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ABSTRACT 

Understanding how adherence affects outcomes is crucial when developing and assigning 

interventions.  However, interventions are often evaluated by conducting randomized 

experiments and estimating intent-to-treat effects, which ignore actual treatment received.  

Dose-response effects can supplement intent-to-treat effects when participants are offered 

the full dose but many only receive a partial dose due to nonadherence.  Using these data, 

we can estimate the magnitude of the treatment effect at different levels of adherence, 

which serve as a proxy for different levels of treatment.  In this dissertation, I conducted 

Monte Carlo simulations to evaluate when linear dose-response effects can be accurately 

and precisely estimated in randomized experiments comparing a no-treatment control 

condition to a treatment condition with partial adherence.  Specifically, I evaluated the 

performance of confounder adjustment and instrumental variable methods when their 

assumptions were met (Study 1) and when their assumptions were violated (Study 2).  In 

Study 1, the confounder adjustment and instrumental variable methods provided unbiased 

estimates of the dose-response effect across sample sizes (200, 500, 2,000) and adherence 

distributions (uniform, right skewed, left skewed).  The adherence distribution affected 

power for the instrumental variable method.  In Study 2, the confounder adjustment 

method provided unbiased or minimally biased estimates of the dose-response effect 

under no or weak (but not moderate or strong) unobserved confounding.  The 

instrumental variable method provided extremely biased estimates of the dose-response 

effect under violations of the exclusion restriction (no direct effect of treatment 

assignment on the outcome), though less severe violations of the exclusion restriction 

should be investigated. 
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Nonadherence is pervasive in medicine, pharmacology, and psychology and 

substantially impacts public health.  Ignoring medical advice leads to morbidity, 

mortality, and avoidable medical costs, yet between 20% and 30% of prescribed 

medications are never filled and about half of medications for chronic diseases are not 

taken as prescribed (Bosworth, 2012).  Adhering to recommended behaviors (e.g., dietary 

modifications) can be even more challenging, and such behaviors account for 

approximately 40% of the risk associated with preventable premature deaths in the 

United States (National Institutes of Health, 2015).  Similarly, psychotherapy is often 

refused or ended prematurely, such that existing mental health problems may persist or 

worsen.  Based on a national database of 9,173 patients with various diagnoses, 3,101 

patients (33.8%) only attended one session of psychotherapy and most of the remaining 

6,072 patients attended fewer than five sessions (Hansen, Lambert, & Forman, 2002).  

These attendance rates fall far below the 13 to 18 sessions expected to be necessary for 

half of patients to improve (Hansen et al., 2002), and many more referred patients never 

attend a session. 

 Understanding how adherence affects outcomes is crucial when developing and 

assigning interventions.  However, interventions are often evaluated by conducting 

randomized experiments and estimating intent-to-treat effects, which ignore actual 

treatment received.  Dose-response effects can supplement intent-to-treat effects when 

participants are offered the full dose but many only receive a partial dose due to 

nonadherence.  By estimating the magnitude of the treatment effect at different levels of 

adherence (a proxy for different levels of treatment), dose-response effects can enhance 

our understanding of the treatment’s efficacy and potentially improve the generalizability 
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of the results.  In this dissertation, I conduct Monte Carlo simulations to examine when 

linear dose-response effects can be accurately and precisely estimated in randomized 

experiments comparing a no-treatment control condition to a treatment condition with 

partial adherence. 

 The remainder of this dissertation is organized as follows.  I first review the 

potential outcomes framework for causal inference.  I then introduce intent-to-treat 

effects and alternatives in the presence of nonadherence.  Whereas many alternatives 

require a binary measure of adherence or dichotomization of a discrete or continuous 

measure of adherence, dose-response estimation relies on partial adherence.  I describe 

two methods for estimating dose-response effects in randomized experiments with no 

measure of adherence in the control condition and a discrete or continuous measure of 

adherence in the treatment condition.  Finally, I conduct two simulation studies to 

evaluate the performance of these methods when their assumptions are met and when 

their assumptions are violated. 

Potential Outcomes Framework for Causal Inference 

In the potential outcomes framework for causal inference (Rubin, 1974, 1977, 

1978, 2005; Imbens & Rubin, 2015), the treatment effect for unit 𝑖 is defined as the 

difference between unit 𝑖’s response in the treatment condition, denoted 𝑌𝑖(𝑍 = 1) or 

𝑌𝑖(1), and its response in the control condition, denoted 𝑌𝑖(𝑍 = 0) or 𝑌𝑖(0): 

 𝑌𝑖(1) − 𝑌𝑖(0). (1) 

𝑌𝑖(1) and 𝑌𝑖(0) are referred to as unit 𝑖’s potential outcomes because only one will 

ultimately be realized and possibly observed.  Because we cannot observe 𝑌𝑖(1) and 
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𝑌𝑖(0) on the same unit (e.g., a single participant at a given time; Holland, 1986), our 

focus shifts from the unit’s treatment effect to the average treatment effect: 

 ATE = E[𝑌𝑖(1) − 𝑌𝑖(0)] = E[𝑌𝑖(1)] − E[𝑌𝑖(0)]. (2) 

To define the average treatment effect, three assumptions are necessary: consistency, 

stable unit treatment value assumption (SUTVA), and ignorable treatment assignment.  

Consistency states that a unit’s potential outcome under the treatment it actually received 

equals its observed outcome.  Letting 𝑌𝑖 denote unit 𝑖’s observed outcome, 𝑌𝑖 = 𝑌𝑖(1) if 

unit 𝑖 were in the treatment condition and 𝑌𝑖 = 𝑌𝑖(0) if unit 𝑖 were in the control 

condition. 

SUTVA ensures that each unit has only one potential outcome in the treatment 

condition and one potential outcome in the control condition.  SUTVA combines the no-

interference assumption that one unit’s treatment assignment does not affect another 

unit’s potential outcomes (Cox, 1958) with the assumption of no hidden variations of 

treatments (Rubin, 2010).
1
  Interference may occur in group-based interventions, such as 

when a participant’s engagement in the intervention depends on other members of the 

group.  Hidden variations of treatments may exist when interventions are delivered across 

multiple sites or by multiple clinicians or physicians.  Ensuring that the two components 

of SUTVA (no interference across units and no hidden variations of treatments) are met 

is best achieved through research design.  However, if SUTVA does not hold for the 

                                                 
1
 VanderWeele (2009) formalized the weaker assumption of treatment-variation irrelevance, meaning 

variations of the treatment may exist but all result in the same potential outcome for each unit.  Imbens and 

Rubin (2015) clarified that SUTVA does not require the treatment to be identical across all units.  Rather, 

SUTVA states that variations of the treatment cannot alter any unit’s potential outcome (p. 12). 
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outcome of interest, the set of represented treatments may be redefined to include 

previously hidden variations of treatments (Imbens & Rubin, 2015). 

Ignorable treatment assignment states that treatment assignment is independent of 

potential outcomes.  That is, treatment assignment is independent of the set of outcomes 

that would have been realized (though not necessarily observed) if all units had been in 

the treatment condition and the set of outcomes that would have been realized (though 

not necessarily observed) if all units had been in the control condition.  Successful 

randomization provides strong ignorability, or independence of treatment assignment and 

potential outcomes and independence of treatment assignment and all baseline covariates 

(whether measured or unmeasured).  Under strong ignorability, participants in the 

treatment and control conditions are equivalent, on average, at baseline and should thus 

only differ based on application of the treatment under investigation.  Although strong 

ignorability is not required to define the average treatment effect, achieving ignorability 

is difficult without randomization. 

Directly comparing the observed average outcome in the treatment condition and 

the observed average outcome in the control condition yields a causally valid estimate of 

the average treatment effect given that consistency, SUTVA, and ignorable treatment 

assignment hold; all units fully adhere to their assigned treatment; and all units’ treatment 

assignment and outcome are observed (Sagarin, West, Ratnikov, Homan, Ritchie, & 

Hansen, 2014).  However, nonadherence complicates the estimation of the average 

treatment effect and can compromise our ability to draw causal inferences.  The co-

occurrence of nonadherence and missing data is beyond the scope of this dissertation but 
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serves as a potential topic for future research.  The remainder of this dissertation assumes 

complete data. 

Overview of Nonadherence 

Nonadherence occurs when participants’ received treatment differs from their 

assigned treatment.  For example, nonadherence would occur if a participant failed to 

attend all of the required sessions in a multisession intervention, did not receive a 

vaccination after being encouraged to do so, or only partially adhered to a prescribed 

drug regimen.  Typically adherence is nonignorable, or related to participants’ potential 

outcomes.  Meier (1991) outlined three conditions under which adherence may be 

nonignorable.  First, characteristics of the participants may affect both adherence and the 

outcome, which he termed selection effects.  For example, participants’ baseline risk may 

predict both attendance and the outcome in a multisession intervention.  Second, 

characteristics of the treatment may lead to nonadherence, such as negative side effects 

from a prescribed drug regimen.  Finally, the outcome may cause changes in adherence.  

For example, participants with substance use problems who relapse may skip sessions of 

an intervention to avoid reprimand (West & Sagarin, 2000).  In practice, the processes 

leading to nonadherence are often complex, and these processes may interact, vary across 

conditions, or vary across participants in the same condition. 

The intent-to-treat method compares the observed average outcome of 

participants assigned to the treatment condition to that of participants assigned to the 

control condition, regardless of actual treatment received: 

 ITT = E[𝑌𝑖|𝑍𝑖 = 1] − E[𝑌𝑖|𝑍𝑖 = 0] (3) 
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where 𝑌𝑖 is the outcome and 𝑍𝑖 is treatment assignment (1 = treatment, 0 = control).  The 

intent-to-treat effect is a causally valid estimate of the average effect of treatment 

assignment, not treatment received.  Because treatment received is disregarded, the 

intent-to-treat effect conflates treatment efficacy with adherence (Sheiner & Rubin, 

1995).  Thus, when the magnitude of the intent-to-treat effect is lower than expected, we 

may question whether this results from an inefficacious treatment or from an efficacious 

treatment being diluted by nonadherence (Meier, 1991).  Overestimation can also occur if 

the treatment effect is not constant across participants and those who refuse or 

discontinue the treatment would have experienced iatrogenic effects (West & Sagarin, 

2000). 

 Generalization of the intent-to-treat effect assumes that the adherence pattern 

observed in the randomized experiment will be identical to the adherence pattern for a 

large-scale implementation of the intervention (Robins & Greenland, 1996), which may 

be implausible.  Participants who are selected and agree to partake in randomized 

experiments may be more motivated to adhere than the typical member of the population.  

High levels of monitoring and greater support for the treatment regimen may also 

promote greater adherence in randomized experiments.  Alternatively, a proven treatment 

or a different delivery method may elicit greater adherence (Sommer & Zeger, 1991; 

Robins & Greenland, 1996; Goetghebeur & Shapiro, 1996). 

Alternatives to Intent-to-Treat 

 To investigate the average effect of treatment received, alternatives to intent-to-

treat have been proposed in the presence of nonadherence (see Sagarin et al., 2014 for a 

review).  Many alternatives require a binary measure of adherence (e.g., receiving a 
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seasonal influenza vaccination or not) or dichotomization of a discrete or continuous 

measure of adherence.  However, decisions about how to dichotomize a discrete or 

continuous measure of adherence are often arbitrary and data-driven.  Dichotomization is 

also “rarely justified from either a conceptual or statistical perspective” (MacCallum, 

Zhang, Preacher, & Rucker, 2002, p. 20).  First, dichotomization distorts differences in 

adherence across participants.  For example, suppose that adherence is defined as 

attending at least seven out of ten sessions.  Although we may view a participant who 

attended six sessions as being more similar to a participant who attended seven sessions 

than to a participant who never attended, the participant who attended six sessions would 

be grouped with the participant who never attended.  Second, dichotomization leads to 

loss of information and lower measurement reliability (MacCallum et al., 2002).  Third, 

dichotomization attenuates bivariate associations.  Finally, nonlinear associations cannot 

be investigated given that adherence has only two possible values.  Because adherence 

often cannot reasonably be characterized as “all-or-none,” this dissertation focuses on 

partial adherence in randomized experiments. 

