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ABSTRACT 

 

 Cardiovascular disease and diabetes are major health burdens. Diabetes is a 

primary risk factor of cardiovascular disease, and there is a strong link between obesity 

and risk of developing diabetes. With the prevalence of prediabetes highest among 

overweight/obese individuals, investigation into preventative strategies are needed. 

Aerobic exercise is a potent stimulus for both insulin and non-insulin dependent glucose 

uptake into the skeletal muscle. A single exercise session can improve insulin sensitivity 

within hours after exercise.  The effects of intensity, type, and volume of exercise on 

glucose homeostasis have been studied extensively; however, controlling for muscle 

contraction frequency with a constant exercise intensity and workload has not been 

examined. The purpose of this study was to compare muscle contraction frequency 

during aerobic exercise by altering cycling cadence on insulin sensitivity and vascular 

health. Eleven obese males (age=28yr, BMI=35kg/m2) completed three conditions in 

random order: 1) control-no exercise; 2) 45-min cycling at 45 revolutions per minute 

(45RPM) at 65-75%VO2max; 3) 45-min cycling at 90RPM at 65-75%VO2max. Glucose 

control and insulin sensitivity were assessed with oral glucose tolerance tests (OGTT) 4 

hours post-exercise. Vascular health was assessed via flow-mediated dilation (FMD) pre-

exercise, 1-hr and 2-hr post exercise and ambulatory blood pressure was assessed pre-

exercise, and continually every 15 min post-exercise. Linear mixed models were used to 

compare the mean differences in outcome variables. There were no significant 

differences found between control and both exercise conditions for all OGTT outcomes 

and no differences were found between control and exercise in FMD (all, p>0.05). 

Significant effects for exercise were found for both brachial and central blood pressure 
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measures. Brachial systolic blood pressures were lower at 2- and 4-hr post-exercise by 

approximately -10 and -8mmHg, respectively (p<0.001 and p=0.004) versus control. 

Central systolic blood pressures were lower at 2-, 3-, and 4-hr post-exercise by 

approximately -8, -9 and -6mmHg, respectively (p<0.001, p=0.021 and p=0.004) versus 

control. In conclusion, aerobic exercise, regardless of muscle contraction frequency, were 

unable to effect glucose control and insulin sensitivity. Similarly, there was no effect on 

vascular function. However, there was a significant effect of aerobic exercise on reducing 

post-exercise blood pressure.  
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CHAPTER 1 

 

INTRODUCTION 

 

Cardiovascular disease (CVD) is the number one cause of death in the US, with a 

death rate of more than 2200 per day (Heron & Anderson, 2016; Mozaffarian et al., 

2015). Diabetes is a major risk factor for cardiovascular disease, and there is a strong link 

between obesity and the risk of developing diabetes. Diabetes mellitus affects one of 

every 10 Americans, with most of those cases being type 2 diabetes (Mozaffarian et al., 

2016). Recently, the National Health and Nutrition Examination Survey analysis revealed 

that diabetes might represent a greater contribution to total mortality in the United States, 

estimating that it was the third leading cause of death in 2010 (Stokes & Preston, 2017). 

Cardiovascular disease and type 2 diabetes (T2D) are both considered obesity-related 

disorders and are strongly linked to physical inactivity (Eaton & Eaton, 2017). 

Investigations focusing on diabetes prevention are essential for reducing diabetes and 

cardiovascular disease morbidity and mortality. Exercise plays an important role in 

reducing diabetes and heart disease risk due to its systemic metabolic and cardiovascular 

benefits.  

Insulin resistance is a key characteristic among individuals with type 2 diabetes 

and is observed in the skeletal muscle, liver, and adipose tissue (Accili, 2004).  Insulin 

resistance is a metabolic disease that directly affects glucose metabolism; however, it is 

frequently observed in non-diabetic individuals. Metabolic and cardiovascular risk factors 

such as dyslipidemia, hypertension, and visceral obesity are related to impaired insulin 

action (DeFronzo, 1997). It has long been known that exercise plays a pivotal role in the 

prevention and treatment of metabolic disorders. This understanding has led to 
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investigations focusing on which type of exercise has the greatest influence and what 

physiological changes improve glucose regulation and insulin sensitivity.  

 Exercise is often prescribed using the FITT principle: frequency, intensity, type, 

and time. Numerous studies have been conducted evaluating the most appropriate 

prescription for improving insulin sensitivity with a training program. When evaluating 

studies of the effects of training programs, employing exercise of various intensities  and 

ranging in duration from 12 weeks to 6 months, on improvements in glucose control, it 

becomes clear that duration of exercise may play a more powerful role than intensity 

(Dube, Allison, Rousson, Goodpaster, & Amati, 2012; Hansen et al., 2009; Houmard et 

al., 2004; Li et al., 2012; Sigal et al., 2007). The lower intensity groups spent more total 

time exercising, resulting in more muscle contractions during the exercise session. Acute 

aerobic exercise trials reveal a similar pattern when comparing varying intensities on 

insulin sensitivity (Deschenes et al., 2000; Manders, Van Dijk, & van Loon, 2010; 

Newsom, Everett, Hinko, & Horowitz, 2013; Rynders et al., 2014; Wojtaszewski et al., 

2000). The total amount of exercise time is longer in the low-intensity conditions, which 

supports the role for total amount of muscle contractions during exercise in the 

improvement of glucose control.  

Ranges of cycling cadence have been shown to regulate physiological responses 

during exercise of the same intensity. In a simply designed study, recreationally active 

men who underwent a cross-over design cycling at 50-55% VO2peak at either 40 or 80 

revolutions per minute (RPM) revealed significant alteration in glucose levels from the 

80 RPM condition and significantly higher glucose and plasma insulin measured 5 and 15 

minutes post exercise (Deschenes et al., 2000). Most investigations with varying pedal 
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rates are primarily focused on cycling cadence and their physiological responses which 

may provide information for exercise performance and efficiency. This includes effects 

on VO2 slow component (i.e., excess VO2 associated with intense exercise), muscle 

recruitment patterns, perceived exertion and various metabolic and cardiovascular 

measures during and acutely post exercise (Barstow, Jones, Nguyen, & Casaburi, 1996; 

Gotshall, Bauer, & Fahrner, 1996; Kounalakis & Geladas, 2012; Lollgen, Graham, & 

Sjogaard, 1980; Migita & Hirakoba, 2006; Pringle, Doust, Carter, Tolfrey, & Jones, 

2003; Vercruyssen, Missenard, & Brisswalter, 2009). While these studies provide 

physiological insight at a wide range of cycling cadences (35-120 RPM), they do not 

demonstrate the effects of the muscle contraction frequency on glucose uptake and 

insulin sensitivity in a prolonged acute period. Moreover, they did not utilize populations 

outside of active healthy individuals.  

 Longer durations of exercise have been shown to improve glucose control and 

insulin sensitivity (Brestoff et al., 2009; Dube et al., 2012; Houmard et al., 2004; Li et al., 

2012; Manders et al., 2010; Newsom et al., 2013) suggests that more muscle contractions 

during exercise sessions may be the driver for improvements. Using pedaling cadence to 

simulate muscle contraction frequency could help elucidate the effects of improved 

glucose regulation with longer duration exercise bouts. The time point measured after 

exercise, when improved insulin sensitivity is pronounced, appears to be important. A 

time point of 3- to 4-hours after exercise has been identified for exercise induced increase 

in glucose uptake (Frosig & Richter, 2009). 

Exercise effects on diabetes and cardiovascular disease risk reduction occur 

systemically in the body. Essentially, every tissue, organ, and organ system benefits from 
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the effects of exercise. If exercise were to be prescribed like medicine it would be 

considered a ‘polypill’, with potential for greater impacts on glucose tolerance, blood 

pressure and endothelial function than drugs (Fiuza-Luces, Garatachea, Berger, & Lucia, 

2013; Gaesser, Tucker, Jarrett, & Angadi, 2015). Understanding the influence on vascular 

function and blood pressure following exercise among at-risk populations is still ongoing.  

Vascular function is an important assessment of health due to its representation as 

a risk factor gap that can be altered by exercise. That is, there may be exercise-mediated 

effects on the vasculature responsible for reduction in cardiovascular risk. This is 

significant because traditional cardiovascular risk markers (e.g. blood pressure, blood 

lipids) explain less than half of the cardioprotective benefits of exercise training (Green, 

Hopman, Padilla, Laughlin, & Thijssen, 2017). The earliest measurable indicator of 

atherosclerosis is endothelial dysfunction, which occurs well before any clinical 

symptoms of cardiovascular disease (Vanhoutte, 2009). Flow-mediated dilation (FMD) 

has become a common non-invasive method to assess endothelial (dys)function. A 

frequently cited meta-analysis found that, independent of groups studied, a 1% decrease 

in FMD was associated with a 13% increase in cardiovascular disease risk (Inaba, Chen, 

& Bergmann, 2010). The most common FMD measurement method is conducted on the 

brachial artery, which correlates with coronary artery vasomotor function (Anderson et 

al., 1995; Takase et al., 1998). Although some data suggests that the brachial artery may 

not provide an index of systemic endothelial function (Thijssen, Rowley, Padilla, 

Simmons, Laughlin, Whyte, Cable, & Green, 2011a), there are many studies 

demonstrating that brachial artery FMD may be predictive of cardiovascular events 

(Gokce et al., 2002; Neunteufl et al., 2000; Perticone et al., 2001). 
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Exercise training has clear beneficial effects on vascular health (Green, Spence, 

Halliwill, Cable, & Thijssen, 2011). Increased blood flow during exercise results in a 

shear stress stimulus to the endothelial cells lining the blood vessels. This increased blood 

flow creates greater friction along the inner lining of the vessels, which stimulates the 

release of vasoactive hormones including nitric oxide (NO) to induce vasodilation. 

Repeated bouts of exercise are likely to play a role in the functional and or structural 

changes in the vascular system in response to training (Laughlin, Newcomer, & Bender, 

2008). There is clear evidence to support the role of exercise training and improvements 

in vascular health; however, the acute effects of exercise on vascular function are still not 

clearly characterized. 

The acute effects of aerobic exercise on endothelial function are unclear. This is 

in part due to the large variation in methodologies and populations studied (Dawson, 

Green, Cable, & Thijssen, 2013; Padilla, Harris, & Wallace, 2007). Studies have 

investigated differing exercise intensities, durations, modes, and timing of post exercise 

evaluation of endothelial function. These studies also vary in the health, levels of activity, 

and fitness of the participants. Moreover, many researchers have chosen not to include a 

no-exercise condition to control for the effects of diurnal variation in vascular function 

(Gaenzer et al., 2000). Failure to do so may have contributed to the disparate conclusions 

that endothelial function assessed by FMD acutely post exercise can result in 

improvement, impairment, or no change. Particularly, among obese individuals, acute 

effects of aerobic exercise on vascular function has yet to be well established (Hallmark 

et al., 2014; Harris, Padilla, Hanlon, Rink, & Wallace, 2008a).  
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Resting blood pressure is a common measure used to estimate CVD risk. Exercise 

training has been well recognized for its blood pressure lowering effects (Chobanian et 

al., 2003). Post exercise hypotension (PEH) has been investigated as a means to establish 

the magnitude and duration of the acute hypotensive effect following a single exercise 

bout. PEH responses have been shown to vary, but this may be explained by the 

population studied, use of medications, training status, age and how blood pressure was 

measured. Additionally, the type, duration, and intensity of exercise bouts, as well as the 

time of day the exercise in performed, may all influence the PEH effect. A recent meta-

analysis on the acute effects of exercise on blood pressure found that regardless of the 

participant characteristics and the exercise mode, blood pressure was reduced in the hours 

following an acute exercise bout (Carpio-Rivera, Moncada-Jimenez, Salazar-Rojas, & 

Solera-Herrera, 2016). However, that meta-analysis is lacking investigations among 

obese populations and the acute effects of exercise on blood pressure. Since over a third 

of the US population is obese, insight into the hypotensive effects of exercise in this 

population is important.  

