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ABSTRACT

As urban populations become increasingly dense, massive amounts of new ‘big’ data
that characterize human activity are being made available and may be characterized
as having a large volume of observations, being produced in real-time or near real-time,
and including a diverse variety of information. In particular, spatial interaction (SI)
data — a collection of human interactions across a set of origins and destination
locations — present unique challenges for distilling big data into insight. Therefore,
this dissertation identifies some of the potential and pitfalls associated with new
sources of big SI data. It also evaluates methods for modeling SI to investigate the
relationships that drive SI processes in order to focus on human behavior rather than
data description.

A critical review of the existing SI modeling paradigms is first presented, which
also highlights features of big data that are particular to SI data. Next, a simulation
experiment is carried out to evaluate three different statistical modeling frameworks
for SI data that are supported by different underlying conceptual frameworks. Then,
two approaches are taken to identify the potential and pitfalls associated with two
newer sources of data from New York City — bike-share cycling trips and taxi trips.
The first approach builds a model of commuting behavior using a traditional census
data set and then compares the results for the same model when it is applied to
these newer data sources. The second approach examines how the increased temporal
resolution of big SI data may be incorporated into SI models.

Several important results are obtained through this research. First, it is demon-
strated that different SI models account for different types of spatial effects and that
the Competing Destination framework seems to be the most robust for capturing

spatial structure effects. Second, newer sources of big SI data are shown to be very



useful for complimenting traditional sources of data, though they are not sufficient
substitutions. Finally, it is demonstrated that the increased temporal resolution of
new data sources may usher in a new era of SI modeling that allows us to better

understand the dynamics of human behavior.
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Chapter 1

INTRODUCTION

1.1 General overview

The majority of the global population now resides in cities (United Nations and
Department of Economic and Social Affairs, 2014). It is not surprising then, that
in the ‘big data’ era, massive amounts of data that characterize how people meet
their economic needs, interact within social communities, and utilize shared resources
such as transportation infrastructure are being made available through advances in
technology and a sea-change in attitudes towards making data public. Understanding
the drivers of urban dynamics can inform policies for increasing the resilience of cities
and reduce the negative side-effects of urbanization (Batty, 2013). Therefore, it is
crucial to harness the ever-increasing streams of data being produced by cities and
their digitally equipped infrastructure. However, before these sources can be turned
into actionable knowledge, there are challenges that must be overcome.

In the age of big data there has been an abundance of new datasets that may be
characterized as having a large volume of observations, being produced in real-time
or near real-time, and including a diverse variety of information (Kitchin, 2014b;
Lovelace et al., 2015). While big data have been hyped as the solution to many
complex problems, many studies leveraging big data are often descriptive in nature
and therefore fall short of answering interesting research questions that illuminate
the processes that generate the data we observe. That is, big data do not necessarily

imply an increase in knowledge or understanding. In order to ascribe meaning to the



torrents of data that are collected daily, they must first be tested against theories so
that patterns within the data can be associated with social processes (Kitchin, 2014a).
Adopting a model-driven approach to geospatial analysis solves an inherent problem
of big data: their inability to speak for themselves. By building assumptions and
expert opinions into the structure of a model, we can begin to solve this problem. The
insights that result from applying data to an established model can confirm or reject
hypotheses, rather than solely extracting patterns from data. Pure pattern detection is
problematic because it is possible to observe spurious relationships amongst completely
unrelated data. The process of developing and critically evaluating models that can
accurately capture a given phenomenon is key to generating genuine insights (Farmer
and Pozdnoukhov, 2012), and is a focus of this research agenda.

Human activities that require traversing physical space, such as commuting,
shopping, dining, or socializing, are drivers of urban dynamics. Accurate descriptions
of these dynamics require precise measures of spatial contexts that propel and attract
potential movers, as well as an understanding of the costs of interacting within complex
social and physical environments. Spatial interaction models, which seek to explain
and predict aggregate movement patterns, are a set of tools that have a long history
of being employed by academics, and professionals (Haynes and Fotheringham, 1984;
Fotheringham and O’Kelly, 1989; Sen and Smith, 1995; Roy, 2004). Traditionally,
these models analyze data that represent movements between a set of origins and
destinations, which are represented by large areal units (i,e,. states, counties, cities),
and have been collected over extended periods of time (decades, years and months).
The core assumption of spatial interaction models is that the magnitude of movements
between two locations will increase as a function of their attractiveness, but that

it will decrease as the physical separation (i.e., distance or time) between locations



increases. As such, spatial interaction models, have been used to study migration,
transportation, residential mobility, retailing, attendance at events and universities,
patronage of medical facilities, and economic interactions around the world, utilizing
many different variables as proxies for size and separation.

While spatial interaction has a long history, it was not until the mid-20th century
that the processes underlying spatial interaction became of widespread interest to
regional scientists and geographers. Following a relative ‘trough’ in spatial interaction
research over the past few decades, there has been a renewed interest in human
movement under the banner of ‘human mobility’. This is primarily due to the
widespread availability of spatially and temporally disaggregate mobility datasets
from sources such as automated transportation systems, mobile phone records, GPS
trajectories, and social media, often described under the umbrella of big data (Arribas-
Bel, 2014), as well as the availability of increased computational power to handle
these new data. However, this new thrust of research has moved away from trying to
understand processes and tends to focus on predicting the movement of individuals
(Song et al., 2010b; Lin et al., 2013; Pirozmand et al., 2014; Do and Gatica-Perez,
2014) or establishing regularities (Brockmann et al., 2006; Gonzalez et al., 2008;
Han et al., 2009; Bazzani et al., 2010; Song et al., 2010a; Liang et al., 2012; Wang
et al., 2014). A result of this trend has been the promulgation of so-called ‘universal’
spatial interaction models (Lenormand et al., 2012; Simini et al., 2012; Yan et al.,
2013) that predict movement using non-parametric specifications that do not allow
for model building or hypothesis testing. In contrast, parametric spatial interaction
models produce parameters that may be interpreted as the strength and nature of the

attributes of a place that generate its attractiveness against the costs that must be



overcome to travel to that place. Therefore, they are a key tool for understanding the
underlying decision-making processes that generate spatial interaction data.

Despite the widespread applicability of parametric spatial interaction models, there
does not yet exist a methodology that exploits the real-time qualities of emerging
datasets; one where the temporal dimension of a movement phenomenon, such as
commuting, is considered for increasingly finer time periods. Furthermore, existing
models generally seek to explain and predict the number of movements that occur
based on generalized locational attributes (i,e,. average population), rather than
specific indicators, such as points-of-interest or subway station usage that can also
describe destinations. Parametric spatial interaction models may thus be improved
by leveraging the richness of big data to provide new insights into the dynamic
mechanisms that facilitate human movement within cities. However, it remains largely
unknown whether or not these new data sources have limitations compared to more
traditional spatial interaction data (i.e., the decennial census). Therefore, exploring big
spatial interaction data and incorporating them into the destination choice modeling
framework is a crucial task that is necessary for modernizing the geographical sciences
toolkit, especially for studying and governing urban areas, which are increasing in
number, density, and importance (United Nations and Department of Economic and
Social Affairs, 2014). Furthermore, the destination choice framework that is popular
within the spatial choice literature is generalized to consider the case of origin choice
and is therefore referred to as location choice. Knowledge of location choice processes
is important for policy development, which can be useful on its own, as well as a
factor within other regional models, such as land-use/land-change, market analysis, or
location-allocation.

A key inquiry in parametric spatial interaction modeling is the nature of distance-



decay — how space limits human activity — and how this effect may change for different
types of flows and for different regions. In particular, spatial structure, which refers
to the organization of locations in space, has been an on-going interest in spatial
interaction models for 50 years. Debate about the effects of spatial structure in spatial
interaction models crescendoed in the late 70’s and early 80’s with the goal of deter-
mining whether or not distance-decay measurements were strictly behavioral or were
influenced by spatial structure. A proposed solution was the competing destination
model (Fotheringham, 1983a), which considers several aspects of individual behavior
in relation to spatial structure and spatial information processing. Over the last few
decades, spatial structure has remained an important topic, and several additional
techniques from the econometrics (LeSage and Pace, 2008) and spatial statistics
(Griffith, 2007) paradigms have been proposed that harness increased computational
power to use more complex statistical methods to account for spatial structure within
spatial interaction models. While all these parametric spatial interaction models draw
on a common foundation, they are distinct in terms of methodology and theory, with
newer techniques shifting the focus away from distance-decay in favor of the concept
of spatial autocorrelation.

It is clear then that the spatial interaction landscape has become increasingly
diverse in terms of available model specifications, data, and underlying theories for
investigating location choice. Therefore, our understanding of spatial interaction
and spatial decision-making processes may be enhanced by a) making connections
between similarities of different spatial interaction model specifications; b) clarifying
the differences between spatial interaction specifications; and c¢) investigating the
potentials and pitfalls of new sources of big spatial interaction data in the context

of the breadth of available modeling specifications. Following these themes, several



important research questions will be pursued in this manuscript. First, “can we detect
useful spatial-temporal dynamics in spatial interaction data that can be used to
enhance spatial interaction models? If so, are these dynamics sensitive to certain
spatial and temporal resolutions?” Second, “what are the advantages and disadvantages
to different spatial interaction model specifications?” and “does each specification
adequately define and capture spatial structure?” Finally, “what are some of the

drivers of urban location choice?”

1.2 Research objectives

This research evaluates a variety of spatial interaction model specifications in light
of newly available data sources in the context of urban location choice. Considering
the avalanche of new spatial interaction data sources with increasingly finer spatial and
temporal resolutions, the main goal of this dissertation will be to investigate how the
added detail can be used to better predict and understand spatial interaction processes.
To that end, this research will seek to fulfill three primary goals: 1) compare and
contrast parametric spatial interaction model specifications that account for spatial
structure; 2) build parametric spatial interaction models using two newer sources
of urban transportation data — bike-share cycling trips and taxi trips in New York
City (NYC) — and new measures of urban structure that may be useful indicators of
location attractiveness; and 3) explore the spatial and temporal dynamics in spatial
interaction data. These three primary goals may each be further broken down into
several objectives that will be carried out to in order achieve the larger goals. The

individual objectives are as follows:

1. Compare and contrast parametric spatial interaction model specifications



e Review parametric spatial interaction model specifications

e Evaluate the similarity and robustness of specifications using simulations

2. Build parametric spatial interaction models of bike trips and taxi trips in New

York City

e Calibrate production-constrained models of location choice using different
specifications
e (Calibrate origin-specific production-constrained models to investigate spa-

tial non-stationarity
3. Explore the spatial and temporal dynamics in spatial interaction data

e Review the nature of spatial interaction data and characterize existing
applications
e Calibrate temporal subset production-constrained models to investigate

temporal non-stationarity

1.3 Thesis structure

These goals and objectives will be addressed in the subsequent eight chapters of

this dissertation. A summary of each chapter is as follows:

Chapter 2: Spatial interaction models An in depth review of spatial interaction
models is provided. This includes both parametric and non-parametric spatial inter-
action models. A large focus throughout this chapter is on the development of the
idea of spatial structure in spatial interaction, methods to account for it, and how it
effects distance-decay. Finally, several metrics for assessing spatial interaction models

are highlighted.



Chapter 3: Spatial interaction in the era of big data In this chapter, the
concept of big data is defined in the context of spatial interaction and some problems
associated with it are highlighted. Next, it summarizes exploratory analysis methods
and applications for spatial interaction data. Lastly, it reviews research related to
bike-share cycling trips and taxi trips, especially in the context of spatial interaction

and within New York City.

Chapter 4: Spatial interaction in New York City Here, the data sources that
will be used for analysis are presented. This includes basic spatial and temporal
patterns of bike-share trips and taxi trips in New York City, as well as location
attributes. These attributes include traditional census variables and non-traditional

variables made available by the city or one of its governing agencies.

Chapter 5: A simulation-based investigation of spatial structure Several
simulation experiments are carried out in this chapter to compare and contrast
parametric model specifications that account for spatial structure. First, data will be
simulated using the data-generating processes for each model (including a null model
that is free from spatial structure effects) and then each model will be calibrated on
all of the synthetic datasets. The purpose is to explore the extent that the models
may capture similar effects. Second, the data will be aggregated to larger spatial
units to assess how robust each specification is to measurement error induced from

the aggregation process.

Chapter 6: Local models of location choice in New York City In this chapter
several attraction-constrained models of location choice will be calibrated on the bike
and taxi data. Then these models will be extended to localized origin-specific models

so that the parameters can be visually analyzed for spatial non-stationarity.



Chapter 7: Temporal subset models of location choice in New York City
Production-constrained models of location choice are first established for the bike and
taxi data. The models will then be calibrated on increasingly finer temporal subsets
to explore if the parameter estimates are still reliable and how urban behavior changes

over time.

Chapter 8: Discussion and Conclusions Finally, the previous seven chapters will
be discussed in terms of the major findings and implications for the different themes

within this dissertation. Limitations and future work will also be addressed.

1.4 Moving forward

The previous sections introduced the work that will be carried out in this disserta-
tion, including an overall motivation, the specific research goals, and a sketch of the
structure of the chapters ahead. In the next chapter, the spatial analysis technique of

interest — spatial interaction models — will be introduced and reviewed.



Chapter 2

SPATTAL INTERACTION MODELS

2.1 Introduction

Spatial interaction models are a class of models used to understand and predict
aggregate flows of people, information, or goods over space. The underlying hypothesis
for spatial interaction models is that the volume of flows between an origin and
destination is a function of the potential at an origin, the attractiveness of a destination,
and the cost of overcoming the separation between the origin and destination. It
is the generalizability of this hypothesis that has allowed spatial interaction models
to be applied in diverse settings and has been of consistent interest to geographers
and regional scientists, as well as allied disciplines (Haynes and Fotheringham, 1984;
Fotheringham and O’Kelly, 1989; Sen and Smith, 1995; Roy, 2004; Oshan et al.,
2014; Farmer and Oshan, 2017). In particular, there is often special attention paid
to the role of physical separation within these models, which is usually captured by
inter-location distances.

Parametric models, which involve deriving unknown parameters by calibrating
the model on observed data, may be used both for explaining spatial interaction,
as well as making predictions. In contrast, non-parametric models do not have any
parameters that need to be calibrated and therefore do not provide any interpretative
or explanatory power. Consequently, non-parametric models are limited to predicting
spatial interaction. In the review of spatial interaction models that follows, parametric

models will first be presented. A key inquiry in parametric spatial interaction modeling
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is how space limits human activity and how this effect may change for different types
of flows, for different groups of individuals, and for different spatial contexts. In
particular, spatial structure in spatial interaction will be a core theme within this
review of parametric spatial interaction models. Subsequently, non-parametric models
will be discussed. Lastly, some metrics for assessing model fit will be reviewed for use

in empirical work.
2.2 Parametric spatial interaction models
2.2.1 The gravity model

The earliest spatial interaction models originated from a physical analogy based
on Newton’s law of gravitational attraction between two bodies (see for example Zipf,
1946), where the number of flows between two locations is given by the product of
the populations of the origin and destination, divided by the distance between them.
This relationship can be generalized in the following manner,
vy

7

where T represents an n X m matrix of flows between n origins (subscripted by i) to
m destinations (subscripted by j), V and W are n x 1 and m x 1 vectors of origin and
destination attributes, respectively, d is an n x m matrix of the costs to overcome the
physical separation between i and j (usually distance or time), k is a scaling factor,
and i, a, and 3 are exponential parameters. This model is often simplified further by
assuming that some or all of the exponential parameters are unity and therefore are
not included in equation (2.1). When data for 7', V, W, and d are available we can

estimate the exponential parameters (also called calibration), which summarize the
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effect that each model component contributes towards explaining the system of known
flows (7). In addition, known parameters can be used to predict unknown flows when
there are deviations in model components (V, W, and d) or the set of locations in
the system is altered (Fotheringham and O’Kelly, 1989). Despite its usefulness, this

simplistic model lacks an analytical derivation and a theoretical behavioral framework.

2.2.2 Entropy maximization and the family of gravity-type spatial interaction

models

Wilson (1967, 1969, 1970, 1971, 1973) provided a formal framework by applying
the statistical theory of entropy-maximization to analytically derive a ‘family’ of
gravity-type spatial interaction models, henceforth referred to as just spatial interac-
tion (SI) models. This framework seeks to assign flows between a set of origins and
destinations by finding the most probable configuration of flows out of all possible
configurations, without making any additional assumptions. These models can also be
obtained using an information minimization framework (Fotheringham and O’Kelly,
1989). By including information about the total inflows and outflows at each location

(also called constraints), the following family of models can be obtained,

Unconstrained

Ty = VW7 f(dy) (2.2)
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Production-constrained
Ej = Azoleaf(dw) (23&)

A= (X wrsay) (2.3)

J

Attraction-constrained
Ti; = B;V"D; f(di;) (2.4a)
-1
B, = (S virdy) (2.4D)
Doubly-constrained
-1
Ai= (32 BiD; f(dy)) (2.5D)
J
—1
B; = (Z AiOif(dij)> (2.5¢)
where O; and D; are the total number of flows emanating or terminating at an
origin or destination, A; and B, are balancing factors that ensure these totals are

preserved in the predicted flows, and d;; takes on a functional form, referred to as the

distance-decay function. This is most commonly either a power function,
fdy;) = d; (2.6)
or an exponential power function,
f(di;) = exp(B * dij) = % (2.7)

and [ is expected to take on negative values that indicate the decaying nature on
the effects of increasing physical separation on the propensity for flows to occur. The

former distance-decay function is justified through Wilson’s max-entropy derivation
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where it is the natural result of the analytic framework while the latter distance-decay
function is justified when the analyst believes there is a logarithmic evaluation of
transport costs and is also the specification that arises from a physical analogy to
Newton’s law of gravity. Vries et al. (2009) and Martinez and Viegas (2013) provide
some examples of alternative specifications, thought these are less popular in the
literature and often harder to interpret. Finally, u,«, and § are parameters to be
estimated through model calibration.

The so-called unconstrained model (or total-trip constrained model) is given in
(2.2), which does not conserve the total inflows or outflows during parameter estimation.
The production-constrained and attraction-constrained models are given in (2.3a) and
(2.4a). These models conserve either the number of total inflows or outflows at each
location and are therefore useful for building models that allocate individuals either
to a set of origins or to a set of destinations. Finally, the doubly-constrained model is
given in (2.5a), which conserves both the inflows and the outflows at each location
during model calibration. The quantity of explanatory information provided by each
model is given by the number of parameters it provides. As such, the unconstrained
model provides the most information, followed by the two singly-constrained models,
with the doubly-constrained model providing the least information. Conversely, the
model’s predictive power increases with higher quantities of built-in information (i.e.
total in or out-flows) so that the doubly-constrained model usually provides the
most accurate predictions, followed by the two singly-constrained models, and the
unconstrained model supplying the weakest predictions (Fotheringham and O’Kelly,
1989). An exposition of these spatial interaction models, their applications, and
various extensions is provided by Wilson (2010a). These models were later given

a behavior-based theoretical foundation through the economic framework of utility
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theory (McFadden, 1974; McFadden, 1977) and have been shown to be equivalent
to discrete choice models derived within a utility-maximization framework plus any
aggregation bias (Anas, 1983).

While these spatial interaction models have been calibrated using linear program-
ming, and non-linear optimization, regression is perhaps most frequently used. They
can be linearized and included within an ordinary least squares regression specification
by taking the logarithm of both sides of a given model (Fotheringham and O’Kelly,
1989). For the unconstrained model, this yields the so-called log-linear or log-normal
gravity model,

InT;; =k+pnV,+alnW; — flnd; (2.8)
InT; =k+pnV,+alnW; — Bd; (2.9)

which can be expressed more generally in terms of a regression specification as
InT; =k+pnV,+alnW; + Blnd;; + ¢ (2.10)

InTy;; =k+pnV,+alnW; + d;; + € (2.11)

where € is a a normally distributed error term with a mean of 0 and g is still expected
to take on a negative value. These two specifications differ in that the distance variable
is logged in equation 2.10 whereas in equation 2.11 it is not. This difference arises
depending on whether a power function (equation 2.6) or an exponential function
(equation 2.7) is plugged into equation (2) before linearizing it. However, there are
several limitations of the log-normal gravity model, which include (I) flows are often
counts of people or objects and should be modeled as discrete entities; (IT) flows
are often not normally distributed; (III) downward biased flow predictions due to

producing estimates for the logarithm of flows instead of actual flows; (IV) zero flows
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are problematic since the logarithm of zero is undefined. Therefore, the Poisson log-
linear regression specification for the family of spatial interaction models was proposed
over ordinary least squares regression (Flowerdew and Aitkin, 1982; Flowerdew and
Lovett, 1988). This specification assumes that the number of flows between i and j is
drawn from a Poisson distribution with mean, \;; = T;;, where )\;; is assumed to be

logarithmically linked to the linear combination of variables,
In\;=k+pnV,+alnW; — Blnd,; (2.12)

and exponentiating both sides of the equation yields the unconstrained Poisson

log-linear gravity model,
Tij =exp(k+plnV,+alnW; — Blnd;) (2.13)

where equations 2.12 and 2.13 refer to the unconstrained model with a power function
distance-decay. Using fixed effects for the balancing factors in equations (3-5), the
constrained variants of the family of spatial interaction models can be specified for

Poisson regression as,
Production-constrained
T;; = exp(k + p; + aln W; — flnd,;) (2.14)
Attraction-constrained
Tj = exp(k+ plnV; + a; — f1nd,;) (2.15)
Doubly-constrained

Tij = exp(k + p; + o — Blndyy) (2.16)

where p; are origin fixed effects and «; are destination fixed effects that achieve the

same results as the balancing factors A; and/or B; in equations (2.2-2.5¢) (Tiefelsdorf
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and Boots, 1995). Notice that k is the estimated intercept and must be included in
these log-linear models to ensure the total number of flows is conserved, despite not
being included in the maximum entropy models where such conservation is typically
implied during model calibration in this non-linear form. Using Poisson regression
is more representative of flows and satisfies limitations (I-II) and it also alleviates
limitations (III-IV) since we no longer need to take the logarithm of 7;; (Fotheringham
and O’Kelly, 1989). The specifications in equations 2.13 - 2.16 are typically estimated
within a generalized linear modeling (GLM) framework using iteratively weighted least
squares, which is known to converge to the Poisson maximum likelihood estimates
A popular extension of these models is to calibrate a separate model for all flows
from each origin to all of the destinations, which is often called an origin-specific
local model. Then a set of parameter estimates for each model term is obtained
for each origin and can be mapped in order to explore any spatial variation. One
way to achieve this is to filter the overall dataset into subsets that only include
flows from a single origin and then to calibrate an entirely separate model for each
subset. Another method is to specify a single regression model that appropriately
segments the data based on each origin. This can be done by introducing interaction
terms into the regression where every variable interacts with a categorical variable
that indicates which flow observations start at which origin. The main difference
between these methods is that the latter assumes a common variance amongst the
individual subsets of the data, which can result in slightly different parameter estimates.
Recent literature has also proposed geographically-weighted techniques for estimating
local parameter for spatial interaction models (Nakaya, 2001; Nissi and Sarra, 2011;

Kalogirou, 2015; Kordi and Fotheringham, 2016). In the following sections, the central
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role of origin-specific spatial interaction models in diagnosing spatial structure effects

will be highlighted.

