering that there 

is no current screen for HSA and that dogs have very poor survivability, often measured in 

months.   

Ideally, it would be best to detect HSA as early as possible (Ogilvie, Powers et al. 

1996).  Toward this end we analyzed samples from early stages separately for a distinctive 

signature.  The numbers in stage 1 was small to result in any meaningful classification.  

However, with 10-fold cross-validation the accuracy for stage 1 and 2 combined was at 

77%.  Again, given the current lack of a diagnostic this may be useful.  It will require 

obtaining more samples, possibly through a prospective study, to verify this usefulness.  

As we have found earlier, there was little to no overlap between the diagnostic peptides for 

each stage.  Stage 2 and 3 had approximately 8% peptides in common while there were 

none between Stage 1 and 3.  Given the large histological differences in the stages it is not 

too surprising that it would be reflected in the immune response.  Stage 1 involves small, 

local tumors, while Stage 2 tumors are larger, may have ruptured, invaded nearby tissues 

and spread to a regional lymph node.  Stage 3 is classified by further invasion of adjacent 

structures and metastasis (Thamm 2012)  
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The large differences in profiles between stages highlights the unique aspect of 

developing IMS as a diagnostic.  Late stage samples will not be useful in identifying the 

classifying peptides for early stage cancer.  We will need to use samples from early stage.  

This makes immunological sense in that a tumor would evolve the proteins it is producing 

over time and therefore the immunological response would change.   

Arguably the most interesting observation was the three distinct patterns of immune 

reactivity of the sets of stage specific peptides.  Stage 3 peptides had the simplest and 

expected pattern. These peptides increased in reactivity in stage 1 versus non-cancer and 

further in stage 2 versus stage 1, with stage 3 having the highest level of reactivity.  The 

simplest interpretation is that the antigen eliciting this response was made early in the 

development of the tumor and continued to do so as the tumor grew.  Increasing the amount 

of the tumor would present more antigen to the B-cells and stimulate more antibody 

production.  An implication is that this antigen was not selected against as the tumor 

evolved so it would probably not be a good therapeutic target.  And there is research 

showing strong cancer antigens are selected against in early cancer (Marty, Kaabinejadian 

et al. 2017, McGranahan, Rosenthal et al. 2017). 

Stage 1 and 2 signature peptides had more complex but distinct patterns for 

reactivity.  There were two types of reactivities in stage 1.  There are approximately an 

equal number of peptides that displayed more reactivity or less reactivity than in non-

cancer samples.  Interestingly, by stage 2 both sets of reactivities returned to non-cancer 

levels and remained so in stage 3. The “up” set of peptides may represent a new tumor 

antigen that elicits antibodies.  Their decline at stage 2 and 3 may be because of a loss of 
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antigen or the suppression or elimination of the B-cells producing the antibody.  If it is the 

loss of antigen these may represent therapeutic targets.  The origin of the “down” set of 

peptides is puzzling.  One possibility is that the antibodies that mature to the “up” set cause 

the “down” signature.  This seems unlikely since the level increases in stage 2, 3.  Another 

possibility is that they are caused by the suppression of specific B-cells that is relieved in 

stages 2 and 3.  A third, at least theoretically possible, is that the “down” antibodies are 

sequestered by the stage 1 tumor but not by stage 2, 3 tumors.  For stage 2 the “up” peptides 

could be explained in the same fashion as for the stage 3.  However, the “down” peptides, 

unlike for stage 1, remain so in stage 3.  If this represents selection against the antigen 

responsible these could also be therapeutic targets.   

Clearly it would be useful to find the antigens responsible for the antibodies in these 

signatures, particularly ones that may offer therapeutic targets.  While using peptides from 

random sequence space offers higher resolution of antibody differences and a non-disease 

specific platform, it is difficult to translate from this random space to identify a specific 

protein in the human or dog proteome.  While this has been possible to a limited degree, 

this this continues to be an area for progress.  

In this regard, we did try to simplify the comparison by limiting the search space to 

the IEDB.  There is some, though controversial, basis for similarity between infectious 

disease reactive peptides and those produced by tumors (Snyder, Makarov et al. 2014).  It 

does seem clear that the sequence space occupied by antibodies is somewhat constrained 

and that this constraint may have evolved in interaction with infectious agents (Chapter 3).  

By implication these constraints may be reflected in the immune response to tumor antigens.  



80 
 

Interestingly in this regard, Schreiber’s group observed that a tumor lacking mutations in 

spectrin-β2 is likely to survive (Matsushita, Vesely et al. 2012). The mutant spectrin-β2 

sequence (QIAL) has 8 matches in the B cell epitopes and 24 matches in T cell epitopes, 

while the wild type sequence (QIAR) is matched only twice in B cell epitopes and twice in 

T cell epitopes in the IEDB database. At least in this case, a mutation that is protective is 

more similar to defined IEDB epitope.   

In our comparisons we do find that the “up” set of peptides from stage 1 has 

significantly more similarity to the IEDB than the other peptides sets.  Presumably this set 

of peptides are the early responses of the immune system to the cancer.  A limitation of 

this analysis is that we compare the dog cancer immune response to the IEDB data base 

which is largely composed of reactive epitopes in human infections.   

In conclusion, we have shown that it may be possible to use the IMS diagnostic for 

the detection of at least stage 2 HSA.  It remains to validate this with larger sample sets 

and to determine if the diagnostic can be effective for stage 1 detection.  We demonstrate 

that each stage of disease has a distinctive set of diagnostic peptides and that these peptides 

have different patterns of reactivity over the stages, implying a complex interaction of the 

immune system and the tumor over time.  The relatedness of the stage 1 diagnostic peptides 

to pathogen epitopes is highly speculative but bears further exploration in other cancer 

types.   
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DISTINCTION OF BACTERIAL FROM VIRAL INFECTIONS BY 

IMMUNOSIGNATURES 

Abstract 

A blood-based diagnostic that could readily distinguish a bacterial from a viral 

infection could have a major impact on antibiotic resistance and over-prescription.  Ideally, 

the diagnostic would be a serological test rather than a nucleic acid test, and would work 

upon presentation of symptoms.  Here we explore whether antibody signatures could meet 

these requirements. We started by looking for common immunosignatures between 4 

different bacteria and 5 different viruses, in 157 samples.  Immunosignatures (IMS) are 

patterns of antibody binding on 125,000 peptide feature chips.  The peptides are chosen 

from random peptide sequence space to maximize chemical diversity. Immunosignatures 

have been demonstrated to readily distinguish different types of infections and chronic 

diseases.  Here we wished to determine if IMS could distinguish the class of bacteria from 

viral infections.  A training set of 95 samples and validation set of 31 samples composed 

of bacterial and viral infections were used to establish the signature.  The training set was 

used to train the model and parameters were fine-tuned on the validation set. Then the 

model was tested on another completely independent test set of 31 samples to evaluate 

performance.  We discovered 1000 peptides could make the distinction with 0.84 

specificity and 0.83 sensitivity in the test set.  Misclassified samples are spread out in all 

infections. This assay would be more practical if fewer peptides were required for 

distinction. To examine this issue, we tested each peptide for performance.  We determined 
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that 2 peptides performed as well as the 1000 in making the bacteria versus virus call.  To 

further explore the limits of IMS we included samples from 3 eukaryotic pathogens.  Given 

the aim that decision is needed for whether antibiotics should be prescribed, we found that 

the accuracy of distinguishing bacterial from non-bacterial pathogen increased.  We believe 

these results suggest IMS could be used to develop a simple, serological assay to 

distinguish bacterial from viral infections. 

Introduction 

Antibiotic resistance is a global problem (Spellberg, Guidos et al. 2008, Davies and 

Davies 2010, Shallcross and Davies 2014). It is mainly due to the overuse of antibiotics in 

clinical settings. Overuse is mainly due to the lack of accurate diagnosis that can distinguish 

bacterial infections. This is especially true for respiratory tract infections and pediatric 

sepsis (Sweeney, Wong et al. 2016, Tsalik, Henao et al. 2016). More accurate diagnosis at 

the time of first clinical visit that can distinguish bacterial from other infections would 

greatly curb the antibiotic overuse problem (2014, OBAMA 2014). 

Current research on distinguishing bacterial from viral infections has mostly been 

focusing on genome-wide expressions (GWAS) (Sweeney, Wong et al. 2016, Tsalik, 

Henao et al. 2016). The notion is that gene expression will change upon infections of 

different pathogens. However, a serological test detection method for pathogens is antibody 

response. There are many complicating factors that make analysis of antibodies between 

viral and bacterial infections complex – one of the most important is the study platform. 

