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ABSTRACT

As urban populations become increasingly dense, massive amounts of new ‘big’ data

that characterize human activity are being made available and may be characterized

as having a large volume of observations, being produced in real-time or near real-time,

and including a diverse variety of information. In particular, spatial interaction (SI)

data – a collection of human interactions across a set of origins and destination

locations – present unique challenges for distilling big data into insight. Therefore,

this dissertation identifies some of the potential and pitfalls associated with new

sources of big SI data. It also evaluates methods for modeling SI to investigate the

relationships that drive SI processes in order to focus on human behavior rather than

data description.

A critical review of the existing SI modeling paradigms is first presented, which

also highlights features of big data that are particular to SI data. Next, a simulation

experiment is carried out to evaluate three different statistical modeling frameworks

for SI data that are supported by different underlying conceptual frameworks. Then,

two approaches are taken to identify the potential and pitfalls associated with two

newer sources of data from New York City – bike-share cycling trips and taxi trips.

The first approach builds a model of commuting behavior using a traditional census

data set and then compares the results for the same model when it is applied to

these newer data sources. The second approach examines how the increased temporal

resolution of big SI data may be incorporated into SI models.

Several important results are obtained through this research. First, it is demon-

strated that different SI models account for different types of spatial effects and that

the Competing Destination framework seems to be the most robust for capturing

spatial structure effects. Second, newer sources of big SI data are shown to be very
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useful for complimenting traditional sources of data, though they are not sufficient

substitutions. Finally, it is demonstrated that the increased temporal resolution of

new data sources may usher in a new era of SI modeling that allows us to better

understand the dynamics of human behavior.
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Chapter 1

INTRODUCTION

1.1 General overview

The majority of the global population now resides in cities (United Nations and

Department of Economic and Social Affairs, 2014). It is not surprising then, that

in the ‘big data’ era, massive amounts of data that characterize how people meet

their economic needs, interact within social communities, and utilize shared resources

such as transportation infrastructure are being made available through advances in

technology and a sea-change in attitudes towards making data public. Understanding

the drivers of urban dynamics can inform policies for increasing the resilience of cities

and reduce the negative side-effects of urbanization (Batty, 2013). Therefore, it is

crucial to harness the ever-increasing streams of data being produced by cities and

their digitally equipped infrastructure. However, before these sources can be turned

into actionable knowledge, there are challenges that must be overcome.

In the age of big data there has been an abundance of new datasets that may be

characterized as having a large volume of observations, being produced in real-time

or near real-time, and including a diverse variety of information (Kitchin, 2014b;

Lovelace et al., 2015). While big data have been hyped as the solution to many

complex problems, many studies leveraging big data are often descriptive in nature

and therefore fall short of answering interesting research questions that illuminate

the processes that generate the data we observe. That is, big data do not necessarily

imply an increase in knowledge or understanding. In order to ascribe meaning to the
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torrents of data that are collected daily, they must first be tested against theories so

that patterns within the data can be associated with social processes (Kitchin, 2014a).

Adopting a model-driven approach to geospatial analysis solves an inherent problem

of big data: their inability to speak for themselves. By building assumptions and

expert opinions into the structure of a model, we can begin to solve this problem. The

insights that result from applying data to an established model can confirm or reject

hypotheses, rather than solely extracting patterns from data. Pure pattern detection is

problematic because it is possible to observe spurious relationships amongst completely

unrelated data. The process of developing and critically evaluating models that can

accurately capture a given phenomenon is key to generating genuine insights (Farmer

and Pozdnoukhov, 2012), and is a focus of this research agenda.

Human activities that require traversing physical space, such as commuting,

shopping, dining, or socializing, are drivers of urban dynamics. Accurate descriptions

of these dynamics require precise measures of spatial contexts that propel and attract

potential movers, as well as an understanding of the costs of interacting within complex

social and physical environments. Spatial interaction models, which seek to explain

and predict aggregate movement patterns, are a set of tools that have a long history

of being employed by academics, and professionals (Haynes and Fotheringham, 1984;

Fotheringham and O’Kelly, 1989; Sen and Smith, 1995; Roy, 2004). Traditionally,

these models analyze data that represent movements between a set of origins and

destinations, which are represented by large areal units (i,e,. states, counties, cities),

and have been collected over extended periods of time (decades, years and months).

The core assumption of spatial interaction models is that the magnitude of movements

between two locations will increase as a function of their attractiveness, but that

it will decrease as the physical separation (i.e., distance or time) between locations
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increases. As such, spatial interaction models, have been used to study migration,

transportation, residential mobility, retailing, attendance at events and universities,

patronage of medical facilities, and economic interactions around the world, utilizing

many different variables as proxies for size and separation.

While spatial interaction has a long history, it was not until the mid-20th century

that the processes underlying spatial interaction became of widespread interest to

regional scientists and geographers. Following a relative ‘trough’ in spatial interaction

research over the past few decades, there has been a renewed interest in human

movement under the banner of ‘human mobility’. This is primarily due to the

widespread availability of spatially and temporally disaggregate mobility datasets

from sources such as automated transportation systems, mobile phone records, GPS

trajectories, and social media, often described under the umbrella of big data (Arribas-

Bel, 2014), as well as the availability of increased computational power to handle

these new data. However, this new thrust of research has moved away from trying to

understand processes and tends to focus on predicting the movement of individuals

(Song et al., 2010b; Lin et al., 2013; Pirozmand et al., 2014; Do and Gatica-Perez,

2014) or establishing regularities (Brockmann et al., 2006; González et al., 2008;

Han et al., 2009; Bazzani et al., 2010; Song et al., 2010a; Liang et al., 2012; Wang

et al., 2014). A result of this trend has been the promulgation of so-called ‘universal’

spatial interaction models (Lenormand et al., 2012; Simini et al., 2012; Yan et al.,

2013) that predict movement using non-parametric specifications that do not allow

for model building or hypothesis testing. In contrast, parametric spatial interaction

models produce parameters that may be interpreted as the strength and nature of the

attributes of a place that generate its attractiveness against the costs that must be
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overcome to travel to that place. Therefore, they are a key tool for understanding the

underlying decision-making processes that generate spatial interaction data.

Despite the widespread applicability of parametric spatial interaction models, there

does not yet exist a methodology that exploits the real-time qualities of emerging

datasets; one where the temporal dimension of a movement phenomenon, such as

commuting, is considered for increasingly finer time periods. Furthermore, existing

models generally seek to explain and predict the number of movements that occur

based on generalized locational attributes (i,e,. average population), rather than

specific indicators, such as points-of-interest or subway station usage that can also

describe destinations. Parametric spatial interaction models may thus be improved

by leveraging the richness of big data to provide new insights into the dynamic

mechanisms that facilitate human movement within cities. However, it remains largely

unknown whether or not these new data sources have limitations compared to more

traditional spatial interaction data (i.e., the decennial census). Therefore, exploring big

spatial interaction data and incorporating them into the destination choice modeling

framework is a crucial task that is necessary for modernizing the geographical sciences

toolkit, especially for studying and governing urban areas, which are increasing in

number, density, and importance (United Nations and Department of Economic and

Social Affairs, 2014). Furthermore, the destination choice framework that is popular

within the spatial choice literature is generalized to consider the case of origin choice

and is therefore referred to as location choice. Knowledge of location choice processes

is important for policy development, which can be useful on its own, as well as a

factor within other regional models, such as land-use/land-change, market analysis, or

location-allocation.

A key inquiry in parametric spatial interaction modeling is the nature of distance-
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decay – how space limits human activity – and how this effect may change for different

types of flows and for different regions. In particular, spatial structure, which refers

to the organization of locations in space, has been an on-going interest in spatial

interaction models for 50 years. Debate about the effects of spatial structure in spatial

interaction models crescendoed in the late 70’s and early 80’s with the goal of deter-

mining whether or not distance-decay measurements were strictly behavioral or were

influenced by spatial structure. A proposed solution was the competing destination

model (Fotheringham, 1983a), which considers several aspects of individual behavior

in relation to spatial structure and spatial information processing. Over the last few

decades, spatial structure has remained an important topic, and several additional

techniques from the econometrics (LeSage and Pace, 2008) and spatial statistics

(Griffith, 2007) paradigms have been proposed that harness increased computational

power to use more complex statistical methods to account for spatial structure within

spatial interaction models. While all these parametric spatial interaction models draw

on a common foundation, they are distinct in terms of methodology and theory, with

newer techniques shifting the focus away from distance-decay in favor of the concept

of spatial autocorrelation.

It is clear then that the spatial interaction landscape has become increasingly

diverse in terms of available model specifications, data, and underlying theories for

investigating location choice. Therefore, our understanding of spatial interaction

and spatial decision-making processes may be enhanced by a) making connections

between similarities of different spatial interaction model specifications; b) clarifying

the differences between spatial interaction specifications; and c) investigating the

potentials and pitfalls of new sources of big spatial interaction data in the context

of the breadth of available modeling specifications. Following these themes, several
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important research questions will be pursued in this manuscript. First, “can we detect

useful spatial-temporal dynamics in spatial interaction data that can be used to

enhance spatial interaction models? If so, are these dynamics sensitive to certain

spatial and temporal resolutions?” Second, “what are the advantages and disadvantages

to different spatial interaction model specifications?” and “does each specification

adequately define and capture spatial structure?” Finally, “what are some of the

drivers of urban location choice?”

1.2 Research objectives

This research evaluates a variety of spatial interaction model specifications in light

of newly available data sources in the context of urban location choice. Considering

the avalanche of new spatial interaction data sources with increasingly finer spatial and

temporal resolutions, the main goal of this dissertation will be to investigate how the

added detail can be used to better predict and understand spatial interaction processes.

To that end, this research will seek to fulfill three primary goals: 1) compare and

contrast parametric spatial interaction model specifications that account for spatial

structure; 2) build parametric spatial interaction models using two newer sources

of urban transportation data – bike-share cycling trips and taxi trips in New York

City (NYC) – and new measures of urban structure that may be useful indicators of

location attractiveness; and 3) explore the spatial and temporal dynamics in spatial

interaction data. These three primary goals may each be further broken down into

several objectives that will be carried out to in order achieve the larger goals. The

individual objectives are as follows:

1. Compare and contrast parametric spatial interaction model specifications
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• Review parametric spatial interaction model specifications

• Evaluate the similarity and robustness of specifications using simulations

2. Build parametric spatial interaction models of bike trips and taxi trips in New

York City

• Calibrate production-constrained models of location choice using different

specifications

• Calibrate origin-specific production-constrained models to investigate spa-

tial non-stationarity

3. Explore the spatial and temporal dynamics in spatial interaction data

• Review the nature of spatial interaction data and characterize existing

applications

• Calibrate temporal subset production-constrained models to investigate

temporal non-stationarity

1.3 Thesis structure

These goals and objectives will be addressed in the subsequent eight chapters of

this dissertation. A summary of each chapter is as follows:

Chapter 2: Spatial interaction models An in depth review of spatial interaction

models is provided. This includes both parametric and non-parametric spatial inter-

action models. A large focus throughout this chapter is on the development of the

idea of spatial structure in spatial interaction, methods to account for it, and how it

effects distance-decay. Finally, several metrics for assessing spatial interaction models

are highlighted.
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Chapter 3: Spatial interaction in the era of big data In this chapter, the

concept of big data is defined in the context of spatial interaction and some problems

associated with it are highlighted. Next, it summarizes exploratory analysis methods

and applications for spatial interaction data. Lastly, it reviews research related to

bike-share cycling trips and taxi trips, especially in the context of spatial interaction

and within New York City.

Chapter 4: Spatial interaction in New York City Here, the data sources that

will be used for analysis are presented. This includes basic spatial and temporal

patterns of bike-share trips and taxi trips in New York City, as well as location

attributes. These attributes include traditional census variables and non-traditional

variables made available by the city or one of its governing agencies.

Chapter 5: A simulation-based investigation of spatial structure Several

simulation experiments are carried out in this chapter to compare and contrast

parametric model specifications that account for spatial structure. First, data will be

simulated using the data-generating processes for each model (including a null model

that is free from spatial structure effects) and then each model will be calibrated on

all of the synthetic datasets. The purpose is to explore the extent that the models

may capture similar effects. Second, the data will be aggregated to larger spatial

units to assess how robust each specification is to measurement error induced from

the aggregation process.

Chapter 6: Local models of location choice in New York City In this chapter

several attraction-constrained models of location choice will be calibrated on the bike

and taxi data. Then these models will be extended to localized origin-specific models

so that the parameters can be visually analyzed for spatial non-stationarity.
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Chapter 7: Temporal subset models of location choice in New York City

Production-constrained models of location choice are first established for the bike and

taxi data. The models will then be calibrated on increasingly finer temporal subsets

to explore if the parameter estimates are still reliable and how urban behavior changes

over time.

Chapter 8: Discussion and Conclusions Finally, the previous seven chapters will

be discussed in terms of the major findings and implications for the different themes

within this dissertation. Limitations and future work will also be addressed.

1.4 Moving forward

The previous sections introduced the work that will be carried out in this disserta-

tion, including an overall motivation, the specific research goals, and a sketch of the

structure of the chapters ahead. In the next chapter, the spatial analysis technique of

interest – spatial interaction models – will be introduced and reviewed.
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Chapter 2

SPATIAL INTERACTION MODELS

2.1 Introduction

Spatial interaction models are a class of models used to understand and predict

aggregate flows of people, information, or goods over space. The underlying hypothesis

for spatial interaction models is that the volume of flows between an origin and

destination is a function of the potential at an origin, the attractiveness of a destination,

and the cost of overcoming the separation between the origin and destination. It

is the generalizability of this hypothesis that has allowed spatial interaction models

to be applied in diverse settings and has been of consistent interest to geographers

and regional scientists, as well as allied disciplines (Haynes and Fotheringham, 1984;

Fotheringham and O’Kelly, 1989; Sen and Smith, 1995; Roy, 2004; Oshan et al.,

2014; Farmer and Oshan, 2017). In particular, there is often special attention paid

to the role of physical separation within these models, which is usually captured by

inter-location distances.

Parametric models, which involve deriving unknown parameters by calibrating

the model on observed data, may be used both for explaining spatial interaction,

as well as making predictions. In contrast, non-parametric models do not have any

parameters that need to be calibrated and therefore do not provide any interpretative

or explanatory power. Consequently, non-parametric models are limited to predicting

spatial interaction. In the review of spatial interaction models that follows, parametric

models will first be presented. A key inquiry in parametric spatial interaction modeling
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is how space limits human activity and how this effect may change for different types

of flows, for different groups of individuals, and for different spatial contexts. In

particular, spatial structure in spatial interaction will be a core theme within this

review of parametric spatial interaction models. Subsequently, non-parametric models

will be discussed. Lastly, some metrics for assessing model fit will be reviewed for use

in empirical work.

2.2 Parametric spatial interaction models

2.2.1 The gravity model

The earliest spatial interaction models originated from a physical analogy based

on Newton’s law of gravitational attraction between two bodies (see for example Zipf,

1946), where the number of flows between two locations is given by the product of

the populations of the origin and destination, divided by the distance between them.

This relationship can be generalized in the following manner,

Tij = k
V µ
i W

α
j

dβij
(2.1)

where T represents an n×m matrix of flows between n origins (subscripted by i) to

m destinations (subscripted by j), V and W are n× 1 and m× 1 vectors of origin and

destination attributes, respectively, d is an n×m matrix of the costs to overcome the

physical separation between i and j (usually distance or time), k is a scaling factor,

and µ, α, and β are exponential parameters. This model is often simplified further by

assuming that some or all of the exponential parameters are unity and therefore are

not included in equation (2.1). When data for T , V , W , and d are available we can

estimate the exponential parameters (also called calibration), which summarize the
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effect that each model component contributes towards explaining the system of known

flows (T ). In addition, known parameters can be used to predict unknown flows when

there are deviations in model components (V , W , and d) or the set of locations in

the system is altered (Fotheringham and O’Kelly, 1989). Despite its usefulness, this

simplistic model lacks an analytical derivation and a theoretical behavioral framework.

2.2.2 Entropy maximization and the family of gravity-type spatial interaction

models

Wilson (1967, 1969, 1970, 1971, 1973) provided a formal framework by applying

the statistical theory of entropy-maximization to analytically derive a ‘family’ of

gravity-type spatial interaction models, henceforth referred to as just spatial interac-

tion (SI) models. This framework seeks to assign flows between a set of origins and

destinations by finding the most probable configuration of flows out of all possible

configurations, without making any additional assumptions. These models can also be

obtained using an information minimization framework (Fotheringham and O’Kelly,

1989). By including information about the total inflows and outflows at each location

(also called constraints), the following family of models can be obtained,

Unconstrained

Tij = V µ
i W

α
j f(dij) (2.2)
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Production-constrained

Tij = AiOiW
α
j f(dij) (2.3a)

Ai =
(∑

j

Wα
j f(dij)

)−1
(2.3b)

Attraction-constrained

Tij = BjV
µ
i Djf(dij) (2.4a)

Bj =
(∑

i

V µ
i f(dij)

)−1
(2.4b)

Doubly-constrained

Tij = AiBjOiDjf(dij) (2.5a)

Ai =
(∑

j

BjDjf(dij)
)−1

(2.5b)

Bj =
(∑

i

AiOif(dij)
)−1

(2.5c)

where Oi and Dj are the total number of flows emanating or terminating at an

origin or destination, Ai and Bj are balancing factors that ensure these totals are

preserved in the predicted flows, and dij takes on a functional form, referred to as the

distance-decay function. This is most commonly either a power function,

f(dij) = dβij (2.6)

or an exponential power function,

f(dij) = exp(β ∗ dij) = eβ∗dij (2.7)

and β is expected to take on negative values that indicate the decaying nature on

the effects of increasing physical separation on the propensity for flows to occur. The

former distance-decay function is justified through Wilson’s max-entropy derivation
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where it is the natural result of the analytic framework while the latter distance-decay

function is justified when the analyst believes there is a logarithmic evaluation of

transport costs and is also the specification that arises from a physical analogy to

Newton’s law of gravity. Vries et al. (2009) and Martínez and Viegas (2013) provide

some examples of alternative specifications, thought these are less popular in the

literature and often harder to interpret. Finally, µ, α, and β are parameters to be

estimated through model calibration.

The so-called unconstrained model (or total-trip constrained model) is given in

(2.2), which does not conserve the total inflows or outflows during parameter estimation.

The production-constrained and attraction-constrained models are given in (2.3a) and

(2.4a). These models conserve either the number of total inflows or outflows at each

location and are therefore useful for building models that allocate individuals either

to a set of origins or to a set of destinations. Finally, the doubly-constrained model is

given in (2.5a), which conserves both the inflows and the outflows at each location

during model calibration. The quantity of explanatory information provided by each

model is given by the number of parameters it provides. As such, the unconstrained

model provides the most information, followed by the two singly-constrained models,

with the doubly-constrained model providing the least information. Conversely, the

model’s predictive power increases with higher quantities of built-in information (i.e.

total in or out-flows) so that the doubly-constrained model usually provides the

most accurate predictions, followed by the two singly-constrained models, and the

unconstrained model supplying the weakest predictions (Fotheringham and O’Kelly,

1989). An exposition of these spatial interaction models, their applications, and

various extensions is provided by Wilson (2010a). These models were later given

a behavior-based theoretical foundation through the economic framework of utility
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theory (McFadden, 1974; McFadden, 1977) and have been shown to be equivalent

to discrete choice models derived within a utility-maximization framework plus any

aggregation bias (Anas, 1983).

While these spatial interaction models have been calibrated using linear program-

ming, and non-linear optimization, regression is perhaps most frequently used. They

can be linearized and included within an ordinary least squares regression specification

by taking the logarithm of both sides of a given model (Fotheringham and O’Kelly,

1989). For the unconstrained model, this yields the so-called log-linear or log-normal

gravity model,

lnTij = k + µ lnVi + α lnWj − β ln dij (2.8)

lnTij = k + µ lnVi + α lnWj − βdij (2.9)

which can be expressed more generally in terms of a regression specification as

lnTij = k + µ lnVi + α lnWj + β ln dij + ε (2.10)

lnTij = k + µ lnVi + α lnWj + βdij + ε (2.11)

where ε is a a normally distributed error term with a mean of 0 and β is still expected

to take on a negative value. These two specifications differ in that the distance variable

is logged in equation 2.10 whereas in equation 2.11 it is not. This difference arises

depending on whether a power function (equation 2.6) or an exponential function

(equation 2.7) is plugged into equation (2) before linearizing it. However, there are

several limitations of the log-normal gravity model, which include (I) flows are often

counts of people or objects and should be modeled as discrete entities; (II) flows

are often not normally distributed; (III) downward biased flow predictions due to

producing estimates for the logarithm of flows instead of actual flows; (IV) zero flows

15



are problematic since the logarithm of zero is undefined. Therefore, the Poisson log-

linear regression specification for the family of spatial interaction models was proposed

over ordinary least squares regression (Flowerdew and Aitkin, 1982; Flowerdew and

Lovett, 1988). This specification assumes that the number of flows between i and j is

drawn from a Poisson distribution with mean, λij = Tij, where λij is assumed to be

logarithmically linked to the linear combination of variables,

lnλij = k + µ lnVi + α lnWj − β ln dij (2.12)

and exponentiating both sides of the equation yields the unconstrained Poisson

log-linear gravity model,

Tij = exp(k + µ lnVi + α lnWj − β ln dij) (2.13)

where equations 2.12 and 2.13 refer to the unconstrained model with a power function

distance-decay. Using fixed effects for the balancing factors in equations (3-5), the

constrained variants of the family of spatial interaction models can be specified for

Poisson regression as,

Production-constrained

Tij = exp(k + µi + α lnWj − β ln dij) (2.14)

Attraction-constrained

Tij = exp(k + µ lnVi + αj − β ln dij) (2.15)

Doubly-constrained

Tij = exp(k + µi + αj − β ln dij) (2.16)

where µi are origin fixed effects and αi are destination fixed effects that achieve the

same results as the balancing factors Ai and/or Bj in equations (2.2-2.5c) (Tiefelsdorf
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and Boots, 1995). Notice that k is the estimated intercept and must be included in

these log-linear models to ensure the total number of flows is conserved, despite not

being included in the maximum entropy models where such conservation is typically

implied during model calibration in this non-linear form. Using Poisson regression

is more representative of flows and satisfies limitations (I-II) and it also alleviates

limitations (III-IV) since we no longer need to take the logarithm of Tij (Fotheringham

and O’Kelly, 1989). The specifications in equations 2.13 - 2.16 are typically estimated

within a generalized linear modeling (GLM) framework using iteratively weighted least

squares, which is known to converge to the Poisson maximum likelihood estimates

A popular extension of these models is to calibrate a separate model for all flows

from each origin to all of the destinations, which is often called an origin-specific

local model. Then a set of parameter estimates for each model term is obtained

for each origin and can be mapped in order to explore any spatial variation. One

way to achieve this is to filter the overall dataset into subsets that only include

flows from a single origin and then to calibrate an entirely separate model for each

subset. Another method is to specify a single regression model that appropriately

segments the data based on each origin. This can be done by introducing interaction

terms into the regression where every variable interacts with a categorical variable

that indicates which flow observations start at which origin. The main difference

between these methods is that the latter assumes a common variance amongst the

individual subsets of the data, which can result in slightly different parameter estimates.

Recent literature has also proposed geographically-weighted techniques for estimating

local parameter for spatial interaction models (Nakaya, 2001; Nissi and Sarra, 2011;

Kalogirou, 2015; Kordi and Fotheringham, 2016). In the following sections, the central
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role of origin-specific spatial interaction models in diagnosing spatial structure effects

will be highlighted.

2.2.3 Intervening opportunities

Perhaps the second oldest hypothesis pertaining to human movement is that of

intervening opportunities, which posits that ‘the number of persons going a given

distance is directly proportional to the number of opportunities at that distance and

inversely proportional to the number of intervening opportunities’ (Stouffer, 1940). It

was later refined such that intervening opportunities were defined as those locations

within a circle with a radius given by the distance between the origin and destination

under consideration (Stouffer, 1960). This is in contrast to the gravity model, which

focuses directly on costs associated with physical distance between locations. Indeed

there is much research comparing the two frameworks (Kaltenbach, 1972; Haynes

et al., 1973; Dison and Hale, 1977; Smith, 1980; Elffers et al., 2008). In particular,

Okabe (1976) shows that under certain conditions the two models act very similar.

Furthermore, several frameworks have been set forth which seek to include both

gravity and intervening opportunities type effects (Wills, 1986; Ulyssea-Neto, 1993;

Cascetta et al., 2007). Wilson provides a derivation of the intervening opportunities

models using an entropy-maximizing framework (Wilson, 1967) and additional model

forms and procedures have been proposed (Schmitt and Greene, 1978; Rogerson, 1986;

Akwawua and Pooler, 2001; Afandizadeh and Hamedani, 2012; Nazem et al., 2015).

For brevity, technical specifications for the intervening opportunities model will not

be provided. While the intervening opportunities model has its own rich literature, it

has been the subject of much less recent research when compared to gravity models.
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As such, only its basic concept and history is introduced so that it may serve as a

reference within subsequent sections of this review.

2.2.4 Spatial structure and spatial dependence in spatial interaction

2.2.4.1 Background

Throughout the 1970’s and 1980’s there was much debate about the role of the

structure of a spatial system in spatial interaction models. The intense interest in

the matter can be best captured in a series of publications, associated comments

and replies, and subsequent reviews (Curry, 1972; Johnston, 1973; Cliff et al., 1974;

Curry et al., 1975;Cliff et al., 1975; Johnston, 1975; Cliff et al., 1976; Sheppard et al.,

1976; Fotheringham and Webber, 1980; Griffith and Jones, 1980, Fotheringham, 1981,

Sheppard, 1984). At the root of the problem was the fact that unintuitive spatial

patterns could be observed for a set of local distance-decay parameter estimate values

that resulted from an origin-specific gravity-type spatial interaction model, the cause

of which was at first uncertain and contested. As further evidence towards a spatial

structure effect accrued, a consensus formed that whatever was causing the unlikely

patterns in the parameter estimates could be skewing the behavioral interpretability

of them. This meant that it was unclear whether spatial variability associated with

distance-decay was caused by behavioral and perceptual differences of individuals over

space or by other factors. Over the next few decades, several theories and technical

specifications to account for potential spatial structure effects were proposed. However,

the contemporary spatial interaction corpus is far from a consensus in terms of what

causes spatial structure effects and how to best account for them.
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2.2.4.2 Speculation

Even before there was active debate, several scholars theorized that the structure

of locations were important in determining the magnitude of flows between origins

and destinations. A review of some of these theories is provided by Griffith (1976)

who portends that the potential relationship between location hierarchy and spatial

interaction was first described by Heide (1963), Olsson (1967), and Claeson, (1968;

1969), and was subsequently explored analytically by Glejser (1969), Pedersen (1970)

and Long and Uris (1971). However, one of the earliest attempts at isolating the

spatial structure effect more generally was put forth by Curry (1972). Many potential

issues in spatial interaction models, including the shape of the study area, aggregation

and representation bias, spatial autocorrelation in the locational attributes, model

estimation techniques, and interdependence between spatial interaction and locational

distributions are discussed by Curry, though none are definitively linked to any

measurable problem in spatial interaction models. One important idea from Curry’s

work was that even if there is no explicit relationship between spatial interaction and

distance, if spatial interaction is a function of the location’s populations, which are

themselves a function of their neighbor’s populations, then spatial interaction has an

implicit relationship with distance. Curry’s (1972) development of this idea included

one of the earliest uses of the term map pattern in relation to spatial interaction to

describe the clustering of locations, a pattern which was being used to infer spatial

dependence between attributes of locations (i.e., spatial autocorrelation). Therefore,

an association was made between map pattern and spatial autocorrelation. Though

there is no use of the term spatial structure, there are several mentions of locational

structure, which is in reference to origin and destination attributes.
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Soon after, Johnston (1973, 1976) put forth the hypothesis that the spatial pattern

observed in local distance-decay parameters was caused by the variation in the

distributions of distances between each origin and the set of destinations, which

would later be described as the conditional distance distribution (Tiefelsdorf, 2003).

Johnston tests his hypothesis by calibrating a spatial interaction model, which assumes

a continuous measure of distance on data generated by an intervening opportunities

model, which uses a ranked measure of distance. A weakness in Johnston’s theory,

however, is that it assumes that all of the flows between each origin and destination are

constant. Such a hypothetical scenario implies that there is no relationship between

the spatial interaction flows and distance. Sheppard (1979b) and Fotheringham (1981)

demonstrate that this an unrealistic assumption in gravity-type spatial interaction

models where there is, in fact, an explicit relationship between flows and distance and

therefore, Johnston’s theory is not applicable. In addition, Johnston’s use of the term

map pattern refers to the distribution of locations in space (i.e., spatial clustering),

though it is in reference to how this causes inter-location distance variation (1973),

rather than in reference to locational attributes, and spatial structure is described

as both ‘the distribution of origins and destinations’ and the ‘influence of system

geometry’ (Johnston, 1976).

2.2.4.3 The debate

In response to both Curry and Johnston, Cliff et al. (1974) provide a simulation

study to explore the potential effects of spatially autocorrelated locational variables on

the parameter estimates of spatial interaction models. Importantly, in this paper we

begin to see a deeper association of the terms map pattern and spatial autocorrelation.
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It is also this work that sparked the most intense debate about spatial structure,

which resulted in a series of comments, replies, and follow-up papers (Johnston, 1975;

Cliff et al., 1975; Curry et al., 1975; Cliff et al., 1976; Sheppard et al., 1976; Johnston,

1976) that led to several useful outcomes.

First, Johnston (1975) clarifies his argument so as to distinguish the difference

between the effects of conditional distance distributions from those arising from

spatially autocorrelated location attributes (i.e., population mass terms), although

admitting that they are potentially interdependent and using map pattern to describe

their combined influence, which convoluted the two concepts along with the map

pattern terminology. Second, Curry et al. (1975) demonstrate that the simulation

design of Cliff et al. (1974) was flawed in that it does not truly include significant

levels of spatial autocorrelation in the location attributes. By correctly specifying a

simulation to include accurate levels of spatially autocorrelated location attributes,

they are able to observe that the multicollinearity between location attributes and

distance, which is implied by spatial autocorrelation, results in a misspecified model

where the distance-decay parameter estimates includes the effects of distance from

two sources (i.e., explicit and implicit) leading to biased and inconsistent estimates.

Thirdly, we can begin to see the importance of the use of simulation as a tool for

investigating spatial structure. For example, a portion of the previously described

debate focuses squarely on how to specify the spatial associations underlying the

spatial autoregressive specifications (Curry et al., 1975; Cliff et al., 1976; Sheppard

et al., 1976). Simulation remains an under-appreciated topic in contemporary spatial

interaction research and will be further discussed in subsequent sections. In the wake

of this debate, it started to become clear that the problem of spatial structure was

really one of misspecification related to how locations were clustered in space, however,
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the nature of the relationship had yet to be quantified and the language to describe it

remained ambiguous.

2.2.4.4 Criticisms

The tenacity of the debate on spatial structure even grabbed the attention of those

from outside the discipline of spatial analysis. In particular, Sayer (1977) took a critical

stance towards the inadequacies of spatial interaction models that had been highlighted

by the debate. He argues that spatial interaction models, and quantitative urban

modeling more generally, do not include enough of the diverse and complex spatial

processes involved in generating SI. Specifically, Sayer highlights how the assumption

of temporal stationarity and generic populations are untenable in urban settings where

dynamics and diversity are more likely. While he believes that these limitations can

be alleviated by describing more complex real-world spatial-temporal processes and

relationships, he is clear in his skepticism of empirical modeling as the means for

doing so. This is perhaps most evident based on his conclusion of the spatial structure

debate that, ‘mathematization beyond the call of duty’ and lack of consideration of

conceptual roots of the problem combined to mystify the issues and led the debate

into an inconclusive technical impasse” (Sayer, 1977). However, in hindsight we know

that this is false, as scholarship on spatial structure has continued to the present

with several proposed solutions that will be outlined later. Furthermore, though he

considers the use of mathematics to be exaggerated, his concerns of complexity have

consistently been engaged without the need to abandon the entire framework of spatial

interaction models. For instance, work on dynamic spatial interaction models (Harris

and Wilson, 1978; Fotheringham and Knudsen, 1986; Nijkamp and Reggiani, 1988;
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Wilson, 2008; Birkin and Heppenstall, 2011), and disaggregate spatial interaction

models (Birkin et al., 2010; Newing et al., 2015). Nevertheless, Sayer’s call for a wider

breadth of complexity and diversity may be employed as a point of evaluation for

solutions proposed to remedy the spatial structure effects. A particularly poignant

observation is that the analytical approach of Curry (1972) essentially couches the

problems of one spatial concept, that of distance-decay, in a new spatial concept, that

of spatial autocorrelation, which can be equally distracting from more pertinent issues

(Sayer, 1977).

Interestingly, Sheppard (1979a, 1979b, 1979c) begins to similarly cast doubt on

some aspects of spatial interaction models, though his concerns are stated more in

terms of specific research questions and within ongoing research avenues rather than

a sweeping and general critique. Most notably, he calls for further work on spatial

behavior, such as how individuals search and learn within their spatial environment,

and how to further reconcile disaggregate theory and aggregate modeling techniques

(Sheppard, 1979c).

2.2.4.5 Further defining the nature of spatial structure: the debate diverges

In the wake of the spatial structure debate, two distinct approaches were taken

in order to explain the nature of the effects of spatial structure in spatial interaction

models. The first approach, which was taken by Fotheringham and Webber (1980) was

to account for spatial structure by explicitly modeling the interdependence between

spatial interaction and locational attributes. Here spatial structure is taken as the

differences in spatial opportunities over space (i.e., spatial clustering of locations and

associated attributes), while map pattern refers to the bias in distance-decay parameter
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estimates when there is a feedback from spatial interaction to spatial structure that is

not explicitly modeled. For example, in a study of migration between urban centers, to

accurately obtain parameters for the effect of urban centers’ size on SI, there also needs

to be a sufficient model for urban growth as well. Since growth is interdependent upon

SI, these two things should actually be modeled with a simultaneous equation system

(SES) that is calibrated with either two-stage least squares or iteratively weighted

least squares, rather than ordinary least squares. Generally, parameter estimates will

be biased and inconsistent if any of the independent variables are a function of the

dependent variable (i.e., independent variables are not independent of the error term),

regardless of the scale that spatial interaction occurs. This type of misspecification

is also called endogeneity in the econometrics literature. Fotheringham and Webber

(1980) derived the exact nature of this bias, which demonstrates that if the SES is

not utilized, then spatial interaction can be systematically over- or under- estimated

by the model. Their proposed technique is also flexible in that it is expected that a

unique SES will be specified for each modeling task at hand, since there are likely

different relationships between spatial interaction and locational attributes and the

underlying spatial structure for different types of spatial interaction phenomena. In

fact, Fotheringham and Webber provided a second example within the context of

retail shopping trips and show that there can be more than one spatial structure effect

present in a system.

The second approach of Griffith and Jones (1980) was more exploratory in nature

in that it sought to examine the correlations between different components of doubly-

constrained spatial interaction models for several cities where each model consisted

of a separate set of census tracts that pertain only to a single city. Their main goal

was to answer the question, ‘is the rate of distance decay in spatial interaction models

25



independent of the spatial structure associated with the corresponding origins and

destinations?’ In this scenario, spatial structure is defined as the convolution of the

spatial configuration of areal units and their linkages and the interdependence/spatial

autocorrelation that can exist across these units. While they found that there is

moderate-to-strong correlation in the accessibility for each cities’ system of locations

and in the origin and destination balancing factors for each cities’ system of locations,

little-to-no spatial autocorrelation was found in the locational attributes for each

cities’ system of locations. A principle components analysis was then used to make

the conjecture that spatial interaction and geometry are inseparable and that ‘there

exists a fundamental geometric dimension relating to the geographic distribution of

workers/jobs’. These two combined findings imply that there may be interdependence

between spatial interaction and locational attributes, though spatial autocorrelation in

the locational attributes is not the appropriate metric to measure such interdependence.

Finally, using a regression analysis of which variables explain the most variation in

the distance-decay parameters, they surmised that an ‘indirect relationship exists

between distance-decay and geometric pattern, with this relationship being reasonably

sensitive to changes in the geometry of destinations’.

It is important to note that the results from Griffith and Jones (1980) are speculative

in that they do not analytically tie their observations to any defined source of bias

that might be occurring in the distance-decay parameter estimates in contrast to

Fotheringham and Webber (1980) who explicitly defined an interdependence and the

resulting bias that arises when the interdependence is not accounted for. They did,

however, offer a rudimentary version of the simultaneous spatial autoregressive (SAR)

model, though it is not estimated due to several technical complications. Furthermore,
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it seems that Griffith and Jones (1980) confounded several sources of potential bias.

One source is described in the following passage

In small urban settings, distance-decay and spatial-structure effects blend
together. This is caused by two factors. On the one hand, the scale of
analysis will often employ areal units that because of their sizes mask most
of the spatial structure effects. On the other hand, in small urban areas
spatial propinquity will cause movers to be unable to discriminate clearly
between the two effects.

which refers to bias that is caused by aggregation of the data to areal units.

Aggregation may induce measurement error that can indeed obfuscate the nature of

the true underlying spatial structure or any other variable, though this is an issue with

the data and not a description of a spatial interaction process. Previously, the debate

had been centered on distinct locations that were abstracted as points in space so that

the effects of areal aggregation were not a major issue. However, the work of Griffith

and Jones (1980) marked a major shift in how locations are abstracted in space within

the debate. This important detail is not stressed, though it has implications for how

spatial structure is approached. Specifically, this shifts the focus from inter-distance

relationships to ‘the geometric linkages between areal units’ (Griffith and Jones, 1980).

Where distance is measured between aggregate areal unit centroids, instead of specific

locations, aggregation bias is likely to occur (Webber, 1980; Okabe and Tagashira,

1996; Tagashira and Okabe, 2002).

Another source of bias that is entirely separate from aggregation is later described

by Griffith and Jones (1980)

To summarize, one controversial issue of spatial interaction modelling is
whether or not the rate of distance decay is independent of the geographic
structure associated with origins and destinations. In other words, do the
propensity of origins to emit interactees and the propensity of destinations
to attract interactees vary as the geometry of origins and destinations
changes? Furthermore, do these propensities change with variations in
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the nature and degree of spatial autocorrelation latent in the geographic
distributions of origin and destination totals?

which describes the case in which flows at one location are a function of the flows

in nearby locations. This is the contemporary theoretical basis of the SAR model,

which will be explored in more detail later. However, this theory is not given any

contextual basis in terms of migration processes, which is an important detail because

the pertinence of the SAR model is evaluated on a theoretical basis, since spatial

autocorrelation in the dependent variable is generally only troublesome if it cannot be

accounted for by independent variables. Therefore, the exploratory study of Griffith

and Jones does not isolate a particular cause or measurement of spatial structure

effects.

After reviewing much of the existing literature, Fotheringham (1981) raised the

bar by highlighting weaknesses in existing theories about spatial structure effects

and proposes that an adequate theory should apply to the entire family of spatial

interaction models, regardless of the model calibration technique that is employed.