Dose-Response Effect 

 The ideal experimental design for understanding the impact of dose on outcomes 

would involve randomly assigning participants to receive different doses of the treatment 

and then ensuring that all participants are 100% adherent.  However, this experimental 

design is typically infeasible—withholding the full dose may be unethical and 100% 

adherence may be unachievable or impractical.  More commonly, participants are offered 

the full dose but many only receive a partial dose due to nonadherence.  Using these data, 
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we can estimate the magnitude of the treatment effect at different levels of adherence, 

which serve as a proxy for different levels of treatment. 

 Some methods for estimating dose-response effects require measures of 

adherence in both the treatment and control conditions (e.g., Holland, 1988; Efron & 

Feldman, 1991; Jin & Rubin, 2008).  With these methods, the outcomes of participants 

assigned to one treatment are compared to those of similarly adherent participants 

assigned to the other treatment.  However, assumptions about how adherence to one 

treatment relates to adherence to the other treatment may be difficult to justify, and 

adherence across different forms of treatment may not be comparable (e.g., medication 

management versus psychotherapy for children with attention-deficit hyperactivity 

disorder, MTA Cooperative Group, 1999; see Cooper & Richardson, 1986 for a 

discussion of unfair comparisons).  No-treatment and literature control conditions also 

limit the applicability of these methods.  In this dissertation, I examine confounder 

adjustment and instrumental variable methods for estimating linear dose-response effects 

in randomized experiments comparing a no-treatment control condition to a treatment 

condition with partial adherence.  The confounder adjustment and instrumental variable 

methods are much more applicable to psychological research because they do not require 

a measure of adherence in the control condition. 

Confounder Adjustment Method 

To estimate dose-response effects in randomized experiments with partial 

adherence, researchers commonly regress the outcome on adherence using data from only 

those participants in the treatment condition.  Most models assume a linear association 

between adherence and the outcome, though attempts have been made to allow for a 
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nonlinear association (e.g., using regression splines; Ramsay, 1988).  Regardless of the 

specified functional form, causal inferences about the dose-response effect may be 

difficult to justify due to selection effects. 

 To illustrate, consider the effectiveness trial of the New Beginnings Program, a 

preventive intervention designed to reduce mental health problems and substance use in 

children following their parents’ divorce or separation (Sandler et al., 2017).  Of the 477 

parents randomized to the ten-session treatment condition, 111 (23.3%) never attended, 

309 (64.8%) attended between one and nine sessions, and 57 (11.9%) attended all ten 

sessions.  Adherence (here defined as attendance) was likely nonignorable.  For example, 

mothers who reported greater conflict with the other parent at baseline were more likely 

to drop out of the intervention early than sustain attendance (Mauricio et al., 2017), and 

interparental conflict was related to outcomes of interest such as children’s mental health 

problems.  Observing a negative association between number of sessions attended and 

children’s mental health problems at posttest may be due to receiving more of the 

treatment, but it may also be due to interparental conflict confounding the association 

between number of sessions attended and children’s mental health problems (see 

Appendix A for a description of omitted variable bias in equations). 

 The confounder adjustment method requires the following assumptions to draw 

valid causal inferences about the dose-response effect (see Table 1 for a summary). 

1. Consistency states that a participant’s potential outcome under the dose actually 

received equals the observed outcome. 

2. The stable unit treatment value assumption states that there is no interference 

across participants and no hidden variations of treatments. 
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3. Positivity states that all participants have a nonzero probability of receiving each 

dose. 

4. The adherence level is measured without error. 

5. The adherence level and potential outcomes are conditionally independent.  That 

is, the adherence level must be ignorable conditional on the baseline covariates 

(confounders).
2
  This assumption implies that all of the confounders are measured 

without error. 

6. The covariate distributions for participants who received dose 𝑑 overlap with the 

covariate distributions for participants who received dose 𝑑′ where 𝑑 ≠ 𝑑′. 

7. The functional form of the dose-response curve and the relations between the 

baseline covariates and outcome are correctly specified. 

To satisfy Assumption 5, all baseline covariates that theoretically relate to both adherence 

and the outcome (confounders) must be included in the model as follows: 

 𝑌𝑖 = 𝑏0 + 𝑏1𝐷𝑖 +∑𝑏(𝑗+1)𝑋𝑗𝑖

𝑘

𝑗=1

+ 휀𝑖 (4) 

where 𝑌𝑖 is the outcome; 𝐷𝑖 is treatment received (dose); 𝑋1𝑖, 𝑋2𝑖,…, 𝑋𝑘𝑖 are baseline 

covariates; and 𝑖 = 1, 2, … , 𝑛𝑇 indexes the 𝑛𝑇 participants in the treatment condition.
3
  In 

the earlier example, children’s mental health problems would be regressed on number of 

sessions attended, baseline interparental conflict, and any other baseline covariates 

believed to be related to both number of sessions attended and children’s mental health 

problems.  When all confounders are perfectly measured and included in Equation 4 (and 

                                                 
2
 This assumption is sometimes referred to as selection on observables. 

3
 This dissertation focuses on confounders that are not influenced by the treatment. 
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all other assumptions outlined above are met), 𝑏1 allows for causal inferences about the 

average linear effect of receiving more of the treatment.  However, when some, but not 

all, confounders are observed, conditioning on an observed confounder can increase or 

decrease bias (Kenny, 2004; Clarke, Kenkel, & Rueda, 2016).  For example, if an 

observed confounder and an unobserved confounder have countervailing effects (i.e., one 

induces positive bias and the other induces negative bias), then conditioning on the 

observed confounder can increase bias.  Because the population model for 𝑌𝑖 is unknown, 

theory should guide which baseline covariates to include in Equation 4 (but see Mayer, 

Thoemmes, Rose, Steyer, & West, 2014). 

 Assumption 6 may also be difficult to justify in practice.  Diagnosing overlap 

becomes challenging with more than one or two confounders (Schafer & Kang, 2008), 

yet more than one or two confounders can easily exist.  Without sufficient overlap, 

ordinary least squares (OLS) estimation extrapolates beyond the observed data while 

relying heavily on the specified functional form.
4
  This extrapolation can lead to biased 

and unstable parameter estimates. 

Instrumental Variable Method 

 Unlike the confounder adjustment method, the instrumental variable method for 

estimating dose-response effects uses data from participants in both the treatment and 

control conditions and allows for unobserved confounding between adherence and the 

outcome.  The instrumental variable method relies on the existence of one or more so-

                                                 
4
 When adherence is discrete and has only a few possible values, propensity score adjustment can be used 

to reduce a large set of baseline covariates to a one-number summary, which helps diagnose overlap and 

avoid extrapolation beyond the observed data (Foster, 2003; McCaffrey et al., 2013).  However, achieving 

balance across participants with different levels of adherence may be difficult without a very large sample 

size. 
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called instruments that (1) cause treatment actually received, (2) only affect the outcome 

via treatment actually received (referred to as the exclusion restriction), and (3) do not 

share common causes with the outcome (Hernán & Robins, 2006).  In most randomized 

experiments, treatment assignment serves as an excellent instrument because it causes 

treatment actually received (Condition 1) and does not share common causes with the 

outcome with successful randomization (Condition 3); Condition 2 is usually the only 

condition at risk for failure. 

 Dunn and Bentall (2007), Maracy and Dunn (2011), and Ginestet, Emsley, and 

Landau (2017) described instrumental variable methods for estimating dose-response 

effects based on the potential outcomes framework.  Letting 𝑍𝑖 denote treatment 

assignment (1 = treatment, 0 = control), 𝑌𝑖(𝑧) denote participant 𝑖’s potential outcome if 

assigned to treatment 𝑧, and 𝐷𝑖(𝑧) ≥ 0 denote participant 𝑖’s potential dose if assigned to 

treatment 𝑧, they relied on the following assumptions (see Table 1 for a summary).
5
 

1. Consistency states that 𝐷𝑖 = 𝐷𝑖(z) and 𝑌𝑖 = 𝑌𝑖(𝑧) where 𝐷𝑖 and 𝑌𝑖 denote 

participant 𝑖’s observed dose and outcome, respectively. 

2. The stable unit treatment value assumption states that there is no interference 

across participants and no hidden variations of treatments.  This assumption 

ensures that each participant has only one value of 𝐷𝑖(0), 𝐷𝑖(1), 𝑌𝑖(0), and 𝑌𝑖(1). 

3. Participants are randomly assigned to the treatment and control conditions. 

                                                 
5
 The notation 𝑌𝑖(𝑧) is consistent with Ginestet et al. (2017), though these authors used 𝑅𝑖 instead of 𝑍𝑖 to 

denote treatment assignment.  The notation 𝑌𝑖(𝑧, 𝐷𝑖(𝑧)) has been used elsewhere (e.g., Imai, Keele, & 

Tingley, 2010 for mediation analysis; Imbens & Rubin, 2015, p. 517). 
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4. Participants in the control condition cannot access the treatment (referred to as 

one-sided nonadherence), such that 𝐷𝑖(0) is assumed to equal zero for all 

participants. 

5. The functional form of the dose-response curve is correctly specified.  Dunn and 

Bentall (2007) and Maracy and Dunn (2011) outlined instrumental variable 

methods when assuming either a linear or quadratic dose-response curve.  Only a 

linear dose-response curve is considered here. 

6. When modeling a linear dose-response curve, one plausible instrument must exist.  

Modeling a quadratic dose-response curve requires at least two instruments.  

More generally, at least as many instruments as endogenous regressors are 

needed. 

7. Due to the exclusion restriction, the average treatment effect is zero for 

participants who receive a dose of zero. 

Under these assumptions, we can estimate a dose-response curve for participants with 

𝐷𝑖(1) > 0. 

 With a single binary instrument (e.g., treatment assignment), the average linear 

effect of receiving more of the treatment for participants with 𝐷𝑖(1) > 0 can be estimated 

as 

 
E[𝑌𝑖|𝑍𝑖 = 1] − E[𝑌𝑖|𝑍𝑖 = 0]

E[𝐷𝑖|𝑍𝑖 = 1] − E[𝐷𝑖|𝑍𝑖 = 0]
 (5) 

where 𝑌𝑖 is the outcome, 𝐷𝑖 is treatment received (dose), and 𝑍𝑖 is treatment assignment 

(1 = treatment, 0 = control).  Under one-sided nonadherence (Assumption 4), 

E[𝐷𝑖|𝑍𝑖 = 0] = 0 such that the denominator equals the average dose in the treatment 
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condition (i.e., E[𝐷𝑖|𝑍𝑖 = 1]).  Equation 5 is known as the Wald estimator (Wald, 1940); 

it is the ratio of the average effect of treatment assignment on the outcome (i.e., the 

intent-to-treat effect defined in Equation 3) to the average effect of treatment assignment 

on treatment received.  Because we assume that 𝑍𝑖 is only associated with 𝑌𝑖 through 𝐷𝑖 

(Conditions 2 and 3), dividing the variation in 𝑌𝑖 that is generated by variation in 𝑍𝑖 (the 

numerator of Equation 5) by the variation in 𝐷𝑖 that is generated by variation in 𝑍𝑖 (the 

denominator of Equation 5) consistently estimates the causal effect of 𝐷𝑖 on 𝑌𝑖 (Morgan 

& Winship, 2015).  Condition 1 ensures that the denominator of Equation 5 is nonzero. 