Purpose, Specific Aims, and Hypotheses   

Purpose: The purpose of the current study was to determine the effect of muscle 

contraction frequency during acute bouts of moderate-vigorous intensity cycling at 45 or 

90 revolutions per minute on glucose control, insulin sensitivity, endothelial function, and 

blood pressure control in obese inactive males.  

Aim #1: To determine the effects of acute bouts of cycling at 45 or 90 RPM at 

moderate-vigorous intensity on glycemic control.  
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Hypothesis #1: I hypothesize that both exercise conditions will result in 

significantly less insulin resistance compared to the control condition as determined by 

OGTT. I also hypothesize that the 90 RPM condition will result in significantly less 

insulin resistance compared to the 45 RPM condition.  

Aim #2: To determine the effects of acute bouts of cycling at 45 or 90 RPM at 

moderate-vigorous intensity on endothelial function as assessed by brachial artery flow-

mediated dilation at 1hr and 2hr post exercise.  

Hypothesis #2: I hypothesize that both exercise conditions will result in 

significantly improved endothelial function acutely post exercise compared to the control 

condition. I also hypothesize that the 90 RPM condition, will result in significantly 

improved endothelial function post exercise comparted to the 45 RPM condition.   

Aim #3: To determine the effects of acute bouts on cycling at 45 or 90 RPM at 

moderate-vigorous intensity on continuous ambulatory blood pressure.  

Hypothesis #3: I hypothesize that both exercise conditions will result in 

significantly reduced post exercise blood pressure. I also hypothesize that there will be no 

significant differences between 45 and the 90 RPM conditions.  

Definition of Terms 

Oral Glucose Tolerance Test: A test to determine the body’s ability to handle a glucose 

load. This test is commonly used to define impaired glucose tolerance and type 2 

diabetes, but has also been employed to determine insulin sensitivity after exercise.  

Matsuda Index: OGTT derived index of whole-body insulin sensitivity, including fasting 

and mean glucose and insulin concentrations in the equation. This measure is comparable 

to the insulin clamp method of assessing insulin sensitivity.  
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Area under the curve (AUC): Glucose and insulin measured during the OGTT can be 

calculated with the trapezoidal method to determine AUC, which represents glucose and 

insulin excursion relative to baseline.  

Ambulatory blood pressure monitor: A 24-hour blood ambulatory blood pressure monitor 

that can be set at specific time intervals to measure blood pressure. 

Post Exercise Hypotension: A reduction in blood pressure following a session of aerobic 

exercise compared to resting blood pressure.  

Endothelial function: Capacity of the endothelium organ to secrete mediators of 

vasomotor tone.  

Brachial artery flow-mediated dilation: A commonly used non-invasive measure to test 

endothelium-dependent vasodilation using high-resolution ultrasound. This procedure 

includes a five-minute occlusion of the brachial artery by applying a blood pressure cuff 

to the forearm and inflating it to supra-systolic cuff pressures. The cuff deflation induces 

a brief high-flow state through the artery resulting in shear stress and vasodilation. Flow-

mediated dilation is expressed as the change in post-stimulus diameter as a percentage of 

the baseline diameter.  

Delimitations 

 The delimitations of this study in men include: body mass index (30-45 kg/m2), 

age 18 to 45 years old, inactive, non-smoking, not taking medications for the treatment of 

diabetes, heart disease or high cholesterol, capable of performing moderate-vigorous 

physical activity.  
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Limitations 

 Although dietary intake the day prior to testing was controlled, this study lacked 

the ability to control for dietary changes throughout the time between conditions. 

Participants were asked to not change their habitual diet, but compliance between 

conditions was not measured. All participants were asked to not engage in any regular 

moderate or vigorous physical activity outside of the study, but compliance outside of our 

accelerometer data the day prior to the condition visit cannot be confirmed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Chapter 2  

BACKGROUND LITERATURE 

Measurements of Insulin Resistance 

 Insulin action in the body encompasses a wide range of important metabolic 

processes. This includes, but not limited to, regulating glucose uptake, glycogen 

synthesis, gluconeogenesis, lipid metabolism, gene expression and protein synthesis, cell 

growth and division and vasoreactivity (Beale, 2013). Regarding glucose metabolism, the 

biological effects of insulin occur after the beta cells of the pancreas release this peptide 

hormone and it passes through the liver, and then from the circulation to reach target 

tissues. The insulin molecule must interact with insulin receptor substrates on the cell 

membrane, and this will trigger a cascade of intracellular interactions ultimately resulting 

in glucose transporters to translocate to the cell membrane which prompts facilitated 

diffusion of glucose into the cell (Scheen, Paquot, Castillo, & Lefebvre, 1994). This 

allows for glucose utilization in the peripheral organs, primarily skeletal muscle and also 

adipose tissue.  

The term ‘insulin resistance’ was first described among diabetic participants who 

required more insulin than expected to produce hypoglycemic attacks (Himsworth, 2013). 

More commonly, insulin resistance is used to describe the inability of tissue to be 

responsive to insulin for glucose uptake among diabetic populations as well as 

individuals who are at increased risk due physical inactivity. Insulin resistance is linked 

to physiological states including physical inactivity, but also, puberty, pregnancy, and 

advanced age. Pathological conditions where insulin resistance is thought to play a role 
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would be in the case of obesity, diabetes mellitus, hypertension, dyslipidemia, and 

atherosclerotic cardiovascular disease (Scheen et al., 1994). 

Insulin resistance is not a new physiological concept but the methods to 

adequately determine both insulin sensitivity and resistance are varied with their own 

advantages and disadvantages.  The methods to determine the difference between 

individuals who are sensitive and insensitive to insulin administration following ingestion 

of glucose was first described in the 1930’s (Himsworth, 2013). Since then numerous 

approaches have been developed including intravenous methods that bypass influences of 

the digestive system along with varied methods using the glucose ingested orally.  

Hyperinsulinemic-euglycemic clamp 

The gold standard method for measuring whole-body insulin sensitivity with the 

hyperinsulinemic-euglycemic clamp (HEC). (Muniyappa, Madan, & Quon, 2000; 

Muniyappa, Lee, Chen, & Quon, 2008). A known amount of insulin is infused, at a 

steady state that is above the fasting insulin level, so that a hyperinsulinemic state is 

reached. Glucose is then frequently monitored every 5 or 10 minutes and 20% dextrose is 

given intravenously, at a varying rate so that the blood glucose is “clamped” at a 

concentration in the normal range, so the blood is in a euglycemic state. Once the blood 

glucose concentration is in a steady-state and assuming the hepatic glucose production is 

suppressed, the glucose infusion rate during the HEC is equal to the disposal rate. The 

whole-body disposal of glucose during a steady-state conditions of greater than 30 min 

(after 1 hour of initiation of infusion) is used to obtain an estimate of insulin sensitivity. 

Whole body glucose disposal rate is typically normalized to fat-free mass or body weight 

for an estimate of insulin sensitivity. Insulin sensitivity index (SI) is also derived using 
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this method. The SI obtained from this method is defined as SIClamp = M/(G x ∆I), where 

M is glucose disposal rate, G is steady-state blood glucose concentration and ∆I  is the 

difference between fasting and steady-state plasma insulin concentrations. (Katz et al., 

2000; Muniyappa et al., 2008). 

There are a few but important assumptions and considerations when using this 

method. This method assumes that during the glucose clamp hepatic glucose production 

is completely suppressed. Radiolabeled glucose infusions can be used to determine 

hepatic versus muscle insulin sensitivity during the HEC procedure (Finegood, Bergman, 

& Vranic, 1987). Additionally, the rate of glucose disposal is determined using a 

specified insulin infusion and this infusion rate can differ between insulin 

resistant/sensitive individuals. This can lead to invalid conclusions when comparing 

different populations if a higher amount of insulin infusion is needed among insulin-

resistant populations. Differing fasting glucose levels among participants can also be a 

limitation and some investigators use an isoglycemic level for the clamp instead of a pre-

determined euglycemic clamp (Muniyappa et al., 2008).  

Although the HEC procedure provides a direct measure of insulin sensitivity, the 

feasibility is limited because this method is time-consuming, requires specialized staff, is 

labor intensive, and costly. The HEC method is preferred due the direct measurement of 

metabolic insulin sensitivity, but this may not be feasible for all investigations nor is it a 

normal physiological stimulus such as a glucose load or oral meal.  
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Oral Glucose Tolerance Test 

The oral glucose tolerance test is a less complex, inexpensive, and practical 

method for assessing glucose tolerance and insulin sensitivity. Following and overnight 

fast blood samples are taken for glucose and insulin analysis at 0, 30, 60, and 120 min 

following a standard oral glucose load (75g). After the glucose is ingested, the initial rise 

in plasma glucose stimulates the secretion of insulin from the β-cells, and with increased 

levels of insulin and glucose there it is assumed that endogenous glucose production is 

suppressed. Incremental area under the curve (AUC) can quantify the rise of plasma 

glucose and insulin relative to baseline. Stimulation of glucose disposal into peripheral 

tissues, primarily skeletal muscle, occurs with the rise in plasma glucose concentrations. 

Provided that endogenous glucose production is suppressed during the 60- to 120-min 

time, the decrease in plasma glucose concentration after 60-min is thought to mainly 

reflect skeletal muscle uptake (M. A. Abdul-Ghani, Matsuda, Balas, & DeFronzo, 2007). 

Additionally, measuring impaired glucose tolerance at the 2-hour time point in an 

OGTT (140-199mg/dL) shows a greater risk of cardiovascular disease and future risk of 

developing type 2 diabetes. With more recent studies revealing the presence of 

microvascular complications (e.g. retinopathy and neuropathy) with impaired glucose 

tolerance (M. Abdul-Ghani, DeFronzo, & Jayyousi, 2016). To determine β-cell function 

and insulin sensitivity from the OGTT calculation can be done using the values obtained 

at the sampling times. 

It is important to note that this method does not provide direct measures insulin 

sensitivity or insulin resistance. However, surrogate indexes have been developed that are 

strongly correlated with muscle insulin sensitivity measures from the HEC. Specific 
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indexes include the Matsuda index, Stumvoll index, Gutt index, Belfiore index and the 

oral glucose insulin sensitivity index. Data from a group of Mexican-American subjects 

with both normal glucose tolerance (n=100) and impaired glucose tolerance (n=55), 

reveal strong correlations (r=0.76-0.81) between OGTT-derived indices of muscle insulin 

resistance compared to the HEC (M. A. Abdul-Ghani et al., 2007). A study conducted 

among Japanese participants with a range of glucose tolerance (normal, n=40; impaired 

glucose tolerance, n=22; type 2 diabetes, n=15) found that insulin sensitivity measured 

from the HEC moderately correlated with indices from the OGTT for the Matsuda, 

Stumvoll and Gutt index (r=0.451, 0.641, 0.526, respectively) (Kanauchi, Tsujimoto, & 

Hashimoto, 2002). The Matsuda index was developed from a study of American adults 

with various degrees of glucose tolerance (normal, n=62; impaired, n=31; and type 2 

diabetes, n=60). They found that this index was highly correlated with insulin sensitivity 

from the HEC (r=0.73), and this explains about 50% of the variance (Matsuda & 

DeFronzo, 1999). Lastly, a meta-analysis aimed to identify which surrogate marker of 

insulin sensitivity had the strongest correlation with the HEC reported strong correlations 

for many of the indices with the Matsuda Index correlation, r=0.67 and HOMA-IR, r=-

0.60 (Otten, Ahren, & Olsson, 2014).  

There is a general advantage of this low cost, normal physiological stimulus to 

provide surrogate measures of insulin sensitivity that correlate reasonably well with 

glucose clamp measures. Depending on the particular research question, population and 

feasibility, researchers may choose this approach. However, it is important to note that 

there have been reports of poor reproducibility resulting in within subject and day-to-day 

variability of this measure (Utzschneider et al., 2007).  
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Contraction-mediated Glucose Uptake 

 The primary source of glucose disposal in the body occurs at the skeletal muscle, 

and during exercise glucose delivery, transport and metabolism are all increased several 

fold (DeFronzo et al., 1981; Moghetti, Bacchi, Brangani, Dona, & Negri, 2016). Glucose 

transporter type 4 (GLUT4) is the major glucose transporter isoform in skeletal muscle 

that is both regulated by insulin and contractile activity (Jessen & Goodyear, 2005). 