He defined spatial structure as the “size and configuration of origins and destinations

in a spatial system”, which contrasted Griffith and Jones’s (1980) explicit focus

on geometry and linkages. Fotheringham’s review included a summary of several

studies employing location-specific local spatial interaction models and suggested

that the presences of spatial structure effects can be diagnosed by the observation of

unintuitive patterns in the local distance-decay parameter estimates, especially if these

patterns seem to be driven by location accessibility. Fotheringham also argued that

spatial autocorrelation is simply a surrogate for multicollinearity. To this, Sheppard

(1982) clarified that spatial autocorrelation in the residuals can also indicate that

there is one of several types of misspecification that can result in biased parameter

estimates. He argued that depending on model form spatial autocorrelation in the
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locational attributes could indicate that relationships between variables have been

misspecified. This is one of many potential sources of bias, though it should be

noted that the diagnosis for this type of misspecification should be made by observing

spatial autocorrelation in residuals and not in the independent variables. While

Fotheringham (1982) agreed with Sheppard (1982), noting that spatial autocorrelation

can be linked to misspecification bias, he also suggested that the spatial structure

effect he describes in various origin-specific distance-decay parameter estimates arises

due to a misspecification that is entirely separate of spatial autocorrelation. That

is, it is an omitted variable misspecification that can occur even when there is no

variation in the locational attributes, which is eventually identified as the accessibility

of each destination to all other destinations (Fotheringham, 1982, 1983a).

2.2.5 Accounting for spatial structure effects in parametric spatial interaction models

Several methods have been proposed to account for spatial structure in spatial

interaction models. These methods differ both in the way that they account for spatial

structure effects and in the modeling assumption that is violated to give rise to such

spatial structure effects. Before discussing the proposed methods, common violations

are outlined.

2.2.5.1 Types of effects

An instructive overview of the various assumptions underlying ordinary least

squares regression and the effects that arise when they are violated is provided

by Sheppard (1984). Violations may include measurement error, high levels of
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multicollinearity, spatially autocorrelated residuals, violation of normality assumptions,

omitting important variables, and residuals that are correlated with the explanatory

variable(s). Several generalizations to Sheppard’s (1984) list of violations are proposed

in order to include the breadth of work that ensued over the last few decades. First,

the violation of non-normality is expanded to include the violation of any underlying

distributional assumptions. This includes the assumptions used in Poisson regression,

which have become popular for spatial interaction modeling. Second, aggregation

error, which may be encapsulated within measurement error, is highlighted since

spatial interaction models have often been specified using aggregated data and are

therefore frequently prone to this specific type of error. The most common results of

these different violations are biased and potentially inconsistent parameter estimates

and/or biased variances. Since any or all of these violations can occur in a single

study, it is of utmost importance to be clear about which one is being addressed.

In the ensuing discussion of strategies for reducing the spatial structure effects, the

underlying violations that are or could be corrected for are highlighted for each method

where possible.

2.2.5.2 Omitted variables

Following the intense debate of the seventies and early eighties, one of the earliest

and most complete theories and methods designed to deal with spatial structure effects

was that of competing destinations (CD) (Fotheringham, 1983a). This theory posits

that spatial structure is the “configuration of origins and destinations in a spatial

system”, but it is the configurations of destinations with respect to each other that

can affect an individual’s propensity to select a particular destination. To account
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for this effect, we need to include within spatial interaction models a variable that

captures the accessibility of each destination to all other competing destinations. This

definition contrasts the earlier definition of Fotheringham (1981) in that it explicitly

focuses on the configuration of locations and hence only secondarily involves location

attributes (i.e., sizes). A novel reasoning in support of this ordering of priorities is that

a spatial pattern amongst locations may be induced by either altering their spatial

locations or altering the attributes of the locations.

This is demonstrated in figure 1 where a) there is a uniformly distributed set of

locations that all have the same size; b) location sizes have been altered to create a

pattern of south-west spatial clustering while maintaining a uniformly distributed set

of locations; and c) locations have been shifted to create a pattern of south-west spatial

clustering while holding location size constant. In scenario a) there no clustering due

to physical location or size. In contrast, spatial autocorrelation amongst location

size can likely be used to describe scenario b) where the clustering pattern is due

to the distribution of the size attribute. However, in scenario c) common spatial

autocorrelation statistics would be undefined since there is no variation in location

size1. Instead, the clustering pattern is due only to the arrangement of the locations.

Therefore, the effect of clustered locations is more fundamental and may exist even

when no spatial autocorrelation can be measured.

The behavioral reasoning for the CD model enhancement is that spatial decision-

making, such as location choice, often arises from a hierarchical two-stage or multi-stage

decision-making process, where individuals first select a region or cluster of locations

and then subsequently choose an individual destination from within that cluster. The

1This would also be true for scenario a), since there is also no variation in the location sizes.
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Figure 1: Three different sets of locations where a) there is a uniformly distributed
set of locations that all have the same size; b) location sizes have been altered to
create a pattern of spatial clustering while maintaining a uniformly distributed set of
locations; and c) locations have been shifted to create a pattern of spatial clustering
while holding location size constant.

effect is that as the accessibility of a particular destination, j, to all other potential

destinations increases, j will experience greater competition from other destinations,

and therefore the volume of flows to j would be smaller than predicted by a traditional

spatial interaction model. Practically, this effect is captured by introducing a new

variable into spatial interaction models to measure destination accessibility, Aij , which

has been shown to be consistent with maximum entropy and utility derivations

(Fotheringham and O’Kelly, 1989), and can be thought of as the likelihood that other

destinations are also considered along with destination j. For a production-constrained

Poisson regression, for example, this results in

Tij = exp(k + µi + α lnWj − β ln dij + δ lnAij) (2.17)

Aij =
n∑
k=1

(k 6=i,k 6=j)

Wk

dσjk
(2.18)

where δ is the parameter corresponding to destination accessibility, Aij, which is the

sum of the attractiveness,W , at each alternative destination k weighted by its distance

to each alternative destination djk, and σ is a parameter that controls the scale over
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which destinations compete with each other, which in practice is often set to −1 or

calibrated iteratively with the parameters in equation 2.17. Importantly, the set of

locations defining the competing destinations need not be the entire set of locations,

such that the definition of destination accessibility is likely unique for different contexts,

and can even include locations that are not included in the original spatial interaction

dataset. In fact, Fotheringham (1983a; 1983b) discusses how attraction-constrained

and doubly-constrained models can be correctly specified (i.e. do not need to include

Aij) when every location in the system is both an origin and a destination and

these locations are an accurate representation of all possible destinations available to

each origin. However, unconstrained and production-constrained models are always

misspecified if there is a relationship between spatial interaction and destination

accessibility.

Whenever any of the spatial interaction models contain a competing destination

type of misspecification, a failure to account for spatial structure results in origin-

specific distance-decay parameter estimates that are biased upwards for accessible

origins and biased downward for inaccessible origins. The strength of this bias is

shown by Fotheringham (1984) to depend on the strengths of two relationships:

that between the volume of flows and distance and that between distance from

the origin to each destination and the accessibility of each destination. It is this

bias that causes the unintuitive spatial patterns observed in origin-specific distance-

decay parameter estimates, such as positive estimates for the most accessible origins

(Fotheringham, 1981). Furthermore, the bias can be categorized in terms of the

perception of destination clusters where there are competition effects (i.e., negative

exponent on Aij) or agglomeration effects (i.e., positive exponent on Aij). For the

former effects, the addition of a location to a cluster increases the attractiveness of the
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cluster less than the attractiveness of the location itself, while for the latter effects, the

addition of a location to a cluster increases the attractiveness of the cluster more than

the individual attractiveness of the location (figure 2). The type of effect that arises

is typically dependent upon the type of spatial interaction process being modeled,

though competition is more often observed in empirical settings, hence the selection

of the name the competing destination model. The proliferation of the competition

effect may also be driven by the behavioral tendency of individuals to underestimate

the overall attractiveness of large clusters. Compared to the competing destination

model, the expected outcome according to a traditional spatial interaction model is

that when an additional location is added to a cluster the attractiveness of the cluster

is increased exactly by the attractiveness of the additional locations (the straight line

in figure 2). If this is the case, then either there is no spatial structure misspecification

or there are competition effects and agglomeration effect that are canceling each other

out (Fotheringham, 1983b).

In fact, the precise nature of the potential bias of distance-decay parameters

due to this type of spatial structure within an OLS regression has been defined by

Fotheringham (1984) where bias may be due to

1. a relationship between Aij and Tij

2. a direct relationship between Aij and dij

3. an indirect relationship between Aij and dij due to a relationship between Aij

and Wj and a relationship between dij and Wj.

Bias source (3) can occur independently of bias source (2), since it can occur even

when there is no relationship between Aij and dij. In addition, if bias sources (2)

and (3) do not occur, but source (1) does occur, then distance-decay parameters will
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Figure 2: Impact of agglomeration and competition effects on spatial interaction
in comparison to the expected flow volumes from a gravity-type spatial interaction
model that does not consider competing destinations. This figure originally appears
in (Fotheringham and O’Kelly, 1989).

not be biased; however, Aij is still a relevant explanatory variable that can increase

the accuracy of the model. These sources of bias can be similarly defined for the

parameter estimates on other variables, though it is likely that the bias will be stronger

for distance-decay whenever there is a stronger relationship between Aij and dij than

between Aij and locational attributes (Fotheringham, 1984).

It becomes clear that the CD model is addressing a very particular misspecification

that arises organically due to collinearity amongst variables that we would ordinarily

include in most, if not all, spatial interaction models. Therefore, the violation it is

attempting to correct for is the omission of a correlated spatially patterned variable.

Baxter (1983; 1985) provides a more general analysis of bias using a different form of

omitted variable misspecification that is less amenable to interpretation. While this

general framework could be used to assess the consequences of different forms variable
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misspecification, it does not provide strong empirical evidence for any particular form,

and it is not clear how each form would arise.

Adopting the destination accessibility term, Aij , is also advantageous in that doing

so avoids the undesirable independence from irrelevant alternatives (IIA) property

that exists in many spatial choice modeling frameworks. The IIA property assumes

that all locations in the set of potential destinations that one can choose from are

evaluated equally. This means that destinations are not perceived as clusters, but

rather as individual locations (Fotheringham, 1986). Hierarchical choice models that

are not free of the IIA property, such as the nested logit model, run into several issues

for spatial choice problems. First, they require the choice set to be specified a priori

by the analyst. Second, the set of alternative choices is assumed constant, which is

problematic in spatial choice scenarios. For example, the IIA property implies that

if choice a is a substitute for choice b and choice b is a substitute for choice c, then

choices a and c are also substitutes for each other. However, this may be very unlikely

if choice a and choice c are very far apart. Both of these issues may be avoided by

using the CD model with Aij as a measure of destination accessibility (Fotheringham,

1986, 1988). There has also been a great deal of additional research concerning choice

set definition in spatial interaction models (Thill, 1992; Thill and Horowitz, 1997;

Pellegrini et al., 1997).

The CD model has been applied in many domains including urban modeling

(Fotheringham, 1985; Fotheringham and Knudsen, 1986), the study of telecommunica-

tions flows (Guldmann, 1999), and crime location analysis (Bernasco, 2010), though it

has enjoyed particular popularity within migration modeling (Ishikawa, 1987; Ishikawa,

1990; Fik et al., 1992; Pellegrini and Fotheringham, 1999; Fotheringham et al., 2000;

Pellegrini and Fotheringham, 2002; Yano et al., 2003; Fotheringham et al., 2004;
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Kalogirou, 2015), commuting-to-work research (Thorsen and Gitlesen, 1998; Gitlesen

and Thorsen, 2000; Gitlesen et al., 2010), and retail analysis (Fotheringham and

Knudsen, 1986; Guy, 1987; Fotheringham, 1988; Pellegrini et al., 1997; Birkin et al.,

2010). The underlying theory of the CD model has also been explored via simulation

studies (Lo, 1991a; Fotheringham et al., 2001), in association with cognition and

spatial information processing (Hirtle and Jonides, 1985; McNamara, 1986; Curtis

and Fotheringham, 1995; Fotheringham and Curtis, 1999), and it has been extended

within other frameworks, such as central place theory (Fik and Mulligan, 1990) and

trip chaining behavior (Bernardin et al., 2009). While this review of work relating to

the CD model is comprehensive it is certainly not exhaustive. It is also worthwhile to

note that in the majority of studies using the CD model, locations are abstracted as

points in space, though even when areal units are used, the CD model does not claim

to account for any effects that arise from potential aggregation error.

In contrast to the CD model, there are some authors who have stressed that the

explicitly spatial focus of the competing destination model overlooks other important

factors (Gordon, 1985; Lo, 1991a; Lo, 1991b; Lo, 1992; Pooler, 1998; Hu and Pooler,

2002). For example, Gordon (1985) suggests that further work investigating the

spatial patterns of distance-decay parameters should focus on functional and economic

differences between locations rather than solely physical accessibility. Lo (1991a;

1991b; 1992) takes up this call and argues that spatial structure should be renamed to

destination interdependence, where this interdependence is composed of physical aspects

and economic aspects. The physical aspect, which Lo calls locational substitutability,

is synonymous with the effects associated with the CD model, whereas economic

substitutability is offered as an example of the economic aspects that might still be

misspecified in CD models. Economic substitutability refers to consumer preferences
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toward destination activities and services. If the degree that destinations provide

activities that are substitutable, or conversely, that are complimentary, varies, and this

is not accounted for, then spatial interaction models may produce biased parameter

estimates. While it is demonstrated that the CD model can account for locational

substitutability, thereby removing the spatial structure effects as they are theorized

under the CD model, it is however shown that the CD model does not account for

economic substitutability. Similarly, Pooler proposes a more general competition

effect, termed spatial influence which also theorizes a hierarchical decision-making

process, but where macro-level groups of destinations are based primarily on attributes

(i.e., aspatial) rather than their locations in space. However, in the exposition of

both the theories of economic substitutability and spatial influence, no generalizable

framework or solution is proposed to account for the omitted variables that are causing

models to be misspecified. Furthermore, neither of these alternative theories has

yet to garner much empirical evidence. This is likely because these misspecifications

are particularly context-dependent, whereas (locational) spatial structure effects

can arise in any spatial interaction scenario. Consequently, several extensions have

instead been proposed to account for more complicated location choice relationships

without abandoning the CD model framework. For example, disaggregated spatial

interaction models can include store brand and household type in regards to retail

flows (Newing et al., 2015) and variations of the CD model that separately account

for agglomeration an competition effects (Bernardin et al., 2009). Therefore, these

criticisms of the competing destination model are likely either unfounded or overstated.

This is perhaps best-illustrated by Hu and Pooler (2002) who assert that any spatial

variation within local distance-decay parameter estimates means that the model is

misspecified. In contrast, spatial variation could be due to variations in how distance
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is perceived or due to aggregation error, which can occur even when the model is

correctly specified. Ultimately, criticisms of the CD model are primarily calls for more

in-depth model-building and more accurate data.

Some alternative specifications to explicitly account for omitted variables related

to spatial structure have been put forth, though they are generally less developed

compared to the CD model. One such example is given by Boots and Kanaroglou

(1988), who use the principal Eigenvector of a binary contiguity matrix to derive a

distance centrality measure. The inclusion of this measure in a nested logit model

is statistically significant and improves model accuracy, especially in comparison to

several other aspatial similarity measures. However, relatively little interpretation of

this new variable, its parameter estimate, or the nature of the bias that results from its

exclusion are provided. Furthermore, their modeling framework is that of the nested

logit model and they do not discuss how the inclusion of their spatial structure measure

relates to hierarchical location choice sets and the IIA property. Another example

of an alternative spatial structure specification is that of network autocorrelation

(Black, 1992), where a spatial autocorrelation statistic with a network-based definition

of proximity is used to assess misspecification. This leads to several approaches to

account for omitted variables, which include geographically-based categorical dummy

variables or origin/destination accessibility terms (though not in exactly the same

sense as specified in the CD model).

2.2.5.3 Variable functional form

Though the functional form of any of the terms within a spatial interaction model

could be subject to functional form misspecification, it is the distance term that
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receives the most attention due to the fact that the resulting distance-decay parameter

estimates have often been interpreted as an indication of human behavior. It would

be approximately thirty years before Johnston’s argument was picked up by again

by Tiefelsdorf (2003), who illustrates how spatial structure in local distance-decay

parameter estimates can arise systematically due to conditional distance distributions

when the functional form of distance is misspecified. Recall from section 2.2.2 that a

power or exponential functional form of distance are the most popular because they

arise from direct analogy or through the max-entropy derivation process. These two

forms have also gained acceptance through empirical consensus where the exponential

function is more appropriate for short term interactions such as intra-urban trips and

the power function is more appropriate for longer distance trips such as migrations

flows (Fotheringham and O’Kelly, 1989). Additionally, recall from section 2.2.4.2 about

Johnston’s argument that spatial variation in distance-decay parameter estimates can

arise if the underlying data-generating process follows the intervening opportunities

model but a spatial interaction model is calibrated on the data. This is essentially an

extreme case of functional form misspecification, which Tiefelsdorf (2003) generalizes

upon to show that any inconsistencies between the true data-generating functional

form on distance and that which is specified in the model can result in distance-decay

parameter estimates with spatial variation. Subsequently, it is recommended that

the correct functional form of the distance term can be obtained by using the Box-

Cox transformation. Since the Box-Cox transformation encompasses a spectrum of

functions, depending on a parameter, q, an optimal parameter value is selected by

maximizing the model fit as denoted by the likelihood ratio for the model. Tiefelsdorf

(2003) claims that this allows the spatial structure effect that is caused strictly by

distance to be accounted for, which cannot otherwise be accounted for by the CD
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model, though there are several conceptual and technical problems with the evidence

that is presented.

Most importantly, there is no guarantee that when the Box-Cox parameter is

selected that the model does not compensate for another misspecification. For exam-

ple, if the functional form of any other variable is misspecified, say the destination

population, this could also result in spatial variation within the local origin-specific

distance-decay parameter estimates depending on other relationships and mispeci-

fications in the model. Following Tiefelsdorf’s (2003) recommendation, one would

then apply a Box-Cox transform and select an optimal q based on the model fit.

However, it is possible that the optimization suggests an incorrect functional form for

distance because it is also accounting for the misspecification of the functional form

of destination population 2. Generalizing this argument, it is essentially impossible to

know for certain if any single effect is being accounted for by the Box-Cox transform

in this context. Therefore, this solution neither guarantees that the spatial structure

effects caused by conditional distance distributions are isolated, nor does it provide a

means for diagnosing any particular misspecification.

There are also two technical problems with Tiefelsdorf’s specification that invalidate

his evidence against the CD model. First, his specification is only partially local,

such that it produces local parameter estimates for distance but not for locational

attributes. The second issue is that his specification includes both an origin-specific

and a destination-specific parameter estimate for distance decay. Tiefelsdorf (2003)

expresses that, “Most of the spatial structure discussion in interaction modeling so

far focuses solely on origin specific distance decay parameters. Nevertheless, the

2The work of Tiefelsdorf (2003) was replicated in order to test this idea and the details are
available in appendix A
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destination specific distances decay parameters are just as meaningful." However, this

new, and therefore, unsubstantiated, specification is not a good candidate for exploring

spatial structure effects and seems to have been the root of some of the problems that

Tiefelsdorf claims to illuminate and even potentially solve. For example, using an

inter-state migration dataset for the continental U.S., Tiefelsdorf reports unexpected

negative signs for origin and destination population attributes. In actuality, if a proper

fully-local spatial interaction model is specified and the model is solely origin- or

destination-specific, then the issue of reversed signs is ameliorated and should be seen

as an artifact of improper model specification. In addition, a destination-specific focus

typically has no behavioral meaning in the context of migration because individuals

arriving at a destination do not choose their origin.

The potential insights provided by Tiefelsdorf (2003) are clouded further by several

misconceptions. First, there is a discussion of the lack of monotonicity in the decreasing

nature of distance-decay over longer distance as if it implies misspecification. However,

distance-decay parameter estimates represent the effect of distance conditional upon

other variables, such as origin and destination populations. Even where there are

longer distances between locations, it is possible to have a less negative distance-decay

parameter estimate if there are strong forces of propulsion and attraction. Next, it is

hard to tell how extreme the spatial variation in the distance-decay parameter estimates

in Tiefelsdorf’s migration example are because of the centered dummy variable coding

scheme and the way the estimates are mapped. Since the centered coding scheme

generates a mean parameter estimate and then local parameter estimates that vary

around the mean, it is necessary to calculate the combined effect from both the mean

and local deviation. Instead, Tiefelsdorf only maps the local deviations, which may

be very slight when compared to the combined effect. As a comparison, the spatial
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variation that lead to the formulation of the CD model was so great, that it included

positive values of distance-decay (Fotheringham, 1981)! The final misconception

concerns details regarding the CD model. It seems that the specified accessibility term

was actually an origin accessibility and not the accessibility from the destination to all

other destinations. Though such a conceptualization of spatial structure is possible, it

does not seem to be the desired intention.

While Tiefelsdorf correctly points out that functional form misspecification can

cause some degree of spatial variation in local parameter estimates, little more can be

contributed to the issue of spatial structure due to the various technical and conceptual

shortcomings.

2.2.5.4 The return of spatial autocorrelation

Spatial autocorrelation, which was previously discussed in the context of spa-

tial structure in SI, typically measures the association of observations over a two-

dimensional (x, y) plane. One reason that spatial autocorrelation has become a

dominant paradigm within quantitative geography for understanding geographic rela-

tionships is because it is simple to reduce many scenarios to two-dimensional spatial

representations. For example, Curry (1972) theorizes the role of spatial autocor-

relation amongst two-dimensional location attributes in spatial interaction models.

However, spatial interaction data are typically four-dimensional (x1, y2, x2, y2), which

is more complex to represent and derive relations between (Fischer and Griffith, 2008).

Nevertheless, Griffith and Jones (1980) posit that spatial interaction itself is spatially

autocorrelated without identifying a method of measuring association between flows,

which is crucial to properly measure any type of autocorrelation. While much research
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would eventually explore the nature of spatially correlated components of spatial

interaction, it would be several decades before the focus shifted to directly developing

concepts of association between flows themselves and methods to account for it. These

efforts have been carried out primarily in the paradigms of spatial econometrics and

eigenvector spatial filtering. However, it will be seen that recent work can largely be

characterized by attempts to measure associations between flows in two-dimensional

space rather than four-dimensions, whether those relations are determined by contigu-

ity, distance, or another type of proximity. It will also be seen that these approaches

contrast previous work that focuses on spatial structure in that they do not focus on

local parameter estimates or a specific type of model misspecification.

2.2.5.5 Spatial econometric approaches

Spatial regression models, the workhorse of applied spatial econometrics (LeSage

and Pace, 2008) are models that incorporate spatial dependence in (i) the the dependent

variable, (ii) the error term, (iii) the independent variables, or (iv) some combination

of (i-iii). The two spatial regression specifications that are most frequently used and

studied in the spatial econometric literature are the spatial autoregressive model

(SAR) and spatial error model (SE) (Halleck Vega and Elhorst, 2015), which satisfy

(i) and (ii), respectively. The SAR model is given by

y = k + ρMy +Xβ + ε (2.19)

where y is an n × 1 vector of observations on the dependent variable, M is the n × n

spatial weights matrix, which defines the neighborhood of an observation, ρ is a spatial

autoregressive parameter, X is an n× p matrix of observations on the p explanatory

variables, β is the associated vector of explanatory variable parameters, and ε an n× 1
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vector of normal error terms. Since My is typically row standardized (or equivalently

called the W-coding scheme), it is useful to think of it as a weighted average of

neighborhood values (sometimes called the spatial lag), such that observations on

the dependent variable at a location are also dependent upon observations of their

neighbors, which is usually motivated by the theoretical equilibrium outcome of a

process over space (Anselin, 2006). An example would be the price of real estate in

one location, which is usually directly determined by the values of real estate around

it. In this case, there is a clear unit of analysis and theoretical dependence process.

In contrast, the SE model is not based on a theoretical process, and is given by

y = k +Xβ + u

u = λMu+ ε

(2.20)

where k, X, β, and ε are as previously defined, and λMu is a spatially structured

portion of the residuals that captures unaccounted spatial effects such as omitted

variables, and measurement errors due to scale mismatch and aggregation. Therefore,

the SE model is more suitable to help with practical data concerns than theoretical

concerns. These more complex specifications will be biased and/or inconsistent when

estimated by OLS and instead are typically estimated using maximum likelihood

estimation, two stage least squares, and the general method of moments (Anselin and

Rey, 2014). Finally, though less often utilized in applied spatial econometrics, a model

with a spatial lag on the exogenous variables, X, (SLX) is given by

y = k +Xβ +MXφ+ ε (2.21)

such that M is now applied to X instead of the dependent variable, y, and φ is the

associated spatial autocorrelation parameter (Halleck Vega and Elhorst, 2015).

Several early attempts have been made to extend the SE model to spatial interaction

models. Brandsma and Ketellapper (1979) propose an error model where the error term
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u = λMu+ε in equation 2.20 is expanded to u = λiMiui+λjMjuj+ε, whereMi andMj

are binary matrices that separately capture origin and destinations effects, respectively,

and where spatial relations between flows can be defined by flows that share origins

(destinations) or flows that share an origin (destination) and have adjacent destinations

(origins). In contrast, Bolduc et al. (1989) propose a form of error dependence for

flows where a single weight matrix is comprised of multiple additive terms each using

distance based measures of proximity. Instead of separate origin and destination effects,

a single spatial term is utilized with M = (dr,l + ds,t)
−θ1 + (dr,t + dl,s)

−θ2 where M

captures the direct distance effect and cross-distance effects between a flow from origin

r to destination s and a flow from origin l to destination t, and θ1 and θ2 are additional

(power function) distance-decay parameters to be estimated. The first term (i.e., direct

effects) captures the additive effects from distance-based proximity between the origins

and the destinations of the two flows, while the second term (i.e., cross-distance effects)

captures the additive effects from distance-based contiguity between the origins of the

two flows to the opposite destinations of the two flows. Though the direct distance

effects are significant in an empirical example, the cross-distance effects are not, and

the authors admit this type of spatial effects may be difficult to interpret. A more

general specification is subsequently put forth by Bolduc et al. (1992) that incorporates

the specifications of Brandsma and Ketellapper (1979) and Bolduc et al. (1989) and

provides simpler interpretations of the autocorrelation parameters. This ultimately

leads to a specification of the error term as u = λiMiui+εi+λjMjuj+εj+λijMijuij+εij

that has a separate independent spatial error term for origins, destinations, and

origin-destination pairs, and the weight matrices are defined by distance-decay-based

contiguity with estimable parameters. This model is estimated on a single realization

of simulated data to demonstrate that estimation is feasible. However, the fixed and
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known parameters used to simulate the data were not all replicated, which the authors

argue is due to small sample size (i.e., 25 locations and 625 flow observations). Perhaps,

more importantly, the distances used to determine proximity were all simulated from

random uniform distributions, thereby skirting the complex issue of defining proximity

between flows themselves. This model is also applied to an application of transportation

flow modeling in Winnipeg where the term Mij is defined using the concept of cross-

distance effects put forth by Bolduc et al. (1989), but the estimation routine must

be augmented such that all of the autocorrelation parameters and distance-decay

parameters are identical in order to sufficiently calibrate the model (Bolduc et al.,

1995). All of these extensions of the SE model to spatial interaction seem to have

either suffered from issues of interpretability or estimation or both.

Other attempts at modeling spatial structure effects in spatial interaction models

using SE models have produced more encouraging results. Porojan (2001) includes

a single spatial error term in a trade model where M is a binary contiguity matrix

with non-zero entries denoting origin-destination pairs that share a contiguous border.

While this specification results in more accurate interpretations for the parameter

estimates, it is unclear why the spatial relationship encapsulated in M could not have

been directly modeled using a binary indicator variable. Fischer and Griffith (2008)

suggest a spatial interaction model of knowledge flows with the spatial error term

defined in equation 2.20 but with M = Mo +Md for cumulative spatial effects between

the origins and destinations of flows. Here, proximity between flows is defined by

binary contiguity matrices with entries of non-zero entries for flows that share an

origin (destination) and have adjacent destinations (origins). Lee and Pace (2005)

model retail flows using a weighted additive spatial structure between origin nearest

neighbors and contiguous destinations. Inclusion of this term significantly alters both
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the magnitude and sign of many variables in the model, including distance, which

becomes larger in magnitude compared to an OLS specification without a spatial

error term. Finally, a Bayesian hierarchical framework has been used to incorporate

spatially structured random effects for origins and destinations using either a Gaussian

(LeSage and Llano, 2013) or Poisson (LeSage et al., 2007) probability model. In both

specifications, spatial structure is defined using first order contiguity. In the former,

the distance-decay effect increases in magnitude, while in the latter, the distance-decay

effect decreases when comparing these specifications to corresponding models that

do not incorporate any spatial effects. While various spatial error terms have been

suggested for use in a SE model of SI, there is no single specification that has emerged

as superior or that accounts for a consistently identifiable spatial effect.

Recent work has also proposed an extension to the SAR model to accommodate

flow data (LeSage and Pace, 2008; LeSage and Fischer, 2014; LeSage and Thomas-

Agnan, 2015). To include a spatially dependent process in the unconstrained spatial

interaction model, LeSage and Pace (2008) suggest the following specification

lnTij = ρiMiy + ρjMjy + ρijMijy + k + µ lnVi + α lnWj − β ln dij + ε

Mi = In ⊗M

Mj = M ⊗ In

Mij = Mi ⊗Wj = Mi ⊗Mj = M ⊗M

(2.22)

where Xβ becomes µ lnVi + α lnWj − β ln dij, Mi, Mj, and Mij are spatial weight

matrices that define neighborhoods from the perspective of origins, destinations,

and origin-destination pairs, respectively, ρi, and ρj, and ρij are the corresponding

autoregressive parameters, In is an n× n identity matrix with non-zero entries on the

diagonal representing n locations, and ⊗ denotes the Kronecker product. Note that

here it is assumed that there is an equal number of origins and destinations and that

48



all origins are also destinations and, therefore, non-zero entries in Mij are denoted

by scenarios where both Mi and Mj are non-zero in the case of binary contiguity

(see figure 3). This specification is motivated by the theory that the movements

that people decide to make are based upon their knowledge of neighboring flows in a

previous time period. Assuming that the exogenous variables are relatively stable over

time and that the cross-section of flows may be taken as the steady-state equilibrium

of a long-run process, then LeSage and Pace (2008) demonstrate mathematically

that a SAR data-generating process may be an adequate representation for spatial

interaction data. In this case, the specification given by equation 2.22 should be used

and several restrictions on the ρ′s can provide different variations of spatial structure

that is ultimately included in the model. Additionally, this model is argued for on the

basis that using a SAR model along with a spatial lag of the explanatory variables

(i.e., SLX model) can protect against biases that might arise due to omitted variables.

While it is often not possible to tell which of the two underlying mechanisms is

generating the data, LeSage and Fischer (2014) differentiate between endogenous and

exogenous interaction effects. Endogenous effects are theorized to be caused by shared

resources such as transportation infrastructure, whereby changes in shared resources

cause reactions that diffuse potentially through the entire system. The SAR model

allows for this type of feedback effects, which they also be called global spillovers,

and can be thought of a particular instance of the feedback misspecification originally

proposed by Fotheringham and Webber (1980). In contrast, exogenous effects are

thought of local spillovers since they are not caused by changes in shared resources

and feedback effects that propagate beyond immediate neighbors are not expected.

Exogenous effects may be modeled not by using a SAR model but by extending the

SLX specification in equation 2.21 to an spatial interaction model.
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Figure 3: Definition of a) flows to nearby destinations (destination dependence); b)
flows from nearby origins (origin-dependence); and c) flows between nearby origins
and destinations (origin-destination dependence) according to LeSage and Pace (2008)
and Chun (2008). Figure reproduced from Chun (2008).

Importantly, LeSage and Fischer (2014) also discuss that when locations are both

origins and destinations and the same variable is used to represent both of them, that

it is not possible to interpret how a change in a single origin attribute (destination

attribute) would affect flows originating (terminating) from that origin (destination)

without also considering how that change would also effect flows that terminate at

that origin (originate at that destination). That is, a change in a single locational

attribute can cause many changes in the volume of flows that a model would predict.
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Therefore, scalar summary measures that capture the multiple changes of true partial

derivatives, which are known as effects estimates, should be used rather than treating

the regression parameter estimates as if they are partial derivatives. The effects

estimates for the basic unconstrained spatial interaction model and the unconstrained

SLX spatial interaction model are provided by LeSage and Fischer (2014) while those

for SAR spatial interaction model are provided by LeSage and Thomas-Agnan (2015).

These alternative interpretations should hold regardless of the underlying probability

model or estimation technique; however, LeSage and Fischer (2014) claim that in the

case where there is no spatial dependence in the endogenous or exogenous variables,

using a typical interpretation of the coefficients as if they represent partial derivative

is likely to have similar inferences to using the effects estimates.

Effects estimates have been shown to be stable to alternative specifications of

spatial weights, even when they may result in different parameter point estimates,

if there is high correlation between the specifications. High correlation between

weight matrices occurs generally when the same scaling is employed (i.e., binary,

row-standardized, etc.) even when the number of nearest neighbors, the distance band,

or the distance-decay used to compose two different weights may vary, which is shown

to be especially true for weight matrices based on higher order relations (LeSage and

Pace, 2014). As a result, LeSage and Pace (2014) posit that it is a misconception that

spatial regression is very sensitive to the specification of the spatial weight matrix.

Instead, it is argued that the sensitivity of the point estimates should be seen as sign

that the model is adjusting to accommodate changes in the spatial weight matrix, and

is therefore well conditioned in terms of the stability of the effects estimates. However,

these experiments were carried out for a set of areal units and it is unclear if they

apply to spatial interaction models based on origin-destination based observations.
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Since the focus of the work of LeSage and Pace (2008), LeSage and Fischer (2014),

and LeSage and Thomas-Agnan (2015) is on the interpretation of spatial interaction

parameter estimates, it is surprising how little is said here about the interpretation

of the parameter estimate on the distance variable (i.e., distance-decay). LeSage

and Thomas-Agnan (2015) acknowledge distance and spatial dependence may be

competing to explain the same variation in the dependent variable when they observe

that the distance-decay coefficient is smaller in magnitude in a SAR spatial interaction

model than in a corresponding basic spatial interaction model. Similar results can

be noted in additional applications of the SAR spatial interaction model (LeSage

and Pace, 2008; de la Mata and Llano, 2013; Kerkman et al., 2017), especially, with

increasingly complex definitions of spatial structure (LeSage and Polasek, 2008), and

for the SLX spatial interaction model (LeSage and Satici, 2013) as well. LeSage

and Pace (2008) comment that it is not possible to compare the effects estimates for

distance-decay for models with spatial lags (i.e., SAR model) to those without spatial

lags because those with lags need the true partial derivatives to compute the actual

effect. Curiously, the true partial derivative effect for distance-decay is otherwise

not typically reported or discussed in these studies. In a study of air passenger data

from Margaretic et al. (2017) who use a spatial Durbin model (i.e., SAR and SLX)

with lags being based on either the origin or on the destinations, a counter-claim is

provided that variables characterizing an origin-destination dyad, like distance, do

not need the true partial derivatives for interpretation. Hence, it is not immediately

clear how to interpret distance-decay in spatial regression models. Margaretic et al.

(2017) also employ regional indicator variables that are significant with and without

a spatial lag, though they admit there is no intuition for the level or sign of these

effects. This denotes that there may be spatial heterogeneities in the spatial processes
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underlying air travel and it may be more meaningful to use a model focused on spatial

non-stationarity than spatial dependence.

Another theme that is not present in the spatial econometrics literature on spatial

interaction models is that of constrained models. As already discussed, there is a

history of using constraints (i.e., balancing factors or fixed effects on binary indicator

variables) in spatial interaction models in order to ensure that the total inflows, total

outflows, or both are preserved. Such preservations typically result in better model

fit since more information is built into the model, and therefore, it is surprising that

they have not been pursued in spatial econometrics. One reason for this may be that

spatial econometrics is heavily based upon regression methods that assume a Gaussian

probability model, where the constraints are not known to guarantee the preservation

of flow totals as in Poisson regression (Arvis and Shepherd, 2013). A second reason

is that there is far less work using Poisson regression for spatial interaction models

within this literature. The existing work with Poisson spatial interaction models

considers spatial dependence in various forms, but typically requires more complex

estimators (Sellner et al., 2013; LeSage and Satici, 2013; LeSage et al., 2007). Still,

these specifications do not use constraints and it is uncertain how such constraints

would interact with the feedback effects implied by spatial dependence and the effects

estimates that use true partial derivatives and scalar summary measures.

Many assessments of the general discipline of econometrics are available (Black,

1982; Hendry, 1980; Leamer, 1983). Concerns are often in terms of philosophical

foundations or technical issues, which are in line with those outlined in section 2.2.5.1.

Notably, Leamer (1983) concludes that some of the assumptions of econometric

models are whimsical and where these models cannot be shown to be sufficiently

insensitive to assumptions, then “we shall have to revert to our old methods (p. 43)”,
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where old methods may be interpreted as simpler or more general models with fewer

assumptions. Similarly, there has been significant pushback against the SAR and

SE models (McMillen, 2003; Pinkse and Slade, 2010; Partridge et al., 2012; Gibbons

and Overman, 2012; Corrado and Fingleton, 2012; McMillen, 2012; Halleck Vega and

Elhorst, 2015) on the grounds that the models are plagued by identification issues

and contain strong assumptions in order to justify their validity. Several additional

perspectives are put forth to complement the use of these models, such as the use of

natural experiments (Gibbons and Overman, 2012), incorporating stronger underlying

theory for the model and the definition of the spatial weight matrix (Corrado and

Fingleton, 2012), semi-parametric and nonparametric smoothing methods (McMillen,

2012), and to use the SLX model when there is no strong theoretical basis for

the SAR model (Gibbons and Overman, 2012; Halleck Vega and Elhorst, 2015).

Some advantages of the SLX model are that it has fewer issues with estimation and

interpretation, is more flexible because M can be parameterized, is less likely to suffer

from overfitting compared to more complex models, can rely on simpler tests for

endogeneity and instrument sufficiency, and the local spillover’s implied by the SLX

model are typically easier to justify than the global spillovers implied by the SAR

(Halleck Vega and Elhorst, 2015). Interestingly, the CD model with a single destination

attractiveness variable and a Hansen-type accessibility term would be very similar to

an SLX specification where MX = Sij. However, this implies different spatial weight

matrices where MX is a spatial averaging operator and Sij is a distance-weighted

summation operator. This simple, though foundational, difference perhaps gives rise

to the very different interpretations of the associated parameter estimates where the

SLX model focuses on spatial autocorrelation and the CD model arguably focuses on
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more behaviorally rich concepts of agglomeration and competition in the context of

spatial interaction and location choice.

2.2.5.6 Eigenvector spatial filtering

Eigenvector spatial filtering (ESF) is a technique that accounts for spatial autocorre-

lation based on the interpretation that the eigenvectors of a projected contiguity-based

connectivity matrix 3 are the set of possible orthogonal and uncorrelated map patterns

(Griffith, 1996; Griffith, 2011) given a particular definition of connectivity. Further, the

first eigenvector, E1, is the set of real numbers that produces the map pattern with the

largest achievable Moran’s I correlation coefficient (MC), the second eigenvector, E2,

is the set of real numbers that produces the map pattern with the largest achievable

MC while remaining uncorrelated with E1, and continues on such that En, achieves

the largest negative MC and is uncorrelated with the preceding (n− 1) eigenvectors.