 The Wald estimator is restricted to a single binary instrument and no covariates.  

A more general procedure outlined by Dunn and Bentall (2007) and Maracy and Dunn 

(2011) estimates dose-response effects using two-stage least squares (TSLS).
6
  For a 

linear dose-response curve, TSLS estimation involves the following steps. 

1. Stage 1: Using data from all participants (in both the treatment and control 

conditions), treatment received 𝐷𝑖 (e.g., number of sessions attended where 

𝐷𝑖 = 0 for all participants in the control condition) is regressed on treatment 

assignment and the baseline covariates.  The resulting model is used to calculate 

predicted scores �̂�𝑖 for all participants. 

2. Stage 2: The outcome is regressed on �̂�𝑖 and the baseline covariates.  This model 

does not include treatment assignment due to the exclusion restriction (i.e., 

because we assume that treatment assignment only affects the outcome via 

treatment actually received).  The regression coefficient for �̂�𝑖 represents the 

                                                 
6
 Interested readers should refer to Fischer-Lapp and Goetghebeur (1999), Dunn and Bentall (2007), and 

Maracy and Dunn (2011) for a procedure based on structural mean modeling with G-estimation. 
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average linear effect of receiving more of the treatment for participants with 

𝐷𝑖(1) > 0. 

Unlike 𝐷𝑖, �̂�𝑖 is not endogenous because it is a linear function of treatment assignment 

and the baseline covariates, which we assume are exogenous (DeMaris, 2014).  The 

inclusion of baseline covariates is not required but increases efficiency when the baseline 

covariates are strongly associated with 𝐷𝑖 (Dunn & Bentall, 2007). 

 When sequentially estimating the first and second stage equations, the residuals 

from the second stage equation are calculated using �̂�𝑖, which does not account for 

uncertainty in the predicted scores.  Instead, the observed scores 𝐷𝑖 should be used to 

calculate the residuals in the second stage equation (Hanushek & Jackson, 1977, pp. 267-

269; Angrist & Pischke, 2009, p. 140; Wooldridge, 2010, pp. 101-102), which is 

automated by specialized software routines (e.g., the SYSLIN procedure in SAS; Angrist 

& Pischke, 2009, p. 122).  This estimate of the residual variance is then used to calculate 

the standard errors of the regression coefficients in the second stage equation.
7
 

 The instrumental variable method can be implemented using other estimators, 

including limited information maximum likelihood, Bayesian, generalized method of 

methods, and structural mean modeling (see Burgess, Small, & Thompson, 2015 for a 

review).  With a single instrument, these estimators (excluding Bayesian) provide the 

same causal estimate as the TSLS estimator described in this section (Burgess et al., 

2015).  In this dissertation, I implement the instrumental variable method using TSLS 

                                                 
7
 Dunn and Bentall (2007), Maracy and Dunn (2011), and Ginestet et al. (2017) assumed homoscedasticity 

of the residuals in the first and second stage equations, which I also assume throughout this dissertation. 
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estimation.  TSLS estimation is available through the SYSLIN procedure in SAS as well 

as several other statistical software packages (e.g., R, Stata). 

 Weak instruments. Instruments that are only weakly associated with receipt of 

treatment present several issues.  First, the instrumental variable method is biased in 

finite samples, particularly with weak instruments (Bound, Jaeger, & Baker, 1995; 

Morgan & Winship, 2015).  To understand why, consider the Wald estimator in 

Equation 5.  Suppose that the average effect of treatment assignment on treatment 

received is zero in the population.  In a finite sample, the estimated average effect of 

treatment assignment on treatment received and thus the denominator of Equation 5 will 

likely be nonzero but small (Hernán & Robins, in press).  A small denominator will 

inflate the estimate of the dose-response effect.  Second, using too many weak 

instruments (i.e., specifying too many overidentifying restrictions) yields biased 

parameter estimates with confidence intervals that are too narrow (Bound et al., 1995; 

Staiger & Stock, 1997; Angrist & Pischke, 2009, pp. 205-209).  With fewer 

overidentifying restrictions, weak instruments yield parameter estimates with 

(appropriately) wide confidence intervals (Angrist & Pischke, 2009, p. 209).  Finally, 

violations of the exclusion restriction are most severe with weak instruments.  Violating 

the exclusion restriction biases the numerator of Equation 5 because the variation in 𝑌𝑖 

that is generated by variation in 𝑍𝑖 cannot be solely attributed to the association of 𝑍𝑖 

with 𝑌𝑖 through 𝐷𝑖; a small denominator (i.e., a weak instrument) amplifies this bias.
8
  

                                                 
8
 Stolzenberg and Relles (1990) and Virdin (1993) conducted simulations to evaluate the sensitivity of 

Heckman’s selection model to assumption violations, including violations of the exclusion restriction.  

Heckman (1976, 1979) proposed the selection model to correct for bias resulting from sample selection.  

Briefly, Heckman’s selection model combines the model of interest with a model for selection (e.g., 

adherence) and correlates their residuals.  These two models can share predictors, but the model for 
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The exclusion restriction is often considered the most problematic assumption of the 

instrumental variable method.  Thus, violations of the exclusion restriction are 

investigated in the simulations that follow. 

Previous Research 

 Confounder adjustment and instrumental variable methods have been extensively 

discussed and evaluated in the literature (e.g., Hanushek & Jackson, 1977; Cohen, Cohen, 

West, & Aiken, 2003; Angrist & Pischke, 2009; Wooldridge, 2010; Morgan & Winship, 

2015; Hernán & Robins, in press).  However, most existing research on the instrumental 

variable method, particularly in the context of nonadherence, focuses on binary 

endogenous regressors (e.g., Bound et al., 1995; Angrist, Imbens, & Rubin, 1996; Staiger 

& Stock, 1997; Jo, 2002; DeMaris, 2014).  Factors commonly manipulated in simulations 

comparing confounder adjustment and instrumental variable methods include sample 

size, strength of the instrument(s), violations of the exclusion restriction, and strength of 

unobserved confounding.  As discussed earlier, these simulations suggest that the 

instrumental variable method performs poorly (high bias and low precision) with small 

sample sizes and with weak or invalid instruments.  When unobserved confounding is 

weak or absent, the confounder adjustment method (properly specified) outperforms the 

instrumental variable method (low to no bias and high precision). 

 Fischer-Lapp and Goetghebeur (1999), Dunn and Bentall (2007), Maracy and 

Dunn (2011), and Ginestet et al. (2017) conducted simulations investigating confounder 

adjustment and instrumental variable methods for dose-response effects.  In the first three 

                                                                                                                                                 
selection should contain at least one predictor not in the model of interest (referred to as an exclusion 

restriction). 
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of these papers, the endogenous regressor was defined as a linear combination of 

normally distributed variables and ranged from zero to one to represent the proportion of 

dose received.
9
  All four papers generated unobserved confounding, but the number of 

other factors manipulated was limited.  In addition to unobserved confounding (absent, 

moderate, strong), Ginestet et al. (2017) manipulated the sample size (N = 100, 300, 500) 

and strength of the instruments (weak, moderate, strong).  However, their objective was 

to compare their proposed semi-parametric Stein-like estimator to the OLS and TSLS 

estimators rather than to evaluate the performance of the OLS and TSLS estimators.  

None of the four papers investigated violations of the exclusion restriction or varied the 

adherence distribution. 

Purpose of Dissertation 

 I conducted Monte Carlo simulations to examine when linear dose-response 

effects can be accurately and precisely estimated in randomized experiments comparing a 

no-treatment control condition to a treatment condition with partial adherence.  Monte 

Carlo simulations help determine the finite sampling properties of estimators, unlike 

analytic derivations that establish the asymptotic properties of estimators.  The first 

simulation study evaluated the performance of the confounder adjustment and 

instrumental variable methods when their assumptions were met.  The second simulation 

study assessed the sensitivity of the confounder adjustment and instrumental variable 

methods to assumption violations.  In addition to the confounder adjustment and 

instrumental variable methods, the intent-to-treat method was applied in both simulation 

studies. 

                                                 
9
 Generated values less than zero or greater than one were set to zero and one, respectively. 
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Simulation Study 1 Method 

 In Study 1, I compared the confounder adjustment and instrumental variable 

methods when their assumptions were met.  Although the manipulated factors (sample 

size, adherence distribution in the treatment condition, magnitude of the dose-response 

effect) did not represent assumption violations, I hypothesized that some of the 

conditions outlined below would be more optimal than others.  In particular, I expected 

the confounder adjustment method to provide unbiased estimates of the dose-response 

effect under all of the conditions investigated in Study 1 and to provide the greatest 

power when the sample size was large and the dose-response effect was strong.  Because 

treatment assignment served as a strong and valid instrument across all conditions 

(described in more detail below), I expected the instrumental variable method to provide 

unbiased estimates of the dose-response effect except perhaps when the sample size was 

small (N = 200).  Finally, I expected the instrumental variable method to provide the 

greatest power when the sample size was large, dose-response effect was strong, and 

adherence distribution in the treatment condition was either uniform or left skewed. 

Manipulated Factors 

 I implemented a full factorial design with three factors: sample size (200, 500, 

2,000), adherence distribution in the treatment condition (uniform, right skewed, left 

skewed), and magnitude of the dose-response effect (zero, 𝜌𝑌𝐷 = .00; weak, 𝜌𝑌𝐷 = .10; 

moderate, 𝜌𝑌𝐷 = .30; strong, 𝜌𝑌𝐷 = .50).  The manipulated factors and their levels are 

summarized in the first block of Table 2.  Manipulating these factors produced 36 design 

cells.  Each design cell contained 1,000 replications, yielding a total of 36,000 samples to 

analyze. 
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 Sample size was manipulated because the instrumental variable method provides 

consistent, but not unbiased, parameter estimates (Hanushek & Jackson, 1977; Angrist & 

Krueger, 2001).  Although samples of 200 and 500 participants are common in 

psychological research, the instrumental variable method may require large samples (e.g., 

2,000; Dunn & Bentall, 2007; DeMaris, 2014).  The magnitude of the dose-response 

effect was manipulated to examine the Type I error rate and power.  A zero, weak, 

moderate, or strong dose-response effect was represented by 𝜌𝑌𝐷 = .00, .10, .30, or .50, 

respectively, based on Cohen’s (1988) effect size guidelines. 

 Finally, the adherence distribution in the treatment condition was manipulated to 

represent adherence patterns of theoretical or practical interest.  Most previous 

simulations investigating the performance of the instrumental variable method have 

assumed that adherence (or some other endogenous regressor) was binary and have 

manipulated the proportion of cases in the two levels (e.g., Chiburis, Das, & Lokshin, 

2011, 2012; DeMaris, 2014).  For example, DeMaris (2014) varied the proportion of 

cases in each level of the endogenous regressor (50 – 50 versus 15 – 85 split) and found 

that the uneven split worsened the performance (mean square error and power) of the 

instrumental variable method under some conditions.  In the present study, adherence in 

the treatment condition was generated as discrete with nine categories (range = 0, 1,…, 8) 

and with either a uniform, right skewed, or left skewed distribution (see Figure 1).  These 

nine categories might represent attending between zero and eight sessions of an 

intervention.  Under a uniform adherence distribution, each level of adherence consisted 

of 
1

9
 ≈ 11.1% of cases, in expectation.  Proportions of .17, .14, .13, .11, .10, .10, .09, .08, 

and .08 (for zero to eight sessions) were used to define the right skewed adherence 
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distribution, and proportions of .08, .08, .09, .10, .10, .11, .13, .14, and .17 (for zero to 

eight sessions) were used to define the left skewed adherence distribution.  With these 

proportions, the variance of the (right or left) skewed adherence distribution (6.6731) 

approximately equaled the variance of the uniform adherence distribution (6.6667, 

difference = 0.0064).  However, the means of the uniform, right skewed, and left skewed 

adherence distributions differed (4.0000, 3.3700, 4.6300).  A right skewed adherence 

distribution would occur when many participants never initiate or only minimally adhere 

to their assigned treatment (e.g., the effectiveness trial of the New Beginnings Program 

described earlier where 23.3% of parents never attended).  A left skewed adherence 

distribution would occur when most participants fully or almost fully adhere to their 

assigned treatment (e.g., the efficacy trial of the New Beginnings Program where mothers 

attended an average of 82.8% of the sessions; Wolchik et al., 2000). 