Contraction-mediated glucose uptake involves a cascade of intracellular signaling that 

leads to the mobilization of GLUT4-containing vesicles from intracellular storage sites. 

Muscle contraction during exercise also alters the fuel status of the skeletal muscle cells, 

by reducing phosphocreatine and ATP concentrations. The increased ratio of AMP to 

ATP and creatine to phosphocreatine in turn activates 5’ AMP-activate protein kinase 

(AMPK), playing a distinct role in the stimulation of glucose transport (Jessen & 

Goodyear, 2005).  

Other important cellular mechanisms in contraction-mediated glucose uptake 

include calcium activated proteins, protein kinase C (PKC) and Ca/calmodulin-dependent 

protein kinase (CaMK), which act in parallel or in combination with the AMPK pathway 

(Santos, Ribeiro, Gaya, Appell, & Duarte, 2008). Additionally, distal signaling proteins 

atypical protein kinase C and AS160 are more potently regulated after exercise (Frosig & 

Richter, 2009). Other mediators of interest include reactive oxygen species (ROS), nitric 

oxide (NO) and bradykinin. These can also influence the signal for the translocation of 

GLUT4 to the cell membrane (Alvim, Cheuhen, Machado, Sousa, & Santos, 2015; 

Richter & Hargreaves, 2013). These cellular mechanisms are involved along with the 

integration of increased muscle blood flow and capillary recruitment during exercise to 
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keep interstitial glucose concertation during exercise high to be mobilized into the cell. 

Acute regulation of muscle glucose depends on GLUT4 translocation, and the expression 

of this gene is increased following exercise. With exercise training being a major 

stimulator of increased GLUT4 expression, this plays a pivotal role in the contribution of 

enhanced insulin action and glucose disposal.  

It is important to recognize these metabolic and cellular effects of exercise. Acute 

alterations in the signaling pathway during exercise result in insulin-independent glucose 

uptake. With exercise training, there are also improvements in skeletal muscle insulin 

sensitivity. This would increase insulin-dependent glucose uptake and is thought to be an 

essential component for prevention and treatment of pre-diabetes and diabetes (Moghetti 

et al., 2016).  

Post Exercise Insulin Sensitivity from OGTT  

 Insulin-independent glucose uptake during exercise is reversed around 2-3 hours 

post exercise, while muscle and whole-body insulin sensitivity is enhanced at 1-4 hours 

post exercise, with reports lasting for up to 48 hours (Cartee, 2015). 

The OGTT method has been used in acute aerobic exercise studies as a measure 

of insulin sensitivity and glucose tolerance. An investigation by Brestoff and colleagues 

compared an endurance exercise protocol cycling at 75% of VO2peak for 45 min and a 

sprint interval exercise protocol consisting of four 30 sec cycling sprints at 125%VO2peak 

among 13 recreationally active men and women. They used fasting OGTT’s 12-16 hours 

post exercise and compared that to a fasting no-exercise control OGTT and determined 

that the endurance exercise bout but not the sprint interval exercise increased insulin 

sensitivity (Matsuda index) compared to the control condition (Brestoff et al., 2009). 
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An investigation among 10 sedentary overweight/obese African American women used 

OGTTs to assess insulin sensitivity 1.5 hours following a 75-minute brisk walking 

treadmill exercise. They reported that insulin sensitivity (Matsuda index) was 18% higher 

in the exercise condition compared to control (Hasson, Freedson, & Braun, 2006). A 

study done among 10 young untrained obese males sought to investigate the relationship 

of glucose tolerance and inflammation effects of resistance training and aerobic training 

compared to a no exercise control. The OGTT was completed 24 hours post exercise and 

specifically looked at the insulin sensitivity results from the Matsuda index. They found 

no differences for both exercise conditions. These results were the same for the insulin 

and glucose AUC and HOMA. The aerobic exercise consisted of 60 min cycling at 70% 

VO2peak (Mitchell, Phillips, Yellott, & Currie, 2011).  

 A well-designed study by Rynders and colleagues used the oral minimal model 

(OMM) and OGTT derived indices of insulin sensitivity post exercise among 18 obese 

males and females with prediabetes. They used the OMM as comparable ‘gold-standard’ 

to the clamp method (Cobelli et al., 2014). The OMM method included a 3-hr 75-g 

OGTT with frequent sampling of glucose and insulin at 5-min intervals during the first 

hour and every 10 min during the second and third hour. The exercise consisted 

isocaloric (~200kcal) bouts of moderate intensity exercise (~50% VO2peak) and high 

intensity exercise (~80% VO2peak), with a control no exercise condition. The glucose 

tolerance testing was done 1-hour post exercise and they found that insulin sensitivity 

was increased for both the OMM and OGTT indices of insulin sensitivity. However, 

there was high variability between indices under each condition. Therefore, they advised 
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caution when concluding insulin-sensitizing effects of exercise based on the OGTT 

method (Rynders et al., 2016). 

 Another comparison investigating insulin sensitizing effects of one bout of 

aerobic exercise compared the OGTT to the intravenous glucose tolerance test (IVGTT) 

among 10 young healthy active males. On the exercise condition days, they completed 

the test 20 min after exercise which consisted on 45 minutes of cycling at 65% VO2peak. 

Interestingly, during the resting condition the Matsuda index correlated well with the 

IVGTT insulin sensitivity index (r=0.828), but not as well following exercise (r=0.547).  

The insulin sensitivity post exercise measured from the OGTT Matsuda index increased 

by 29%, but this was not statistically significant. The insulin sensitivity index from the 

IVGTT has been reported to increase significantly post exercise by 50% (Ortega, 

Hamouti, Fernandez-Elias, & Mora-Rodriguez, 2014).  

King and colleagues conducted a time-course investigation using OGTTs 

immediately post exercise and 1, 3, 5 and 7 days following. The intervention consisted of 

5 days of exercise for 45 min, cycling at 75% VO2peak each session. In this study among 

moderately trained men and women they reported a marked impairment of insulin action 

post exercise with improved insulin action and glucose tolerance the day after exercise 

which persisted for 3 days, but not longer than 5 (King et al., 1995).  

Measurement of Endothelial Function 

 The endothelial cells that line the interior surface of blood vessels are the 

interface for the circulating blood and the vessel wall play an important role in vascular 

homeostasis. This single layer of simple squamous cells makes up an organ system that 

plays an essential role in the regulation of vasomotor tone, inhibition of platelet 



19 
 

aggregation and thrombus formation (Lloyd-Jones & Bloch, 1996). Vasodilation occurs 

through a variety of pathways including prostacyclin, endothelial derived hyperpolarizing 

factor and nitric oxide (NO). Diseases such as diabetes and hypertension result in lower 

amount of NO release from the endothelial cells and an increased rate of endothelial cell 

apoptosis. Regenerated cells then replace the apoptotic cells. In this context they become 

dysfunctional, senescent, and not able to produce sufficient amounts of NO. This 

supports the inflammatory response leading to the production of atherosclerotic plaques. 

Reduced NO availability allows for and imbalance of vasomotor tone that amplifies the 

degree of endothelial dysfunction (Vanhoutte, Shimokawa, Feletou, & Tang, 2017).  

Since the early 90’s researchers have been able to study vascular physiology in 

systemic arteries, using high-resolution ultrasound imaging. This commonly used non-

invasive method to determine vascular function is known as flow-mediated vasodilation 

(FMD) (Celermajer et al., 1992). FMD testing has been utilized as a surrogate marker of 

endothelial function in peripheral arteries and there is evidence to support its value as 

measure that can predict future cardiovascular disease events (Gokce et al., 2002; 

Neunteufl et al., 2000; Perticone et al., 2001). This method has been refined and utilized 

in a range of studies to investigate the physiological mechanism and clinical significance 

of FMD testing.  

To help standardize this technique official guidelines have since been established. 

The guidelines put forth by Corretti et al., have been cited more than 2000 times since 

their technical report was published in 2002 (Corretti et al., 2002). The FMD test is 

simple in its method where an occlusion is placed on the arm resulting in reduced blood 

flow. This is done for 5 minutes using a suprasystolic occlusion. Following the release of 
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the blood pressure cuff used the brachial artery is imaged for 5-10 minutes post to detect 

the peak diameter change resulting from the shear stress induced vasodilation comparted 

to a baseline diameter image. The calculation of FMD is expressed as a percentage of 

vessel diameter change following reactive hyperemia in relation to the pre-occlusion 

baseline diameter (FMD% = Peak Diameter – Baseline Diameter/Baseline Diameter). 

Given that the baseline diameter is part of this equation it has been found that various 

diameter sizes among populations studied can result in a misinterpretation of the 

percentage of diameter change. To control for this statistical approach and to account for 

this variation guidelines have been put forth by Atkinson et al. and are now commonly 

used in the literature. They suggest computing a least squares regression slope for the 

relationship between the logarithmically transformed baseline diameter and peak 

diameter. If the upper confidence limit of the slope is less than then it would not be 

appropriate to use the simple ratio %FMD and allometric scaling should be implemented 

(Atkinson, Batterham, Thijssen, & Green, 2013). 

Post Exercise Endothelial Function 

 A culmination of data demonstrates a biphasic response in FMD after an acute 

bout of exercise. Immediately post exercise FMD is decreased and improvements are 

typically seen about 1-24hr post exercise (Dawson et al., 2013). Utilizing the assessment 

of endothelial function acutely following exercise is beneficial to provide insight into the 

causes of longer-term adaptation. However, understanding of FMD responses in the acute 

exercise model has not been fully characterized and more specifically among an inactive 

obese population. To determine the interaction of endothelial function and a single bout 

of exercise, many methodological considerations need to be considered. Specifically, the 
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number of measurements are taken post exercise, use of a non-exercise condition to 

control for the diurnal variation in the assessment, and lastly if the measurement itself is 

reproducible in the acute exercise conditions. The optimal timing of measurement have 

yet to be determined, but it is clear that measuring more than once and for a longer 

duration post exercise should result in a clearer description of the characterization in 

endothelial function. Serial measurements have been found to not influence subsequent 

FMD outcomes, the reproducibility following exercise has been within an acceptable 

variation and the diurnal variation beyond the morning should be considered (Padilla et 

al., 2007). 

There have been inconsistent findings in the literature as it pertains to the effects 

of acute exercise on endothelial function as measured by FMD. This could be in part to 

the methodological considerations above, but also due to population differences, 

individual variation and lack of investigations on a variety of populations. Single bouts of 

aerobic exercise have demonstrated an improved response, impaired and no effect.  

A prolonged bout of aerobic exercise in the form of a marathon run in nonelite 

runners has been demonstrated to impair vascular function. A study of 15 male runners 

who completed the London marathon had FMDs completed before and within an hour 

finishing. They found there was a depression in femoral artery FMD, but no change in 

brachial artery FMD (Dawson et al., 2008). When comparing endurance-trained to 

sedentary adult males the effect of a single bout of high-intensity exercise has varying 

effects on FMD. Ten athletes and seven healthy sedentary control participants in this 

study. It is important to note that that ‘sedentary’ men were classified based on a 

VO2max value <55ml/kg/min and less than 1 hour or training per week. The high-
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intensity aerobic exercise bout consisted of a 15-min warm-up running at 60-70% 

HRmax and then a 5 x 5 interval session with last 3 min of each 5-min bout at >90% 

HRmax and 2 min active recovery. FMD was measured 1-hour, 24-hours and 48-hours 

post exercise. The endurance-trained athletes had larger arterial diameters bus similar 

FMD results compared to the sedentary adults. Among the endurance athletes the 1-hour 

time point post exercise showed reduced FMD but that was normalized within 24 hours 

(Rognmo et al., 2008).  