Immunosignature offers the best chance for solving this difficulty. Immunosignature is a 

peptide microarray that derives peptide sequences from random space rather than 
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biological sequence space. The analysis of semi-random sequences allows for a mostly 

unbiased search for antibodies that may display a common binding motif.  We would not 

focus on sequences for any given pathogen; this allows us to look more broadly for 

antibodies that may fall into a pattern that overlaps bacteria and virus. Immunosignature 

has shown its potential at distinguishing various infections, along with chronic diseases 

and cancer (Restrepo, Stafford et al. 2011, Chase, Johnston et al. 2012, Restrepo, Stafford 

et al. 2012, Stafford, Halperin et al. 2012, Stafford, Halperin et al. 2012, Legutki and 

Johnston 2013, Navalkar, Magee et al. 2014, Stafford, Cichacz et al. 2014, Donnell, Maurer 

et al. 2015, Navalkar, Johnston et al. 2015) and should be a plausible approach to 

distinguish bacterial infections from viral infections. 

In this chapter, we asked whether we could diagnose samples with various types of 

infection using the Immunosignature platform at the level of bacteria and viral. We will 

show that Immunosignature by measuring the antibody response against pathogens, can 

distinguish bacterial from viral infections. We identified 2 peptides that can distinguish the 

two classes, which would yield a biomarker with more clinical utility. Finally, we tested 

the idea that Immunosignature can distinguish bacterial from generally a non-bacterial 

infection, which is of more clinical relevance, since there are always non-bacterial and non-

viral infections present in clinical settings. Our study would provide the first diagnosis 

measuring antibody response to distinguish bacterial infections and would provide better 

clinical guidance for whether antibiotics should be prescribed. 

Material and methods 

Study Design 
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Serum samples were collected at various sources described in detail below and 

received at Arizona State University (ASU). All samples have informed consent and were 

anonymized. Every disease sample was tested positive for the specified disease before 

rendering to ASU. Bordetella pertussis samples were provided by Seracare Life Sciences 

(Seracare). Tuberculosis from University of Texas at El Paso (UTEP). Malaria from 

Seracare. HIV from Creative Testing Solutions (CTS). Flu from BioreclamationIVT. 

Dengue from UTEP. WNV from CTS. VF from Sonora Lab. Chagas from CTS. Lyme 

from Seracare. Hepatitis B from CTS, Syphilis from Seracare. 

Bordetella pertussis, Lyme, Syphillis, Tuberculosis, Dengue, Flu, Hepatitis B, HIV 

and WNV samples are used in the bacterial versus viral experiment. Chagas, Malaria and 

Valley Fever were added in the bacterial versus non-bacterial experiment. All samples are 

randomly assigned into training, validation and test set with equal probability. 

Immunosignature assay 

Serum samples were diluted 1:1500 into the sample buffer (3% BSA in 1x PBST) 

before incubated on Immunosignature microarrays at a final volume of 150ul for 1h at 37 

oC with rotating. Primary antibodies from the serum were then washed with 1x PBST for 

3 times and rinsed with ddH2O for 3 times. 4nM Secondary anti-human IgG antibodies 

with Alexa-Fluor 555 conjugation from Life Technologies are added in secondary 

incubation buffer (0.75% Casein in 1x PBST with 0.05% Tween20) to detect primary 

antibody binding. Secondary antibodies were incubated on the array for 1h at 37 oC before 

washed off with blocking buffer. Slides were then washed with 1x PBST and ddH2O before 
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drying. Images were obtained from scanning arrays at 555nm using Innoscan 910 scanner. 

Signal intensity for features were extracted using GenePix Pro 6.0. 

Statistical Analysis 

Analysis is performed using scripts written in R or the JMP software (SAS Institute 

Inc.). Raw intensity reads for all samples are normalized to the median per sample. Quality 

Control (QC) for the samples is performed by checking each sample’s average correlation 

against all other samples. Samples with correlation<0.2 are deleted. 226 samples are run 

on Immunosignature and 212 samples passed QC and were analyzed. 

Feature selection is done by using samples in the training and validation set. Two-

tail Student’s T-Test is performed for each peptide by comparing bacterial infection 

samples versus viral infection samples (non-bacterial infection samples). Cutoff is 

controlled at allowing 1 false positive for all test, which is 1/124,000 or 1000 peptides, 

whichever is smaller. 

PCA is performed using selected peptides with all samples, with the test set samples 

highlighted in right PCA plot. Hierarchical clustering is performed using the selected 

peptides with all samples. Ward method is used in calculating the distance between the 

samples. The same method is used in calculating distance for the features in two-way 

clustering. 

Random Forest is carried out with maximum 100 trees in the forest. Minimum split 

per tree is set at 10 and maximum at 2000. Early stopping rule is applied on validation set. 

And performance of the classifier is evaluated and output as confusion matrix for the 
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training, validation and test set. Neural Network is built with one hidden layer and 3 nodes, 

with TanH as the activation function. 

Stepwise regression for reducing number of features is used with stopping rule of 

p-value cutoff at 0.1 for both entering and leaving the model. The model starts empty with 

no feature. Features become included in the model if below cutoff p-value and will be 

removed from the model once p-value larger than the cutoff. This process is done 

recursively until the model stabilize, with no feature entering and leaving the model. Then 

the selected features are tuned to maximum RSquare for the validation set. Then Logistic 

regression is used in building model with the 2 selected peptides. 

Blast search of the 2 peptides was done using the NCBI blast server. Protein Blast 

(blastp) suite is used. Database is Reference proteins and organism is limited to Bacteria 

(taxid:2). Algorithm parameters is set to adjust for short sequences, and max target 

sequences at 100. Then the matched sequences are processed to contain only linear 

matched part. The 100 matched sequences are imported into MEME suite to identify 

epitopes, with configurations of 10 minimum sites per epitope and 3 maximum epitopes. 

Result 

Correlation of the infections shows possible distinction between bacterial and viral 

infection 

Immunosignatures can classify between infections (Restrepo, Stafford et al. 2011, 

Restrepo, Stafford et al. 2012, Legutki and Johnston 2013, Navalkar, Magee et al. 2014, 

Stafford, Cichacz et al. 2014, Donnell, Maurer et al. 2015, Navalkar, Johnston et al. 2015). 
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However, until now no one has published a successful serological test that can distinguish 

bacterial from viral infections. 

Here, we have used 4 types of bacterial infections, 5 types of viral infections and 3 

types of non-bacterial and non-viral infections with a sample size ~280 including non-

infected controls to test whether distinguishing bacterial and viral infection is feasible on 

Immunosignature platform. Samples are listed in table 5.1. They represent a wide range of 

bacterial and virus species. There were between 9-22 sera samples from each type of 

pathogen.  Each sample was run on the standard CIMV7 arrays containing 125K peptides. 

The process has been described (Stafford, Cichacz et al. 2014, Stafford, Wrapp et al. 2016).  

In the assays reported here, IgG was detected. 

Class of 

infection type of infection 

sample 

number 

Count per 

class 

Bacteria Bordetella pertussis 9 

64 

Bacteria Lyme 13 

Bacteria Syphillis 22 

Bacteria Tuberculosis 20 

Virus Dengue 22 

105 

Virus Flu 22 

Virus Hepatitis B 20 

Virus HIV 21 

Virus WNV 20 
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Other Chagas 19 

57 Other Malaria 17 

Other Valley Fever 21 

  

Table 5.1. Sample information used in this study. 

12 classes of infections are included in addition to a group of non-infected individuals 

coded as normal. 

If the immune system responds to bacterial and viral infections differently, then we 

can expect to high correlation for the immune responses within each group and low 

correlation between them. As a result, we are using correlation of the Immunosignature as 

the first predictive method to test the idea of distinguishing the 2 groups. Correlation is 

calculated for each pair of samples using all 125K features from the Immunosignature array. 

Then the samples belong to the same comparison combination and are averaged to a single 

correlation value (Fig. 5.1). For example, correlations for all comparisons between any 

Dengue samples versus any WNV samples are averaged into a single value, representing 

the average correlation between the two groups. Hierarchical clustering was used to 

distinguish bacteria from virus.  Figure 1 demonstrates the initial unsupervised division 

showing that influenza virus is the sole misclassified group, classified with bacteria.  Non-

infected samples and non-bacterial non-viral pathogens are mixed when included in the 

correlation table (fig. 5.2). 
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Figure 5.1. Hierarchical clustering for the correlation of the whole Immunosignature 

by type of infection shows potential classification of bacterial versus viral infection. 