The projected connectivity matrix, C, is most frequently defined as

(I − 11′/n)Mn(I − 11′/n) (2.23)

where I is an n× n identity matrix, 1 is an n× 1 vector of 1’s, ′ denotes the matrix

transpose operation and Mn is the binary connectivity matrix for n mutually exclusive

and exhaustive spatial units that partition the study space. While equation (2.23) is

the most commonly found projection, others have been defined that ensure symmetric

spatial relationships (Chun, 2008). In addition, M may be standardized using different

3Distance-based spatial weights have been used within the ESF technique, though it requires a
distance cut-off which denotes the point at which all further relations become zero entries of the
spatial weight. Furthermore, distance-based examples are based on research in the field of ecology
and have not been employed in spatial interaction models (Borcard and Legendre, 2002; Legendre
et al., 2002; Borcard et al., 2004; Dray et al., 2006; Griffith and Peres-Neto, 2006; Blanchet et al.,
2008).
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coding schemes (Boots, 1999; Chun, 2008). By selecting a subset of the eigenvectors

derived from C and creating a linear combination, it is possible to produce a synthetic

variable that is thought to potentially represent any missing spatially autocorrelated

exogenous variables (Griffith, 2004), which can be included in a linear regression as

follows (Chun and Griffith, 2011):

Y = Xβ + Eγ + ε (2.24)

where Y is a dependent variable representing areal units, X is a set of explanatory

variables, E is a set of selected eigenvectors, β and γ are coefficient vectors, and ε is

a vector of normally distributed random errors. This specification has been shown

to produce results where the error term does not violate independence assumptions

(Griffith, 2000). ESF has also been proposed for accounting for positive spatial

autocorrelation within auto-Poisson and auto-logistic model (Griffith, 2002; Griffith,

2004).

After the ESF framework was established, it was subsequently extended from

spatial data aggregated to n areal units to spatial interaction flow data that occurs

between n2 pairs of origins and destinations for various types of spatial processes and

in several geographical contexts (Griffith, 2007; Fischer and Griffith, 2008; Chun, 2008;

Griffith, 2009b; Griffith, 2009a; Chun and Griffith, 2011; Griffith, 2011; Griffith and

Fischer, 2013; Griffith and Chun, 2015; Griffith et al., 2016)4. While this cluster of

recent work might appear to indicate that a standard protocol has emerged for applying

and interpreting the ESF methodology to spatial interaction data, a closer look at the

literature shows that in actuality the paradigm is fraught with inconsistencies and

ambiguities.

4In general, for these extensions, this implies that Xβ becomes µ lnVi + α lnWj − β ln dij
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One theoretical inconsistency is that the primary motivations for using an ESF in

a spatial interaction model is stressed to be either that flows are a priori dependent

upon each other or that the ESF’s can serve as a proxy for spatially patterned omitted

variables or both. In the former motivation, this means that the proper way to account

for any potential spatial autocorrelation amongst spatial interaction data is to use

a SAR specification, which requires a theoretical explanation that is not typically

provided. In the latter motivation, the potential autocorrelation can be remedied

by using a SE specification or including the missing spatially patterned covariates.

Interestingly, Tiefelsdorf and Griffith (2007) show that an ESF methodology can

approximate a SAR or SE specification depending on the projection applied to the

spatial weights matrix, where equation 2.23 is the projection that approximates the

SAR specification. Somewhat contradictory, Fischer and Griffith (2008) demonstrate

that an ESF spatial interaction model using the SAR-approximating projection can

approximate a SE spatial interaction specification, though the projection corresponding

to the SE model has not yet been applied within spatial interaction models. Therefore

it is often unclear what the primary motivation for using an ESF framework is. In fact,

much of the research using an ESF in a spatial interaction model tends to cite Curry

(1972) and Griffith and Jones (1980), which has already been discussed as convoluting

several modeling violations under the concept of spatial autocorrelation.

Furthermore, there are several issues with the concept of spatial autocorrelation

amongst spatial interaction flows. In the ESF literature, spatial autocorrelation is

often distinguished as the local distance effects in contrast to the global distance effects

that are captured by distances between locations (Griffith, 2007, 2009a, 2011). Here,

global and local have been emphasized because these concepts are only superficially

engaged. Having an effect that occurs locally and globally implies that a process
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represented by a single metric (i.e., the distance variable) occurs at two different

scales and potentially varies over space. However, there has yet to be a local spatial

interaction model, such as an origin-specific model, calibrated within the context

of ESF’s, which could be used to investigate process non-stationarity. In addition,

geographically weighted techniques have recently been extended to model processes

that occur at multiple scales (Fotheringham et al., 2017), which could be used to shed

light on the nature of scale in spatial interaction models rather than a priori assuming

process stationarity.

Spatial autocorrelation in spatial interaction is an ambiguous concept because flows

are more complex than simpler spatial units like points and areal units. Each flow is

comprised of two or more locations and, therefore, the standard abstractions of spatial

relationships are not sufficient. Consequently, in the ESF spatial interaction literature

spatial autocorrelation is measured using Moran’s I correlation coefficient, but with

alternative definitions of the spatial weight matrix that consider spatial relationships

between both origins and destinations. In the case that both the origin and the

destination of a flow are proximal, the effect is typically taken to be either additive or

multiplicative, with little theoretical justification. This definition of autocorrelation

amongst flows has been designated network autocorrelation since a collection of

interactions can be represented as a network and the work of Black (1992) is often

cited as the conceptual foundation. However, the use of Black’s network autocorrelation

term is a misnomer in the context of the ESF spatial interaction literature. Black

actually defines proximity in terms of network connectivity and not in terms of spatial

proximity, which are two different representations of space. Further, the motivation for

measuring network autocorrelation was for defining additional substantive geographical

58



variables such as regional indicators or accessibility terms, which Black demonstrated

could successfully reduce the measured network autocorrelation to insignificant levels.

Defining and measuring spatial autocorrelation in spatial interaction is clearly non-

trivial. This raises the question of whether or not methods based upon accounting for

spatial autocorrelation, such as ESF, are sufficient extensions of the spatial interaction

modeling framework. The ESF method may seem enticing since it generally results

in increased model fit, but it has also been show to be prone to overfitting (Helbich

and Griffith, 2016; Oshan and Fotheringham, 2016; Oshan and Fotheringham, 2017).

A downside to an artificially high model fit is that it can mask the fact that other

substantive covariates may be necessary, which hampers the further development of

theory about spatial processes. Furthermore, Pace et al. (2013) demonstrate that if the

true underlying data-generating process is a SAR model, an ESF may produce biased

parameter estimates associated with some covariates even if it reduces bias in other

parameter estimates. The degree to which an ESF may bias estimates is shown to be

sensitive to the degree of spatial dependence (i.e., spatial autocorrelation captured by

a spatial lag) in the explanatory variables, the degree of spatial dependence in the

dependent variable, the number of eigenvectors used in the filter, and the spectra of

the spatial weights matrix used in the filter, which is representative of the nature of the

spatial structure of the study area. Similarly, Hodges and Reich (2010) and Paciorek

(2010) demonstrate that a spatially correlated random effect, which an ESF is theorized

to approximate (Fischer and Griffith, 2008), can compete with the substantive spatial

effects (i.e., main effects) in a regression model. This indicates biased estimates and

is shown to depend on the scale of the variability in the explanatory variables and

the error term and the extent that the two are correlated. Griffith and Chun (2016)

show that an ESF can help correct for omitted variable bias, as denoted by the
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RESET statistic, when there are indeed omitted variables and no other known model

violations. However, in empirical settings, where there are often multiple different

types of violations, the RESET statistic indicates mixed results, and ultimately it

is not clear what the ESF is attempting to account for. Furthermore, the ability of

the ESF to account for omitted variables may be less effective with more variables

and moderate multicollinearity. The work of Griffith and Chun (2016) also does

not take into account the fact that the RESET statistic is known to be sensitive to

spatial autocorrelation in the explanatory variables and error terms (Vaona, 2010).

Thus, techniques using random effects like linear mixed models and ESF that aim to

control for spatial autocorrelation may obfuscate several underlying model violations

or misspecifications.

The ESF framework is dependent upon a number of specification decisions, many of

which vary across existing research within spatial interaction modeling. For example,

there is significant variation in how spatial relationships are defined (i.e., C and

M matrices) and made operational (i.e., selecting a subset of eigenvectors E), the

type of spatial interaction model the ESF is applied to (i.e., equations 2.2-2.5a), and

the underlying probability model. Each of these issues is an important part of the

modeling framework and changing any of them can have an impact on the model

results. Further compounding the ambiguity of ESF spatial interaction models is that

there is no substantial discussion of what the expected outcomes are. Table 1 captures

the diversity of the ESF spatial interaction methodology specifications and their

associated results, which presents the details of 22 spatial interaction models (with

and without an ESF) that were extracted from 13 research articles, including data

representing commuting, migration, patent citations, research collaboration, trade,

and air travel. Any entries of not reported indicate that the necessary information
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could not be found in a particular publication while bolded entries indicate that a

particular detail of the ESF model was unclear and could not be concluded with

certainty.
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Since table 1 is organized roughly in chronological order, it is possible to detect some

simple patterns. Initially the ESF methodology was applied to unconstrained spatial

interaction models, though eventually the focus shifted primarily to doubly-constrained

models. An associated trend is that originally there was a separate ESF for origin

variables and destination variables; however, this was eventually abandoned in favor

of a single ESF that is specified using a combination (i.e., sum or product) of origin

proximity relationships and destination proximity relationships. This marks a shift in

the primary motivation for using an ESF from correcting for spatial autocorrelation in

the explanatory variables to spatial autocorrelation in flows themselves, though this

distinction is not typically made. Further examining Table 1 reveals that outside of

these patterns, there is no standard protocol. Indeed, almost every aspect of the ESF

spatial interaction framework varies, including even the details that are ultimately

reported in any given ESF spatial interaction application.

Perhaps the most varied aspect of the ESF-SI framework is the selection criterion

employed to select a specific subset of eigenvectors. Forward or backward stepwise

selection is always employed in the spatial interaction literature, and the selection

criterion may involve directly optimizing the model fit, indirectly optimizing a model

fit statistic, minimizing spatial autocorrelation, or finding all eigenvectors that are

collectively statistically significant (Table 1). In addition, the collection of all eigen-

vectors is typically pre-filtered5 so that only those with higher levels of positive spatial

autocorrelation can be selected. In one recent case though, both negatively and

5A LASSO routine and a random effects variant of the ESF have been proposed that suggest more
parsimonious methods for selecting a subset of eigenvectors (Seya et al., 2015; Murakami and Griffith,
2015), though neither of them has been applied in the spatial interaction literature and therefore do
not shed light on the variations found in existing ESF spatial interaction research. Moreover, Chun
et al. (2016) show that an ideal number of eigenvectors is dependent upon the amount of spatial
autocorrelation in model residuals and the size of the tessellation. A method for identifying an ideal
number of eigenvectors is put forth, but has not been applied in the spatial interaction literature.
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positively spatially autocorrelated eigenvectors are included (Griffith et al., 2016).

Hence, it is unclear which eigenvectors should be a priori filtered from the selection

process and how sensitive the model results are to various filtering schemes, which is

important because Chun et al. (2016) show that too many or too few eigenvectors

can cause over- or under-correction by the ESF.

ESF spatial interaction model results are frequently deemed more intuitive than

their non-ESF counterparts, though this seems inexplicable given how inconsistent

some of the results are. In particular, the effect that adding an ESF has on the

distance-decay coefficient estimate seems to vary extensively (Table 1). In some cases

it results in a stronger distance-decay and in other cases it results in weaker distance

decay. In addition, the standard errors for these estimates with an ESF are sometimes

larger and sometimes smaller than the standard errors from a model without an

ESF, though sometimes they are not reported at all. When the standard errors are

reported, it is not always the case that the change in distance-decay is statistically

distinguishable (at the 95% confidence interval) from the original distance-decay

estimate. Together, this indicates that adding an ESF has an unpredictable effect on

the estimated distance-decay and potentially obfuscates its interpretation rather than

making it more intuitive.

Indeed, it is not possible to know what the expected behavior of an ESF should

be on distance-decay without a well-developed theory and controlled simulations

to test the theory, which is currently lacking (Patuelli et al., 2015). Griffith and

Chun (2015) do however demonstrate how distance-decay estimates vary with and

without an ESF when the geographic scale and resolution are changed within an

empirical example. Here the scale is the size of the region being analyzed and the

resolution is the size and quantity of the areal units comprising a consistent study
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region. When the scale is increased from the San Juan urban area to the San Juan

metropolitan statistical area to the entire island of Puerto Rico, a doubly-constrained

model without an ESF indicates that the distance-decay effect remains essentially

stable while including an ESF indicates that distance-decay becomes less negative.

The ESF distance-decay estimates are labeled superior, but how do we know what the

expected pattern is supposed to be? In comparison, when the resolution is increased

from German provinces to districts to kreises (larger to smaller areal units), a doubly-

constrained model with or without an ESF indicates that the distance-decay effect

becomes stronger, though the magnitude of all of the ESF models are smaller than

those without an ESF. This means that the overall interpretation of the distance-

decay estimates does not change with or without an ESF. Again, how can we know

which scenario is more appropriate and based on what criterion? Overall, one is left

wondering when exactly is the use of ESF appropriate in SI, what are the expected

outcomes, especially on distance-decay estimates, and how exactly does this improve

their interpretability? It is clear that a theory needs to first be defined and then tested

in a rigorous simulation framework before the ESF spatial interaction framework can

be accurately assessed.

2.2.5.7 Measurement error

A topic that is under-explored is the effect of measurement error in spatial in-

teraction models. Since spatial interaction models can be thought of as a specfic

conceptualization of log-linear regression or Poisson regression, we can borrow intuition

from the breadth of existing work on measurement error. Here, the conventional

wisdom is that measurement error on a variable within a simple linear regression
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will bias the parameter estimate downwards towards the null, which is referred to as

attenuation, and to inflate standard errors. However, the effects of measurement are

dependent upon the nature of the error, the relationship between the measurement

errors (and model error term), and the relationships between the explanatory variables

in the model. For example, if there is correlation between a measurement error and

the regression error term, this can have the opposite effect of attenuation whereby esti-

mates are biased upward. Surprisingly, even the parameter estimates of variables that

are measured without error can be biased too when they are correlated with variables

that include measurement error. These biases may be further exacerbated due to

multicollinearity between the explanatory variables. Thus, in more realistic scenarios

of multiple regression, with collinear regressors, and potentially correlated errors, it is

possible to have biased parameter estimates and precision of any nature, which can

ultimately lead to real effects being hidden (i.e., false negatives), the observed data

having relationships that are not present in the error-free data (i.e., false positives),

and reversed signs on coefficient estimates in comparison to estimates from data with

no measurement error (Caroll et al., 2006). Even more sobering, is that Le Gallo and

Fingleton (2012) demonstrate that in the case of spatial dependence in an explanatory

variable with measurement error, and where there is a spatially correlated error term

(i.e., omitted variable), that using an SE model can produce significantly more bias in

parameter estimates than ignoring the regression error dependence and simply using

an OLS regression. Clearly, measurement error can cause serious malaise and care

should be taken to reduce it or account for it.

There are several general approaches for correcting for bias due to measurement

error, which tend to require varying amounts of prior information about the nature of

the measurement error, though the focus is not typically on spatial models (Caroll
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et al., 2006). More recently, research that concentrates explicitly on spatial regression

models has shown that measurement error in regressions using Gaussian errors causes

attenuation with a strength that is in part influenced by the spatial correlation in the

explanatory variables and in the error term (Li et al., 2009; Huque et al., 2014, 2016).

Unfortunately, this research is all based on the case of a single explanatory variable

and does not include the case of multiple variables or omitted variables. Furthermore,

this work has not yet been extended to non-Gaussian probability models and therefore

does not directly apply to Poisson regression and other distributions used for modeling

counts. Therefore, the effects of measurement error in the context of spatial interaction

models, which imply the use of several explanatory variables and have already been

demonstrated to often suffer from omitted variable biases, is an interesting topic for

explorarion.

2.3 Non-parametric spatial interaction models

A recent trend in spatial interaction modeling is the use of non-parametric tech-

niques, which means that no parameters need to be estimated and/or there are no

underlying distributional assumptions. The lack of parameters means the primary

focus of these models is predicting spatial interaction rather than explanation and

includes neural network spatial interaction models and “universal models”.

2.3.1 Neural network spatial interaction models

Neural network (NN) spatial interaction models are an entirely separate framework

for modeling spatial interaction from those previous introduced, which draw on an
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analogy to neurons in biological systems (Miller, 2009). They are an attractive tool

due to their universal ability to ‘learn’ the functions that generate observed data

without any a priori assumptions about a parametric probability model. That is,

given sufficient input data, and an appropriate neural network methodology, it is

possible to approximate any data-generating process, whether it be linear or non-linear

in nature. Therefore, NN’s have been applied to a wide variety of classification and

prediction problems. Openshaw (1993) was the first to propose the use of neural

networks to model spatial interaction flows, which are often noisy, non-linear, and

may vary from place to place. Consequently, NN spatial interaction models have been

used in various contexts, such as predicting telecommunication traffic, journey-to-work

trips, and commodity flows (Fischer, 2002; Mozolin et al., 2000; Black, 1995) and

generally boast higher accuracy than classic models based on max-entropy or utility

theory.

There are generally three steps involved in building a NN spatial interaction

model. First, a feed-forward NN architecture must be specified. For spatial interaction

models, this has generally consisted of a two-layer system (Openshaw, 1993; Black,

1995; Mozolin et al., 2000; Fischer, 2013), as demonstrated in figure 4. The first layer is

comprised of the input weights, which consist of connections between each input node

and h hidden nodes. One input node is specified for each of the model explanatory

variables and h is selected through experimentation. For spatial interaction modeling,

this typically results in three input nodes that correspond to an origin variable, a

destination variable, and a variable to represent the ‘cost’ to interact from each origin

to each destination. The second layer consists of the output weights, which are the

connections from each hidden unit to a single output node. For each data point
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Figure 4: This figure was adapted from Fischer (2013). The first set of nodes, labeled
xm represent the model inputs, the second set of nodes, labeled zh, represent the h
hidden units, and the output node is labeled y. The nodes that are filled in black and
subscripted with zero are the ‘bias’ units. Weights between all units are represented
by lines. Weights in the first layer include those from input units to hidden units w(1)

mh,
and those from the bias unit to the hidden units, w(1)

ho . Weights in the second layer
include those from hidden units to the output unit, w(2)

h , and those from the bias unit
to the output unit, w(2)

o .

that is fed into the neural network, a linear combination of the weighted explanatory

variables, ah, is determined at each hidden node

ah =
M∑
m=1

w
(1)
mhxm + w

(1)
ho (2.25)

where M is the number of input explanatory variables, h is the number of hidden

units, w(1)
mh represents the weight associated with a connection from input node m to

hidden node h (i.e. connections in layer 1), x denotes an explanatory variable, and

w
(1)
ho is an additional weight that is considered at every hidden unit, often called the

‘bias’. This quantity, ah, is also called the input activation and is transformed such

that
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zh = φ(ah) (2.26)

where φ is the transfer function and z is the final value at each hidden node. A

single linear combination of the values from all of the hidden nodes, called the output

activation, is then computed

ao =
H∑
h=1

w
(2)
h zh + w(2)

o (2.27)

where w(2)
h represents the weight associated with the connection from each hidden node

to the output node (i.e. connections in layer 2) and w(2)
o is an additional bias weight.

Finally, this output activation is transformed via transfer function ψ to produce the

model output, y, such that

y = ψ(ao). (2.28)

The input transfer function φ and output transfer ψ must be continuous and

differential where φ is often a sigmoid function and ψ is often either sigmoid or

quasi-linear. It is the nature of the transfer functions that introduce non-linearity to

the approximated data-generating function (Fischer, 2013).

The second step focuses on deriving the values for the weights, also called network

‘training’. Input data are first split into a training set, a validation set, and a testing

set. Then training is carried out by adopting an objective function, also known as a

loss function, that assesses the ability of a set of weights derived using the training

data to predict the validation data set. By minimizing the loss function, it is possible

to obtain an optimal set of weights. In the spatial interaction literature, loss functions

are generally based on either a maximum likelihood framework or a least-squares

framework (Fischer, 2002, 2006). Optimization of the loss function has been carried
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out using gradient search methods or heuristics such as a genetic algorithm, each of

which have different computational and accuracy trade-offs (Fischer and Hlavackova,

2004).

In order to find a level of model complexity that is generalizable and is therefore

not overfit to the training data, networks with a different number of hidden nodes, h,

are trained and then evaluated on the test data. This can be done simply by choosing

the number of hidden nodes that produce the lowest prediction error rate on the test

dataset or using more in-depth methods such as ‘early stopping’ or ‘regularization’,

which seek to achieve a compromise between low error rates and generalizability

(Fischer, 2013). The true prediction capabilities of the model that is finally selected

may then be assessed using new data. One issue within the NN framework is how

to spit data into training, validation, and testing sets. A bootstrapping technique

that uses resampling with replacement is suggested over an exhaustive splitting of the

data or a one-time random sample based on resampling’s ability to produce standard

errors and confidence intervals (Fischer and Reismann, 2002; Fischer, 2013).

Constrained variants of spatial interaction models were originally proposed within

the NN framework using a two-step procedure that consisted of applying an adjustment

procedure after using the basic network architecture proposed in figure 4 (Openshaw,

1993). Later, an entirely new architecture was developed to accommodate singly-

constrained models within a single step (Fischer et al., 2003). Instead of using

the typical two-layer network, a three-layer network is adopted so that there are

two layers containing sets of hidden nodes. The first set of hidden nodes uses a

multiplicative combination rather than a linear combination (i.e., additive) of the

weighted observations, though the second set of hidden nodes, which introduces the

constraints, are additive. This architecture is then repeated for each destination in
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the case of a production-constrained model, where the results from each network

component are finally combined into the third layer to produce the final output.

Empirical results of this new constrained neural network spatial interaction model

indicate that it achieves higher out-of-sample prediction accuracy compared to the

two-step constrained NN spatial interaction model and the classic constrained spatial

interaction model.

Several studies have compared the predictive capabilities of NN spatial interaction

models to classic spatial interaction models. While Openshaw (1993), Fischer and

Gopal (1994), and Black (1995) have reported increased accuracy using NN spatial

interaction models, Mozolin et al. (2000) demonstrate that when the test data pertains

to a time period other than the time period used for the training and validation data,

that classic spatial interaction models outperform NN models. This result may be

due to NN models overfitting to the training data and changes in the data-generating

processes over time. Importantly, Mozolin et al. (2000) do note that if data for the same

time period is used for training, validation, and testing, that the NN spatial interaction

methods do indeed provide increased accuracy over classic spatial interaction models.

In the context of big data, where data with finer temporal resolutions are becoming

available, the definition of the temporal resolution for a process therefore becomes

increasingly prevalent.

In recent years, research pertaining to NN spatial interaction models has been

limited. At the same time, more general research into NN’s has blossomed and their

use for machine learning tasks, such as feature extraction and prediction, is ubiquitous

across industry and academia. It is likely that for most problems it would be possible

to develop an advanced NN architecture with better predictive accuracy than any
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parametric model, including spatial interaction models. However, this task is beyond

the scope of this research and NN’s will not be further investigated.

2.3.2 Universal models

The often self-described universal models take their name from the fact that

their proponents suggest that they can be applied to many different types of spatial

interaction phenomena (i.e., migration, commuting, commodity flows, etc.) or in

various study regions using a constant set of underlying assumptions. One of the

earliest universal models is the so-called “Radiation” model (Simini et al., 2012), which

earns its title from an analogy to radiation and absorption processes that yields

Tij = Ti
viwj

(vi + sij)(vi + wj + sij)
(2.29)

where Tij is the predicted flows between i and j, vi and wj represent the population

at i and j, respectively, Ti is the total number of flows starting at i, and sij is the

sum of destination attractiveness for all locations between i and j (Simini et al.,

2012). The radiation model contrasts gravity-type models in that it does not explicitly

consider distance in the computation of SI. Rather, it only uses the distance between

an origin and a candidate destination as a radius from the origin to define alternative

destinations. The sum of the attractiveness for all alternative destinations, usually

given by their populations, is then interpreted as the deterrent of interaction compared

against the attractiveness at the candidate destination, which makes the radiation

model similar to Stouffer’s intervening opportunities model (Stouffer, 1940; Stouffer,

1960). The derivation of the radiation model was subsequently updated to account

for the fact that spatial interaction systems are finite in nature. This results in a
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renormalization of 2.29 that yields

Tij =
Ti

1− vi
V

viwj
(vi + sij)(vi + wj + sij)

(2.30)

where V is the total population at all of the locations in the system.

Several efforts have been made to compare the predictive capabilities of the

radiation model to a variety of gravity-type spatial interaction models (Simini et al.,

2012; Masucci et al., 2012; Lenormand et al., 2016) with two important conclusions.

First, the gravity model outperforms the radiation model at smaller scales, implying

the radiation model is not truly universal (Masucci et al., 2012). Yang et al. (2014)

and Kang et al. (2015) suggest reformulating the radiation model with the addition

of estimable parameters to overcome this weakness, thus further highlighting the non-

universality of the radiation model. The second conclusion is that when a comparison

between the radiation model and its proper gravity-type model counterpart is made,

the gravity model performs better, likely due to the flexibility provided by its estimated

parameters and functional form of distance-decay (Lenormand et al., 2016). This is in

contrast to an initial claim of superiority of the radiation model over a rudimentary

gravity model (Simini et al., 2012), which does not provide a level playing field for

comparison.

While the radiation model has perhaps received the most attention (see also

Lenormand et al., 2012; Liang et al., 2013; Ren et al., 2014; Yang et al., 2014), other

universal models have also been developed. The population-weighted opportunities

model (PWO) was designed as a variant of the radiation model specifically for finer

scale intra-urban flows (Yan et al., 2013). By recognizing the relatively higher mobility

of populations within cities, it assumes that the number of trips between an origin

and destination is a function of the attractiveness of the destination compared to

all other destinations, striking a resemblance to the competing destinations model.
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Further, a destination’s attractiveness is assumed to be inversely proportional to the

total population between the destination and origin, which yields

Tij = Ti
wj(

1
Sji− 1

M

)∑N
k 6=iwjk( 1

Sjik
− 1

M

)
(2.31)

where Tij , Ti, wj are as previously defined, Sji is the sum of population found between

j and i, N is the total number of locations, and M is the total population in the city.

The model is essentially a ratio of the attractiveness of destination j from origin i to

the sum of the attractiveness of all other destinations from i. It is important to note

that the distance between i and j is still used as a radius to compute the sum of the

population between i and j, but now the radius is centered on j rather than i, which

is denoted by the reversed subscript in Sji when compared to the radiation model.

A universal model of commuting networks (UMCN) has also been proposed

(Gargiulo et al., 2011; Lenormand et al., 2011; Lenormand et al., 2012). Rather

than using an analytical solution, an agent-based approach is taken to allocate trips

progressively according to probabilities that increase with the number of commuters

that arrive at a destination and decrease with increasing distance. That is, the

algorithm computes the origin-destination matrix iteratively where probabilities are

updated after each iteration. The UMCN has been compared to the doubly-constrained

gravity-type model because it incorporates information regarding the total inflows

and total outflows into the algorithm, however, it does not respect the total inflow

and outflow constraints in the predicted flows. After initializing the the origins

and destinations with the total outflows (Souti ) and inflows (Sinj ), an origin (i) and

destination (j) are each selected at random, and then a trip is allocated between them

with the probability

Pij =
Sinj e

−βdij∑N
k=1 S

in
k e
−βdik

(2.32)
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where distance is given by dij with an exponential function of distance-decay and β is

the familiar distance-decay parameter. For every trip that is allocated, an inflow and

outflow trip is subtracted from the corresponding Souti and Sinj , and this continues

until Souti = 0 for all i. Rather than calibrating β, Lenormand et al. (2012) suggest

inferring it from a relationship between the average surface area of the areal units of

the study area (ψ) and previously calibrated distance-decay parameters for 80 study

regions of varying scales, which is given by

β = 0.000315ψ−0.177. (2.33)

Using this relationship makes it is possible to predict an origin-destination trip

matrix using only the total inflows, total outflows, and distances. Unfortunately, this

relationship only applies when considering the average areal unit surface area and is

therefore not useful for making local (i.e., origin-specific) predictions. It may also be

difficult to apply the UMCN when origin and destination locations are points instead

of areal units.

In contrast to NN spatial interaction models, which require data-intensive model

training, universal models carry out prediction of spatial interaction without the use of

any prior origin-destination data, and therefore may be useful in data scarce scenarios.

However, neither universal models nor NN spatial interaction models permit inference

and therefore do not provide a framework for model building, hypothesis testing, or

regional comparisons. That is, they do not facilitate the investigation of the spatial

processes that generate spatial interaction, which is a major limitation. Furthermore,

the increasing volume and availability of different types of spatial interaction data

suggests that the applicability of universal models may remain limited in scope. A final

drawback to the universal spatial interaction models paradigm is that it is not possible
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to estimate intra-zonal flows with radiation models (Lenormand et al., 2016), whereas

various extensions have been proposed to do so within gravity-type spatial interaction

models (Kordi et al., 2012; Tsutsumi and Tamesue, 2012). Overall, non-parametric

spatial interaction models are not pursued in this research, since the focus is explicitly

on the substantive interpretation of parameter estimates that are either lacking or

only of secondary interest in these models.

2.4 Model Assessment

In order to evaluate the fit of spatial interaction models, it has been recommended

that a variety of statistics be used (Knudsen and Fotheringham, 1986). Therefore,

several metrics are introduced here to be used in empirical work. For the log-normal

regression specification, it is popular to utilize the coefficient of determination (R2),

though this statistic is not available within the GLM framework typically used to

carry out Poisson regression. In replacement of the R2 statistic, a pseudo R2 can be

used that is based on the likelihood function (McFadden, 1974),

R2
pseudo = 1− ln L̂(Mfull)

ln L̂(MIntercept)
(2.34)

where L̂ is the likelihood of an estimated model, Mfull is the model including all

explanatory variables of interest, and MIntercept is the model with only an intercept

(i.e., no covariates). Like the R2 statistic, the pseudo version is at a maximum at

a value of 1 with higher values denoting better model fit. To account for model

complexity, there is also an adjusted version of this statistic,

R2
adj−pseudo = 1− ln L̂(Mfull)−K

ln L̂(MIntercept)
(2.35)
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where K is the number of regressors. If model fit does not sufficiently improve, then

it is possible for this measure to decrease as variables are added, signaling that the

additional variables do not contribute towards a better model fit. Henceforth, these

pseudo R2 statistics are referred to solely as R2 and adjusted R2. Another model

fit statistic that can be used that also accounts for model complexity is the Akaike

information criterion (AIC),

AIC = −2 ln L̂(Mfull) + 2K (2.36)

where lower AIC values indicate a better model fit (Akaike, 1974). This statistic is

grounded in information theory, whereby the AIC is an asymptotic estimate of the

information that is lost by using the full model to represent a given theoretical process.

The R2 and AIC are designed for model selection, which means they should not

be used to compare between different spatial systems. One solution to this issue is

the standardized root mean square error (SRMSE),

SRMSE =

√∑
i

∑
j(Tij−T̂ij)2

n∗m∑
i

∑
j Tij

n∗m

(2.37)

where the numerator is the root mean square error of the observed flows, Tij , and the

flows predicted by the model, T̂ij, and the denominator is the mean of the observed

flows and is responsible for standardization of the statistic. Here, n ∗m is the number

of origin-destination pairs that constitute the system of flows. A SRMSE value of 0

indicates perfect model fit, while higher values indicate decreasing model fit; however,

the upper limit of the statistic is not necessarily 1 and will depend on the distribution

of the observed values (Knudsen and Fotheringham, 1986).

One final fit statistic, a modified Sorensen similarity index (SSI), is reviewed here

because it has become increasingly popular in some spatial interaction literature that

deals with universal non-parametric models (Lenormand et al., 2012; Masucci et al.,
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2012; Yan et al., 2013). Using the same symbol definition from the SRMSE, the SSI

is defined as,

SSI =
1

(n ∗m)

∑
i

∑
j

2min(Tij, T̂ij)

Tij + T̂ij
(2.38)

which is bounded between values of 0 and 1 with values closer to 1 indicating a better

model fit.

2.5 Moving forward

This chapter provided a contemporary history of spatial interaction models that

includes basic gravity models, the ‘family’ of entropy-maximizing gravity-type spatial

interaction models, local models, the intervening opportunities model, the issue of

spatial structure in spatial interaction and several methods for accounting for it, non-

parametric models such as ‘universal’ models and neural network spatial interaction

models and, finally, metrics for assessing spatial interaction models. From the breadth

of this review it is clear that spatial interaction models have a rich history as a useful

tool in applied spatial analysis and quantitative geographic thinking at large.

Several important conclusions may be drawn from this comprehensive review of the

literature. First, distance-decay is a quintessential concept within human geography

and much energy has been put forth to understand the intricacies associated with

it. This may be most noticeable by the very active debate over distance decay in

spatial interaction models in the 70’s and 80’s. A relative dearth of work on spatial

interaction followed this period, but interest has increased in the last decade due to

new data sources and increased computational power. Second, while local models and

spatial non-stationarity were originally used to diagnose problems arising from spatial

structure, there has been little-to-no research leveraging local spatial interaction

79



models in recent years. Several general frameworks have been proposed to account for

spatial structure, though these newer concepts that focus on spatial autocorrelation

and spatial dependence have virtually ignored the possibility of spatial non-stationarity.

Related to this, these newer spatial analytical frameworks have also been relatively dis-

interested in interpretations of distance-decay and human behavior. A final takeaway is

that simulations have been critical in building an understanding of spatial interaction

models, yet few simulations have been carried out to verify newer model specifications,

which have been identified to be ambiguous and produce inconsistent interpretations.

Therefore, it is important to compare the primary frameworks incorporating spatial

structure using simulated data to evaluate how their behavioral interpretations differ.

As previously mentioned, a renewed interest in spatial interaction models is owed

to the availability of data and computational power in the age of ‘big data’. On the

one hand, new data has created opportunities to investigate new spatial interaction

processes and build more intricate models. On the other hand, increased computational

power has made it possible to build models that incorporate data with higher spatial

and temporal resolutions and to apply more complex statistical techniques. In the

next chapter, these themes are explored with a review of spatial interaction data

within the context of era of big data.
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Chapter 3

SPATIAL INTERACTION IN THE ERA OF BIG DATA

3.1 Introduction

Data representing spatial interaction are essential for studying a wide spectrum

of geographic phenomenon, such as the location of services, product demand, trans-

portation trends, and demographic dynamics. Hence, spatial interaction is a core

concept within geographical research. While it has a long history, it was not until

the mid-20th century that the processes underlying spatial interaction became of

widespread interest to regional scientists and geographers. Following a relative ‘trough’

in spatial interaction research over the past few decades, there has been a renewed

interest in human movement under the banner of ‘human mobility’. This is primarily

due to the widespread availability of spatially and temporally disaggregate mobility

datasets from sources such as automated transportation systems, mobile phone records,

GPS trajectories, and social media, often described under the umbrella of ‘big data’

(Arribas-Bel, 2014). However, this new thrust of research has moved away from trying

to understand processes and tends to focus on predicting the movement of individuals

(Song et al., 2010b; Lin et al., 2013; Pirozmand et al., 2014; Do and Gatica-Perez,

2014) or establishing regularities (Brockmann et al., 2006; González et al., 2008; Han

et al., 2009; Bazzani et al., 2010; Song et al., 2010a; Liang et al., 2012; Wang et al.,

2014). In contrast, spatial interaction models seek to explain and predict aggregate

movements or flows. Their aggregate nature provides an important tool that can

avoid privacy issues associated with individual-based data. At the same time, spatial
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interaction models have been linked to techniques and theories for understanding

individualistic behavior (Anas, 1983; Fotheringham, 1986) such that aggregate data

can be used to gain insight into individuals’ behavior. Furthermore, since spatial

interaction models consider the attributes of a place that make it attractive as a

destination, against the costs that must be overcome to travel to it, they are a key tool

for understanding decision-making processes associated with movement. Knowledge of

location choice processes is important for policy development, which can be useful on

its own, as well as a factor within other regional models, such as land-use/land-change,

market analysis, or location allocation. Surprisingly, there has been little focus on

exploring the role of ‘big’ datasets within the spatial interaction modeling paradigm.

Compared to more traditional spatial interaction data (i.e., the decennial census), it

remains largely unknown whether or not these new data sources afford new insights

or if they have severe limitations as sources of information about movement processes.

Therefore, exploring big spatial interaction data and incorporating them into the

spatial interaction modeling framework is a crucial task necessary for modernizing the

geographical sciences toolkit, especially applied to urban areas, which are increasing

in number, density, and importance (United Nations and Department of Economic

and Social Affairs, 2014). As such, this chapter will provide a synthesis of spatial in-

teraction data in the context of big data, outline deficiencies of some analysis methods

that are employed instead of spatial interaction models, and discuss previous research

pertaining to two newer sources of urban transportation data – bike-share cycling trips

and taxi trips – that can potentially be used to calibrate spatial interaction models.
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3.2 Defining ‘big’ data

Under the umbrella of ‘big data’ many new forms of spatial interaction data have

become available. To understand these new sources, it is important to first comprehend

the basic tenants of big data and then to relate them to features that are particular

to spatial interaction. Defining big data, either physically or conceptually, has been

problematic due to its interdisciplinary nature. Each discipline has its own idea of what

should be considered big data and, therefore, what constitutes interesting research

questions associated with it (Diebold, 2012, Ward and Barker, 2013). Nevertheless,

many general definitions have been proposed for big data. Ward and Barker (2013)

deduce three characteristics common to most definitions of big data: size, complexity,

and the technologies needed to store an analyze it. They note that most previous

definitions have included at least one or two of these aspects, if not all of them.

In the case where complexity is the main focus, big data need not be very large

at all. Instead, the defining characteristic is that there is uncertainty regarding

the ability of current tools to accommodate the analysis of the data source (Batty,

2015). This idea resonates with recent research on human mobility and new data

sources. For instance, there has been much interest in how social media can be used

to enhance our understanding of human movement (Kruger et al., 2014; Wu et al.,

2014; Barchiesi et al., 2015; Li et al., 2015). More specifically, some researchers have

directly tested movement data extracted from social media sources, such as Twitter

(Lovelace et al., 2014; Llorente et al., 2015), or Foursquare (Noulas et al., 2012), within

spatial interaction models; however, these studies have only considered basic spatial

interaction models. There have also been explorations of new forms of transportation

data resulting from automated systems and GPS tracking such as bike trips (Wood
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et al., 2011; Mooney et al., 2010; Froehlich et al., 2009; Hampshire and Marla, 2012;

Beecham and Wood, 2013), and taxi rides (Peng et al., 2012; Wang et al., 2015;

Gong et al., 2015; Ferreira et al., 2013). Similarly, these transportation-based spatial

interaction data sets have only been utilized within basic gravity models (Goh et al.,

2012; Zaltz Austwick et al., 2013; Yue et al., 2012). Therefore, contemporary spatial

interaction modeling approaches that capture more complex spatial processes have

not been applied to these new data sources.

Another helpful big data definition, which is one of the earliest and most popular,

names three facets of a dataset that may become large: volume, velocity, and variety

(Laney, 2001). Therefore, this is a size-centric definition of big data. Previously,

Lovelace et al. (2015) discussed the three V’s of big data in the context of spatial

interaction modeling. However, their purpose was to support the introduction of a

fourth V, veracity, which is concerned with consistency between datasets and models,

rather than with issues arising from the original three V’s. Surprisingly, there has yet

to be a formal extension of the three V’s to spatial interaction data with a focus on

challenges that directly arise from larger data sets. Analyzing the three V’s of spatial

interaction data may require us to reconsider how we define place-based attributes

(origins and destinations), spatial coverage (scale and resolution) and the temporal

resolution (frequency of observations) for any given model.
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3.3 Properties of ‘big’ spatial interaction data

3.3.1 Volume

In association with spatial interaction, the first attribute, volume, refers to the

spatial coverage (scale and resolution) of a data set. Historically, spatial interaction

data has been available through surveys like the Unites States Census Bureau where

data are collected and aggregated for a limited number of geographic locations (by

state, county, tract, etc.). In contrast, big spatial interaction data have a much higher

coverage such that there is no limit to the number of locations where data may be

collected within any study area. This shift is primarily due to the recent explosion of

sensor technology that provides cheap and efficient data collection. For instance, GPS

trajectories, which have a precise x-y coordinate as a starting and ending location,

can be aggregated to an endless possibility of areal units at any scale. Importantly,

increased spatial coverage may become problematic since the number of possible

unique interactions increases exponentially as n2 when there are n locations serving

both as origins and destinations.