2.2.3 Intervening opportunities

Perhaps the second oldest hypothesis pertaining to human movement is that of
intervening opportunities, which posits that ‘the number of persons going a given
distance is directly proportional to the number of opportunities at that distance and
inversely proportional to the number of intervening opportunities’ (Stouffer, 1940). It
was later refined such that intervening opportunities were defined as those locations
within a circle with a radius given by the distance between the origin and destination
under consideration (Stouffer, 1960). This is in contrast to the gravity model, which
focuses directly on costs associated with physical distance between locations. Indeed
there is much research comparing the two frameworks (Kaltenbach, 1972; Haynes
et al., 1973; Dison and Hale, 1977; Smith, 1980; Elffers et al., 2008). In particular,
Okabe (1976) shows that under certain conditions the two models act very similar.
Furthermore, several frameworks have been set forth which seek to include both
gravity and intervening opportunities type effects (Wills, 1986; Ulyssea-Neto, 1993;
Cascetta et al., 2007). Wilson provides a derivation of the intervening opportunities
models using an entropy-maximizing framework (Wilson, 1967) and additional model
forms and procedures have been proposed (Schmitt and Greene, 1978; Rogerson, 1986;
Akwawua and Pooler, 2001; Afandizadeh and Hamedani, 2012; Nazem et al., 2015).
For brevity, technical specifications for the intervening opportunities model will not
be provided. While the intervening opportunities model has its own rich literature, it

has been the subject of much less recent research when compared to gravity models.

18



As such, only its basic concept and history is introduced so that it may serve as a

reference within subsequent sections of this review.

2.2.4  Spatial structure and spatial dependence in spatial interaction

2.2.4.1 Background

Throughout the 1970’s and 1980’s there was much debate about the role of the
structure of a spatial system in spatial interaction models. The intense interest in
the matter can be best captured in a series of publications, associated comments
and replies, and subsequent reviews (Curry, 1972; Johnston, 1973; Cliff et al., 1974;
Curry et al., 1975;CIliff et al., 1975; Johnston, 1975; Cliff et al., 1976; Sheppard et al.,
1976; Fotheringham and Webber, 1980; Griffith and Jones, 1980, Fotheringham, 1981,
Sheppard, 1984). At the root of the problem was the fact that unintuitive spatial
patterns could be observed for a set of local distance-decay parameter estimate values
that resulted from an origin-specific gravity-type spatial interaction model, the cause
of which was at first uncertain and contested. As further evidence towards a spatial
structure effect accrued, a consensus formed that whatever was causing the unlikely
patterns in the parameter estimates could be skewing the behavioral interpretability
of them. This meant that it was unclear whether spatial variability associated with
distance-decay was caused by behavioral and perceptual differences of individuals over
space or by other factors. Over the next few decades, several theories and technical
specifications to account for potential spatial structure effects were proposed. However,
the contemporary spatial interaction corpus is far from a consensus in terms of what

causes spatial structure effects and how to best account for them.
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2.2.4.2 Speculation

Even before there was active debate, several scholars theorized that the structure
of locations were important in determining the magnitude of flows between origins
and destinations. A review of some of these theories is provided by Griffith (1976)
who portends that the potential relationship between location hierarchy and spatial
interaction was first described by Heide (1963), Olsson (1967), and Claeson, (1968;
1969), and was subsequently explored analytically by Glejser (1969), Pedersen (1970)
and Long and Uris (1971). However, one of the earliest attempts at isolating the
spatial structure effect more generally was put forth by Curry (1972). Many potential
issues in spatial interaction models, including the shape of the study area, aggregation
and representation bias, spatial autocorrelation in the locational attributes, model
estimation techniques, and interdependence between spatial interaction and locational
distributions are discussed by Curry, though none are definitively linked to any
measurable problem in spatial interaction models. One important idea from Curry’s
work was that even if there is no explicit relationship between spatial interaction and
distance, if spatial interaction is a function of the location’s populations, which are
themselves a function of their neighbor’s populations, then spatial interaction has an
implicit relationship with distance. Curry’s (1972) development of this idea included
one of the earliest uses of the term map pattern in relation to spatial interaction to
describe the clustering of locations, a pattern which was being used to infer spatial
dependence between attributes of locations (i.e., spatial autocorrelation). Therefore,
an association was made between map pattern and spatial autocorrelation. Though
there is no use of the term spatial structure, there are several mentions of locational

structure, which is in reference to origin and destination attributes.
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Soon after, Johnston (1973, 1976) put forth the hypothesis that the spatial pattern
observed in local distance-decay parameters was caused by the variation in the
distributions of distances between each origin and the set of destinations, which
would later be described as the conditional distance distribution (Tiefelsdorf, 2003).
Johnston tests his hypothesis by calibrating a spatial interaction model, which assumes
a continuous measure of distance on data generated by an intervening opportunities
model, which uses a ranked measure of distance. A weakness in Johnston’s theory,
however, is that it assumes that all of the flows between each origin and destination are
constant. Such a hypothetical scenario implies that there is no relationship between
the spatial interaction flows and distance. Sheppard (1979b) and Fotheringham (1981)
demonstrate that this an unrealistic assumption in gravity-type spatial interaction
models where there is, in fact, an explicit relationship between flows and distance and
therefore, Johnston’s theory is not applicable. In addition, Johnston’s use of the term
map pattern refers to the distribution of locations in space (i.e., spatial clustering),
though it is in reference to how this causes inter-location distance variation (1973),
rather than in reference to locational attributes, and spatial structure is described
as both ‘the distribution of origins and destinations’ and the ‘influence of system

geometry’ (Johnston, 1976).

2.2.4.3 The debate

In response to both Curry and Johnston, Cliff et al. (1974) provide a simulation
study to explore the potential effects of spatially autocorrelated locational variables on
the parameter estimates of spatial interaction models. Importantly, in this paper we

begin to see a deeper association of the terms map pattern and spatial autocorrelation.
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It is also this work that sparked the most intense debate about spatial structure,
which resulted in a series of comments, replies, and follow-up papers (Johnston, 1975;
Cliff et al., 1975; Curry et al., 1975; Cliff et al., 1976; Sheppard et al., 1976; Johnston,
1976) that led to several useful outcomes.

First, Johnston (1975) clarifies his argument so as to distinguish the difference
between the effects of conditional distance distributions from those arising from
spatially autocorrelated location attributes (i.e., population mass terms), although
admitting that they are potentially interdependent and using map pattern to describe
their combined influence, which convoluted the two concepts along with the map
pattern terminology. Second, Curry et al. (1975) demonstrate that the simulation
design of Cliff et al. (1974) was flawed in that it does not truly include significant
levels of spatial autocorrelation in the location attributes. By correctly specifying a
simulation to include accurate levels of spatially autocorrelated location attributes,
they are able to observe that the multicollinearity between location attributes and
distance, which is implied by spatial autocorrelation, results in a misspecified model
where the distance-decay parameter estimates includes the effects of distance from
two sources (i.e., explicit and implicit) leading to biased and inconsistent estimates.
Thirdly, we can begin to see the importance of the use of simulation as a tool for
investigating spatial structure. For example, a portion of the previously described
debate focuses squarely on how to specify the spatial associations underlying the
spatial autoregressive specifications (Curry et al., 1975; Cliff et al., 1976; Sheppard
et al., 1976). Simulation remains an under-appreciated topic in contemporary spatial
interaction research and will be further discussed in subsequent sections. In the wake
of this debate, it started to become clear that the problem of spatial structure was

really one of misspecification related to how locations were clustered in space, however,
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the nature of the relationship had yet to be quantified and the language to describe it

remained ambiguous.

2.2.4.4 Criticisms

The tenacity of the debate on spatial structure even grabbed the attention of those
from outside the discipline of spatial analysis. In particular, Sayer (1977) took a critical
stance towards the inadequacies of spatial interaction models that had been highlighted
by the debate. He argues that spatial interaction models, and quantitative urban
modeling more generally, do not include enough of the diverse and complex spatial
processes involved in generating SI. Specifically, Sayer highlights how the assumption
of temporal stationarity and generic populations are untenable in urban settings where
dynamics and diversity are more likely. While he believes that these limitations can
be alleviated by describing more complex real-world spatial-temporal processes and
relationships, he is clear in his skepticism of empirical modeling as the means for
doing so. This is perhaps most evident based on his conclusion of the spatial structure
debate that, ‘mathematization beyond the call of duty’ and lack of consideration of
conceptual roots of the problem combined to mystify the issues and led the debate
into an inconclusive technical impasse” (Sayer, 1977). However, in hindsight we know
that this is false, as scholarship on spatial structure has continued to the present
with several proposed solutions that will be outlined later. Furthermore, though he
considers the use of mathematics to be exaggerated, his concerns of complexity have
consistently been engaged without the need to abandon the entire framework of spatial
interaction models. For instance, work on dynamic spatial interaction models (Harris

and Wilson, 1978; Fotheringham and Knudsen, 1986; Nijkamp and Reggiani, 1988;
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Wilson, 2008; Birkin and Heppenstall, 2011), and disaggregate spatial interaction
models (Birkin et al., 2010; Newing et al., 2015). Nevertheless, Sayer’s call for a wider
breadth of complexity and diversity may be employed as a point of evaluation for
solutions proposed to remedy the spatial structure effects. A particularly poignant
observation is that the analytical approach of Curry (1972) essentially couches the
problems of one spatial concept, that of distance-decay, in a new spatial concept, that
of spatial autocorrelation, which can be equally distracting from more pertinent issues
(Sayer, 1977).

Interestingly, Sheppard (1979a, 1979b, 1979¢) begins to similarly cast doubt on
some aspects of spatial interaction models, though his concerns are stated more in
terms of specific research questions and within ongoing research avenues rather than
a sweeping and general critique. Most notably, he calls for further work on spatial
behavior, such as how individuals search and learn within their spatial environment,
and how to further reconcile disaggregate theory and aggregate modeling techniques

(Sheppard, 1979c¢).

2.2.4.5 Further defining the nature of spatial structure: the debate diverges

In the wake of the spatial structure debate, two distinct approaches were taken
in order to explain the nature of the effects of spatial structure in spatial interaction
models. The first approach, which was taken by Fotheringham and Webber (1980) was
to account for spatial structure by explicitly modeling the interdependence between
spatial interaction and locational attributes. Here spatial structure is taken as the
differences in spatial opportunities over space (i.e., spatial clustering of locations and

associated attributes), while map pattern refers to the bias in distance-decay parameter
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estimates when there is a feedback from spatial interaction to spatial structure that is
not explicitly modeled. For example, in a study of migration between urban centers, to
accurately obtain parameters for the effect of urban centers’ size on SI, there also needs
to be a sufficient model for urban growth as well. Since growth is interdependent upon
SI, these two things should actually be modeled with a simultaneous equation system
(SES) that is calibrated with either two-stage least squares or iteratively weighted
least squares, rather than ordinary least squares. Generally, parameter estimates will
be biased and inconsistent if any of the independent variables are a function of the
dependent variable (i.e., independent variables are not independent of the error term),
regardless of the scale that spatial interaction occurs. This type of misspecification
is also called endogeneity in the econometrics literature. Fotheringham and Webber
(1980) derived the exact nature of this bias, which demonstrates that if the SES is
not utilized, then spatial interaction can be systematically over- or under- estimated
by the model. Their proposed technique is also flexible in that it is expected that a
unique SES will be specified for each modeling task at hand, since there are likely
different relationships between spatial interaction and locational attributes and the
underlying spatial structure for different types of spatial interaction phenomena. In
fact, Fotheringham and Webber provided a second example within the context of
retail shopping trips and show that there can be more than one spatial structure effect
present in a system.

The second approach of Griffith and Jones (1980) was more exploratory in nature
in that it sought to examine the correlations between different components of doubly-
constrained spatial interaction models for several cities where each model consisted
of a separate set of census tracts that pertain only to a single city. Their main goal

was to answer the question, ‘is the rate of distance decay in spatial interaction models
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independent of the spatial structure associated with the corresponding origins and
destinations?’ In this scenario, spatial structure is defined as the convolution of the
spatial configuration of areal units and their linkages and the interdependence/spatial
autocorrelation that can exist across these units. While they found that there is
moderate-to-strong correlation in the accessibility for each cities’ system of locations
and in the origin and destination balancing factors for each cities’ system of locations,
little-to-no spatial autocorrelation was found in the locational attributes for each
cities’ system of locations. A principle components analysis was then used to make
the conjecture that spatial interaction and geometry are inseparable and that ‘there
exists a fundamental geometric dimension relating to the geographic distribution of
workers/jobs’. These two combined findings imply that there may be interdependence
between spatial interaction and locational attributes, though spatial autocorrelation in
the locational attributes is not the appropriate metric to measure such interdependence.
Finally, using a regression analysis of which variables explain the most variation in
the distance-decay parameters, they surmised that an ‘indirect relationship exists
between distance-decay and geometric pattern, with this relationship being reasonably
sensitive to changes in the geometry of destinations’.

[t is important to note that the results from Griffith and Jones (1980) are speculative
in that they do not analytically tie their observations to any defined source of bias
that might be occurring in the distance-decay parameter estimates in contrast to
Fotheringham and Webber (1980) who explicitly defined an interdependence and the
resulting bias that arises when the interdependence is not accounted for. They did,
however, offer a rudimentary version of the simultaneous spatial autoregressive (SAR)

model, though it is not estimated due to several technical complications. Furthermore,
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it seems that Griffith and Jones (1980) confounded several sources of potential bias.

One source is described in the following passage

In small urban settings, distance-decay and spatial-structure effects blend
together. This is caused by two factors. On the one hand, the scale of
analysis will often employ areal units that because of their sizes mask most
of the spatial structure effects. On the other hand, in small urban areas
spatial propinquity will cause movers to be unable to discriminate clearly
between the two effects.

which refers to bias that is caused by aggregation of the data to areal units.
Aggregation may induce measurement error that can indeed obfuscate the nature of
the true underlying spatial structure or any other variable, though this is an issue with
the data and not a description of a spatial interaction process. Previously, the debate
had been centered on distinct locations that were abstracted as points in space so that
the effects of areal aggregation were not a major issue. However, the work of Griffith
and Jones (1980) marked a major shift in how locations are abstracted in space within
the debate. This important detail is not stressed, though it has implications for how
spatial structure is approached. Specifically, this shifts the focus from inter-distance
relationships to ‘the geometric linkages between areal units’ (Griffith and Jones, 1980).
Where distance is measured between aggregate areal unit centroids, instead of specific
locations, aggregation bias is likely to occur (Webber, 1980; Okabe and Tagashira,
1996; Tagashira and Okabe, 2002).

Another source of bias that is entirely separate from aggregation is later described

by Griffith and Jones (1980)

To summarize, one controversial issue of spatial interaction modelling is
whether or not the rate of distance decay is independent of the geographic
structure associated with origins and destinations. In other words, do the
propensity of origins to emit interactees and the propensity of destinations
to attract interactees vary as the geometry of origins and destinations
changes? Furthermore, do these propensities change with variations in
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the nature and degree of spatial autocorrelation latent in the geographic
distributions of origin and destination totals?

which describes the case in which flows at one location are a function of the flows
in nearby locations. This is the contemporary theoretical basis of the SAR model,
which will be explored in more detail later. However, this theory is not given any
contextual basis in terms of migration processes, which is an important detail because
the pertinence of the SAR model is evaluated on a theoretical basis, since spatial
autocorrelation in the dependent variable is generally only troublesome if it cannot be
accounted for by independent variables. Therefore, the exploratory study of Griffith
and Jones does not isolate a particular cause or measurement of spatial structure
effects.

After reviewing much of the existing literature, Fotheringham (1981) raised the
bar by highlighting weaknesses in existing theories about spatial structure effects
and proposes that an adequate theory should apply to the entire family of spatial
interaction models, regardless of the model calibration technique that is employed.
He defined spatial structure as the “size and configuration of origins and destinations
in a spatial system”, which contrasted Griffith and Jones’s (1980) explicit focus
on geometry and linkages. Fotheringham’s review included a summary of several
studies employing location-specific local spatial interaction models and suggested
that the presences of spatial structure effects can be diagnosed by the observation of
unintuitive patterns in the local distance-decay parameter estimates, especially if these
patterns seem to be driven by location accessibility. Fotheringham also argued that
spatial autocorrelation is simply a surrogate for multicollinearity. To this, Sheppard
(1982) clarified that spatial autocorrelation in the residuals can also indicate that
there is one of several types of misspecification that can result in biased parameter

estimates. He argued that depending on model form spatial autocorrelation in the
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locational attributes could indicate that relationships between variables have been
misspecified. This is one of many potential sources of bias, though it should be
noted that the diagnosis for this type of misspecification should be made by observing
spatial autocorrelation in residuals and not in the independent variables. While
Fotheringham (1982) agreed with Sheppard (1982), noting that spatial autocorrelation
can be linked to misspecification bias, he also suggested that the spatial structure
effect he describes in various origin-specific distance-decay parameter estimates arises
due to a misspecification that is entirely separate of spatial autocorrelation. That
is, it is an omitted variable misspecification that can occur even when there is no
variation in the locational attributes, which is eventually identified as the accessibility

of each destination to all other destinations (Fotheringham, 1982, 1983a).

2.2.5  Accounting for spatial structure effects in parametric spatial interaction models

Several methods have been proposed to account for spatial structure in spatial
interaction models. These methods differ both in the way that they account for spatial
structure effects and in the modeling assumption that is violated to give rise to such
spatial structure effects. Before discussing the proposed methods, common violations

are outlined.

2.2.5.1 Types of effects

An instructive overview of the various assumptions underlying ordinary least

squares regression and the effects that arise when they are violated is provided

by Sheppard (1984). Violations may include measurement error, high levels of
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multicollinearity, spatially autocorrelated residuals, violation of normality assumptions,
omitting important variables, and residuals that are correlated with the explanatory
variable(s). Several generalizations to Sheppard’s (1984) list of violations are proposed
in order to include the breadth of work that ensued over the last few decades. First,
the violation of non-normality is expanded to include the violation of any underlying
distributional assumptions. This includes the assumptions used in Poisson regression,
which have become popular for spatial interaction modeling. Second, aggregation
error, which may be encapsulated within measurement error, is highlighted since
spatial interaction models have often been specified using aggregated data and are
therefore frequently prone to this specific type of error. The most common results of
these different violations are biased and potentially inconsistent parameter estimates
and /or biased variances. Since any or all of these violations can occur in a single
study, it is of utmost importance to be clear about which one is being addressed.
In the ensuing discussion of strategies for reducing the spatial structure effects, the
underlying violations that are or could be corrected for are highlighted for each method

where possible.

2.2.5.2  Omitted variables

Following the intense debate of the seventies and early eighties, one of the earliest
and most complete theories and methods designed to deal with spatial structure effects
was that of competing destinations (CD) (Fotheringham, 1983a). This theory posits
that spatial structure is the “configuration of origins and destinations in a spatial
system”; but it is the configurations of destinations with respect to each other that

can affect an individual’s propensity to select a particular destination. To account
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for this effect, we need to include within spatial interaction models a variable that
captures the accessibility of each destination to all other competing destinations. This
definition contrasts the earlier definition of Fotheringham (1981) in that it explicitly
focuses on the configuration of locations and hence only secondarily involves location
attributes (i.e., sizes). A novel reasoning in support of this ordering of priorities is that
a spatial pattern amongst locations may be induced by either altering their spatial
locations or altering the attributes of the locations.

This is demonstrated in figure 1 where a) there is a uniformly distributed set of
locations that all have the same size; b) location sizes have been altered to create a
pattern of south-west spatial clustering while maintaining a uniformly distributed set
of locations; and c¢) locations have been shifted to create a pattern of south-west spatial
clustering while holding location size constant. In scenario a) there no clustering due
to physical location or size. In contrast, spatial autocorrelation amongst location
size can likely be used to describe scenario b) where the clustering pattern is due
to the distribution of the size attribute. However, in scenario ¢) common spatial
autocorrelation statistics would be undefined since there is no variation in location
size!. Instead, the clustering pattern is due only to the arrangement of the locations.
Therefore, the effect of clustered locations is more fundamental and may exist even

when no spatial autocorrelation can be measured.

The behavioral reasoning for the CD model enhancement is that spatial decision-
making, such as location choice, often arises from a hierarchical two-stage or multi-stage
decision-making process, where individuals first select a region or cluster of locations

and then subsequently choose an individual destination from within that cluster. The

IThis would also be true for scenario a), since there is also no variation in the location sizes.
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Figure 1: Three different sets of locations where a) there is a uniformly distributed
set of locations that all have the same size; b) location sizes have been altered to
create a pattern of spatial clustering while maintaining a uniformly distributed set of
locations; and c¢) locations have been shifted to create a pattern of spatial clustering
while holding location size constant.

effect is that as the accessibility of a particular destination, j, to all other potential
destinations increases, j will experience greater competition from other destinations,
and therefore the volume of flows to j would be smaller than predicted by a traditional
spatial interaction model. Practically, this effect is captured by introducing a new

variable into spatial interaction models to measure destination accessibility, A;;, which

R
has been shown to be consistent with maximum entropy and utility derivations
(Fotheringham and O’Kelly, 1989), and can be thought of as the likelihood that other

destinations are also considered along with destination j. For a production-constrained

Poisson regression, for example, this results in

T;; = exp(k + p; + alnW; — flnd;; + 0 In A;;) (2.17)
Aij = @ (218)
k=1 Gy
(ki)

where ¢ is the parameter corresponding to destination accessibility, A;;, which is the

K
sum of the attractiveness, W, at each alternative destination k weighted by its distance

to each alternative destination d,i, and o is a parameter that controls the scale over
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which destinations compete with each other, which in practice is often set to —1 or
calibrated iteratively with the parameters in equation 2.17. Importantly, the set of
locations defining the competing destinations need not be the entire set of locations,
such that the definition of destination accessibility is likely unique for different contexts,
and can even include locations that are not included in the original spatial interaction
dataset. In fact, Fotheringham (1983a; 1983b) discusses how attraction-constrained
and doubly-constrained models can be correctly specified (i.e. do not need to include
A;;) when every location in the system is both an origin and a destination and
these locations are an accurate representation of all possible destinations available to
each origin. However, unconstrained and production-constrained models are always
misspecified if there is a relationship between spatial interaction and destination
accessibility.