Correlation is calculated for each pair-wise sample comparison, then the samples belong 

to the same class are averaged to a single correlation value. The clustering table shows 

most viruses can be distinguished from the bacteria, with the exception of flu. 
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Figure 5.2. Hierarchical clustering for the correlation of the whole Immunosignature 

by type of infection including all classes. 

Non-infected class is more similar to bacterial infection, while the non-bacterial and non-

viral infections are spread out in groups. 

A further breakdown per samples is shown in Figure 5.3.  Hierarchical clustering 

using the correlations for every sample (no sample is averaged) is shown in Figure 5.3. The 

specificity for viral infections is near 100%, with some viruses being classified as bacteria, 

mostly influenza. This result is consistent with the class level clustering result. 
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Figure 5.3. Hierarchical clustering for the correlation of the whole Immunosignature 

of each sample within bacterial and viral infections. 

More virus samples are misclassified as bacteria and mostly are influenza samples. 

Specificity for virus is near to 100% 

Build bacterial versus viral infection classifier shows robust distinction 

Once we confirmed the viability of distinguishing the two types of infections, we 

utilized machine learning techniques to classify the samples. In this experiment, only 

bacterial and viral infection samples are used, with a total of 157 samples.  Experimental 

workflow is outlined in Figure 5.4. All samples are randomly divided into training, 

validation and held-out test set, with a ratio of 60%, 20%, 20%. Training and validation 
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sets are used to build the classifier. Test sets remains untouched until the final model is 

constructed and used only for evaluation. 

 

Figure 5.4. Experiment workflow.  

Samples are divided into training, validation and test set. Feature selection and model is 

constructed using training and validation set. Performance is evaluated using test set. 

Since we have 125,000 features on the Immunosignature platform, it is plausible to 

first do feature selection to find the most useful peptides and remove noise. Feature 

selection is performed using training and validation set data via two-tail t-test for every 

peptide and top 1000 significant peptides are used. Note that the general cutoff is either 

selecting top 1000 peptides or p-value<1/125,000, controlling overall false positive sample 

to be less than 1. Whichever cutoff has smaller peptide numbers is used in real experiment. 
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For tests we performed, the p-values are much lower than 1/125,000. As a result, a common 

cutoff of top 1000 peptides is used throughout the paper. 

Using the selected features, Principle Component Analysis (PCA) is performed to 

determine how many components are responsible for the majority of the variability (Fig. 

5.5a). We found component 1 alone explains over 60% of the variability, indicating at least 

one factor is strongly driving the variance across groups, at least for the selected features. 

The test samples are not used in feature selection, however, when analyzed with PCA 

(highlighted in Fig. 5.5a) the test set samples are well separated as the validation set would 

suggest, suggesting overfitting is negligible. Hierarchical clustering is performed using the 

selected features to visualize the data (Fig 5.5b). As we can see most peptides are relatively 

higher in intensity in bacterial than viral infections. This suggests the one component from 

the PCA analysis may be highly bacterial-specific, suggesting that the peptides that are 

being selected are from antibody response raised to the bacterial infection. The test set 

samples are also highlight in the clustering heatmap to show their clustering group location 

compared with the training and validation set. No obvious overfitting is noted as test set 

samples are generally clustered in the right class. 
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Figure 5.5. Performance of distinguishing bacterial versus viral infection. 

(a). PCA analysis on the selected peptides shows one factor is responsible for most 

variability, test set samples are highlight in the right figure. (b). Clustering of the selected 

peptides shows most peptides are bacteria specific peptides. (c) Performance of the 

classification algorithms. (d) 2 selected peptides can achieve similar performance of 

classification 

Machine learning classifiers like Random Forest and Neural Networks are used to 

build the model of classification between the two groups. For each classifier, model is 

trained using training data and validation set is used to fine-tune the model and gain an 

initial performance evaluation to limit overfitting. After the established model is used on 

the test set, we perform a final performance evaluation on this independent dataset. 
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Experiments with training group only usually results in overfitting because the classifier 

might adjust to the random variations in the training group to gain best fit scores. Validation 

set only also pose the same issue because the model is generated with information from the 

validation dataset. In microarray studies, there are inevitably more variables than 

observations, overfitting becomes more pronounced. Independent datasets are needed to 

test the performance of the classifier, like what we are using in this paper, the test set data 

are not used in feature selection to model generating and is only used for the final 

evaluation of the model. 

As it is shown in Figure 5.5c, Random Forest and Neural Networks both have 

minimal misclassification rate on both training and validation. The final performance on 

the test set is also similar for both classifiers. Random Forest tends to exhibit less sensitivity 

to the bacterial infections (sensitivity at 0.58) but is extremely specific (0.95). This is a bias 

toward true negatives as the cost of lower true positives. Neural Network models yielded 

more balance for TP and FP between the two groups, with sensitivity and specificity at 

0.83 and 0.84 respectively (Fig. 5.6). Both models yield misclassification rates of less than 

20%. 60% of human infections are from viruses (Boone and Gerba 2007).  Consequently, 

if doctors follow the immunosignature result, we would reduce the use of antibiotics by 

over 50% in conditions where doctors prescribe antibiotics to all patient.  
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Figure 5.6. Probability graph for being virus using Neural Network method in 

bacteria vs viral infection experiment. 

Color is true label. All samples are included in this figure. Graph shows good separation 

between the two groups. 

The model was created using 1000 features (peptides).  This is difficult to apply in 

clinical settings as a biomarker test. It will be interesting to see what the minimum number 

of peptides is that can still achieve similar classification results.  

Stepwise regression is used to find the optimal, non-redundant peptides that can be 

used to fit the model. Each peptide has to meet a p-value cutoff of 0.1 to enter the model 

and will exit the model upon the exceeding the cutoff p-value of 0.1. Regression is started, 
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with no peptides. The regression process is iterated until the model stabilized, meaning no 

peptides leave or enter the model. Then the model is fine-tuned to maximize RSquare for 

the Validation set (Fig. 5.5D). The final regression model only includes two peptides, 

GLSNGASSFGKASGVAL and GALSRSFANVSFPGVAG (Fig. 5.7). Specificity and 

sensitivity for the test set comes to 0.75 and 0.89, only marginally worse than the complete 

models using all 1000 peptides. And the misclassification rate is at 0.16, no worse than the 

complete models. 

 

Figure 5.7. Scatterplot of the 2 selected peptides. 
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Color is true class. All samples are included in this figure. Both peptides are bacteria 

specific peptides. 

This reduction to 2 features may allow development of a more clinic-friendly 

serology test. BLAST search on these 2 peptides against the RefSeq database excluding 

Homo sapiens, Models (XM/XP) and Uncultured/environmental sample sequences, found 

them highly enriched in bacteria but not in viruses. Furthermore, they are prevalent in all 

types of bacteria and all types of proteins, suggesting they are indeed good bacterial 

infection biomarkers. 

Epitopes of bacteria are identified via blast search of the 2 peptides followed by 

ungapped motif mapping 

Once we identified the 2 peptides that are distinguishing bacterial from viral 

infection, we performed further experiments to identify the epitopes within the sequence. 

The 2 peptides must contain bacterial epitopes or mimotopes that enhance bacteria-specific 

antibody binding. We then did a protein blastp search of the 2 peptides against the Bacteria 

(taxid:2)(Altschul, Madden et al. 1997), with no E-value cutoff. We identified 100 matched 

sequences in bacteria proteomes which were then submitted to the MEME tool in the 

MEME suite.  This method identifies consensus motifs (Bailey and Elkan 1994, Bailey, 

Boden et al. 2009). The identified motif(s) will be the epitope(s) from bacteria that the 2 

peptides represent. Results are shown in table 5.2. 1 epitope is identified for peptide 1 while 

2 epitopes were identified for peptide 2. It is interesting to note that for peptide 1, only 6 

amino acids seem to be the target of bacterial specific antibodies, while for peptide 2, the 
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full length of the peptide is used. Each epitope is matched with at least 20 sequences from 

the bacterial proteome, so the epitopes are broadly represented in the bacterial world. 

 

epitope 1 epitope 2 

GALSRSFANVSFPGVAG RSFANV 

 
GLSNGASSFGKASGVAL SFGKASGV LSNGAS 

Table 5.2. Identified epitopes of bacteria with the 2 bacterial-viral distinguishing 

peptides. 