One issue that arises is that larger sets of locations often result in many origin-

destination pairs where no movements occur, thereby resulting in zero-inflated in-

teraction matrices (Wilson, 2010a). For example, transit infrastructure, urban form,

and personal preference give rise to the hierarchical, heterogeneous, and hub-focused

nature of urban transportation (Roth et al., 2011; Zhong et al., 2014). More generally,

network science has shown that many social activities result in patterns of preferential

attachment, whereby popular locations become even more popular, often resulting in

an uneven and asymmetric distribution of events over a network (Barabasi and Albert,
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1999; Newman, 2013). Such zero-inflated datasets are problematic for the log-linear

model calibrated via ordinary least-squares regression due to the issue of taking the

logarithm of a zero observation, as well as potentially causing estimates to be biased

and inconsistent (Flowerdew and Aitkin, 1982; Fotheringham and O’Kelly, 1989;

Santos Silva and Tenreyro, 2006). When the zero-inflation is mild, these problems may

be alleviated by adopting a Poisson model and using maximum likelihood estimation

(Flowerdew and Aitkin, 1982) or by using a selection model (Linders and De Groot,

2006). Further problems of zero-inflation, which usually result in overdisperison, can

be overcome by using a modified Poisson estimator such as a negative binomial model

or specialized zero-inflated models (Burger et al., 2009). The negative binomial model

accommodates scenarios where the conditional variance is larger than the conditional

mean, thereby violating the Poisson assumption of equidispersion. However, the

Poisson and negative binomial models may still under-predict the number of zero

flows when there are many, indicating that a zero-inflated extension may be necessary.

Zero-inflated extensions provide a more sophisticated way to deal with zero flows

such that the model can distinguish between flows with exactly a zero probability of

occurrence, flows with a non-zero probability that have not occurred, and flows that

have a non-zero probability that have occurred. Therefore, zero-inflated models can

consider two kinds of theoretically different zero flows: those that could never occur

(zero probability of occurrence) and those that have not yet occurred but could (non-

zero probability of occurrence). That is, the zero-inflated Poisson and zero-inflated

negative binomial models allow for the possibility to detach the interaction probability

from the interaction volume (Farmer, 2011). Methods to deal with zero flows have

been tested in various studies (Abdmoulah, 2011; Philippidis et al., 2013; Tran et al.,

2013), though it is not yet clear that any single model is superior over all others.
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Even large datasets that are not zero-inflated may complicate analysis. At the most

basic level, spatial interaction’s multidimensionality makes it impossible to efficiently

visualize flow systems as the number of observations increases. Many techniques

have been proposed to visualize spatial interaction (Ghoniem et al., 2004; Holten and

Van Wijk, 2009; Xiao and Chun, 2009; Rae, 2009; Wood et al., 2010; Wood et al.,

2011; Rae, 2011; Sander et al., 2014), though each requires simplifications of the

data such that some information is lost. Further problems can arise in models that

require computations on large matrices, such as determinants or eigenvectors, which

can be problematic to calculate as the number of origin-destination pairs increases

(Chun, 2008; Griffith, 2009a; Bivand et al., 2013). They may require hours and days

to complete a single calibration routine and in the worst cases, some models may be

altogether intractable given limited computer resources. Importantly, these difficulties

may arise using only moderately large datasets (Batty, 2015), and while this is not

a new issue in spatial interaction modeling it is becoming increasingly important as

larger volume data becomes available.

3.3.2 Velocity

If volume refers to spatial coverage, then velocity naturally defines the temporal

resolution at which events are recorded. Traditional spatial interaction data are

aggregated over many months or years. In contrast, automated data collection enables

movements to be recorded as they occur such that they can then be aggregated daily,

hourly, or even on a minute-by-minute basis. As a result, big spatial interaction

data provides the means to explore the dynamics of human behavior. There is

a tradition of using dynamic spatial interaction models (Harris and Wilson, 1978;
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Fotheringham and Knudsen, 1986; Nijkamp and Reggiani, 1988; Clarke et al., 1998;

Wilson, 2010b) where the focus is on how one model component responds to changes in

other components. In some cases, the output of one model run may become the input

to a subsequent iteration of the model. These dynamic models typically implicitly

include time, whereby each model iteration represents one unknown time step. While

dynamic models allow us to investigate the possible evolution of a system, they neither

expose temporal trends (i.e., rush hour in commuting), nor do they shed light on

how human behavior changes over time. That is, they are particularly focused on the

urban structure rather than the actors that navigate through it. Another trend is

the adoption of spatial interaction models using panel data (Kim and Cohen, 2010;

Chun and Griffith, 2011; Metulini, 2013; Patuelli et al., 2013) to include the effects

of temporal autocorrelation that may occur, typically across several years of data.

Similarly, this method does not facilitate an analysis of how human behavior changes

over time. Fortunately, new high velocity time series data that describes spatial

interaction, as well as places, should make it possible to extend analytical capabilities

to capture temporally dynamic trends. In addition, such data could provide a means

to synchronize dynamic spatial interaction models with empirical data making it

possible to validate policies and test planning strategies.

3.3.3 Variety

Finally, variety can be characterized by the breadth of information available to

describe a particular phenomena. For spatial interaction, this includes both new types

of movement data as well as new variables to describe locations, which are collected

most often within high density urban environments. On the one hand, preprocessing
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and aggregation can be used to infer spatial interaction from GPS trajectories, social

media, and mobile phone records. While much current research illustrates the potential

within these sources, effort has only recently been put forth to examine how they

can be used to further understand spatial behavior (Sila-Nowicka, 2016; Siła-Nowicka

et al., 2016) or how they fall short in the context of spatial interaction modeling

(Lovelace et al., 2015). On the other hand, open data portals and web-services provide

new variables representing the density of human activities and descriptions of the

urban environment, and may serve as proxies to the classic place-based variable

of census population estimates. For example, at any given time, in a predefined

geographic area, the number of social media check-ins may be correlated with the

attractiveness of the area or the number of subway entrances may be used as a local

indicator of an area’s propulsiveness. Since many of these place-based variables are

also collected in real-time, fluctuations in their values over time may be able to explain

temporal patterns in spatial interaction, which ties into the aforementioned concept

of velocity. Therefore, much work still needs to be done to demonstrate which data

sources are effective representations of spatial interaction and can efficiently be linked

to specific locations. Another related challenge that remains is a means to tie together

individual-based real-time sensed data and cross-sectional population-based census

data aggregated at larger areal units (Batty, 2015; Romanillos et al., 2016).

3.4 Alternative analytical methods for spatial interaction data

In this section, various methods used for the analysis of spatial interaction data are

discussed. However, many of them have limitations compared to spatial interaction
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models that make them less desirable for investigating behavior associated with spatial

processes.

3.4.1 Visualization

Many methods have been proposed for visually exploring movement data. However,

because movement data have an origin, a destination, a direction, a length, a time

component, and sometimes a flow magnitude, it is often difficult to include all of the

possible information encoded in movement data. Therefore, in order to detect spatial

patterns, typically some form of dimensionality reduction is necessary. For example,

Beecham and Wood (2013) study differences in cycling behavior between genders

and Beecham et al. (2014) study commuting behavior of cyclers by subsetting the

larger dataset and then using curved vectors and density metrics to identify important

flow patterns Wood et al. (2010, 2011). Similarly, important aspects of the flow data

may be extracted by abstracting the data as a graph and exploiting characteristics of

the network or by treating the movements as two sets of points of space and using

point-based clustering techniques (Guo, 2007, 2009; Guo et al., 2010, 2012; Koylu

and Guo, 2013; Guo and Zhu, 2014; Zhu and Guo, 2014). For these techniques,

some of the less frequent trips become essentially invisible in order to detect some

prevalent patterns and this tradeoff may manifest itself differently depending on the

generalization method employed. Murray et al. (2012) propose normalizing the origins

(destinations) and focusing only on the destinations (origins), which maintains all

of the individual movement vectors but partially generalizes the geographic context.

Another trend in flow visualization, particularly for studying migration, is that of

circular plots such as cord diagrams and kriskograms (Xiao and Chun, 2009; Sander
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et al., 2014; Charles-Edwards et al., 2015). In this instance, it may be possible to

include all potential movements in the visualization, but the data becomes completely

detached from its geographic context. Finally, interactive visualization software has

also been developed for analyzing flows that may include combinations of techniques,

both spatial and aspatial (Yan and Thill, 2009; Rae, 2009; Boyandin et al., 2011; Rae,

2011). While interactive techniques typically allow for more dimensions of the data to

be explored, it is ultimately left up to the analyst to have some prior knowledge of

which dimensions to interact with (Rae, 2009). Though many techniques are available

for visualizing spatial interaction data, consideration of the size of the data, the specific

type of spatial interaction process, spatial context, and primary research questions

will ultimately play a factor in what defines a useful visualization.

3.4.2 Spatial dependence and global autocorrelation

Spatial dependence is a general term that refers to any underlying spatial processes

or spatial effects that would result in proximal observations being related to each other.

Measures of spatial autocorrelation, such as Moran’s I and Geary’s C are typically

used to detect and diagnose the presence of such dependencies. In this section, global

measures of autocorrelation that have been proposed to detect dependencies in spatial

interaction data are reviewed. Global measures typically result in a single metric

that indicate the level and nature of dependence, which contrasts local measures that

provide a metric for every location or even every observation in a sample. They are

sometimes mentioned in the context of spatial interaction modeling because they have

been suggested as a criterion for the selection of eigenvectors within the eigenvector
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spatial filtering methodology (Tiefelsdorf and Griffith, 2007; Griffith, 2007; Chun,

2008).

An initial measure of spatial dependence among spatial interaction data is put

forth by Black (1992) who suggests the term network autocorrelation since spatial

interaction can be represented by physical or abstract networks. Black demonstrated

how network autocorrelation may be captured in data or in model residuals by

specifying a network-based weight matrix within a Moran’s I spatial autocorrelation

statistic. Spatial associations between flows are defined by

M(ij, kl) =


1, if i = k or j = l

0, otherwise
(3.1)

where ij and kl are two flows between origins (i or k) and destinations (j or l), which

are deemed neighbors if they share either an origin or a destination (i = k or j = l).

Then a Moran’s I can be calculated for the spatial interaction system as

I =
n∑

ij

∑
klM(ij,kl)

∑
ij

∑
klM(ij,kl)(xij − x̄)(xkl − x̄)∑

ij(xij − x̄)2
(3.2)

where x denotes the magnitude of a flow, x̄ denotes the mean of all of the flows, and n

is the number of flows. Similar to a contiguity-based Moran’s I, higher positive values

indicate increasingly positive autocorrelation while more negative values indicate

stronger negative spatial autocorrelation. Significance testing is initially based upon

the typical assumptions of either normality or randomization and then using the

associated analytically defined variance of I to compute a z score. The feasibility

of the network Moran’s I is demonstrated within an abstract flow network in a

migration context where the residuals of a spatial interaction model are diagnosed

with significant network autocorrelation, which is then remedied using either regional

dummy variables or accessibility variables. This network autocorrelation statistic is
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then subsequently used for an exploratory analysis of automobile crashes along the

physical links of a highway system (Black and Thomas, 1998). As part of this analysis,

it is shown through random permutations of values across the network links of a

simulated dataset that the network Moran’s I follows a normal distribution. However,

the simulated data were crash events constrained to the network rather than an actual

origin-destination flows that are constrained in geographic space.

The term network autocorrelation was more recently co-opted by Chun (2008),

Chun and Griffith (2011), and Griffith and Chun (2015) who use it to refer more

generally to any conceptualization of spatial dependence within abstract networks

of spatial interaction. Instead of using the above definitions of proximity based

on nodes on the network itself, Chun (2008) and LeSage and Pace (2008) defined

origin-destination contiguity spatial weights for spatial interaction data from the

perspective of origin, the perspective of destinations, and the perspective of origins

and destinations, which are denoted in equations 3.3 - 3.5 below

M(ij, kl) =


1, if i and k share a border

0, otherwise
(3.3)

M(ij, kl) =


1, if j and l share a border

0, otherwise
(3.4)

M(ij, kl) =


1, if i and k or j and l share a border

0, otherwise
(3.5)

where ij and kl are two flows between origins (i or k) and destinations (j or l).

There are several problems associated with these global measures of spatial de-

pendence for carrying out analyses of spatial interaction data. First, these methods
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are univariate such that they only include flow data and do not include any location

or separation variables, which are clearly important aspects of spatial interaction.

Second they can only capture a single source of dependence and they do not shed any

light on the contextual nature of the dependence. Finally, inference for these methods

should likely be carried out using computationally expensive permutations method

or other approximation methods, since analytical distributions associated with these

new types of proximity weights have yet been defined (Tiefelsdorf, 2002).

3.4.3 Spatial autocorrelation in vectors

In contrast to the previous measures of aggregate spatial autocorrelation, Liu et al.

(2014) have developed a variation of Moran’s I to measure spatial autocorrelation in

individual movement vectors. This statistic is enticing because it should theoretically

be bereft of aggregation bias, since the observations are assumed to be disaggregated.

Instead of comparing the spatial association of the volume of an origin-destination

flow to all others, it seeks to compare the direction and magnitude of a single vector

to all others, which can be computed as

I =
n∑

i

∑
jMij

∑
i

∑
jMij(uiuj + vivj)∑
i(ui2 + v2i )

(3.6)

where u = (xD − xO) − (x̄D − x̄O), v = (yD − yO) − (ȳD − ȳO), the O and D

superscripts denote whether the planar coordinates x and y are associated with origins

or destinations, and Mij is a spatial weight matrix used to define spatial association

amongst flows. Within the original conception of this vector-based Moran’s I, distance-

decay weights are utilized to define proximity between either vector origins or vector

destinations, though the authors claim any theoretically justifiable weight could be

used just as well.
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One potential issue with this measure is hypothesis testing because it is more

complex to simulate random permutations for two-dimensional vectors. Specifically,

it has been shown, using simulations, that different assumptions about the bound-

ary of the study area result in different empirical distributions of the test statistic.

Unfortunately, only a single empirical distribution is simulated for each scenario and

consequently no analysis of the potential power (i.e., susceptibility to false negatives)

or size (i.e., susceptibility to false positives ) of the test statistic is provided. Further

simulation experiments were carried out in appendix B and it was discovered that

the two permutation-based methods proposed to conduct significance tests for this

statistic do not behave as described by Liu et al. (2014). Method (1) preserves the

distribution of vector magnitudes, the distribution of vector directions and the set of

origin points, though it does not preserve the set of destination points. In contrast,

method (2) preserves both the set of origin points and destination points, but it

preserves neither the distribution of magnitudes nor the distribution of directions.

In appendix B it can be seen that method (1) is too liberal and tends to reject the

null hypothesis whether there is a pattern present or not and that method (2) is too

indecisive and only rejects the null hypothesis by random chance, whether there is a

pattern present or not. Therefore, no sufficient permutation method can be defined

and this method does not seem to be useful for analyzing spatial interaction data.

3.4.4 Spatial cluster detection and local autocorrelation

A recent focus of exploratory data analysis has been the extraction of clusters

of spatial interaction, which is useful for identifying important events or delineating

regions. Since the goal of spatial clustering is to find sets of features that are close
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together in geographic space, these methods are very similar in nature to methods

that focus on spatial dependence (i.e., global spatial autocorrelation). However, a

major difference is that clustering focuses on extracting specific features whereas

spatial dependence measures indicate whether or not clustering occurs more generally.

The breadth of available spatial clustering techniques may be classified by several

characteristics. First, flow clustering research may classified by whether or not the

aim is to identify clusters of individual flow events (Lu and Thill, 2003, 2008; Guo

et al., 2010, 2012) or aggregated flow events (Berglund and Karlström, 1999; Yamada

and Thill, 2010; Guo, 2009; Guo and Zhu, 2014; Zhu and Guo, 2014) or both (Tao

and Thill, 2016). Second, clustering methods may be categorized by how they define

spatial clusters. This is typically done using features of a network (Guo, 2007, 2009;

Guo et al., 2010), by treating the origins and destinations as two separate sets of

points in space and defining clusters among the sets of points (Lu and Thill, 2003,

2008; Guo et al., 2012; Guo and Zhu, 2014; Zhu and Guo, 2014), or by using higher

dimension measures of proximity amongst flows (Tao and Thill, 2016). This latter

methodology is particularly novel and insightful, since it jointly leverages all of the

information about each flow, including flow length and direction. Tao and Thill (2016)

suggest the term flow distance, which is defined between flows Tij and Tkl as

dij,kl =
√

(xi)2 + (xj)2 + (yi)2 + (yj)2 + (xk)2 + (xl)2 + (yk)2 + (yl)2 (3.7)

where x and y are the coordinates of the points or centroids that define the origins

(i, k) and destinations (j, l). Kordi and Fotheringham (2016) use this definition of

distance to specify spatially weighted interaction models and Tao and Thill (2016)

discuss how this specification can be enhanced with tuning parameters that shift the

focus in favor or either origins or destinations.

A large number of flow clustering techniques are actually local versions of global
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spatial autocorrelation statistics or they were extended from previously defined local

statistics. Therefore, a final way of classifying clustering techniques is by the type of

statistic that has been extended. One of the earliest extensions is by Berglund and

Karlström (1999) who extend the Getis-Ord G∗i statistic to the G∗ij to accommodate

flows. Similarly, Yamada and Thill (2010) also provide a flow-based extension to

the Getis-Ord statistic, as well as a local flow-based Moran’s I extension. They

demonstrate the importance of accounting for the structure of the network and the

underlying population of the network for carrying out significance testing. Finally,

Tao and Thill (2016) extend the local K function to accommodate flows and define a

novel adaptive subsetting routine for significance testing that considers the scale of the

flows under analysis. The nature of these localized flow statistics is such that a test

is carried out for each observation, which means they are computationally intensive.

Furthermore, when they are extended to flows, there are potentially n2 statistics for

each flow to interpret, rather than n statistics for each location, which is more difficult

to map and evaluate. Since cluster detection is not a core theme within this research,

these techniques will not be further engaged.

3.5 Cycling and taxi trips as spatial interaction

3.5.1 Cycling and bike-sharing schemes

In the past decade there has been an increasing interest in understanding cycling

trends. This has been primarily due to the promise of cycling as an alternative

mode of transportation that is environmentally friendly, decreases road congestion,

and promotes physical activity. Furthermore, cycling may provide a link between
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less connected nodes of public transportation systems, thereby decreasing overall

commuting times (Jäppinen et al., 2013). It is no surprise then that cycling has been

increasing around the world (Shaheen et al., 2010; Fishman, 2016a,b), especially in

central cities, gentrifying neighborhoods, near central business districts, and around

universities in the context of North America (Pucher et al., 2011).

The majority of research pertaining to cycling has been concerned with identifying

the traits of cyclists and their urban environment that characterize high up-take in

the choice to cycle to work. By isolating the most important factors, policies can be

developed that may be helpful in converting more of the population to become cyclists

(Handy et al., 2014). Within these studies, some results show that physical aspects

of the urban environment, such as slope, terrain, safety conditions, and travel time

are the most important (Rietveld and Daniel, 2004; Wardman et al., 2007; Heinen

et al., 2011). Therefore, safety and convenience are more important to individuals,

rather than the long term incentives, such as health and environmental sustainability

(Gatersleben and Appleton, 2007; Fishman, 2016a). In contrast, a number of other

researchers argue that the attitudes and perceptions of cyclists are more important

for promoting more individuals to cycle to work (Handy and Xing, 2011; Daley and

Rissel, 2011; Forsyth and Krizek, 2011; Guinn and Stangl, 2014). It is obvious then,

that a wide range of factors may be important in the decision to cycle as a form

of transportation. Additionally, it has been shown that factors may differ within

and across populations. For example, it was found that the rate that individuals

commute to work by bike is often heterogeneous across different ethnicities, and

genders (Gardiner and Hill, 1997; Rietveld and Daniel, 2004; Beecham and Wood,

2013). Another study employed a spatial regression framework to demonstrate that

bike usage in different spatial regimes, or regional clusters of municipalities, may be
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explained by different factors (Vandenbulcke et al., 2011). Research also shows that

individuals’ perceptions and attitudes may change depending upon on the length of

the journey under consideration (Heinen et al., 2011). These conclusions indicate that

there are likely spatial heterogeneities within the decision-making process of whether

or not to cycle that should be further explored.

The wide-spread establishment of bike-sharing schemes around the world has

encouraged individuals to cycle by providing affordable access to bikes without the

overhead of buying expensive equipment or the need to worry about theft (Bachand-

Marleau et al., 2012; Fishman, 2016a). These programs consist of stations where bikes

can be automatically checked in and out, thereby creating a detailed log of bike usage

throughout a given city. The open nature of bike-share trip data, which is typically

released for free by the governing municipality or program sponsors, has resulted in

much recent research about cycling (O’Brien et al., 2014; Romanillos et al., 2016).

Some of these efforts have sought to understand usage patterns within bike-sharing

schemes. Bachand-Marleau et al. (2012) surveyed bike share participants and found

that the primary factor affecting a participant’s frequency of usage is the proximity of

a station to their origin location. Another result of their study was that participants

often combined cycling with other modes of transportation, with the combination of

bicycle and metro being the most frequent. These findings are echoed by Padgham

(2012) who found that there was a strong correlation between the number of long-

distance bike-share journeys in London that start and end at a bicycle station and the

number of passengers entering or exiting the nearby subway stations; however, they

also found that this relationship is very weak for shorter journeys. Similarly, Martens

(2004) concluded that in the Netherlands, the closer the bicycle parking stands are

to public transport hubs, the more likely cycling is to be incorporated into urban
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transport. Finally, Hampshire and Marla (2012) reported that the number of stations,

the population density, and the size of the labor market are the factors that best explain

trip generation and attraction in bike-share usage in sub-city districts in Barcelona

and Seville while Faghih-Imani et al. (2014) use a multilevel modeling approach to

provide evidence that the weather, built environment, cycling infrastructure, and time

of the day are all important factors in explaining usage at stations.

There is also no shortage of research that seeks to leverage the data-rich nature of

the automated bike-sharing schemes in order to better understand them and make

them more efficient. A major problem in bike-sharing schemes is that they can become

unbalanced - heavy commuting patterns may deplete bikes at some stations - and

are no longer reliable for the users. As a result, Shu et al. (2013) and Schuijbroek

et al. (2013) focused on optimizing the spatial layout of bike stations to minimize

unbalancing. The former analyzes the location and capacity of stations, while the

latter incorporates optimal routes for re-stocking vehicles within the overall optimal

strategy. Similarly, there has been a series of attempts to extract spatio-temporal

usage patterns (Froehlich et al., 2008; Borgnat et al., 2009; Mooney et al., 2010; Vogel

et al., 2011), usually with the goal of developing a model to predict future usage

(Froehlich et al., 2009; Borgnat et al., 2010; Yufei et al., 2014; Yoon et al., 2012).

Collectively, these studies demonstrate that there are indeed spatial-temporal patterns

within bike-share usage.

Much of the general cycling research discussed above is not concerned with analyz-

ing the distribution of bike trips over geographic space because either the study was

not primarily geographical in nature or because the origin-destination information

was not available to the researchers. As a result, the literature is overwhelmingly

concentrated with insights that help to answer the questions, “who cycles” and “how
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many people cycle?”, rather than “where do people cycle?” or “why do cyclists prefer

certain locations?”. Even when origin-destination information is available, as is the

case for bike-share cycling data, spatial interaction models that can answer these

latter questions are not typically utilized. One exception is a study by Zaltz Austwick

et al. (2013) who employ a series of spatial and network methods to analyze bike share

origin-destination trip data for five cities. Their study included the use of a simple

gravity model from which they visualized the model residuals as indicators of locations

where flows do not conform to the basic tenets of the gravity model. Consequently,

it was found that trips connected to stations in the centralized areas of cities were

fewer in number than expected by the model. The reason cited for this observation

is that there is a relatively high density of bicycle stations in these areas (i.e., high

accessibility), which may diffuse the incoming bicycle traffic over a larger number of

origin-destination routes. This may be analogous to the competition forces that are

commonly accounted for within the competing destinations model (Fotheringham,

1983a) and therefore warrants further research.

3.5.2 Taxi trips

While there seems to be less substantive research into taxi usage itself compared

to cycling, the relatively recent addition of GPS technology into taxi fleets has

transformed taxi trips into an increasingly popular transportation dataset. This is

probably due to three reasons. First, the data become more accessible. Many taxi

datasets used to be available only to the personnel of municipal organizations that

manage them. If a researcher or analyst wanted to use the data they needed to

have an inside collaborator or go through the process of filing a data request if the
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municipality has open data and transparency laws, such as New York State’s freedom

of information law (FOIL) (Whong, 2014). These kinds of requests have resulted

in the general release of urban transportation data in machine readable format and

through easily searchable data portals (TLC, 2017; NYC, 2017). Second, is the rise of

the civic hacker. Civic hackers have led the way in investigating new datasets, such as

taxi trip data, and providing tools for harnessing these massive databases that can be

difficult to manage (Schneider, 2015; Shekhar, 2017). While the exploratory analysis

of civic hackers may seem superficial to some extent, the often elegant visualizations

they produce have received a lot of media attention, which ultimately promotes further

research. Thirdly, taxi trips have become popular in applied work because they provide

a dataset with high temporal frequency and extensive geographical coverage. For an

example that illustrates the culmination of these three factors, see figure 5, which is

a visualization of taxi pickups in New York City produced by a civic hacker using

open data and where the density and coverage of the data are so great it is possible

to see most of the city’s street network despite the fact that the data are comprised of

points.

A wide array of applied research has been carried out using taxi trip datasets.

Under the banner of human mobility, methods have been devised for describing the

collective nature of taxi trips (Liang et al., 2012; Liu et al., 2012; Peng et al., 2012;

Zheng et al., 2015). Several interesting observations result from this work. First,

taxi trajectories tend to exhibit strong daily rhythms and different patterns exist

for different travel purposes (Liu et al., 2012; Zheng et al., 2015). Second, urban

shape influences the direction and distance distributions of trajectories instead of

being uniformly distributed, which leads Liu et al. (2012) to conclude that, given

an origin and destination, the probability that a trip occurs between them depends
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Figure 5: Visualization of taxi pickup locations in New York City from 2009 to 2015.
This image was reproduced from http://toddwschneider.com/posts/analyzing-1-1-
billion-nyc-taxi-and-uber-trips-with-a-vengeance/

103



on their populations and the distance between them. This conclusion encapsulates

the assumptions underlying basic spatial interaction models, such as the gravity

model. Other applications using taxi trip data include inferring trip purpose based

on spatial and temporal patterns (Gong et al., 2015), community detection (Liu

et al., 2015), predicting congestion (Wang et al., 2015), and event detection using

time-series decomposition (Zhu and Guo, 2017). Finally, various researchers have

created visualizations to capture trends and anomalies associated with the spatial,

temporal and more semantic characteristics of taxi trajectories (Ferreira et al., 2013;

Savage and Vo, 2013; Chu et al., 2014). In particular, Ferreira et al. (2013) and

Savage and Vo (2013) employ interactive visualization software to visualize New York

City taxi data and Ferreira et al. (2013) discuss how trips cluster around major

transportation hubs, with overall patterns changing during holidays, extreme weather,

or major events that lead to road closures.

Similar to bike-share trip data, this previously discussed research does not typically

include a spatial interaction modeling framework with the exception of Yue et al.

(2012) who process taxi trajectories into aggregate trips to several shopping centers in

the city of Wuhan. They then effectively calibrate Huff-style gravity models (Huff,

1963, 1964) that predict the percentage demand at locations using shopping center

size as a proxy for attractiveness against the cost of distance needed to arrive at the

shopping center. However, this is a rudimentary spatial interaction model and Yue

et al. (2012) conclude that “Additional research is needed to identify shopping center

attractiveness factors and a proper spatial interaction model to better depict the

relationships”. Therefore, more research regarding the appropriateness of taxi trips in

spatial interaction models is needed.
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3.6 Moving forward

This chapter covered a review of spatial interaction data in the era of ‘big’ data.

First, it outlined several definitions of big data, especially pertaining to features of

spatial interaction data and models. Next, it reviewed issues with some alternative

spatial interaction analysis methods other than spatial interaction models. Overall,

these techniques are limited in their ability to analyze spatial interaction data and

this highlights the need to calibrate spatial interaction models to understand spatial

processes and behavior. Finally, it explored two newer types of spatial interaction

data – bike-share trips and taxi trips – that fit many of the definitions of big data and

have been used surprisingly scarcely within spatial interaction models. Consequently,

these two data sets will be tested in several spatial interaction modeling frameworks

in the subsequent chapters. The primary interests are a) the extent that they can be

employed in spatial interaction models and b) what can be gained from their increased

spatial and temporal resolutions.

The next chapter will present the details of the data that will be analyzed through-

out this research. This includes the basic spatial and temporal trends of bike-share

trips and taxi trips in New York City, as well as locational attributes to describe

destination attractiveness. Both traditional census variables and alternative variables

available through open data portals will be considered for locational variables.
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Chapter 4

SPATIAL INTERACTION IN NEW YORK CITY

4.1 Introduction

This chapter introduces the empirical data associated with New York City (NYC)

that will be used throughout this research. This includes an overview of the study

area, movement datasets, and several locational attributes that are used to measure

the propulsiveness of origins and the attractiveness of destinations. Movement data

and locational attributes are necessary to calibrate spatial interaction models to

obtain parameter estimates and ultimately analyze spatial behavior. As a result, more

detailed and diverse data may allow us to carry out a more in-depth analysis, which

can lead to a better understanding of movement processes. For each type of data

introduced, the method of collection and preparation will be outlined, visualizations of

spatial and temporal features will be provided, and any potential issues or limitations

in the context of spatial interactions models are discussed.

4.2 Study Area

NYC is the most populous city in the United States with an estimated population

of 8,175,133 in 2010. It is also the most dense urban metropolis in the United States

with a relatively small metropolitan area of approximately 302.64 square miles in

2010 (population density of 27,012.5 per square mile)6. The city is divided into five

6https : //www.census.gov/quickfacts/fact/table/newyorkcitynewyork/PST045216
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boroughs – Manhattan, Brooklyn, Queens, The Bronx, and Staten Island – that each

have different demographics and geographical features (figure 6).

Manhattan (figure 7) is perhaps the most famous of the five boroughs due to its

historical role as the center of the city and as a global financial center. It is also

home to several famous attractions such as Central Park, Time Square, and The

Empire State Building. While Manhattan is an island, it is connected to the Bronx

to the North via bridges and rail transit, to Brooklyn and Queens to the east via

bridges and rail transit, and to Staten Island to the south via pedestrian ferry services.

Though there is no direct road connection between Manhattan and Staten Island,

they are linked indirectly through roads and bridges via Brooklyn. Manhattan is also

connected to New Jersey in the West via bridges and rail; however, this research will

be limited to spatial interaction within NYC and interactions to and from New Jersey

will not be considered.

Brooklyn and Queens (figures 8 and 9) contain the majority of the City’s population

with approximately 2,504,700 and 2,230,722 residents, respectively. Much traffic runs

through these two boroughs due to commuters traveling to Manhattan for work or

people moving to and from the two airports (JFK and La Guardia). Manhattan

and the Bronx (figure 7 and 10) are the next two highest populated boroughs at

approximately, 1,585,873 and 1,455,720 residents, respectively. Finally, Staten Island

(figure 11) is the least populated borough with approximately 476,015 residents, which

is also an island and is relatively isolated in terms of necessary travel distance and

available transportation options in comparison to the other boroughs7.

Throughout this research the spatial units used for analysis will be the 2010 census

7http : //www1.nyc.gov/site/planning/data − maps/nyc − population/current − future −
populations.page
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tracts from the United States Census Bureau. Census tracts are relatively homogenous

in terms of demographics and contain an average of about 4,000 inhabitants8. They

are not the smallest available division of population information for the United States,

though they do provide a much finer scale of analysis than the county and state

boundaries that are often employed in spatial interaction modeling (see for example

(Chun, 2008; Griffith, 2009b; Chun et al., 2012)). In addition, smaller units of analysis,

such as census block groups and census blocks are too large in number for efficient

computation, since they result in billions of origin-destination pairs that comprise

observations of potential trips and the vast majority of these will be zero. In contrast,

the 2,166 census tracts of NYC, displayed in figure 12, result in 4,691,556 potential

origin-destination observations. It can be seen that Manhattan, with the most dense

population, tends to consistently have the smallest census tracts and Staten Island,

with the least dense population, tends to consistently have the largest census tracts.

8https : //www.census.gov/geo/reference/gtc/gtcct.html

108



Figure 6: The five boroughs of New York City
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Figure 7: Manhattan borough
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Figure 8: Brooklyn borough
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Figure 9: Queens borough
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Figure 10: The Bronx borough
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Figure 11: Staten Island borough
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Figure 12: Census tracts in New York City.
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4.3 Spatial Interaction Data

Three spatial interaction datasets will be utilized. First, CITI bike-share cycling

trips and taxi trips will be presented, which both represent new forms of spatial

interaction data that are available at finer spatial and temporal resolutions than

traditional spatial interaction data. Second, commute-to-work survey data from the

census are presented, which is considered a traditional spatial interaction data source.

The census data do not contain any time attribute and is therefore limited to a single

temporal aggregation of several years. In contrast, the bike and taxi trips can be

flexibly aggregated to any temporal unit. All data in this work has been limited to

the time frame from June 2014 through May 2016 to keep the number of data rows

that need to be processed from becoming too large. Within this range, temporal units

of months, weeks, days, and hours are explored.

4.3.1 CITI Bike-Share Trips

The CITI bike-share trip data9 for the time period of this work consists of approx-

imately 20 million bike trips. The number of stations in the system at the beginning

of the study (May 2015) was approximately 250 but increased to approximately

500 by June 2016. Station locations can change slightly over time as the system is

continuously monitored and optimized, though these changes tend to be very minor,

such as a relocation of a station to a different corner of the same intersection. In

the situation where a station has been relocated during the period of the study, an

average of the two sets of coordinates is taken as the location. In one extreme case,

9https://www.citibikenyc.com/system-data
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a station was moved across the city while maintaining the same station id (station

3016), and this station was excluded from the analysis. Each bike trip consists of an

origin station, a destination station, trip duration, a start time, an end time, cyclist

gender and whether or not the user is a subscriber or a one-off user. Since station

coordinates are provided as a point in space (latitude/longitude) and the trip start

time provides information up to the precise second, this data can be aggregated to

any larger spatial or temporal unit. Aggregating this data into census tracts results in

trips between 247 census tracts, which can be analyzed both spatially and temporally.

The data can be viewed as a time series and can be sampled monthly, weekly,

or daily (figure 13) over the two year period. First, by sampling the data monthly

(figure 13 top), it is possible to extract distinct seasonal weather trends where there

are more bike trips in the warmer months and fewer trips in the colder months. It is

also possible to observe a general trend of increasing usage, which may be attributed

to the expansion of the number of bikes and stations and increasing popularity of the

bike-sharing system. Next, by sampling the data weekly (figure 13 middle), more detail

is added and small spikes or drops in the number of trips are apparent, which might be

associated with fluctuations in the weather, such as the presence of precipitation, as

well as the effects of public events or holidays where people are either more stationary

or out of town. The big dips in the first and last weekly observation are artifacts of

the data, since the data were subset using daily break points and these weeks might

not have seven days of data. Finally, by sampling the data daily (figure 13 bottom),

even more detail is added to the time series and the trends found in the weekly series

are enhanced. Though there are relatively few large spikes above the average usage

trend, there are several large dips that are likely related to inclement weather. In fact,

the dashed red line corresponds to a blizzard that occurred January 22nd-24th and
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resulted in approximately 27.5 inches of snow 10. This blizzard, along with typically

cold and windy weather, resulted in January having the fewest rides for the Winter of

2016 (figure 13 top). It can be seen that the rides actually continued to decline after

the storm initially started on the 22nd, since the bike-share program was closed for

safety reasons and remained closed for several days while the snow was removed from

the roadways. This closure is evident in the daily sampling (figure 13 bottom) where

there is a discontinuity in the series.

Additional temporal trends can be extracted by aggregating the data by the day of

the week or the trip start hour of the day (figures 14 - 15). If the trips are aggregated

solely by the day of the week (figure 14), it can be seen that on average there are

fewer bike trips made on the weekends than during the week, which is likely due to

weekday commuting trips. Furthermore, if the trips are aggregated solely by the hour

of the day (figure 15), then the intra-daily commute patterns become clear. Average

usage tends to increase starting around 5:00am through 5:00pm with spikes around

8:00am, and 5:00pm for the morning and evening rush hour commutes, respectively.

The average number of trips then declines from 6:00pm until 4:00am. The trips can

also be aggregated by grouping them by the hour of the day and the day of the week

(figure 16), which show some additional interesting patterns. Here, it can be seen

that weekend trips follow a different hourly trend than weekend days trips, which

still exhibit morning and afternoon rush hour peaks. Instead, weekends trips tend to

more gradually increase throughout the morning and early afternoon with one smooth

peak around 2:00pm in the afternoon and a gradual decrease in trips throughout the

evening, though with more late-night trips. These trends indicate that trips over the

weekend are associated with leisure activities.

10https://www.weather.gov/media/okx/Climate/CentralPark/BiggestSnowstorms.pdf
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The bike stations are currently only available in portions of Manhattan, Brooklyn

and Queens with the highest number of stations in Manhattan, the second highest

number of stations in Brooklyn, and only a few stations in Queens (figure 17 top

left). In addition, Manhattan stations tend to have a higher capacity of bike docks

than stations in Brooklyn and Queens (figure 17 top right). It is also possible to see

that although station use is high throughout Manhattan, there is exceptionally high

bike dock capacity along Broadway Avenue, which runs from the northwest to the

southeast. However, this trend is not apparent when the number of bike docks is

aggregated to census tracts (figure 17 bottom left). Some of the larger tracts stand out

as having the highest number of total docks, though this trend is removed when the

total capacity in each tract is normalized by the area of the tract (figure 17 bottom

right). Comparing the bottom left and bottom right maps of figure 17, it is apparent

that several larger tracts are the least dense in terms of the number of docks. For

example, in Manhattan, Central park (long tract in the center) and the Chelsea Piers

(west coast) exhibit this feature. These are all places that receive some traffic due to

industrial infrastructure and leisure activities, but have low residential populations.

Similar trends are noticeable when visualizing the total outflows and inflows (figure

18 top left and right) and the density of outflows and inflows (figure 18 bottom left

and right). Comparing the totals (top) to the density (bottom), large tracts such

as Chelsea Piers and Central Park again have some of the highest totals, but much

smaller densities. Moving to densities from total counts of bike trips, also has the

effect of highlighting the high traffic in some smaller tracts. Interestingly, it is possible

to see the northwest to southeast trend along Broadway Avenue in the density of

outflows and inflows, which corresponds to the number of docks available at individual

stations. Overall, these trends seem to be very similar for both outflows (left) and
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inflows (right); however, if the data are subset for only trips that start during the

primary morning commuting hours (6:00 am - 10:00 am) additional patterns emerge

(figure 19). While outflow density (figure 19 bottom left) seems to tend towards

being randomly distributed, there is a clear pattern of a higher density of trips ending

(inflow) (figure 19 bottom right) on the east side of Manhattan where there is known

to be many skyscrapers serving as office space. Furthermore, there is a clear cluster of

low density trip ends on the most easterly portion of Manhattan. This area is known

as Alphabet City, since it consists of several avenues, each denoted by a single letter,

and is known to be primarily a residential neighborhood where few commuting trips

would be expected to terminate.