Whenever any of the spatial interaction models contain a competing destination
type of misspecification, a failure to account for spatial structure results in origin-
specific distance-decay parameter estimates that are biased upwards for accessible
origins and biased downward for inaccessible origins. The strength of this bias is
shown by Fotheringham (1984) to depend on the strengths of two relationships:
that between the volume of flows and distance and that between distance from
the origin to each destination and the accessibility of each destination. It is this
bias that causes the unintuitive spatial patterns observed in origin-specific distance-
decay parameter estimates, such as positive estimates for the most accessible origins
(Fotheringham, 1981). Furthermore, the bias can be categorized in terms of the
perception of destination clusters where there are competition effects (i.e., negative
exponent on A;;) or agglomeration effects (i.e., positive exponent on A;;). For the

former effects, the addition of a location to a cluster increases the attractiveness of the
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cluster less than the attractiveness of the location itself, while for the latter effects, the
addition of a location to a cluster increases the attractiveness of the cluster more than
the individual attractiveness of the location (figure 2). The type of effect that arises
is typically dependent upon the type of spatial interaction process being modeled,
though competition is more often observed in empirical settings, hence the selection
of the name the competing destination model. The proliferation of the competition
effect may also be driven by the behavioral tendency of individuals to underestimate
the overall attractiveness of large clusters. Compared to the competing destination
model, the expected outcome according to a traditional spatial interaction model is
that when an additional location is added to a cluster the attractiveness of the cluster
is increased exactly by the attractiveness of the additional locations (the straight line
in figure 2). If this is the case, then either there is no spatial structure misspecification
or there are competition effects and agglomeration effect that are canceling each other

out (Fotheringham, 1983b).

In fact, the precise nature of the potential bias of distance-decay parameters
due to this type of spatial structure within an OLS regression has been defined by

Fotheringham (1984) where bias may be due to

1. a relationship between A;; and T;;
2. a direct relationship between A;; and d;;
3. an indirect relationship between A;; and d;; due to a relationship between A;;

and W; and a relationship between d;; and W;.

Bias source (3) can occur independently of bias source (2), since it can occur even
when there is no relationship between A;; and d,;. In addition, if bias sources (2)

and (3) do not occur, but source (1) does occur, then distance-decay parameters will
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Figure 2: Impact of agglomeration and competition effects on spatial interaction
in comparison to the expected flow volumes from a gravity-type spatial interaction
model that does not consider competing destinations. This figure originally appears
in (Fotheringham and O’Kelly, 1989).

not be biased; however, A;; is still a relevant explanatory variable that can increase
the accuracy of the model. These sources of bias can be similarly defined for the
parameter estimates on other variables, though it is likely that the bias will be stronger
for distance-decay whenever there is a stronger relationship between A;; and d;; than
between A;; and locational attributes (Fotheringham, 1984).

It becomes clear that the CD model is addressing a very particular misspecification
that arises organically due to collinearity amongst variables that we would ordinarily
include in most, if not all, spatial interaction models. Therefore, the violation it is
attempting to correct for is the omission of a correlated spatially patterned variable.
Baxter (1983; 1985) provides a more general analysis of bias using a different form of
omitted variable misspecification that is less amenable to interpretation. While this

general framework could be used to assess the consequences of different forms variable
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misspecification, it does not provide strong empirical evidence for any particular form,
and it is not clear how each form would arise.

Adopting the destination accessibility term, A;;, is also advantageous in that doing
so avoids the undesirable independence from irrelevant alternatives (ITA) property
that exists in many spatial choice modeling frameworks. The ITA property assumes
that all locations in the set of potential destinations that one can choose from are
evaluated equally. This means that destinations are not perceived as clusters, but
rather as individual locations (Fotheringham, 1986). Hierarchical choice models that
are not free of the ITA property, such as the nested logit model, run into several issues
for spatial choice problems. First, they require the choice set to be specified a priori
by the analyst. Second, the set of alternative choices is assumed constant, which is
problematic in spatial choice scenarios. For example, the ITA property implies that
if choice a is a substitute for choice b and choice b is a substitute for choice ¢, then
choices a and ¢ are also substitutes for each other. However, this may be very unlikely
if choice a and choice ¢ are very far apart. Both of these issues may be avoided by
using the CD model with A;; as a measure of destination accessibility (Fotheringham,
1986, 1988). There has also been a great deal of additional research concerning choice
set definition in spatial interaction models (Thill, 1992; Thill and Horowitz, 1997;
Pellegrini et al., 1997).

The CD model has been applied in many domains including urban modeling
(Fotheringham, 1985; Fotheringham and Knudsen, 1986), the study of telecommunica-
tions flows (Guldmann, 1999), and crime location analysis (Bernasco, 2010), though it
has enjoyed particular popularity within migration modeling (Ishikawa, 1987; Ishikawa,
1990; Fik et al., 1992; Pellegrini and Fotheringham, 1999; Fotheringham et al., 2000;
Pellegrini and Fotheringham, 2002; Yano et al., 2003; Fotheringham et al., 2004;
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Kalogirou, 2015), commuting-to-work research (Thorsen and Gitlesen, 1998; Gitlesen
and Thorsen, 2000; Gitlesen et al., 2010), and retail analysis (Fotheringham and
Knudsen, 1986; Guy, 1987; Fotheringham, 1988; Pellegrini et al., 1997; Birkin et al.,
2010). The underlying theory of the CD model has also been explored via simulation
studies (Lo, 1991a; Fotheringham et al., 2001), in association with cognition and
spatial information processing (Hirtle and Jonides, 1985; McNamara, 1986; Curtis
and Fotheringham, 1995; Fotheringham and Curtis, 1999), and it has been extended
within other frameworks, such as central place theory (Fik and Mulligan, 1990) and
trip chaining behavior (Bernardin et al., 2009). While this review of work relating to
the CD model is comprehensive it is certainly not exhaustive. It is also worthwhile to
note that in the majority of studies using the CD model, locations are abstracted as
points in space, though even when areal units are used, the CD model does not claim
to account for any effects that arise from potential aggregation error.

In contrast to the CD model, there are some authors who have stressed that the
explicitly spatial focus of the competing destination model overlooks other important
factors (Gordon, 1985; Lo, 1991a; Lo, 1991b; Lo, 1992; Pooler, 1998; Hu and Pooler,
2002). For example, Gordon (1985) suggests that further work investigating the
spatial patterns of distance-decay parameters should focus on functional and economic
differences between locations rather than solely physical accessibility. Lo (1991a;
1991b; 1992) takes up this call and argues that spatial structure should be renamed to
destination interdependence, where this interdependence is composed of physical aspects
and economic aspects. The physical aspect, which Lo calls locational substitutability,
is synonymous with the effects associated with the CD model, whereas economic
substitutability is offered as an example of the economic aspects that might still be

misspecified in CD models. Economic substitutability refers to consumer preferences
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toward destination activities and services. If the degree that destinations provide
activities that are substitutable, or conversely, that are complimentary, varies, and this
is not accounted for, then spatial interaction models may produce biased parameter
estimates. While it is demonstrated that the CD model can account for locational
substitutability, thereby removing the spatial structure effects as they are theorized
under the CD model, it is however shown that the CD model does not account for
economic substitutability. Similarly, Pooler proposes a more general competition
effect, termed spatial influence which also theorizes a hierarchical decision-making
process, but where macro-level groups of destinations are based primarily on attributes
(i.e., aspatial) rather than their locations in space. However, in the exposition of
both the theories of economic substitutability and spatial influence, no generalizable
framework or solution is proposed to account for the omitted variables that are causing
models to be misspecified. Furthermore, neither of these alternative theories has
yet to garner much empirical evidence. This is likely because these misspecifications
are particularly context-dependent, whereas (locational) spatial structure effects
can arise in any spatial interaction scenario. Consequently, several extensions have
instead been proposed to account for more complicated location choice relationships
without abandoning the CD model framework. For example, disaggregated spatial
interaction models can include store brand and household type in regards to retail
flows (Newing et al., 2015) and variations of the CD model that separately account
for agglomeration an competition effects (Bernardin et al., 2009). Therefore, these
criticisms of the competing destination model are likely either unfounded or overstated.
This is perhaps best-illustrated by Hu and Pooler (2002) who assert that any spatial
variation within local distance-decay parameter estimates means that the model is

misspecified. In contrast, spatial variation could be due to variations in how distance
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is perceived or due to aggregation error, which can occur even when the model is
correctly specified. Ultimately, criticisms of the CD model are primarily calls for more
in-depth model-building and more accurate data.

Some alternative specifications to explicitly account for omitted variables related
to spatial structure have been put forth, though they are generally less developed
compared to the CD model. One such example is given by Boots and Kanaroglou
(1988), who use the principal Eigenvector of a binary contiguity matrix to derive a
distance centrality measure. The inclusion of this measure in a nested logit model
is statistically significant and improves model accuracy, especially in comparison to
several other aspatial similarity measures. However, relatively little interpretation of
this new variable, its parameter estimate, or the nature of the bias that results from its
exclusion are provided. Furthermore, their modeling framework is that of the nested
logit model and they do not discuss how the inclusion of their spatial structure measure
relates to hierarchical location choice sets and the IIA property. Another example
of an alternative spatial structure specification is that of network autocorrelation
(Black, 1992), where a spatial autocorrelation statistic with a network-based definition
of proximity is used to assess misspecification. This leads to several approaches to
account for omitted variables, which include geographically-based categorical dummy
variables or origin/destination accessibility terms (though not in exactly the same

sense as specified in the CD model).

2.2.5.3 Variable functional form

Though the functional form of any of the terms within a spatial interaction model

could be subject to functional form misspecification, it is the distance term that
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receives the most attention due to the fact that the resulting distance-decay parameter
estimates have often been interpreted as an indication of human behavior. It would
be approximately thirty years before Johnston’s argument was picked up by again
by Tiefelsdorf (2003), who illustrates how spatial structure in local distance-decay
parameter estimates can arise systematically due to conditional distance distributions
when the functional form of distance s misspecified. Recall from section 2.2.2 that a
power or exponential functional form of distance are the most popular because they
arise from direct analogy or through the max-entropy derivation process. These two
forms have also gained acceptance through empirical consensus where the exponential
function is more appropriate for short term interactions such as intra-urban trips and
the power function is more appropriate for longer distance trips such as migrations
flows (Fotheringham and O’Kelly, 1989). Additionally, recall from section 2.2.4.2 about
Johnston’s argument that spatial variation in distance-decay parameter estimates can
arise if the underlying data-generating process follows the intervening opportunities
model but a spatial interaction model is calibrated on the data. This is essentially an
extreme case of functional form misspecification, which Tiefelsdorf (2003) generalizes
upon to show that any inconsistencies between the true data-generating functional
form on distance and that which is specified in the model can result in distance-decay
parameter estimates with spatial variation. Subsequently, it is recommended that
the correct functional form of the distance term can be obtained by using the Box-
Cox transformation. Since the Box-Cox transformation encompasses a spectrum of
functions, depending on a parameter, q, an optimal parameter value is selected by
maximizing the model fit as denoted by the likelihood ratio for the model. Tiefelsdorf
(2003) claims that this allows the spatial structure effect that is caused strictly by

distance to be accounted for, which cannot otherwise be accounted for by the CD
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model, though there are several conceptual and technical problems with the evidence
that is presented.

Most importantly, there is no guarantee that when the Box-Cox parameter is
selected that the model does not compensate for another misspecification. For exam-
ple, if the functional form of any other variable is misspecified, say the destination
population, this could also result in spatial variation within the local origin-specific
distance-decay parameter estimates depending on other relationships and mispeci-
fications in the model. Following Tiefelsdorf’s (2003) recommendation, one would
then apply a Box-Cox transform and select an optimal q based on the model fit.
However, it is possible that the optimization suggests an incorrect functional form for
distance because it is also accounting for the misspecification of the functional form
of destination population 2. Generalizing this argument, it is essentially impossible to
know for certain if any single effect is being accounted for by the Box-Cox transform
in this context. Therefore, this solution neither guarantees that the spatial structure
effects caused by conditional distance distributions are isolated, nor does it provide a
means for diagnosing any particular misspecification.

There are also two technical problems with Tiefelsdorf’s specification that invalidate
his evidence against the CD model. First, his specification is only partially local,
such that it produces local parameter estimates for distance but not for locational
attributes. The second issue is that his specification includes both an origin-specific
and a destination-specific parameter estimate for distance decay. Tiefelsdorf (2003)
expresses that, “Most of the spatial structure discussion in interaction modeling so

far focuses solely on origin specific distance decay parameters. Nevertheless, the

2The work of Tiefelsdorf (2003) was replicated in order to test this idea and the details are
available in appendix A
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destination specific distances decay parameters are just as meaningful." However, this
new, and therefore, unsubstantiated, specification is not a good candidate for exploring
spatial structure effects and seems to have been the root of some of the problems that
Tiefelsdorf claims to illuminate and even potentially solve. For example, using an
inter-state migration dataset for the continental U.S., Tiefelsdorf reports unexpected
negative signs for origin and destination population attributes. In actuality, if a proper
fully-local spatial interaction model is specified and the model is solely origin- or
destination-specific, then the issue of reversed signs is ameliorated and should be seen
as an artifact of improper model specification. In addition, a destination-specific focus
typically has no behavioral meaning in the context of migration because individuals
arriving at a destination do not choose their origin.

The potential insights provided by Tiefelsdorf (2003) are clouded further by several
misconceptions. First, there is a discussion of the lack of monotonicity in the decreasing
nature of distance-decay over longer distance as if it implies misspecification. However,
distance-decay parameter estimates represent the effect of distance conditional upon
other variables, such as origin and destination populations. Even where there are
longer distances between locations, it is possible to have a less negative distance-decay
parameter estimate if there are strong forces of propulsion and attraction. Next, it is
hard to tell how extreme the spatial variation in the distance-decay parameter estimates
in Tiefelsdorf’s migration example are because of the centered dummy variable coding
scheme and the way the estimates are mapped. Since the centered coding scheme
generates a mean parameter estimate and then local parameter estimates that vary
around the mean, it is necessary to calculate the combined effect from both the mean
and local deviation. Instead, Tiefelsdorf only maps the local deviations, which may

be very slight when compared to the combined effect. As a comparison, the spatial
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variation that lead to the formulation of the CD model was so great, that it included
positive values of distance-decay (Fotheringham, 1981)! The final misconception
concerns details regarding the CD model. It seems that the specified accessibility term
was actually an origin accessibility and not the accessibility from the destination to all
other destinations. Though such a conceptualization of spatial structure is possible, it
does not seem to be the desired intention.

While Tiefelsdorf correctly points out that functional form misspecification can
cause some degree of spatial variation in local parameter estimates, little more can be
contributed to the issue of spatial structure due to the various technical and conceptual

shortcomings.

2.2.5.4 The return of spatial autocorrelation

Spatial autocorrelation, which was previously discussed in the context of spa-
tial structure in SI, typically measures the association of observations over a two-
dimensional (x,y) plane. One reason that spatial autocorrelation has become a
dominant paradigm within quantitative geography for understanding geographic rela-
tionships is because it is simple to reduce many scenarios to two-dimensional spatial
representations. For example, Curry (1972) theorizes the role of spatial autocor-
relation amongst two-dimensional location attributes in spatial interaction models.
However, spatial interaction data are typically four-dimensional (x1, Yo, z2, y2), which
is more complex to represent and derive relations between (Fischer and Griffith, 2008).
Nevertheless, Griffith and Jones (1980) posit that spatial interaction itself is spatially
autocorrelated without identifying a method of measuring association between flows,

which is crucial to properly measure any type of autocorrelation. While much research
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would eventually explore the nature of spatially correlated components of spatial
interaction, it would be several decades before the focus shifted to directly developing
concepts of association between flows themselves and methods to account for it. These
efforts have been carried out primarily in the paradigms of spatial econometrics and
eigenvector spatial filtering. However, it will be seen that recent work can largely be
characterized by attempts to measure associations between flows in two-dimensional
space rather than four-dimensions, whether those relations are determined by contigu-
ity, distance, or another type of proximity. It will also be seen that these approaches
contrast previous work that focuses on spatial structure in that they do not focus on

local parameter estimates or a specific type of model misspecification.

2.2.5.5 Spatial econometric approaches

Spatial regression models, the workhorse of applied spatial econometrics (LeSage
and Pace, 2008) are models that incorporate spatial dependence in (i) the the dependent
variable, (ii) the error term, (iii) the independent variables, or (iv) some combination
of (i-iii). The two spatial regression specifications that are most frequently used and
studied in the spatial econometric literature are the spatial autoregressive model
(SAR) and spatial error model (SE) (Halleck Vega and Elhorst, 2015), which satisfy

(i) and (ii), respectively. The SAR model is given by
y=k+pMy+ Xp+e (2.19)

where ¢ is an n x 1 vector of observations on the dependent variable, M is the n x n
spatial weights matrix, which defines the neighborhood of an observation, p is a spatial
autoregressive parameter, X is an n X p matrix of observations on the p explanatory

variables, (3 is the associated vector of explanatory variable parameters, and € an n x 1
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vector of normal error terms. Since My is typically row standardized (or equivalently
called the W-coding scheme), it is useful to think of it as a weighted average of
neighborhood values (sometimes called the spatial lag), such that observations on
the dependent variable at a location are also dependent upon observations of their
neighbors, which is usually motivated by the theoretical equilibrium outcome of a
process over space (Anselin, 2006). An example would be the price of real estate in
one location, which is usually directly determined by the values of real estate around
it. In this case, there is a clear unit of analysis and theoretical dependence process.

In contrast, the SE model is not based on a theoretical process, and is given by

y=k+XB+u
(2.20)

u=AMu+¢€
where k, X, 3, and € are as previously defined, and AMwu is a spatially structured
portion of the residuals that captures unaccounted spatial effects such as omitted
variables, and measurement errors due to scale mismatch and aggregation. Therefore,
the SE model is more suitable to help with practical data concerns than theoretical
concerns. These more complex specifications will be biased and/or inconsistent when
estimated by OLS and instead are typically estimated using maximum likelihood
estimation, two stage least squares, and the general method of moments (Anselin and

Rey, 2014). Finally, though less often utilized in applied spatial econometrics, a model

with a spatial lag on the exogenous variables, X, (SLX) is given by
y=k+XB+MX¢+e (2.21)

such that M is now applied to X instead of the dependent variable, y, and ¢ is the
associated spatial autocorrelation parameter (Halleck Vega and Elhorst, 2015).
Several early attempts have been made to extend the SE model to spatial interaction

models. Brandsma and Ketellapper (1979) propose an error model where the error term
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u = AMu+e€ in equation 2.20 is expanded to u = A\;M;u;+A; M;u;+e€, where M; and M;
are binary matrices that separately capture origin and destinations effects, respectively,
and where spatial relations between flows can be defined by flows that share origins
(destinations) or flows that share an origin (destination) and have adjacent destinations
(origins). In contrast, Bolduc et al. (1989) propose a form of error dependence for
flows where a single weight matrix is comprised of multiple additive terms each using
distance based measures of proximity. Instead of separate origin and destination effects,
a single spatial term is utilized with M = (d,; + ds;) ™% + (dy.; + d;s) 7% where M
captures the direct distance effect and cross-distance effects between a flow from origin
r to destination s and a flow from origin [ to destination ¢, and 6; and 6, are additional
(power function) distance-decay parameters to be estimated. The first term (i.e., direct
effects) captures the additive effects from distance-based proximity between the origins
and the destinations of the two flows, while the second term (i.e., cross-distance effects)
captures the additive effects from distance-based contiguity between the origins of the
two flows to the opposite destinations of the two flows. Though the direct distance
effects are significant in an empirical example, the cross-distance effects are not, and
the authors admit this type of spatial effects may be difficult to interpret. A more
general specification is subsequently put forth by Bolduc et al. (1992) that incorporates
the specifications of Brandsma and Ketellapper (1979) and Bolduc et al. (1989) and
provides simpler interpretations of the autocorrelation parameters. This ultimately
leads to a specification of the error term as u = \;Mu; +€;+X; Mju;+€;4+Xij Miju+e;;j
that has a separate independent spatial error term for origins, destinations, and
origin-destination pairs, and the weight matrices are defined by distance-decay-based
contiguity with estimable parameters. This model is estimated on a single realization

of simulated data to demonstrate that estimation is feasible. However, the fixed and
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known parameters used to simulate the data were not all replicated, which the authors
argue is due to small sample size (i.e., 25 locations and 625 flow observations). Perhaps,
more importantly, the distances used to determine proximity were all simulated from
random uniform distributions, thereby skirting the complex issue of defining proximity
between flows themselves. This model is also applied to an application of transportation
flow modeling in Winnipeg where the term M;; is defined using the concept of cross-
distance effects put forth by Bolduc et al. (1989), but the estimation routine must
be augmented such that all of the autocorrelation parameters and distance-decay
parameters are identical in order to sufficiently calibrate the model (Bolduc et al.,
1995). All of these extensions of the SE model to spatial interaction seem to have
either suffered from issues of interpretability or estimation or both.

Other attempts at modeling spatial structure effects in spatial interaction models
using SE models have produced more encouraging results. Porojan (2001) includes
a single spatial error term in a trade model where M is a binary contiguity matrix
with non-zero entries denoting origin-destination pairs that share a contiguous border.
While this specification results in more accurate interpretations for the parameter
estimates, it is unclear why the spatial relationship encapsulated in M could not have
been directly modeled using a binary indicator variable. Fischer and Griffith (2008)
suggest a spatial interaction model of knowledge flows with the spatial error term
defined in equation 2.20 but with M = M, + M, for cumulative spatial effects between
the origins and destinations of flows. Here, proximity between flows is defined by
binary contiguity matrices with entries of non-zero entries for flows that share an
origin (destination) and have adjacent destinations (origins). Lee and Pace (2005)
model retail flows using a weighted additive spatial structure between origin nearest

neighbors and contiguous destinations. Inclusion of this term significantly alters both
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the magnitude and sign of many variables in the model, including distance, which
becomes larger in magnitude compared to an OLS specification without a spatial
error term. Finally, a Bayesian hierarchical framework has been used to incorporate
spatially structured random effects for origins and destinations using either a Gaussian
(LeSage and Llano, 2013) or Poisson (LeSage et al., 2007) probability model. In both
specifications, spatial structure is defined using first order contiguity. In the former,
the distance-decay effect increases in magnitude, while in the latter, the distance-decay
effect decreases when comparing these specifications to corresponding models that
do not incorporate any spatial effects. While various spatial error terms have been
suggested for use in a SE model of SI, there is no single specification that has emerged
as superior or that accounts for a consistently identifiable spatial effect.