Peptide 1 has 1 epitope with length of 6 a.a. While peptide 2 has 2 matched epitopes with 

length of 8 a.a. and 6 a.a. correspondingly. Matched part is highlighted with color in 

peptides. This implies only part of peptide 1 is identified by bacterial specific antibody 

while the whole sequence of peptide 2 is the target for bacterial antibodies. 

Broad bacterial versus non-bacterial infection classifier shows robust distinction and 

better performance 

Once we finished constructing a model that is able to distinguish bacterial vs viral 

infections, we want to test whether we can still distinguish bacterial infection from non-

bacterial infections if other types of infections are added as noise. In clinical settings, it is 

likely that non-bacterial or non-viral infection may be present. Here we ask whether Chagas, 

malaria and Valley Fever disrupt the original bacterial vs. viral classification performance. 

Experiments are performed as described above.  Samples are divided into training, 

validation and test set. Training and validation sets are used to do feature selection and 

construct model, then test the performance on the independent test set. Results are 
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summarized in Fig 5.8. PCA analysis (Fig. 5.8a) and hierarchical clustering (Fig. 5.8b) 

show similar separation of the two group as in Figure 5.5, suggesting performance does 

not deteriorate when noise is added. Random Forest model and Neural Network models 

misclassify at 0.12 and 0.09 for the test set, which is an improvement compared with the 

bacterial vs viral only model. The better performing Neural Network model is at 0.83 

sensitivity and 0.94 specificity for bacteria with Generalized RSquare at 0.73, all improve 

vs. the original bacterial vs viral model. This improvement might be the result of more 

samples being used for model construction, or by including more types of infections as the 

non-bacteria comparison, the bacterial specific signature becomes more specific. 

 

Figure 5.8. Performance of distinguishing bacterial versus viral and other types of 

infection. 
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(a). PCA analysis on the selected peptides shows one factor is responsible for most 

variability, test set samples are highlight in the right figure. (b). Clustering of the selected 

peptides shows most peptides are bacteria specific peptides. (c) Performance of the 

classification algorithms 

In this experiment, we also attempted to find minimal number of peptides that can 

achieve similar performance compared with using all selected peptides. However, after the 

same stepwise regression process, the best performance we can get is using 5 peptides to 

gain a misclassification rate of 0.23, significantly worse than the complete model using all 

1000 peptides (Table. 5.3). Also, the sensitivity for bacteria only coms at 0.44, also 

significantly worse than the Neural Network model. In this case, we cannot find minimal 

number of peptides to achieve good classification result. 

logistic Fit Training Validation Test 

Sample size 127 42 43 

Misclassification 

rate 0.06 0.14 0.23 

sensitivity(Bacteria) 0.89 0.58 0.45 

Specificity(Bacteria) 0.96 0.97 0.875 

Table 5.3.Performance of bacterial vs non-bacterial infection classification using 5 

selected peptides 
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Peptides are selected from stepwise regression using mixed p-value model at cutoff of 0.1. 

Logistic fit is then performed using the selected peptides. Test set performance is much 

lower compared with the complete model using all selected peptides from T-Test. 

Discussion 

In this chapter we attempted to discriminate viral from bacterial infections using 

immunosignatures, a microarray-based serological test that uses semi-random peptides to 

splay out the antibody repertoire from infected individuals.  Previously, it has been 

demonstrated that IMS can distinguish specific infections with high accuracy.  This 

suggests that Immunosignatures are detecting antibodies specific to the infection.  However, 

we asked a broader question:  can we identify peptides that generally separate bacterial 

from viral infections?  We built machine learning models to identify the predictive 

performance of a given set of peptides across 169 patients, 105 with bacterial infections 

and 64 with viral infections.  We achieved over 84% accuracy, 84% specificity, and 83% 

sensitivity, and could achieve this performance with as few as two peptides.  These two 

peptides are overrepresented in bacterial proteomes, and underrepresented in viral 

proteomes.  Even when adding fungal and protozoan infections, we maintained high 

specificity, an important goal when attempting to reduce improperly prescribed antibiotics. 

Accurate diagnose of bacterial and viral infections is needed in clinical settings. 

The current imprecise diagnosis results in either over use of antibiotics or delayed treatment 

for patients. Here we present a novel diagnosis based on Immunosignature technology that 

is able to reliably diagnose bacterial infection from viral infections. By measuring the 

antibody response of patients with different infections, we showed that correlation of 
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infections is already able to distinguish the majority of the bacterial and viral infections. 

We further constructed models based on selected features and applying machine learning 

algorithms to the selected features. This model is able to classify the two types of infections 

with a misclassification rate of less than 20%, exceeding current biomarkers either used in 

research or clinical settings (Oved, Cohen et al. 2015). We further reduced the number of 

peptides to 2 both to test the limit of distinction and for easy application in clinical settings. 

The reduced model is performs as well as the full model and we identified the epitope from 

both sequences. Since in clinical settings, non-bacterial, non-viral infections will be 

expected, we also construct a model aimed at distinguishing bacterial versus all other non-

bacterial infections, consisting of viral infection and noise infections including Chagas, 

Malaria and Valley Fever. This model shows even better performance with 

misclassification rate at about 10%. These results suggest using antibody response 

measured from the Immunosignature platform is a viable approach to develop clinically 

usable bacterial versus viral infection diagnosis. 

Several studies using gene expression profile has shown potential to diagnose 

bacterial vs viral infections (Oved, Cohen et al. 2015, Sweeney, Wong et al. 2016, Tsalik, 

Henao et al. 2016). The logic behind those studies is genes will be differentially regulated 

when encountering different infections. So is it the case for antibody response. Antibody 

response is the most direct reaction for an infection. Given the fact that genes as indirect 

reaction can still work to distinguish infections types, antibody response should be an even 

better approach because of it directly targeting the pathogens. Bacteria and viruses have 

totally different structures while within the class they share commonality. This gives the 
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foundation for why Immunosignature platform that measures antibody response might be 

viable in the classification. One thing worth noting is that compared with gene microarrays, 

where it is usually one-to-one binding, antibodies will usually bind to multiple peptides on 

Immunosignature as long as the peptides are mimotopes of the true epitope (Stafford, 

Halperin et al. 2012). As a result, more peptides are used in analysis for the 

Immunosignature experiments. 

Correlation of the infections was used to first test the possibility of distinction at 

the antibody system level. The logic behind using correlation of infections is that the  

immune system might systematically see the difference between bacterial and viral 

infection by activating different pathways (Begitt, Droescher et al. 2014). 

Immunosignature platform is measuring antibody repertoire in the blood. If you use all the 

data from the platform, then you are measuring the immune system. Correlation of the 

immune system can then be tested by calculating the correlation of the Immunosignature 

for different pathogens. The results from the correlation offer insights into understanding 

both diagnosis and how the immune system works. It seems the immune system is able to 

distinguish most bacterial and viral infections and mount totally different immune response, 

since only one infection is misclassified. This confirms the notion that our immune system 

probably knows the source of the infection and responds accordingly. Or we can propose 

that maybe the immune system does not know the source of infection but because all 

infections within the same class are so similar, the immune system always produce similar 

antibodies against various bacterial infections. The same might be the case for viral 

infections. As later on described in the chapter, most of the signatures that can distinguish 
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bacterial and viral infection are bacterial specific signatures, implying the immune system 

is producing various antibodies against bacterial infection in ways like broad-spectrum 

anti-biotics. 

The result that influenza virus is misclassified into bacteria is interesting because it 

suggests somehow influenza virus successfully tricked the immune system into thinking it 

as bacteria and produce antibodies against bacteria. This is consistent with the fact that the 

virus is highly contagious worldwide, implying the immune system cannot quickly mount 

an effective immune response because influenza virus is regarded as bacteria. This 

complication adds to the existing problem for the virus including ever-evolving and easy 

transmission (Cox and Subbarao 2000). This misclassification by the immune system 

might also explain why there are already pre-existing neutralizing antibodies within the 

immune system, but they were not usually elicited during flu infection (Xu, Kula et al. 

2015). Even though by correlation influenza virus is a problem for diagnosis, they do not 

appear any different compared with other viruses in methods described later in the paper. 

As a result, they were not highlighted in the experiments following the correlation study. 

Once we found the notion of using immune system to classify types of infections 

held up, we continued to build a model using feature selection following machine learning 

classifiers and validated it using independent samples. We envision the major question we 

can answer in this chapter is whether an antibiotic should be prescribed for an incoming 

patient. Without accurate diagnosis, a doctor can choose to offer antibiotic, which will 

results in over-use of the drug, followed by antibiotic resistance (Spellberg, Guidos et al. 