 Clinical populations are also studied to examine the effects of acute exercise in 

endothelial function. A study involving 10 individuals with cardiovascular disease 

investigated the effects of moderate-intensity endurance exercise (MOD) and high-

intensity interval exercise (HIE) on changes in FMD. The measurements were taken 30 

min and 60 min post exercise. The MOD exercise involved 30 min of cycling at 55% 

power output peak and the HIE included ten 1-min bouts of cycling at 80% power output 

peak separated by 1-min active recover. They found that acute FMD 60 min after both 

exercise condition improved among patients with endothelial dysfunction and coronary 

artery disease (Currie, McKelvie, & Macdonald, 2012). 

 Among overweight individuals, activity status may alter the effect that acute 

exercise plays on FMD. Sixteen overweight inactive (n=8) and active (n=8) men 

performed three different intensity acute bouts of exercise and FMD was measured before 

and 1-hour post exercise. The exercise consisted of treadmill walking for 45 min at either 

low (25% VO2peak), moderate (50% VO2peak), or high (75% VO2peak) intensity. 

Interestingly, they found that independent of intensity, the active males had a 24% 

increase in FMD following exercise and the inactive group had a 32% decrease (Harris, 
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Padilla, Hanlon, Rink, & Wallace, 2008b). The response to acute exercise among 

overweight postmenopausal women differs from normal weight premenopausal women. 

In a study of 13 overweight and 14 normal weight post- and premenopausal women 

found improved FMD post exercise in the overweight group and not in the normal weight 

group. The exercise in this study consisted of treadmill walking for 45 minutes at the 

heart rate at 60% of VO2max, with the FMD conducted 1-hour post exercise (Harvey et al., 

2005). Among obese populations the acute effects of exercise on endothelial function is 

less clear.  

 Obesity is associated with impaired FMD (Williams et al., 2005); however, the 

effect of acute exercise among obese individuals has been understudied. A study in young 

obese males found that an acute treadmill running for 45 min at a moderate intensity 

(80% HRmax) resulted in an increased FMD 1- and 2-hour post (Zhu et al., 2010). Acute 

changes in endothelial function among lean and obese adults were examined in an acute 

exercise study examining effects of exercise intensity (Hallmark et al., 2014). The 

participants in this study included 16 lean and 10 obese males and females who 

underwent a control no-excise condition and two exercise conditions consisting of 30 

minutes of moderate- or high-intensity cycle exercise. The FMD was performed prior to 

the exercise and at each hour after exercise for 4 hours. An increase in FMD was only 

evident in the lean participants following the high-intensity exercise. FMD was 

unchanged among the obese individuals following both moderate and high intensity 

exercise.  
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Post Exercise Blood Pressure Control 

 Post exercise hypertension (PEH) is determined by comparing blood pressure 

(BP) values measured before and after an exercise session or by comparing the values 

during a control day to an exercise day (Cardoso et al., 2010). Measuring post exercise 

blood pressure changes is easily done with ambulatory blood pressure (ABP) monitors 

and they can be set to measure blood pressure at user specified intervals. One bout of 

exercise can lower blood pressure and be sustained for 13 hours (Kenney & Seals, 1993; 

Pescatello & Kulikowich, 2001). It is noteworthy that a 2mmHg reduction in systolic BP 

is associated with a 6% and 4% reduction in stroke and coronary heart disease mortality, 

respectively (Chobanian et al., 2003). This blood pressure lowering effect post exercise 

has been shown in hypertensive individuals as well as prehypertensive and normotensive, 

and provides a period during which the hemodynamic load is reduced (Forjaz et al., 

2000). PEH can be attributed to the hemodynamic changes that occur in the vasculature 

following exercise and one of the main mechanisms is through a reduction in systemic 

vascular resistance. Other reports discuss that the reduction is, in part, due to a reduced 

cardiac output (Brito, Queiroz, & Forjaz, 2014).  

There are multiple factors that can account for differences in the blood pressure 

response to exercise. These include, but are not limited to, the population studied, blood 

pressure status, medication use, age, gender, weight, exercise mode, type, duration, 

intensity etc. Although these variables mentioned can play a role in the magnitude of 

PEH following an acute bout of exercise, a recent meta-analysis reported that regardless 

of participant measurement features, and exercise characteristic, there was still a 

reduction in blood pressure in the hours following exercise (Carpio-Rivera et al., 2016).  
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 There is a strong relationship between obesity and hypertension with evidence 

supporting the role of visceral obesity specifically as a key factor (Rahmouni, Correia, 

Haynes, & Mark, 2005; Sironi et al., 2004). The meta-analysis by Carpio-Rivera et al., 

reported that a lower BMI was associated with a greater reduction in systolic BP and that 

the implications of these findings are important because of the large proportion of obesity 

and hypertension in the population. However, their analyses only included a limited 

number of obese individuals, so those conclusions may not hold true and need to be 

investigated more (Carpio-Rivera et al., 2016). The participant characteristics included in 

PEH studies suggests a lack of information among obese individuals. High blood 

pressure is a major risk factor for cardiovascular disease and with over one-third of the 

US adult population being obese (Flegal, Carroll, Kit, & Ogden, 2012). Thus, having a 

better understanding of the effect of PEH among this population may have considerable 

clinical application.  

Post exercise hypotension among 13 young healthy adults who underwent three 

exercise trials consisting of continuous steady state, aerobic interval and sprint interval 

exercise found that compared to the control they all had similar reductions in BP 1-hour 

post exercise. Sustained PEH for greater than 2 hours only occurred in the aerobic 

interval exercise group (Angadi, Bhammar, & Gaesser, 2015). Another study comparing 

aerobic interval exercise with submaximal constant-load exercise found no differences in 

PEH 1-hour post (Lacombe, Goodman, Spragg, Liu, & Thomas, 2011). The effect of 

high-intensity interval exercise on PEH has been reported in endurance trained men and 

women. They have also reported blood pressure lowing effects 1-hour post, but with no 

non-exercise control trial (Rossow et al., 2010; Scott et al., 2008). There is data to 
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support the role of intensity and its favorable effect on PEH (Kessler, Sisson, & Short, 

2012; Wisloff et al., 2007), but still there is data lacking across all exercise types in the 

obese population.    
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Chapter 3 

METHODS  

 Subjects were recruited through emails, flyers, and social media from the Phoenix 

area and at Arizona State University. All subjects were sedentary, obese (BMI 30-45 

kg/m2), non-smoking, adult males between the ages of 18 and 45 yr.  All participants who 

responded to the recruitment flyer were provided an online pre-screening survey through 

Qualtrics Online Survey System to establish eligibility, which included questions from 

the physical activity readiness questionnaire (PAR-Q) (Appendix F). Online survey 

consent was obtained prior to advancing to questions. Participants responded to questions 

about gender, age, height, weight, and several “yes” or “no” questions related to smoking 

status, current exercise habits and weight loss or dieting efforts. If they self-reported a 

diagnosis of hypertriglyceridemia or hypercholesterolemia or answered “yes” to any of 

the PAR-Q questions they were excluded. Participants who were current smokers, 

diagnosed with diabetes or had a fasting blood glucose measurement above 125mg/dl on 

screening day, currently engaging in regular physical activity, or on a calorie-restricted 

diet were excluded. The Arizona State University Institutional Review Board approved 

the study. 

Research Design 

 All subjects underwent 3 conditions in a randomized cross-over design to test the 

effect of muscle contraction frequency during moderate-vigorous exercise on glucose 

control, insulin sensitivity, endothelial function, and blood pressure. The conditions 

consisted of a non-exercise control day (CON) and two exercise conditions (45 RPM or 
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90 RPM). Conditions were completed in random order and separated by at least one 

week: 

 Control: time-matched, no exercise 

 45 RPM: Cycling at 45 revolutions per minute at 65-75% of VO2max for 45 

minutes. Five-minute warm-up while increasing wattage to VO2 intensity goal and 

a five-minute cool-down at 25-50 watts.  

 90 RPM: Cycling at 90 revolutions per minute at 65-75% of VO2max for 45 

minutes. Five-minute warm-up while increasing wattage to VO2 intensity goal and 

a five-minute cool-down at 25-50 watts. 

These cycling cadences of 45 and 90 RPM were chosen to simulate a double amount 

of muscle contractions during a same intensity for the same total exercise duration and 

energy expenditure. This could have been accomplished with other cadences (e.g., 35 vs. 

70; 40 vs. 80; 50 vs. 100), but during pilot testing in the lab, a range closer to preferred 

cycling cadences that were not abnormally slow or fast was chosen. The selected range of 

45-90 RPM does not result in substantial differences in motor unit recruitment patterns 

and amplitude of VO2 slow component (Barstow et al., 1996).  

A flow-diagram of the study design can be seen in Appendix A. Study duration for 

each participant was approximately 4 weeks to allow for a baseline assessment of 

physical activity and adequate temporal separation of conditions to avoid potential carry-

over effects on outcome measures.  

Sample size and participants  

The sample size was estimated based on one-leg dynamic knee-extensor 

ergometer comparing insulin sensitivity and glucose control using a hyperinsulinemic-
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euglycemic clamp in an exercised leg and non-exercised leg 4 hours after exercise 

(Wojtaszewski et al., 2000). The primary aim to detect area under the curve difference 

during the OGTT between control and exercise. Using G*Power 3.1 software (Faul, 

Erdfelder, Lang, & Buchner, 2007). We assumed 95% Power at 0.05% alpha level of 

significance (two-sided). Based on these parameters, a sample size of 4 would be 

required to detect significant differences between the exercise and control. Given that this 

reference study used a more robust measure of glucose tolerance and the goal of this 

study was to detect differences between exercise groups, a sample size of 10 participants 

was used.  

Procedures 

 The procedures of this study included 7 visits to the laboratory: 

Participant Screening (Visit 1) 

 The participants who met the eligibility criteria from the pre-screening survey 

were asked to visit the Healthy Lifestyles Research Center (HLRC) in the Arizona 

Biomedical Campus building on the ASU Downtown Campus. Upon arrival, they were 

provided with a copy of the consent form (Appendix B) to read, and all questions were 

answered. Study details were explained and written informed consent obtained. 

Participants also filled out a hard-copy and signed the PAR-Q (Appendix C), and were 

assigned a non-identifiable ID used on all saved documents and data. Those who 

consented had their height, weight, blood pressure, and blood glucose measured to ensure 

that they met our inclusion criteria. Blood glucose was measured using the fingerstick 

method to obtain fasting capillary blood glucose with a One Touch Ultra Glucose Meter 

to confirm fasting glucose was less than 126mg/dl. After this, subjects were offered a 
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snack (granola bar) and water and then performed a maximal exercise test on a cycle 

ergometer to determine maximal oxygen uptake (described later). Before leaving the 

laboratory, participants were provided an accelerometer (SenseWear Armband, 

Pittsburgh, USA) to wear for 5-7 days to confirm that they met the sedentary criteria for 

participation. Participants who agreed to take part in the study reported to the Healthy 

Lifestyles Research Center on the Downtown ASU campus for all subsequent visits. 

Participants were assigned to the three conditions (Control, 45 RPM, 90 RPM) in random 

order and all testing visits were scheduled 1 week apart.  

Diet Control 

To control for effects of the previous days diet on the modified-oral glucose 

tolerance test (OGTT), subjects were provided with pre-paid meal gift cards for each of 

the three days prior to the OGTT testing visit. On study visits 2, 4 and 6 (each day before 

the OGTT) participants reported to the lab and were provided specific instructions on 

what meals to purchase the day before the OGTT visits. This was done after discussing 

dietary preferences with the participant during the pre-screening visit. Pre-paid gift cards 

from chain restaurants (e.g., Chipotle, Subway) were purchased in advance. The 

participants were asked to provide the receipts or record of food eaten from the day prior 

to visit 3. On visit 4 and 6 each participant was instructed to eat the same foods/beverages 

from the day prior to visit 3. They were asked to refrain from consuming alcohol or 

caffeinated beverages on these days.  