Several variables may be used as a proxy for cost associated with making a trip

between a particular origin and destination (figure 20). Costs in spatial interaction

models are often theorized to be related to the distance traveled, the most basic

of which is the Euclidian distance between locations (figure 20 left), which is also

sometimes called the “straight-line” distance or “as-the-crow-flies” distance and alludes

to the fact that it is the shortest possible distance between two points. Since the

underlying road network and urban environment are not accounted for within this type

of distance, it is the simplest to compute, but typically underestimates distance, and

therefore, the underlying cost. A synthetic distance that is created by routing a cyclist

over the transportation network may also be used as a more realistic distance in lieu

of physically recording the distance as each trip occurs. To do this, Mapzen’s Matrix

routing service11 was employed on the bike station coordinates (figure 20 middle).

This service takes coordinates as input and returns the distance needed to travel on

the transportation network provided by OpenStreetMap’s database of volunteered

11https://mapzen.com/documentation/mobility/matrix/api-reference/
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geographic information. To determine the overall route and specific transport network

links utilized, the routing service has a series of “costing” parameters, such as the

preferred type of roads. For this research, the default parameters were used, which

tend to favor roads with bike paths and bike access, though it is not limited to them.

This has the effect of generating more realistic trip distance, and comparing them

(figure 20 middle) to the Euclidian distances (figure 20 left), it can be seen that

they have a similar distribution shape, but that the network-based distances are

typically longer than the Euclidian distances. This confirms that Euclidian distance

often under-estimates the distance required to travel between two locations in an

urban environment. A limitation of these distance measures and the bike data more

generally, is that full journeys likely to start at residences and end at places of work or

leisure rather than stations, which means some of the trip information is not directly

available.

In addition to distance, time is frequently used as a proxy to distance or cost.

Though the time of each bike trip is recorded as the difference between when the bike

is checked out of a station and when it is checked back in to a station (figure 20 right),

this attribute cannot be employed in spatial interaction models, since there is only

trip duration available for those origin-destination routes have been observed and it

would be inappropriate to assign a trip duration of zero to origin-destination routes

with no observations. Therefore, analysis will be limited to the two distance measures

previously introduced.
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Figure 13: Bike trips by month (top), by week (middle), and by day (bottom)
throughout the case study time period.
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Figure 14: Bike trips by the day of the week.

Figure 15: Bike trips by the hour of the day.
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Figure 16: Bike trips by the day of the week and the hour of the day. Monday-Thursday
trips are red, Friday trips are in yellow and Saturday and Sunday trips are in blue.
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Figure 17: Bike station locations (top left), the number of bike docks located at each
station (top right), the number of bike docks located in each census tract (bottom
left) and the density of bike docks in each census tract (bottom right).
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Figure 18: The number of bike trips that start in each census tract (top left), the
number bike trips that end in each census tract (top right), the trip start density in
each census tract (bottom left) and the trip end density in each census tract (bottom
right).
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Figure 19: The number of morning commute bike trips that start in each census tract
(top left), the number morning commute bike trips that end in each census tract (top
right), the morning commute trip start density in each census tract (bottom left) and
the morning commute trip end density in each census tract (bottom right).
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Figure 20: Variables that are a proxy for the cost to travel by bike between census
tracts. This includes Euclidian distance in kilometers between centroids (left), synthetic
network-based travel distance also in kilometers (middle), and trip duration in seconds
(right).
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4.3.2 Taxi Trips

There are currently over 1 billion taxi trips12 now available in NYC from January

2009 to the present. For the study period of June 2014 to June 2016, this amounts to

approximately 320 million trips. These trips are reported with the precise latitude and

longitude for the trip pick-up and drop-off point, start time, end time, trip distance,

trip cost, and passenger count. Similar to the bike data, these trips can be aggregated

to census tracts and to various temporal units.

Viewing the taxi trips as a time series (figure 21), several trends that contrast the

bikes can be determined. First, sampling the data monthly (figure 21 top), we can

see there is a decrease in taxi trips over time rather than in increase. This may be

attributed to competition with the new bike-sharing system, as well as competition

will ride-sharing services, such as Uber, that have become popular. It can also be seem

from the monthly time series that the seasonal trend is much less apparent. Moreover,

trips seem to be at a low during the winter when the weather is harsh, but also during

the summer months when many people opt to cycle or walk instead. Peaks in the

fall and spring may also be weather related since the weather is not harsh enough

to deter travel, but precipitation might drive individuals to choose a taxi over other

options. Second, the weekly sampling of the series (figure 21 middle) adds more detail

and shows agreement with an overall trend that is less prone to seasonality effects.

Thirdly, sampling the data daily (figure 21 bottom) adds even more detail. Of note is

that there are similar tends in both 2015 and 2016 of big dips in taxi trips right before

and after the New Year when people are observing holidays. Importantly, the effects

of the blizzard in late January are visible in a similar manner to the bike trips data.

12http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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The one difference is that there is no discontinuity in the taxi trip data set since taxi

service was not explicitly discontinued. However, the number of taxi trips drastically

decreases to the lowest point in the entire series. Also similar to the bike data, the

weekly taxi data shows artificial lows near the beginning and end of the series, which

is also an artifact of the data processing.

Differences in taxi trips compared to the bike trips can also be discerned when

the data are aggregated by day of the week or hour of the day (figures 22 and 23).

Using the former aggregation, there is a small increase in the number of taxi trips each

day from Monday to Saturday, with a decline from Saturday back to Monday. The

overall trend is that there is a spike in the number of trips on Friday and Saturday

when many people engage in evening leisure activities. Using the latter aggregation,

it can be observed that the number of taxi trips begins increasing around 6:00am

with the beginning of the morning commute. However, the number of trips increases

until about 9:00am where the number of trips plateaus until the evening commute

around 5:00pm, rather than declining. The taxi trips are also different from the bike

trips in that the number of taxi trips remains much higher throughout the evening

and does not significantly decrease until the latest hours of the night. These trends

can be corroborated and expanded upon by aggregating by both the day of the week

and the hour of the day (figure 24). As with the bike trips, the taxi trips have much

different weekday trends compared to weekends when the majority of taxi trips take

place later in the day. In particular, we can see that Friday and Saturday tend to have

an additional evening peak probably associated with nightlife activities. Of note is

that the number of trips on Fridays tend to mirror those of other weekday mornings,

while having an evening trend more closely related to Saturday. On the contrary,
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Sunday tends to have a similar number of trips as Saturday in the morning, but is

more similar to the weekdays in the evening.

The total trip outflow and inflow for each census track (figure 25) shows that the

highest volume of taxi trips occurs in Manhattan and the areas of Brooklyn, Queens,

and the Bronx that are closest to Manhattan. Overall, the distribution of trip counts

is more skewed than the bike data, with many more census tracts having a relatively

smaller number of trips compared to a much smaller group of tracts with very large

trip counts. Normalizing trip counts by census tract area moves some of the larger

census tracts from the extreme (i.e., large counts) end of the distribution toward more

moderate values (figure 26). This includes important places like Central Park and JFK

airport (circular tract in the southeast) and many less distinguished tracts in eastern

Queens and Brooklyn and the northern part of the Bronx. Whether visualizing counts

or densities, there does not seem to be any strong differences between the outflows

(left) and the inflows (right). Unlike the bike data, no clear patterns emerge, when

the data are limited only to trips associated with the morning commute (figures 27

and 28).

Similar to the bike trips, we can employ a simple Euclidian distance between

census tracts (figure 29 top left), though Mapzen’s Matrix service is prohibitively

expensive to deploy for the more than 4 million possible origin-destination routes

associated with the approximately 2100 census tracts where taxi trips can occur. The

taxi trip observations also include the distance traveled during each trip (figure 29 top

right), the total fare charged (figure 29 bottom left) to the customer and the duration

of the trip (figure 29 bottom right). The trip fare is determined by a combination

of pre-determined fees, time of the trip and the distance traveled. Spikes in the

taxi fare distribution are likely due to the addition of pre-determined fees, such as
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Figure 21: Taxi trips by month (top), by week (middle), and by day (bottom)
throughout the case study time period.

tolls. It is also possible to see a large spike at 50 dollars that is likely associated

with taxi trips to the airports, which are charged as a flat rate. However, like the

bike trip duration, these three included measures of separation are only available for

origin-destination routes where trips have been observed and not for the entire matrix

of potential origin-destination routes and therefore not be effectively employed in

spatial interaction models.
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Figure 22: Taxi trips by the day of the week.

Figure 23: Taxi trips by the hour of the day
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Figure 24: Taxi trips by the day of the week and the hour of the day. Monday-
Thursday trips are red, Friday trips are in yellow and Saturday and Sunday trips are
in blue.
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Figure 29: Variables that are a proxy for the cost to travel by taxi between census
tracts. This includes Euclidian distance in kilometers between centroids (top left),
actual road distance also in kilometers (top right), trip fare in dollars (bottom left),
and trip duration in seconds (bottom right).
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4.3.3 Census Commute-to-work Survey

Before the recent explosion of big data, movement data that represent urban

mobility and commuting were limited to traditional surveys collected by the United

States Census Bureau. These datasets are aggregate in nature, often reflecting

information associated with multiple years and aggregated to the state, county, or

tract, spatial resolution. One example is the aggregate commute-to-work flows that

are available at tract resolution from the Census Transportation Planning Products13

(CTPP) unit of the Census Bureau, which is based on the 2006-2010 American

Community Survey (ACS).

After selecting the flows that occur from residences in tracts within NYC and to

workplaces in tracts within NYC, the spatial distribution of the outflows and inflows

(figure 30 and 31) can be visualized in a manner similar to the bike and taxi trips,

though some noticeable differences are evident. Since this commute-to-work data

are specifically about a single process, assumptions about origins and destinations

are built into the data. For example, the outflows show different patterns than the

inflows, such as many trips arriving at JFK airport but no trips originating from there.

This is because there are no residences in the tract that correlates to JFK airport to

provide survey data, whereas taxis are picking up and dropping off customers art the

airport at all hours of the day. A similar argument holds for Central Park where there

are no residences, though bike trips may occur there throughout the day. Additional

effects of different types of locations serving as origins and destinations can be seen

in the histogram legends of figures 30 and 31. The outflows tend to have a more

diverse distribution of values, since residents live in and commute from almost every

13http://ctpp.transportation.org/Pages/5-Year-Data.aspx
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census tract. In contrast, the inflows tend to be bimodal with tracts either receiving a

relatively high number of commuters (e.g., tracts in Manhattan) or a relatively small

number of commuters (e.g., areas farther from Manhattan). Finally, normalizing the

flows by tract area, many large tracts have a relatively smaller intensity of commutes,

such as those in Staten Island (figure 31).

One advantage to commute-to-work survey data is that it can be expected that

there is less noise in the data, such as flows that do not occur based on commuting

related decision-making processes. However, at the same time, there are several

restrictions associated with these data. First, these trips are restricted to the tract

spatial resolution. This means that the only cost variable that can be defined is

Euclidian distance between the tracts (left in figure 20 and top left in figure 29)

because we have no additional information on the precise begginning and end of each

trip or the trip duration. Second, there is no temporal component to these trips. It is

not possible to examine how commuting varies over the course of a day or week, nor

is it possible to identify evolving patterns over, weeks, months, and years. Therefore,

this census flow dataset will be compared to the newer taxi and bike flow datasets to

help evaluate any potential or pitfalls associated with each data source.
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4.4 Location Attributes

In order to understand what make locations attractive, data that describe the

benefits or disincentives associated with each location are needed. Classically, these

attributes are limited to data from the United States Census Bureau. However, in

the era of ‘big data’ many additional variables are now also available. In this section,

variables will be presented that will be used as locational data and includes traditional

attributes, such as population and number of jobs, as well as newer data sources, such

as points of interest (POI’s) from OpenStreetMap14 and the municipal government

open data portal15.

4.4.1 Census Variables

The 2010 decennial census and the American Community Survey (ACS) of the

United States Census Bureau are extremely valuable repositories of socio-economic

data that are frequently employed in spatial modeling. They provide data on a wealth

of socio-economic variables, such as population, income or race, which are generally

available at the census tract resolution. Due to the sampling frequency of these data

sets they are representative of slow dynamics in that they are only sampled once a

year or less frequently and are not expected to change much between samples. It

should also be noted that all census data are estimates and therefore contain various

levels of uncertainty; however, incorporating this uncertainty is not a topic of this

research. For this research, the following variables have been collected for each census

14https : //www.openstreetmap.org/

15https : //opendata.cityofnewyork.us/
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tract: population count, housing unit count, average income, the percentage of people

living in poverty, and the number of jobs.

The spatial distribution of census tract population shows, as expected, that tracts

in Manhattan consistently have very high populations (figure 32 top). Unexpectedly,

it can also be seen that high population counts are recorded for Staten Island and

eastern portions of Queens and Brooklyn. However, normalizing the population by

the area of the census tract indicates that these high counts are mostly due to these

tracts being larger in size (figure 32 bottom). Similar trends are apparent for the

number of housing units and the density of housing units (figure 33). This suggests

that these two datasets will be collinear and only one should be used in each form

(i.e., counts or density).

Unsurprisingly, average income and the percentage of people living in poverty tend

to have an inverse relationship where areas with high income have low poverty (figure

34). Several trends emerge by visualizing these two variables. First, the southern

portion of Staten Island tends to have higher income and lower poverty. Second,

income is higher and poverty is lower in Manhattan with the exceptions of Alphabet

City, which is known to contain low-income housing, and north of Central Park,

which contains areas known for poverty, such as parts of Harlem. In the Bronx there

is typically higher poverty except for an enclave all the way in the northwest and

northeast. Finally, the areas of Brooklyn and Queens closest to Manhattan tend to

exhibit higher income levels, though as you move east to the central areas of Brooklyn

and Queens, the tracts tend to have higher poverty and lower income. These are also

the areas that do not typically have high transportation access. Interestingly, if you

continue moving east towards long island, the poverty in Queens tends to decrease

and income tends to increase.
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The final census variable is the number of jobs in each census tract. It is clear

that Manhattan and areas closer to Manhattan have a higher number of employment

opportunities (figure 35 top). However, normalizing the number of jobs by census tract

area, it can be seen that large tracts that contain important features like Central Park

and JFK international airport are outliers and do not contain a high number of jobs

relative to smaller tracts (figure 35 bottom). The distribution of jobs is heavily skewed

with most tracts having relatively few jobs compared to a minority of tracts with a

very high number of employment opportunities. This can be further investigated by

filtering out some of the tracts with the highest number of jobs (figure 36 top) where

most of these tracts are either in Manhattan or very close to Manhattan. One outlier

is the tract containing JFK airport, but this pattern does not exist when considering

job density (figure 36 bottom).

146



Figure 32: Distribution of population by census tract (top) and distribution of
population density by census tract (bottom).
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Figure 33: Distribution of housing units by census tract (top) and distribution of
housing units density by census tract (bottom).
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Figure 34: Distribution of average income by census tract (top) and distribution of
percentage of households in poverty by census tract (bottom).
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Figure 35: Distribution of jobs by census tract (top) and distribution density of jobs
by census tract (bottom).
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Figure 36: Distribution of filtered jobs by census tract (top) and distribution of density
of filtered jobs by census tract (bottom).
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4.4.2 Urban Environment

A variety of spatial data sets that can be used to describe the urban environment

and may serve as proxies to the attractiveness of a location are available via the NYC

open data portal16. For instance, building footprints, which include the number of

floors in each building, may be used to compute the total building square footage in

each census tract to represent the general opportunities available (figure 37). Here it

can be seen that midtown and downtown Manhattan, along the portion of the outer

boroughs that are closes to Manhattan, have the building square footage.

Another way to capture different aspects of the built environment is through a

database of points-of-interest (POI) for NYC, which can be obtained through the

OpenStreetMap17 project that collects and stores volunteered geographic information.

Figures 38 - 44 represent various types of POI’s that include bars, cafes, restaurants,

shops, tourist destinations, museums, and colleges and universities. Each of these

variables may also help define what makes a census tract attractive, however there

are several issues with these data. First, the data are available as a set of points

which need to be aggregated to census tracts. Second, and more importantly, these

data may suffer a reporting bias, since most people do not spend time volunteering

geographic information. It is likely that there are more POI’s reported where there

are more younger communities that are more technology savvy. Thirdly, volunteered

information may have lower accuracy than more official sources. Therefore, this

16https://nycopendata.socrata.com

17http://wiki.openstreetmap.org/wiki/Planet.osm

152



Figure 37: Distribution of total building square footage by census tract locations.
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research will investigate the usefulness of this type of data in spatial interaction

modeling.

Many of these of individual types of POIs are relatively sparse. For example,

museums (figure 43), and places of higher educations (i.e., colleges and universities)

(figure 44), were so sparse that they were more easily visualized using binary indicators

for tracts that contained a POI (in red) or did not. Therefore, a single composite

variable composed of all POI’s (figure 45) was created and will be employed in empirical

modeling in a later chapter.

154



Figure 38: Distribution of bar locations (top) and distribution of number of bars by
census tract (bottom).
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Figure 39: Distribution of cafe locations (top) and distribution of number of cafes by
census tract (bottom).
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Figure 40: Distribution of restaurant locations (top) and distribution of number of
restaurants by census tract (bottom).
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Figure 41: Distribution of shop locations (top) and distribution of number of shops
by census tract (bottom).
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Figure 42: Distribution of tourist site locations (top) and distribution of number of
tourist sites by census tract (bottom).
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Figure 43: Distribution of museum locations (top) and census tracts containing at
least one museum in red (bottom).
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Figure 44: Distribution of college and university locations (top) and census tracts
containing at least higher education POI in red (bottom).
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Figure 45: Distribution of number of all POI’s by census tract locations (top) and
distribution of density of all POI’s by census tract (bottom).
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Sensor data collected can also potentially be used to represent the urban environ-

ment. While sensor data are traditionally hard to acquire due to their proprietary

nature and large size, they are becoming more available with the spread of open and

smart cities (Arribas-Bel, 2014). One example is the subway turnstile data18, which

logs the number of individuals that enter and exit each particular subway station and

could serve as an alternative proxy to the attractiveness of a destination.

The location of subway stations throughout the city is given in figure 46. The

spatial distribution of entrances and exits aggregated over time is given in figure 47

where it can be seen that subway usage corresponds to the tracts with more stations

and the highest usage is associated with Manhattan. Furthermore, the histograms

for the total entrances and exits show that most stations experience relatively low

usage compared to a minority of stations that experience very high usage. In fact,

visualizing the logarithm of subway usage indicates that there are essentially two

distributions of subways: those with a lower level of usage and those with a higher

level of usage (figure 47 legend).

In particular, the number of subway entrances and exits may be an indicator of

destination attractiveness that changes over time. First, the number of subway trips

that start at a location may be indicative of the attractiveness of the subway station

as a feature of a location. For example, individuals may make more bike trips to tracts

that also have a subway station so that they can leverage multi-modal transit routes.

Second, the number of trips that end at a location may be a proxy for other attractions

available there, since locations where more subway trips end are likely correlated with

areas of high residence, more office space, or a cluster of leisure activities.

18http://web.mta.info/developers/turnstile.html
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Figure 46: Location of subway station entrances and exits.
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Figure 47: Distribution of the number of aggregate station entrances (top) and the
number of aggregate station exits (bottom)

165



Figure 48: Distribution of the number of logged aggregate station entrances (top) and
the number of logged aggregate station exits (bottom)
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4.5 Moving forward

An array of data sources has been introduced in this chapter that are employed

throughout the remainder of this research. First, several types of spatial interaction

data were examined. These include newer sources, such as bike trips and taxi trips,

and traditional survey data from the Census. A major difference between these sources

is in the available temporal and spatial resolution associated with each dataset. Next,

location data to represent the attractiveness of destinations was explored and included

traditional census variables, such as population, as well as non-traditional variables,

such a s POI variables from OpenStreetMaps. The advantage of the census data is

the extensive coverage provided, while the advantage of the POI variables is that

they provide a more diverse set of destination attractions. These data sources provide

a mix of traditional and newer datasets for modeling urban spatial interaction at

increasingly finer spatial and temporal scales.

The following chapters will utilize these empirical data sources, as well as simulated

data, to evaluate several concepts and spatial interaction model specifications. In

conjunction with this usage, the limitations of the various data on propulsiveness

and attractiveness will be examined throughout this research. The next chapter will

begin the analysis using controlled simulations to consider the bias that may occur in

parameter estimates when spatial structure is not properly accounted for.
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Chapter 5

A SIMULATION-BASED INVESTIGATION OF SPATIAL STRUCTURE

EFFECTS IN SPATIAL INTERACTION MODELING

5.1 Introduction

Before calibrating models on empirical data and interpreting the resulting parame-

ters estimates, it is prudent to investigate the results of calibrating various types of

spatial interaction models on simulated data with well-known properties. Chapter

2 outlined the corpus of theories on spatial structure effects in spatial interaction

modeling and demonstrated that there are several perspectives that are often in-

congruent with each other. In particular, these perspectives have led to the three19

modeling frameworks that were outlined in chapter 2 to account for spatial structure:

competing destinations (CD), spatial lag of explanatory variables (SLX), and spatial

autoregressive processes (SAR). Though each framework claims to account for spatial

structure effects, they entail different explanatory frameworks, different methodologies,

different abstractions of space, and different underlying data-generating processes

(DGP’s). Thus, simulations will be used to compare and contrast the ability of these

frameworks to capture spatial structure effects and also to evaluate the extent that

they overlap or depart from each other.

The on-going debate about spatial structure in spatial interaction may be char-

19Additional frameworks were also reviewed, such as using a Box-Cox transformation or using
eigenvector spatial filtering, but they were demonstrated to be insufficient. The Box-Cox method was
shown to be inadequate using empirical experiments (see appendix A) and through a comprehensive
literature review the eigenvector spatial filtering method was shown to be ambiguous and a-theoretical.
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acterized by varying definitions of what is meant by spatial structure. While the

earlier literature (i.e., 70’s and 80’s) is focused on the physical organization of the

spatial interaction system (Fotheringham and Webber, 1980; Griffith and Jones, 1980;

Fotheringham, 1981, 1983a), more recent work has focused on the concept of spatial

autocorrelation (Griffith, 2007; Chun, 2008; LeSage and Pace, 2008). In this disserta-

tion, the earlier definition of spatial structure will be adopted and the primary focus

will be on the effect of clustering of locations in space. Data are simulated from the

perspective of individual locations abstracted as points rather than from the perspec-

tive of aggregate areal units. Abstracting locations as points is more intuitive because

individuals often choose individual places of employment, residences, or cities rather

than broader, more aggregate spatial units. Furthermore, simulating data from the

perspective of individual locations allows the effects of spatial structure to be assessed

without the obfuscation of aggregation bias, which is a type of measurement error.

Therefore, the simulations carried out in this chapter will consider point locations

with varying degrees of spatial clustering.

Though aggregation may obfuscate variables and relationships between variables,

it is an inevitable reality of applied empirical modeling. This is particularly true

in spatial interaction where the flow data or the locational attributes may only be

available at the aggregate level. Hence, it is also of interest how the effects of spatial

structure are affected by aggregation and the extent that each of the three frameworks

are robust in the presence of aggregation bias. Therefore, simulation experiments will

also be carried out that aggregate the data to various scales to better understand the

effects of aggregation bias in the context of each framework and each spatial structure

scenario.
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In the subsequent sections of this chapter, the simulation design is first described,

followed by the results, and finally, some conclusions.

5.2 Simulation design

Simulated data with controlled and known features are needed to understand

the effects of spatial structure and aggregation on spatial interaction models and to

compare and contrast model specifications. This section outlines a methodology for

simulating data and calibrating models that will be used to explore these issues.

5.2.1 Spatial structure

In order to control the effects of spatial structure, it is necessary to generate data

with varying degrees of clustering in the locations. To do so, three scenarios were

formulated (figure 49). The first scenario is comprised of 144 locations uniformly

distributed across a 12 by 12 lattice in a 480 by 480 window and is representative of the

situation where there is no spatial structure (figure 49 top). While the distribution of

locations (i.e., opportunities) rarely manifests in this pattern20, this pattern represents

the extreme circumstance of no spatial clustering. The second scenario is comprised of

144 locations that are randomly distributed in a 480 by 480 window using a Poisson

point pattern process. Since points are distributed at random, some of them will

cluster together while others will be isolated so that this scenario represents mild

spatial structure (figure 49 middle). Finally, the third scenario is comprised of 100

20Even in cities that use regular street grid, different types of locations, such as apartments of
offices, are heterogeneously distributed across the grid
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locations that are generated with a Poisson cluster point process and 44 randomly

distributed points in a 480 by 480 window (figure 49 bottom). The Poisson cluster point

process is formed by choosing 5 random centroids in the window and then generating

20 points within a 35 unit radius of each centroid. This scenario is indicative of

strong clustering, where a few regions contain most of the locations and other regions

have few or none. Such a pattern could be common in residences where housing

communities are developed as a single project, the distribution of cities and towns

across a country, shops within shopping centers, or employment opportunities at a

collection of industrial facilities where agglomeration forces are present.

After the locations have been generated, populations to represent location propul-

siveness and attractiveness are assigned by drawing values from a random uniform

distribution with a minimum value of 50,000 and a maximum value of 5,000,000. These

limits were chosen with the logic that they span several orders of magnitude that

closely resemble small, medium, and large cities that could be found within the United

States. More importantly, a random uniform distribution was chosen even though a

power distribution with few large values and many small values would be more realistic.

This is because values drawn from distributions other than a uniform distribution

would have likely resulted in clusters of locations with similar populations and this

could convolute the effect of spatial structure with those of spatially autocorrelated

locational attributes. Sets of locations and their associated populations were generated

100 times so that the variation within each scenario can be examined throughout the

experiments. These location systems were then used as input for the DGP’s of the

three spatial interaction modeling frameworks in order to simulate flows between the

locations.
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Figure 49: An example uniform points (top), random points (middle), and clustered
points (bottom).
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5.2.2 Data-generating processes

Separate sets of flows were generated using each of the three spatial interaction

modeling frameworks, as well as from a null model that does not incorporate spatial

structure. The DGP’s for each of the four models are explained in detail in chapter 2

and are briefly reviewed here, along with their substantive parameterizations for the

simulation experiments.

First, for the null model, an unconstrained gravity-type spatial interaction model

is used, which assumes a priori that there is no relationship between the number

of destination locations in a cluster and the number of flows to destinations. That

is, spatial structure of locations does not impact the number of flows generated

between locations21. The unconstrained gravity-type spatial interaction model, which

is henceforth referred to as the gravity model, is given in its multiplicative form as,

Tij = kV µ
i W

α
j d

β
ij (5.1)

where Tij is the number of flows between origin i and destination j, k is a scaling

parameter, which is equivalent to the intercept in a log-linear regression form, Vi is

one or more variables representing origin propulsiveness, Wj is one or more variables

representing destination attractiveness, dij is a variable that represents the separation

or cost to travel between an origin and destination, and k, µ, α, and β are parameters

to be estimated. Here, Vi and Wj are simplified to consider only a single variable

each, which are specified as the origin population and the destination population,

respectively. The parameters µ and α that are associated with Vi and Wj are set

to 1 to indicate the positive relationships that would be expected between origin

21This holds for any of the family of gravity-type spatial interaction models and not just the
unconstrained variety.
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propulsiveness and the number of flows and destination attractiveness and the number

of flows. In contrast, the distance-decay parameter, β, is set to -1 to indicate the

negative relationship associated with increased costs to travel over longer distances.

In this research, distances between locations are computed as the Euclidian distance

between each origin and destination. Finally, k, is set to 1, which does not scale

the flows and is therefore not of interest throughout the simulation experiments

and results. By plugging in the populations, distances, and parameter values into

equation 5.1, flows that follow the gravity model are generated. To add a stochastic

element and to ensure the same number of flows in each realization of simulated

flows (i.e., normalization), the flows were converted to probabilities that were used to

generate a random realization of flows from a multinomial distribution with 5,000,000

observations. Probabilities were obtained using the following formula,

pij =
Tij∑
Tij

(5.2)

which is simply the division of the number of flows between each origin-destination

pair by the total number of flows in the system. Of note, is that this simulation

process implies for intra-zonal flows that a value of zero distance is raised to a negative

power22, which is undefined. To overcome this limitation, these intrazonal flow values

were set to zero rather than computing the logarithm of zero-valued distances, which

indicates intra-zonal flows are not part of the substantive model and will be revisited

later.

The first specification that incorporates spatial structure is the CD model, which

is given in its multiplicative form as,

Tij = kV µ
i W

α
j d

β
ijA

δ
ij (5.3)

22This is equivalent to a division denominator of 0 and similarly to taking the logarithm of zero
in the log-linear form
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where the symbology is the same for the gravity model with the addition of an

accessibility term, Aij, that captures the accessibility of destination j in relation to

all other destinations and its associated parameter, δ, which was set to -1 in this

simulation experiment. This negative parameter indicates the presence of competition

effects whereby destinations that are more clustered receive fewer flows than would

be expected in comparison to the gravity model. Following Fotheringham (1983a),

accessibility is computed as,

Aij =
n∑
k=1
(k 6=j)

Wk

dσjk
(5.4)

where k denotes each alternative destination other than j, and which is essentially

a distance-weighted sum of destination attractiveness that is moderated by σ. This

parameter is a type of distance-decay that can be defined empirically through a grid

search or via iterative substitution with β, though here is was always set to -3. A large

negative σ indicates strong distance-decay, and therefore that the definition of clusters

is a relatively local phenomena. Once CD flows are computed using equation 5.3,

they are similarly normalized using their respective probabilities and a multinomial

distribution.

Next, flows were generated using an SLX framework, which is the second framework

that considers spatial structure. Instead of the general SLX specification that considers

a spatial lag of each explanatory variable, only a simplified specification that considers

a spatial lag of destination population is considered, which is given in its multiplicative

form as,

Tij = kV µ
i W

α
j d

β
ijMW φ

j (5.5)

where M is a row-standardized spatial weight matrix that denotes neighbors (i.e.,

spatial lag operator) of j and effectively computes the average of j’s neighboring

destination populations. This simplified SLX specification is considered because it
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would seem illogical to conceive of a spatial lag of distance and only considering a

spatial lag of destination populations provides a clearer means of comparison of the

SLX and CD frameworks. Since locations are abstracted as points, it is natural to

define neighbors using a k nearest neighbors with k set to 8. This parameterization

of M was chosen because it implies a relatively local definition of neighbors and is

equivalent to a queen definition of contiguity neighbors for uniformly distributed

locations if each locations is aggregated to a a unique areal unit. The parameter φ

was set to 3 in these simulations, which corresponds to strong positive spillovers or

indirect effects that imply the importance of neighbor values and would generally

be associated with spatial autocorrelation that cannot otherwise be accounted for

by the explanatory variable that is not lagged. While M may also be defined using

a parameterized distance-decay (Halleck Vega and Elhorst, 2015), like Aij in the

CD framework, this is not typically done in the spatial interaction literature and is

not considered here. Similar to the gravity flows and CD flows, after the SLX flows

were generated using equation 5.5 they were then normalized using their respective

probabilities and a multinomial distribution.

A SAR spatial interaction specification was used as the third framework for

incorporating spatial structure. Instead of using a SAR spatial interaction model with

three autoregressive terms – one for the origins, one for the destinations, and one for a

combination of origins and destinations – a simpler specification was adopted that only

uses a single autoregressive term that is defined using a combination of origin spatial

contiguity and destination contiguity. This simpler specification is part of a family of

SAR spatial interaction models defined by (LeSage and Pace, 2008). They argue that

such a specification is necessary because flows may influence nearby flows. It is not

possible to express this specification in a multiplicative form similar to the gravity,
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CD, and SLX models because the SAR spatial interaction model is an extension of

a Gaussian process model and a Gaussian process is a log-linear approximation for

the distributions of discrete flows that are typically observed. Therefore, the model

specification is given in log-linear form as,

lnTij = ρijMijy + k + µ lnVi + α lnWj − β ln dij + ε

Mi = In ⊗M

Mj = M ⊗ In

Mij = Mi ⊗Wj = Mi ⊗Mj = M ⊗M

(5.6)

where the symbology is the same as for the SLX model, though now M represents a

spatial weight that is constructed based on the 8 nearest neighbors of both origins

and destinations. Two additional differences should also be noticed. First, Tij, Vi,

Wj and dij are now logged, which means this specification produces the logarithm of

flows. Second, an error term, ε, has been included here because it is intrinsic to the

DGP, which can be made more clear by expressing the DGP in matrix form as,

lnTij = (I − ρijMij)
−1 + (Zζ + ε) (5.7)

where (I − ρijMij)
−1 is the spatial autoregressive operator and Z = {Vi,Wj, dij} in

their logged form and ζ = {µ, α, β}. The error term, ε, is drawn from a random

normal distribution with a mean of 0 and variance equivalent to one quarter of the

variance of Zζ23. This ties the variance of the error term to the variance of the

flows before they are transformed by the spatial autoregressive operator and has the

desired effect of maintaining a small and proportional stochastic component across

realizations of the SAR DGP. Flows produced by the SAR DGP using equation 5.7

23Intra-zonal origin-destination pairs imply the logarithm of zero, and these values were forced to
be zero after taking the log of inter-zonal values, which is commensurate with the previous DGP’s.
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cannot be normalized using a multinomial distribution like the previous frameworks

because the SAR DGP produces a continuous variable. Therefore, the logged flows

were transformed using the exponential operator and then normalized by computing

the probabilities and multiplying them by the desired number of 5,000,000 total flows.

After 100 realization of flows have been simulated between the locations abstracted

as points, for each DGP, and within each of the three scenarios, the data can then

also be aggregated to areal units that represent coarser scales of analysis.

5.2.3 Aggregation and scales of analysis

It is common for spatial interaction data to be reported in aggregate for areal units,

such as municipal boundaries or for spatial interaction data to be aggregated to areal

units because origin propulsiveness and destination attractiveness proxies are only

available at a coarser scale. While the effects of aggregation on regression variables

defined using distance have been studied and are understood in regression models

more generally, they have not been explored in the context of spatial interaction

and spatial structure. Therefore, the data generated between point locations was

aggregated to two grids that represent increasingly coarse scales. The first scale was

generated using as 24 by 24 grid composed of 576 areal units and the second scale

was generated using a 12 by 12 grid composed of 144 areal units. The simulated

flows were then aggregated24 amongst the 331,776 origin-destination pairs for the first

scale and the 20,736 origin-destination pairs for the second scale, while the location

populations were aggregated to the 576 areal units for the first scale and 144 areal

units for the second scale. An example of the spatial distributions of aggregated

24Here aggregation implies a summing of all observations from a lower scale.
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locations for each scenario (uniform points, random points, and clustered points) is

provided for the two scales in figures 50 and 51, respectively. The aggregation of the

uniform points is peculiar in that aggregating to the 24 by 24 grid results in a perfect

checkerboard25 pattern with red values indicating a single location and grey values

indicating none, and aggregating to the 12 by 12 grid results in no pattern since each

areal unit contains a single point.

The inter-location distances for origin-destination pairs were re-calculated between

centroids of the areal units for each scale. In addition, the spatial structure components

of each model were also recomputed using coarser level measurements. For the CD

model, this entails computing the accessibility term using centroid distances and

aggregate populations. In contrast, contiguity based weights are typically used in

the spatial interaction literature for the SAR and SLX models and therefore a queen

definition of contiguity amongst areal units was used here for both aggregate scales.

After completing the aggregation process, there was a total of 3,600 datasets (100

realizations x 3 scales x 4 DGP’s x 3 spatial structure scenarios) ready for model

calibration in order to obtain parameter estimates and evaluate the various frameworks

and scenarios.

5.2.4 Model calibration

Parameter estimates were obtained for each dataset using four model specifications

– the three frameworks that account for spatial structure and the gravity model that

25Here, 8 nearest neighbors has to be used for defining a spatial weight matrix since the checker-
board pattern implies areal units that contain a location do not have any contiguous neighbors.
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Figure 50: An example of uniform points aggregated to the 24 by 24 grid (top),
of random points aggregated to the 24 by 24 grid (middle) and of clustered points
aggregated to the 24 by 24 grid (bottom).
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Figure 51: An example of uniform points aggregated to the 12 by 12 grid (top),
of random points aggregated to the 12 by 12 grid (middle) and of clustered points
aggregated to the 12 by 12 grid (bottom).
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serves as a null specification. When employing the gravity model, CD model, and SLX

model specifications, Poisson regression was used for calibration after filtering out the

intra-zonal observations that correspond to forced zeros and then taking the logarithm

of the explanatory variables. However, an exception to this was when these models

were calibrated on data generated from a SAR DGP. Instead, a Gaussian regression

(i.e., ordinary least squares) was instead employed since the SAR DGP simulates a

continuous variable rather than discrete counts. In these instances, the flows were

logged in addition to the explanatory variables. Finally, when employing the SAR

model specification, the general method of moments26 was used for calibration. Both

the flows and the explanatory variable are still logged, though a notable difference

between the SAR and gravity models is that the SAR model requires the inclusion of

intra-zonal flows to maintain the necessary dimensions within the data. As a result,

the same strategy used to generate the data of setting intra-zonal observations to

zero after taking the necessary logarithms was also used here27. Once calibration

of the models was complete, the resulting parameters estimates were collected and

compared to their expected values. Of note is that the interpretation of LeSage and

Thomas-Agnan (2015) that requires scalar summary measures is not considered here

because these are only for the effects associated with locational attributes, and the

distance-decay is the primary interest when evaluating spatial structure effects28.

26More specifically, the PySAL GM_lag function was used.

27In this case, there is no need to define intra-zonal distance because the number of flows is set to
zero regardless of the values of the explanatory variables

28In fact, code to compute the scalar measures for the SAR model was developed and tested on
some of the simulated data. It was found that origin and destination parameter estimates from the
scalar summary estimates were biased in the scenario where the conventional origin and destination
parameter estimates were not (i.e., a SAR model was calibrated on data derived from a SAR DGP,
the data was not aggregated and the correct spatial weights matrix was specified). In addition, it
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5.3 Results

Since the results include parameter estimates from 14,400 models estimated on

the 3,600 datasets, it is challenging to succinctly display the results in their entirety.

Therefore, only subsets of the results will be presented here, though the full results are

available in appendix C. First, results are presented for each of the scenarios (uniform,

random, clustered) at the point scale in order to get a baseline understanding of model

estimation quality and the effects of spatial structure. Subsequently, results regarding

the effects of aggregation are presented.

5.3.1 Baseline results and spatial structure effects

Baseline results are presented in figures 52, 53, and 54, which focus on the parameter

estimates obtained at the scale at which the data were generated (i.e., points). Several

important trends can be extracted from these figures that provide boxplots of the

100 parameters obtained for each circumstance. First, the model specifications are

validated because little-to-no bias or variation occurs whenever a model specification

is calibrated on data from its respective DGP (figure 52), regardless of whether or not

the points have spatial structure (i.e., clustering). This is clear, since the boxplots

in figure 52 are always shrunk to the mean (red line), which is centered on the true

parameter values (blue star).

Second, an analysis of false positives is possible by examining figure 53. This figure

presents the results from calibrating each model specification on data generated from a

would have required weeks to compute these scalar summary estimates for all of the simulated data.
For these two reasons, and that the focus is centered on distance-decay parameter estimates, the
scalar summary measures were not pursued here.

183



null model (i.e., gravity model) that does not include any spatial structure component.

The results show that in all three scenarios, the CD model and SLX models always

produce coefficients for their respective spatial structure components, δ and psi, that

are near-zero and therefore do not indicate spatial structure effects when none are

present29. In contrast, the SAR model produces non-zero spatial structure effects

in all three scenarios and also produces distance-decay estimates (i.e., β) that are

severely under-estimated in magnitude. These results provide evidence that the SAR

specification is prone to overfitting to the data even when there is no spatial structure

effect, and is in line with previous observations (LeSage and Pace, 2008; de la Mata

and Llano, 2013; Kerkman et al., 2017) that the spatial autoregressive component

competes with the distance variable to explain the same variation. Therefore, though

the SAR specification may be able to better recover some locational parameters in

certain instances according to LeSage and Thomas-Agnan (2015), it does so at the

cost of the interpretability of the distance-decay, which is an important behavioral

indicator.