2008, Davies and Davies 2010, Shallcross and Davies 2014). Instead, a doctor can also 
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choose to not offer an antibiotic, which will result in delayed treatment of the patient, 

maybe followed by higher mortality rate and more suffering (Kollef 2008). To solve this 

problem, all we need is the ability to do classification of bacterial versus non-bacterial 

infection. We suggest the peptides could be used to develop a binary classification of 

bacterial infection versus viral or non-bacterial infections. We first tested the model using 

bacterial versus viral infection and then expand the datasets by including other type of 

infections as the non-bacterial class to mimic real clinical settings, where there is no 

assurance the patient only has bacterial or viral infection. 

Overfitting has been a major problem in microarray studies (Smialowski, Frishman 

et al. 2010). Here we approach the experiment with a pre-isolated test set data to avoid the 

problem. The whole model construction process is without information from the test set. 

After the model is stabilized, its performance is tested with the test set data. Our results 

from shows there is little overfitting when migrating the model from training, validation 

set to the test set. 

In the bacterial versus viral infection model, we are achieving accuracy of over 80% 

in both classifiers tested, which is better than clinical or lab used biomarkers.  Clinicians 

can choose which classifier to use based on experience, since following the random forest 

classifier will minimize the diagnosis of viral infection into bacterial infection, hence lower 

the usage of antibiotics, while the neural network classifier tends to balance the error rate 

in each class, resulting in more usage of antibiotics but less suffering of patients. Features 

being selected from this study are almost exclusively from bacterial infection, indicating 

there is more commonality in the immune response. The ability to classify the two classes 
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may just be because our immune system recognizes bacterial infection better than viral 

infection. And the 2 selected peptides that we found that achieved similar classification 

accuracy compared with the larger set of peptides suggests there is conservation of 

antibody response against all bacterial infections. 

We further queried the 2 peptides by asking for matched sequences from real 

bacteria proteomes and then used the matched sequences to identify the consensus motifs. 

These consensus motifs should be the real target within the 2 peptides in the 

Immunosignature. We found that only 6 a.a. is the target in one of the peptides while the 

full length in the other peptide is being matched by the bacterial antibodies. This indicates 

these two peptides are recognizing different antibodies. 

Surprisingly, when non-bacterial and non-viral infections are added to the non-

bacterial class, the performance of the model actually increased. Accuracy was ~90% in 

both classifiers. Specificity for Bacteria is ~95% in both classifiers, indicating this model 

is good at distinguishing non-bacterial infections. When coupled with the result of the 

clustering heatmap, we are relatively comfortable to suggest that our immune system sees 

the commonality for bacterial infections but not other types. This is interpreted from the 

classifier result that all features are bacteria specific features and as long as you don’t have 

those features, you are classified into the non-bacterial class. Interestingly when applying 

stepwise regression to reduce the number of peptides used in the model, we are not able to 

maintain similar accuracy with it. 

Our study is limited by sample size and disease cohort. This will result in instability 

in the classifiers and is reflected in not being able to minimize peptide number in the largest 
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set. The overall performance of the model is also influenced by the sample size, since all 

models work better when you have more observations.  In this study, we are using 13 

infections, which is relatively small compared with all possible pathogens. However, we 

are approaching the problem by only doing binary classification. And the fact that all the 

signature is bacterial specific strengthens the model because for classification of infection, 

as long as it is non-bacteria, then it will not share the bacteria specific signature and should 

be classified correctly. 

In summary, we are able to construct classifiers that are better performing for 

bacterial versus viral infection. We validated each model using independent datasets to 

confirm the robustness of the model. We are able to confirm the source of the selected 

features, which in turn offers a logic for the success of the model. We believe 

Immunosignature can be beneficial when used in clinical settings to both combat the 

antibiotic overdose problem and reduce suffering of the patients.  
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ENTROPY IS A SIMPLE MEASURE OF THE ANTIBODY PROFILE AND IS AN 

INDICATOR OF HEALTH STATUS 

Abstract 

We have previously shown that the diversity of antibodies in an individual can be 

displayed on chips on which 125,000 peptides chosen from random sequence space have 

been synthesized.  This immunosignature technology is unbiased in displaying antibody 

diversity, and has been shown to have diagnostic and prognostic potential for a wide variety 

of diseases and vaccines.  Here we show that a global measure such as Shannon’s entropy 

can be calculated for each immunosignature.  The immune entropy was measured across a 

diverse set of 800 people and in 5 individuals over 3 months. The immune entropy is 

affected by some population characteristics and varies widely across individuals. We find 

that people with infections or breast cancer, generally have higher entropy values than non-

diseased individuals.  We propose that the immune entropy as measured from 

immunosignatures may be a simple method to monitor health in individuals and 

populations.  

This chapter contains significant input from Dr. Kurt Whittemore. He originally 

came up with the idea of using Entropy as measurement of Immunosignature and 

performed the early studies. His Java script is used for calculation of entropy in this chapter. 

I analyzed new, larger datasets containing more diseases and asked new questions about 

using the entropy measurement. I am responsible for majority of the results and figures 

presented in this chapter. 
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Introduction 

The antibodies in an individual’s blood offer a tremendously valuable source of 

information.  The 109 types in an individual and 1012 total variants exist in widely different 

concentrations and affinities for their original targets (Legutki, Magee et al. 2010, Legutki, 

Zhao et al. 2014, Stafford, Cichacz et al. 2014).  There are also 5 major isotypes adding to 

the richness of this information (Rajewsky 1996).  Many strategies have been employed to 

decipher this complexity.  Arrays of proteins representing some or all of the proteome of a 

species are produced commercially (MacBeath 2002, Templin, Stoll et al. 2002, Michaud, 

Salcius et al. 2003, Miller, Zhou et al. 2003).  These can be used to discover antibodies 

against pathogen proteins or autoantibodies.  Peptide arrays representing the proteomes 

provide higher resolution for the antibody binding to known proteins.  Alternatively, high 

throughput sequencing can be used to read the total variable regions of B and T cells 

(Briney, Willis et al. 2012, Georgiou, Ippolito et al. 2014).  The composite of all of the 

sequences represents the profile of the antibody coding regions for a particular sample.  We 

have developed an approach, immunosignatures (IMS), that also uses peptide arrays, but 

the peptides are chosen from random sequence space to maximize chemical diversity and 

to allow for the presence of mimotopes to epitopes which may be novel, such as a mutation 

in a cancer cell (Halperin, Stafford et al. 2010, Sykes, Legutki et al. 2012).  These peptide 

arrays can be used to discover biomarkers or vaccine candidates.  IMS can be used as a 

diagnostic tool (Legutki, Magee et al. 2010, Restrepo, Stafford et al. 2011, Restrepo, 

Stafford et al. 2012, Navalkar, Magee et al. 2014, Stafford, Cichacz et al. 2014).  In contrast, 
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here we explore the application of IMS to measure the immune entropy of individuals 

across time, populations and health status.  

The IMS technology is based on creating arrays of 104 to 3x105 peptides, 9-20 

amino acids long, in an area of ~0.5cm2 (Stafford, Halperin et al. 2012, Sykes, Legutki et 

al. 2012, Stafford, Cichacz et al. 2014, Stafford, Wrapp et al. 2016).  They are chosen from 

random peptide sequence space to optimize chemical diversity and therefore, presumably, 

binding distinctions between antibodies.  Given that most epitopes of antibodies are 5-20aa 

long, it is unlikely that the exact cognate epitope for any antibody is present in the arrays. 

However, because of the avidity effect each antibody will bind many peptides in a 

characteristic signature (Halperin, Stafford et al. 2010, Stafford, Halperin et al. 2012).  

Therefore, when blood from an individual is applied, a complex pattern of antibody binding 

(IMS) is produced unique for each sample.  The binding varies in which features are bound 

and the amount of antibody on each feature. An attractive feature of IMS is its simplicity.  

A drop of blood can be sent on a filter paper thru the mail, diluted and applied to the array 

to make the measurement, greatly facilitating monitoring individuals (Chase, Johnston et 

al. 2012).  

Here we calculate the information entropy of each IMS. Shannon information 

entropy (defined as H= -∑ p(x)*log(p(x)) where p(x) is the probability of outcome x) can 

be applied to any type of information to quantify how predictable the information is. In 

information theory, the entropy can be determined from the frequency of values for all of 

the elements contained in an object of information.  For example, the entropy of the 

message “aaaa” would have a lower entropy value than the message “abcd”.  The entropy 
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value of the first message is –(4/4*log(4/4))=0, and the entropy of the second message is –

(1/4*log(1/4)+ 1/4*log(1/4)+ 1/4*log(1/4)+ 1/4*log(1/4))=1.39.  Therefore, high entropy 

information is most similar to the information that would be output by a random 

information generator. 