Recent work has also proposed an extension to the SAR model to accommodate
flow data (LeSage and Pace, 2008; LeSage and Fischer, 2014; LeSage and Thomas-
Agnan, 2015). To include a spatially dependent process in the unconstrained spatial

interaction model, LeSage and Pace (2008) suggest the following specification

InTi; = piMiy + piMyy + piy Mgy + k+ pln Vi + alnW; — flnd;; + €
M, =1, M
(2.22)
M;=M®I,
M =M;@W; =M; @ M; = M ® M
where X3 becomes puInV; + alnW; — 8Ind;;, M;, M;, and M;; are spatial weight
matrices that define neighborhoods from the perspective of origins, destinations,
and origin-destination pairs, respectively, p;, and p;, and p;; are the corresponding
autoregressive parameters, [, is an n X n identity matrix with non-zero entries on the
diagonal representing n locations, and ® denotes the Kronecker product. Note that

here it is assumed that there is an equal number of origins and destinations and that
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all origins are also destinations and, therefore, non-zero entries in M;; are denoted
by scenarios where both M; and M; are non-zero in the case of binary contiguity
(see figure 3). This specification is motivated by the theory that the movements
that people decide to make are based upon their knowledge of neighboring flows in a
previous time period. Assuming that the exogenous variables are relatively stable over
time and that the cross-section of flows may be taken as the steady-state equilibrium
of a long-run process, then LeSage and Pace (2008) demonstrate mathematically
that a SAR data-generating process may be an adequate representation for spatial
interaction data. In this case, the specification given by equation 2.22 should be used
and several restrictions on the p's can provide different variations of spatial structure
that is ultimately included in the model. Additionally, this model is argued for on the
basis that using a SAR model along with a spatial lag of the explanatory variables
(i.e., SLX model) can protect against biases that might arise due to omitted variables.
While it is often not possible to tell which of the two underlying mechanisms is
generating the data, LeSage and Fischer (2014) differentiate between endogenous and
exogenous interaction effects. Endogenous effects are theorized to be caused by shared
resources such as transportation infrastructure, whereby changes in shared resources
cause reactions that diffuse potentially through the entire system. The SAR model
allows for this type of feedback effects, which they also be called global spillovers,
and can be thought of a particular instance of the feedback misspecification originally
proposed by Fotheringham and Webber (1980). In contrast, exogenous effects are
thought of local spillovers since they are not caused by changes in shared resources
and feedback effects that propagate beyond immediate neighbors are not expected.
Exogenous effects may be modeled not by using a SAR model but by extending the

SLX specification in equation 2.21 to an spatial interaction model.
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Figure 3: Definition of a) flows to nearby destinations (destination dependence); b)
flows from nearby origins (origin-dependence); and c¢) flows between nearby origins
and destinations (origin-destination dependence) according to LeSage and Pace (2008)
and Chun (2008). Figure reproduced from Chun (2008).

Importantly, LeSage and Fischer (2014) also discuss that when locations are both
origins and destinations and the same variable is used to represent both of them, that
it is not possible to interpret how a change in a single origin attribute (destination
attribute) would affect flows originating (terminating) from that origin (destination)
without also considering how that change would also effect flows that terminate at
that origin (originate at that destination). That is, a change in a single locational

attribute can cause many changes in the volume of flows that a model would predict.
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Therefore, scalar summary measures that capture the multiple changes of true partial
derivatives, which are known as effects estimates, should be used rather than treating
the regression parameter estimates as if they are partial derivatives. The effects
estimates for the basic unconstrained spatial interaction model and the unconstrained
SLX spatial interaction model are provided by LeSage and Fischer (2014) while those
for SAR spatial interaction model are provided by LeSage and Thomas-Agnan (2015).
These alternative interpretations should hold regardless of the underlying probability
model or estimation technique; however, LeSage and Fischer (2014) claim that in the
case where there is no spatial dependence in the endogenous or exogenous variables,
using a typical interpretation of the coefficients as if they represent partial derivative
is likely to have similar inferences to using the effects estimates.

Effects estimates have been shown to be stable to alternative specifications of
spatial weights, even when they may result in different parameter point estimates,
if there is high correlation between the specifications. High correlation between
weight matrices occurs generally when the same scaling is employed (i.e., binary,
row-standardized, etc.) even when the number of nearest neighbors, the distance band,
or the distance-decay used to compose two different weights may vary, which is shown
to be especially true for weight matrices based on higher order relations (LeSage and
Pace, 2014). As a result, LeSage and Pace (2014) posit that it is a misconception that
spatial regression is very sensitive to the specification of the spatial weight matrix.
Instead, it is argued that the sensitivity of the point estimates should be seen as sign
that the model is adjusting to accommodate changes in the spatial weight matrix, and
is therefore well conditioned in terms of the stability of the effects estimates. However,
these experiments were carried out for a set of areal units and it is unclear if they

apply to spatial interaction models based on origin-destination based observations.
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Since the focus of the work of LeSage and Pace (2008), LeSage and Fischer (2014),
and LeSage and Thomas-Agnan (2015) is on the interpretation of spatial interaction
parameter estimates, it is surprising how little is said here about the interpretation
of the parameter estimate on the distance variable (i.e., distance-decay). LeSage
and Thomas-Agnan (2015) acknowledge distance and spatial dependence may be
competing to explain the same variation in the dependent variable when they observe
that the distance-decay coefficient is smaller in magnitude in a SAR spatial interaction
model than in a corresponding basic spatial interaction model. Similar results can
be noted in additional applications of the SAR spatial interaction model (LeSage
and Pace, 2008; de la Mata and Llano, 2013; Kerkman et al., 2017), especially, with
increasingly complex definitions of spatial structure (LeSage and Polasek, 2008), and
for the SLX spatial interaction model (LeSage and Satici, 2013) as well. LeSage
and Pace (2008) comment that it is not possible to compare the effects estimates for
distance-decay for models with spatial lags (i.e., SAR model) to those without spatial
lags because those with lags need the true partial derivatives to compute the actual
effect. Curiously, the true partial derivative effect for distance-decay is otherwise
not typically reported or discussed in these studies. In a study of air passenger data
from Margaretic et al. (2017) who use a spatial Durbin model (i.e., SAR and SLX)
with lags being based on either the origin or on the destinations, a counter-claim is
provided that variables characterizing an origin-destination dyad, like distance, do
not need the true partial derivatives for interpretation. Hence, it is not immediately
clear how to interpret distance-decay in spatial regression models. Margaretic et al.
(2017) also employ regional indicator variables that are significant with and without
a spatial lag, though they admit there is no intuition for the level or sign of these

effects. This denotes that there may be spatial heterogeneities in the spatial processes

52



underlying air travel and it may be more meaningful to use a model focused on spatial
non-stationarity than spatial dependence.

Another theme that is not present in the spatial econometrics literature on spatial
interaction models is that of constrained models. As already discussed, there is a
history of using constraints (i.e., balancing factors or fixed effects on binary indicator
variables) in spatial interaction models in order to ensure that the total inflows, total
outflows, or both are preserved. Such preservations typically result in better model
fit since more information is built into the model, and therefore, it is surprising that
they have not been pursued in spatial econometrics. One reason for this may be that
spatial econometrics is heavily based upon regression methods that assume a Gaussian
probability model, where the constraints are not known to guarantee the preservation
of flow totals as in Poisson regression (Arvis and Shepherd, 2013). A second reason
is that there is far less work using Poisson regression for spatial interaction models
within this literature. The existing work with Poisson spatial interaction models
considers spatial dependence in various forms, but typically requires more complex
estimators (Sellner et al., 2013; LeSage and Satici, 2013; LeSage et al., 2007). Still,
these specifications do not use constraints and it is uncertain how such constraints
would interact with the feedback effects implied by spatial dependence and the effects
estimates that use true partial derivatives and scalar summary measures.

Many assessments of the general discipline of econometrics are available (Black,
1982; Hendry, 1980; Leamer, 1983). Concerns are often in terms of philosophical
foundations or technical issues, which are in line with those outlined in section 2.2.5.1.
Notably, Leamer (1983) concludes that some of the assumptions of econometric
models are whimsical and where these models cannot be shown to be sufficiently

insensitive to assumptions, then “we shall have to revert to our old methods (p. 43)”,
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where old methods may be interpreted as simpler or more general models with fewer
assumptions. Similarly, there has been significant pushback against the SAR and
SE models (McMillen, 2003; Pinkse and Slade, 2010; Partridge et al., 2012; Gibbons
and Overman, 2012; Corrado and Fingleton, 2012; McMillen, 2012; Halleck Vega and
Elhorst, 2015) on the grounds that the models are plagued by identification issues
and contain strong assumptions in order to justify their validity. Several additional
perspectives are put forth to complement the use of these models, such as the use of
natural experiments (Gibbons and Overman, 2012), incorporating stronger underlying
theory for the model and the definition of the spatial weight matrix (Corrado and
Fingleton, 2012), semi-parametric and nonparametric smoothing methods (McMillen,
2012), and to use the SLX model when there is no strong theoretical basis for
the SAR model (Gibbons and Overman, 2012; Halleck Vega and Elhorst, 2015).
Some advantages of the SLX model are that it has fewer issues with estimation and
interpretation, is more flexible because M can be parameterized, is less likely to suffer
from overfitting compared to more complex models, can rely on simpler tests for
endogeneity and instrument sufficiency, and the local spillover’s implied by the SLX
model are typically easier to justify than the global spillovers implied by the SAR
(Halleck Vega and Elhorst, 2015). Interestingly, the CD model with a single destination
attractiveness variable and a Hansen-type accessibility term would be very similar to
an SLX specification where M X = S;;. However, this implies different spatial weight
matrices where M X is a spatial averaging operator and S;; is a distance-weighted
summation operator. This simple, though foundational, difference perhaps gives rise
to the very different interpretations of the associated parameter estimates where the

SLX model focuses on spatial autocorrelation and the CD model arguably focuses on
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more behaviorally rich concepts of agglomeration and competition in the context of

spatial interaction and location choice.

2.2.5.6 Eigenvector spatial filtering

Eigenvector spatial filtering (ESF) is a technique that accounts for spatial autocorre-
lation based on the interpretation that the eigenvectors of a projected contiguity-based
connectivity matrix 3 are the set of possible orthogonal and uncorrelated map patterns
(Griffith, 1996; Griffith, 2011) given a particular definition of connectivity. Further, the
first eigenvector, Fy, is the set of real numbers that produces the map pattern with the
largest achievable Moran’s I correlation coefficient (MC), the second eigenvector, Es,
is the set of real numbers that produces the map pattern with the largest achievable
MC while remaining uncorrelated with E;, and continues on such that F,,, achieves
the largest negative MC and is uncorrelated with the preceding (n — 1) eigenvectors.

The projected connectivity matrix, C', is most frequently defined as
(I —11"/n)M,(I —11"/n) (2.23)

where [ is an n x n identity matrix, 1 is an n x 1 vector of 1’s, ’ denotes the matrix
transpose operation and M, is the binary connectivity matrix for n mutually exclusive
and exhaustive spatial units that partition the study space. While equation (2.23) is
the most commonly found projection, others have been defined that ensure symmetric

spatial relationships (Chun, 2008). In addition, M may be standardized using different

3Distance-based spatial weights have been used within the ESF technique, though it requires a
distance cut-off which denotes the point at which all further relations become zero entries of the
spatial weight. Furthermore, distance-based examples are based on research in the field of ecology
and have not been employed in spatial interaction models (Borcard and Legendre, 2002; Legendre
et al., 2002; Borcard et al., 2004; Dray et al., 2006; Griffith and Peres-Neto, 2006; Blanchet et al.,
2008).
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coding schemes (Boots, 1999; Chun, 2008). By selecting a subset of the eigenvectors
derived from C and creating a linear combination, it is possible to produce a synthetic
variable that is thought to potentially represent any missing spatially autocorrelated
exogenous variables (Griffith, 2004), which can be included in a linear regression as

follows (Chun and Griffith, 2011):
Y=XB+Ey+e (2.24)

where Y is a dependent variable representing areal units, X is a set of explanatory
variables, F is a set of selected eigenvectors, 8 and ~ are coefficient vectors, and € is
a vector of normally distributed random errors. This specification has been shown
to produce results where the error term does not violate independence assumptions
(Griffith, 2000). ESF has also been proposed for accounting for positive spatial
autocorrelation within auto-Poisson and auto-logistic model (Griffith, 2002; Griffith,
2004).

After the ESF framework was established, it was subsequently extended from
spatial data aggregated to n areal units to spatial interaction flow data that occurs
between n? pairs of origins and destinations for various types of spatial processes and
in several geographical contexts (Griffith, 2007; Fischer and Griffith, 2008; Chun, 2008;
Griffith, 2009b; Griffith, 2009a; Chun and Griffith, 2011; Griffith, 2011; Griffith and
Fischer, 2013; Griffith and Chun, 2015; Griffith et al., 2016)%. While this cluster of
recent work might appear to indicate that a standard protocol has emerged for applying
and interpreting the ESF methodology to spatial interaction data, a closer look at the
literature shows that in actuality the paradigm is fraught with inconsistencies and

ambiguities.

“In general, for these extensions, this implies that X 3 becomes pInV; + aln W; — S1lnd;;

96



One theoretical inconsistency is that the primary motivations for using an ESF in
a spatial interaction model is stressed to be either that flows are a priori dependent
upon each other or that the ESF’s can serve as a proxy for spatially patterned omitted
variables or both. In the former motivation, this means that the proper way to account
for any potential spatial autocorrelation amongst spatial interaction data is to use
a SAR specification, which requires a theoretical explanation that is not typically
provided. In the latter motivation, the potential autocorrelation can be remedied
by using a SE specification or including the missing spatially patterned covariates.
Interestingly, Tiefelsdorf and Griffith (2007) show that an ESF methodology can
approximate a SAR or SE specification depending on the projection applied to the
spatial weights matrix, where equation 2.23 is the projection that approximates the
SAR specification. Somewhat contradictory, Fischer and Griffith (2008) demonstrate
that an ESF spatial interaction model using the SAR-approximating projection can
approximate a SE spatial interaction specification, though the projection corresponding
to the SE model has not yet been applied within spatial interaction models. Therefore
it is often unclear what the primary motivation for using an ESF framework is. In fact,
much of the research using an ESF in a spatial interaction model tends to cite Curry
(1972) and Griffith and Jones (1980), which has already been discussed as convoluting
several modeling violations under the concept of spatial autocorrelation.

Furthermore, there are several issues with the concept of spatial autocorrelation
amongst spatial interaction flows. In the ESF literature, spatial autocorrelation is
often distinguished as the local distance effects in contrast to the global distance effects
that are captured by distances between locations (Griffith, 2007, 2009a, 2011). Here,
global and local have been emphasized because these concepts are only superficially

engaged. Having an effect that occurs locally and globally implies that a process
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represented by a single metric (i.e., the distance variable) occurs at two different
scales and potentially varies over space. However, there has yet to be a local spatial
interaction model, such as an origin-specific model, calibrated within the context
of ESF’s, which could be used to investigate process non-stationarity. In addition,
geographically weighted techniques have recently been extended to model processes
that occur at multiple scales (Fotheringham et al., 2017), which could be used to shed
light on the nature of scale in spatial interaction models rather than a priori assuming
process stationarity.

Spatial autocorrelation in spatial interaction is an ambiguous concept because flows
are more complex than simpler spatial units like points and areal units. Each flow is
comprised of two or more locations and, therefore, the standard abstractions of spatial
relationships are not sufficient. Consequently, in the ESF spatial interaction literature
spatial autocorrelation is measured using Moran’s I correlation coefficient, but with
alternative definitions of the spatial weight matrix that consider spatial relationships
between both origins and destinations. In the case that both the origin and the
destination of a flow are proximal, the effect is typically taken to be either additive or
multiplicative, with little theoretical justification. This definition of autocorrelation
amongst flows has been designated network autocorrelation since a collection of
interactions can be represented as a network and the work of Black (1992) is often
cited as the conceptual foundation. However, the use of Black’s network autocorrelation
term is a misnomer in the context of the ESF spatial interaction literature. Black
actually defines proximity in terms of network connectivity and not in terms of spatial
proximity, which are two different representations of space. Further, the motivation for

measuring network autocorrelation was for defining additional substantive geographical
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variables such as regional indicators or accessibility terms, which Black demonstrated
could successfully reduce the measured network autocorrelation to insignificant levels.

Defining and measuring spatial autocorrelation in spatial interaction is clearly non-
trivial. This raises the question of whether or not methods based upon accounting for
spatial autocorrelation, such as ESF, are sufficient extensions of the spatial interaction
modeling framework. The ESF method may seem enticing since it generally results
in increased model fit, but it has also been show to be prone to overfitting (Helbich
and Griffith, 2016; Oshan and Fotheringham, 2016; Oshan and Fotheringham, 2017).
A downside to an artificially high model fit is that it can mask the fact that other
substantive covariates may be necessary, which hampers the further development of
theory about spatial processes. Furthermore, Pace et al. (2013) demonstrate that if the
true underlying data-generating process is a SAR model, an ESF may produce biased
parameter estimates associated with some covariates even if it reduces bias in other
parameter estimates. The degree to which an ESF may bias estimates is shown to be
sensitive to the degree of spatial dependence (i.e., spatial autocorrelation captured by
a spatial lag) in the explanatory variables, the degree of spatial dependence in the
dependent variable, the number of eigenvectors used in the filter, and the spectra of
the spatial weights matrix used in the filter, which is representative of the nature of the
spatial structure of the study area. Similarly, Hodges and Reich (2010) and Paciorek
(2010) demonstrate that a spatially correlated random effect, which an ESF is theorized
to approximate (Fischer and Griffith, 2008), can compete with the substantive spatial
effects (i.e., main effects) in a regression model. This indicates biased estimates and
is shown to depend on the scale of the variability in the explanatory variables and
the error term and the extent that the two are correlated. Griffith and Chun (2016)

show that an ESF can help correct for omitted variable bias, as denoted by the
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RESET statistic, when there are indeed omitted variables and no other known model
violations. However, in empirical settings, where there are often multiple different
types of violations, the RESET statistic indicates mixed results, and ultimately it
is not clear what the ESF is attempting to account for. Furthermore, the ability of
the ESF to account for omitted variables may be less effective with more variables
and moderate multicollinearity. The work of Griffith and Chun (2016) also does
not take into account the fact that the RESET statistic is known to be sensitive to
spatial autocorrelation in the explanatory variables and error terms (Vaona, 2010).
Thus, techniques using random effects like linear mixed models and ESF that aim to
control for spatial autocorrelation may obfuscate several underlying model violations
or misspecifications.

The ESF framework is dependent upon a number of specification decisions, many of
which vary across existing research within spatial interaction modeling. For example,
there is significant variation in how spatial relationships are defined (i.e., C' and
M matrices) and made operational (i.e., selecting a subset of eigenvectors E), the
type of spatial interaction model the ESF is applied to (i.e., equations 2.2-2.5a), and
the underlying probability model. Each of these issues is an important part of the
modeling framework and changing any of them can have an impact on the model
results. Further compounding the ambiguity of ESF spatial interaction models is that
there is no substantial discussion of what the expected outcomes are. Table 1 captures
the diversity of the ESF spatial interaction methodology specifications and their
associated results, which presents the details of 22 spatial interaction models (with
and without an ESF) that were extracted from 13 research articles, including data
representing commuting, migration, patent citations, research collaboration, trade,

and air travel. Any entries of not reported indicate that the necessary information
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could not be found in a particular publication while bolded entries indicate that a
particular detail of the ESF model was unclear and could not be concluded with

certainty.