 Notice that the left skewed adherence distribution mirrored the right skewed 

adherence distribution.  However, the effect of treatment assignment on treatment 

received was stronger with a left skewed adherence distribution than with a right skewed 

adherence distribution.  Given previous research on instrumental variable methods, 

differences in performance across the right and left skewed adherence distributions may 

be due to differences in the magnitude of the effect of treatment assignment on treatment 

received but cannot be due to differences in data sparseness.  However, differences in 

performance across the uniform and (right or left) skewed adherence distributions may be 

due to differences in data sparseness or differences in the magnitude of the effect of 

treatment assignment on treatment received.  The expected correlation between treatment 

assignment and treatment received was .7385 with a uniform adherence distribution, 
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.6780 with a right skewed adherence distribution, and .7850 with a left skewed adherence 

distribution.  Because treatment assignment served as a strong instrument across all 

conditions, the undesirable properties of weak instruments outlined earlier did not apply. 

Data Generation and Fitted Models 

 All of the data were generated and analyzed in SAS 9.4.  Data generation 

proceeded according to the following steps. 

1. For all cases, I generated treatment assignment 𝑍𝑖 (1 = treatment, 0 = control) by 

randomly drawing from a Bernoulli distribution with probability of success .50. 

2. For cases in the control condition, I set 𝐷𝑖 = 0 and generated the outcome 𝑌𝑖 by 

randomly drawing from a standard normal distribution (mean = 0, variance = 1). 

3. For cases in the treatment condition, I generated adherence 𝐷𝑖 by randomly 

drawing from a standard normal distribution (mean = 0, variance = 1) and then 

creating nine categories (range = 0, 1,…, 8) based on thresholds of z = −1.2206, 

−0.7647, −0.4307, −0.1397, 0.1397, 0.4307, 0.7647, 1.2206 (for a uniform 

adherence distribution), z = −0.9542, −0.4959, −0.1510, 0.1257, 0.3853, 0.6745, 

0.9945, 1.4051 (for a right skewed adherence distribution), or z = −1.4051, 

−0.9945, −0.6745, −0.3853, −0.1257, 0.1510, 0.4959, 0.9542 (for a left skewed 

adherence distribution).  These thresholds correspond to the proportions listed in 

the previous section. 

4. For cases in the treatment condition, I generated the outcome 𝑌𝑖 according to the 

following equation: 

 𝑌𝑖 = 𝑏1𝐷𝑖 + 휀𝑖 (6) 
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 where 𝐷𝑖 is adherence.  I generated 휀𝑖 by randomly drawing from a normal 

 distribution (mean = 0, variance = 𝜎𝜀
2).  As described in Appendix B, the specified 

 values of the (unstandardized) regression coefficient and residual variance in 

 Equation 6 were 𝑏1 = 0.0000 and 𝜎𝜀
2 = 1.0000, 𝑏1 = 0.0387 and 𝜎𝜀

2 = 0.9900, 

 𝑏1 = 0.1162 and 𝜎𝜀
2 = 0.9100, or 𝑏1 = 0.1936 and 𝜎𝜀

2 = 0.7500 to achieve a 

 zero (𝜌𝑌𝐷 = .00), weak (𝜌𝑌𝐷 = .10), moderate (𝜌𝑌𝐷 = .30), or strong (𝜌𝑌𝐷 = .50) 

 dose-response effect.  Equation 6 did not include an intercept such that 

 E[𝑌𝑖|𝑍𝑖 = 1,𝐷𝑖 = 0] = E[𝑌𝑖|𝑍𝑖 = 0] = 0.  That is, the expected value of 𝑌𝑖 for 

 cases in the treatment condition with 𝐷𝑖 = 0 equaled the expected value of 𝑌𝑖 for 

 cases in the control condition, which was zero. 

 For each of the 36,000 samples, I applied the intent-to-treat and confounder 

adjustment methods using the REG procedure in SAS and the instrumental variable 

method using the SYSLIN procedure in SAS (see Appendix C for example code).  When 

performing TSLS estimation via the SYSLIN procedure, the second stage equation did 

not include an intercept (NOINT option) due to the exclusion restriction. 

Evaluation Criteria 

 The results were evaluated based on bias, standardized bias, confidence interval 

coverage, confidence interval width, power, and Type I error rate.  The parameters of 

interest were the intent-to-treat effect and the dose-response effect.  Bias refers to the 

difference between the average parameter estimate across the 1,000 replications within a 

given design cell and the corresponding population parameter.
10

  Standardized bias was 

                                                 
10

 To assess bias introduced by categorizing adherence, I generated a sample with 25,000,000 cases within 

each design cell and obtained parameter estimates from a correctly specified model.  Differences between 

these parameter estimates and the corresponding population parameters specified in SAS ranged from 
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calculated by dividing bias by the standard deviation of the parameter estimate across the 

1,000 replications within a given design cell (i.e., the empirical standard error).  Collins, 

Schafer, and Kam (2001) suggested that standardized bias noticeably and adversely 

affects Type I and Type II error rates, efficiency, and confidence interval coverage when 

standardized bias exceeds |0.40| or |0.50|.  These standardized bias values indicate that the 

parameter estimate on average fell more than 0.40 or 0.50 standard errors above or below 

the population parameter.  I deemed standardized bias values greater than |0.40| 

problematic.  The confidence interval coverage rate refers to the proportion of 

replications where the 95% confidence interval contained the population parameter.  

Following Collins et al. (2001), I deemed coverage rates below 90% problematic.  The 

confidence interval width measures precision and refers to the difference between the 

upper and lower bounds.  Power and Type I error rate were evaluated based on the 

proportion of replications where the 95% confidence interval did not contain zero.  This 

proportion should equal the nominal significance level 𝛼 = .05 when the population 

parameter was zero, though Type I error rates within [.0365, .0635] were deemed 

acceptable.  When the population parameter was zero and the null hypothesis was 

rejected, I also examined the proportion of replications where zero was above (below) the 

confidence interval.  This proportion should equal 
𝛼

2
 = .025, though right (left) tail 

rejection rates within [.0153, .0347] were deemed acceptable.
11

 

                                                                                                                                                 
−0.00018 to −0.00007 for the intent-to-treat method, 0.00003 to 0.00006 for the confounder adjustment 

method, and −0.00003 to −0.00002 for the instrumental variable method.  The population parameters 

specified in SAS were used in the calculations described in this section. 

11
 The 95% confidence intervals for the Type I error rate and right (left) tail rejection rate were calculated 

as 𝑝 ± 1.96√𝑝(1 − 𝑝) 𝑛⁄  where 𝑝 is the proportion of interest (.05 or .025) and 𝑛 is the number of 

replications.  With 1,000 replications, the 95% confidence intervals for the Type I error rate and right (left) 
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Simulation Study 1 Results 

 Table 3 reports bias and confidence interval coverage for all 36 conditions 

investigated in Study 1.  Table 4 reports confidence interval width, Type I error rate, and 

power. 

Intent-to-Treat Effect 

 As shown in Table 3, estimates of the intent-to-treat effect were unbiased on 

average across all conditions (bias range = −0.0026 to 0.0005, standardized bias 

range = −0.0258 to 0.0056).  Coverage rates ranged from .9400 to .9570.  For the nine 

conditions where the population parameter was zero, Type I error rates ranged from 

.0440 to .0570, right tail rejection rates ranged from .0220 to .0310, and left tail rejection 

rates ranged from .0210 to .0260.  For the 27 conditions where the population parameter 

was nonzero, power ranged from .1470 to 1.0000 depending on the sample size and the 

magnitude of the dose-response effect.  As shown in Table 4, power increased as the 

sample size and dose-response effect increased.  Conditions with a left skewed adherence 

distribution provided the greatest power, followed by conditions with a uniform 

adherence distribution and then conditions with a right skewed adherence distribution.  

Power varied by adherence distribution because the means of the left skewed, uniform, 

and right skewed adherence distributions differed (4.6300, 4.0000, 3.3700), which 

affected the magnitude of the intent-to-treat effect.  However, as shown in Table 4, the 

confidence interval width did not vary by adherence distribution (range = 0.5562 to 

                                                                                                                                                 

tail rejection rate were . 05 ± 1.96√. 05(1 − .05) 1,000⁄ = [.0365, .0635] and 

. 025 ± 1.96√. 025(1 − .025) 1,000⁄ = [.0153, .0347], respectively. 
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0.5568, 0.3513 to 0.3515, and 0.1754 to 0.1755 for conditions with N = 200, 500, or 

2,000, respectively). 

Dose-Response Effect 

 As shown in Table 3, estimates of the dose-response effect were unbiased on 

average across all conditions (confounder adjustment: bias range = −0.0015 to −0.0002, 

standardized bias range = −0.0375 to −0.0173; instrumental variable: bias 

range = −0.0003 to 0.0002, standardized bias range = −0.0331 to 0.0131).  Coverage rates 

ranged from .9440 to .9560 for the confounder adjustment method and from .9470 to 

.9690 for the instrumental variable method. 

 For the nine conditions where the population parameter was zero, Type I error 

rates, right tail rejection rates, and left tail rejection rates ranged from .0440 to .0560, 

.0230 to .0350, and .0200 to .0220, respectively, for the confounder adjustment method 

and from .0470 to .0530, .0210 to .0240, and .0240 to .0290, respectively, for the 

instrumental variable method.  For the 27 conditions where the population parameter was 

nonzero, power ranged from .1670 to 1.0000 for the confounder adjustment method and 

from .2590 to 1.0000 for the instrumental variable method.  As shown in Table 4, power 

increased as the sample size and dose-response effect increased.  The adherence 

distribution did not affect power for the confounder adjustment method.  However, for 

the instrumental variable method, conditions with a left skewed adherence distribution 

provided the greatest power, followed by conditions with a uniform adherence 

distribution and then conditions with a right skewed adherence distribution.  Differences 

in the strength of the instrument may explain this pattern of results.  Recall that the 

expected correlation between treatment assignment and treatment received was .7850 
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with a left skewed adherence distribution, .7385 with a uniform adherence distribution, 

and .6780 with a right skewed adherence distribution.  However, as discussed earlier, 

differences in power across the uniform and (right or left) skewed adherence may also be 

due to differences in data sparseness.  Finally, the instrumental variable method 

consistently provided greater power than the confounder adjustment method (until power 

approached its upper asymptote of 1.0000), and the confounder adjustment method 

provided confidence intervals that were between 1.2079 and 1.7998 times wider than 

those from the instrumental variable method (confidence interval width range = 0.0416 to 

0.1531 and 0.0251 to 0.1171, respectively).  This is because the confounder adjustment 

method used data from only those cases in the treatment condition, whereas the 

instrumental variable method used data from cases in both the treatment and control 

conditions. 