Global measures, and the entropy measure in particular, have been applied to a 

variety of biological data previously.  Global measures such as the mean and median of a 

sample are used extensively in scientific research.  Application of information entropy is 

less common, but it has been used to characterize a wide range of different biological data. 

In cancer, the entropy calculated from aberrations in DNA copy number is  higher in a 

variety of cancer types (van Wieringen and van der Vaart 2011), alternative splicing 

entropy is higher in some cancers (Ritchie, Granjeaud et al. 2008), the entropy of structural 

and numerical chromosomal aberrations is higher in cancers (Castro, Onsten et al. 2005), 

the entropy of a random walk on the protein interaction network graph was higher in cancer 

cells (West, Bianconi et al. 2012), and the entropy of photographs of tissues was higher in 

cancer tissues (de Arruda, Gatti et al. 2013).  In the brain, the entropy of fMRI data 

increases with age and Alzheimer's disease in a dataset of 1,248 samples (Chen and Pham 

2013, Yao, Lu et al. 2013).  Schizophrenic patients had a lower entropy value than normal 

subjects, which indicates that entropy values that are too low or too high may indicate that 

something is altered from normal in the system being investigated (Yao, Lu et al. 2013).  

Rhesus monkeys with induced Parkinson's disease had higher levels of neuronal firing 

entropy compared to controls (Dorval, Russo et al. 2008).  Entropy has also been used for 

data related to the immune system.  For example, Vilar et al.  assessed entropy from data 
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sets on immune cells (Vilar 2014).  Merilli et al.  applied entropy values to the putative 

idiotypic network of antibodies (Rucco, Castiglione et al. 2016).  Asti et al used maximum-

entropy models based on antibody gene sequence data to predict antibody binding from 

complex mixtures (Asti, Uguzzoni et al. 2016).  

Here we calculate the Shannon information entropy of the peptide fluorescence 

intensity distribution that results from applying sera to a complex peptide microarray 

surface.  The immune entropy (IE) was measured in a wide array of people, the same people 

over time and the people with diseases.  

Material and methods 

Array Platforms 

Two different immunosignature peptide array platforms were used: two different 

libraries of 10,000 peptide microarrays, the CIM10Kv1(NCBI GEO accession number 

pending), the CIM10Kv2 (GPL17600) and HT330K (GPL17679).  The 10K random 

peptide platforms consists of 10K 20 residue peptides linked to glass slides through a 

maleimide conjugation to a linker coupled to an aminosilane-coated glass surface. This 

linker is on the carboxyl terminus for CIM10Kv1 and on the amino terminus for 

CIM10Kv2(Stafford, Halperin et al. 2012). The CIM10Kv1 arrays were produced by 

spotting peptides synthesized by Alta Biosciences using a NanoPrint LM60 microarray 

printer (Arrayit, Sunnyvale, CA). The CIM10Kv2, peptides were synthesized by Sigma 

Genosys (St. Louis, MO), and they were printed by Applied Microarrays (Tempe, AZ) 

using a piezo non-contact printer.  
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The 330K platform (GPL17679) uses an in situ synthesis method to create 330,000 

peptides on a silicon wafer (Legutki, Zhao et al. 2014). This platform uses peptides selected 

from random space to maximize chemical diversity.  On this platform, not all of the 

peptides have exactly the same length, but average 12 amino acids plus or minus 6 amino 

acids at the 95th percentile.  Arrays are deprotected following synthesis, soaked overnight 

in dimethyl formamide.  The residual DMF was removed by two 5 min washes in distilled 

water, then arrays are soaked in PBS pH 7.3 for 30 min, blocked with an incubation buffer 

(3% BSA in Phosphate Buffered Saline, 0.05% Tween 20 (PBST)), washed, and spun dry, 

1500RPM x 5’. At this point the, the arrays were ready for the application of sera. 

Array procedures with samples 

The general assay conditions have been published previously (Halperin, Stafford et 

al. 2010, Brown, Stafford et al. 2011, Kukreja, Johnston et al. 2012, Kukreja, Johnston et 

al. 2012), and briefly described here.  The procedure for applying sample to the arrays of 

the two different types of platforms is nearly identical, and less than 1 µl of sample is 

required.  For the CIM10K platform, the microarrays are pre-washed in 10% acetonitrile, 

1% BSA to remove unbound peptides. Then the slides are blocked with 1XPBS pH 7.3, 3% 

BSA, 0.05% Tween 20, 0.014% β-mercaptohexanol for 1 hr RT.  Without drying, slides 

are immersed in sample buffer consisting of 3% BSA, 1X PBS, and 0.05% Tween 20 pH 

7.2.  Serum is diluted 1:500 and applied to the peptide array for 1 hr at 37 °C.  The slides 

are washed in 1X Tris-buffered saline with 0.05% Tween 20 (TBST) pH 7.2.  Then a mouse 

anti-human secondary antibody conjugated to a dye is applied to the array.  The slides are 

washed again as before and dried by centrifugation.  The slides are then scanned in an 
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Agilent ‘C’ scanner to determine the intensity of each peptide.  For the 330k platform, the 

arrays were loaded into a multi-well Array-It gasket.  Then a volume of 100 µl of 

incubation buffer was added to each well, and then 100 µl of 1:2,500 diluted sera was added 

for a final concentration of 1:5,000.  Arrays were incubated for 1 hr at room temperature 

(RT) with rocking, and then washed with PBST using a BioTek 405TS plate washer.  An 

anti-human IgG-DyLight 549 secondary antibody with a conjugated dye (KPL, 

Gaithersburg, MD) was added to the sera at a final concentration of 5 nM.  This solution 

was incubated 1 hr at RT with rocking, and unbound secondary was then removed with 

PBST followed by distilled water.  The arrays were removed from the gasket while 

submerged, dunked in isopropanol, and centrifuged dry at 800Xg for 5 min. These arrays 

were then scanned with a commercially available scanner to determine the intensity of a 

certain wavelength at each peptide feature position.  

Once the 16 bit TIFF image file from either type of array was obtained, the intensity 

values from each feature were obtained using GenePix 8.0 (Molecular Devices, Santa Clara, 

CA).  These fluorescence intensity values were then used to calculate the value of global 

measures such as the mean and Shannon information entropy. 

Java Entropy program 

A custom Java program was written to calculate Shannon’s entropy from the 

fluorescence intensity files (.gpr, or “Gene Pix Array Format”) from the peptide microarray.  

Most image alignment software allows output as a gpr file, and that is how the program 

recognizes data columns.  However, any datatype could be used with minor modifications.  

There are two programs listed in the Appendix, an algorithm class and a test class.  The 
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algorithm class provides values entropy given an immunosignature data file, but for 

comparison sake it also provides CV (coefficient of variance), mean, median, kurtosis, 

skew, 95th percentile, 5th percentile, and dynamic range.  Tests have shown that entropy is 

the most sensitive and robust to health changes, but the other calculations provide 

comparisons.  The test class allows the user to input their data directories and filenames, 

and serves as the Java main class. 

Software and statistics for general analysis 

Microsoft Excel and JMP were used for data analysis and to create the graphs.  

Linear fit of entropy on age is by ordinary least squares. P-value is the probability of aging 

is actually influencing entropy. Either ANOVA test or t-Test is used in testing if entropy 

is being influenced by specific factors. 

Results 

Entropy can differentiate a monoclonal antibody solution from a mixed antibody 

solution  

Entropy can generally measure the difference in the distribution of two datasets as 

illustrated by example in Figure 6. 1. As applied to an IMS, the expectation is that more 

antibody types would produce more randomness, which should result in a higher entropy 

number. This hypothesis was tested by measuring the entropy of binding of two different 

monoclonal antibodies individually and then in an equal mixture. The results are shown in 

Figure 6.2. The two monoclonals target different sites (RHSVV and SDLWKL) on the p53 

protein.  When each was applied separately to the array, they bound a different set of 

peptides but the distribution was approximately the same, so the IEs were similar.  
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However, when the two antibodies were mixed, the distribution of the IMS signal expanded, 

which in turn caused the entropy to be higher than a single antibody.  This result confirms 

that entropy can in principle be used as a measure of the disorder in an IMS. 

 

Figure 6.1. Example of entropy measuring the difference in an information 

distribution. 