61



Poj0U ST dWIAYDS JUTPOD I J0UR SSO[UN ATRUI( PoUINSse SI [\ XLIjeu JyStom o], e
AIjoWIMIAS $9010] JRY} 9UO URY) IoYjel €7 7 uorjenbo ur ueard xrjewr uorjosford oY) sueowr puopuvig e
paureIjsuod-A[qnop = /) (7 ‘paurerjsuod-uoiponpoid = HJ ‘{paureljsuodun = HAy;] @

To[[eurs Sok T19810] DIV eziururut OIN €20 < oreredos NN G/F POpPo9-) PojoolIod-A1jomAs TOSSIOJ ONN (6Lg) son [PARI1) 11R (L102) 0 12 o1yPIRSIRIY
To[Teus sok 19810] DIV oziururut OIN G20 < oreredos NN G/F POpoo-)) PoaloolIod-A1jomAds TeuLIOU-30] ONN (6Lg) sonm [oARI1} 1R (L102) 0 12 o1OIRSIRIY
To[reuts S0k ROxAL] (1°0 >) anrea-d gsafrewts DN Gz'0 — /+ < wms NN 8 PO1991100-A1)0WWAS uoss10q folel (262) T-SLAN suonejn juayed (9102) 0 92 Yy
pastodar jou  pajrodor jou Iorews paytodoar jou poytodar jou  jonpord  pejrodor jou prepuejs UOSSIO ] oa (6¢¥) €-SLAN  Sunnuuod (S10g) unyp pue Iy
portodar jou  pajrodar jou I[rews pojtodal jou pajtodar you  jonpoxd pajtodar jou prepue)s UOSSI0] olel (0F) 2-SLON SurnuInIod (610g) wny) pue YL
ﬁwuHOﬁw.m jou ﬁwuHOQ®~ jou Io[rews 1®0HOQ®.~ jou ﬁm,«hO»‘Mw.u jou ,«UEMVOHQ ﬁwuHOQ®~ jou prepuels UOSSTO oa ANHV T-SLOAN wﬂmﬁﬂ:umﬁmcu AmHCNv unyy) pue QgL
ﬁM:HGQGH jou ﬁCuHQQOH jou Io[rews MXE,NOQ 1 jou CQ«HOQOH jou «Q~—@OHQ ﬁCuHQQOH jou prepuels UOSSTOJ OQ AMNV Eejuletilen) w2:~:EEQU anONv E:QU pue JuEEU
porrodor jou  porrodol Jou [ed1IUIpI Jsour[e pojtodar jou pojtodor jou  jonpoad porrodor jou paepuels UOSSI0J folel (8¢) syoeny Sunnuruod (10g) unyp pue YLD
pastodar jou  pajrodor jou 1081R] paytodar jou poytodar jou  jonpoxd  pojrodor jou prepuejs UOSSIO ] ol (11) serunoon Surynururon (S10g) unyp pue Iy
partodar jou  pojrodar jou Iorews -81s [eorysiye)s DIN 62’0 <  oyeredos NN € Pa1001100-A1jomIAS  [erwoulq Sou ONN (79) sotryunoo aper} (s102) 10 72 TENIRJ
portodar jou  pajrodar jou T19810] DIV eziururut OIN G0 < jonpoxd £ymSryuod prepue)s TOSSI0J 0a (262) g-SIAN suoneyo juared (£10g) I9TDSL] PR I
ROYALE SOk To[[ewus portodar jou OIN G20 < oreredos NN ¢ prepuels TerIoulq “8ou ONN (6eg) g-SLAN  suoneioqe[[oo (zI0g) ®¥e] pue [PSuodg
1081e] sok Io[[ewus anyea-d jso[rews OIN 60 < Jonpoid AymSryuoo paepuelis folel (g2) sonyunoo Sunnuruod (1102) WP
1981e ApeotdLy sok T1981e] DDIV-Iseny) azrururut OIN €20 < wmns AymSryuod paepue)s uossIoq ONN (6¥) sorers uoryeIdiu (1102) YLy pue uny))
1081e] sk RErA 9DV oz DIN €20 < wms AymSryuon pIepue)s [eurIou-gop ONN (67) soress uoryeIsu (T102) WILn) pue uny))
portodar jou SOk To[[ewus portodar jou OIN G0 < jonpoxd Aym81yuoo prepue)s TOSSTOJ 0a (7gg) seryumoo Surnuruiod (9600z) ML
To[Teus sok To[ews (1°0 >) onrea-d jso[rews OIN G0 < jonpoid AmS1yuoo piepuels TOSSI0J oa (6¢7) €-ST.AN Sunnuuiod (®600z) TIHLID
Jof[eurs ou To[rews O1)SIIRYS ], OZIIUTUIUL poytodor jou  jonpord A3MSHIU0d POPOdI-§ PIIIIINd-ATIOWWAS U0SSI0J Od (67) sorers uoryeIsI (800z) wny)
o[RS ou Io[ews O1SIYRYS ], dZIUITUIUT paytodar jou  jonpord £)3mSHu0d PaPod-§ PadaII0d-LA1)uUIAS UOSSIO ] ONN (67) soyess uoryeISiu (800¢g) unyp
1081e] sk T081R] POOYTYI] SZIWTXRUT DN €Z'0 <  oyeredos AymSryuon pIepue)s UOSSIO] ONN (21T) g-SLAN suorpeyo juared (8007) YIPLID) pue ITDSL]
T981e] ou T19810] POOTI[YI] dZITUIXRUT OIN €20 < oyeredas £3mSryuod prepue)s TeuLIOu-30] ONN (21T) g-SILAN suoneyo juared (800z) TIPLIY) pue ITPSL]
portodor jou  pojrodar jou T9810] OIN 10 SS¥ dzrwrurux DOIN G20 < oreredos AymS1yuoo piepuels TWOSSIOJ ONN (6£7) ¢-porrodor  Surnururon (L00z) WD
qs JueoyTUSIg 12950 ¢ UOLIOYLI) 109[Y-01] q W [Ppow AYI[IqRqOI ] [9poU UoIjORINUI [eryeds (u) oreag §S9001] 901mog

R)RD UOI}ORINUI TeIjRdsS

07 pordde sergojoporjowt SULI[Y [RIyeds 10900AUSIY JO SOISLIDIORIRYY) T S[qR],

62



Since table 1 is organized roughly in chronological order, it is possible to detect some
simple patterns. Initially the ESF methodology was applied to unconstrained spatial
interaction models, though eventually the focus shifted primarily to doubly-constrained
models. An associated trend is that originally there was a separate ESF for origin
variables and destination variables; however, this was eventually abandoned in favor
of a single ESF that is specified using a combination (i.e., sum or product) of origin
proximity relationships and destination proximity relationships. This marks a shift in
the primary motivation for using an ESF from correcting for spatial autocorrelation in
the explanatory variables to spatial autocorrelation in flows themselves, though this
distinction is not typically made. Further examining Table 1 reveals that outside of
these patterns, there is no standard protocol. Indeed, almost every aspect of the ESF
spatial interaction framework varies, including even the details that are ultimately
reported in any given ESF spatial interaction application.

Perhaps the most varied aspect of the ESF-SI framework is the selection criterion
employed to select a specific subset of eigenvectors. Forward or backward stepwise
selection is always employed in the spatial interaction literature, and the selection
criterion may involve directly optimizing the model fit, indirectly optimizing a model
fit statistic, minimizing spatial autocorrelation, or finding all eigenvectors that are
collectively statistically significant (Table 1). In addition, the collection of all eigen-
vectors is typically pre-filtered® so that only those with higher levels of positive spatial

autocorrelation can be selected. In one recent case though, both negatively and

%A LASSO routine and a random effects variant of the ESF have been proposed that suggest more
parsimonious methods for selecting a subset of eigenvectors (Seya et al., 2015; Murakami and Griffith,
2015), though neither of them has been applied in the spatial interaction literature and therefore do
not shed light on the variations found in existing ESF spatial interaction research. Moreover, Chun
et al. (2016) show that an ideal number of eigenvectors is dependent upon the amount of spatial
autocorrelation in model residuals and the size of the tessellation. A method for identifying an ideal
number of eigenvectors is put forth, but has not been applied in the spatial interaction literature.
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positively spatially autocorrelated eigenvectors are included (Griffith et al., 2016).
Hence, it is unclear which eigenvectors should be a priori filtered from the selection
process and how sensitive the model results are to various filtering schemes, which is
important because Chun et al. (2016) show that too many or too few eigenvectors
can cause over- or under-correction by the ESF.

ESF spatial interaction model results are frequently deemed more intuitive than
their non-ESF counterparts, though this seems inexplicable given how inconsistent
some of the results are. In particular, the effect that adding an ESF has on the
distance-decay coefficient estimate seems to vary extensively (Table 1). In some cases
it results in a stronger distance-decay and in other cases it results in weaker distance
decay. In addition, the standard errors for these estimates with an ESF are sometimes
larger and sometimes smaller than the standard errors from a model without an
ESF, though sometimes they are not reported at all. When the standard errors are
reported, it is not always the case that the change in distance-decay is statistically
distinguishable (at the 95% confidence interval) from the original distance-decay
estimate. Together, this indicates that adding an ESF has an unpredictable effect on
the estimated distance-decay and potentially obfuscates its interpretation rather than
making it more intuitive.

Indeed, it is not possible to know what the expected behavior of an ESF should
be on distance-decay without a well-developed theory and controlled simulations
to test the theory, which is currently lacking (Patuelli et al., 2015). Griffith and
Chun (2015) do however demonstrate how distance-decay estimates vary with and
without an ESF when the geographic scale and resolution are changed within an
empirical example. Here the scale is the size of the region being analyzed and the

resolution is the size and quantity of the areal units comprising a consistent study
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region. When the scale is increased from the San Juan urban area to the San Juan
metropolitan statistical area to the entire island of Puerto Rico, a doubly-constrained
model without an ESF indicates that the distance-decay effect remains essentially
stable while including an ESF indicates that distance-decay becomes less negative.
The ESF distance-decay estimates are labeled superior, but how do we know what the
expected pattern is supposed to be? In comparison, when the resolution is increased
from German provinces to districts to kreises (larger to smaller areal units), a doubly-
constrained model with or without an ESF indicates that the distance-decay effect
becomes stronger, though the magnitude of all of the ESF models are smaller than
those without an ESF. This means that the overall interpretation of the distance-
decay estimates does not change with or without an ESF. Again, how can we know
which scenario is more appropriate and based on what criterion? Overall, one is left
wondering when exactly is the use of ESF appropriate in SI, what are the expected
outcomes, especially on distance-decay estimates, and how exactly does this improve
their interpretability? It is clear that a theory needs to first be defined and then tested
in a rigorous simulation framework before the ESF spatial interaction framework can

be accurately assessed.

2.2.5.7 Measurement error

A topic that is under-explored is the effect of measurement error in spatial in-
teraction models. Since spatial interaction models can be thought of as a specfic
conceptualization of log-linear regression or Poisson regression, we can borrow intuition
from the breadth of existing work on measurement error. Here, the conventional

wisdom is that measurement error on a variable within a simple linear regression
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will bias the parameter estimate downwards towards the null, which is referred to as
attenuation, and to inflate standard errors. However, the effects of measurement are
dependent upon the nature of the error, the relationship between the measurement
errors (and model error term), and the relationships between the explanatory variables
in the model. For example, if there is correlation between a measurement error and
the regression error term, this can have the opposite effect of attenuation whereby esti-
mates are biased upward. Surprisingly, even the parameter estimates of variables that
are measured without error can be biased too when they are correlated with variables
that include measurement error. These biases may be further exacerbated due to
multicollinearity between the explanatory variables. Thus, in more realistic scenarios
of multiple regression, with collinear regressors, and potentially correlated errors, it is
possible to have biased parameter estimates and precision of any nature, which can
ultimately lead to real effects being hidden (i.e., false negatives), the observed data
having relationships that are not present in the error-free data (i.e., false positives),
and reversed signs on coefficient estimates in comparison to estimates from data with
no measurement error (Caroll et al., 2006). Even more sobering, is that Le Gallo and
Fingleton (2012) demonstrate that in the case of spatial dependence in an explanatory
variable with measurement error, and where there is a spatially correlated error term
(i.e., omitted variable), that using an SE model can produce significantly more bias in
parameter estimates than ignoring the regression error dependence and simply using
an OLS regression. Clearly, measurement error can cause serious malaise and care
should be taken to reduce it or account for it.

There are several general approaches for correcting for bias due to measurement
error, which tend to require varying amounts of prior information about the nature of

the measurement error, though the focus is not typically on spatial models (Caroll
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et al., 2006). More recently, research that concentrates explicitly on spatial regression
models has shown that measurement error in regressions using Gaussian errors causes
attenuation with a strength that is in part influenced by the spatial correlation in the
explanatory variables and in the error term (Li et al., 2009; Huque et al., 2014, 2016).
Unfortunately, this research is all based on the case of a single explanatory variable
and does not include the case of multiple variables or omitted variables. Furthermore,
this work has not yet been extended to non-Gaussian probability models and therefore
does not directly apply to Poisson regression and other distributions used for modeling
counts. Therefore, the effects of measurement error in the context of spatial interaction
models, which imply the use of several explanatory variables and have already been
demonstrated to often suffer from omitted variable biases, is an interesting topic for

explorarion.
2.3 Non-parametric spatial interaction models
A recent trend in spatial interaction modeling is the use of non-parametric tech-
niques, which means that no parameters need to be estimated and/or there are no
underlying distributional assumptions. The lack of parameters means the primary
focus of these models is predicting spatial interaction rather than explanation and
includes neural network spatial interaction models and “universal models”.

2.3.1 Neural network spatial interaction models

Neural network (NN) spatial interaction models are an entirely separate framework

for modeling spatial interaction from those previous introduced, which draw on an
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analogy to neurons in biological systems (Miller, 2009). They are an attractive tool
due to their universal ability to ‘learn’ the functions that generate observed data
without any a priori assumptions about a parametric probability model. That is,
given sufficient input data, and an appropriate neural network methodology, it is
possible to approximate any data-generating process, whether it be linear or non-linear
in nature. Therefore, NN’s have been applied to a wide variety of classification and
prediction problems. Openshaw (1993) was the first to propose the use of neural
networks to model spatial interaction flows, which are often noisy, non-linear, and
may vary from place to place. Consequently, NN spatial interaction models have been
used in various contexts, such as predicting telecommunication traffic, journey-to-work
trips, and commodity flows (Fischer, 2002; Mozolin et al., 2000; Black, 1995) and
generally boast higher accuracy than classic models based on max-entropy or utility
theory.

There are generally three steps involved in building a NN spatial interaction
model. First, a feed-forward NN architecture must be specified. For spatial interaction
models, this has generally consisted of a two-layer system (Openshaw, 1993; Black,
1995; Mozolin et al., 2000; Fischer, 2013), as demonstrated in figure 4. The first layer is
comprised of the input weights, which consist of connections between each input node
and h hidden nodes. One input node is specified for each of the model explanatory
variables and A is selected through experimentation. For spatial interaction modeling,
this typically results in three input nodes that correspond to an origin variable, a
destination variable, and a variable to represent the ‘cost’ to interact from each origin
to each destination. The second layer consists of the output weights, which are the

connections from each hidden unit to a single output node. For each data point
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Figure 4: This figure was adapted from Fischer (2013). The first set of nodes, labeled
T, represent the model inputs, the second set of nodes, labeled zj, represent the h
hidden units, and the output node is labeled y. The nodes that are filled in black and
subscripted with zero are the ‘bias’ units. Weights between all units are represented
by lines. Weights in the first layer include those from input units to hidden units wfi,)l,
and those from the bias unit to the hidden units, w}(LlO). Weights in the second layer

include those from hidden units to the output unit, w,(f) , and those from the bias unit

to the output unit, wf).

that is fed into the neural network, a linear combination of the weighted explanatory

variables, ay, is determined at each hidden node

M
ap = Z wgzxm + w&) (2.25)
m=1

where M is the number of input explanatory variables, h is the number of hidden

(1)

units, w,,;,

represents the weight associated with a connection from input node m to
hidden node h (i.e. connections in layer 1),  denotes an explanatory variable, and

wy,

is an additional weight that is considered at every hidden unit, often called the
‘bias’. This quantity, ay, is also called the input activation and is transformed such

that
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Zhp — qb(ah) (226)
where ¢ is the transfer function and z is the final value at each hidden node. A

single linear combination of the values from all of the hidden nodes, called the output

activation, is then computed

Z wy, Von + w? (2.27)
where w}(f) represents the weight associated with the connection from each hidden node

to the output node (i.e. connections in layer 2) and w? i

is an additional bias weight.
Finally, this output activation is transformed via transfer function ¢ to produce the

model output, y, such that

y = (a,). (2.28)

The input transfer function ¢ and output transfer 1) must be continuous and
differential where ¢ is often a sigmoid function and v is often either sigmoid or
quasi-linear. It is the nature of the transfer functions that introduce non-linearity to
the approximated data-generating function (Fischer, 2013).

The second step focuses on deriving the values for the weights, also called network
‘training’. Input data are first split into a training set, a validation set, and a testing
set. Then training is carried out by adopting an objective function, also known as a
loss function, that assesses the ability of a set of weights derived using the training
data to predict the validation data set. By minimizing the loss function, it is possible
to obtain an optimal set of weights. In the spatial interaction literature, loss functions
are generally based on either a maximum likelihood framework or a least-squares

framework (Fischer, 2002, 2006). Optimization of the loss function has been carried
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out using gradient search methods or heuristics such as a genetic algorithm, each of
which have different computational and accuracy trade-offs (Fischer and Hlavackova,
2004).

In order to find a level of model complexity that is generalizable and is therefore
not overfit to the training data, networks with a different number of hidden nodes, h,
are trained and then evaluated on the test data. This can be done simply by choosing
the number of hidden nodes that produce the lowest prediction error rate on the test
dataset or using more in-depth methods such as ‘early stopping’ or ‘regularization’,
which seek to achieve a compromise between low error rates and generalizability
(Fischer, 2013). The true prediction capabilities of the model that is finally selected
may then be assessed using new data. One issue within the NN framework is how
to spit data into training, validation, and testing sets. A bootstrapping technique
that uses resampling with replacement is suggested over an exhaustive splitting of the
data or a one-time random sample based on resampling’s ability to produce standard
errors and confidence intervals (Fischer and Reismann, 2002; Fischer, 2013).

Constrained variants of spatial interaction models were originally proposed within
the NN framework using a two-step procedure that consisted of applying an adjustment
procedure after using the basic network architecture proposed in figure 4 (Openshaw,
1993). Later, an entirely new architecture was developed to accommodate singly-
constrained models within a single step (Fischer et al., 2003). Instead of using
the typical two-layer network, a three-layer network is adopted so that there are
two layers containing sets of hidden nodes. The first set of hidden nodes uses a
multiplicative combination rather than a linear combination (i.e., additive) of the
weighted observations, though the second set of hidden nodes, which introduces the

constraints, are additive. This architecture is then repeated for each destination in
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the case of a production-constrained model, where the results from each network
component are finally combined into the third layer to produce the final output.
Empirical results of this new constrained neural network spatial interaction model
indicate that it achieves higher out-of-sample prediction accuracy compared to the
two-step constrained NN spatial interaction model and the classic constrained spatial
interaction model.

Several studies have compared the predictive capabilities of NN spatial interaction
models to classic spatial interaction models. While Openshaw (1993), Fischer and
Gopal (1994), and Black (1995) have reported increased accuracy using NN spatial
interaction models, Mozolin et al. (2000) demonstrate that when the test data pertains
to a time period other than the time period used for the training and validation data,
that classic spatial interaction models outperform NN models. This result may be
due to NN models overfitting to the training data and changes in the data-generating
processes over time. Importantly, Mozolin et al. (2000) do note that if data for the same
time period is used for training, validation, and testing, that the NN spatial interaction
methods do indeed provide increased accuracy over classic spatial interaction models.
In the context of big data, where data with finer temporal resolutions are becoming
available, the definition of the temporal resolution for a process therefore becomes
increasingly prevalent.

In recent years, research pertaining to NN spatial interaction models has been
limited. At the same time, more general research into NN’s has blossomed and their
use for machine learning tasks, such as feature extraction and prediction, is ubiquitous
across industry and academia. It is likely that for most problems it would be possible

to develop an advanced NN architecture with better predictive accuracy than any
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parametric model, including spatial interaction models. However, this task is beyond

the scope of this research and NN’s will not be further investigated.

2.3.2 Universal models

The often self-described universal models take their name from the fact that
their proponents suggest that they can be applied to many different types of spatial
interaction phenomena (i.e., migration, commuting, commodity flows, etc.) or in
various study regions using a constant set of underlying assumptions. One of the
earliest universal models is the so-called “Radiation” model (Simini et al., 2012), which

earns its title from an analogy to radiation and absorption processes that yields

V; W4
Ty =T =
(Ui + Sij)(vz' + wj + 5ij>

(2.29)

where T;; is the predicted flows between ¢ and j, v; and w; represent the population
at 7 and j, respectively, T; is the total number of flows starting at 4, and s;; is the
sum of destination attractiveness for all locations between ¢ and j (Simini et al.,
2012). The radiation model contrasts gravity-type models in that it does not explicitly
consider distance in the computation of SI. Rather, it only uses the distance between
an origin and a candidate destination as a radius from the origin to define alternative
destinations. The sum of the attractiveness for all alternative destinations, usually
given by their populations, is then interpreted as the deterrent of interaction compared
against the attractiveness at the candidate destination, which makes the radiation
model similar to Stouffer’s intervening opportunities model (Stouffer, 1940; Stouffer,
1960). The derivation of the radiation model was subsequently updated to account

for the fact that spatial interaction systems are finite in nature. This results in a
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renormalization of 2.29 that yields

T;‘ V;Wy

Ty=—4
— % (’UZ‘ + Sij)("Ui + w; + Sij)

(2.30)

where V' is the total population at all of the locations in the system.

Several efforts have been made to compare the predictive capabilities of the
radiation model to a variety of gravity-type spatial interaction models (Simini et al.,
2012; Masucci et al., 2012; Lenormand et al., 2016) with two important conclusions.
First, the gravity model outperforms the radiation model at smaller scales, implying
the radiation model is not truly universal (Masucci et al., 2012). Yang et al. (2014)
and Kang et al. (2015) suggest reformulating the radiation model with the addition
of estimable parameters to overcome this weakness, thus further highlighting the non-
universality of the radiation model. The second conclusion is that when a comparison
between the radiation model and its proper gravity-type model counterpart is made,
the gravity model performs better, likely due to the flexibility provided by its estimated
parameters and functional form of distance-decay (Lenormand et al., 2016). This is in
contrast to an initial claim of superiority of the radiation model over a rudimentary
gravity model (Simini et al., 2012), which does not provide a level playing field for
comparison.

While the radiation model has perhaps received the most attention (see also
Lenormand et al., 2012; Liang et al., 2013; Ren et al., 2014; Yang et al., 2014), other
universal models have also been developed. The population-weighted opportunities
model (PWO) was designed as a variant of the radiation model specifically for finer
scale intra-urban flows (Yan et al., 2013). By recognizing the relatively higher mobility
of populations within cities, it assumes that the number of trips between an origin
and destination is a function of the attractiveness of the destination compared to

all other destinations, striking a resemblance to the competing destinations model.
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Further, a destination’s attractiveness is assumed to be inversely proportional to the

total population between the destination and origin, which yields

UJ](SN_ﬁ) (2 31)
S Wi, (g—)

JigT M

T; =T,

where T35, T}, w; are as previously defined, Sj; is the sum of population found between

s
7 and i, N is the total number of locations, and M is the total population in the city.
The model is essentially a ratio of the attractiveness of destination j from origin ¢ to
the sum of the attractiveness of all other destinations from 7. It is important to note
that the distance between 7 and j is still used as a radius to compute the sum of the
population between ¢ and j, but now the radius is centered on j rather than ¢, which
is denoted by the reversed subscript in S;; when compared to the radiation model.
A universal model of commuting networks (UMCN) has also been proposed
(Gargiulo et al., 2011; Lenormand et al., 2011; Lenormand et al., 2012). Rather
than using an analytical solution, an agent-based approach is taken to allocate trips
progressively according to probabilities that increase with the number of commuters
that arrive at a destination and decrease with increasing distance. That is, the
algorithm computes the origin-destination matrix iteratively where probabilities are
updated after each iteration. The UMCN has been compared to the doubly-constrained
gravity-type model because it incorporates information regarding the total inflows
and total outflows into the algorithm, however, it does not respect the total inflow
and outflow constraints in the predicted flows. After initializing the the origins
and destinations with the total outflows (S7**) and inflows (Si"), an origin (i) and

destination (j) are each selected at random, and then a trip is allocated between them

with the probability
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where distance is given by d;; with an exponential function of distance-decay and 3 is
the familiar distance-decay parameter. For every trip that is allocated, an inflow and
outflow trip is subtracted from the corresponding S and Sj"»", and this continues
until S = 0 for all . Rather than calibrating 3, Lenormand et al. (2012) suggest
inferring it from a relationship between the average surface area of the areal units of

the study area (/) and previously calibrated distance-decay parameters for 80 study

regions of varying scales, which is given by

B = 0.000315¢ 0177, (2.33)

Using this relationship makes it is possible to predict an origin-destination trip
matrix using only the total inflows, total outflows, and distances. Unfortunately, this
relationship only applies when considering the average areal unit surface area and is
therefore not useful for making local (i.e., origin-specific) predictions. It may also be
difficult to apply the UMCN when origin and destination locations are points instead
of areal units.