Third, it is instructive to analyze the results summarized in figure 54, which

denote the outcome of calibrating a basic gravity model on data from the DGP’s

that account for spatial structure to gauge the effect of ignoring spatial structure.

For data obtained via the CD DGP, the gravity model distance-decay parameter β

is underestimated in magnitude while the destination parameter estimate α̂ varies

around the true value. In the uniform scenario, the bias is minimal, since there is

little-to-no variation amongst the distributions of distances between each location and

all other locations. However, in the random and clustered scenarios, the bias and

29These estimates also resulted in very small t-values that would prompt one to conclude that
these estimates are not statistically significant.
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variation increase for both parameters and in the clustered scenario becomes strong

enough that the destination population parameter estimate can take on a negative

sign and the distance-decay can take on a positive sign! This is the circumstance

outlined by Fotheringham (1981) where strong spatial structure has the effect of

biasing distance-decay enough to yield unintuitive interpretations that suggest more

trips can be expected over longer distances. In comparison to data derived from the

CD DGP, the data derived from the SLX DGP does not produce any strong biases

in any of the scenarios when parameters are estimated with a gravity model. At

first this seems unintuitive, but if it is recalled that the destination populations are

generated from a random uniform distribution, then these results may be explained.

Since each location has the same number of neighbors, and since the values of these

neighbor’s destination populations is a sample from a random uniform distribution,

then the average of each location’s neighbors will be about the same. Hence, there

is no variation in the spatial structure component of the SLX model, unless there is

also spatial clustering of the locational attribute values (i.e., spatial autocorrelation).

This confirms that the spatial structure effect captured by the CD model is entirely

separate from those caused by spatial autocorrelation, though it also recognizes that

the two phenomena are linked. Finally, for the data generated by the SAR DGP,

calibrating the gravity model results in unbiased origin and destination population

parameter estimates; however, the distance-decay parameter estimates are severely

over-estimated in magnitude. Moreover, this trend is amplified as spatial structure is

increased from the uniform scenario to the random scenario and then to the clustered

scenario. This is likely due to the fact that the variation in the spatial autoregressive

component strongly resembles the variation in distance and so when only distance is
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Figure 52: Results for models calibrated on datasets from their associated data-
generating process. Top row provides results for the uniform scenario, middle row
provides results for the random scenario, and the bottom row provides results for the
clustered scenario.

available, the model tries to compensate by also assigning the effects associated with

the autoregressive component to distance.
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Figure 53: Results for models calibrated on datasets from the null gravity model
data-generating process. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.
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Figure 54: Results for the null model calibrated on datasets from each of the alternative
data-generating processes. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.
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5.3.2 A cross-comparison of spatial structure specifications

The remaining results pertain to the parameters obtained from cross-calibrating

the CD, SLX and SAR models on data derived from each of the three associated

data-generating perspectives. These results are provided in figures 55 - 57 and facilitate

an analysis of the consequences of calibrating each model with an incorrect underlying

DGP. For the data derived from a CD DGP (figure 55), the outcome of calibrating an

SLX model is similar to that of the null gravity model in that biases in the destination

population parameter estimate, α̂, and the distance-decay parameter estimate, β̂, are

clearly seen. In addition, the SLX spatial structure parameter estimate, ψ̂ often takes

non-zero values30, that increase as spatial structure effects increase. This, consequently,

has the effect of inducing bias in the parameter estimates. Similarly, calibrating the

SAR model on data from the CD DGP produces biased parameter estimates where

the value of the SAR spatial structure parameter estimate, ρ̂, becomes more extreme

as spatial structure effects increase but the bias associated with β̂ is not reduced.

It can therefore be concluded that neither the SLX model nor the SAR model can

account for the spatial structure effects contained in the CD DGP. It is important to

also note that the SAR model still introduces bias into the distance-decay parameter

estimate similar to when the data are generated from the null gravity DGP. In fact,

this is also the case when the data are generated from the SLX DGP (figure 56)

and demonstrates that the SAR model will potentially produce a non-zero spatial

autoregressive component regardless of the underlying DGP.

For the SLX DGP (figure 56), the results are less interesting due to the fact that

30Out of the 300 realizations associated with these results, only 4 produced small t-values that
would lead us to reject ψ̂ as statistically insignificant.
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previous results showed that calibrating the null gravity model instead of an SLX

model does not result in biased parameters when there is no spatial clustering amongst

the locational attributes. These conclusions are similar for the situation where the CD

model is incorrectly calibrated on data from the SLX DGP; though it is possible to

get a non-zero parameter estimate for δ in the uniform scenario, this issue disappears

when there is spatial structure present in the locations (i.e., random or clustered).

These non-zero values may be caused by collinearity between the CD spatial structure

component and destination population, which also becomes slightly biased. Therefore,

the risk of obtaining a false positive for the δ parameter will be low in since it only

occurs in the circumstance where there is no spatial clustering amongst locations and

no spatial autocorrelation in the locational attributes and this unlikely in reality.

Lastly, for the SAR DGP, the outcomes of incorrectly calibrating a CD model or

a SLX model have some similarities and some differences. They are similar in that

they both over-estimate the magnitudes of the distance-decay parameter estimates,

similar to when the null gravity model is calibrated on data from the SAR DGP.

However, they differ in that as the spatial structure in the points increases, the SLX

spatial structure parameter estimate, ψ̂, becomes increasingly biased, while the CD

model produces a spatial structure parameter, δ, that is appropriately zero when there

is spatial structure. This provides further evidence that there is also a low risk of

obtaining a false positive for the δ parameter in the CD model in the circumstance of

spatial clustering amongst locations and no spatial autocorrelation in the locational

attributes.

Overall, these results support the conclusion that these three spatial interaction

model specifications account for different facets of spatial structure in the locations of

a spatial interaction system. More specifically, the CD model seems to be the most
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robust, while the SAR model and SLX model frequently produce false positives for

their respective spatial structure parameters.

5.3.3 Aggregation effects

An analysis of the results for the datasets aggregated to the grids of areal units

can be greatly simplified for two reasons. First, the results for the two different grids

are similar, with the 12 by 12 grid resulting in more pronounced patterns than the

24 by 24 grid. Therefore, only results for the 12 by 12 grid are presented here and

the full results are made available in appendix C. Second, the results pertaining to

the uniform points are very similar when they are aggregated because the points

may be perfectly aggregated to the two different grids and therefore minimally bias

the inter-location distances and definition of neighbors. For the 24 by 24 grid, an 8

nearest-neighbors definition was used to operationalize the SLX and SAR models since

the checkerboard pattern means the areal units containing locations do not have any

contiguous neighbors (i.e., that share a common border) that also contain locations,

and this is the same definition of neighbors used to generate the data between the

points. Similarly, when the points are aggregated to the 12 by 12 grid, each areal

unit has 8 neighbors using a queen definition of contiguity, which again matches the

spatial weight used to generate the data. Therefore, aggregation effects for the uniform

scenario are minimal and results will only be presented for the random and clustered

scenarios.

In general, data aggregation causes there to be more variation in the sets of
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Figure 55: Results for CD, SLX, and SAR models calibrated on datasets from the CD
data-generating process. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.
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Figure 56: Results for CD, SLX, and SAR models calibrated on datasets from the SLX
data-generating process. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.
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Figure 57: Results for CD, SLX, and SAR models calibrated on datasets from the SAR
data-generating process. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.
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calibrated parameter estimates; however, the nature of the variation is different

depending on the model specification and the DGP from which the data are derived.

Here, the discussion returns to the circumstances of framework validation, false

positives, and the outcomes of ignoring spatial structure when it is present. Any

discrepancies between these additional results and the baseline results can be attributed

to the aggregation process.

In terms of framework validation for the aggregate data, it can be seen in figure

58 that all of the frameworks no longer produce parameter estimates without bias

and/or variation. Each framework is discussed in order from the least affected by

aggregation to the most seriously affected by aggregation. Though the null gravity

model typically replicates the known parameter values reasonably accurately, there

is some bias in the distance-decay estimates for the clustered scenario. For the CD

model there is some variation and the destination population parameter estimate is

underestimated, while the spatial structure parameter estimate (δ̂) is overestimated

when there is intense spatial structure. Moreover, for neither the random or clustered

scenario do the results produce parameter estimates with the incorrect sign that would

imply unintuitive interpretations. In contrast, the combined effect of aggregation

and spatial structure cause the spatial structure parameter estimate (ψ̂) for the SLX

model to be under-estimated, which is likely due to the contiguity-based definitions of

neighbors at the aggregate level not being representative of true 8 nearest neighbor

definition. Finally, the SAR models demonstrate erratic behavior. In the random

scenario, the parameters are all over-estimated in magnitude, though they still take

on the correct signs. In the clustered scenario, the origin and destination population

parameter estimates are strongly negative and the distance-decay parameter estimate

is severely over-estimated, reaching up to 25 times larger of an effect than the true
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parameter would indicate. These results suggest that the cumulative distance-weighted

accessibility term of the CD model is the most robust specification to account for

spatial structure when the data are aggregated.

Results pertaining to false positives for the aggregated data are similar to those

from the disaggregate data (figure 59). The CD model and SLX model still perform

well and generally produce a near-zero parameter estimate associated with their

respective spatial structure components when the data are produced from a null DGP

that does not include spatial structure. Furthermore, the SAR model still competes

with the distance variable and produces a non-zero, albeit small, parameter estimate

for ρ even when data are produced from a null DGP.

The consequences of neglecting spatial structure for the aggregate data (figure

60 are also similar to the results from the disaggregate data for the CD DGP and

the SLX DGP. For the former, the consequence is biased parameter estimates that

increase with more clustered locations and potentially produce incorrect signs. For

the latter, there is little to no effect, which is expected since it has been established

that the lack of clustering amongst the location attribute value means the SLX DGP

is not effectively incorporating any spatial structure component. Again, the results

associated with the SAR framework are an exception and are erratic compared to the

disaggregate data. In the random scenario, the origin and destination parameters are

slightly over-estimated in magnitude, and the distance-decay parameter is strongly over

estimated. However, in the clustered scenario, the origin and destination populations

parameter estimates are strongly negative and the distance-decay parameter estimate

is severely over-estimated, reaching up to almost 50 times larger of an effect than the

true parameter would suggest. The additional insight that these results provide is that

when data generated from the SAR DGP are aggregated, calibrating the null gravity
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Figure 58: Aggregation results for models calibrated on datasets from their associated
data-generating process. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.

model may produce extremely skewed results that provoke one to instead use the SAR

model. However, the extremely skewed results may be due more to aggregation than

to having the incorrect model as it was shown in figure 58 that results from a SAR

model on the aggregated SAR DGP data are still very skewed.
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Figure 59: Aggregation results for models calibrated on datasets from the null gravity
model data-generating process. Top row provides results for the uniform scenario,
middle row provides results for the random scenario, and the bottom row provides
results for the clustered scenario.
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Figure 60: Aggregation results for null models calibrated on datasets from each of the
data-generating processes. Top row provides results for the uniform scenario, middle
row provides results for the random scenario, and the bottom row provides results for
the clustered scenario.
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5.4 Moving forward

In this chapter, an extensive simulated-based experiment was carried out to explore

the effects of spatial structure, which was defined as the spatial clustering of the

locations in a spatial interaction system. In particular, three spatial interaction

specifications that have been proposed to deal explicitly with the problem of spatial

structure were investigated. The ramifications of using aggregated spatial interaction

data for model calibration were also explored.

The results produced several conclusions that can help guide empirical spatial

interaction modeling. First, the SAR model is not a sufficient specification simply

based on the model generating a non-zero autoregressive parameter estimate when

no effect is present. It is shown that this can occur for any of the DGP’s tested

here, including the null gravity model. In fact, it was shown that the SAR model

competes with the destination variable and produces biased distance-decay estimates.

Therefore, the SAR spatial interaction model should be avoided when distance-decay

is of substantive interest. Second, the spatial structure effect resulting from clustered

locations is a distinct effect that is independent of the locational attribute values. It

was shown that the CD model with a cumulative distance-weighted accessibility term

was the most robust means for accounting for potential spatial structure effects. Lastly,

aggregation can cause increased bias and variation, which can produce less reliable

parameter estimates regardless of whether or not the correct model specification is

employed. As a result, it is prudent to avoid aggregation bias by using the most

accurate measure of distance and spatial neighbor associations that can be obtained.

These lessons will be employed in the subsequent chapters that focus on empirical

spatial interaction models of bike and taxi trips in New York city.
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Chapter 6

LOCAL MODELS OF LOCATION CHOICE IN NEW YORK CITY

6.1 Introduction

The previous chapters reviewed the theory and concepts underlying spatial inter-

action models, demonstrated the shortcomings of some exploratory techniques and

investigated the effects of spatial structure on spatial interaction. The following two

chapters build on these themes by calibrating various models of spatial interaction

using both census commute-to-work data and the bike and taxi trips described in

chapter 4. The former represents a traditional spatial interaction dataset while the

latter two datasets are examples of newer, bigger data sources. In this chapter, the

bike and taxi trips are evaluated for potential and pitfalls compared to the traditional

census spatial interaction data and an assessment of the utility of these new data

sources for capturing commute-to-work processes is provided. Since people who travel

during morning rush hour by bike or taxi are unlikely to represent the average com-

muter, it is expected that model calibration results from each of these data sets will

differ from the census data and from each other. Thus, it is interesting to determine

how bike and taxi commuters behave differently than the average commuter. It is

also valuable to identify whether or not the conclusions from models for the taxi and

bike data overlap with the census data, since they can be collected more frequently

than the census data and they are easier to collect because they can be harvested

automatically by sensors.

Contemporary spatial interaction modeling literature draws largely upon the
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wider statistical and econometric literature rather than on the geographical literature

and consequently the focus is typically on global models that provide monolithic

interpretations, rather than on local models. Therefore, local spatial interaction

models are relatively absent from the recent literature, despite being popular several

decades ago (see for example (Fotheringham, 1981) and others cited within). Local

models, such as origin- or destination-specific models, produce a set of coefficients for

each location that can be mapped and inspected for spatial variation in the processes

that generated the data. The increased volume (i.e., spatial coverage) of big data

provides a larger set of spatial interaction locations and therefore a higher resolution

surface of local parameter estimates can be obtained, which may provide more nuanced

and refined interpretations. Therefore, local models will also be employed in this

chapter to determine how commuting behavior may vary across space.

The first section of this chapter establishes a baseline model of commute-to-work

behavior using census spatial interaction data and considering both traditional and

non-traditional location variables. Next, the bike and taxi data are subset using

commuting semantics, such as the time of the day and the day of the week, and then

the established baseline model is calibrated on them. By calibrating the same model

across multiple datasets, it is possible to directly compare model results across the

three distinct data sets. Throughout the chapter, perspectives on the potential and

pitfalls of newer data sources in spatial interaction models of commuting are offered.

6.2 A baseline commute-to-work model

This initial section is devoted to establishing a basic spatial interaction model

of commuting behavior using census commute-to-work data. Commuting has a long
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history of being studied via spatial interaction models (Thorsen and Gitlesen, 1998;

Gitlesen and Thorsen, 2000; Griffith, 2009a; Gitlesen et al., 2010; Farmer, 2011). In

this context, the number of commuting flows between locations often varies with

the distance that needs to be traveled, population, income, the number of employed

individuals and the number of job opportunities, amongst other factors. These well-

known variables may also be extracted from the census and are therefore examined

first.

The census commute-to-work data from the Census Transportation Planning

Products (CTPP) unit of the Census Bureau, which is based on the 2006-2010

American Community Survey (ACS) contains 3,331,059 journeys between census

tracts in New York City that occur between 138,524 origin-destination pairs where the

origins are 2,115 census tracts containing individuals’ residences and the destinations

are 2149 census tracts containing individuals’ workplaces. Removing intra-zonal flows

reduces the dataset to 3,110,101 trips between 136,569 origin-destination pairs where

the origins are still 2,115 census tracts but the destinations are now 2,136 census

tracts. The reduction in the number of destinations was due to the fact there were

13 tracts that only had intra-zonal observations. After adding zero flow observations

for the origin-destination pairs that did not report any commutes, the total number

of observations becomes 4,517,640. This means that according to the census there

are approximately 4,379,116 zero flows, which implies that the majority of the origin-

destination pairs do not have any commuters traveling between them. The number of

observations was further reduced to 4,483,520 after removing origin-destination pairs

that do not contain a valid locational attribute, such as census tracts that do not have

any observation or where a value of zero was recorded. The former is not valid input

while the latter is an issue since the Poisson log-linear modeling framework requires
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the logarithm of the explanatory variables. The final number of origins was then 2100

tracts and the final number of destinations was still 2136 tracts.

Commuting is perhaps most obviously thought of as the process of traveling from

one’s home residence to one’s place of work. However, commuting routes are jointly

determined by the locations of the residence and the place of work and individuals

do not typically choose their place of work given that they live in a certain location.

Rather, a more likely scenario is that given a place of work, an individual may choose

to live somewhere that satisfies their preferences and minimizes the use of resources

to get to work each day. Therefore, the commuting data were modeled using an

attraction-constrained (destination-constrained) spatial interaction model that seeks

to allocate the individuals arriving at each destination to the set of origin locations

based on distances and origin locational attributes and is given in multiplicative form

with a power function of distance-decay as,

Tij = BjV
µ
i Djd

β
ij (6.1a)

Bj =
(∑

i

V µ
i d

β
ij

)−1
(6.1b)

where Tij is the number of flows between location i and destination j, Dj is the number

of trips that terminate at destination j, Vi is a vector of origin location attributes, dij

is the distance between i and j, and Bj is a balancing factor that ensures the total

number of inflows Dj is replicated in the predicted flows. In this context, the primary

interest is in describing the nature of the origins as if they were a set of destinations

that an individual may choose from. This is accomplished by estimating31 the origin

31All model calibrations in this chapter were carried out using custom software that leverages the
sparse design matrices implied by constrained spatial interaction models for efficient computation
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location parameter vector µ and the distance-decay parameter β and interpreting

them in the context of commuting in New York City.

6.2.1 Census locational variables

Combinations of the variables introduced in chapter 4 were tested and a final set

(table 2) of explanatory variables was chosen by using the (pseudo) adjusted R2 and

the AIC as indicators of goodness-of-fit32. The SSI and SRMSE were also available;

however, they are both highly sensitive to the number of zero flows, which makes

it difficult to use them to assess model fit more generally. While the SSI indicates

little-to-no model fit in this scenario, the SRMSE has no upper bound and it becomes

difficult to distinguish whether a large SRMSE is due to a larger number of flows or a

lack of underlying associations or both.

Several variables were initially removed due to collinearity. First, population,

number of housing units, and the number of employed individuals were all strongly

correlated (Pearson’s r correlation coefficient > 0.95) and therefore only the number of

employed individuals (emp) was included in the model, since it is most closely related

to the phenomenon of commuting. Second, population density and housing density

were also strongly correlated and in this case, housing density (hd) was chosen because

housing is directly related to the task of choosing a residential location to commute

from. Thirdly, average income and percentage of people living in poverty were similarly

strongly correlated, though inversely related, and in this case, it is not clear that

(Oshan, 2016). The code is part of the SpInt module of the Python spatial analysis library (PySAL)
and is available at https : //github.com/pysal/spint

32Higher R2 and lower AIC indicate better model fit. In all cases an increase in the R2 also
resulted in a decrease in AIC making these two commensurate as a model fit criterion.
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one is theoretically preferable over the other. It is equally conceivable that people

would like to live in communities where the average income is higher (i.e., low poverty)

and that people want to avoid areas of high poverty when possible. As a result,

average income (inc) was selected over poverty based on the fact that average income

results in a slightly better model fit and the coefficients on the other variables in the

model are similar regardless of whether average income or poverty is included. Finally,

Euclidian distance (dist) was computed between origin and destination centroids and

entered into the model because no other form of separation/cost is available from the

census. Manhattan distances were also computed and were highly correlated with

the Euclidian distances (Pearson’s r correlation coefficient > 0.98). Since the power

function of distance is employed, which is not sensitive to the scale of the distances,

either type of distance can be entered into the model with very similar results and in

this case Euclidian was used.

The coefficient estimates and model fit for this baseline gravity-type attraction-

constrained spatial interaction model (Grav) using housing density, employment, and

average income from the census are provided in the top left column of table 2. The

general interpretation of this model is as follows: larger commuting flows, ceteris

paribus, are associated with origins that have: less dense housing; larger employed

populations; lower average income; and that are closer to potential destinations.

Since residential choice is being used here as a proxy for commuting behavior, these

interpretations can also be stated in terms of the effect that each explanatory variable

has on an individual to choose an origin, given that they will commute to a specific

destination. In this case, individuals are more likely to choose an origin that is

less densely populated (i.e., housing availability), has a high number of employed

individuals, has a lower average income, and is near to their workplace.
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Though there is a modest model fit (R2 = 0.41), there are several issues with

these interpretations. Most noticeably, it is counterintuitive that individuals would

choose, on average, to live in neighborhoods with lower average income. The effect is

likely to be a result of a strong relationship between house prices and average income

- New York City has several highly affluent neighborhoods that the average worker

cannot afford to live in. However, it is expected that most workers would choose

to live in more affluent neighborhoods whenever possible. Another issue with these

interpretations is that it is not clear that workers would always prefer a residence in a

neighborhood with lower population density, especially in the context of a large city

where it is known that many people choose to pay a premium to live in some the

most densely populated neighborhoods. While these two contradictory interpretations

are problematic, they can be clarified by calibrating destination-specific models and

examining maps of the local parameter estimates.

Figures 61 - 64 display the local estimates for the parameters associated with the

baseline gravity-type model (Grav) described above. In all the presented surfaces,

some outliers (black) have been removed in order to make visual patterns more

salient while those local estimates that are statistically insignificant at the 95%

confidence interval and using a Bonferroni correction for multiple testing are indicated

in grey. The surfaces for the number of employed persons (figure 62) demonstrates

a predominantly positive relationship and the surface for distance-decay (figure 64)

demonstrates a predominantly negative relationship, which are both as expected.

This is, however, not the case for the housing density and average income parameter

estimate surfaces. For these two surfaces (figures 61 and 63), it is shown that the outer

boroughs and uptown Manhattan tend to have negative relationships while midtown

and downtown Manhattan tend to have positive relationships. Three insights can be
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Table 2: Parameter estimates and model fit for the census commute-to-work data.
The top row refers to results for the entire dataset while the bottom row refers to
results for a subset of the data pertaining to tracts in and around lower Manhattan.
Grav refers to the gravity-type attraction-constrained spatial interaction model and
CD1 and CD2 are competing destination models using different accessibility terms.

Grav CD1(hd) CD2(poi’s)

All data Estimate SE Estimate SE Estimate SE

hd -0.2815 0.0008 0.0492 0.0012 0.02469 0.0010
emp 1.0667 0.0010 0.8701 0.0014 0.9591 0.0013
inc -0.1609 0.0011 -0.1747 0.0012 0.1664 0.0013
dist -0.9833 0.0006 -1.042 0.0006 -1.1203 0.0007

cd - - -1.040 0.0027 -0.8535 0.0016

adj. R2 0.4100 0.4163 0.4222
AIC 14165374 14014186 13873578

Grav CD1(hd) CD2(poi’s)

Subset Estimate SE Estimate SE Estimate SE

hd 0.1659 0.0040 0.2568 0.0043 0.2192 0.0041
emp 0.9484 0.0047 0.9282 0.0047 0.9215 0.0047
inc 0.1515 0.0030 0.1690 0.0030 0.2067 0.0031
dist -0.5700 0.0021 -0.5759 0.0022 -0.6389 0.0023

cd - - -0.6169 0.0027 -0.3589 0.0050

adj. R2 0.5598 0.5621 0.5630
AIC 744317 740396 739012

gained from analyzing these surfaces in relation to their respective global parameter

estimates. First, there are spatial non-stationarities in the relationships associated

with commuting. Second, the spatial variation of the parameter estimates manifest

in a pattern that roughly pertains to a divide between Manhattan and the outer

boroughs, with this pattern being more pronounced in the housing density surface

than in the average income surface. Third, there are more tracts in the outer boroughs,

which are associated with negative relationships for these two variables. Therefore, it

makes sense that the global parameters, which represent a weighted average of these
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local estimates, would be negative even if there are logical interpretations for both

positive and negative relationships.

Two conclusions can be made based on these insights. First, the interpretations

of the parameter estimates need to be augmented to consider the underlying non-

stationarity. For example, workers commuting to midtown and downtown Manhattan

tend to choose residential neighborhoods with higher housing density and higher

average income while workers commuting to the outer boroughs tend to choose

residential neighborhoods with lower housing density and lower average income. This

behavior is commensurate with individuals in high-paying employment in central

Manhattan selecting high density and high price apartments nearby and individuals

working in the outer boroughs having a preference for lower density and lower price

living spaces.

The second conclusion that can made based on these local parameter estimate

surfaces is that it may be useful to conduct additional analysis on a subset of the

census tracts that demonstrate geographically homogeneous parameter estimates, such

as tracts that are in and around lower Manhattan. Consequently, after subsetting

the data for only commutes that begin and end in census tracts that also have bike

stations33 (midtown and downtown Manhattan and portions of Queens and Brooklyn

that are adjacent to Manhattan), the same model was calibrated. The estimated

parameters are shown in table 2 (bottom left) and now indicate a positive relationship

between flows and housing density and between flows and average income. Also

noticeable, is that the distance-decay is much weaker. Examining the local parameter

estimate surface for the entire study area (figure 64) shows that even though there is

33Besides roughly correlating to the patterns in the local parameter estimate, this subset was
chosen in order to make comparisons to the bike data in a later section.
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a negative relationship throughout the study area, there is a less negative relationship

in lower Manhattan so that this result is not surprising. The drop in distance-decay

for the subset of data is likely due to the very high subway and bus accessibility in

this region, both of which increase mobility.

After establishing a baseline gravity-type model, the next step is to consider spatial

effects. In the previous chapters, it was shown that the eigenvector spatial filtering

method yields ambiguous results while the spatial autoregressive (i.e., spatial lag)

approach can obfuscate the coefficient estimates, especially in regards to the inter-

pretation of distance-decay. The competing destinations approach with a cumulative

distance-weighted accessibility term was shown to be more robust for capturing spatial

structure (i.e., spatial clustering amongst locations) than a contiguity-based spatial

lag of an explanatory variable. Therefore, the competing destinations methodology

was used in subsequent analysis aimed at capturing spatial structure effects.

If only census data were available, which has been the case for most commuting

research until relatively recently, then the accessibility term to account for spatial

structure would be based on data from the census, such as population. Since commuting

is modeled here from the perspective of residential choice, the appropriate accessibility

term should be defined to capture spatial structure effects that measure the competition

an origin faces from competing origins. An origin-based accessibility term is given as

Aij =
n∑
k=1
(k 6=j)

Wk

dσik
(6.2)

where Wk is the attraction of each alternative origin other than i, and, σ, the second

order distance-decay used for distance-weighting is set to −1. Though σ is sometimes
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Figure 61: Local parameter estimates for the housing density (hd) variable in the
baseline gravity-type attraction-constrained model using census commute-to-work
data. Red values indicate a positive relationship and blue values indicate a negative
relationship. Black tracts have been removed as outliers to aid in visualizing trends
while grey tracts are deemed statistically insignificant at the 95% CI using a Bonferroni
correction for multiple testing.
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Figure 62: Local parameter estimates for the number of people employed (emp) in
the baseline gravity-type attraction-constrained model using census commute-to-work
data. Red values indicate a positive relationship and blue values indicate a negative
relationship. Black tracts have been removed as outliers to aid in visualizing trends
while grey tracts are deemed statistically insignificant at the 95% CI using a Bonferroni
correction for multiple testing.
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Figure 63: Local parameter estimates for the average income (inc) variable in the
baseline gravity-type attraction-constrained model using census commute-to-work
data. Red values indicate a positive relationship and blue values indicate a negative
relationship. Black tracts have been removed as outliers to aid in visualizing trends
while grey tracts are deemed statistically insignificant at the 95% CI using a Bonferroni
correction for multiple testing.
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Figure 64: Local parameter estimates for distance-decay (dist) in the baseline gravity-
type attraction-constrained model using census commute-to-work data. Lighter values
indicate a weaker relationship. Black tracts have been removed as outliers to aid in
visualizing trends while grey tracts are deemed statistically insignificant at the 95%
CI using a Bonferroni correction for multiple testing.

214



derived iteratively with the first order distance-decay, β, until they converge, this

was not done here since β was already very close to −1 and small fluctuations to σ

produced similar results. Each of the three locational explanatory variables included

in the basic gravity-type model were used to compute a potential accessibility term

and then they were individually included in the model. Ultimately the model using

an accessibility term based on housing density was selected, since it provided the

largest increase in model fit, though all of the potential accessibility terms offered only

marginal increases in model fit. An accessibility term based on housing density was

also chosen over the other accessibility terms since it is more likely that an individual

perceives clusters of locations in an urban context based on the built environment

(i.e., housing density) rather than on their direct knowledge of employment rates or

average income.

Results from a competing destinations model including an accessibility term

defined using housing density (CD1) are provided in table 2 (top of middle column).

Accounting for spatial structure produces an accessibility parameter estimate that

is negative, indicating competition effects amongst residences across the majority of

the study area (figure 65). Though the distance-decay and average income parameter

estimates become slightly larger in absolute magnitude and the employment parameter

estimate becomes smaller, their local parameter estimate surfaces do not change much

qualitatively, and are therefore not shown here. In contrast, there is a big shift in

the housing density coefficient, which is now positive instead of negative, though

the magnitude is very small. Investigating the housing density parameter estimate

surface for the Grav model (figure 61) and the CD1 model (figure 66), the reason

for the shift in the global parameter estimate is not that the overall relationship has

changed. Instead, Manhattan has remained positive, while several portions of the
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outer boroughs have either positive or statistically insignificant relationships. That is,

the outcome of accounting for spatial structure implies that if individuals first consider

macro-level neighborhoods and then consider locations within these neighborhoods in

their residential choice process, it becomes more likely that they will choose locations

with higher housing densities than if they were only considering individual locations.

6.2.2 Additional locational variables

In the era of big data, many new forms of data are available that were previously

either too costly to collect or the necessary technology for collection and dissemination

were not available. This includes data collected automatically by sensors, data released

by municipalities using data portals, and crowd-sourced data. Despite the availability

of such diverse data sources, examples of their usage as explanatory variables within

spatial interaction models is sparse. Therefore, in chapter 4, several variables, such as

points-of-interest (POI’s) from OpenStreetMap, subway usage, and building square

footage were collected and presented as potential alternative variables within spatial

interaction models. However, there are two pitfalls in using these new data forms: they

either provide more noise than signal or are not uniformly sampled throughout the

study area. The former issue was observed upon adding the building square footage

variable to the previously presented gravity-type model (Grav) where the result was a

decrease in model fit. The latter issue, uneven sampling, means that values of zero are

recorded for many locations, which is problematic for Poisson log-linear regression that

requires the logarithm of the explanatory variables. Zero or null observations occur

either because sampling is biased, such as the reporting rate of crowd-sourced data
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Figure 65: Local parameter estimates for the accessibility term (cd) defined using
housing density in the attraction-constrained competing destination model (CD1). Red
values indicate a positive relationship and blue values indicate a negative relationship.
Black tracts have been removed as outliers to aid in visualizing trends while grey tracts
are deemed statistically insignificant at the 95% CI using a Bonferroni correction for
multiple testing.
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Figure 66: Local parameter estimates for the housing density (hd) variable in the
attraction-constrained competing destination model of census commute-to-work data
using an accessibility term defined using housing density (CD1). Red values indicate
a positive relationship and blue values indicate a negative relationship. Black tracts
have been removed as outliers to aid in visualizing trends while grey tracts are deemed
statistically insignificant at the 95% CI using a Bonferroni correction for multiple
testing.
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(i.e., OpenStreetMap POI’s), or because an event is limited to a particular spatial

domain (i.e., subway usage at subway stations).

One way around the issue of zero observations is to borrow data from neighboring

locations, which is commonly done by computing a sum of distance-weighted neigh-

boring observations for each location of interest, as is done in geographically weighted

regression (Fotheringham et al., 2002). Interestingly, this data-borrowing technique

when applied to only the explanatory variable(s), is equivalent to computing the

accessibility term in a competing destinations model. In this case, it was problematic

to include additional distance-weighted variables beyond an initial competing destina-

tions accessibility term within the model because all of the distance-weighted variables

were highly collinear to each other. This is due to the fact that the variables were

transformed using the same function and intensity (i.e., same value of σ in equation

6.2) and is sometimes referred to as concurvity (Ramsay et al., 2003). While it may

be possible to computationally explore variable-specific transformations, akin to those

employed in multi-scale geographically-weighted regression (Fotheringham et al., 2017;

Wolf et al., 2017), this is not taken up here. Instead, alternative accessibility terms

computed using the subway usage and OpenStreetMap POI’s were considered in lieu

of including an accessibility term defined using the census variables. Equation 6.2 was

still used with σ set to −1 so that the question of interest is whether or not similar

results are obtained when these non-traditional sources of data are used to capture

spatial structure.

After entering each alternative accessibility term into the model, the term computed

using OpenStreetMap POI density (i.e., dividing a count of POI’s by the area of a

tract) resulted in the highest model fit, which is recorded in table 2 (top right) as CD2

along with the associated parameter estimates. Interestingly, this new accessibility
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term resulted in a model fit only marginally higher than that achieved by model CD1

but also produced different parameter estimates. Though the parameter estimate

associated with accessibility is still negative throughout the majority of the study

area (figure 67) and therefore indicates competition effects, it is smaller than in CD1;

however, the distance-decay parameter estimate is now even more negative than in

either the Grav model or the CD1 model. Moreover, though the employment and

housing density parameter estimates are similar to those estimated in CD1, the average

income parameter estimate in CD2 is now positive instead of negative, which indicates

that, on average, people will choose a residence in a neighborhood with higher average

income (i.e., less poverty). Examining the associated local parameter estimate surface

(figure 68 indicates that there are more positive relationships in Brooklyn and Queens

than were present in the Grav model (figure 63). Overall, the increased model fit

and more theoretically sound interpretations point towards POI density being more

representative of urban spatial structure than housing density. This is perhaps because

the POI density variable is based on a variety of urban amenities such as shops, cafes,

restaurants and bars, amongst others, that can more accurately represent the diverse

factors that contribute to neighborhood definition and attractiveness, though this may

only hold for very dense urban areas, such as New York City, and needs to be further

explored using data from other study areas.

A comparison of the results for the three models (Grav, CD1 and CD2) is also

interesting in the context of the larger debate about spatial structure effects. Chun

(2008) also reported flipped parameter estimate signs after introducing eigenvectors

into spatial interaction models. It is possible that that the linear combination of

eigenvectors that are selected using stepwise regression may wholly or in part explain
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Figure 67: Local parameter estimates for the accessibility term (cd) defined using
POI density in the attraction-constrained competing destination model of census
commute-to-work data (CD2). Red values indicate a positive relationship and blue
values indicate a negative relationship. Black tracts have been removed as outliers to
aid in visualizing trends while grey tracts are deemed statistically insignificant at the
95% CI using a Bonferroni correction for multiple testing.
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Figure 68: Local parameter estimates for the average income (inc) variable in the
attraction-constrained competing destination model of census commute-to-work data
using an accessibility term defined using POI density (CD2). Red values indicate a
positive relationship and blue values indicate a negative relationship. Black tracts
have been removed as outliers to aid in visualizing trends while grey tracts are deemed
statistically insignificant at the 95% CI using a Bonferroni correction for multiple
testing.
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the same variation that would be explained by an accessibility term. However, in the

eigenvector spatial filtering methodology, there is no way to know what exactly is being

accounted for or why doing so should change the model interpretations. Furthermore,

the results presented here indicate that flipped signs may be due to omitted variable

bias, but also due to non-stationarity. Since the global parameter estimates are a

weighted average of the local parameter estimates, it may be more informative to

redefine the study area based on non-stationary than to include mystery surrogate

variables into the model. This notion was further supported by calibrating CD1

and CD2 on the subset of data previously defined that pertains to lower Manhattan

and areas of Brooklyn and Queens that are close to lower Manhattan. Comparing

parameter estimates for the three models on the subset data (table 2 bottom row)

shows remarkably robust results. Though some competition effects are still present,

none of the parameter estimates change drastically or have flipped signs. This provides

further evidence that the flipped signs that were observed may be due relationships

that are not constant across the study area rather than solely due to ommitted variable

bias.

In the subsequent sections, it is determined whether or not similar model interpre-

tations and conclusions can be made about commuting processes by using the bike

and taxi datasets instead of the census commute-to-work data.

6.3 A commute-to-work model using bike trips

In this section, the same models that were calibrated on census commute-to-work

data in the previous section are calibrated on the bike data to see whether or not

similar interpretations can be gained. To make the bike data set commensurate
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Table 3: Parameter estimates and model fit for the bike commute-to-work data. Grav
refers to the gravity-type attraction-constrained spatial interaction model and CD1
and CD2 are competing destination models using different accessibility terms.

Grav CD1(hd) CD2(poi’s)

Subset Estimate SE Estimate SE Estimate SE

hd -0.2221 0.0011 -0.3963 0.0013 -0.3738 0.0012
emp 0.3210 0.0013 0.4412 0.0013 0.5465 0.0014
inc 0.1630 0.0010 0.1187 0.0011 0.0589 0.0011
dist -1.367 0.0006 -1.308 0.0007 -1.2583 0.0007

cd - - 1.161 0.0035 0.8409 0.0015

adj. R2 0.6633 0.6705 0.6810
AIC 5289573 5175945 5011530

with the census commute-to-work data, a subset of the bike data that pertains only

to weekdays and that start between 5:00 and 10:00am was selected. This resulted

in 3,661,877 bike trips aggregated to 32,333 origin-destination routes between 245

origins and 246 destinations. This implies that about half of the possible 60,270

origin-destination routes have non-zero trip count observations, which means there are

far fewer zero flows in the bike data than in the census data. After further processing

the bike data using the same methods used to prepare the census commuting data,

there were 59,290 observations between 242 origins and 246 destinations.

The results for the three models (Grav, CD1, and CD2) calibrated on this subset

of bike commute data are reported in table 3. It can be immediately seen that there

are several differences between these results and those for the census commuting data

for the same subset of locations (table 2 bottom row). It is useful to begin by first

interpreting the parameter estimates in the gravity-type model (Grav) and comparing

them to the equivalent values from the census commuting results.

First, the distance-decay parameter estimates in all of these bike data results
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are more negative than in the census commuting results. It is not unreasonable to

expect that cyclists perceive distance to be more of a deterrent to travel over longer

distances than the average commuter represented in the census! In New York City,

the primary method of transportation is via the subways and the buses and so it is

likely that commuting patterns captured in the census reflect these more mobile forms

of transportation.

Second, though origin employment numbers still have a positive influence on

commuting flows, the relationship is less for the bike data than for the commuting

flows. This may be due to the fact that the origins for the bike data are not necessarily

indicative of residences as is the case in the census data. The bike data only records

the station at which trips begin and terminate, and it is likely that the stations are

located in communally accessible areas that require most people to walk several blocks

from home before checking out a bike to begin the cycling segment of their commute.

Therefore, it makes sense that in many census tracts employment is less important in

determining the number flows.

Third, housing density is now negative instead of positive, which may be similarly

explained. Since individuals in this data set are not choosing a residence, but rather

an origin station, it is logical that they would often start their trips in census tracts

with more bike docks, which are likely not the areas with higher housing density

but are instead areas of mixed land use. Finally, the relationship between flows and

average income in still positive. This indicates that bike commuters are more likely to

originate in areas of higher average income.