(a) is the letter distribution from a real dissertation(Whittemore 2014). (b) is the letter 

distribution of randomly generated thesis with the same total number of letters. The 

selective use of words results in order for the distribution. The outcome is that the 

normalized entropy is lower in the real dissertation than the randomly generated one, 

0.887 compared with 1.  
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Figure 6.2. Entropy measurement is able to distinguish a single monoclonal antibody 

profile from a mixed monoclonal profile. 

Antibody1 and antibody 2 are individually applied to the Immunosignature platform and 

then mixed together to apply for the Immunosignature platform. The entropy value is 

calculated for each distribution. The two monoclonal antibody entropies cannot be 

differentiated, while both of them are obviously lower than mixing the two antibodies 

together. 

IE varies with gender, blood type, and ethnicity but not age or location 

In order to identify factors associated with IE, we examined the sera of 800 healthy 

individuals using the IMS platform.  These samples were obtained from Clinical Testing 

Solutions (CTS Inc., Tempe, AZ) and were chosen to equally represent the proportion of 

genders, ethnicity, blood types, and ages in the Southwest US population.  They were 

collected from centers in California, Arizona and Texas. 
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In Figure 6.3 the distribution of entropy values across the whole set of 800 samples is 

presented.  The entropy values ranged from 6.6 to 8.8 with a median of 8.1.  The values 

are approximately normally distributed. 

 

Figure 6.3. Distribution of entropy values for 800 healthy individuals. 

The entropy value ranges from 6.6 to 8.8 with a median of 8.1. The distribution is 

approximately normal.  

Figure 6.4 shows the IE distribution with various factors including age, location, 

gender, blood type, and ethnicity. The distribution in every group follows a near normal 

distribution. We asked if there were any significant differences in pairwise comparisons of 
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the entropy with regard to these factors. We found none with respect to age and location. 

However, we did find that the entropy values are influenced by gender, blood type, and 

ethnicity.  

 

Figure 6.4. Entropy measurement variance by different factors. 

Entropy value was tested with factors of age, gender, location (state), ethnicity and blood 

type. Age, gender, and location are found to not influence the entropy value, while ethnicity 

and blood type has significant influence on the entropy value. The p-value is obtained from 

an ANOVA test for each comparison. 
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Generally, females have slightly higher entropy than males.   Caucasians had a 

lower entropy level than Asian or African-Americans.   The difference of these two sets of 

comparisons were at a significance level of <0.005 by a t-Test and <0.0001 by an ANOVA 

test.  

We found differences in IE both in the ABO blood group system and the Rh blood 

group system.  People with AB blood type have on average the lowest entropy value, 

whereas the other blood types are similar to each other. The Rh blood system also shows 

that Rh- blood type has lower entropy compared with Rh+ blood type.    

As noted the Caucasian and Asian populations had different average entropy levels 

and Rh+ and Rh- have different average values. Caucasians have a frequency of 17% for 

Rh- while Asians have a frequency of <2%(Garratty, Glynn et al. 2004). Given these 

differences we inquired whether the differences in ethnic backgrounds could be accounted 

for by Rh differences.  The Rh- samples were subtracted from the Asian and Caucasian 

derived samples and reanalyzed. The difference in entropy averages was not affected. 

Therefore, it appears the differences at least between the Asian and Caucasian groups is 

not due to differences in Rh factor.   

The entropy value varies between individuals, in the same individual over time, and 

can reflect health status 

One would assume that the entropy value between individuals would be different 

even if just due to random fluctuations in the immune system.  However, it is not known 

what the range of the variation is and how it differs from person to person. In this 

experiment, we obtained the IMS of 5 individuals over a period of time.  Blood was drawn 
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daily for 1 month and every week for 2 subsequent months, the IMS determined for each 

sample and the entropy calculated.  The variance for each individual is summarized in a 

box plot in Figure 6.5a.  An ANOVA test shows a p-value<0.0001, indicating there is 

significant difference from the grand mean in the mean entropy for the five individuals.  

This suggests that random fluctuations alone are not sufficient to explain the difference 

between individuals.  It is of interest to note that people with lower average entropy tend 

to have lower variation overall.  The standard error correlates well with the average entropy 

value. This is especially the case for volunteers 4 and 5, both of whom had the lowest 

average entropy and variance.   

We were also interested in how entropy changes over time within an individual and 

between them. Instead of plotting the entropy values in a boxplot graph, we illustrated the 

entropy change with time in each of the individuals in Figure 6.5b. Five volunteers are 

monitored during the same time period. As it shown, the entropy for all individuals varies 

during this period and does not show a time correlation between individuals. It appears that 

the variance in entropy is quite different between individuals.  

To determine whether entropy can truly reflect the health status of an individual, 

we recorded the volunteers’ health and vaccine history during the monitored time period.  

An example of one individual is graphed in Figure 6.5c.  Volunteer 4 received 3 vaccines, 

and was self-reported sick during the monitoring period. Aside from the missing data points 

from July 25th to early August, we found that there was a trend for the entropy value to 

increase on health intervention.  This gives us a first indication that entropy can be used to 

monitor health status as it changes with exposure to infections or vaccines.  
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Figure 6.5. Entropy measurement variance between individuals over time and with 

changes in health states. 

(a), boxplot of 5 individual’s entropy recorded over a period of time shows difference from 

person to person. (b), plotting entropy against time for the volunteers shows variation of 

entropy that is independent between individuals. (c), recorded volunteer’s activity shows 

entropy changes with vaccine administration and sickness. Black dots are blood draw 

points and the red line connects the dots. 

Entropy is higher for people infected with pathogens 

Once we established how entropy changes in healthy individuals, we asked whether 

entropy value changes with different forms of health disturbance. We first tested this with 
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infectious diseases. Sera from 7 types of infections were assayed, including Borrelia (8), 

Bordetella pertussis (12), dengue (9), Hepatitis B virus (15), malaria (13), syphilis (8) and 

West Nile Virus (21). All samples were from convalescent people. These pathogens, 

including bacterial, viral and parasite infections, were chosen to broadly reflect the 

infectious population.  

When comparing them with non-infected samples, the infection group shows 

significantly higher entropy level (Figure 6.6). This result implies that entropy can indeed 

distinguish people with different health status. Result of the un-mixed 7pathogens’ entropy 

comparison is attached in Figure 6.7. 

 

Figure 6.6. People recovering from infectious diseases have a higher entropy values 

compared with normal donors. 
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Samples from 7 types of infections are mixed together to represent the disease group. A t-

test shows that the entropy from the disease group is significantly higher compared with 

the normal donors. P-value <0.0044.  

 

 

Figure 6.7. Infections listed individually and in comparison with normal donors. 

The overall p-value from AVONA test is not significant from this comparison. 6 of the 7 

infections have higher mean entropy than normal donors.  

Sera from people with cancer exhibited a higher level of entropy 

We also tested if people with cancer have differences in average entropy. Cancer 

signatures are distinct by type and from infections (Hanahan and Weinberg 2000, Hanahan 

and Weinberg 2011).  A tumor presumably presents more antigens, including neo-antigens, 
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to the immune system and is often subject to immune suppression (Kawakami, Fujita et al. 

2004, Whiteside 2006, Reiman, Kmieciak et al. 2007, Andersen, Thrue et al. 2012).  

Here we used datasets from normal donors and from people with several types of 

cancer to represent general cancer patients, including breast cancer (5), esophageal cancer 

(2), Glioblastoma multiforme (1), lung cancer (1), meningioma (1) and multiple myeloma 

(1).  Analysis is performed with sample sizes of 11 cancer and 21 healthy donors. As shown 

in Figure 6.8a, cancer samples have significantly higher entropy value compared with 

healthy donors.  The P-value from T-Tests is <0.0096.  

In some B-cell lymphomas, a large amount of the same antibody is produced, which 

changes the antibody composition in the blood (Kuppers 2005, Shaffer, Young et al. 2012).  

We predict that this may lead to lower entropy value compared with healthy donors.  To 

test this prediction we determined the IMS for dogs with a B-cell lymphosarcoma (LSA) 

to healthy dogs. IMS uses the same chip for all diseases and species, just requiring the 

appropriate, in this case dog, secondary, labeled antibody.  68 normal dogs were compared 

to 83 LSA samples.  As evident the entropy is significantly lower in the LSA compared 

with healthy dogs.  This is consistent with the prediction. 
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Figure 6.8. Comparision of cancer patients with normal donors. 