Simulation Study 2 Method 

 In Study 2, I compared the confounder adjustment and instrumental variable 

methods when their assumptions were violated.  Specifically, I investigated sensitivity to 

unobserved confounding (an assumption of the confounder adjustment method but not 

the instrumental variable method) and to violations of the exclusion restriction (an 

assumption of the instrumental variable method but not the confounder adjustment 

method).  I hypothesized that the confounder adjustment and instrumental variable 

methods would perform poorly (high bias) when their assumptions were violated.  

However, the severity of these assumption violations was unknown. 



 34  

Manipulated Factors 

 I implemented a full factorial design with three factors: magnitude of the dose-

response effect (zero, 𝜌𝑌𝐷 = .00; weak, 𝜌𝑌𝐷 = .10; moderate, 𝜌𝑌𝐷 = .30; strong, 

𝜌𝑌𝐷 = .50), unobserved confounding (absent, 𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .00; weak, 𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .10; 

moderate, 𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .30; strong, 𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .50), and magnitude of the direct effect 

of treatment assignment on the outcome (zero, 𝛿 = 0.00; weak, 𝛿 = 0.20; moderate, 

𝛿 = 0.50).  The magnitude of the dose-response effect was manipulated to examine the 

Type I error rate and power (see Study 1).  The effect of the unobserved confounder on 

adherence in the treatment condition and the effect of the unobserved confounder on the 

outcome were equal.  No, weak, moderate, or strong unobserved confounding was 

represented by 𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .00, .10, .30, or .50 respectively, based on Cohen’s (1988) 

effect size guidelines for product-moment correlations.  The magnitude of the direct 

effect of treatment assignment on the outcome (exclusion restriction violation) was 

manipulated by adding a constant difference between the treatment and control 

conditions on the outcome.  No, weak, or moderate exclusion restriction violations were 

represented by 𝛿 = 0.00, 0.20, or 0.50, respectively, based on Cohen’s (1988) effect size 

guidelines for standardized mean differences.  The sample size was set to 2,000 across all 

conditions.  The manipulated factors and their levels are summarized in the second block 

of Table 2.  Manipulating these factors produced 48 design cells.  Each design cell 

contained 1,000 replications, yielding a total of 48,000 samples to analyze. 

Data Generation and Fitted Models 

 All of the data were generated and analyzed in SAS 9.4.  Data generation 

proceeded according to the following steps. 
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1. For all cases, I generated treatment assignment 𝑍𝑖 (1 = treatment, 0 = control) by 

randomly drawing from a Bernoulli distribution with probability of success .50. 

2. For cases in the control condition, I set 𝐷𝑖 = 0 and generated the unobserved 

confounder 𝑈𝑖 and outcome 𝑌𝑖 by randomly drawing from a bivariate normal 

distribution with mean vector [
0
0
] and covariance matrix [

1 𝜌𝑌𝑈
𝜌𝑌𝑈 1

].  𝜌𝑌𝑈 

equaled .00, .10, .30, or .50 for conditions with no, weak, moderate, or strong 

unobserved confounding, respectively. 

3. For cases in the treatment condition, I generated the unobserved confounder 𝑈𝑖 

and adherence 𝐷𝑖 by randomly drawing from a bivariate normal distribution with 

mean vector [
0
0
] and covariance matrix [

1 𝜌𝐷𝑈
𝜌𝐷𝑈 1

] where 𝜌𝐷𝑈 equaled .00, .10, 

.30, or .50.  I then created nine categories for 𝐷𝑖 (range = 0, 1,…, 8) based on 

thresholds of z = −1.2206, −0.7647, −0.4307, −0.1397, 0.1397, 0.4307, 0.7647, 

1.2206 (for a uniform adherence distribution with 
1

9
 ≈ 11.1% of cases in each level 

of adherence).  Only the uniform adherence distribution was considered in 

Study 2. 

4. For cases in the treatment condition, I generated the outcome 𝑌𝑖 according to the 

following equation: 

 𝑌𝑖 = 𝑏0 + 𝑏1𝐷𝑖 + 𝑏2𝑈𝑖 + 휀𝑖 (7) 

 where 𝐷𝑖 is adherence and 𝑈𝑖 is the unobserved confounder.  I generated 휀𝑖 by 

 randomly drawing from a normal distribution (mean = 0, variance = 𝜎𝜀
2).  

 Appendix B provides the specified values of the (unstandardized) regression 
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 coefficients and residual variance to manipulate the dose-response effect, strength 

 of unobserved confounding, and violation of the exclusion restriction. 

Conditions with no unobserved confounding and no violation of the exclusion restriction 

overlapped with conditions from Study 1 with a uniform adherence distribution.
12

 

 For each of the 48,000 samples, I applied the intent-to-treat and confounder 

adjustment methods using the REG procedure in SAS and the instrumental variable 

method using the SYSLIN procedure in SAS (see Appendix C for example code).  When 

performing TSLS estimation via the SYSLIN procedure, the second stage equation did 

not include an intercept (NOINT option) due to the exclusion restriction.  However, the 

exclusion restriction was violated under some of the conditions investigated in Study 2.  

Similarly, 𝑈𝑖 was omitted when applying the confounder adjustment method, which was 

an assumption violation under some of the conditions investigated in Study 2. 

Evaluation Criteria 

 As in Study 1, the results were evaluated based on bias, standardized bias, 

confidence interval coverage, confidence interval width, power, and Type I error rate.
13

  

When the population parameter was zero and the null hypothesis was rejected, I also 

examined the proportion of replications where zero was above (below) the confidence 

                                                 
12

 New data were generated and analyzed for Study 2 conditions that overlapped with Study 1 conditions.  

The results were consistent across Studies 1 and 2 for these conditions. 

13
 To assess bias introduced by categorizing adherence, I generated a sample with 25,000,000 cases within 

each design cell and obtained parameter estimates from a correctly specified model.  Differences between 

these parameter estimates and the corresponding population parameters specified in SAS ranged from 

−0.00030 to −0.00023 for the intent-to-treat method, 0.00005 to 0.00009 for the confounder adjustment 

method, and 0.00000 to 0.00002 for the instrumental variable method.  The population parameters specified 

in SAS were used in the calculations described in this section.  Relative to the analysis models in Appendix 

C, the correctly specified models also included the unobserved confounder.  For design cells where the 

exclusion restriction was violated, parameter estimates from the corresponding design cells with no 

exclusion restriction violation were compared to the population parameters specified in SAS. 
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interval.  The parameters of interest were the intent-to-treat effect and the dose-response 

effect. 

Simulation Study 2 Results 

 Figure 2 plots bias for all 48 conditions investigated in Study 2.  Table 5 reports 

bias and confidence interval coverage by unobserved confounding and exclusion 

restriction violation; bias and confidence interval coverage were averaged across strength 

of the dose-response effect (zero, weak, moderate, strong) in Table 5. 

Intent-to-Treat Effect 

 As shown in Figure 2, estimates of the intent-to-treat effect were unbiased on 

average across all conditions (bias range = −0.0009 to −0.0006, standardized bias 

range = −0.0215 to −0.0141).  Coverage rates ranged from .9540 to .9620.  For the 

condition where the population parameter was zero, the Type I error rate, right tail 

rejection rate, and left tail rejection rate fell within the acceptable ranges.  For the 47 

conditions where the population parameter was nonzero, power increased as the 

magnitude of the population parameter increased, whereas the confidence interval width 

remained fairly constant across conditions (range = 0.1752 to 0.1757). 

Dose-Response Effect 

 Confounder adjustment method. For conditions with no unobserved 

confounding (𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .00), estimates of the dose-response effect were unbiased on 

average (bias range = −0.0004 to −0.0003, standardized bias = −0.0327 for all conditions) 

and coverage rates equaled .9570 (for all conditions).  For conditions with weak 

unobserved confounding (𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .10), estimates of the dose-response effect were 

more biased on average (bias range = 0.0016 to 0.0034), though standardized bias and 
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coverage rates still fell within the acceptable ranges (standardized bias range = 0.1544 to 

0.2884, coverage rates range = .9530 to .9600).  However, estimates of the dose-response 

effect were biased on average and coverage rates were low for conditions with moderate 

unobserved confounding (𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .30; bias range = 0.0182 to 0.0367, standardized 

bias range = 1.7477 to 3.0415, coverage rates range = .1580 to .5840) and conditions with 

strong unobserved confounding (𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .50; bias range = 0.0620 to 0.1243, 

standardized bias range = 5.8863 to 10.1253, coverage rate = .0000 for all conditions).
14

  

As shown in Figure 2, bias was unaffected by violations of the exclusion restriction (an 

assumption of the instrumental variable method but not the confounder adjustment 

method). 

 For the three conditions where the population parameter was zero, the Type I 

error rate, right tail rejection rate, and left tail rejection rate fell within the acceptable 

ranges.  For the 45 conditions where the population parameter was nonzero, power 

increased as the magnitude of the population parameter increased, whereas the 

confidence interval width remained fairly constant across conditions (range = 0.0417 to 

0.0483). 

 Instrumental variable method. For conditions where the exclusion restriction 

was met (𝛿 = 0.00), estimates of the dose-response effect were unbiased on average (bias 

range = −0.0001 to 0.0000, standardized bias range = −0.0098 to 0.0012) and coverage 

rates ranged from .9450 to .9680.  However, estimates of the dose-response effect were 

                                                 
14

 Standardized bias increases as sample size increases because parameters are more precisely estimated.  

Thus, I investigated standardized bias when N = 200.  Although standardized bias was lower in magnitude 

when the sample size was 200 instead of 2,000, the conclusions remained the same.  Standardized bias was 

less than |0.40| for conditions with no or weak unobserved confounding but greater than |0.40| for 

conditions with moderate or strong unobserved confounding. 
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extremely biased on average and coverage rates dropped to zero for conditions with a 

weak exclusion restriction violation (𝛿 = 0.20; bias range = .04995 to .05004, 

standardized bias range = 6.1170 to 7.3416) and conditions with a moderate exclusion 

restriction violation (𝛿 = 0.50; bias range = 0.1250 to 0.1251, standardized bias 

range = 15.1761 to 18.0134).
15,16

  As shown in Figure 2, bias was unaffected by 

unobserved confounding (an assumption of the confounder adjustment method but not 

the instrumental variable method). 

 For the condition where the population parameter was zero and the exclusion 

restriction was met, the Type I error rate, right tail rejection rate, and left tail rejection 

rate fell within the acceptable ranges.  However, for the two conditions where the 

population parameter was zero and the exclusion restriction was violated, the Type I error 

rate equaled 1.0000 and zero always fell below the confidence interval.  That is, the 

positive direct effect of treatment assignment on the outcome was mistakenly considered 

a positive dose-response effect.  For the 45 conditions where the population parameter 

was nonzero, power increased as the magnitude of the population parameter increased, 

whereas the confidence interval width remained fairly constant across conditions 

(range = 0.0290 to 0.0319).  As in Study 1, the instrumental variable method provided 

                                                 
15

 When the sample size was 200 instead of 2,000, standardized bias was less than |0.40| for conditions 

where the exclusion restriction was met but greater than |0.40| for conditions where the exclusion restriction 

was violated. 

16
 Even under less severe violations of the exclusion restriction (represented by standardized mean 

differences of 𝛿 = 0.05 and 0.10), estimates of the dose-response effect were biased on average and 

coverage rates were low (bias range = 0.0124 to 0.0125, standardized bias range = 1.4875 to 1.8550, 

coverage rates range = .6230 to .6600 for 𝛿 = 0.05; bias range = 0.0249 to 0.0250, standardized bias 

range = 3.0102 to 3.6984, coverage rates range = .0590 to .1440 for 𝛿 = 0.10). 
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narrower confidence intervals than did the confounder adjustment method (confidence 

interval width range = 0.0290 to 0.0319 and 0.0417 to 0.0483, respectively). 