Examining the local parameter estimate surfaces for these four variables (figure 69)

demonstrates that there are few large clusters of spatial variation. One exception is

that the distance-decay becomes stronger in the westernmost tracts of Brooklyn and
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Queens where the density of stations is relatively low and there are more potential

long distance trip that can be made, many of which would require crossing a bridge.

Overall, these bike data results furnish higher model fits than the census commuting

data, which is likely to be due, in part, to the much lower level of zero flow observations.

As with the census commuting data, the model fit increases marginally when including

an accessibility term (CD1 and CD2); however, the parameter estimate associated

with accessibility is now positive instead of negative, indicating agglomeration effects

with bike station choice for early morning weekday trips. This is unsurprising for

two reasons. First, urban planners working with the CITI bike-sharing program have

likely chosen the locations of the bike stations at the most accessible locations so as

to optimize bike usage. It follows then that origin stations that are more accessible

will expect more trips than non-accessible stations purely because they are more

accessible. Second, individuals likely choose to start their cycling trips from larger

clusters of bike docks, which avoids the issue no bikes being available. Although the

agglomeration effects are supported by these reasons, the interpretation does not hold

for the entire study area. In fact, observing the local parameter estimate surfaces for

the accessibility terms in CD1 and CD2 (figure 70 left and right, respectively) it can

be seen that the agglomeration forces are strong in Manhattan, though in the outer

boroughs competition forces are dominant. This dichotomy may arise because of the

relative sparsity of stations and bike availability across Brooklyn and Queens compared

to Manhattan. One discrepancy between the two surfaces of accessibility parameters

is that the surface for the accessibility term defined using housing density indicates

Alphabet City as having the strongest agglomeration effects whereas the surfaces for

the accessibility term defined using POI density indicates midtown Manhattan as

having the strongest agglomeration effects. Without further investigation it is not
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Figure 69: Local parameter estimate surfaces for the gravity-type attraction-
constrained spatial interaction model (Grav) of the bike data. The top left surface
corresponds to housing density (hd), the top right surface corresponds to employment
(emp), the bottom left surface corresponds to average income (inc), and the bottom
right surface corresponds to distance-decay (dist). Red values indicate a positive
relationship and blue values indicate a negative relationship. Black tracts have been re-
moved as outliers to aid in visualizing trends while grey tracts are deemed statistically
insignificant at the 95% CI using a Bonferroni correction for multiple testing.
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Figure 70: Local parameter estimates for the accessibility terms (cd) defined using
housing density (left) and POI density (right) in the attraction-constrained competing
destination models. Red values indicate a positive relationship and blue values indicate
a negative relationship. Black tracts have been removed as outliers to aid in visualizing
trends while grey tracts are deemed statistically insignificant at the 95% CI using a
Bonferroni correction for multiple testing.

possible to determine if one pattern is more theoretically appropriate than the other,

and it is possible that both patterns may be important.

Of the two models with accessibility terms, CD1 and CD2, the one with an

accessibility term based on the POI density provides a higher model fit than the one

based on housing density. Furthermore, the outcomes of including the accessibility

term are that the negative relationship with housing density becomes stronger, the

positive relationship with employment becomes stronger, and the positive relationship

with average income becomes greatly diminished. Removing average income from

the model results in virtually no reduction of the model fit (< .003) and does not

cause any large deviations in the other parameter estimates. It is therefore likely
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that the significant non-zero effect detected in the gravity-type model was due to

the model overcompensating for the omission of the accessibility variable. Of the

remaining variables, noticeable deviations from those displayed in figure 69 were only

apparent for the distance-decay parameter estimates where there were now several

tracts that have positive distance-decay (figure 71). For the two tracts in the center

of downtown Manhattan this may be because the individuals who commute to these

destinations only commute from stations that are further afield, since many of the

tracts surrounding this area are not very residential. For example, this area contains

several large hotels, and famous attractions such as Rockefeller Center and Times

Square. Most individuals living and working in this area would probably choose to

walk since the commute distance is so short and cycling would require more effort

than it would be worth. For the tract in Brooklyn (southeast corner) this tract is an

outlier and further investigation is necessary to explain its presence.

The interpretations discussed here pertaining to the bike data are sufficiently

different in nature from the census commute-to-work data to conclude that the bike

data are not an suitable substitution for traditional survey data to study commuting

behavior. This is probably primarily because the data are not as representative

of residences and workplaces as are the commuting data, although it may also be

because the methodology used here to capture commuting bike trips is only a crude

approximation to the true set of bike trips associated with commuting. More advanced

classification methods might be helpful in isolating a stronger signal that corresponds

to the commuting processes represented in the census commute-to-work data.

It is also possible to expand the analysis of the bike data using variables that were

not available for the census commute-to-work data. Most notably, a measure of bike

capacity (i.e., number of bike docks) is available for each station and can be used
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Figure 71: Local parameter estimates for distance-decay in the attraction-constrained
competing destination model of the bike data using an accessibility term defined using
POI density (CD2).

to compute an accessibility term that is more intuitive for bike trips. In addition,

since the exact coordinates of the bike stations are available, it is possible to compute

an accessibility term directly between individual stations instead of between tracks,

which is can then be aggregated to tracts to be included in the model. An accessibility

term defined using station capacity was calculated and entered in to the model at the

tracts level (CD3) and the station level (CD4) and the results are presented in the

top row of table 4. The results for the model using accessibility defined using station

capacity at the tract level (CD3) produces very similar parameter estimates to those

obtained from model CD1 (table 3) that defines accessibility using housing density,

which means all of the previously discussed interpretations for model CD1 hold for

model CD3. This is further supported by the local parameter estimate surface for

accessibility from CD3 (figure 72 top left) that is similar to the surface produced

from CD1. The other surfaces produced were also very similar to those from CD1
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and Grav (table 3 and figure 69) and were therefore not shown here. In contrast, the

results for the model using inter-station distance to define accessibility (CD4) resulted

in very different global parameter estimates (table 4 top row). First, the parameter

estimates for housing density, employment, and average income are all much smaller in

magnitude and housing density and average income have flipped signs. Examining the

local parameter estimate surfaces for these three variables (figure 73) it can be seen

that the surfaces much noisier than those produced by the Grav model (or CD1 and

CD3 models) that are portrayed in figure 69. In fact, removing all three variables from

the model causes the pseudo R2 to decrease less than 0.002 and suggests that when

accessibility is measured accurately, it is unnecessary to account for these variables.

Second, the accessibility parameter for model CD4 is much smaller in magnitude than

for model CD3. Figure 72 (top right) illustrates the local parameter estimate surfaces

for accessibility in model CD4 where many of the estimates that had negative values

in model CD3 (top left) are now positive and overall the local parameter estimates

take on a much smaller range of values. These results show that the definition of

competing locations and accurate measurement of their proximity to each other is

important and that errors in measuring these attributes can lead to different results.

Another enhancement that is possible for the bike data is to use distances that

are computed by a routing algorithm that accounts for traffic patterns and gives

preferences to roads that accomodate cyclers. These routed distances potentially

yield more realistic measures of the effort needed to cycle between locations and may

therefore produce different parameter estimates. The distance produced using the

Mapzen Matrix routing service (chapter 4) was entered into models CD3 and CD4
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Figure 72: Local parameter estimates for accessibility parameter in attraction-
constrained competing destination models of the bike data using an accessibility
term defined using station capacity - top left pertains to CD3, top right pertains to
CD4, bottom left pertains to CD5, and bottom right pertains to CD6. Red values
indicate a positive relationship and blue values indicate a negative relationship. Black
tracts have been removed as outliers to aid in visualizing trends while grey tracts
are deemed statistically insignificant at the 95% CI using a Bonferroni correction for
multiple testing.
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Figure 73: Local parameter estimates for housing density (left), employment (middle),
and average income (right) in the attraction-constrained competing destination models
of the bike data using an accessibility term defined using station capacity (CD4).
Similar surfaces were obtained for CD6, which is the same model but uses distance
derived using a routing algorithm. Red values indicate a positive relationship and blue
values indicate a negative relationship. Black tracts have been removed as outliers to
aid in visualizing trends while grey tracts are deemed statistically insignificant at the
95% CI using a Bonferroni correction for multiple testing.

Figure 74: Local parameter estimates for distance-decay in attraction-constrained
competing destination models of the bike data using an accessibility term defined
using station capacity - left pertains to CD5, and right pertains to CD6.
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Table 4: Parameter estimates and model fit for the extended models using the bike
commute-to-work data. CD3 refers to a competing destination model using tract-level
station capacity to define accessibility and CD4 refers to a competing destination
model using point-level station capacity to define accessibility.

CD3 CD4

Euclidian Estimate SE Estimate SE

hd -0.3875 0.0012 0.06332 0.0013
emp 0.4765 0.0013 0.02572 0.0014
inc 0.1042 0.0011 -0.0523 0.0011
dist -1.262 0.0007 -1.240 0.0007

cd 1.457 0.0036 0.9887 0.0010

adj. R2 0.6744 0.7242
AIC 5115511 4332910

CD5 CD6

Routed Estimate SE Estimate SE

hd -0.4048 0.0013 0.0009 0.0013
emp 0.4788 0.0014 -0.0768 0.0014
inc 0.0594 0.0010 -0.1082 0.0011
dist -1.506 0.0008 -1.499 0.0008

cd 1.223 0.0036 0.9714 0.0011

adj. R2 0.6978 0.7491
AIC 4677772 3882747

instead of Euclidian distance to produce results for models CD5 and CD6 (bottom

row of table 4). The global parameter estimates for housing density, employment

and average income in models CD5 and CD6 are similar to those from models CD3

and CD4, though there are two exceptions. The first exception is that employment

takes a negative value in CD6 compared to a positive value in CD5. However, like

CD5, all of the estimates in CD6 are small, produce noisy local parameter surface

estimates and dropping them from the model barely reduces the fit of the model. The
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other exception is that using the routed distances produces distance-decay estimates

that are higher in magnitude and accessibility estimates that are lower in magnitude.

This indicates that more realistically measuring distance over the routes that cyclists

are likely to use suggests that cyclists become more deterred by longer-distance trips.

Moreover, this increase in the distance-decay parameter estimate does not create a

local parameter estimate surface with patterns different from the surface for Grav

model (or CD1, CD3 and CD4 models) that is portrayed in figure 69 (bottom right)

nor does it produce local parameter estimate surfaces for accessibility that differ

strongly from the surfaces produced from model CD3 and CD4 (figure 72 bottom

row). Since model CD6 results in the highest model fit using the fewest variables

(after dropping housing density, employment and average income) it provides the most

parsimonious model. Two further conclusions can also be made. First, accurately

capturing distance and accessibility, such as using inter-station distance and routed

distances, is important for modeling the bike data. Second, these results provide

evidence that the accessibility of the stations probably already reflects many other

attraction variables that have been considered by city planners that optimized the

system.

Results for the taxi data are presented in the next section and are compared to

both the results from census commuting data and these results pertaining to the bike

data.

6.4 A commute-to-work model using taxi trips

Following the previous section, the same models that were calibrated on census

commute-to-work data are calibrated on the taxi data to see if similar interpretations
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can be obtained. To make the taxi data commensurate with the census commute-

to-work data, a subset of the taxi trips that pertains only to weekdays and that

that start between 5:00 and 10:00am was extracted. This resulted in 39,702,911 taxi

trips aggregated to 518,705 origin-destination routes between 2138 origins and 2163

destinations. This implies that a majority of origin-destination routes have zero trip

count observations, however there are still fewer zero flows than are in the census

commute-to-work data. After further processing the taxi data using the same methods

used to prepare the census commuting data, there were 4,382,900 observations between

2,050 origins and 2139 destinations.

The same three models that were calibrated on the census commuting data (Grav,

CD1, and CD2) were then calibrated on the taxi commuting data, and the results

reported in table 5. One similarity between the results for the census and taxi

commuting data is that including an accessibility term defined using POI density

produces the highest model fit and both sets of data produce a very similar parameter

estimate for distance-decay (approximately -1.12). However, many differences exist

between the taxi data results and the census commute-to-work data. Once again, it is

constructive to discuss each parameter estimate in the these models and describe any

discrepancies between the two data sets.

First, in the gravity-type models (Grav) the distance decay derived from the taxi

data is stronger than the distance-decay derived from the census commuting data.

However, this may be due to omitted variable bias since including an accessibility

term moderates the distance-decay to be less negative for the taxi data (table 5) and

more negative for the census data (table 2), which leads to similar distance-decay, as

was previously discussed.

Second, the relationship between the number of trips and average income at the
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Table 5: Parameter estimates and model fit for the taxi commute-to-work data. Grav
refers to the gravity-type attraction-constrained spatial interaction model and CD1
and CD2 are competing destination models using different accessibility terms.

Grav CD1(hd) CD2(poi’s)

All data Estimate SE Estimate SE Estimate SE

hd 0.2082 0.0004 -0.3835 0.0004 -0.1143 0.004
emp 0.2357 0.0004 0.6123 0.0004 0.5842 0.0004
inc 1.377 0.0003 1.179 0.0003 0.9505 0.0004
dist -1.365 0.0002 -1.281 0.0002 -1.121 0.0002

cd - - 3.700 0.0017 1.405 0.0004

adj. R2 0.8532 0.8675 0.8827
AIC 57142354 51559657 45819222

trip origin is always positive and is much stronger in the taxi data. This is probably

related to the relatively high costs of commuting by taxi compared to other forms of

transportation such as subway or bus, such that individuals who can afford to take a

taxi to work are more likely have the economic means to afford a residence in an area

with a higher average income.

Third, the parameter estimate for the number of employed individuals is positive

for both data sets, though it is smaller in magnitude for the taxi data. This could

be related to the crude classification method used to extract commuting flows, which

may also include many trips that are not commutes. Therefore, some trips begin

in commercial areas rather than residential areas and may not be related to the

associated employed population.

Fourth, like the parameter estimates for the accessibility terms in the competing

destination models (CD1 and CD2) for the bike data, those for the taxi data are positive

and therefore indicate agglomeration effects in residence choice (origin locations) rather

than the competition effects (i.e., negative accessibility parameter estimates) observed

for the census commute-to-work data. Though the origin of taxi trips are not restricted
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to stations like the bike trips, it is less common for taxis to search for clients in more

residential neighborhoods. Instead, they often choose to look for potential clients in

areas of higher and more diverse activities, such as around major transportation hubs,

parks, tourist attractions, shopping areas, and main avenues (typically running north

and south) over more quiet streets (typically running east to west). This minimizes the

time needed to find clients and is also useful for clients looking for a taxi who know to

walk to the nearest intersection of an avenue or to a transportation hub to increase the

likelihood of finding a taxi quickly. It also further implies, that, as with, the bike data,

a pitfall of the taxi data is that they are not as representative of residence locations

as is the census commute-to-work data. Related to this, the final difference is that

the parameter estimate for housing density takes the opposite sign in the taxi results

than it does in the census commuting results. While the census gravity-type model

produced a negative estimate and the CD2 model produced a positive estimate, the

taxi gravity-type model produced a positive estimate and the CD2 model produced

a negative estimate. This may be due to individuals frequently walking from their

residence to less residential areas with lower housing density to more quickly begin

a taxi trip. Examining the local parameter estimate surfaces provides evidence that

these flipped signs may be due to shifts in the spatial heterogeneity of the processes

and is described in more detail below.

Figures 75 - 78 pertain to the local parameter estimate surfaces for the gravity-type

model (Grav) of the taxi data and figures 79 - 82 pertain to the local parameter

estimate surfaces for the competing destination model based on POI density for the

taxi data (CD2). For housing density, the gravity-type model surface (figure 75)

indicates that many census tracts have parameter estimates that are not statistically

significant. Those that are significant tend to show a high level of heterogeneity with
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several clusters of positive and negative parameter estimates throughout the study

area. However, upon adding the accessibility term to the model in CD2, many of the

positive parameter estimates become negative or statistically insignificant (figure 79)

and demonstrates why the global parameter estimate flipped from positive to negative.

Two particularly strong trends stand out in figure 79. First, there is a large cluster

of negative parameter estimates in the eastern portion of Queens, which roughly

corresponds to the area around Jamaica station, which is a major transportation

hub that connects Manhattan, Queens, and Brooklyn, as well as Long Island to

the east and JFK international airport to the south. The second cluster is a small

enclave of strongly positive parameter estimates in the southeast of Brooklyn. This

area is located between Coney Island to the south and a large park to the northeast.

Furthermore, these two areas consistently display particularly strong opposing local

relationships (figures 76 - 78 and figures 80 - 82) and demonstrate the usefulness of

local models for detecting clusters with geographic context. Further research into

these clusters would likely lead to more diverse theoretical interpretations.

A final trend, also noticed in the bike data, is that the competing destination model

using accessibility defined with POI density (CD2) produces a local distance-decay

parameter estimate surface that has very low distance-decay in central midtown

Manhattan with one census tract producing a positive distance-decay estimate. It is
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Figure 75: Local parameter estimates for the housing density (hd) variable in the
gravity-type attraction-constrained model using taxi data. Red values indicate a
positive relationship and blue values indicate a negative relationship. Black tracts
have been removed as outliers to aid in visualizing trends while grey tracts are deemed
statistically insignificant at the 95% CI using a Bonferroni correction for multiple
testing.
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Figure 76: Local parameter estimates for the number of people employed (emp) in
the gravity-type attraction-constrained model using taxi data. Red values indicate a
positive relationship and blue values indicate a negative relationship. Black tracts
have been removed as outliers to aid in visualizing trends while grey tracts are deemed
statistically insignificant at the 95% CI using a Bonferroni correction for multiple
testing.
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Figure 77: Local parameter estimates for the average income (inc) variable in the
gravity-type attraction-constrained model using taxi data. Red values indicate a
positive relationship and blue values indicate a negative relationship. Black tracts
have been removed as outliers to aid in visualizing trends while grey tracts are deemed
statistically insignificant at the 95% CI using a Bonferroni correction for multiple
testing.
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Figure 78: Local parameter estimates for distance-decay (dist) in the gravity-type
attraction-constrained model using taxi data. Lighter values indicate a weaker rela-
tionship. Black tracts have been removed as outliers to aid in visualizing trends while
grey tracts are deemed statistically insignificant at the 95% CI using a Bonferroni
correction for multiple testing.
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Figure 79: Local parameter estimates for the housing density (hd) variable in the
attraction-constrained competing destination model of the taxi data using an accessibil-
ity term defined using POI density (CD2). Red values indicate a positive relationship
and blue values indicate a negative relationship. Black tracts have been removed
as outliers to aid in visualizing trends while grey tracts are deemed statistically
insignificant at the 95% CI using a Bonferroni correction for multiple testing.
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Figure 80: Local parameter estimates for the number of people employed (emp) in
the attraction-constrained competing destination model of the taxi data using an
accessibility term defined using POI density (CD2). Red values indicate a positive
relationship and blue values indicate a negative relationship. Black tracts have been
removed as outliers to aid in visualizing trends while grey tracts are deemed statistically
insignificant at the 95% CI using a Bonferroni correction for multiple testing.
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Figure 81: Local parameter estimates for the average income (inc) variable in the
attraction-constrained competing destination model of the taxi data using an accessibil-
ity term defined using POI density (CD2). Red values indicate a positive relationship
and blue values indicate a negative relationship. Black tracts have been removed
as outliers to aid in visualizing trends while grey tracts are deemed statistically
insignificant at the 95% CI using a Bonferroni correction for multiple testing.
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Figure 82: Local parameter estimates for distance-decay (dist) in the attraction-
constrained competing destination model of the taxi data using an accessibility term
defined using POI density (CD2). Red values indicate a positive relationship and blue
values indicate a negative relationship. Black tracts have been removed as outliers to
aid in visualizing trends while grey tracts are deemed statistically insignificant at the
95% CI using a Bonferroni correction for multiple testing.
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Figure 83: Local parameter estimates for accessibility term (cd) defined using POI
density in the attraction-constrained competing destination model of the taxi data
(CD2). Red values indicate a positive relationship and blue values indicate a negative
relationship. Black tracts have been removed as outliers to aid in visualizing trends
while grey tracts are deemed statistically insignificant at the 95% CI using a Bonferroni
correction for multiple testing.
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Figure 84: Local parameter estimates for accessibility term (cd) defined using housing
density in the attraction-constrained competing destination model of the taxi data
(CD1). Red values indicate a positive relationship and blue values indicate a negative
relationship. Black tracts have been removed as outliers to aid in visualizing trends
while grey tracts are deemed statistically insignificant at the 95% CI using a Bonferroni
correction for multiple testing.
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intuitive that this area, which has already been designated as a very attractive area,

might draw individuals regardless of their potential journey length and therefore results

in very weak distance-decay. More specifically, the positive anomaly corresponds

very closely to Pennsylvania station, which is one of largest transportation hubs

in Manhattan. It is reasonable to assume that many of the trips recorded to this

destination are either not commuting trips or only represent one segment of a longer

commuting trip. Since the station connects midtown Manhattan to the entire study

area and to the greater metropolitan region, it would not be surprising if it attracted

many long distance trips. Visualizing the local parameter estimate surface for the

accessibility term defined using POI density (figure 83) supports this theory, as it can

be seen that midtown Manhattan has the strongest agglomeration forces in Manhattan

and means there is a strong relationship between flows and accessibility. However, it

is also important to note that, like the bike data, an accessibility term defined instead

using housing density (figure 84) resulted in a similar surface, but indicated that the

strongest agglomeration forces are on the upper west side, rather than in midtown.

Again, it is not possible to determine if one surface is more appropriate and perhaps

some combinations of two variables should be explored in future research.

As with the bike data, the taxi data portrayed similar pitfalls in terms of modeling

commute-to-work behavior when compared to the census commuting data. Overall,

the conclusions reached are dissimilar possibly for three reasons. First, taxi commuters

represent a small fraction of the overall commuting population and therefore the

data set is not representative of the average commuter who primarily use the public

transport system and this is apparent when comparing the parameter estimates.

Second, the taxi data are not necessarily representative of individuals’ residences
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and workplaces. Thirdly, a more accurate classification method is needed to isolate

commuting trips from non-commuting trips.

6.5 Moving forward

Through the use of increased computing capabilities it was possible to efficiently cal-

ibrate global and local models with over 4,000,000 origin-destination observations and

over 2,000 binary indicator variables needed to singly-constrained spatial interaction

models.This facilitated the visualization of higher resolution local parameter estimate

surfaces, which were used to explore spatial non-stationarity, identify clusters and

assign behavioral interpretations to them. Consequently, this work demonstrates the

usefulness of the higher spatial resolution of newer, bigger data sources. In this case,

census data were also available at the same resolution; however, it would be possible

to aggregate the bike or taxi data to an arbitrary grid with even higher resolution that

would allow for the exploration of finer spatial variation in the parameter estimates,

albeit at the potential cost of increased zero-inflation.

By building models using the census commute-to-work data and then applying

them to the bike and taxi data, it was possible to determine that these newer datasets

are not sufficient substitutes for traditional survey data sources in that they capture

different sets of individuals. People who travel by taxi or by bike at rush hour are not

necessarily representative of commuters in general. Consequently, the results from the

taxi and bike flows generate information on different sets of people moving across the

urban landscape during the morning rush hours and are useful for studying different

facets of urban transportation.

Finally, non-traditional variables were used to define accessibility terms in com-
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peting destinations models that resulted in different interpretations compared to

accessibility terms defined using traditional data sources. Consequently, this chapter

identified both potential and pitfalls of some big data sources in the context of spatial

interaction modeling of commuting behavior and transportation usage. In the next

chapter, the increased temporal resolution of these data sources will be evaluated.
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Chapter 7

TEMPORAL SUBSET MODELS OF LOCATION CHOICE IN NEW YORK CITY

7.1 Introduction

The previous chapter evaluated the potential and pitfalls associated with using

‘big data’ (bike and taxi datasets in New York City) for spatial interaction modeling.

Specifically, local models were used to investigate geographic variation in commuting

processes, such as residential choice. It was determined that although the bike and taxi

data are not representative of the average commuter, they may still be used to study

behavior associated with specific modes of transportation. It was also demonstrated

that in both the bike and taxi datasets, agglomeration forces tend to be present

across origins and, consequently, it is important to include an accessibility measure

to capture spatial structure effects. Examining surfaces of local parameter estimates

allowed the nature of the spatial structure effects (i.e., agglomeration effects across

origins) to be further illuminated and it was shown that different accessibility terms

can be computed using either traditional census data or newer non-traditional sources

of data.

Spatial interaction models are typically calibrated on data that are aggregated

over several months or years and are rarely calibrated on data disaggregated to smaller

temporal units. This is primarily because human movement data are usually available

only in course temporal and spatial aggregations; an example being migration and

commuting data obtained from the US census. Such data can only provide a broad

average representation of movement behavior and it has to be taken on faith that
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this behavior is constant across the timer period for which the data are collected.

However, movement data with a very high number of observations and increasingly

finer temporal resolutions, such as the bike and taxi in New York City, are now

becoming available and provide an exciting means to explore potential dynamics in

movement behavior by calibrating spatial interaction models on temporal subsets of

the data and compare parameter estimates across these subsets. Therefore, in this

chapter spatial interaction models are calibrated for monthly, weekly, daily, and even

hourly subsets of the bike and taxi data and the parameter estimates are presented as

time series in order to investigate potential temporal patterns.

The overall goals of this chapter are threefold. First is to establish baseline models

of destination choice using bike and taxi data that are aggregated from June 2014

through May 2016. Second is to investigate whether or not parameter estimates can

be reliably obtained for increasingly finer temporal subsets of the bike and taxi data.

If they can, the third goal is to determine how behavior associated with the bike and

taxi trips varies over time and across different temporal resolutions. In particular,

attention is paid to a period of blizzard activity that occurred in late January 2016 to

explore how extreme weather affects the relationships between the urban environment

and mobility. As a result, this chapter provides further evaluation of the potential

and pitfalls of the bike and taxi data for understanding urban mobility and dynamic

human behavior. The overall modeling framework used to carry out these goals is

introduced below.
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7.2 Modeling framework

Attraction-constrained models were employed in chapter 6, since the main goal

was to model the choice of residence location (i.e., origins) associated with commuting

trips. However, this framework is not adopted here. It was already discussed that

the bike and taxi data may not be as representative of a single process as the census

data because they can contain many types of trips. Though the diversity of processes

represented within these new sources of data can be considered a weakness of the data,

it may also be considered a strength, since it provides the opportunity to study more

aspects of mobility. For instance, the census commute-to-work data would not be

useful to study any of the movements in New York City that are not associated with

commuting! The bike and taxi data also represent trips associated with different types

of shopping, leisure, and social interaction, which are a strong component of urban

life. Unlike the commuting data that describes average behavior over the long-term,

each observation in the bike and taxi data represent choices made in real-time. As

a result, it is likely that individuals represented in the bike and taxi data would

be making short-term decisions about potential destinations rather than origins so

the focus in this chapter is on destination choice and production-constrained models

are employed, which are discussed in detail in chapter 2, but are reviewed here for

convenience. Production-constrained models are useful for allocating known numbers

of individuals from each origin to a set of destinations and the model is formally given

in multiplicative form with a power function of distance-decay as

Tij = AiOiW
α
j d

β
ij (7.1a)
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Ai =
(∑

j

Wα
j d

β
ij

)−1
(7.1b)

where Tij is the number of flows between location i and destination j, Oi is the number

of trips that begin at origin i, Wj is a vector of destination location attributes, dij

is the distance between i and j, and Ai is a balancing factor that ensures the total

number of inflows Oi is replicated in the predicted flows. In this context, the primary

interest is in describing the nature of the destinations that individuals choose from

and the effect of distance, which is accomplished by estimating the origin location

parameter vector α and the distance-decay parameter β and interpreting them in

the context of urban activity within New York City. Consequently, a production

constrained model is first calibrated for the bike and taxi data aggregated across the

entire study period. Since the interest in this chapter is on describing the nature of the

destinations and the effect of distance over time, models are calibrated34 for monthly,

weekly, daily, and hourly subsets of the data. For the monthly and weekly calibrations,

the entire dataset is used since the number of calibrations remains reasonable at

approximately 24 and 104 temporal units, respectively. However, the daily and hourly

subsets would result in hundreds and thousands of model calibrations for the entire

study period and therefore only a portion of the study period was used in order to

limit the number of calibrations. More specifically, daily calibrations were limited to

one summer month (June 2015) and one winter month (January 2016) and hourly

calibrations were limited to approximately one week within the summer month (June

17-24) and approximately one week within the winter month (January 20-26). Results

are first presented for the bike data and then for the taxi data.

34All model calibrations in this chapter were carried out using custom software that leverages the
sparse design matrices implied by constrained spatial interaction models for efficient computation
(Oshan, 2016). The code is part of the SpInt module of the Python spatial analysis library (PySAL)
and is available at https : //github.com/pysal/spint
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7.3 Bike data results

7.3.1 Baseline model

Before calibrating the temporal subset models on the bike data, an initial specifi-

cation must be proposed and validated on the entire dataset. A simple model was

selected based on the results from chapter 6 where the most parsimonious model for

the bike data was obtained using an accessibility term defined using station capacity

and inter-station distances. However, an important difference is that inter-station

trips were used here instead of aggregating trips between census tracts. In chapter

6, a primary goal was to compare the models from the bike data to those from the

census commute-to-work data and therefore it was useful for the sake of comparison

to maintain the same spatial unit of analysis across the different data sets. This

restriction is not necessary in this chapter and it is more intuitive to calibrate models

of bike movements using the most spatially disaggregate data possible, which are

the flows between the individual bike stations. The flow models to be calibrated

include three explanatory variables: station capacity (cap), accessibility defined using

station capacity (cd), and inter-station distance computed using the Mapzen Matrix

routing algorithm that prefers roads favored by cyclists (dist). These are used to

understand the determinants of approximately 20 million bike trips aggregated to

242,557 origin-destination routes between 497 origin stations and 497 destination

stations 35. Parameter estimates and model fit for these data are presented in table 6

where it can be seen that a moderate-to-high pseudo R2 of 0.6925 is obtained.

35Intra-station trips are excluded, as well trips to stations that did not have a reliable measure of
station capacity. About 82,626 of the routes contain zero flows, indicating about two-thirds of the
routes have non-zero flow magnitudes.
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Table 6: Parameter estimates and model fit for the bike data. Grav refers to the
gravity-type production-constrained spatial interaction model and CD refers to the
competing destination model.

Grav CD(cap)

Estimate SE Estimate SE

cap 0.8466 0.0008 0.6565 0.0008
dist -1.356 0.0003 -1.298 0.0003

cd - - 1.198 0.0015

adj. R2 0.6818 0.6925
AIC 20024094 19349287

The parameter estimates in table 6 provide the interpretation that, ceteris paribus,

larger flows of bike trips are associated with destinations that: have larger station

capacity; are closer to other bike stations; and are nearby to where the trip started.

It is intuitive that individuals would want to minimize the distance traveled and

that they would be more likely to ride to stations with a higher capacity of bike

docks to maximize the probability that there will be an empty dock into which

the user can park their bike at the end of their trip. Accessibility in this case is

representative of the station capacity in areas around a potential destination station

and the positive parameter estimate obtained here denotes agglomeration effects

suggesting that stations within easy reach of alternative stations are favored by bike

renters, presumably to minimize inconvenience should parking slots not be available in

the intended destination station. Finally, it can be seen that adding the accessibility

term (CD) slightly improves the model fit and has the effect of reducing the magnitude

of the measured distance-decay and the attraction of larger bike stations; again the

latter makes sense as bike renters will be less concerned about a station’s capacity if

there are alternative stations nearby.
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7.3.2 Temporal subsets

Having established a baseline model for the whole time period of the data, models

were then calibrated separately for monthly, weekly, daily, and hourly subsets of the

bike data using the same model specification. The goals of this experiment are to (1)

assess if robust parameter estimates can be obtained for these subsets of bike data

and (2) determine whether the calibrations allow us to examine if and how movement

behavior changes over time. Figures 85 through 90 provide parameter estimates,

model fit, and the number of destination stations for each of the monthly, weekly,

daily, and hourly subsets of the bike data, with separate figures for the daily and

hourly results pertaining to warmer and colder periods in the study area. The blue

dotted horizontal line in each time series indicates the value of the corresponding

baseline parameter estimate.

Examining figures 85 through 90, it can be seen that there is an expected trend

where the larger temporal units, such as months (figure 85) and weeks (figure 86) yield

parameter estimates with very low uncertainty, and that this uncertainty increases

as the data are subset to the smaller temporal units of days and hours. Uncertainty

is evaluated here by the 95% confidence interval that is plotted for each parameter

estimate time series. The dashed green line represents the upper limit of the confidence

interval and the dashed red line represents the lower limit of the confidence intervals.

It may be seen in figure 85 and figure 86 that the confidence intervals are tightly

centered on the solid blue line that represents the parameter estimates. For the daily

subset models, the confidence intervals increase in size (figure 87 and 88), but never

incorporate zero. The results from the hourly subset models (figures 89 and 90) indicate

that parameter estimates with acceptably low uncertainty are only obtained during
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times of high usage, which is typically during the morning and afternoon commutes.

During times of low usage, and especially late at night, the confidence intervals are far

too large for any sensible conclusions to be drawn from the results. These results hold

for daily and hourly subsets pertaining to periods of both warmer and colder weather.

One exception to this trend is immediately after the bike-share system was re-activated

after being deactivated during the blizzard activity. The period of deactivation is

captured by breaks in figures 88 and 90 and figure 90 demonstrates the exception

where very high parameter estimates are obtained with low uncertainty. However, the

high positive value of distance-decay observed cannot be logically interpreted and this

exception should likely be treated as an anomaly since this parameter estimate was

obtained for a period that contained few trips between a small number of stations.

Several interesting temporal trends can be seen in the parameter estimates. For

distance-decay, three trends are apparent. First, distance-decay varies seasonally

(figures 85 and 86) with a stronger effect in the colder winter months when fewer

cyclists would want to make longer trips and a weaker effect in the warmer summer

months when weather is less of a deterrent. Second, distance-decay tends to be stronger

during the weekends and on holidays when individuals do not typically need to commute

to work and might choose to stay closer to home (figure 87 {6th-7th, 13th-14th, 20th-

21st, 27th-28th} and figure 88 {1st-3rd, 9th-10th, 16th-17th}). Third, distance-decay

remains between -1.0 and -1.5 when it can be reliably estimated throughout the day,

with lower distance-decay during morning and afternoon commuting hours. This

trend is visible in figure 89, though it is not visible in figure 90 because the previously

mentioned anomaly makes the range of the series larger, resulting in a less focused

plot. Though not shown here, the series in figure 90 is also examined by manually

decreasing the range of the y-axis and it was found that the parameter estimates
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are similar to those for the warm hourly subsets (figure 89). Therefore, subsequent

analysis of the parameter estimates focuses on only the warm hourly subset results.

These three trends demonstrate that the estimated distance-decay varies over time

and that the nature of this variation is dependent upon which temporal frequency

is being used to subset the data. Each of the temporal frequencies employed in this

experiment is associated with cycles of human activity or human responses to physical

activity (i.e., weather). Since the variations in the measured distance-decay are linked

to these human behaviors, this provides evidence that the distance-decay parameter

estimates obtained can reasonably be interpreted as reflections of human behavior.

Furthermore, it can be seen in the monthly and weekly results that the baseline

distance-decay parameter estimate tends to be an approximate average of the series

values since the blue dotted line divides the series with similar portions occurring

above and below the baseline. This is not the case for the daily and hourly results.

For the daily distance-decay estimates pertaining to warmer weather, the series tends

to run above the baseline while the opposite trend is true for the daily distance-decay

estimates pertaining to colder weather, which has a series that runs below the baseline.

A similar, though less pronounced pattern occurs in the hourly results. This pattern

exists because two different seasonal trends are reflected in the warm and cold results

and is therefore not problematic. However, this pattern also suggests that when data

are aggregated over a time period that only represents part of a temporal cycle (i.e., a

season) that the estimated distance-decay may only be accurate for that subset of

time.

The parameter estimates for the station capacity and accessibility variables also

contain temporal variation that seems to depend on the temporal disaggregation of

the data so that the following results are described for each temporal unit separately.
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For the monthly subsets (figure 85), the series of parameter estimates for station

capacity and accessibility (i.e., nearby capacity) are inversely related. Station capacity

is more important in the warmer months and less important in the cooler months.

This may perhaps be due to cyclists making trips regardless of station capacity in the

cold months when demand is generally lower and the availability of docking places

is not an issue. In addition, the variation in station capacity is less intense for the

second half of the series probably because of the increase in the number of stations

in July 2016 which seems to have the outcome of stabilized the impact of station

capacity. Accessibility parameter estimates exhibit the opposite trend where stations

that may be perceived as part of a larger cluster of stations are more attractive during

the colder months. This may be that during the colder months, bike trips represent

a larger share of commuters and a lower share of tourists and commuters are more

likely to have destinations where there are many bike stations. Interestingly, monthly

accessibility parameter estimates are always below the baseline measure indicating

that the baseline measure is not an average of the monthly measures and this is

revisited later.

Moving to the weekly subset results (figure 86), it can be seen that both capacity

and accessibility parameter estimates maintain a similar trend to that found for the

monthly subset results. In contrast, a much different pattern is produced for the

capacity and accessibility parameter estimates in the daily results. For both the

warmer period (figure 87) and the colder period (figure 88) station capacity has a

similar range of estimates to that observed in the monthly and weekly results but it can

now be seen that station capacity is less important on the weekends ({6th-7th, 13th-

14th, 20th-21st, 27th-28th} for the warm period and {2nd-3rd, 9th-10th, 16th-17th,

23rd-24th} for the cold period). During the weekends, cyclists are less likely to travel
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to areas of high employment that might be associated with stations of high capacity.

A similar cyclical pattern exists in the daily accessibility parameter estimates, except

now the series for the warmer period spans both positive and negative values with the

negative values occurring on the weekends. Those who cycle during weekend and in

warm weather are likely less constrained by weather or time and may choose to cycle

to areas with relatively fewer bike docks so that there are fewer trips than would be

expected to areas where bike stations are located relatively close to each other. In

addition, the warm weather accessibility parameter estimates have values well below

the baseline estimate but the cold weather estimates are much closer to the baseline

value.

Even more detail can be observed in the hourly subset results pertaining to the

capacity and accessibility parameter estimates (figures 89 and 90). As previously

discussed, the parameter estimates contain less uncertainty during the day for high

usage periods, though different hourly patterns emerge for capacity and accessibility.

For the competition/agglomeration variable, the parameter estimates are only reliable

(i.e., when the confidence interval does not incorporate zero) for periods related to

the morning and afternoon commuting rush. In contrast, station capacity parameter

estimates are their highest and least uncertain in the morning and then decline

throughout the day before becoming statistically insignificant for the later evening

until the next morning commute. The trends for both parameter estimates are related

to commuting behavior, and indicate that nearby station capacity is important for

both the morning and afternoon commute. Station capacity becomes less important

throughout the day because people often go out for dinner or go shopping before

heading home and places of leisure and residential destinations may not have stations

with capacity as high as stations in areas of high employment. A final feature that
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can be observed in the hourly data is that similar to distance-decay, there is an

anomaly immediately after the bike-share system commences following the blizzard

activity. In fact, a positive accessibility parameter estimate of approximately 6.5 is

obtained, though it can not be seen in figure 90 which has been zoomed to focus

on the finer trends. It is perhaps possible that this extreme outlier is pulling the

baseline accessibility parameter estimate upwards. It was previously mentioned that

data during this period consists of very few trips between a small number of stations

and excluding this data from future analyses might result in a baseline parameter

estimate that is smaller in magnitude.