In contrast to NN spatial interaction models, which require data-intensive model
training, universal models carry out prediction of spatial interaction without the use of
any prior origin-destination data, and therefore may be useful in data scarce scenarios.
However, neither universal models nor NN spatial interaction models permit inference
and therefore do not provide a framework for model building, hypothesis testing, or
regional comparisons. That is, they do not facilitate the investigation of the spatial
processes that generate spatial interaction, which is a major limitation. Furthermore,
the increasing volume and availability of different types of spatial interaction data
suggests that the applicability of universal models may remain limited in scope. A final

drawback to the universal spatial interaction models paradigm is that it is not possible
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to estimate intra-zonal flows with radiation models (Lenormand et al., 2016), whereas
various extensions have been proposed to do so within gravity-type spatial interaction
models (Kordi et al., 2012; Tsutsumi and Tamesue, 2012). Overall, non-parametric
spatial interaction models are not pursued in this research, since the focus is explicitly
on the substantive interpretation of parameter estimates that are either lacking or

only of secondary interest in these models.

2.4 Model Assessment

In order to evaluate the fit of spatial interaction models, it has been recommended
that a variety of statistics be used (Knudsen and Fotheringham, 1986). Therefore,
several metrics are introduced here to be used in empirical work. For the log-normal
regression specification, it is popular to utilize the coefficient of determination (R?),
though this statistic is not available within the GLM framework typically used to
carry out Poisson regression. In replacement of the R? statistic, a pseudo R? can be

used that is based on the likelihood function (McFadden, 1974),

In L(Mj,
R;seudo =1- {l ( ! ll) (234)
ln L<Mlntercept)

where L is the likelihood of an estimated model, Mg,y is the model including all
explanatory variables of interest, and Mipsercep: is the model with only an intercept
(i.e., no covariates). Like the R? statistic, the pseudo version is at a maximum at
a value of 1 with higher values denoting better model fit. To account for model
complexity, there is also an adjusted version of this statistic,

_ 111 ﬁ(Mfull) - K

R? =1 _
hl L(Mlntercept)

adj—pseudo

(2.35)
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where K is the number of regressors. If model fit does not sufficiently improve, then
it is possible for this measure to decrease as variables are added, signaling that the
additional variables do not contribute towards a better model fit. Henceforth, these
pseudo R? statistics are referred to solely as R? and adjusted R?. Another model
fit statistic that can be used that also accounts for model complexity is the Akaike

information criterion (AIC),
AIC = —21In L(My) + 2K (2.36)

where lower AIC values indicate a better model fit (Akaike, 1974). This statistic is
grounded in information theory, whereby the AIC is an asymptotic estimate of the
information that is lost by using the full model to represent a given theoretical process.
The R? and AIC are designed for model selection, which means they should not
be used to compare between different spatial systems. One solution to this issue is
the standardized root mean square error (SRMSE),
> 2 (Ti—Tij)?

SRMSE = —5ee (2.37)

nxm

where the numerator is the root mean square error of the observed flows, 7T;;, and the
flows predicted by the model, Tij, and the denominator is the mean of the observed
flows and is responsible for standardization of the statistic. Here, n *m is the number
of origin-destination pairs that constitute the system of flows. A SRMSE value of 0
indicates perfect model fit, while higher values indicate decreasing model fit; however,
the upper limit of the statistic is not necessarily 1 and will depend on the distribution
of the observed values (Knudsen and Fotheringham, 1986).

One final fit statistic, a modified Sorensen similarity index (SSI), is reviewed here
because it has become increasingly popular in some spatial interaction literature that

deals with universal non-parametric models (Lenormand et al., 2012; Masucci et al.,
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2012; Yan et al., 2013). Using the same symbol definition from the SRMSE, the SSI

is defined as,

omin(Ty;, T )
SSI = e 2.38

which is bounded between values of 0 and 1 with values closer to 1 indicating a better

model fit.
2.5  Moving forward

This chapter provided a contemporary history of spatial interaction models that
includes basic gravity models, the ‘family’ of entropy-maximizing gravity-type spatial
interaction models, local models, the intervening opportunities model, the issue of
spatial structure in spatial interaction and several methods for accounting for it, non-
parametric models such as ‘universal’ models and neural network spatial interaction
models and, finally, metrics for assessing spatial interaction models. From the breadth
of this review it is clear that spatial interaction models have a rich history as a useful
tool in applied spatial analysis and quantitative geographic thinking at large.

Several important conclusions may be drawn from this comprehensive review of the
literature. First, distance-decay is a quintessential concept within human geography
and much energy has been put forth to understand the intricacies associated with
it. This may be most noticeable by the very active debate over distance decay in
spatial interaction models in the 70’s and 80’s. A relative dearth of work on spatial
interaction followed this period, but interest has increased in the last decade due to
new data sources and increased computational power. Second, while local models and
spatial non-stationarity were originally used to diagnose problems arising from spatial

structure, there has been little-to-no research leveraging local spatial interaction
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models in recent years. Several general frameworks have been proposed to account for
spatial structure, though these newer concepts that focus on spatial autocorrelation
and spatial dependence have virtually ignored the possibility of spatial non-stationarity.
Related to this, these newer spatial analytical frameworks have also been relatively dis-
interested in interpretations of distance-decay and human behavior. A final takeaway is
that simulations have been critical in building an understanding of spatial interaction
models, yet few simulations have been carried out to verify newer model specifications,
which have been identified to be ambiguous and produce inconsistent interpretations.
Therefore, it is important to compare the primary frameworks incorporating spatial
structure using simulated data to evaluate how their behavioral interpretations differ.

As previously mentioned, a renewed interest in spatial interaction models is owed
to the availability of data and computational power in the age of ‘big data’. On the
one hand, new data has created opportunities to investigate new spatial interaction
processes and build more intricate models. On the other hand, increased computational
power has made it possible to build models that incorporate data with higher spatial
and temporal resolutions and to apply more complex statistical techniques. In the
next chapter, these themes are explored with a review of spatial interaction data

within the context of era of big data.
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Chapter 3

SPATIAL INTERACTION IN THE ERA OF BIG DATA

3.1 Introduction

Data representing spatial interaction are essential for studying a wide spectrum
of geographic phenomenon, such as the location of services, product demand, trans-
portation trends, and demographic dynamics. Hence, spatial interaction is a core
concept within geographical research. While it has a long history, it was not until
the mid-20th century that the processes underlying spatial interaction became of
widespread interest to regional scientists and geographers. Following a relative ‘trough’
in spatial interaction research over the past few decades, there has been a renewed
interest in human movement under the banner of ‘human mobility’. This is primarily
due to the widespread availability of spatially and temporally disaggregate mobility
datasets from sources such as automated transportation systems, mobile phone records,
GPS trajectories, and social media, often described under the umbrella of ‘big data’
(Arribas-Bel, 2014). However, this new thrust of research has moved away from trying
to understand processes and tends to focus on predicting the movement of individuals
(Song et al., 2010b; Lin et al., 2013; Pirozmand et al., 2014; Do and Gatica-Perez,
2014) or establishing regularities (Brockmann et al., 2006; Gonzélez et al., 2008; Han
et al., 2009; Bazzani et al., 2010; Song et al., 2010a; Liang et al., 2012; Wang et al.,
2014). In contrast, spatial interaction models seek to explain and predict aggregate
movements or flows. Their aggregate nature provides an important tool that can

avoid privacy issues associated with individual-based data. At the same time, spatial

81



interaction models have been linked to techniques and theories for understanding
individualistic behavior (Anas, 1983; Fotheringham, 1986) such that aggregate data
can be used to gain insight into individuals’ behavior. Furthermore, since spatial
interaction models consider the attributes of a place that make it attractive as a
destination, against the costs that must be overcome to travel to it, they are a key tool
for understanding decision-making processes associated with movement. Knowledge of
location choice processes is important for policy development, which can be useful on
its own, as well as a factor within other regional models, such as land-use/land-change,
market analysis, or location allocation. Surprisingly, there has been little focus on
exploring the role of ‘big’ datasets within the spatial interaction modeling paradigm.
Compared to more traditional spatial interaction data (i.e., the decennial census), it
remains largely unknown whether or not these new data sources afford new insights
or if they have severe limitations as sources of information about movement processes.
Therefore, exploring big spatial interaction data and incorporating them into the
spatial interaction modeling framework is a crucial task necessary for modernizing the
geographical sciences toolkit, especially applied to urban areas, which are increasing
in number, density, and importance (United Nations and Department of Economic
and Social Affairs, 2014). As such, this chapter will provide a synthesis of spatial in-
teraction data in the context of big data, outline deficiencies of some analysis methods
that are employed instead of spatial interaction models, and discuss previous research
pertaining to two newer sources of urban transportation data — bike-share cycling trips

and taxi trips — that can potentially be used to calibrate spatial interaction models.
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3.2 Defining ‘big’ data

Under the umbrella of ‘big data’ many new forms of spatial interaction data have
become available. To understand these new sources, it is important to first comprehend
the basic tenants of big data and then to relate them to features that are particular
to spatial interaction. Defining big data, either physically or conceptually, has been
problematic due to its interdisciplinary nature. Each discipline has its own idea of what
should be considered big data and, therefore, what constitutes interesting research
questions associated with it (Diebold, 2012, Ward and Barker, 2013). Nevertheless,
many general definitions have been proposed for big data. Ward and Barker (2013)
deduce three characteristics common to most definitions of big data: size, complexity,
and the technologies needed to store an analyze it. They note that most previous
definitions have included at least one or two of these aspects, if not all of them.

In the case where complexity is the main focus, big data need not be very large
at all. Instead, the defining characteristic is that there is uncertainty regarding
the ability of current tools to accommodate the analysis of the data source (Batty,
2015). This idea resonates with recent research on human mobility and new data
sources. For instance, there has been much interest in how social media can be used
to enhance our understanding of human movement (Kruger et al., 2014; Wu et al.,
2014; Barchiesi et al., 2015; Li et al., 2015). More specifically, some researchers have
directly tested movement data extracted from social media sources, such as Twitter
(Lovelace et al., 2014; Llorente et al., 2015), or Foursquare (Noulas et al., 2012), within
spatial interaction models; however, these studies have only considered basic spatial
interaction models. There have also been explorations of new forms of transportation

data resulting from automated systems and GPS tracking such as bike trips (Wood
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et al., 2011; Mooney et al., 2010; Froehlich et al., 2009; Hampshire and Marla, 2012;
Beecham and Wood, 2013), and taxi rides (Peng et al., 2012; Wang et al., 2015;
Gong et al., 2015; Ferreira et al., 2013). Similarly, these transportation-based spatial
interaction data sets have only been utilized within basic gravity models (Goh et al.,
2012; Zaltz Austwick et al., 2013; Yue et al., 2012). Therefore, contemporary spatial
interaction modeling approaches that capture more complex spatial processes have
not been applied to these new data sources.

Another helpful big data definition, which is one of the earliest and most popular,
names three facets of a dataset that may become large: volume, velocity, and variety
(Laney, 2001). Therefore, this is a size-centric definition of big data. Previously,
Lovelace et al. (2015) discussed the three V’s of big data in the context of spatial
interaction modeling. However, their purpose was to support the introduction of a
fourth V, veracity, which is concerned with consistency between datasets and models,
rather than with issues arising from the original three V’s. Surprisingly, there has yet
to be a formal extension of the three V’s to spatial interaction data with a focus on
challenges that directly arise from larger data sets. Analyzing the three V’s of spatial
interaction data may require us to reconsider how we define place-based attributes
(origins and destinations), spatial coverage (scale and resolution) and the temporal

resolution (frequency of observations) for any given model.
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3.3 Properties of ‘big’ spatial interaction data

3.3.1 Volume

In association with spatial interaction, the first attribute, volume, refers to the
spatial coverage (scale and resolution) of a data set. Historically, spatial interaction
data has been available through surveys like the Unites States Census Bureau where
data are collected and aggregated for a limited number of geographic locations (by
state, county, tract, etc.). In contrast, big spatial interaction data have a much higher
coverage such that there is no limit to the number of locations where data may be
collected within any study area. This shift is primarily due to the recent explosion of
sensor technology that provides cheap and efficient data collection. For instance, GPS
trajectories, which have a precise x-y coordinate as a starting and ending location,
can be aggregated to an endless possibility of areal units at any scale. Importantly,
increased spatial coverage may become problematic since the number of possible
unique interactions increases exponentially as n? when there are n locations serving
both as origins and destinations.

One issue that arises is that larger sets of locations often result in many origin-
destination pairs where no movements occur, thereby resulting in zero-inflated in-
teraction matrices (Wilson, 2010a). For example, transit infrastructure, urban form,
and personal preference give rise to the hierarchical, heterogeneous, and hub-focused
nature of urban transportation (Roth et al., 2011; Zhong et al., 2014). More generally,
network science has shown that many social activities result in patterns of preferential
attachment, whereby popular locations become even more popular, often resulting in

an uneven and asymmetric distribution of events over a network (Barabasi and Albert,
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1999; Newman, 2013). Such zero-inflated datasets are problematic for the log-linear
model calibrated via ordinary least-squares regression due to the issue of taking the
logarithm of a zero observation, as well as potentially causing estimates to be biased
and inconsistent (Flowerdew and Aitkin, 1982; Fotheringham and O’Kelly, 1989;
Santos Silva and Tenreyro, 2006). When the zero-inflation is mild, these problems may
be alleviated by adopting a Poisson model and using maximum likelihood estimation
(Flowerdew and Aitkin, 1982) or by using a selection model (Linders and De Groot,
2006). Further problems of zero-inflation, which usually result in overdisperison, can
be overcome by using a modified Poisson estimator such as a negative binomial model
or specialized zero-inflated models (Burger et al., 2009). The negative binomial model
accommodates scenarios where the conditional variance is larger than the conditional
mean, thereby violating the Poisson assumption of equidispersion. However, the
Poisson and negative binomial models may still under-predict the number of zero
flows when there are many, indicating that a zero-inflated extension may be necessary.
Zero-inflated extensions provide a more sophisticated way to deal with zero flows
such that the model can distinguish between flows with exactly a zero probability of
occurrence, flows with a non-zero probability that have not occurred, and flows that
have a non-zero probability that have occurred. Therefore, zero-inflated models can
consider two kinds of theoretically different zero flows: those that could never occur
(zero probability of occurrence) and those that have not yet occurred but could (non-
zero probability of occurrence). That is, the zero-inflated Poisson and zero-inflated
negative binomial models allow for the possibility to detach the interaction probability
from the interaction volume (Farmer, 2011). Methods to deal with zero flows have
been tested in various studies (Abdmoulah, 2011; Philippidis et al., 2013; Tran et al.,

2013), though it is not yet clear that any single model is superior over all others.
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Even large datasets that are not zero-inflated may complicate analysis. At the most
basic level, spatial interaction’s multidimensionality makes it impossible to efficiently
visualize flow systems as the number of observations increases. Many techniques
have been proposed to visualize spatial interaction (Ghoniem et al., 2004; Holten and
Van Wijk, 2009; Xiao and Chun, 2009; Rae, 2009; Wood et al., 2010; Wood et al.,
2011; Rae, 2011; Sander et al., 2014), though each requires simplifications of the
data such that some information is lost. Further problems can arise in models that
require computations on large matrices, such as determinants or eigenvectors, which
can be problematic to calculate as the number of origin-destination pairs increases
(Chun, 2008; Griffith, 2009a; Bivand et al., 2013). They may require hours and days
to complete a single calibration routine and in the worst cases, some models may be
altogether intractable given limited computer resources. Importantly, these difficulties
may arise using only moderately large datasets (Batty, 2015), and while this is not
a new issue in spatial interaction modeling it is becoming increasingly important as

larger volume data becomes available.

3.3.2  Velocity

If volume refers to spatial coverage, then velocity naturally defines the temporal
resolution at which events are recorded. Traditional spatial interaction data are
aggregated over many months or years. In contrast, automated data collection enables
movements to be recorded as they occur such that they can then be aggregated daily,
hourly, or even on a minute-by-minute basis. As a result, big spatial interaction
data provides the means to explore the dynamics of human behavior. There is

a tradition of using dynamic spatial interaction models (Harris and Wilson, 1978;
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Fotheringham and Knudsen, 1986; Nijkamp and Reggiani, 1988; Clarke et al., 1998;
Wilson, 2010b) where the focus is on how one model component responds to changes in
other components. In some cases, the output of one model run may become the input
to a subsequent iteration of the model. These dynamic models typically implicitly
include time, whereby each model iteration represents one unknown time step. While
dynamic models allow us to investigate the possible evolution of a system, they neither
expose temporal trends (i.e., rush hour in commuting), nor do they shed light on
how human behavior changes over time. That is, they are particularly focused on the
urban structure rather than the actors that navigate through it. Another trend is
the adoption of spatial interaction models using panel data (Kim and Cohen, 2010;
Chun and Griffith, 2011; Metulini, 2013; Patuelli et al., 2013) to include the effects
of temporal autocorrelation that may occur, typically across several years of data.
Similarly, this method does not facilitate an analysis of how human behavior changes
over time. Fortunately, new high velocity time series data that describes spatial
interaction, as well as places, should make it possible to extend analytical capabilities
to capture temporally dynamic trends. In addition, such data could provide a means
to synchronize dynamic spatial interaction models with empirical data making it

possible to validate policies and test planning strategies.
3.3.3 Variety
Finally, variety can be characterized by the breadth of information available to
describe a particular phenomena. For spatial interaction, this includes both new types

of movement data as well as new variables to describe locations, which are collected

most often within high density urban environments. On the one hand, preprocessing
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and aggregation can be used to infer spatial interaction from GPS trajectories, social
media, and mobile phone records. While much current research illustrates the potential
within these sources, effort has only recently been put forth to examine how they
can be used to further understand spatial behavior (Sila-Nowicka, 2016; Sita-Nowicka
et al., 2016) or how they fall short in the context of spatial interaction modeling
(Lovelace et al., 2015). On the other hand, open data portals and web-services provide
new variables representing the density of human activities and descriptions of the
urban environment, and may serve as proxies to the classic place-based variable
of census population estimates. For example, at any given time, in a predefined
geographic area, the number of social media check-ins may be correlated with the
attractiveness of the area or the number of subway entrances may be used as a local
indicator of an area’s propulsiveness. Since many of these place-based variables are
also collected in real-time, fluctuations in their values over time may be able to explain
temporal patterns in spatial interaction, which ties into the aforementioned concept
of velocity. Therefore, much work still needs to be done to demonstrate which data
sources are effective representations of spatial interaction and can efficiently be linked
to specific locations. Another related challenge that remains is a means to tie together
individual-based real-time sensed data and cross-sectional population-based census

data aggregated at larger areal units (Batty, 2015; Romanillos et al., 2016).

3.4 Alternative analytical methods for spatial interaction data

In this section, various methods used for the analysis of spatial interaction data are

discussed. However, many of them have limitations compared to spatial interaction
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models that make them less desirable for investigating behavior associated with spatial

processes.

3.4.1 Visualization

Many methods have been proposed for visually exploring movement data. However,
because movement data have an origin, a destination, a direction, a length, a time
component, and sometimes a flow magnitude, it is often difficult to include all of the
possible information encoded in movement data. Therefore, in order to detect spatial
patterns, typically some form of dimensionality reduction is necessary. For example,
Beecham and Wood (2013) study differences in cycling behavior between genders
and Beecham et al. (2014) study commuting behavior of cyclers by subsetting the
larger dataset and then using curved vectors and density metrics to identify important
flow patterns Wood et al. (2010, 2011). Similarly, important aspects of the flow data
may be extracted by abstracting the data as a graph and exploiting characteristics of
the network or by treating the movements as two sets of points of space and using
point-based clustering techniques (Guo, 2007, 2009; Guo et al., 2010, 2012; Koylu
and Guo, 2013; Guo and Zhu, 2014; Zhu and Guo, 2014). For these techniques,
some of the less frequent trips become essentially invisible in order to detect some
prevalent patterns and this tradeoff may manifest itself differently depending on the
generalization method employed. Murray et al. (2012) propose normalizing the origins
(destinations) and focusing only on the destinations (origins), which maintains all
of the individual movement vectors but partially generalizes the geographic context.
Another trend in flow visualization, particularly for studying migration, is that of

circular plots such as cord diagrams and kriskograms (Xiao and Chun, 2009; Sander
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et al., 2014; Charles-Edwards et al., 2015). In this instance, it may be possible to
include all potential movements in the visualization, but the data becomes completely
detached from its geographic context. Finally, interactive visualization software has
also been developed for analyzing flows that may include combinations of techniques,
both spatial and aspatial (Yan and Thill, 2009; Rae, 2009; Boyandin et al., 2011; Rae,
2011). While interactive techniques typically allow for more dimensions of the data to
be explored, it is ultimately left up to the analyst to have some prior knowledge of
which dimensions to interact with (Rae, 2009). Though many techniques are available
for visualizing spatial interaction data, consideration of the size of the data, the specific
type of spatial interaction process, spatial context, and primary research questions

will ultimately play a factor in what defines a useful visualization.

3.4.2 Spatial dependence and global autocorrelation

Spatial dependence is a general term that refers to any underlying spatial processes
or spatial effects that would result in proximal observations being related to each other.
Measures of spatial autocorrelation, such as Moran’s I and Geary’s C are typically
used to detect and diagnose the presence of such dependencies. In this section, global
measures of autocorrelation that have been proposed to detect dependencies in spatial
interaction data are reviewed. Global measures typically result in a single metric
that indicate the level and nature of dependence, which contrasts local measures that
provide a metric for every location or even every observation in a sample. They are
sometimes mentioned in the context of spatial interaction modeling because they have

been suggested as a criterion for the selection of eigenvectors within the eigenvector
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spatial filtering methodology (Tiefelsdorf and Griffith, 2007; Griffith, 2007; Chun,
2008).

An initial measure of spatial dependence among spatial interaction data is put
forth by Black (1992) who suggests the term network autocorrelation since spatial
interaction can be represented by physical or abstract networks. Black demonstrated
how network autocorrelation may be captured in data or in model residuals by
specifying a network-based weight matrix within a Moran’s I spatial autocorrelation
statistic. Spatial associations between flows are defined by

1, ifi=korj=I
M(ij, kl) = (3.1)

0, otherwise
where ij and kl are two flows between origins (i or k) and destinations (j or [), which
are deemed neighbors if they share either an origin or a destination (i = k or j = 1).