Diet Control Visits 2, 4, 6: 

 These visits were scheduled 1-3 days prior to testing visits (Control, 45 RPM, 90 

RPM). Meal gift cards were given to the participants with diet instructions (reminder to 
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record what foods/beverages consumed, no alcohol, no caffeine) prior to the testing days. 

Participants were also provided with a light breakfast to consume the morning of their 

next visit between 6:00am and 6:30am. The breakfast meal consisted of a plain bagel, 

reduced-fat cream cheese, and low-fat chocolate milk (Nutrition facts; Appendix I). They 

were also given an accelerometer to wear prior to the next visit to confirm no engagement 

in physical activity prior to the testing visits and were reminded to not participate in any 

physical activity.  

Exercise/Control Condition Visits 3, 5, 7: 

 These visits include the main testing days and were performed in random order 

separated by at least 1 week. The condition days started in the lab at 7am and the 

participants left at approximately 3pm (Figure 1). They are described below in the order 

of control visit and the two exercise condition visits.  
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    Figure1: Study day timeline with conditions and assessments 

 
    FMD: flow-mediated dilation; BP: blood pressure; ABP: ambulatory blood pressure; OGTT: oral glucose tolerance test 
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Control Visit:  

The participants reported for testing at the HLRC building at 7am and confirmed 

that they consumed the provided breakfast between 6:00am and 6:30am. Participants 

were asked to refrain from exercise for 78 hours prior to this visit, and to not consume 

caffeine, and dietary supplements for 48 hours prior to this visit. Participants had an 

ambulatory blood pressure (ABP) monitor placed on their right arm and this monitor was 

set to inflate and measure blood pressure every 15 minutes until they started their OGTT 

(ABP; described later). Participants rested for 15 minutes in the vascular assessment 

room and then had a brachial artery flow-mediated dilation ultrasound assessment 

completed (FMD; described later). This was repeated at 9:30am and 10:30am 

(approximately 1hr and 2hr post exercise). Participants waited comfortably in the lab 

between and after the flow-mediated dilation measurements for 4 hours prior to the oral 

glucose tolerance test (OGTT). Thereafter, subjects relaxed comfortably in reclining 

chairs while undergoing a modified-oral glucose tolerance test (OGTT; described in 

detail later). Following the placement of the intravenous catheter, body composition was 

measured (DEXA; described later). 

Exercise Visits: 

The participants reported for testing at the HLRC building at 7am and confirmed 

that they consumed the provided breakfast between 6:00am and 6:30am. Participants 

were asked to refrain from exercise for 78 hours prior to this visit, and to not consume 

caffeine, and dietary supplements for 48 hours prior to this visit. Participants had an 

ambulatory blood pressure monitor placed on their right arm and this monitor was set to 

inflate and measure blood pressure every 15 minutes until they start their OGTT 
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Participants rested for 15 minutes in our vascular assessment room and then had a FMD 

ultrasound assessment completed. The FMD assessment was repeated 1 hour and 2 hours 

following the exercise bout. The participants then completed their pre-assigned exercise 

condition of 45 RPM or 90 RPM exercise session on a cycle ergometer for 45 minutes at 

65-70% of their VO2max with a 5-minute warm-up and 5-minute cool-down at 20-50 

watts. The participants were fitted with a mask connected to an expiratory hose and a 

metabolic measurement device (Parvo TrueMax 2400TM) to measure expired air and 

calculate oxygen consumption during the exercise session and a heart rate monitor. After 

the subjects completed the exercise session they remained in the lab for 4 hours prior to 

their OGTT. During the 4-hour break and between the flow-mediated dilation 

assessments, subjects remained fasted, but could read or work on a computer in our 

laboratory in a comfortable space. 

Body Composition 

Participants’ heights and weights were measured on a standard scale (Seca274, 

Medical Measuring Systems, Chino, CA). Body composition was assessed via Dual-

energy X-ray Absorptiometry (DEXA) (Lunar iDXA, GE Healthcare, Madison, WI). 

DEXA is considered a good tool to provide a rapid and accurate estimation of body mass, 

lean soft tissue, bone mineral and fat (Albanese, Diessel, & Genant, 2003; St-Onge et al., 

2004). Participants assumed a supine position in the DEXA bed for 7-12 minutes while 

the DEXA arm passed over the entire body. A certified radiology technician completed 

all scans. The scan was completed on only one of the three condition days for body 

composition characteristic. Once the peripheral venous catheter was placed and secured 
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with clear tape for the OGTT, the first of two baseline blood draws was taken. The 

DEXA was then completed in the time between the two baseline collections.   

 Maximal Exercise Test 

 The details of the maximal exercise test were described to all participants 

including the graded exercise test portion and verification phase. The mask size for the 

Parvo was measured, head gear fitted for the mask to stay in place and Polar heart rate 

monitor was positioned on the chest. The mask was connected to an expiratory hose 

attached to the metabolic measurement device (Parvo TrueMax 2400TM) to continuously 

measure ventilation, respiratory gas exchange data, and heart rate. Participants were 

seated on a stationary cycle ergometer and resting data were collected for 2 minutes. 

Afterwards, they were prompted to cycle at their preferred cadence throughout the test. A 

5-minute warm-up phase at 50 watts was completed, and then the test began by 

increasing 30 watts every minute until the participant could not continue or requested to 

stop. Then a cool down for 5-10 minutes was completed at 50 watts prior to proceeding 

with the verification phase. The verification phase was set at 100% of their watt max 

during the graded exercise test and each participant was encouraged to cycle until he 

could not continue. The verification phase has been described as an essential component 

for valid VO2max testing, and this cardiorespiratory fitness protocol has been safely used 

in our lab among sedentary, overweight/obese adults (Poole & Jones, 2017; Sawyer, 

Tucker, Bhammar, & Gaesser, 2015). The highest oxygen uptake from either the ramp or 

verification phase was used as their max VO2.  
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Ambulatory blood pressure monitor 

Blood pressure was monitored by a SunTech Oscar2, Model 250 (Sun Tech 

Medical, Morrisville, North Carolina). This blood pressure monitor is designed to assess 

brachial blood pressure and estimate central blood pressure. This monitor was placed on 

the right arm of the participant upon arrival to the laboratory at ~7:00am. The monitor 

was removed during the exercise period, but then immediately replaced following the 

cool-down. The monitor was then only removed just prior to the start of the OGTT. The 

blood pressure monitor was set to record blood pressure every 15 minutes and 

participants were instructed to be still and not talk while the device was inflating. During 

the time period between exercise and OGTT, most of the measurements occurred while 

the participants were seated quietly. If they were walking or standing when a 

measurement started (e.g., walking to the restroom) they were instructed to stand quietly 

until the measurement was completed.  

Brachial artery flow-mediated dilation 

 Brachial artery flow-mediated dilation was measured with a Terason uSmart 3300 

dynamic depth resolution ultrasound machine (Terason Ultrasound, Burlington, MA) 

with a 15-4 MHz multi-frequency linear array probe. Procedures were conducted in 

accordance with published guidelines (Corretti et al., 2002; Thijssen, Black et al., 2011). 

Images obtained were saved to each participant’s folder, and once all participants were 

done the videos were re-named in a separate folder with a random ID by the laboratory 

manager. The key was saved on the lab manager’s computer and secured in a locked 

cabinet prior to analysis. Analysis was completed using a validated brachial artery edge-

detection software (Diacom Blood Flow and FMD Encoder Analysis) to detect baseline 
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and peak diameter, blood flow velocity and the percent difference between baseline and 

peak diameter.  

 For this procedure participants laid quietly in a dimly lit room for 15 minutes on a 

vascular imaging table. The measurement was taken on the left arm (the arm without the 

ABP cuff). A baseline image of the brachial artery was first taken and recorded for 30-60 

seconds. After the baseline image was completed an automatic blood pressure cuff placed 

on the upper forearm was inflated to 250mmHg for 5 minutes. At the 4-minute mark prior 

to cuff deflation the brachial artery was imaged again and for 3 minutes post occlusion. 

To minimize error between measurements the ultrasound settings were saved and the 

distance of the probe from the medial epicondyle of the humerus were marked and 

measured (Appendix H).  

Oral glucose tolerance test 

 The oral glucose tolerance test (OGTT) is a relatively inexpensive and practical 

technique for assessing insulin sensitivity. This method has been validated for indices of 

muscle insulin sensitivity index and hepatic insulin resistance against the gold standard 

euglycemic-hyperinsulinemic clamp (M. A. Abdul-Ghani et al., 2007). Participants had 

their OGTT performed at 12:00pm on visits 3, 5 and 7. This was approximately 4 hours 

after the exercise bout or at the same time of day on the control visit. All OGTT’s were 

performed by a research nurse with extensive experience with this method. A small 

indwelling peripheral venous catheter was placed into a vein in the arm and then blood 

samples were collected at -10, 0, then at 30, 60, 90 and 120 min after the consumption of 

75g of anhydrous orange flavored glucose solution (Glucola) for the measurement of 

plasma glucose and insulin concentrations. Approximately 5ml of blood was drawn at 
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each of the aforementioned time points during the OGTT. After each blood draw the 

catheter was flushed with 5mls of 0.9% saline to maintain patency. Participants could 

recline comfortably in recliner chairs and were allowed to watch videos or use a laptop 

for the duration of the OGTT. The blood was placed into labeled vacutainer tubes and 

processed according to type for plasma and serum collection. Aliquots of the plasma and 

serum were pipetted into labeled Eppendorf tubes and frozen at -80° C until analyzed.  

Analytical Measures 

Plasma glucose was analyzed using the in vitro hexokinase method (COBAS 

analyzer). Briefly, the enzyme hexokinase catalyzes the reaction between glucose and 

ATP to form glucose-6-phosphate and ADP. In the presence of nicotinamide adenine 

dinucleotide (NAD), glucose-6-phosphate is oxidized by glucose-6-phosphate 

dehydrogenase to 6-phosphogluconate and reduced nicotinamide adenine dinucleotide 

(NADH). NADH is directly proportional to glucose concentrations and measured 

spectrophotometrically at 340nm.  

Serum insulin was measured by radioimmunoassay using a gamma counter. This 

process was completed over 2 days using a RIA kit (Millipore, Billerica, MA). On day 

one, the samples were processed in duplicate with an insulin tracer and insulin antibody 

followed by an overnight incubation. The following day involved a precipitation reaction 

and 20-minute incubation followed by the gamma counter. Radioimmunoassay uses fixed 

concentrations of labeled antigen incubated with a constant dilution of antiserum so that 

the concentration of antigen binding sites on the antibody is limited. This allows for a 

competition for unlabeled and labeled antigen with a constant number of binding sites on 

the antibody. When a mix of known amounts of radioisotope-tagged insulin and 
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antibodies is combined with a small portion of the samples, the insulin displaces some of 

the tagged insulin and the free-tagged insulin is then measured with the gamma isotope 

detector. The counts are fit to yield a normal curve to then result in the insulin values. For 

both glucose and insulin values, the duplicate coefficient of variance was reviewed and if 

they were out of range (>10%) samples were analyzed again.  

Exercise Conditions 

 Participants were first fitted with a Parvo heart rate monitor and then set up with a 

mask and head gear connected to an expiratory hose attached to the Parvo metabolic 

measurement device. The participants were either pre-assigned to cycling at a cadence of 

either 45 or 90 RPM. The participants sat on the cycle ergometer for 2 minutes to collect 

resting data then they were prompted to start cycling for a 5-minute warm-up. The 

wattage during the warm-up was increased every 30 seconds while monitoring the VO2, 

so that at the end of the warm-up period the participant was near or at 65-70% of their 

VO2max. The participants then sustained either 45 or 90 RPM for 45 minutes of continuous 

exercise. Cadence at either 45 or 90 RPM were monitored continually on the Parvo 

screen by the investigator, while the participants could view their cadence on the screen 

of the bike. If participants went below or above the assigned cadence, they were verbally 

instructed to increase or decrease their pedaling rate. The wattage was reduced or 

increased to maintain the intensity throughout the exercise session while monitoring 15-

second VO2 averages. At 5-minute intervals participants were asked their rating of 

perceived exertion (RPE). At the end of the exercise session a cool down at 25-50 watts 

for 5-minutes at their preferred cadence was completed.   