Discussion 

 In randomized experiments, nonadherence occurs when participants’ received 

treatment differs from their assigned treatment.  In the presence of nonadherence, 

reporting intent-to-treat effects is widely recommended because intent-to-treat effects 

maintain the integrity of randomization (Sagarin et al., 2014; Gottfredson et al., 2015).  

However, intent-to-treat effects support causal inferences about the average effects of 

treatment assignment, not treatment received.  Dose-response effects can supplement 

intent-to-treat effects when participants are offered the full dose but many only receive a 

partial dose due to nonadherence.  Using these data, we can estimate the magnitude of the 

treatment effect at different levels of adherence, which serve as a proxy for different 

levels of treatment.  In this dissertation, I conducted Monte Carlo simulations to examine 

when linear dose-response effects can be accurately and precisely estimated in 

randomized experiments comparing a no-treatment control condition to a treatment 

condition with partial adherence.  Specifically, I evaluated the performance of 

confounder adjustment and instrumental variable methods when their assumptions were 

met (Study 1) and when their assumptions were violated (Study 2). 

 In Study 1, the confounder adjustment and instrumental variable methods 

provided unbiased estimates of the dose-response effect and acceptable coverage rates 

across all conditions (sample size of 200, 500, or 2,000; uniform, right skewed, or left 

skewed adherence distribution; zero, weak, moderate, or strong dose-response effect).  

These results were mostly consistent with my hypotheses.  However, I expected the 
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instrumental variable method to produce some bias when the sample size was small 

(N = 200) because the instrumental variable method provides consistent, but not 

unbiased, parameter estimates (Hanushek & Jackson, 1977; Angrist & Krueger, 2001).  

Nevertheless, this result from Study 1 was consistent with simulation results presented by 

Maracy and Dunn (2011) where the instrumental variable method provided unbiased 

estimates of the dose-response effect under a sample size of 200.  This lack of bias was 

likely due to treatment assignment serving as a very strong instrument (𝜌𝐷𝑍 = .7385, 

.6780, or .7850 with a uniform, right skewed, or left skewed adherence distribution).  By 

using data from cases in both the treatment and control conditions, the instrumental 

variable method consistently provided narrower confidence intervals and greater power 

(until power approached its upper asymptote of 1.0000) than the confounder adjustment 

method.  This power difference would be reversed if the confounder adjustment and 

instrumental variable methods were based on the same effective sample size (Ginestet et 

al., 2017).  Overall, the results from Study 1 suggested that when their assumptions are 

met, the confounder adjustment and instrumental variable methods can provide accurate 

and precise estimates of dose-response effects in randomized experiments typically 

conducted in psychological research (e.g., N = 200 participants, common adherence 

distributions). 

 In Study 2, the confounder adjustment method provided unbiased or minimally 

biased estimates of the dose-response effect under no or weak unobserved confounding 

(𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .00 or .10) but provided biased estimates of the dose-response effect under 

moderate or strong unobserved confounding (𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .30 or .50).  Bias was 

unaffected by violations of the exclusion restriction (an assumption of the instrumental 
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variable method but not the confounder adjustment method).  The instrumental variable 

method provided unbiased estimates of the dose-response effect when the exclusion 

restriction was met (𝛿 = 0.00) but provided extremely biased estimates of the dose-

response effect when the exclusion restriction was violated (𝛿 = 0.20 or 0.50).  Bias was 

unaffected by unobserved confounding (an assumption of the confounder adjustment 

method but not the instrumental variable method).  These results were consistent with my 

hypotheses, though the severity of the exclusion restriction violations was unexpected.  In 

a post hoc expansion of Study 2, the instrumental variable method provided biased 

estimates of the dose-response effect even under less severe exclusion restriction 

violations (𝛿 = 0.05 or 0.10).  When the exclusion restriction was violated, the magnitude 

of the dose-response effect was overestimated because the direct effect of treatment 

assignment on the outcome and the dose-response effect had the same sign (i.e., were 

both positive) in Study 2.  The magnitude of the dose-response effect would have been 

underestimated if the direct effect of treatment assignment on the outcome and the dose-

response effect had opposite signs.  In practice, researchers should use theory to consider 

the likely direction of bias and its implications for causal inferences. 

Limitations and Future Research 

 Although conditions for the simulation studies were chosen to represent published 

research, the generalizability of all simulation studies is limited.  First, in Study 1, three 

adherence distributions were investigated—uniform, right skewed, and left skewed.  

Another common adherence distribution is U-shaped with heavy right and left tails.  This 

adherence pattern occurs when many participants never initiate their assigned treatment, 

but those who initiate their assigned treatment fully or almost fully adhere to the 
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treatment regimen.  For example, consider the JOBS II intervention for preventing mental 

health problems and promoting high quality reemployment among unemployed workers 

(Vinokur, Price, & Schul, 1995).  Of the 1,249 unemployed workers randomly assigned 

to the JOBS II intervention, 578 (46.3%) never attended a session whereas 567 (45.4%) 

attended at least four of the five sessions.  Dichotomization might be defensible for a U-

shaped adherence distribution with extremely heavy right and left tails, a topic for future 

research. 

 Second, in Studies 1 and 2, cases were evenly split between the treatment and 

control conditions (as in Dunn & Bentall, 2007; Maracy & Dunn, 2011; Ginestet et al., 

2017).  Although an even split provides the greatest power to detect the intent-to-treat 

effect, uneven splits could be investigated to assess power to detect the dose-response 

effect (e.g., one-third of cases in the control condition and two-thirds of cases in the 

treatment condition).  For the confounder adjustment method, power will increase as the 

proportion of cases in the treatment condition increases because the confounder 

adjustment method uses data from only those cases in the treatment condition.  It is less 

clear how the proportion of cases in the treatment condition affects power for the 

instrumental variable method.  Assigning a higher proportion of cases to the treatment 

condition provides more information about the expected value of 𝑌𝑖 when 𝐷𝑖 > 0 and the 

expected change in 𝑌𝑖 from a one-point increase in treatment received (e.g., from 

attending one more session).  At the same time, cases in the treatment condition that 

received a dose of zero and cases in the control condition each provide information about 

the expected value of 𝑌𝑖 when 𝐷𝑖 = 0 due to the exclusion restriction.  In a post hoc 

expansion of Study 1, assigning two-thirds rather than half of cases to the treatment 
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condition provided greater power to detect the dose-response effect (until power 

approached its upper asymptote of 1.0000) across all conditions.  However, the optimal 

split on treatment assignment may depend on the adherence distribution as well as other 

factors not considered in Study 1. 

 Third, the exclusion restriction violations considered in Study 2 may have been 

too severe or implausible, though less severe exclusion restriction violations considered 

in a post hoc expansion of Study 2 still produced substantial bias.  In Study 2, the 

exclusion restriction violations could be specified as an average difference between the 

treatment and control conditions on the outcome.  Creating an average difference rather 

than a constant difference between the treatment and control conditions on the outcome is 

more representative of empirical data. 

 Fourth, only a linear dose-response curve was considered in this dissertation.  

Studies 1 and 2 should be expanded to include nonlinear dose-response curves.  Dunn 

and Bentall (2007) and Maracy and Dunn (2011) outlined instrumental variable methods 

when assuming either a linear or quadratic dose-response curve, though other functional 

forms may be of interest.  In future research, bias resulting from misspecifications of the 

functional form of the dose-response curve—an assumption violation for both the 

confounder adjustment and instrumental variable methods—could be investigated. 

 Finally, in Studies 1 and 2, the expected treatment benefit for participants who 

attended all eight sessions could be computed.  The standard error of this predicted score 

can be calculated algebraically for OLS estimation (Cohen et al., 2003, p. 45) or via 

bootstrapping for both OLS and TSLS estimation.  The expected treatment benefit under 

other levels of adherence may also be of interest (e.g., attendance at four out of eight 
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sessions).  The accuracy and precision with which these predicted scores can be estimated 

may depend on the adherence distribution.  For example, the expected treatment benefit 

for participants who attended all eight sessions may be more accurately and precisely 

estimated under a left skewed adherence distribution than under a right skewed adherence 

distribution. 

Practical Recommendations 

 In practice, the confounder adjustment method’s no-unobserved-confounding 

assumption and the instrumental variable method’s exclusion restriction are strong and 

untestable assumptions (see Morgan & Winship, 2015, pp. 301-302).
17

  For the 

confounder adjustment method, collecting baseline covariates that theoretically relate to 

both adherence and the outcome (e.g., motivation) can reduce bias and increase power.  

Researchers should use theory to consider possible unobserved confounders and their 

relations to observed confounders.  Researchers should also assess the sensitivity of the 

results to unobserved confounding.  For example, Mauro (1990) proposed a sensitivity 

analysis based on the correlation between the unobserved confounder and focal predictor 

(treatment received) 𝜌𝐷𝑈 and the correlation between the unobserved confounder and 

outcome 𝜌𝑌𝑈.  Researchers can assess the impact of several plausible values of 𝜌𝐷𝑈 and 

𝜌𝑌𝑈 on the estimated dose-response effect.  The robustness of the estimated dose-

response effect to unobserved confounding has important implications for the 

interpretability and utility of the results. 

                                                 
17

 Researchers may mistakenly believe that the exclusion restriction implies that 𝑍𝑖 and 𝑌𝑖 are conditionally 

independent given 𝐷𝑖  and thus that the exclusion restriction is testable.  Morgan and Winship (2015, 

pp. 301-302) clarified that if 𝑍𝑖 is an invalid instrument, then 𝑍𝑖 will be associated with 𝑌𝑖 conditional on 

𝐷𝑖 .  However, the converse is not true.  That is, 𝑍𝑖 may be associated with 𝑌𝑖 conditional on 𝐷𝑖  even if 𝑍𝑖 is 

a valid instrument. 
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 For the instrumental variable method, researchers should use theory to consider 

why a direct effect of treatment assignment on the outcome might exist.  Returning to the 

New Beginnings Program (Sandler et al., 2017), being randomized to the control 

condition may have led parents to engage in other behaviors that prevented child mental 

health problems and substance use (e.g., seeking out other services).  Alternatively, being 

randomized to the control condition may have led to feelings of demoralization that 

exacerbated child mental health problems and substance use.  Other considerations 

include the likely direction of bias and the strength of the instrument.  Outlining a 

sensitivity analysis for violations of the exclusion restriction is a topic for future research 

(but see Hong, 2015, p. 265).  Although the instrumental variable method allows for 

unobserved confounding, collecting baseline covariates that theoretically relate to 

adherence can increase power (Dunn & Bentall, 2007).  Finally, researchers should 

consider all other assumptions listed in Table 1 before applying the confounder 

adjustment and instrumental variable methods. 

Extension to Psychological Research 

 Because dose-response estimation was primarily developed within medical and 

pharmacological research, additional considerations are necessary to extend dose-

response estimation to psychological research.  As one example, dose may be more 

difficult to quantify in psychological research.  In the New Beginnings Program, the first 

five sessions targeted parent-child relationship quality, the next session addressed 

children’s exposure to interparental conflict, and the remaining four sessions covered 

discipline.  Attendance at the first two sessions or attendance at the sixth and eighth 

sessions each conceivably represent a dose of two sessions, yet we may expect different 
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outcomes for these two families.  Weighting sessions by their importance in targeting a 

specific outcome may be advisable when each session does not represent an equal dose.  