Then a Moran’s I can be calculated for the spatial interaction system as

— n Zij Zkl Mijkry (i — ) (2 — @)
255 2w Mg > i@y — 1)

where x denotes the magnitude of a flow, Z denotes the mean of all of the flows, and n

1

(3.2)

is the number of flows. Similar to a contiguity-based Moran’s I, higher positive values
indicate increasingly positive autocorrelation while more negative values indicate
stronger negative spatial autocorrelation. Significance testing is initially based upon
the typical assumptions of either normality or randomization and then using the
associated analytically defined variance of I to compute a z score. The feasibility
of the network Moran’s I is demonstrated within an abstract flow network in a
migration context where the residuals of a spatial interaction model are diagnosed
with significant network autocorrelation, which is then remedied using either regional

dummy variables or accessibility variables. This network autocorrelation statistic is
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then subsequently used for an exploratory analysis of automobile crashes along the
physical links of a highway system (Black and Thomas, 1998). As part of this analysis,
it is shown through random permutations of values across the network links of a
simulated dataset that the network Moran’s I follows a normal distribution. However,
the simulated data were crash events constrained to the network rather than an actual
origin-destination flows that are constrained in geographic space.

The term network autocorrelation was more recently co-opted by Chun (2008),
Chun and Griffith (2011), and Griffith and Chun (2015) who use it to refer more
generally to any conceptualization of spatial dependence within abstract networks
of spatial interaction. Instead of using the above definitions of proximity based
on nodes on the network itself, Chun (2008) and LeSage and Pace (2008) defined
origin-destination contiguity spatial weights for spatial interaction data from the
perspective of origin, the perspective of destinations, and the perspective of origins

and destinations, which are denoted in equations 3.3 - 3.5 below

1, if ¢ and k share a border
M (ij, kl) = (3.3)

0, otherwise

1, if j and [ share a border
M(ij, kl) = (3.4)

0, otherwise

1, if i and k or j and [ share a border
M(ij, kl) = (3.5)

0, otherwise
where ij and kl are two flows between origins (i or k) and destinations (j or [).
There are several problems associated with these global measures of spatial de-

pendence for carrying out analyses of spatial interaction data. First, these methods
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are univariate such that they only include flow data and do not include any location
or separation variables, which are clearly important aspects of spatial interaction.
Second they can only capture a single source of dependence and they do not shed any
light on the contextual nature of the dependence. Finally, inference for these methods
should likely be carried out using computationally expensive permutations method
or other approximation methods, since analytical distributions associated with these

new types of proximity weights have yet been defined (Tiefelsdorf, 2002).
3.4.3 Spatial autocorrelation in vectors

In contrast to the previous measures of aggregate spatial autocorrelation, Liu et al.
(2014) have developed a variation of Moran’s I to measure spatial autocorrelation in
individual movement vectors. This statistic is enticing because it should theoretically
be bereft of aggregation bias, since the observations are assumed to be disaggregated.
Instead of comparing the spatial association of the volume of an origin-destination
flow to all others, it seeks to compare the direction and magnitude of a single vector

to all others, which can be computed as

_ no 22 Mi(wiug + vivy)
Do Zj M;; > (w2 +v7)

where u = (2P — 29) — (2P — 29), v = (yP — y°) — (P — ¥°), the O and D

I

(3.6)

superscripts denote whether the planar coordinates x and y are associated with origins
or destinations, and M;; is a spatial weight matrix used to define spatial association
amongst flows. Within the original conception of this vector-based Moran’s I, distance-
decay weights are utilized to define proximity between either vector origins or vector
destinations, though the authors claim any theoretically justifiable weight could be

used just as well.
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One potential issue with this measure is hypothesis testing because it is more
complex to simulate random permutations for two-dimensional vectors. Specifically,
it has been shown, using simulations, that different assumptions about the bound-
ary of the study area result in different empirical distributions of the test statistic.
Unfortunately, only a single empirical distribution is simulated for each scenario and
consequently no analysis of the potential power (i.e., susceptibility to false negatives)
or size (i.e., susceptibility to false positives ) of the test statistic is provided. Further
simulation experiments were carried out in appendix B and it was discovered that
the two permutation-based methods proposed to conduct significance tests for this
statistic do not behave as described by Liu et al. (2014). Method (1) preserves the
distribution of vector magnitudes, the distribution of vector directions and the set of
origin points, though it does not preserve the set of destination points. In contrast,
method (2) preserves both the set of origin points and destination points, but it
preserves neither the distribution of magnitudes nor the distribution of directions.
In appendix B it can be seen that method (1) is too liberal and tends to reject the
null hypothesis whether there is a pattern present or not and that method (2) is too
indecisive and only rejects the null hypothesis by random chance, whether there is a
pattern present or not. Therefore, no sufficient permutation method can be defined

and this method does not seem to be useful for analyzing spatial interaction data.

3.4.4 Spatial cluster detection and local autocorrelation

A recent focus of exploratory data analysis has been the extraction of clusters

of spatial interaction, which is useful for identifying important events or delineating

regions. Since the goal of spatial clustering is to find sets of features that are close
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together in geographic space, these methods are very similar in nature to methods
that focus on spatial dependence (i.e., global spatial autocorrelation). However, a
major difference is that clustering focuses on extracting specific features whereas
spatial dependence measures indicate whether or not clustering occurs more generally.
The breadth of available spatial clustering techniques may be classified by several
characteristics. First, flow clustering research may classified by whether or not the
aim is to identify clusters of individual flow events (Lu and Thill, 2003, 2008; Guo
et al., 2010, 2012) or aggregated flow events (Berglund and Karlstrém, 1999; Yamada
and Thill, 2010; Guo, 2009; Guo and Zhu, 2014; Zhu and Guo, 2014) or both (Tao
and Thill, 2016). Second, clustering methods may be categorized by how they define
spatial clusters. This is typically done using features of a network (Guo, 2007, 2009;
Guo et al., 2010), by treating the origins and destinations as two separate sets of
points in space and defining clusters among the sets of points (Lu and Thill, 2003,
2008; Guo et al., 2012; Guo and Zhu, 2014; Zhu and Guo, 2014), or by using higher
dimension measures of proximity amongst flows (Tao and Thill, 2016). This latter
methodology is particularly novel and insightful, since it jointly leverages all of the
information about each flow, including flow length and direction. Tao and Thill (2016)

suggest the term flow distance, which is defined between flows T;; and T}, as

dijr = \/(:cl-)2 + ()% + ()2 + ()2 + (@)% + (2% + (y)? + (00)? (3.7)

where x and y are the coordinates of the points or centroids that define the origins
(1, k) and destinations (j,!). Kordi and Fotheringham (2016) use this definition of
distance to specify spatially weighted interaction models and Tao and Thill (2016)
discuss how this specification can be enhanced with tuning parameters that shift the
focus in favor or either origins or destinations.

A large number of flow clustering techniques are actually local versions of global
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spatial autocorrelation statistics or they were extended from previously defined local
statistics. Therefore, a final way of classifying clustering techniques is by the type of
statistic that has been extended. One of the earliest extensions is by Berglund and
Karlstrom (1999) who extend the Getis-Ord G statistic to the G7}; to accommodate
flows. Similarly, Yamada and Thill (2010) also provide a flow-based extension to
the Getis-Ord statistic, as well as a local flow-based Moran’s I extension. They
demonstrate the importance of accounting for the structure of the network and the
underlying population of the network for carrying out significance testing. Finally,
Tao and Thill (2016) extend the local K function to accommodate flows and define a
novel adaptive subsetting routine for significance testing that considers the scale of the
flows under analysis. The nature of these localized flow statistics is such that a test
is carried out for each observation, which means they are computationally intensive.
Furthermore, when they are extended to flows, there are potentially n? statistics for
each flow to interpret, rather than n statistics for each location, which is more difficult
to map and evaluate. Since cluster detection is not a core theme within this research,

these techniques will not be further engaged.
3.5 Cycling and taxi trips as spatial interaction
3.5.1 Cycling and bike-sharing schemes
In the past decade there has been an increasing interest in understanding cycling
trends. This has been primarily due to the promise of cycling as an alternative

mode of transportation that is environmentally friendly, decreases road congestion,

and promotes physical activity. Furthermore, cycling may provide a link between

97



less connected nodes of public transportation systems, thereby decreasing overall
commuting times (Jéppinen et al., 2013). It is no surprise then that cycling has been
increasing around the world (Shaheen et al., 2010; Fishman, 2016a,b), especially in
central cities, gentrifying neighborhoods, near central business districts, and around
universities in the context of North America (Pucher et al., 2011).

The majority of research pertaining to cycling has been concerned with identifying
the traits of cyclists and their urban environment that characterize high up-take in
the choice to cycle to work. By isolating the most important factors, policies can be
developed that may be helpful in converting more of the population to become cyclists
(Handy et al., 2014). Within these studies, some results show that physical aspects
of the urban environment, such as slope, terrain, safety conditions, and travel time
are the most important (Rietveld and Daniel, 2004; Wardman et al., 2007; Heinen
et al., 2011). Therefore, safety and convenience are more important to individuals,
rather than the long term incentives, such as health and environmental sustainability
(Gatersleben and Appleton, 2007; Fishman, 2016a). In contrast, a number of other
researchers argue that the attitudes and perceptions of cyclists are more important
for promoting more individuals to cycle to work (Handy and Xing, 2011; Daley and
Rissel, 2011; Forsyth and Krizek, 2011; Guinn and Stangl, 2014). It is obvious then,
that a wide range of factors may be important in the decision to cycle as a form
of transportation. Additionally, it has been shown that factors may differ within
and across populations. For example, it was found that the rate that individuals
commute to work by bike is often heterogeneous across different ethnicities, and
genders (Gardiner and Hill, 1997; Rietveld and Daniel, 2004; Beecham and Wood,
2013). Another study employed a spatial regression framework to demonstrate that

bike usage in different spatial regimes, or regional clusters of municipalities, may be
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explained by different factors (Vandenbulcke et al., 2011). Research also shows that
individuals’ perceptions and attitudes may change depending upon on the length of
the journey under consideration (Heinen et al., 2011). These conclusions indicate that
there are likely spatial heterogeneities within the decision-making process of whether
or not to cycle that should be further explored.

The wide-spread establishment of bike-sharing schemes around the world has
encouraged individuals to cycle by providing affordable access to bikes without the
overhead of buying expensive equipment or the need to worry about theft (Bachand-
Marleau et al., 2012; Fishman, 2016a). These programs consist of stations where bikes
can be automatically checked in and out, thereby creating a detailed log of bike usage
throughout a given city. The open nature of bike-share trip data, which is typically
released for free by the governing municipality or program sponsors, has resulted in
much recent research about cycling (O’Brien et al., 2014; Romanillos et al., 2016).

Some of these efforts have sought to understand usage patterns within bike-sharing
schemes. Bachand-Marleau et al. (2012) surveyed bike share participants and found
that the primary factor affecting a participant’s frequency of usage is the proximity of
a station to their origin location. Another result of their study was that participants
often combined cycling with other modes of transportation, with the combination of
bicycle and metro being the most frequent. These findings are echoed by Padgham
(2012) who found that there was a strong correlation between the number of long-
distance bike-share journeys in London that start and end at a bicycle station and the
number of passengers entering or exiting the nearby subway stations; however, they
also found that this relationship is very weak for shorter journeys. Similarly, Martens
(2004) concluded that in the Netherlands, the closer the bicycle parking stands are

to public transport hubs, the more likely cycling is to be incorporated into urban
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transport. Finally, Hampshire and Marla (2012) reported that the number of stations,
the population density, and the size of the labor market are the factors that best explain
trip generation and attraction in bike-share usage in sub-city districts in Barcelona
and Seville while Faghih-Imani et al. (2014) use a multilevel modeling approach to
provide evidence that the weather, built environment, cycling infrastructure, and time
of the day are all important factors in explaining usage at stations.

There is also no shortage of research that seeks to leverage the data-rich nature of
the automated bike-sharing schemes in order to better understand them and make
them more efficient. A major problem in bike-sharing schemes is that they can become
unbalanced - heavy commuting patterns may deplete bikes at some stations - and
are no longer reliable for the users. As a result, Shu et al. (2013) and Schuijbroek
et al. (2013) focused on optimizing the spatial layout of bike stations to minimize
unbalancing. The former analyzes the location and capacity of stations, while the
latter incorporates optimal routes for re-stocking vehicles within the overall optimal
strategy. Similarly, there has been a series of attempts to extract spatio-temporal
usage patterns (Froehlich et al., 2008; Borgnat et al., 2009; Mooney et al., 2010; Vogel
et al., 2011), usually with the goal of developing a model to predict future usage
(Froehlich et al., 2009; Borgnat et al., 2010; Yufei et al., 2014; Yoon et al., 2012).
Collectively, these studies demonstrate that there are indeed spatial-temporal patterns
within bike-share usage.

Much of the general cycling research discussed above is not concerned with analyz-
ing the distribution of bike trips over geographic space because either the study was
not primarily geographical in nature or because the origin-destination information
was not available to the researchers. As a result, the literature is overwhelmingly

concentrated with insights that help to answer the questions, “who cycles” and “how
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many people cycle?”, rather than “where do people cycle?” or “why do cyclists prefer
certain locations?”. Even when origin-destination information is available, as is the
case for bike-share cycling data, spatial interaction models that can answer these
latter questions are not typically utilized. One exception is a study by Zaltz Austwick
et al. (2013) who employ a series of spatial and network methods to analyze bike share
origin-destination trip data for five cities. Their study included the use of a simple
gravity model from which they visualized the model residuals as indicators of locations
where flows do not conform to the basic tenets of the gravity model. Consequently,
it was found that trips connected to stations in the centralized areas of cities were
fewer in number than expected by the model. The reason cited for this observation
is that there is a relatively high density of bicycle stations in these areas (i.e., high
accessibility), which may diffuse the incoming bicycle traffic over a larger number of
origin-destination routes. This may be analogous to the competition forces that are
commonly accounted for within the competing destinations model (Fotheringham,

1983a) and therefore warrants further research.

3.5.2  Taxi trips

While there seems to be less substantive research into taxi usage itself compared
to cycling, the relatively recent addition of GPS technology into taxi fleets has
transformed taxi trips into an increasingly popular transportation dataset. This is
probably due to three reasons. First, the data become more accessible. Many taxi
datasets used to be available only to the personnel of municipal organizations that
manage them. If a researcher or analyst wanted to use the data they needed to

have an inside collaborator or go through the process of filing a data request if the
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municipality has open data and transparency laws, such as New York State’s freedom
of information law (FOIL) (Whong, 2014). These kinds of requests have resulted
in the general release of urban transportation data in machine readable format and
through easily searchable data portals (TLC, 2017; NYC, 2017). Second, is the rise of
the civic hacker. Civic hackers have led the way in investigating new datasets, such as
taxi trip data, and providing tools for harnessing these massive databases that can be
difficult to manage (Schneider, 2015; Shekhar, 2017). While the exploratory analysis
of civic hackers may seem superficial to some extent, the often elegant visualizations
they produce have received a lot of media attention, which ultimately promotes further
research. Thirdly, taxi trips have become popular in applied work because they provide
a dataset with high temporal frequency and extensive geographical coverage. For an
example that illustrates the culmination of these three factors, see figure 5, which is
a visualization of taxi pickups in New York City produced by a civic hacker using
open data and where the density and coverage of the data are so great it is possible
to see most of the city’s street network despite the fact that the data are comprised of

points.

A wide array of applied research has been carried out using taxi trip datasets.
Under the banner of human mobility, methods have been devised for describing the
collective nature of taxi trips (Liang et al., 2012; Liu et al., 2012; Peng et al., 2012;
Zheng et al., 2015). Several interesting observations result from this work. First,
taxi trajectories tend to exhibit strong daily rhythms and different patterns exist
for different travel purposes (Liu et al., 2012; Zheng et al., 2015). Second, urban
shape influences the direction and distance distributions of trajectories instead of
being uniformly distributed, which leads Liu et al. (2012) to conclude that, given

an origin and destination, the probability that a trip occurs between them depends
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New York City Taxi Pickups
2009-2015

schneider.com

Figure 5: Visualization of taxi pickup locations in New York City from 2009 to 2015.
This image was reproduced from http://toddwschneider.com/posts/analyzing-1-1-
billion-nyc-taxi-and-uber-trips-with-a-vengeance/
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on their populations and the distance between them. This conclusion encapsulates
the assumptions underlying basic spatial interaction models, such as the gravity
model. Other applications using taxi trip data include inferring trip purpose based
on spatial and temporal patterns (Gong et al., 2015), community detection (Liu
et al., 2015), predicting congestion (Wang et al., 2015), and event detection using
time-series decomposition (Zhu and Guo, 2017). Finally, various researchers have
created visualizations to capture trends and anomalies associated with the spatial,
temporal and more semantic characteristics of taxi trajectories (Ferreira et al., 2013;
Savage and Vo, 2013; Chu et al., 2014). In particular, Ferreira et al. (2013) and
Savage and Vo (2013) employ interactive visualization software to visualize New York
City taxi data and Ferreira et al. (2013) discuss how trips cluster around major
transportation hubs, with overall patterns changing during holidays, extreme weather,
or major events that lead to road closures.

Similar to bike-share trip data, this previously discussed research does not typically
include a spatial interaction modeling framework with the exception of Yue et al.
(2012) who process taxi trajectories into aggregate trips to several shopping centers in
the city of Wuhan. They then effectively calibrate Huff-style gravity models (Huff,
1963, 1964) that predict the percentage demand at locations using shopping center
size as a proxy for attractiveness against the cost of distance needed to arrive at the
shopping center. However, this is a rudimentary spatial interaction model and Yue
et al. (2012) conclude that “Additional research is needed to identify shopping center
attractiveness factors and a proper spatial interaction model to better depict the
relationships”. Therefore, more research regarding the appropriateness of taxi trips in

spatial interaction models is needed.
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3.6 Moving forward

This chapter covered a review of spatial interaction data in the era of ‘big’ data.
First, it outlined several definitions of big data, especially pertaining to features of
spatial interaction data and models. Next, it reviewed issues with some alternative
spatial interaction analysis methods other than spatial interaction models. Overall,
these techniques are limited in their ability to analyze spatial interaction data and
this highlights the need to calibrate spatial interaction models to understand spatial
processes and behavior. Finally, it explored two newer types of spatial interaction
data — bike-share trips and taxi trips — that fit many of the definitions of big data and
have been used surprisingly scarcely within spatial interaction models. Consequently,
these two data sets will be tested in several spatial interaction modeling frameworks
in the subsequent chapters. The primary interests are a) the extent that they can be
employed in spatial interaction models and b) what can be gained from their increased
spatial and temporal resolutions.

The next chapter will present the details of the data that will be analyzed through-
out this research. This includes the basic spatial and temporal trends of bike-share
trips and taxi trips in New York City, as well as locational attributes to describe
destination attractiveness. Both traditional census variables and alternative variables

available through open data portals will be considered for locational variables.
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Chapter 4

SPATIAL INTERACTION IN NEW YORK CITY

4.1 Introduction

This chapter introduces the empirical data associated with New York City (NYC)
that will be used throughout this research. This includes an overview of the study
area, movement datasets, and several locational attributes that are used to measure
the propulsiveness of origins and the attractiveness of destinations. Movement data
and locational attributes are necessary to calibrate spatial interaction models to
obtain parameter estimates and ultimately analyze spatial behavior. As a result, more
detailed and diverse data may allow us to carry out a more in-depth analysis, which
can lead to a better understanding of movement processes. For each type of data
introduced, the method of collection and preparation will be outlined, visualizations of
spatial and temporal features will be provided, and any potential issues or limitations

in the context of spatial interactions models are discussed.

4.2 Study Area

NYC is the most populous city in the United States with an estimated population
of 8,175,133 in 2010. It is also the most dense urban metropolis in the United States
with a relatively small metropolitan area of approximately 302.64 square miles in

2010 (population density of 27,012.5 per square mile)®. The city is divided into five

Shttps : | Jwww.census.gov/quick facts/ fact/table/newyorkcitynewyork/PST045216
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boroughs — Manhattan, Brooklyn, Queens, The Bronx, and Staten Island — that each
have different demographics and geographical features (figure 6).

Manhattan (figure 7) is perhaps the most famous of the five boroughs due to its
historical role as the center of the city and as a global financial center. It is also
home to several famous attractions such as Central Park, Time Square, and The
Empire State Building. While Manhattan is an island, it is connected to the Bronx
to the North via bridges and rail transit, to Brooklyn and Queens to the east via
bridges and rail transit, and to Staten Island to the south via pedestrian ferry services.
Though there is no direct road connection between Manhattan and Staten Island,
they are linked indirectly through roads and bridges via Brooklyn. Manhattan is also
connected to New Jersey in the West via bridges and rail; however, this research will
be limited to spatial interaction within NYC and interactions to and from New Jersey
will not be considered.

Brooklyn and Queens (figures 8 and 9) contain the majority of the City’s population
with approximately 2,504,700 and 2,230,722 residents, respectively. Much traffic runs
through these two boroughs due to commuters traveling to Manhattan for work or
people moving to and from the two airports (JFK and La Guardia). Manhattan
and the Bronx (figure 7 and 10) are the next two highest populated boroughs at
approximately, 1,585,873 and 1,455,720 residents, respectively. Finally, Staten Island
(figure 11) is the least populated borough with approximately 476,015 residents, which
is also an island and is relatively isolated in terms of necessary travel distance and
available transportation options in comparison to the other boroughs’.

Throughout this research the spatial units used for analysis will be the 2010 census

Thttp : //wwwl.nyc.gov/site/planning/data — maps/nyc — population/current — future —
populations.page
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tracts from the United States Census Bureau. Census tracts are relatively homogenous
in terms of demographics and contain an average of about 4,000 inhabitants®. They
are not the smallest available division of population information for the United States,
though they do provide a much finer scale of analysis than the county and state
boundaries that are often employed in spatial interaction modeling (see for example
(Chun, 2008; Griffith, 2009b; Chun et al., 2012)). In addition, smaller units of analysis,
such as census block groups and census blocks are too large in number for efficient
computation, since they result in billions of origin-destination pairs that comprise
observations of potential trips and the vast majority of these will be zero. In contrast,
the 2,166 census tracts of NYC, displayed in figure 12, result in 4,691,556 potential
origin-destination observations. It can be seen that Manhattan, with the most dense
population, tends to consistently have the smallest census tracts and Staten Island,

with the least dense population, tends to consistently have the largest census tracts.