 



 

40 
 

 Statistical Analysis 

All statistical procedures were performed using SPSS (SPSS 23, Chicago IL, 

USA). Values were tested for normality and homogeneity. One-way analysis of variance 

was used to test for differences in baseline values between the three trials for fasting 

glucose, insulin, blood pressure and FMD%. Intra- and inter-class correlation coefficient 

were completed for a subset of FMD variables to determine intra-observer and between 

observer reliability. Linear mixed models were used to detect differences for areas under 

the curve (AUC) of insulin and glucose, indices of insulin sensitivity, hourly differences 

for ABP variables and FMD variables with both fixed and random effects explored. 

Covariates were included in the mixed models for baseline values, age and BMI. A p-

value <0.05 was considered statistically significant. 
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Chapter 4 

RESULTS 

Sixteen adult males were enrolled in the study, and eleven completed the study. 

Two participants were excluded for being too active following the baseline evaluation. 

One participant was unable to start the study due to vein access and two dropped out 

following their first condition visit due to the time commitment. Descriptive 

characteristics of the eleven participants who completed the study are presented in Table 

1.  

Table 1. Participant characteristics 

N 11 

Age (yrs) 28 ± 5 

Height (cm) 175.1 ± 6.1 

Weight (kg) 105.6 ± 13.8 

BMI (kg/m2) 34.5 ± 4.0 

Body Fat (%) 37.9 ± 4.4 

Visceral Fat (g) 1588 ± 675 

VO2max (ml/kg/min) 26.5 ± 5.9 
  

Data presented represent Means ± SD 

BMI = body mass index; VO2max = maximal oxygen uptake. 

 

To confirm that the exercise conditions were of similar intensity, measurements 

during the two exercise conditions from the Parvo Metabolic cart and electronically 

braked bike were recorded and compared. There were no differences in relative intensity, 

heart rate and work rate when averaged over the 45 min exercise bouts (Table 2).   
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Table 2: Exercise averages between conditions 

 

Average Work Rate 

(Watts) 

Average VO2 

(L/min) 

Average Heart Rate 

(BPM) 

45RPM 97.9 ± 25.1 1.80 ± 0.34 147 ± 10 

90RPM 82.3 ± 27.3 1.83 ± 0.37 151 ± 14 

 p-value 0.179 0.845 0.468 

Data presented represent Means ± SD  

RPM = revolution per minute; p-value = ANOVA between group 

 

Oral Glucose Tolerance Tests 

 No significant differences for basal glucose and insulin were found between 

conditions. For each time point during the OGTT there were no significant differences 

found for the effects of exercise and no differences between exercise conditions (all 

p>0.05) (Figure 2 and 3). Similarly, there were no differences found for total area under 

the curve for both glucose and insulin (p=.935 and p=0.562, respectively) (Figure 4). 

Indices for beta cell function and insulin sensitivity calculated from the OGTT also 

revealed no significant differences (HOMA-IR, p=0.570; Insulinogenic Index, p=0.445; 

Matsuda Index, p=0.095) (Figure 4). Contrary to the hypothesis, increased muscle 

contraction frequency did not improve insulin sensitivity when measured 4 hours post 

exercise by an OGTT. Moreover, this 45 min moderate-vigorous exercise bout yielded a 

similar glucose and insulin rise as the no-exercise control day following standard glucose 

ingestion. Although the group averages displayed similar results across the conditions, 

there was individual variation among the participants. Specifically, the Matsuda Index 

which is an index of whole-body insulin sensitivity demonstrated considerable variation 

in responses to each exercise condition compared to the control day. Some individuals 

improved, had a worsened response or no change (Figure 5).  
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Figure 2: Mean glucose values from the oral glucose tolerance tests 

 
Oral glucose tolerance test mean values of glucose concentrations at 0, 30, 60, 90 and 120 

min for control condition and two exercise conditions. For both exercise conditions the 

OGTT was started ~4 hours post exercise and the control condition (no exercise) was 

time matched. Error bars represent SD. No significant differences between conditions.   
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Figure 3: Mean insulin values from the oral glucose tolerance tests 

 
Oral glucose tolerance test mean values of insulin concentrations at 0, 30, 60, 90 and 120 

min for control condition and two exercise conditions. For both exercise conditions the 

OGTT was started ~4 hours post exercise and the control condition (no exercise) was 

time matched. Error bars represent SD. No significant differences between conditions.   
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Table 3: Glucose and insulin OGTT averages 

 Glucose (mg/dL) Insulin (microU/ml) 

Control   
Basal 94.1 ± 7.5 19.9 ± 9.8 

30min 151.6 ± 22.8 159.9 ± 82.7 

60min 160.9 ± 45.3 168.2 ± 89.0 

90min 162.0 ± 43.9 223.2 ± 131.8 

120min 146.2 ± 38.0 178.2 ± 102.6 

45RPM   
Basal 90.5 ± 4.0 17.1 ± 8.5 

30min 147.8 ± 24.1  138.7 ± 62.7 

60min 171.6 ± 45.3 167.7 ± 79.3 

90min 160.7 ± 44.1 179.8 ± 116.8 

120min 150.9 ± 24.2 200.1 ± 162.2 

90RPM   
Basal 91.7 ± 6.1 16.1 ± 4.4 

30min 150.6 ± 22.5 133.8 ± 56.6 

60min 165.0 ± 48.8 162.1 ± 79.0 

90min 167.2 ± 40.1 196.9 ± 106.6 

120min 145.8 ± 35.2 162.5 ± 80.8 

Data presented represent Means ± SD  
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Figure 4: OGTT calculation means  

 

A                                                                     B 

 
C                                                                     D 

 
A. Glucose total area under the curve (tAUC) calculated from the oral glucose tolerance 

test for each condition. B. Insulin total area under the curve calculated from oral glucose 

tolerance test for each condition. C. Hemeostatic model assessment of insulin resistance 

(HOMA IR) calculated from the oral glucose tolerance test for each condition. D. 

Insulinogenic index calculated from the oral glucose tolerance test for each condition. No 

significant differences between conditions for all graphs. Error bars represent SD.  
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Figure 5: Mean Matsuda index with individual responses 

A  

 
B 

 
A. Control vs. 45RPM mean and individual Matsuda index values. B. Control vs. 90RPM 

mean and individual Matsuda index values. Individual variation between conditions with 

no significant differences found between conditions for the mean values. Error bars 

represent SD.  
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Endothelial Function 

There were no significant differences across conditions for participants pre-

exercise FMD. The FMD response post exercise with a time matched control day 

revealed no significant differences (Pre exercise, p=0.539; 1hr post, p=0.474; 2hr post, 

p=0.287) (Figure 6). Among the time points for the 90RPM condition there was a 

significant difference between the pre-exercise measurement and the 2-hr time point 

(p=0.021). 

Adequate scaling for FMD was present as evidenced by the upper confidence 

limit of the regression slope of the relationship between the logarithmically transformed 

preocclusion baseline diameter and peak postocclusion diameter being >1 [β ± SE = 1.05 

plus minus 0.02; 95% confidence interval (CI) = 1.016-1.082] (Atkinson et al., 2013). 

Therefore, it was appropriate to use linear mixed models to detect condition by time 

interaction in FMD. The analysis was conducted using baseline diameter and shear as 

covariates in the model.  
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Figure 6. Flow mediated dilation pre and post exercise with control 

 
Brachial artery flow-mediated dilation (FMD%) adjusted for baseline diameter and shear 

rate before and after 45RPM and 90RPM or time matched no exercise control condition. 

No significant differences between conditions. *indicates significant time difference 

between baseline and 2hr post for the 90RPM condition. Error bars represent SD.  
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Reliability testing for the analysis of FMD images was completed and revealed 

strong correlations for intra- and inter-user correlation coefficients (Table 4.) 

Table 4: Intra- and Inter-class correlations for FMD variables 

Inter-user 

ICC 

Correlation 

Coefficient 

Intra-user 

ICC 

Correlation 

Coefficient 

Base Diameter 0.997 Base Diameter 0.948 

Peak Diameter 0.998 Peak Diameter 0.945 

FMD % 0.877 FMD % 0.967 
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Table 5: FMD mean variables for each condition 

 
Data presented represents Means ± SD 

Baseline 1hr Post  2hr Post Baseline 1hr Post 2hr Post Baseline 1hr Post 2hr Post

Condition x Time 

Interaction P 

Value

Preocclusion baseline diameter (mm) 4.72 ± 0.63 4.73 ± 0.59 4.83 ± 0.67 4.70 ± 0.71 4.74 ± 0.61 4.67 ± 0.52 4.79 ± 0.79 4.86 ± 0.68 4.87 ± 0.72 0.604

Postocclusion peak diameter (mm) 4.90 ± 0.63 4.94 ± 0.61 4.96 ± 0.63 4.90 ± 0.67 4.91 ± 0.59 4.81 ± 0.55 4.96 ± 0.77 5.02 ± 0.69 4.96 ± 0.69 0.582

Flow-mediate dilation (%) 3.79 ± 2.92 4.56 ± 2.23 2.83± 1.52 4.37 ± 1.60 3.64 ± 1.39 2.95 ± 1.26 3.75 ± 1.47 3.46 ± 1.22 1.95 ± 1.31 0.698

Average shear rate (1/s) 230.52 ± 82.03 235.94 ± 89.13 203.57 ± 63.18 278.34 ± 111.21 253.60 ± 105.01 231.21 ± 100.53 242.35 ± 93.90 247.02 ± 75.05 175.49 ± 71.80 0.668

Average velocity (cm/s) 27.11 ± 7.65 27.70 ± 8.68 24.06 ± 5.02 32.11 ± 9.05 29.61 ± 9.24 26.29 ± 8.92 28.46 ± 8.49 30.15 ± 8.14 25.93 ± 8.29 0.915

Control 45 RPM 90 RPM
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Blood Pressure 

 Prior to exercise there were no significant differences in brachial or central blood 

pressure (BP). For brachial systolic blood pressure, there was a significant effect of 

exercise at 2- and 4-hours post exercise (p<0.001 and p=0.004, respectively), and for 

central systolic blood pressure a significant effect of exercise at 2-, 3- and 4-hours post 

exercise (p<0.001, p=0.021 and p=0.004, respectively). Both brachial and central 

diastolic BP increased slightly 1-hour post exercise, but was reduced at the 4-hour time 

point (Figures 6-9). The reduction in systolic blood pressure 2-hours post exercise was 

approximately 10mmHg, which remained lowed at the 4-hour time point for both 45 and 

90RPM conditions. Similarly, central systolic BP was reduced post exercise and at the 2-

hour time point. Central systolic BP was reduced approximately 7mmHg for both 45 and 

90RPM conditions. At the 3-hour time point BP was reduced by 8mmHg and 9mmHg in 

the 45 and 90RPM condition, respectively. This lowering effect persisted to the 4th hour 

with a 5 and 7mmHg reduction in systolic blood pressure in the 45 and 90RPM 

conditions.  

 The other variables from the SunTech Oscar2 blood pressure monitor include 

mean arterial pressure (MAP), augmentation index normalized to 75 beats per min 

(AIX@75), central augmentation pressure (cAP) and central pulse pressure (cPP). 