(a)Various cancer samples are used to represent the general cancer group.  The boxplot 

shows that cancer samples have a higher entropy value compared with normal donors by 

T-Test with p-value<0.0096. (b) Dog LSA samples are compared with non-cancer normal 

samples shows lowered entropy for LSA samples with p-value<0.0001 by T-Test.  

 

Discussion 

We have explored the application of Shannon information entropy to 

immunosignatures.  We first showed that two different monoclonal antibodies that bind to 

a different set of peptides and have comparable entropy measures, produce an increase in 

entropy when mixed and added to the arrays, as predicted. We then used a collection of 

sera from 800 people who equally represent gender, age, ethnic background and three 

geographic locations to measure the entropy of IMS for each.  We found that the entropy 

values ranged from ~6.6 to 8.8 and were approximately normally distributed over the 800 

samples. In pairwise comparison of various sets of signatures we found that there were no 

significant differences in average entropy values between age or geographic location.  We 

did find the average values females were slightly higher than males, and Asian and African-

American donors were significantly higher than that of Caucasian donors.  While there 

were no differences in averages between A, B and O blood types, AB blood types were 

significantly lower on average.  Rh- samples were on average lower than Rh+.  We found 

that the difference between Asian and Caucasian donor samples could not be explained by 

differences on Rh- frequency between the two groups. We extended the analysis to samples 
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from people infected with 7 different pathogens and found that as a pool these samples had 

on average significantly higher entropy values than uninfected controls.  The same was 

true for samples from people with three different cancers compared to people without 

cancer.  However, we found that dogs with a B-cell lymphoma, as might be predicted for 

a clonal production of a particular antibody, actually had lower average entropy levels.   

In the proof of principle experiment we used two different high affinity monoclonal 

antibodies to two different sites on P53 (Figure 6.2).  We have shown that monoclonal 

antibodies can vary greatly in the number of peptides they bind in the array (Halperin, 

Stafford et al. 2010).  We suggest that the entropy assessment of an antibody may be a 

good predictor of off-target binding.  It would have the value of being a simple, single 

number standard that could be applied to all antibodies. 

While there was a wide range of entropy values in each of the groups in the 800 

samples (Figure 6.3), there were significant differences in the average for gender, ethnicity, 

and blood groups (Figure 6.4).  The underlying causes of these differences is unknown.  

Given that the immune system is highly sensitive to both intrinsic and extrinsic factors it 

would take more studies to associated a cause(s) of the differences.  Where there are no 

significant differences, for example geographic location, we can exclude differences in 

flora, for example, as inducing different average entropy levels.  

Five people were monitored daily for one month and then weekly for an addition 

two months (Figure 6.5).  This allowed us to determine the differences in averages overtime 

and the variance for each person over time.  The entropy averages of the 5 people happened 

to represent approximately the range we observed in the 800 samples.  Each person 
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generally maintained the differences between each other over the three months.  The person 

with the highest average entropy also had the highest variance and the one with the lowest 

the lowest variance.  It will be interesting to see in a larger set of individuals whether this 

generally holds true.  In order to see if a health event changed the entropy value of an 

individual, one person received a vaccine.  There was subsequently a sharp increase in the 

entropy number for this individual (Figure 6.5c), although the increase was within the range 

they previously presented.  Additionally, one individual later had an undiagnosed illness 

and this was accompanied by an increase in entropy (Figure 6.9).  These are single events 

so the association between entropy increase and illness could be coincidental. 
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Figure 6.9. Entropy record of one individual at different time points. 

The volunteer is healthy at the first 5 data points but report unknown illness at T6. 

Dramatic increase is observed at T6.  

The results of the monitoring of individuals suggests two potential applications for 

entropy monitoring.  On an individual level if a person monitors their entropy over time on 

a regular basis, one could detect a significant change from baseline or normal variance.  To 

be useful this would change would need to be present before symptoms occurred.  Whether 

entropy changes are present before symptoms is another area of future investigation.   

Another potential application would be for population monitoring for a disease 

outbreak or an intentional biological attack.  If a population was monitoring their IMS on 

a regular basis, presumably in order to detect early signs of a chronic disease, a disturbance 

in the entropy levels of a large number of people could be an indicator of an event.  As 

evident from the data in Figure 6.5 on monitoring individuals, this would need to be based 

on multiple measures of time of each individual.  It may be possible to identify the peptides 

that were responsible for the change in entropy in each person and determine if there was 

a common signature.  In the case of a natural outbreak or attack, this signature would 

represent the immune response to the infectious agent.   

In the data presented in Figures 6.5c and 6.9, the disturbance health event was 

accompanied by an increase in entropy.  We investigated whether this is generally the case.  

We found that for both infections (Figure 6.6) and cancers (Figure 6.8a) the people with 

the health problem had on average higher entropy levels.  However, within both diseases 
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there was a wide range in entropy values for different people. Therefore, even for a health 

disturbance that causes and increase in entropy, it would need to be measured against the 

personal baseline.  As an example of entropy decreasing we presented analysis of dogs 

diagnosed with a B-cell lymphosarcoma (LSA).   In contrast to the data in Figure 6.8a, the 

average entropy was lower in the disease state.  B-cell cancers may be a special case as 

they are characterized by overproduction of one antibody species.   

Infections induce a set of high affinity antibodies to the pathogen.  In order for this 

to register as an increase in entropy the induced antibodies would need to expand the 

number of sites bound relative to the peptides bound by the non-infected samples.  The 

implication is that there would need to be unoccupied features that the induced antibodies 

could bind to expand the diversity.  Presumably, this would also be the case for the cancer 

samples.  In the case of the LSA samples the preponderance of the antibody produced by 

the cancerous B-cell would decrease the total diversity of antibodies in the sample to lead 

to a decrease in average entropy.   

As discussed in the Introduction, the concept of entropy has been applied to various 

measures of the immune system.  The approach of sequencing B-cell variable regions in 

depth most closely resembles our concept.  For example, Asti et al(Asti, Uguzzoni et al. 

2016) used deep sequencing data on HIV patients as applied to predict binding to HIV 

antigens.  Using IMS to measure entropy of the antibody repertoire has several advantages. 

The blood spots for the IMS analysis can be sent through regular mail and only requires a 

small amount of blood, making large population surveys feasible (Chase, Johnston et al. 

2012).  The assay itself is simple and inexpensive.  We hope that the simplicity of this 
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approach to measuring the humoral immune component will encourage further 

investigations and applications.   
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CHAPTER 7 

CONCLUDING REMARKS 

 

Immunosignature technology is a powerful tool to perform diagnosis on various 

diseases. The platform itself requires advanced skills both in manufacturing and data 

analysis. In this thesis I presented my contribution in improving the Immunosignature 

technology and using Immunosignature to perform diagnosis on various diseases as well 

as uncovering fundamental biological phenomena.  

I first contributed to the optimization of the immunosignature platform by 

introducing scoring metrics to select optimal parameters considering performance as well 

as practicality. Next, I primarily worked on identifying a signature shared across various 

pathogens that can distinguish them from the healthy population. I further retrieved 

consensus epitopes from the disease common signature and proposed that most pathogens 

could share the signature by studying the enrichment of the common signature in the 

pathogen proteomes. Following this, I worked on studying cancer samples from different 

stages and correlated the immune response with whether the epitope presented by tumor is 

similar to pathogen. An effective immune response is defined as an antibody titer 

increasing followed by decrease, suggesting elimination of the epitope. I found that an 

effective immune response usually correlates with epitopes that are more similar to 

pathogens. This suggests that the immune system might have a limit and can be effective 

against only certain epitopes that have similarity with pathogens. I then participated in the 

attempt to solve the antibiotic resistance problem by developing a classification algorithm 
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that can distinguish bacterial versus viral infection. This algorithm outperforms other 

currently available classification methods. Finally, I worked on the concept of deriving a 

single number to represent all the data on the immunosignature platform. This resembles 

the concept of temperature, which is an indirect measurement of whether an individual is 

healthy.  The measure of Immune Entropy was found to work best as a single measurement 

to describe the immune system information derived from the immunosignature. Entropy is 

relatively invariant in a healthy population, but shows significant differences when 

comparing healthy donors with patients either infected with a pathogen or have cancer. 

The future of healthcare relies on early diagnosis of diseases. Immunosignature is 

a good choice to fulfill this task because of its ability to diagnosis various diseases 

simultaneously with high accuracy in single assay and its low cost. No other technology 

has the same capacity like Immunosignature. My work during my Ph.D. study presents 

some unique usages of Immunosignature and moves one step closer for Immunosignature 

to become a single test for diagnosing all diseases. 
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