That is, the last four sessions of the New Beginnings Program may be weighted more 

heavily than the first six sessions when investigating improvements in discipline, but a 

different set of weights may be used when investigating improvements in parent-child 

communication.  Dose may also be difficult to quantify when adherence to multiple 

components of an intervention is of interest, particularly when these components are 

interdependent (see West & Aiken, 1997 for a discussion).  In the New Beginnings 

Program, attendance and completion of home practice were interdependent such that 

skipping a session would preclude a parent from being assigned and thus completing the 

home practice before the next session. 

 As another example, measuring adherence without error may be more difficult 

depending on how adherence is defined and where adherence occurs.  In the New 

Beginnings Program, adherence may be defined as attendance, engagement during the 

sessions, or practicing the targeted skills following each session.  Attendance can be 

easily measured with little to no error.  However, engagement during the sessions is more 

ambiguous, and practicing the targeted skills is not directly observed by the 

interventionist.  Although measurement error is also problematic in medical and 

pharmacological research, addressing this issue may differ in psychological research.  For 

example, adherence to a drug regimen may be monitored by electronic vial caps that 

record when the vial was opened, electronic records of prescription refills, or chemical 

markers.  However, other innovative methods for promoting and monitoring adherence 

may apply to psychological research (e.g., reminders sent via mobile apps).  With random 



 48  

measurement error on adherence, the instrumental variable method provides consistent 

estimates of dose-response effects (Foster, 2003; Goetghebeur & Vansteelandt, 2005; 

Dunn & Bentall, 2007; Maracy & Dunn, 2011) whereas the confounder adjustment 

method provides attenuated estimates of dose-response effects (but see Fritz, Kenny, & 

MacKinnon, 2016 for the combined effect of measurement error and unobserved 

confounding). 

 When the assumptions of the confounder adjustment and instrumental variable 

methods are met, supplementing intent-to-treat effects with dose-response effects can 

enhance our understanding of the treatment’s efficacy and potentially improve the 

generalizability of the results.  The confounder adjustment and instrumental variable 

methods described and evaluated in this dissertation allow for more widespread reporting 

of dose-response effects in psychological research, which may ultimately lead to more 

informed treatment decisions. 
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Table 1 

Summary of Assumptions for Confounder Adjustment and Instrumental Variable Methods 

Confounder Adjustment Method  Instrumental Variable Method 

Consistency  Consistency 

Stable unit treatment value assumption  Stable unit treatment value assumption 

Positivity  Randomized treatment assignment 

Adherence level measured without error  One-sided nonadherence 

Conditional independence of adherence level  1+ strong instruments 

Overlap of covariate distributions  Exclusion restriction 

Correctly specified functional form  Correctly specified functional form 
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Table 2 

Studies 1 and 2 Manipulated Factors 

Study  Factor  Levels  Values 

1  Sample Size  3  200 500 2,000  

  
Adherence 

Distribution 
 3  Uniform Right Skewed Left Skewed  

  Dose-Response Effect  4  
Zero 

𝜌𝑌𝐷 = .00 

Weak 

𝜌𝑌𝐷 = .10 

Moderate 

𝜌𝑌𝐷 = .30 

Strong 

𝜌𝑌𝐷 = .50 

2  Dose-Response Effect  4  
Zero 

𝜌𝑌𝐷 = .00 

Weak 

𝜌𝑌𝐷 = .10 

Moderate 

𝜌𝑌𝐷 = .30 

Strong 

𝜌𝑌𝐷 = .50 

  
Unobserved 

Confounding 
 4  

Absent 

𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .00 

Weak 

𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .10 

Moderate 

𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .30 

Strong 

𝜌𝐷𝑈 = 𝜌𝑌𝑈 = .50 

  
Exclusion Restriction 

Violation 
 3  

Absent 

𝛿 = 0.00 

Weak 

𝛿 = 0.20 

Moderate 

𝛿 = 0.50 
 

Note. The dose-response effect (Studies 1 and 2) and unobserved confounding (Study 2) were varied based on the product-

moment correlation 𝜌, whereas violation of the exclusion restriction (Study 2) was varied based on Cohen’s 𝛿. 
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Table 3 

Study 1 Bias and Confidence Interval Coverage for Intent-to-Treat, Confounder Adjustment, and Instrumental Variable 

Methods 

Condition  Bias  Confidence Interval Coverage 

Dose-Response 

Effect 

Sample 

Size 

Adherence 

Distribution 
 

Intent-

to-Treat 

Confounder 

Adjustment 

Instrumental 

Variable 
 

Intent-

to-Treat 

Confounder 

Adjustment 

Instrumental 

Variable 

Zero 200 Uniform  −0.0026 −0.0013 0.0001  .9550 .9450 .9500 

  Right Skewed  −0.0026 −0.0014 0.0001  .9550 .9440 .9500 

  Left Skewed  −0.0026 −0.0015 0.0001  .9550 .9440 .9500 

 500 Uniform  −0.0003 −0.0007 0.0002  .9560 .9500 .9470 

  Right Skewed  −0.0003 −0.0008 0.0002  .9560 .9550 .9470 

  Left Skewed  −0.0003 −0.0008 0.0002  .9560 .9520 .9470 

 2,000 Uniform  −0.0012 −0.0002 −0.0003  .9430 .9530 .9530 

  Right Skewed  −0.0012 −0.0003 −0.0003  .9430 .9560 .9530 

  Left Skewed  −0.0012 −0.0003 −0.0002  .9430 .9500 .9530 

Weak 200 Uniform  −0.0022 −0.0013 0.0001  .9520 .9450 .9500 

  Right Skewed  −0.0021 −0.0013 0.0001  .9510 .9440 .9500 

  Left Skewed  −0.0023 −0.0015 0.0001  .9520 .9440 .9500 

 500 Uniform  −0.0002 −0.0007 0.0002  .9520 .9500 .9470 

  Right Skewed  −0.0001 −0.0008 0.0002  .9560 .9550 .9470 

  Left Skewed  −0.0002 −0.0007 0.0002  .9520 .9520 .9470 

 2,000 Uniform  −0.0011 −0.0002 −0.0003  .9410 .9530 .9540 

  Right Skewed  −0.0011 −0.0002 −0.0003  .9410 .9560 .9550 

  Left Skewed  −0.0012 −0.0003 −0.0002  .9410 .9500 .9540 

Moderate 200 Uniform  −0.0013 −0.0012 0.0001  .9480 .9450 .9530 

  Right Skewed  −0.0011 −0.0013 0.0001  .9490 .9440 .9530 

  Left Skewed  −0.0016 −0.0014 0.0001  .9480 .9440 .9520 
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 500 Uniform  0.0000 −0.0006 0.0002  .9520 .9500 .9540 

  Right Skewed  0.0002 −0.0008 0.0002  .9520 .9550 .9540 

  Left Skewed  −0.0001 −0.0007 0.0002  .9540 .9520 .9520 

 2,000 Uniform  −0.0011 −0.0002 −0.0003  .9400 .9530 .9600 

  Right Skewed  −0.0010 −0.0002 −0.0003  .9410 .9560 .9600 

  Left Skewed  −0.0012 −0.0003 −0.0002  .9410 .9500 .9600 

Strong 200 Uniform  −0.0004 −0.0011 0.0001  .9510 .9450 .9680 

  Right Skewed  −0.0001 −0.0012 0.0001  .9530 .9440 .9680 

  Left Skewed  −0.0009 −0.0013 0.0001  .9480 .9440 .9670 

 500 Uniform  0.0002 −0.0006 0.0002  .9570 .9500 .9670 

  Right Skewed  0.0005 −0.0007 0.0002  .9570 .9550 .9680 

  Left Skewed  0.0000 −0.0007 0.0001  .9550 .9520 .9660 

 2,000 Uniform  −0.0010 −0.0002 −0.0002  .9440 .9530 .9690 

  Right Skewed  −0.0008 −0.0002 −0.0003  .9440 .9560 .9690 

  Left Skewed  −0.0011 −0.0003 −0.0002  .9440 .9500 .9690 

Note. Whereas the intent-to-treat effect was the estimand for the intent-to-treat method, the dose-response effect was the 

estimand for the confounder adjustment and instrumental variable methods.  Standardized bias never exceeded |0.40| 

(results not shown in table). 
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Table 4 

Study 1 Confidence Interval Width, Type I Error Rate, and Power for Intent-to-Treat, Confounder Adjustment, and 

Instrumental Variable Methods 

Condition  Confidence Interval Width  Type I Error Rate or Power 

Dose-Response 

Effect 

Sample 

Size 

Adherence 

Distribution 
 

Intent-

to-Treat 

Confounder 

Adjustment 

Instrumental 

Variable 
 

Intent-

to-Treat 

Confounder 

Adjustment 

Instrumental 

Variable 

Zero 200 Uniform  0.5568 0.1529 0.0985  .0450 .0550 .0500 

  Right Skewed  0.5568 0.1529 0.1171  .0450 .0560 .0500 

  Left Skewed  0.5568 0.1531 0.0851  .0450 .0560 .0500 

 500 Uniform  0.3515 0.0964 0.0622  .0440 .0500 .0530 

  Right Skewed  0.3515 0.0964 0.0738  .0440 .0450 .0530 

  Left Skewed  0.3515 0.0964 0.0537  .0440 .0480 .0530 

 2,000 Uniform  0.1755 0.0480 0.0310  .0570 .0470 .0470 

  Right Skewed  0.1755 0.0480 0.0368  .0570 .0440 .0470 

  Left Skewed  0.1755 0.0480 0.0268  .0570 .0500 .0470 

Weak 200 Uniform  0.5567 0.1522 0.0982  .1770 .1830 .3440 

  Right Skewed  0.5567 0.1521 0.1168  .1470 .1670 .2590 

  Left Skewed  0.5567 0.1523 0.0848  .2290 .1720 .4340 

 500 Uniform  0.3515 0.0959 0.0620  .4130 .3470 .7050 

  Right Skewed  0.3515 0.0959 0.0736  .3130 .3280 .5540 

  Left Skewed  0.3515 0.0959 0.0536  .5170 .3460 .8230 

 2,000 Uniform  0.1755 0.0478 0.0310  .9280 .8840 .9990 

  Right Skewed  0.1755 0.0478 0.0367  .8230 .8790 .9840 

  Left Skewed  0.1755 0.0478 0.0267  .9730 .8900 1.0000 

Moderate 200 Uniform  0.5565 0.1459 0.0963  .8990 .8640 .9990 

  Right Skewed  0.5565 0.1458 0.1144  .7840 .8700 .9710 

  Left Skewed  0.5564 0.1460 0.0831  .9680 .8730 1.0000 
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 500 Uniform  0.3514 0.0920 0.0608  1.0000 .9990 1.0000 

  Right Skewed  0.3514 0.0919 0.0721  .9930 .9990 1.0000 

  Left Skewed  0.3514 0.0920 0.0525  1.0000 .9990 1.0000 

 2,000 Uniform  0.1754 0.0458 0.0303  1.0000 1.0000 1.0000 

  Right Skewed  0.1754 0.0458 0.0360  1.0000 1.0000 1.0000 

  Left Skewed  0.1754 0.0458 0.0262  1.0000 1.0000 1.0000 

Strong 200 Uniform  0.5564 0.1325 0.0922  1.0000 1.0000 1.0000 

  Right Skewed  0.5564 0.1324 0.1095  .9950 1.0000 1.0000 

  Left Skewed  0.5562 0.1326 0.0796  1.0000 1.0000 1.0000 

 500 Uniform  0.3513 0.0835 0.0582  1.0000 1.0000 1.0000 

  Right Skewed  0.3513 0.0835 0.0690  1.0000 1.0000 1.0000 

  Left Skewed  0.3513 0.0835 0.0502  1.0000 1.0000 1.0000 

 2,000 Uniform  0.1754 0.0416 0.0290  1.0000 1.0000 1.0000 

  Right Skewed  0.1754 0.0416 0.0344  1.0000 1.0000 1.0000 

  Left Skewed  0.1754 0.0416 0.0251  1.0000 1.0000 1.0000 

Note. Whereas the intent-to-treat effect was the estimand for the intent-to-treat method, the dose-response effect was the 

estimand for the confounder adjustment and instrumental variable methods. 
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Table 5 