Augmentation index is normalized to 75 beats per minute due to the variation in resting 

heart rate between conditions and between individuals. Since this variable is influenced 

by resting heart rate this is a standard index to use. There were not significant pre 

exercise differences for these variables (p>0.05), besides AIX@75. MAP initially 

increased significantly following the exercise bouts and subsequently lowered 
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significantly from 2-4 hours post exercise. The cPP was significantly lower at the 1- and 

2-hour time point following both exercise conditions (p<0.001). Augmentation pressure 

was only significantly lowered at the 1-hour time point post exercise for both conditions 

(p=0.041). Whereas, augmentation index was significantly increased at the 1 and 2-hour 

time points post exercise (p=0.020 and p=0.034, respectively) (Table 6).  
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Table 6: Average ABP variables pre and post exercise with control 

 

 

 

 

 

 

 

 

 

 

SBP DBP cSBP cDBP

Control

Pre 139.5 ± 10.9 82.2 ± 9.7 124.7 ± 8.3 84.6 ± 10.4

1hr post 138.9 ± 12.8 77.8 ± 11.5 123.3 ± 11.3 78.9 ± 11.5

2hr post 139.0 ± 12.1 77.5 ± 9.4 124.0 ± 8.9 78.8 ± 9.5

3hr post 133.1 ± 12.0 77.6 ± 6.9 120.5 ± 10.2 79.2 ± 7.4

4hr post 138.0 ± 13.8 81.4 ± 10.5 124.5 ± 11.9 83.5 ± 11.0

45RPM

Pre 141.4 ± 10.8 78.1 ± 9.8 124.5 ± 9.0 80.1 ± 10.5

1hr post 141.1 ± 11.3 82.7 ± 14.1* 125.0 ± 11.1 86.5 ± 13.4*

2hr post 131.1 ± 8.8* 76.4 ± 10.5 117.3 ± 9.0* 78.8 ± 11.3

3hr post 129.9 ± 12.5 75.5 ± 12.4 116.6 ± 11.6* 76.6 ± 12.4

4hr post 132.6 ± 12.5* 78.2 ± 11.0* 119.5 ± 12.1* 79.7 ± 19.6*

90RPM

Pre 140.9 ± 10.2 78.9 ±9.0 125.5 ± 8.5 81.0 ± 9.8

1hr post 135.6 ± 9.8 83.2 ± 7.9* 120.3 ± 8.3 85.3 ± 9.2*

2hr post 131.2 ± 12.5* 78.0 ± 10.0 118.4 ± 10.5* 79.8 ± 10.0

3hr post 129.5 ± 13.5 75.4 ± 11.3 116.2 ± 12.5* 76.5 ± 11.6

4hr post 131.5 ± 10.1* 79.4 ± 9.7* 118.7 ± 9.9* 81.0 ± 9.5*

Data presented represent Means ± SD; *significant effect for exercise vs. contol p<0.05

SBP = systolic blood pressure; DBP = diastolic blood pressure;

cSPB = central SBP; cDBP = central DBP
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Table 7: Average ABP variables pre and post exercise with control 

 

 

 

 

 

 

 

 

 

 

MAP AIX@75 cAP cPP

Control

Pre 101.3 ± 9.2 19.9 ± 10.7 8.1 ± 5.0 40 ± 6.8

1hr post 98.2 ± 10.8 15.4 ± 11.6 8.8 ± 4.9 44.7 ± 7.5

2hr post 98.0 ± 8.5 11.2 ± 11.2 7.7 ± 4.8 45.0 ± 8.9

3hr post 96.1 ± 7.2 13.8 ± 15.9 8.8 ± 6.9 41.3 ± 8.6

4hr post 100.3 ± 104 11.7 ± 18.9 7.1 ± 6.4 40.6 ± 7.6

45RPM

Pre 99.1 ± 9.6 12.3 ± 8.6 8.0 ± 5.5 44.4 ± 8.0

1hr post 102.1 ± 12.8* 24.5 ± 11.4* 6.7 ± 5.8* 38.6 ± 6.2*

2hr post 94.6 ± 8.3* 15.7 ± 16.4* 6.9 ± 5.7 38.5 ± 10.1*

3hr post 93.7 ± 11.5* 11.5 ± 12.3 7.4 ± 4.7 40.3 ± 7.9

4hr post 96.7 ± 10.2* 11.4 ± 18.3 7.3 ± 7.0 39.7 ± 8.3

90RPM

Pre 99.5 ± 9.0 20.1 ± 5.4 10.3 ± 5.2 43.8 ± 5.4

1hr post 101.2 ± 8.8* 23.1 ± 10.2* 6.3 ± 5.3* 36.5 ± 9.1*

2hr post 95.6 ± 10.2* 20.7 ± 12.8* 9.0 ± 6.6 38.6 ± 6.1*

3hr post 93.4 ± 11.4* 16.1 ± 13.8 8.5 ± 6.4 39.6 ± 7.1

4hr post 96.7 ± 9.4* 15.8 ± 17.9 7.8 ± 6.2 37.7 ± 5.1

Data presented represent Means ± SD; *significant effect for exercise vs. control p<0.05

MAP = mean arterial pressure; AIX@75 = augmentation intex at 75 beats per minute; 

cAP = central augmentation pressure; cPP = central pulse pressure
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Figure 7: Brachial systolic blood pressure pre and post exercise and control 

 
Brachial systolic blood pressure (SBP) post exercise with time matched control. Data 

presented represent Means ± SD *significant difference between control and exercise 

conditions p<0.05 
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Figure 8: Brachial diastolic blood pressure pre and post exercise and control 

 
Brachial diastolic blood pressure (DBP) post exercise with time matched control. Data 

presented represent Means ± SD *significant difference between control and exercise 

conditions p<0.05 
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Figure 9: Central systolic blood pressure pre and post exercise with control 

 
Central systolic blood pressure (cSBP) post exercise with time matched control. Data 

presented represent Means ± SD *significant difference between control and exercise 

conditions p<0.05 
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Figure 10: Central diastolic blood pressure pre and post exercise with control 

 
Central diastolic blood pressure (cDBP) post exercise with time matched control. Data 

presented represent Means ± SD *significant difference between control and exercise 

conditions p<0.05 
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Chapter 5 

DISCUSSION 

 I hypothesized that the increased muscle contraction frequency during an acute 

bout of moderate-vigorous intensity aerobic exercise would result in a greater 

improvement in insulin sensitivity, and this was not confirmed. The main findings from 

this study do not confirm any primary hypotheses. Moreover, I hypothesized that both 

exercise conditions would result in improved insulin sensitivity over a non-exercise 

control day and the results show no differences among the groups or compared to the 

control conditions. Exploratory analyses were included into this design to examine the 

effects of an acute bout of exercise in an obese population on endothelial function and 

post exercise hypotension. There were no significant effects of exercise on endothelial 

function as measured by brachial artery at FMD 1- and 2-hours post exercise compared to 

the non-exercise control condition. In the 90RPM group alone there was a significant 

attenuation in FMD at the 2-hour post exercise time point. I hypothesized that there 

would be a post exercise blood pressure lowering effect of exercise and this hypothesis 

was supported as both 45 and 90RPM conditions demonstrated significant PEH.  

Post Exercise Glucose Control and Insulin Sensitivity  

Contrary to the findings here, other acute aerobic exercise studies have found 

significant improvements in insulin sensitivity (Brestoff et al., 2009; Hasson et al., 2006; 

Howlett, Mathews, Garnham, & Sakamoto, 2008; Mikines, Sonne, Farrell, Tronier, & 

Galbo, 1988; Newsom et al., 2013; Ortega, Fernandez-Elias, Hamouti, Pallares, & Mora-

Rodriguez, 2015; Rose, Howlett, King, & Hargreaves, 2001). These studies demonstrate 

improvements in insulin sensitivity, and were comprised of various post exercise time 
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points ranging from immediately post exercise to 48 hours post exercise. They also 

studied various populations including healthy men and women, exercise trained men, and 

one investigation among healthy obese males and females. Newsom and colleagues used 

an obese healthy population, to determine the insulin sensitizing effects of low and 

moderate acute aerobic exercise compared to a no exercise control. Insulin sensitivity, 

measured using a hyperinsulinemic euglycemic clamp (HEC) showed a 35% significant 

increase following the low intensity (50% VO2peak) condition and a 20% nonsignificant 

increase following the moderate intensity (65%VO2peak) condition compared to control 

(Newsom et al., 2013). This measurement was done the morning following the exercise 

bout, which was approximately 13 hours post exercise. To control for activity and diet 

they provided standardized meals prior to the condition days and they were admitted to 

the research unit and remained there until the following morning for the HEC. It is 

important to note that the low intensity condition resulted in 15 minutes of additional 

exercise to maintain 350kcal of expenditure of each exercise condition. The longer 

duration of exercise may have played a role in the greater improvements seen in the low 

intensity condition.  

Investigations using the OGTT method to assess insulin sensitivity changes 

following an acute bout of exercise has revealed improvements compared to control 

conditions the following day (12-24hr post) (Brestoff et al., 2009; Rose et al., 2001). 

Brestoff and colleagues found a significant improvement in insulin sensitivity the day 

following an acute bout of endurance cycling exercise at 75% VO2max compared to 

control. By contrast, a high-intensity (125%VO2max) sprint interval exercise bout did not 

result in significant improvements. Their study population included healthy males and 
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females, which may differ from an obese population when evaluating the effects of acute 

endurance exercise on insulin sensitivity. They reported dietary control via 3-day food 

diaries, but with no standardized meals provided prior to the condition days. The 

improvements in insulin sensitivity may not be due to exercise intensity in this study, but 

exercise duration may have played a role. The endurance exercise condition consisted of 

3 bouts of 15-minute intervals totaling 45 min, while the sprint interval condition 

consisted of 5 30-second intervals interspersed with 4 5-min rest periods. By contrast, in 

this current investigation the OGTT was done on the same day and the exercise 

conditions consisted of 45 minutes of continuous exercise.  

Another study that found significant improvements the next day was conducted 

using exercise trained men and they used the OGTT method with a double tracer of 

deuterated glucose (Rose et al., 2001). The exercise consisted of a 60-minute cycling bout 

at 70% VO2peak, and they found a 24% increase in whole body glucose disposal which 

they attribute to the greater glucose disposal in the previously active muscle. Again, these 

results are limited to healthy males that are trained athletes. Insulin sensitivity changes 

following aerobic exercise the same day among a sedentary population from the OGTT 

method has varied results.  

A study among overweight/obese sedentary women used the OGTT method to 

assess insulin sensitivity changes the same day following an aerobic bout of exercise. 

They had these women walk at a brisk pace for 75 minutes and had an OGTT completed 

90 minutes post exercise. Insulin sensitivity was 18% higher following the exercise 

compared to the control (Hasson et al., 2006). A later study from this same group found 

no significant improvements in a group of overweight/obese sedentary adults following 
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the same brisk walking protocol (Hasson, Granados, Chipkin, Freedson, & Braun, 2010). 

This investigation also looked at changes in insulin sensitivity the next day, but they used 

the HEC method. Both investigations controlled their participants’ diets by providing 

standardized meals and they completed the same brisk walking protocol. The difference 

in findings may be due to the more robust method used in the latter investigation (HEC 

vs. OGTT).  

Other studies have also found no changes in insulin sensitivity following an acute 

bout of aerobic exercise using this clamp method (Devlin, Barlow, & Horton, 1989; 

Hasson et al., 2010; Howlett et al., 2008). Similar to this study design, these investigators 

chose a time point within 2-4 hours post exercise recovery when exercised muscle groups 

are likely to be maximally glycogen-depleted and have enhanced insulin-stimulated 

glucose uptake. Among a group of healthy men and women cycling at 70% of VO2max 

for 15-minute bouts interspersed with 5-minute rest periods until exhaustion, insulin-

mediated glucose utilization was not increased during the post exercise recovery period 

(Devlin et al., 1989). Another cycling study using the HEC found similar results 3-hours 

post exercise. They examined 7 untrained men who exercised at 60% VO2 peak for 60 

minutes and found in the post exercise recovery period no significant changes in insulin 

sensitivity during post exercise recovery. However, a t-test conducted compared to the 

control condition revealed a trend for increased insulin sensitivity (Howlett et al., 2008). 