8https : | /www.census.gov/geo/reference/gte/gtc.t.html
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Figure 6: The five boroughs of New York City
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4.3 Spatial Interaction Data

Three spatial interaction datasets will be utilized. First, CITI bike-share cycling
trips and taxi trips will be presented, which both represent new forms of spatial
interaction data that are available at finer spatial and temporal resolutions than
traditional spatial interaction data. Second, commute-to-work survey data from the
census are presented, which is considered a traditional spatial interaction data source.
The census data do not contain any time attribute and is therefore limited to a single
temporal aggregation of several years. In contrast, the bike and taxi trips can be
flexibly aggregated to any temporal unit. All data in this work has been limited to
the time frame from June 2014 through May 2016 to keep the number of data rows
that need to be processed from becoming too large. Within this range, temporal units

of months, weeks, days, and hours are explored.

4.3.1 CITI Bike-Share Trips

The CITI bike-share trip data® for the time period of this work consists of approx-
imately 20 million bike trips. The number of stations in the system at the beginning
of the study (May 2015) was approximately 250 but increased to approximately
500 by June 2016. Station locations can change slightly over time as the system is
continuously monitored and optimized, though these changes tend to be very minor,
such as a relocation of a station to a different corner of the same intersection. In
the situation where a station has been relocated during the period of the study, an

average of the two sets of coordinates is taken as the location. In one extreme case,

Yhttps://www.citibikenyc.com /system-data
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a station was moved across the city while maintaining the same station id (station
3016), and this station was excluded from the analysis. Each bike trip consists of an
origin station, a destination station, trip duration, a start time, an end time, cyclist
gender and whether or not the user is a subscriber or a one-off user. Since station
coordinates are provided as a point in space (latitude/longitude) and the trip start
time provides information up to the precise second, this data can be aggregated to
any larger spatial or temporal unit. Aggregating this data into census tracts results in
trips between 247 census tracts, which can be analyzed both spatially and temporally.

The data can be viewed as a time series and can be sampled monthly, weekly,
or daily (figure 13) over the two year period. First, by sampling the data monthly
(figure 13 top), it is possible to extract distinct seasonal weather trends where there
are more bike trips in the warmer months and fewer trips in the colder months. It is
also possible to observe a general trend of increasing usage, which may be attributed
to the expansion of the number of bikes and stations and increasing popularity of the
bike-sharing system. Next, by sampling the data weekly (figure 13 middle), more detail
is added and small spikes or drops in the number of trips are apparent, which might be
associated with fluctuations in the weather, such as the presence of precipitation, as
well as the effects of public events or holidays where people are either more stationary
or out of town. The big dips in the first and last weekly observation are artifacts of
the data, since the data were subset using daily break points and these weeks might
not have seven days of data. Finally, by sampling the data daily (figure 13 bottom),
even more detail is added to the time series and the trends found in the weekly series
are enhanced. Though there are relatively few large spikes above the average usage
trend, there are several large dips that are likely related to inclement weather. In fact,

the dashed red line corresponds to a blizzard that occurred January 22nd-24th and
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resulted in approximately 27.5 inches of snow '°. This blizzard, along with typically
cold and windy weather, resulted in January having the fewest rides for the Winter of
2016 (figure 13 top). It can be seen that the rides actually continued to decline after
the storm initially started on the 22nd, since the bike-share program was closed for
safety reasons and remained closed for several days while the snow was removed from
the roadways. This closure is evident in the daily sampling (figure 13 bottom) where
there is a discontinuity in the series.

Additional temporal trends can be extracted by aggregating the data by the day of
the week or the trip start hour of the day (figures 14 - 15). If the trips are aggregated
solely by the day of the week (figure 14), it can be seen that on average there are
fewer bike trips made on the weekends than during the week, which is likely due to
weekday commuting trips. Furthermore, if the trips are aggregated solely by the hour
of the day (figure 15), then the intra-daily commute patterns become clear. Average
usage tends to increase starting around 5:00am through 5:00pm with spikes around
8:00am, and 5:00pm for the morning and evening rush hour commutes, respectively.
The average number of trips then declines from 6:00pm until 4:00am. The trips can
also be aggregated by grouping them by the hour of the day and the day of the week
(figure 16), which show some additional interesting patterns. Here, it can be seen
that weekend trips follow a different hourly trend than weekend days trips, which
still exhibit morning and afternoon rush hour peaks. Instead, weekends trips tend to
more gradually increase throughout the morning and early afternoon with one smooth
peak around 2:00pm in the afternoon and a gradual decrease in trips throughout the
evening, though with more late-night trips. These trends indicate that trips over the

weekend are assoclated with leisure activities.

Ohttps: / /www.weather.gov/media/okx/Climate/CentralPark /BiggestSnowstorms.pdf
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The bike stations are currently only available in portions of Manhattan, Brooklyn
and Queens with the highest number of stations in Manhattan, the second highest
number of stations in Brooklyn, and only a few stations in Queens (figure 17 top
left). In addition, Manhattan stations tend to have a higher capacity of bike docks
than stations in Brooklyn and Queens (figure 17 top right). It is also possible to see
that although station use is high throughout Manhattan, there is exceptionally high
bike dock capacity along Broadway Avenue, which runs from the northwest to the
southeast. However, this trend is not apparent when the number of bike docks is
aggregated to census tracts (figure 17 bottom left). Some of the larger tracts stand out
as having the highest number of total docks, though this trend is removed when the
total capacity in each tract is normalized by the area of the tract (figure 17 bottom
right). Comparing the bottom left and bottom right maps of figure 17, it is apparent
that several larger tracts are the least dense in terms of the number of docks. For
example, in Manhattan, Central park (long tract in the center) and the Chelsea Piers
(west coast) exhibit this feature. These are all places that receive some traffic due to
industrial infrastructure and leisure activities, but have low residential populations.

Similar trends are noticeable when visualizing the total outflows and inflows (figure
18 top left and right) and the density of outflows and inflows (figure 18 bottom left
and right). Comparing the totals (top) to the density (bottom), large tracts such
as Chelsea Piers and Central Park again have some of the highest totals, but much
smaller densities. Moving to densities from total counts of bike trips, also has the
effect of highlighting the high traffic in some smaller tracts. Interestingly, it is possible
to see the northwest to southeast trend along Broadway Avenue in the density of
outflows and inflows, which corresponds to the number of docks available at individual

stations. Overall, these trends seem to be very similar for both outflows (left) and
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inflows (right); however, if the data are subset for only trips that start during the
primary morning commuting hours (6:00 am - 10:00 am) additional patterns emerge
(figure 19). While outflow density (figure 19 bottom left) seems to tend towards
being randomly distributed, there is a clear pattern of a higher density of trips ending
(inflow) (figure 19 bottom right) on the east side of Manhattan where there is known
to be many skyscrapers serving as office space. Furthermore, there is a clear cluster of
low density trip ends on the most easterly portion of Manhattan. This area is known
as Alphabet City, since it consists of several avenues, each denoted by a single letter,
and is known to be primarily a residential neighborhood where few commuting trips
would be expected to terminate.

Several variables may be used as a proxy for cost associated with making a trip
between a particular origin and destination (figure 20). Costs in spatial interaction
models are often theorized to be related to the distance traveled, the most basic
of which is the Euclidian distance between locations (figure 20 left), which is also
sometimes called the “straight-line” distance or “as-the-crow-flies” distance and alludes
to the fact that it is the shortest possible distance between two points. Since the
underlying road network and urban environment are not accounted for within this type
of distance, it is the simplest to compute, but typically underestimates distance, and
therefore, the underlying cost. A synthetic distance that is created by routing a cyclist
over the transportation network may also be used as a more realistic distance in lieu
of physically recording the distance as each trip occurs. To do this, Mapzen’s Matriz
routing service!! was employed on the bike station coordinates (figure 20 middle).
This service takes coordinates as input and returns the distance needed to travel on

the transportation network provided by OpenStreetMap’s database of volunteered

Uhttps:/ /mapzen.com/documentation /mobility /matrix /api-reference/
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geographic information. To determine the overall route and specific transport network
links utilized, the routing service has a series of “costing” parameters, such as the
preferred type of roads. For this research, the default parameters were used, which
tend to favor roads with bike paths and bike access, though it is not limited to them.
This has the effect of generating more realistic trip distance, and comparing them
(figure 20 middle) to the Euclidian distances (figure 20 left), it can be seen that
they have a similar distribution shape, but that the network-based distances are
typically longer than the Euclidian distances. This confirms that Euclidian distance
often under-estimates the distance required to travel between two locations in an
urban environment. A limitation of these distance measures and the bike data more
generally, is that full journeys likely to start at residences and end at places of work or
leisure rather than stations, which means some of the trip information is not directly
available.

In addition to distance, time is frequently used as a proxy to distance or cost.
Though the time of each bike trip is recorded as the difference between when the bike
is checked out of a station and when it is checked back in to a station (figure 20 right),
this attribute cannot be employed in spatial interaction models, since there is only
trip duration available for those origin-destination routes have been observed and it
would be inappropriate to assign a trip duration of zero to origin-destination routes
with no observations. Therefore, analysis will be limited to the two distance measures

previously introduced.
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4.3.2 Taxi Trips

There are currently over 1 billion taxi trips'? now available in NYC from January
2009 to the present. For the study period of June 2014 to June 2016, this amounts to
approximately 320 million trips. These trips are reported with the precise latitude and
longitude for the trip pick-up and drop-off point, start time, end time, trip distance,
trip cost, and passenger count. Similar to the bike data, these trips can be aggregated
to census tracts and to various temporal units.

Viewing the taxi trips as a time series (figure 21), several trends that contrast the
bikes can be determined. First, sampling the data monthly (figure 21 top), we can
see there is a decrease in taxi trips over time rather than in increase. This may be
attributed to competition with the new bike-sharing system, as well as competition
will ride-sharing services, such as Uber, that have become popular. It can also be seem
from the monthly time series that the seasonal trend is much less apparent. Moreover,
trips seem to be at a low during the winter when the weather is harsh, but also during
the summer months when many people opt to cycle or walk instead. Peaks in the
fall and spring may also be weather related since the weather is not harsh enough
to deter travel, but precipitation might drive individuals to choose a taxi over other
options. Second, the weekly sampling of the series (figure 21 middle) adds more detail
and shows agreement with an overall trend that is less prone to seasonality effects.
Thirdly, sampling the data daily (figure 21 bottom) adds even more detail. Of note is
that there are similar tends in both 2015 and 2016 of big dips in taxi trips right before
and after the New Year when people are observing holidays. Importantly, the effects

of the blizzard in late January are visible in a similar manner to the bike trips data.

2http: / /www.nyc.gov/html/tlc/html/about /trip _record _data.shtml
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The one difference is that there is no discontinuity in the taxi trip data set since taxi
service was not explicitly discontinued. However, the number of taxi trips drastically
decreases to the lowest point in the entire series. Also similar to the bike data, the
weekly taxi data shows artificial lows near the beginning and end of the series, which
is also an artifact of the data processing.

Differences in taxi trips compared to the bike trips can also be discerned when
the data are aggregated by day of the week or hour of the day (figures 22 and 23).
Using the former aggregation, there is a small increase in the number of taxi trips each
day from Monday to Saturday, with a decline from Saturday back to Monday. The
overall trend is that there is a spike in the number of trips on Friday and Saturday
when many people engage in evening leisure activities. Using the latter aggregation,
it can be observed that the number of taxi trips begins increasing around 6:00am
with the beginning of the morning commute. However, the number of trips increases
until about 9:00am where the number of trips plateaus until the evening commute
around 5:00pm, rather than declining. The taxi trips are also different from the bike
trips in that the number of taxi trips remains much higher throughout the evening
and does not significantly decrease until the latest hours of the night. These trends
can be corroborated and expanded upon by aggregating by both the day of the week
and the hour of the day (figure 24). As with the bike trips, the taxi trips have much
different weekday trends compared to weekends when the majority of taxi trips take
place later in the day. In particular, we can see that Friday and Saturday tend to have
an additional evening peak probably associated with nightlife activities. Of note is
that the number of trips on Fridays tend to mirror those of other weekday mornings,

while having an evening trend more closely related to Saturday. On the contrary,
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Sunday tends to have a similar number of trips as Saturday in the morning, but is
more similar to the weekdays in the evening.

The total trip outflow and inflow for each census track (figure 25) shows that the
highest volume of taxi trips occurs in Manhattan and the areas of Brooklyn, Queens,
and the Bronx that are closest to Manhattan. Overall, the distribution of trip counts
is more skewed than the bike data, with many more census tracts having a relatively
smaller number of trips compared to a much smaller group of tracts with very large
trip counts. Normalizing trip counts by census tract area moves some of the larger
census tracts from the extreme (i.e., large counts) end of the distribution toward more
moderate values (figure 26). This includes important places like Central Park and JFK
airport (circular tract in the southeast) and many less distinguished tracts in eastern
Queens and Brooklyn and the northern part of the Bronx. Whether visualizing counts
or densities, there does not seem to be any strong differences between the outflows
(left) and the inflows (right). Unlike the bike data, no clear patterns emerge, when
the data are limited only to trips associated with the morning commute (figures 27
and 28).

Similar to the bike trips, we can employ a simple Euclidian distance between
census tracts (figure 29 top left), though Mapzen’s Matriz service is prohibitively
expensive to deploy for the more than 4 million possible origin-destination routes
associated with the approximately 2100 census tracts where taxi trips can occur. The
taxi trip observations also include the distance traveled during each trip (figure 29 top
right), the total fare charged (figure 29 bottom left) to the customer and the duration
of the trip (figure 29 bottom right). The trip fare is determined by a combination
of pre-determined fees, time of the trip and the distance traveled. Spikes in the

taxi fare distribution are likely due to the addition of pre-determined fees, such as
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Figure 21: Taxi trips by month (top), by week (middle), and by day (bottom)
throughout the case study time period.

tolls. It is also possible to see a large spike at 50 dollars that is likely associated
with taxi trips to the airports, which are charged as a flat rate. However, like the
bike trip duration, these three included measures of separation are only available for
origin-destination routes where trips have been observed and not for the entire matrix
of potential origin-destination routes and therefore not be effectively employed in

spatial interaction models.
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Figure 29: Variables that are a proxy for the cost to travel by taxi between census
tracts. This includes Euclidian distance in kilometers between centroids (top left),
actual road distance also in kilometers (top right), trip fare in dollars (bottom left),
and trip duration in seconds (bottom right).
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4.3.3 Census Commute-to-work Survey

Before the recent explosion of big data, movement data that represent urban
mobility and commuting were limited to traditional surveys collected by the United
States Census Bureau. These datasets are aggregate in nature, often reflecting
information associated with multiple years and aggregated to the state, county, or
tract, spatial resolution. One example is the aggregate commute-to-work flows that
are available at tract resolution from the Census Transportation Planning Products'?
(CTPP) unit of the Census Bureau, which is based on the 2006-2010 American
Community Survey (ACS).

After selecting the flows that occur from residences in tracts within NYC and to
workplaces in tracts within NYC, the spatial distribution of the outflows and inflows
(figure 30 and 31) can be visualized in a manner similar to the bike and taxi trips,
though some noticeable differences are evident. Since this commute-to-work data
are specifically about a single process, assumptions about origins and destinations
are built into the data. For example, the outflows show different patterns than the
inflows, such as many trips arriving at JFK airport but no trips originating from there.
This is because there are no residences in the tract that correlates to JFK airport to
provide survey data, whereas taxis are picking up and dropping off customers art the
airport at all hours of the day. A similar argument holds for Central Park where there
are no residences, though bike trips may occur there throughout the day. Additional
effects of different types of locations serving as origins and destinations can be seen
in the histogram legends of figures 30 and 31. The outflows tend to have a more

diverse distribution of values, since residents live in and commute from almost every

13http://ctpp.transportation.org/Pages/5- Year-Data.aspx
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census tract. In contrast, the inflows tend to be bimodal with tracts either receiving a
relatively high number of commuters (e.g., tracts in Manhattan) or a relatively small
number of commuters (e.g., areas farther from Manhattan). Finally, normalizing the
flows by tract area, many large tracts have a relatively smaller intensity of commutes,
such as those in Staten Island (figure 31).

One advantage to commute-to-work survey data is that it can be expected that
there is less noise in the data, such as flows that do not occur based on commuting
related decision-making processes. However, at the same time, there are several
restrictions associated with these data. First, these trips are restricted to the tract
spatial resolution. This means that the only cost variable that can be defined is
Euclidian distance between the tracts (left in figure 20 and top left in figure 29)
because we have no additional information on the precise begginning and end of each
trip or the trip duration. Second, there is no temporal component to these trips. It is
not possible to examine how commuting varies over the course of a day or week, nor
is it possible to identify evolving patterns over, weeks, months, and years. Therefore,
this census flow dataset will be compared to the newer taxi and bike flow datasets to

help evaluate any potential or pitfalls associated with each data source.
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4.4 Location Attributes

In order to understand what make locations attractive, data that describe the
benefits or disincentives associated with each location are needed. Classically, these
attributes are limited to data from the United States Census Bureau. However, in
the era of ‘big data’ many additional variables are now also available. In this section,
variables will be presented that will be used as locational data and includes traditional
attributes, such as population and number of jobs, as well as newer data sources, such
as points of interest (POI’s) from OpenStreetMap'? and the municipal government

open data portal®®.

4.4.1 Census Variables

The 2010 decennial census and the American Community Survey (ACS) of the
United States Census Bureau are extremely valuable repositories of socio-economic
data that are frequently employed in spatial modeling. They provide data on a wealth
of socio-economic variables, such as population, income or race, which are generally
available at the census tract resolution. Due to the sampling frequency of these data
sets they are representative of slow dynamics in that they are only sampled once a
year or less frequently and are not expected to change much between samples. It
should also be noted that all census data are estimates and therefore contain various
levels of uncertainty; however, incorporating this uncertainty is not a topic of this

research. For this research, the following variables have been collected for each census

Yhttps : / Jwww.openstreetmap.org/

Bhttps : / opendata.cityofnewyork.us/
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tract: population count, housing unit count, average income, the percentage of people
living in poverty, and the number of jobs.

The spatial distribution of census tract population shows, as expected, that tracts
in Manhattan consistently have very high populations (figure 32 top). Unexpectedly,
it can also be seen that high population counts are recorded for Staten Island and
eastern portions of Queens and Brooklyn. However, normalizing the population by
the area of the census tract indicates that these high counts are mostly due to these
tracts being larger in size (figure 32 bottom). Similar trends are apparent for the
number of housing units and the density of housing units (figure 33). This suggests
that these two datasets will be collinear and only one should be used in each form
(i.e., counts or density).

Unsurprisingly, average income and the percentage of people living in poverty tend
to have an inverse relationship where areas with high income have low poverty (figure
34). Several trends emerge by visualizing these two variables. First, the southern
portion of Staten Island tends to have higher income and lower poverty. Second,
income is higher and poverty is lower in Manhattan with the exceptions of Alphabet
City, which is known to contain low-income housing, and north of Central Park,
which contains areas known for poverty, such as parts of Harlem. In the Bronx there
is typically higher poverty except for an enclave all the way in the northwest and
northeast. Finally, the areas of Brooklyn and Queens closest to Manhattan tend to
exhibit higher income levels, though as you move east to the central areas of Brooklyn
and Queens, the tracts tend to have higher poverty and lower income. These are also
the areas that do not typically have high transportation access. Interestingly, if you
continue moving east towards long island, the poverty in Queens tends to decrease

and income tends to increase.
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The final census variable is the number of jobs in each census tract. It is clear
that Manhattan and areas closer to Manhattan have a higher number of employment
opportunities (figure 35 top). However, normalizing the number of jobs by census tract
area, it can be seen that large tracts that contain important features like Central Park
and JFK international airport are outliers and do not contain a high number of jobs
relative to smaller tracts (figure 35 bottom). The distribution of jobs is heavily skewed
with most tracts having relatively few jobs compared to a minority of tracts with a
very high number of employment opportunities. This can be further investigated by
filtering out some of the tracts with the highest number of jobs (figure 36 top) where
most of these tracts are either in Manhattan or very close to Manhattan. One outlier
is the tract containing JFK airport, but this pattern does not exist when considering

job density (figure 36 bottom).
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Figure 32: Distribution of population by census tract (top) and distribution of
population density by census tract (bottom).
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Figure 33: Distribution of housing units by census tract (top) and distribution of
housing units density by census tract (bottom).
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Figure 34: Distribution of average income by census tract (top) and distribution of
percentage of households in poverty by census tract (bottom).
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Figure 35: Distribution of jobs by census tract (top) and distribution density of jobs
by census tract (bottom).
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Figure 36: Distribution of filtered jobs by census tract (top) and distribution of density
of filtered jobs by census tract (bottom).
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4.4.2 Urban Environment

A variety of spatial data sets that can be used to describe the urban environment
and may serve as proxies to the attractiveness of a location are available via the NYC
open data portal'é. For instance, building footprints, which include the number of
floors in each building, may be used to compute the total building square footage in
each census tract to represent the general opportunities available (figure 37). Here it
can be seen that midtown and downtown Manhattan, along the portion of the outer

boroughs that are closes to Manhattan, have the building square footage.

Another way to capture different aspects of the built environment is through a
database of points-of-interest (POI) for NYC, which can be obtained through the
OpenStreetMap'” project that collects and stores volunteered geographic information.
Figures 38 - 44 represent various types of POI’s that include bars, cafes, restaurants,
shops, tourist destinations, museums, and colleges and universities. Each of these
variables may also help define what makes a census tract attractive, however there
are several issues with these data. First, the data are available as a set of points
which need to be aggregated to census tracts. Second, and more importantly, these
data may suffer a reporting bias, since most people do not spend time volunteering
geographic information. It is likely that there are more POI’s reported where there
are more younger communities that are more technology savvy. Thirdly, volunteered

information may have lower accuracy than more official sources. Therefore, this

https: / /nycopendata.socrata.com

Thttp: / /wiki.openstreetmap.org/wiki/Planet.osm
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Figure 37: Distribution of total building square footage by census tract locations.
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research will investigate the usefulness of this type of data in spatial interaction
modeling.

Many of these of individual types of POIs are relatively sparse. For example,
museums (figure 43), and places of higher educations (i.e., colleges and universities)
(figure 44), were so sparse that they were more easily visualized using binary indicators
for tracts that contained a POI (in red) or did not. Therefore, a single composite
variable composed of all POI’s (figure 45) was created and will be employed in empirical

modeling in a later chapter.
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Figure 38: Distribution of bar locations
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Figure 39: Distribution of cafe locations
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Figure 42: Distribution of tourist site locations (top) and distribution of number of
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