Study 2 Bias and Confidence Interval Coverage for Intent-to-Treat, Confounder Adjustment, and Instrumental Variable 

Methods 

Condition  Bias  Confidence Interval Coverage 

Unobserved 

Confounding 

Exclusion Restriction 

Violation 
 

Intent-

to-Treat 

Confounder 

Adjustment 

Instrumental 

Variable 
 

Intent-

to-Treat 

Confounder 

Adjustment 

Instrumental 

Variable 

Absent Absent  −0.0007 −0.0004 0.0000  .9583 .9570 .9615 

 Weak  −0.0007 −0.0004 0.0500  .9583 .9570 .0000 

 Moderate  −0.0007 −0.0004 0.1251  .9583 .9570 .0000 

Weak Absent  −0.0007 0.0026 0.0000  .9563 .9570 .9595 

 Weak  −0.0007 0.0026 0.0500  .9563 .9570 .0000 

 Moderate  −0.0007 0.0026 0.1251  .9563 .9570 .0000 

Moderate Absent  −0.0008 0.0283 0.0000  .9578 .3435 .9578 

 Weak  −0.0008 0.0283 0.0500  .9578 .3435 .0000 

 Moderate  −0.0008 0.0283 0.1251  .9578 .3435 .0000 

Strong Absent  −0.0008 0.0962 −0.0001  .9575 .0000 .9520 

 Weak  −0.0008 0.0962 0.0500  .9575 .0000 .0000 

 Moderate  −0.0008 0.0962 0.1250  .9575 .0000 .0000 

Note. The results in this table were averaged across strength of the dose-response effect (zero, weak, moderate, strong).  

Standardized bias exceeded |0.40| for the shaded cells in the “Bias” columns. 
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Figure 1. Study 1 uniform, right skewed, and left skewed adherence distributions. 
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Figure 2. Study 2 trellis plot of bias by unobserved confounding and violation of the 

exclusion restriction (abbreviated “ER”).  Whereas the intent-to-treat effect was the 

estimand for the intent-to-treat method, the dose-response effect was the estimand for the 

confounder adjustment and instrumental variable methods.  
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OMITTED VARIABLE BIAS 
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 In this appendix, I describe omitted variable bias in equations.  Suppose that the 

population model for some outcome 𝑌𝑖 is 

 𝑌𝑖 = 𝑏0 + 𝑏1𝐷𝑖 + 𝑏2𝑋𝑖 + 휀𝑖 (A1) 

and that 𝑏1 is the regression coefficient of interest.  Further suppose that 𝐷𝑖 and 𝑋𝑖 are 

linearly related as follows: 

 𝑋𝑖 = 𝑔0 + 𝑔1𝐷𝑖 + 𝛿𝑖 (A2) 

and that data on 𝑋𝑖 are unavailable.  Substituting Equation A2 into Equation A1 yields 

the following: 

 𝑌𝑖 = 𝑏0 + 𝑏1𝐷𝑖 + 𝑏2(𝑔0 + 𝑔1𝐷𝑖 + 𝛿𝑖) + 휀𝑖. (A3) 

Collecting like terms in Equation A3 yields 

 𝑌𝑖 = (𝑏0 + 𝑏2𝑔0) + (𝑏1 + 𝑏2𝑔1)𝐷𝑖 + (휀𝑖 + 𝑏2𝛿𝑖) (A4) 

where (𝑏0 + 𝑏2𝑔0) is the intercept, (𝑏1 + 𝑏2𝑔1) is the regression coefficient for 𝐷𝑖, and 

(휀𝑖 + 𝑏2𝛿𝑖) is the residual. 

 When omitting 𝑋𝑖 from Equation A1, the regression coefficient estimated for 𝐷𝑖 

equals (𝑏1 + 𝑏2𝑔1) as in Equation A4 instead of 𝑏1 as in Equation A1.  The term 𝑏2𝑔1 

represents bias due to omitting 𝑋𝑖 (see Equation 3 in McCallum, 1972).  In this example, 

the estimated regression coefficient will be unbiased if 𝑋𝑖 either is unrelated to 𝑌𝑖 (i.e., 

𝑏2 = 0) or is unrelated to 𝐷𝑖 (i.e., 𝑔1 = 0) such that 𝑏2𝑔1 = 0.  The estimated regression 

coefficient will be positively biased when 𝑏2 and 𝑔1 have the same sign (i.e., are both 

positive or both negative) and will be negatively biased when 𝑏2 and 𝑔1 have opposite 

signs.  
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APPENDIX B 

DATA GENERATION FOR SIMULATION STUDIES 1 AND 2 
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Simulation Study 1 

 To generate the outcome in the treatment condition, values of the unstandardized 

regression coefficient 𝑏1 in Equation 6 were calculated based on the following equation: 

 𝑏1 = 𝜌𝑌𝐷 (
𝜎𝑌

𝜎𝐷
)  (B1) 

where 𝜌𝑌𝐷 is the correlation between 𝐷𝑖 and 𝑌𝑖, 𝜎𝑌 = 1.0000 is the standard deviation of 

𝑌𝑖, and 𝜎𝐷 is the standard deviation of 𝐷𝑖.  The standard deviation of 𝐷𝑖 equaled 2.5820 

for conditions with a uniform adherence distribution and 2.5832 for conditions with a 

(right or left) skewed adherence distribution.  Values of the residual variance 𝜎𝜀
2 were 

calculated based on the following equation: 

 𝜎𝜀
2 = (1 − 𝑅2)𝜎𝑌

2 = (1 − 𝜌𝑌𝐷
2 )𝜎𝑌

2 (B2) 

where 𝜎𝑌 = 1.0000 is the standard deviation of 𝑌𝑖 and 𝜌𝑌𝐷 is the correlation between 𝐷𝑖 

and 𝑌𝑖.  Based on Equations B1 and B2, the specified values of the unstandardized 

regression coefficient and residual variance in Equation 6 were 𝑏1 = 0.0000 and 

𝜎𝜀
2 = 1.0000, 𝑏1 = 0.0387 and 𝜎𝜀

2 = 0.9900, 𝑏1 = 0.1162 and 𝜎𝜀
2 = 0.9100, or 

𝑏1 = 0.1936 and 𝜎𝜀
2 = 0.7500 to achieve a zero, weak, moderate, or strong dose-

response effect. 

Simulation Study 2 

 To generate the outcome in the treatment condition, values of the unstandardized 

regression coefficients 𝑏1 and 𝑏2 in Equation 7 were calculated based on the following 

equations: 

 𝑏1 = 𝛽1 (
𝜎𝑌
𝜎𝐷
) = (

𝜌𝑌𝐷 − 𝜌𝑌𝑈𝜌𝐷𝑈

1 − 𝜌𝐷𝑈
2 ) (

𝜎𝑌
𝜎𝐷
) (B3) 
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 𝑏2 = 𝛽2 (
𝜎𝑌
𝜎𝑈
) = (

𝜌𝑌𝑈 − 𝜌𝑌𝐷𝜌𝐷𝑈

1 − 𝜌𝐷𝑈
2 ) (

𝜎𝑌
𝜎𝑈
) (B4) 

where 𝛽1 and 𝛽2 are the standardized regression coefficients for 𝐷𝑖 and 𝑈𝑖, respectively; 

𝜎𝑌 = 1.0000, 𝜎𝐷 = 2.5820, and 𝜎𝑈 = 1.0000 are the standard deviations of 𝑌𝑖, 𝐷𝑖, and 

𝑈𝑖, respectively; 𝜌𝑌𝐷 is the correlation between 𝐷𝑖 and 𝑌𝑖; 𝜌𝑌𝑈 is the correlation between 

𝑈𝑖 and 𝑌𝑖; and 𝜌𝐷𝑈 is the correlation between 𝐷𝑖 and 𝑈𝑖 (see Equation 3.2.4 in Cohen, 

Cohen, West, & Aiken, 2003).  The intercept 𝑏0 in Equation 7 was set to 0.00, 0.20, or 

0.50, where nonzero values represent violations of the exclusion restriction.  These values 

correspond to standardized mean differences of 𝛿 = 0.00, 0.20, or 0.50, respectively, 

because the variance of 𝑌𝑖 was set to one in both the treatment and control conditions.  

Values of the residual variance 𝜎𝜀
2 were calculated based on the following equation: 

 𝜎𝜀
2 = (1 − 𝑅2)𝜎𝑌

2 = [1 − (𝛽1𝜌𝑌𝐷 + 𝛽2𝜌𝑌𝑈)]𝜎𝑌
2 (B5) 

where 𝜎𝑌 = 1.0000 is the standard deviation of 𝑌𝑖; 𝛽1 and 𝛽2 are the standardized 

regression coefficients for 𝐷𝑖 and 𝑈𝑖, respectively (see Equations B3 and B4); 𝜌𝑌𝐷 is the 

correlation between 𝐷𝑖 and 𝑌𝑖; and 𝜌𝑌𝑈 is the correlation between 𝑈𝑖 and 𝑌𝑖 (see Equation 

3.5.3 for 𝑅2 in Cohen et al., 2003).  The specified values of the unstandardized regression 

coefficients and residual variance under each condition are summarized in Table B1. 
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Table B1 

Study 2 Specified Values of Unstandardized Regression Coefficients and Residual Variance to Generate 𝑌𝑖 in 

Treatment Condition 

Manipulated Factors  Specified Values in Equation 7 

Dose-Response 

Effect 
 

Unobserved 

Confounding 
 

Regression Coefficient 

for 𝐷𝑖 
 

Regression Coefficient 

for 𝑈𝑖 
 

Residual 

Variance 

Zero 

 Absent  0.0000  0.0000  1.0000 

 Weak  −0.0039  0.1010  0.9899 

 Moderate  −0.0383  0.3297  0.9011 

 Strong  −0.1291  0.6667  0.6667 

Weak 

 Absent  0.0387  0.0000  0.9900 

 Weak  0.0352  0.0909  0.9818 

 Moderate  0.0043  0.2967  0.9099 

 Strong  −0.0775  0.6000  0.7200 

Moderate 

 Absent  0.1162  0.0000  0.9100 

 Weak  0.1135  0.0707  0.9051 

 Moderate  0.0894  0.2308  0.8615 

 Strong  0.0258  0.4667  0.7467 

Strong 

 Absent  0.1936  0.0000  0.7500 

 Weak  0.1917  0.0505  0.7475 

 Moderate  0.1745  0.1648  0.7253 

 Strong  0.1291  0.3333  0.6667 
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APPENDIX C 

SAS 9.4 CODE FOR INTENT-TO-TREAT, CONFOUNDER ADJUSTMENT, AND 

INSTRUMENTAL VARIABLE METHODS 
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/* Intent-to-Treat Method */ 

 

PROC REG DATA = example_data; 

 MODEL Y = Z; 

RUN; 

 

 

/* Confounder Adjustment Method */ 

 

PROC REG DATA = example_data; 

 MODEL Y = D; 

 WHERE Z = 1; /* Select cases in the treatment condition. */ 

RUN; 

 

 

/* Instrumental Variable Method */ 

 

PROC SYSLIN DATA = example_data FIRST 2SLS; 

 ENDOGENOUS D; 

 INSTRUMENTS Z; 

 equation: MODEL Y = D / NOINT; 

RUN; 

 