Although these null findings were among healthy normal weight participants the results 

are similar to the findings in the current study, demonstrating no significant 

improvements in insulin sensitivity following an acute aerobic exercise intervention.  
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It is important to note that interpretation of results from the OGTT method may be 

subject to individual day-to-day variability. Possible mechanisms include changes in 

gastrointestinal absorption and motility, variations in response to incretin hormones that 

stimulate insulin secretion in response to a glucose ingestion, differences in recent 

glucose exposure and changes in physical activity. A study conducted to investigate day-

to-day variability in beta cell function indices derived from an OGTT reported some 

measures with high within-subject variability (Utzschneider et al., 2007). They recruited 

13 adults with normal glucose tolerance, 10 with impaired glucose tolerance and 14 with 

type to diabetes to all undergo 2 OGTTs separated by ~7 days. The beta cell function 

measures included insulinogenic index, incremental AUC, integrated insulin secretion 

response from 0-120 min and a mathematical model. The insulinogenic index 

demonstrated the highest within-subject variability (CV 57.1%), with the CV’s of the 

other measures ranging from ~17-30%. They also included measures of insulin sensitivity 

with their CV’s ranging from ~7-24% and these CV’s did not differ by glucose tolerance 

category. Although the insulin sensitivity indices were not the primary outcome of this 

paper, they did report that formulas utilized from the OGTTs for insulin sensitivity all 

showed reasonable variability. In the current investigation, all participants were provided 

with pre-paid meal gift cards to consume the same lunch and dinner food/beverage prior 

to each condition visit and they consumed the same light breakfast meal on the morning 

prior to arriving at the lab.   

Variability of insulin sensitivity indices from the OGTT following an acute 

exercise bout has also been recognized. In an acute exercise study comparing moderate- 

and high-intensity aerobic exercise on acute changes in insulin sensitivity markers 
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Rynders et al., compared OGTT derived insulin sensitivity measures to more robust 

values derived from the oral minimal model method (Rynders et al., 2016). They found 

that OGTT-derived values for insulin sensitivity underpredicted the change following the 

moderate- and high-intensity exercise bouts by 35% and 75% respectively.  Among my 

participants, there was considerable individual variation, where some individuals had 

improvements in insulin sensitivity while others showed no change or a reduction 

resulting in mean changes that were no different than the control condition.  

Post Exercise Endothelial Function 

It has been reported extensively that exercise training contributes to a significant 

increase in brachial artery flow-mediated dilation (Early et al., 2017). The acute post 

exercise effects have been shown to enhance (Currie et al., 2012; Hallmark et al., 2014; 

Harris et al., 2008b; Harvey et al., 2005; Padilla, Harris, Fly, Rink, & Wallace, 2006; Zhu 

et al., 2010), impair (Jones, Green, George, & Atkinson, 2010; McGowan et al., 2006; 

Rognmo et al., 2008; Silvestro et al., 2002), or result in no change (Hallmark et al., 2014; 

Harris et al., 2008a; Jones et al., 2010; Rognmo et al., 2008) in endothelial function. Data 

on the acute effects of aerobic exercise on endothelial function among obese populations 

are lacking. This current investigation indicated that among this cohort of inactive obese 

males that a 45-minute bout of moderate-vigorous aerobic exercise does not acutely 

improve brachial artery flow-mediated dilation. There is evidence among young healthy 

adults to suggest that FMD in the brachial artery does not represent a systemic index of 

endothelial function. Investigations by Thijssen and colleagues found no correlations 

between brachial artery FMD and in both superficial femoral artery and popliteal artery 

FMD (r=0.09 and r=0.05, respectively) (Thijssen, Rowley, Padilla, Simmons, Laughlin, 
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Whyte, Cable, & Green, 2011b). Given that our exercise mode involved cycling exercise, 

it could be a possibility that measuring the arm as a surrogate measure of systemic 

endothelial function was not the most appropriate measure for acute changes. We cannot 

speculate what the FMD in the femoral or popliteal artery would have revealed, but this 

should be investigated further in this population. 

An investigation by Hallmark et al. compared the effect of high- and moderate-

intensity exercise on FMD in both healthy obese and lean adults (Hallmark et al., 2014). 

They found that lean individuals have a significant improvement in FMD following the 

high-intensity exercise bout at 1-, 2-, and 4-hours post exercise and for the obese 

participants there was a trend from increased FMD at the 2-, and 4- hour time point 

following the moderate-intensity exercise. In contrast to our investigation, not only did 

we not see any trend for improvement in FMD following exercise but there was a 

significant decrease in FMD in the 90RPM condition at the 2-hr time point when directly 

compared to the pre-exercise value. This may be reflective of heterogeneity in the 

response of FMD following exercise in the obese population. Although improvements in 

brachial artery FMD were not observed, improvements in endothelial function 

systemically cannot be determined. Future studies should investigate vascular beds in the 

legs and arm to see if there are improvements in FMD post exercise.  

Post Exercise Blood Pressure 

 Post exercise hypotension has been well established in the literature (Carpio-

Rivera et al., 2016; Cornelissen & Fagard, 2005). Post exercise hypotension following 

aerobic exercise has been reported to persist for 2-4 hours under laboratory conditions 

(Kenney & Seals, 1993), with significant reductions among both normotensive and 
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hypertensive individuals (Brito et al., 2014). The PEH response reported among obese 

populations is lacking. In a study of overweight healthy men, it was reported that PEH 

was not significantly correlated with body mass index (BMI) (Hamer & Boutcher, 2006). 

A recent meta-analysis reported a significant correlation between BMI and PEH, where a 

lower BMI was associated with a greater reduction in SBP (Carpio-Rivera et al., 2016); 

however, the correlation coefficient was weak (r=0.26). Their regression line for 

reduction in SBP and BMI indicates that there would be no PEH response among 

individuals with a BMI above 30. In a different meta-analysis that depicts the 

physiological characteristics influencing PEH such as changes in peripheral vascular 

resistance and cardiac output, the articles included were primarily among normal weight 

or overweight participants (Brito et al., 2014). Only one study had obese participants, and 

this study was among middle-aged women with and without type 2 diabetes and normal 

resting blood pressure (Figueroa, Baynard, Fernhall, Carhart, & Kanaley, 2007). They 

found a significant reduction in SBP after a 20-minute walk at 65% of VO2peak. This 

reduction persisted for only 10-20 minutes following the walk and returned to baseline 30 

minutes post. This demonstrates a lack of published data on the effects of exercise on BP 

in the obese population. 

 The primary findings from our blood pressure data demonstrated that both central 

and brachial blood pressures were lowered following exercise. For brachial SBP the 

reduction was significantly lower at the 2- and 4-hour time point post exercise. The 

central SBP was lower at 2-, 3-, and 4-hour time point post exercise. This reveals that 

there is a pronounced PEH effect of a moderate-vigorous aerobic exercise bout. The 

males from our study did have a range of normal to prehypertensive blood pressure at 



 

68 
 

rest. This effect may not have been found if these males all had normal blood pressure 

values at baseline.  

 A recent investigation that included obese males and females with metabolic 

syndrome compared blood pressure responses following high-intensity interval exercise 

(HIIE) or moderate continuous exercise (CE) (Morales-Palomo, Ramirez-Jimenez, 

Ortega, Pallares, & Mora-Rodriguez, 2017). The interval exercise consisted of 5 x 4-min 

intervals at 90% HRpeak and the continuous exercise was an isocaloric bout at 90% HRpeak 

for around 70 minutes. They found that HIIE produced a larger and significant reduction 

in SBP in both the hypertensive (-20 vs. -5 mmHg) and normotensive group (-8 vs -

3mmHg) compared to the CE. PEH was tested 45 minutes after exercise, so persistent 

effects of PEH beyond this time point are unknown among this group. In this current 

study blood pressure was measured for a much longer time period, which demonstrated 

that PEH in obese males is reduced 2-4 hours post exercise.  

 Investigators have identified that as many as 25% of individuals with elevated 

blood pressure have minimal antihypertensive benefits from endurance training 

(Hagberg, Park, & Brown, 2000). However, identifying individuals who demonstrate 

PEH following an acute bout of aerobic exercise may predict their response to chronic 

training. Liu and colleagues demonstrated in a group of hypertensive men and women 

that their magnitude of change in systolic blood pressure after acute exercise was 

significantly correlated with the magnitude of change after chronic training (r=0.89, 

p<0.01) (Liu, Goodman, Nolan, Lacombe, & Thomas, 2012). Individuals who do not see 

blood pressure reductions following an acute bout of exercise can be identified and 

alternative forms of exercise prescribed to explore their effects of PEH prior to chronic 
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exercise prescription. The participants in this study all had reduction in central and 

brachial systolic blood pressure in the post exercise period. This would provide rationale 

for exercise training in the form moderate-vigorous intensity aerobic cycling in this 

population for blood pressure reductions. Future studies among obese participants should 

also explore PEH following acute aerobic exercise for a 24-hour period using an 

ambulatory blood pressure monitor outside of the laboratory setting. 

Strengths and Limitations 

 With all investigations, there were many strengths of the research design, but also 

some limitations. The randomized cross-over design was a strength, because we could 

compare each condition to a non-exercise control day to control for possible diurnal 

variation in outcome measures. Participants in this study were provided with meal gift 

cards and asked to consume the same lunch and dinner prior to the testing days and were 

provided the exact same breakfast meal the morning of testing. During the exercise 

conditions, intensity and power output were constantly monitored and adjusted to ensure 

that the exercise intensity was the same during both conditions and the only variation was 

the pedal rate.   

 One major limitation of this investigation was that I used the OGTT as the 

primary outcome to assess insulin sensitivity. Although OGTT derived measures of 

insulin sensitivity have been validated against the gold standard HEC, there is less 

evidence to show its reproducibility following an acute bout of exercise. Other methods 

to assess insulin sensitivity are costlier, but may have revealed differences among the 

exercise condition or exercise compared to control. The OGTT does provide a more 

natural physiological stimulus of glucose intake that must be digested compared to 
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methods that bypass the gastrointestinal system. However, we were not interested in this 

question, but rather the changes in glucose uptake following an acute bout of exercise 

that differed in muscle contraction frequency. An alternative may have been to use the 

oral minimal model method that utilizes the oral glucose ingestion method, but has more 

frequent sampling time points. The measurement of endothelial function at the brachial 

artery was also a limitation in this study where our mode of exercise was stationary 

cycling, and we may have missed changes to endothelial function in the lower extremities 

post exercise. The interpretation of the finding from this study is limited to relatively 

healthy, inactive, obese male adults.  

Conclusions 

In conclusion, the results show that contraction frequency during endurance 

exercise does not alter insulin sensitivity post exercise among obese males. An acute 

aerobic exercise bout does not improve glucose control or insulin sensitivity when 

compared to the absence of exercise. Previous studies have reported that duration of 

exercise plays an important role in glucose control and insulin sensitivity, which may be 

attributable to the number of muscle contractions performed during the exercise bouts. 

However, when controlling for muscle contraction frequency by altering the cycling 

cadence no effect was found.  Similarly, this aerobic exercise stimulus does not enhance 

endothelial function, and there were no differences when muscle contraction frequency 

was altered during cycling. The non-effect on FMD following an acute bout of exercise 

in an obese population adds to the limited data known about the effects on vascular 

function following acute exercise. An important finding of this investigation revealed a 

significant and persistent blood pressure lowering effect of this exercise intervention. 
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There is limited data with regards to PEH among obese individuals and we demonstrate 

that an acute bout of aerobic exercise can elicit a significant reduction in central and 

brachial systolic blood pressure. The magnitude of systolic blood pressure lowering is 

clinically relevant and provides insight that obesity per se does not prevent PEH. The 

determination of muscle contraction frequency during aerobic exercise and its 

physiological effects have yet to be determined among the obese population, which 

permit further investigation.  
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APPENDIX I 

BREAKFAST NUTRITION INFORMATION 
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Item kcal Fat(g) Sat Fat (g) Carb (g) Sugar (g) Fiber (g) Pro (g)

Chocolate milk (335ml) 300 4 2.5 49 44 2 20

Bagel (95g) 260 1 0 52 4 2 8

Cream cheese (30g) 70 5 3.5 3 2 0 2

Total 630 10 6 104 50 4 30