It appears that the bike data are not particularly helpful for capturing dynamic

behavior related to blizzard activity and this is due to two reasons. First, for the

coarser temporal units, the data are highly aggregated and the blizzard only pertains

to a tiny portion of the data. In figures 85 and 86 the dashed red line denotes the time

period associated with blizzard activity and no strong differences in the parameter

estimates can be observed. The second reason is due to the fact that the bike-share

system was temporarily closed down during and after the blizzard, which means no

data were recorded for those days and hours that are most closely associated with

the blizzard. Parameter estimates obtained after the gap (figures 88 and 90) are

anomalous for a single time period and then seem to return back to typical behavior

and this is due to relatively few trips being recorded when there was snow and ice

present and cycling is unattractive.

Despite the bike data being insufficient to capture behavior associated with blizzard

activity, the results indicate that the temporal subsets of the bike data are highly useful

for extracting more consistent temporal patterns that occur cyclically. Parameter

estimates vary seasonally, between weekdays and weekends, and over the course of a
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day and these cycles are associated with several different types of behavior, including

commuting and leisure. Furthermore, parameter estimates are very robust when

aggregated monthly, weekly, and daily. Only when the data are aggregated hourly are

some statistically insignificant (i.e., the confidence interval includes zero) parameter

estimates produced, and these tended to be more numerous during the later hours of

the evening and earlier hours of the morning when the fewest bike trips occur. This

suggests that perhaps as the bike-share system continues to expand and becomes

more popular that parameter estimates for hourly subsets may be obtained with less

uncertainty. It might also be possible to capture more diverse behavior by classifying

destinations based on the different types of attractions that are available, such as

employment, dining, residences, or green space and then estimating a separate series

for each type of destination. In the next section, a similar experiment and evaluation

is provided for the taxi data using a baseline model that includes more destination

explanatory variables.
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Figure 85: Monthly sampling results for the bike data, including parameter estimates,
model fit, and number of origin spatial units. Dashed red line denotes blizzard activity.
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Figure 86: Weekly sampling results for the bike data, including parameter estimates,
model fit, and number of origin spatial units. Dashed red line denotes blizzard activity.

267



Figure 87: Daily sampling results for the bike data using a single month representative
of warmer weather (June 2015), including parameter estimates, model fit, and number
of origin spatial units.
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Figure 88: Daily sampling results for the bike data using a single month representative
of colder weather (January 2016), including parameter estimates, model fit, and
number of origin spatial units. The gaps in the trends denote blizzard activity when
the stations were temporarily closed down.

269



Figure 89: Hourly sampling results for the bike data using a single week representative
of warmer weather (June 17-24 2016), including parameter estimates, model fit, and
number of origin spatial units.
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Figure 90: Hourly sampling results for the bike data using a single week representative
of colder weather (January 20-29 2016), including parameter estimates, model fit, and
number of origin spatial units. The gaps in the trends denote blizzard activity when
the stations were temporarily closed down.
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7.4 Taxi data results

7.4.1 Baseline model

As with the bike data, a baseline model is needed for the taxi flows to assist with

the interpretation of the results from the temporal subset models. Here, the analysis

is carried out at the tract-level, since no point-level aggregation is available for the

taxi trips. The chosen specification includes five explanatory variables of destination

choice – population (pop), average income (inc), the number of jobs (jobs), accessibility

defined using point-of-interest density (cd), and inter-tract Euclidian distance (dist) –

that are used to explain approximately 300 million taxi trips aggregated to 4,442,703

origin-destination routes between 2140 origin tracts and 2077 destination tracts 36.

Parameter estimates and model fit for a gravity model (i.e., without an accessibility

variable) and a competing destinations (i.e., with accessibility variable) are presented

in table 7 where it can be seen that a high pseudo R2 of 0.9152 is achieved.

The interpretations provided by the parameter estimates in table 7 are that, ceteris

paribus, larger flows of taxi trips are associated with destinations that: have higher

populations; have higher average income; have a higher number of jobs; are more

accessible to points of interest and are closer. Again, it is intuitive that individuals

would want to minimize distance traveled, since longer taxi trips will cost more in

terms of both time and money. The model also indicates that taxi riders are more

likely to travel to destinations with higher population, that are wealthier, and have a

36Intra-tract trips are excluded, as well trips to tracts that did not have a reliable measure of one
or more destination attributes. About 3,260,081 of the routes contain zero flows, indicating about a
quarter of the routes have non-zero flow magnitudes
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Table 7: Parameter estimates and model fit for the taxi data. Grav refers to the
gravity-type production-constrained spatial interaction model and CD refers to the
competing destination model.

Grav CD(poi’s)

Estimate SE Estimate SE

pop 0.3054 0.00008 0.3533 0.0008
inc 0.5602 0.00010 0.4318 0.00010
jobs 0.4492 0.00004 0.2850 0.00050
dist -1.244 0.00006 -1.130 0.00007

cd - - 0.8745 0.0002

adj. R2 0.9044 0.9152
AIC 265154781 235233752

higher number of jobs. Residential areas with higher populations are more attractive

destinations for individuals returning from work, a shopping trip, or leisure activities.

Areas with higher numbers of jobs represent commercial regions, where people travel

for employment (i.e., commuting). Areas of higher income are more likely to contain

individuals for whom taxi fares are less of a constraint on usage and areas with many

points of interest nearby are more likely to be destinations associated with leisure and

tourism. Adding this latter term (CD) slightly increases the model fit and reduces

the measured effects of distance-decay, average income and the number of jobs while

increasing the measured attraction of population.

7.4.2 Temporal subsets

Similarly to the experiment carried out for the bike data, models were calibrated

for monthly, weekly, daily, and hourly subsets of the taxi data using the specification

described in the previous section. The goals of this experiment are the same as for the
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bike data, which are: (1) to assess if robust parameter estimates can be obtained for

various temporal subsets of taxi data and to (2) to determine whether the resulting

parameter estimates are useful indicators of temporal variations in travel behavior.

Figures 91 through 96 provide parameter estimates, model fit37, and the number of

destination locations for monthly, weekly, daily, and hourly subsets of the taxi data,

with separate results for daily and hourly results pertaining to warmer and cooler

samples of the study period. The blue dotted horizontal line in each series indicates

the associated baseline parameter estimate.

Very few parameter estimates have any noticeable uncertainty and those few that

do can typically be deemed statistically insignificant because the respective confidence

intervals incorporate zero. Such uncertainty occurs in two circumstances. The first

circumstance is for the hourly parameter estimates during the period of blizzard

activity, which can be seen in figure 96. No dashed red line is present to indicate

the blizzard activity because it would obfuscate the pattern amongst the confidence

intervals for parameter estimates from the 23rd to the 24th. This period relates to

the end of the snowfall of the blizzard and before the city was able to effectively

clear the roads. It is clear that during this time the confidence intervals generally

become very large for all of the parameter estimates, most of which include both

positive and negative values. The second circumstance is for the average income and

accessibility parameter estimates that result from data that are sampled hourly from

approximately 3:00am-5:00am, which is when there are relatively few taxi trips (figure

95). Hence, it can be seen that results for the taxi data produce exceptionally robust

37It is possible for the pseudo R2 to take on values of zero if any portion of the data are
ill-conditioned and this may be observed for the hourly subset results.
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parameter estimates for almost all of the temporal subsets and this means that this

data set is ideal for studying dynamic urban behavior.

Starting with the monthly subset results (figure 91), it can be seen that the

parameter estimates for the population and jobs variables are essentially static and

have very little variation compared to the baseline parameter estimate. In a large

city, the population and employment opportunities would be expected to be robust

over time so these results are not surprising. In contrast, distance-decay has the most

variation and displays a seasonal trend where distance-decay is stronger than the

baseline parameter estimate during the colder months of the year and less intense than

the baseline parameter estimate during the warmer months. This trend is interesting

because it might be expected that individuals prefer to travel longer distances by taxi

in the winter when it is less convenient to do so by bike or on foot. However, stronger

distance-decay in the colder months may be capturing the general habit of individuals

to travel shorter distances when it is cold and windy outside and it could also be

that in colder conditions, individuals forego walking or biking short distances in favor

of taxis. Unlike the bike data, January 2016 for the taxi data produced one of the

strongest distance-decay estimates, which is associated with blizzard activity and is

denoted by the dashed red line. The parameter estimates associated with average

income and accessibility also portray some variation, though it is difficult to explain

what might cause this. In the case of average income, there is a decrease in the size

of the effect for the two months of July included in the study period. In the case of

accessibility, there is a slight decrease in the effect over time and this also requires

further investigation. For all of the monthly results, the series are centered on the

baseline parameter estimate, which indicates the baseline provides an estimate that is

representative of an average effect.
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Results for the monthly subsets (figure 92) are similar to the patterns described

here, though they contain more short-term variation. This may be due to regular

weather patterns, large-scale social events and festivals, or random fluctuations. It

could also be interesting to compare these series either to weather data to see if the

fluctuations are correlated to levels of precipitation, air quality or UV index or to

social media data to see if they are associated with trending topics.

A bimodal pattern is present in the parameter estimates resulting from data

that are subset daily (figures 93 and 94), which roughly correlates to weekdays and

weekends. For the results pertaining to warmer weather (figure 93), it can be observed

that on the weekends ({6th-7th, 13th-14th, 20th-21st, 27th-28th}) individuals are more

likely to take a taxi to a destination that is associated with higher POI accessibility,

a lower number of jobs, a lower average income, and higher population. The trends

regarding POI accessibility and number of jobs indicate that more leisure trips take

place on the weekends. Though this is not a groundbreaking insight, it does suggest

that this methodology provides quantitative evidence and can be used to make time-

specific hypothesis about different types of behavior. In contrast, average income and

population indicate that during the weekends more trips are likely to terminate in

residential neighborhoods and are less likely to terminate in neighborhoods with higher

income. These are less obvious trends that may not have been otherwise observed.

Interestingly, there seems to be an anomaly in the effects of all four destination

attributes around June 16th. After a search of current events occurring in New York

City on that date, three were discovered that could have produced anomalous behavior.

First, Donald Trump announced his presidential candidacy in New York City that

afternoon, which was quickly met with protests 38. Second, there were two subway

38https : //en.wikipedia.org/wiki/T imelineofprotestsagainstDonaldT rump
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stations closures due to activity on the tracks 39. Third, New York City bus drivers

were purposely taking long pauses at crosswalks to protest a proposed new law, which

created unusual traffic 40. Curiously, the anomaly does not seem to exist when the

taxi data are sampled hourly (figure 95) and it is difficult to determine which of

these three events, if any, contributed towards the anomaly in the daily results. One

possible way to further investigate the anomaly could be to calibrate origin-specific

(i.e., local) production-constrained models for each hourly or daily subset and to map

the surfaces of parameter estimates to see if the anomaly manifests spatially.

Results pertaining to daily subsets for colder weather (figure 94) are similar to

those described above for the four destination attributes and support the pattern

that behavior is different during the weekend days ({1st-3rd, 9th-10th, 16th-17th,

23rd-24th}) than during the weekdays. Though there are no anomalies, it is evident

from figure 94 that blizzard activity causes some shift in behavior. The number of

destinations at which trips terminate is at a minimum during the blizzard (i.e., just

before the dashed red line) and the parameter estimate for average income is almost

zero. This may be due to people in neighborhoods of all income levels wanting to get

home more quickly before and during the storm.

Behavioral trends are the most pronounced in the hourly subset results for the

warmer weather (figure 95) where strong hourly temporal trends are present for all of

the relationships in the model and a rich narrative emerges. While the number of jobs

has a larger effect on the number of trips in the morning and decreases throughout the

day, population has a small effect in the morning and tends in increase throughout the

39http : //www.nydailynews.com/new − york/leap − front − subway − trains − queens −
manhattan− article− 1.2259417

40http : //nypost.com/2015/06/16/nyc−bus−drivers−de−blasio−protest−brings−traffic−
to− a− crawl/
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day and into the evening. This trend nicely captures morning and evening commuting

behavior. Distance-decay also tends to be weakest during the morning and evening

hours when people need to travel over longer distance to commute to and from work.

The parameter estimate for average income is typically between 0.6 and 0.4 during the

day; however, the first few hours after midnight tends to produce negative parameter

estimates of approximately -0.2. This could be representative of people who work

relatively lower-wage service jobs at restaurants and bars traveling home later in the

evening. In addition, the positive effect of average income tapers off in the afternoon

and evening during the weekend (20th and 21st), which suggests that weekend leisure

trips are less constrained by financial considerations. That is, free time is valuable and

it is worth the monetary costs associated with taxi transportation to get around more

quickly, regardless of whether one lives in a wealthier neighborhood or not. In addition,

the subways run less frequently on the weekends, which makes them a less attractive

transportation option compared to taxis. Finally, POI accessibility tends to spike in

the morning during the commuting rush, and then fall off briefly before increasing

throughout the day when people get off work and are more likely to stop at bars,

restaurants, and shops before heading home. This trend is the most intense during

Friday and Saturday evening (19th and 20th) and the associated parameter estimates

are likely pulling the baseline parameter estimate upward since the majority of the

series occurs below the baseline parameter estimate. With only a few explanatory

variables it is possible to capture a diverse array of behavior.

Though the hourly results pertaining to colder weather (figure 96) can be used

to detect periods of blizzard activity (around the 24th), they cannot be used to

reliably investigate associated changes in behavior. This is because during the blizzard

activity the uncertainty becomes very high and most of the parameter estimates are
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statistically insignificant. The cause of the uncertainty is likely related to the low

number of trips during the blizzard and that the trips that do occur are associated

with intricate behavior that may require an alternative baseline modeling framework to

accurately describe them. It is however possible to observe that the spatial interaction

system quickly returns to the same behavior that existed prior to the storm. Thus, it

is possible to determine whether an external shock has a strong impact on a spatial

interaction system and how long it takes for the system to return to its previous

equilibrium. This knowledge could be very useful for emergency planning and disaster

management.

These results for the taxi data are remarkably robust in that parameter estimates

are obtained with low uncertainty for almost all of the subsets of the data. It is clear

this methodology allows for a more intricate analysis of the socio-economic processes

underlying taxi trips than was previously possible. Furthermore, several temporal

trends in the model relationships were detected that could not have otherwise been

discovered and supported with quantitative evidence. Finally, the series of parameter

estimates at the daily sampling frequency proved useful for capturing changes in

behavior associated with blizzard activity and for detecting unknown anomalies.
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Figure 91: Monthly sampling results for the taxi data, including parameter estimates,
model fit, and number of origin spatial units. Dashed red line denotes blizzard activity.
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Figure 92: Weekly sampling results for the taxi data, including parameter estimates,
model fit, and number of origin spatial units. Dashed red line denotes blizzard activity.
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Figure 93: Daily sampling results for the taxi data using a single month representative
of warmer weather (June 2015), including parameter estimates, model fit, and number
of origin spatial units
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Figure 94: Daily sampling results for the taxi data using a single month representative
of colder weather (January 2016), including parameter estimates, model fit, and
number of origin spatial units. Dashed red line denote blizzard activity.
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Figure 95: Hourly sampling results for the taxi data using a single week representative
of warmer weather (June 15-24 2016), including parameter estimates, model fit, and
number of origin spatial units.

284



Figure 96: Hourly sampling results for the taxi data using a single week representative
of colder weather (January 20-27 2016), including parameter estimates, model fit, and
number of origin spatial units.
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7.5 Moving Forward

Newer spatial interaction data sources, such as bike and taxi data analyzed here,

allow for much finer temporal analysis of movement behavior than has previously

been possible. In this chapter, temporal subset models of spatial interaction were

calibrated in New York City to capture the dynamic nature of the behavioral processes

underlying bike and taxi trips. It will be important to test the methodology on

other data sets, time periods, and study areas. If the results obtained here can be

corroborated and robust parameter estimates and dynamic behaviors can be extracted

from similar data sets in other cities it may perhaps mark the dawn of a new era of

spatial interaction modeling and usage.

The results presented here demonstrate that temporal subset spatial interaction

models provide a new tool to analyze urban processes and illuminates how the

processes determining movement patterns across a city vary over time. For instance,

a global model produces one set of parameter estimates and may be thought of as

representing static relationships. Some methods have been proposed that claim to

provide an indication of how behavior changes when a spatial interaction system

enters a new steady-state equilibrium (LeSage and Pace, 2008; LeSage and Fischer,

2014; LeSage and Thomas-Agnan, 2015) or whether a spatial interaction system is

resilient to external shocks (Griffith and Chun, 2015). However, these methods were

demonstrated to have several flaws and may be unnecessary. When temporal subsets

of the data are available, it is possible to estimates a series of parameter estimates

and directly observe how behavior changes over time and whether or not the spatial

interaction system return to an equilibrium after an external shock. More specifically,

the monthly and weekly parameter estimates represent the slow dynamics in how
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various attributes affect travel decisions and the daily and hourly parameter estimates

represent the fast dynamics within these relationships. Therefore, temporal subset

models eliminate the need to make tenuous temporal assumptions in order to draw

conclusions about spatial interaction dynamics.

Furthermore, for this type of analysis, there seems to be a general tradeoff between

parameter estimate uncertainty and detail with which dynamic processes can be

captured. However, this tradeoff is less important for the taxi trips, which occur

more frequently and more evenly over the course of a typical day. Therefore, the

methodology is promising for studying urban behavior and will become more valuable

as more data such as those for taxi trips becomes available. It will also be interesting

to link these results with weather data and social media data, as well as combine them

with other methodologies to further classify and disaggregate flow by different trip

purposes.

In the previous chapter, the potential and pitfalls associated with the increased

volume and variety of spatial interaction data were evaluated. This theme was

continued here by evaluating the potential and pitfalls associated with the increased

velocity of spatial interaction data, and it was determined that the increased velocity

provides immense opportunity to increase our knowledge about human behavior. In

the subsequent and final chapter of this research, the potential and pitfalls discovered

in each chapter are further discussed and some suggestions for further research are

proposed.
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Chapter 8

DISCUSSION AND CONCLUSION

8.1 Introduction

Numerous research objectives were addressed in this dissertation. First, spatial

interaction model specifications that account for spatial structure effects were compared

and contrasted. Second, empirical spatial interaction models were developed using

traditional and non-traditional data sources within New York City and the potential

and pitfalls associated with newer data sources were evaluated. Third, the spatial and

temporal dynamics of spatial interaction processes were explored using local models

and temporal subset models. The findings from the research will hopefully improve

the way that spatial interaction data and the urban behavior represented within them

are modeled. To summarize the merit and potential impact of these findings, the

outcomes from each section of the research are highlighted, some suggestions for future

directions are provided, and several general conclusions are offered.

8.2 Research findings

8.2.1 Spatial structure effects

In chapter 5, several simulation experiments were undertaken in order to compare

three spatial interaction specifications that were reviewed in chapter 2 and to evaluate

their ability to account for spatial structure effects. This was achieved by simulating
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flows between sets of points that contain different degrees of spatial clustering using

the data-generating processes associated with each of the three specifications. Then

each specification was used to calibrate a model on each of the simulated data sets.

This facilitated the investigation of how each model specification performed when

it was calibrated on data containing: (i) the expected spatial structure effects; (ii)

no spatial structure effects; and (iii) unexpected spatial structure effects. Several

important results were obtained.

First, it was demonstrated that the effects due to the spatial clustering of locations

and those associated with the concept of spatial autocorrelation are different effects,

even if they may potentially be inter-related. Since none of the location-based

explanatory variables were spatially autocorrelated, it was possible to evaluate the

ability of each specification to capture effects associated solely with spatial clustering.

The competing destinations models proved to be the most effective in this regard.

This model also had the attractive feature that it did not indicate the presence of

spatial effects when none were present.

Second, the spatial autoregressive spatial interaction model produced results that

indicate it is highly susceptible to falsely identifying the presence of spatial effects. It

indicated the presence of spatial effects even when it was calibrated on data generated

from a null gravity model where there were no spatial structure effects. It was surmised

that this is because the autoregressive component seems to be competing for the same

variation accounted for by the distance variable in the model and a further finding was

that this cannot be remedied using the scalar summary measures proposed by LeSage

and Thomas-Agnan (2015), which only apply to the parameter estimates associated

with the origin and destination explanatory variables. Therefore using the spatial
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autoregressive specification complicates the interpretability of the distance-decay

parameter estimate.

An additional experiment was carried out that aggregated the flows simulated

between points to flows between areal units. The purpose this experiment was to

assess the ability of the specifications to capture spatial structure effects when the

data are aggregated. It provided evidence that aggregated data may be less reliable for

capturing spatial structure effects and should therefore be avoided whenever possible.

8.2.2 Local models of spatial interaction

Local spatial interactions models were calibrated using both traditional and non-

traditional datasets in chapter 6 with three primary goals in mind. First was to

investigate any spatial heterogeneities (i.e., spatial non-stationarity) within the model

relationships that represent movement processes. The results indicate that there is

spatial heterogeneity and that it may be responsible for unstable global parameter

estimates that sometimes change between positive and negative values (i.e., flipped

sign) when additional explanatory variables are added or removed from the model.

By observing surfaces of local parameter estimates it was discovered that only certain

regions would actually change or become statistically insignificant. Since the global

parameter estimates are a weighted average of the local parameter estimates, it is

possible for changes in only a portion of study area to severely affect the global

parameter estimate. Thus, when flipped signs are observed for global parameter

estimates, it may indicate that a relationship changed for only a portion of the study

area, rather than a change for the entire study area. When increasingly finer spatial

units are employed for local spatial interaction models, a more detailed parameter
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estimate surface is obtained and can be used to investigate spatial non-stationarity.

Therefore, a potential of non-traditional data sets is that:

• increased spatial resolution permits data to be aggregated to increasingly finer
spatial units and allows for more detailed surfaces of local parameter estimates
to be estimated.

The second purpose of the research carried out in chapter 6 was to determine

whether or not bike and taxi trips in New York City are practical for studying

commuting behavior in comparison to traditional data from the US census. This was

done by establishing a baseline model using the census commute-to-work data and

then calibrating the same model on the bike and taxi data. Many of the parameter

estimates from the models for the bike and taxi data were different from those obtained

for the model using the census data. A likely reason for this is that:

• bike and taxi trips origins and destinations may not be representative of the
residences and workplaces of commuting trips.

Another potential cause of the different parameter estimates observed between census

commuting data and the bike and taxi data is that:

• automatically recorded data may not be representative of a single type of trip
and do not provide sufficient information to distinguish between different types
of trips.

These two pitfalls suggest that the bike and taxi data are not ideal for studying

the behavior of the general commuting population. However, once can reserve this

criticism because:
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• bike and taxi data are each representative of a single mode of transportation,
which makes them more useful for studying these modes than some traditional
sources of data.

Finally, the third objective of chapter 6 was to explore the usefulness of new

data sources as explanatory variables in spatial interaction models. Accessibility was

defined using point-of-interest density and was shown to capture different spatial

structure effects than traditional variables. Furthermore, accessibility was measured

with higher precision using disaggregated inter-location distances. Thus:

• the variety of newer data sources and their increased spatial resolution allow a
more diverse and more precise set of explanatory variables to be defined.

8.2.3 Temporal subset models of spatial interaction

Some additional potential and pitfalls were defined in chapter 7 using increasingly

finer temporal units to define subsets of the bike and taxi data. Remarkably, calibrating

models on the subsets resulted in parameter estimates with low uncertainty for monthly,

weekly, daily, and even many hourly subsets. Only in the case of the hourly subsets

with a low number of trips (i.e., late night periods) and during a blizzard did the

confidence intervals for the parameter estimates become very large and include zero.

Therefore, a pitfall of newer data sets is that:

• disaggregating the data to increasingly finer temporal units for use in spatial
interaction models may be limited if sample size becomes sparse.

However, sparse sample size was rarely problematic in this research and the parameter

estimates from calibrating spatial interaction models on the temporal subsets provided
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an effective tool to study the dynamic behavior of cyclists and taxi patrons across

New York City. It was possible to develop a rich narrative about the spatial decisions

of individuals and how they vary annually, throughout the week, and over the course

of each day. The series of parameter estimates provided quantitative evidence that

confirmed several expected spatial-temporal relationships and also facilitated the

discovery of new relationships. As a result, it was illustrated that a major potential

of bigger spatial interaction data sets is that:

• finer temporal resolution in new spatial interaction data sets permits a more
nuanced analysis of behavior than has previously been possible giving great
potential to uncover much more detailed information of the dynamics regarding
human movement behavior.

Furthermore, the series of parameter estimates obtained from calibrating spatial

interaction models on the temporal subsets were useful for establishing a set of baseline

equilibrium behavior associated with urban activity in New York City. It was then

possible to detect periods where behavior deviated from the expected equilibrium. For

example, the series of parameter estimates were used to identify the period of blizzard

activity, as well as how quickly the system returned to equilibrium after this extreme

weather event. This indicates that a further potential of newer data sources is that:

• finer temporal resolution enables the detection of anomalous behavior and the
impacts of external shocks to the spatial interaction system.
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8.3 Future directions

8.3.1 Spatial structure effects

The simulations used in chapter 5 are useful for generating new insights into spatial

structure effects in spatial interaction modeling, a problem that has been around for

almost 40 years. However, some additional experiments will further aid the process

of selecting an appropriate spatial interaction specification. For example, it would

be interesting to carry out a similar experiment to those in chapter 5 using only the

uniformly distributed locations (i.e., no spatial clustering), but with varying levels of

spatial autocorrelation for the origin and destination variables. This would isolate the

effects of spatial autocorrelation and could more clearly demonstrate the differences

between the effects associated with spatial clustering and spatial autocorrelation. It

could also be insightful to examine different types of autoregressive effects. Here,

only a cross-product of origin and destination effects was included and it is possible

to instead include only a destination effect or multiple effects defined separately for

origins and destinations. It is perhaps possible that an alternative conceptualization

of the autoregressive components may be more effective; however, there is little-to-

no theoretical basis for these different conceptualizations. Finally, the simulation

experiment could also be extended by employing irregular areal units instead of uniform

grids to perform the aggregation of the data. This would be more representative of

reality and could help substantiate the findings found here.
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8.3.2 Local models of spatial interaction

Local models were used in chapter 6 to explore the nature of non-stationarity in

parameter estimates from spatial interactions models. This was carried out using

destination-specific attraction-constrained models that each use only trips that begin

at a single location and terminate at all other locations, which provides a natural way

to create mutually exclusive subsets of the data. It could also be possible to employ

a geographically weighted framework for calibrating local models at any number of

locations in the study area (Kordi and Fotheringham, 2016). The advantage of this

framework is that the locations used for creating local samples of the data are not

dependent upon pre-defined areal units and can occur with higher density in areas

where it is suspected that there may be finer resolution spatial heterogeneity in the

processes.

Multicollinearity was encountered when trying to include several distance-weighted

variables in some of the models from chapter 6. This was problematic because

the competing destination accessibility term and some novel point-level explanatory

variables both leverage the distance-weighting technique in order to be used in the

models. Furthermore, results from experimenting with accessibility terms defined using

different explanatory variables indicated that it might be possible to capture different

aspects of urban spatial structure using different explanatory variables. Therefore,

a multi-scale distance-weighting algorithm, such as the one used within multi-scale

geographically weighted regression (Fotheringham et al., 2017) could be useful for

creating a compound accessibility term where each explanatory variable included in

the model is distance-weighted using a uniquely defined transformation. This could
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allow for an accessibility term that captures diverse spatial structure and that may

reduce multicollinearity when distance-weighting several explanatory variables.

Though many new variables were introduced for use in spatial interaction models

in this research, there are still many more that can be explored. It is useful to

continuously harvest new data sets, creatively define novel explanatory variables, and

assess their usefulness in spatial interaction models. The outcome of this process will

undoubtedly produce models that capture more specific relationships and ultimately

provide new insights.

8.3.3 Temporal subset models of spatial interaction

Several extensions for the temporal subset methodology presented in chapter 7

are possible. First, the robustness of the parameter estimates obtained from spatial

interaction models calibrated on monthly, weekly, daily, and hourly subsets of bike

and taxi data are very encouraging and suggest that it may be possible to calibrate

models on even finer temporal subsets. In particular, the results for the taxi data

were extraordinarily robust and it would be interesting to investigate if it is possible

to reliably obtain parameter estimates for half-hour or fifteen-minute intervals during

periods of peak usage. This would produce an even more detailed series of parameter

estimates for characterizing dynamic urban behavior.

Another useful extension would be to link the series of parameter estimates with

other temporal data, such as weather data and social media data. It might be possible

to use these auxiliary data sources to define relationships amongst some of the irregular

variation in the parameter estimate series that is not apparent in the annual, weekly,

and daily temporal cycles. For instance, irregular spikes and valleys in the parameter
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estimate series might be related to high levels of precipitation or could be associated

with large-scale cultural events such as ‘restaurant week’, where many restaurants

offer discounts and show off their flagship menu items. The former could be expected

to deter leisure trips while the latter might promote them.

It is perhaps most important to extend the research presented here by applying the

temporal subset methodology to other types of spatial interaction data and for different

study areas. If similar conclusions can be made to those presented here then this

will substantiate the usefulness of the temporal subset methodology. Moreover, this

would help construct a more general understanding of dynamic urban behavior that

includes more places and types of data. It could also be beneficial to document further

instances of extreme weather and other significant events that can be considered

external shocks to urban systems. By utilizing the temporal subset method over

periods that include these events it would be possible to catalogue whether or not

each type of event causes disequilibrium (i.e., changes in model relationships), and

how long it takes the respective spatial interaction system to return to equilibrium.

Such knowledge would be extremely valuable to municipal agencies involved in both

long-term planning and emergency response efforts.

8.4 Conclusions

Within this dissertation, a comparison of several spatial interaction model spec-

ifications were made and the potential and pitfalls of new sources of ‘big’ spatial

interaction data were investigated. Based on the outcomes discussed above, several

general conclusions can be made.

Concerning spatial interaction specifications, future spatial interaction research
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needs to be more specific about which spatial effects are being addressed, including

how each effect arises, the consequences of failing to account for them, and the outcome

and interpretation that is expected when a particular method is used to account for

them. In this work, it was shown that the effects that arise from spatial clustering and

spatial autocorrelation are not identical. In addition, the spatial interaction literature

is full of instances where a method designed for areal or point data is applied to spatial

interaction data (i.e., eigenvector spatial filtering methods or spatial autoregressive

methods) rather than considering the unique characteristics of spatial interaction data

and the processes they represent. Therefore, it is not enough to simply indicate that

some spatial effects exist and that an advanced method was used to account for them.

To truly advance the current state of knowledge, it is of the utmost importance to be

specific about why a method is used and how using it provides a better understanding

of spatial processes.

Both potential and pitfalls were identified for the various newer data sources

employed in this research. Though there are some pitfalls, there is a tremendous

amount of potential to diversify our understanding of human behavior using these

new data sets within a spatial interaction modeling framework. The focus here was on

relationships between movement data and other external factors, which is unlike much

of the recent scholarship on new ‘big’ movement data that tends to be descriptive.

It was shown that spatially local and temporal subset models are effective tools for

identifying the relationships that are representative of human behavior. Furthermore,

in the case of the bike data, it was demonstrated that new forms of spatial interaction

data should be modeled based on the processes that they are most closely associated

with (i.e., cycling between stations), since they may not be representative of the

processes that are classically studied via spatial interaction models. It is tempting to
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use new sources of spatial interaction data within a model formulated for traditional

spatial interaction data (i.e., commuting between census units), though the results of

such efforts may not be representative of reality.

Finally, new data sources allow us to detect useful temporal dynamics in spatial

interaction data by employing temporal subset spatial interaction models. These

dynamics capture the diversity of human activities that are present within urban

environments and cannot be detected using traditional spatial interaction data sources.

Furthermore, the temporal dynamics identified in this research were sensitive to the

various temporal resolutions that were utilized. Different dynamics emerge for different

resolutions, which provides a rich opportunity to learn what drives location choice

preferences during different periods of time.

8.5 Closing remarks

In this final chapter, the main findings were highlighted, some future avenues of

research were discussed, and several conclusions were made. It is evident from this

body of work that new sources of spatial interaction data are very valuable and that the

current increase in their availability provides the occasion to establish new standards

for knowledge production. Throughout this dissertation several efforts have been

made toward this cause within the context of spatial interaction modeling. Various

novel insights were generated and some methodological innovations were proposed

and validated. Although there is still much work to do, the research presented here

provides the foundation for a new era of spatial interaction modeling.
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Appendix A

1 Replicating and Validating Analysis from Tiefelsdorf (2003)

Several analyses from Tiefelsdorf (2003) replicated here to further explore his unexpected results
and test the boxcox method.

In [2]: #Load libraries
import numpy as np
import scipy.stats as stats
from statsmodels.api import formula as smf
from pysal.contrib.spint import gravity as grav
import pandas as pd
from statsmodels.api import families
from patsy.contrasts import Sum
import scipy.spatial.distance as spatial
import geopandas as gp
import matplotlib.pyplot as plt
%pylab inline
import scipy as sp

Populating the interactive namespace from numpy and matplotlib

1.1 First, the simulation results are replicated (p. 40) to validate model specification
specification that uses origin-specific and destination-specific effects for boxcox
transformed distance.

1.1.1 Recreate data from Tiefelsdorf’s simulation using q=2 and q=0

In [68]: oi = np.array([10,10,10,10,10,10,
10,10,10,10,10,10,
10,10,10,10,10,10,
10,10,10,10,10,10,
10,10,10,10,10,10,
10,10,10,10,10,10,
10,10,10,10,10,10])

In [69]: dj = np.array([10,10,10,10,10,
10,10,10,10,10,
10,10,10,10,10,
10,10,10,10,10,
10,10,10,10,10,
10,10,10,10,10,
10,10,10,10,10,
10,10,10,10,10,10,10])

In [70]: dij = np.array([1.0,2.0,3.0,4.0,5.0,6.0,
1.0,1.0,2.0,3.0,4.0,5.0,
2.0,1.0,1.0,2.0,3.0,4.0,
3.0,2.0,1.0,1.0,2.0,3.0,
4.0,3.0,2.0,1.0,1.0,2.0,
5.0,4.0,3.0,2.0,1.0,1.0,
6.0,5.0,4.0,3.0,2.0,1.0])
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In [71]: origins = np.array([1,1,1,1,1,1,
2,2,2,2,2,2,
3,3,3,3,3,3,
4,4,4,4,4,4,
5,5,5,5,5,5,
6,6,6,6,6,6,
7,7,7,7,7,7])

In [72]: dests = np.array([2,3,4,5,6,7,
1,3,4,5,6,7,
1,2,4,5,6,7,
1,2,3,5,6,7,
1,2,3,4,6,7,
1,2,3,4,5,7,
1,2,3,4,5,6])

In [73]: flows = np.exp(np.log(oi) + \
np.log(dj) + -1.0*dij) + \
np.random.normal(0, .0001)

In [74]: data = pd.DataFrame({'Data':flows,
'Origin': origins,
'Oi': oi,
'Dj': dj,
'Dij':dij,
'Dest':dests})

In [75]: data['Origin'] = data['Origin'].astype(str)
data['Dest'] = data['Dest'].astype(str)
data['q2'] = (data['Dij'].astype(float)**2.0 -1.0)/2.0
data['q0'] = np.log((data['Dij'].astype(float)))

1.1.2 Estimate Tiefelsdorf model using categorical interactions for local distance decay (devi-
ation coding)

boxcox: q = 2
In [76]: q2 = smf.glm('Data~C(Origin, Sum):q2+C(Dest, Sum):q2+np.log(Oi)+np.log(Dj)',

data=data, family=families.Poisson()).fit()

print 'Origin specific distance-decay estimates for q = 2'
print ''
print q2.params[1:8]

Origin specific distance-decay estimates for q = 2

C(Origin, Sum)[mean]:q2 -0.480763
C(Origin, Sum)[S.1]:q2 0.103351
C(Origin, Sum)[S.2]:q2 0.043551
C(Origin, Sum)[S.3]:q2 -0.076930
C(Origin, Sum)[S.4]:q2 -0.139945
C(Origin, Sum)[S.5]:q2 -0.076930
C(Origin, Sum)[S.6]:q2 0.043551
dtype: float64

boxcox: q = 0
In [77]: q0 = smf.glm('Data~C(Origin, Sum):q0+C(Dest, Sum):q0+np.log(Oi)+np.log(Dj)',

data=data, family=families.Poisson()).fit()

print 'Origin specific distance-decay estimates for q = 0'
print ''
print q0.params[1:8]
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Origin specific distance-decay estimates for q = 0

C(Origin, Sum)[mean]:q0 -1.855542
C(Origin, Sum)[S.1]:q0 -0.314918
C(Origin, Sum)[S.2]:q0 -0.168438
C(Origin, Sum)[S.3]:q0 0.260716
C(Origin, Sum)[S.4]:q0 0.445282
C(Origin, Sum)[S.5]:q0 0.260716
C(Origin, Sum)[S.6]:q0 -0.168438
dtype: float64

Comparing these results for q = 2 and q = 0 to those presented in Tiefelsdorf (2003) we can see
that our results exactly match, so we know we have the correct model specification.

1.2 Now Tiefelsdorf’s migration example is replicated. The same data is used,
thought we do not have population weighted centroids. Nevertheless, it will be
seen that the results are very similar

1.2.1 Prepare data

In [78]: #read migration data
migration_90 = pd.read_csv('1990_migration.csv', index_col='state')

#remove data pertaining to Alaska and Hawaii
migration_90 = migration_90[migration_90.index!='Alaska']
migration_90 = migration_90[migration_90.index!='Hawaii']
states = migration_90.index.to_native_types()
states[7] = 'District of Columbia'
migration_90.drop('Alaska', axis=1, inplace=True)
migration_90.drop('Hawaii', axis=1, inplace=True)

#reformat migration data
migration_90 = migration_90.as_matrix().astype(float)
flows = migration_90.reshape((-1,))

In [79]: #read population data
pop = pd.read_csv('1990_pop.csv', index_col='state')

#remove data pertaining to Alaska and Hawaii
pop = pop[pop.index!='Alaska']
pop = pop[pop.index!='Hawaii']

#read states shapefile, reproject, and sort by alphabetically
state_shp = gp.read_file('tl_2014_us_state.shp')
state_shp = state_shp[state_shp['NAME'].isin(states)]
state_shp = state_shp.to_crs(epsg='3857')
state_shp.sort_values('NAME', inplace=True)

In [80]: # prep origin and destinatio variables for flow dyads

origins = np.repeat(states, 49)
Oi = np.repeat(pop.values, 49)

dests = np.tile(states, 49)
Dj = np.tile(pop.values.flatten(), 49).reshape((-1,))

origin_geom = np.repeat(state_shp.centroid, 49)
dest_geom = np.tile(state_shp.centroid, 49).flatten()
dest_geom = pd.DataFrame({'dests': dests, 'dest_geom': dest_geom})
dest_geom = gp.GeoDataFrame(dest_geom,

geometry='dest_geom',
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crs={'init': 'epsg:3857',
'no_defs': True})

In [16]: #concatenate all the data into a dataframe

mig_90 = pd.DataFrame({'Data': flows,
'Origin': origins,
'Destination': dests,
'Oi': Oi,
'Dj': Dj,
'origin_geom':origin_geom})

mig_90 = gp.GeoDataFrame(mig_90,
geometry='origin_geom',
crs={'init': 'epsg:3857',

'no_defs': True})

mig_90.reset_index(drop=True, inplace=True)

In [17]: #compute distance
mig_90['Dij'] = mig_90.distance(dest_geom)

In [18]: #remove intra-zonal flows
mig_90 = mig_90[mig_90['Origin'] != mig_90['Destination']]

In [19]: #apply boxcox transform with q = -0.2 to distances
mig_90['boxcox'] = stats.boxcox(mig_90['Dij'], -.2)

1.2.2 Lets first estimate his model that includes an origin-specific distance-decay estimate, a
destination-specific distance-decay estimate, and a single estimate for origin and desti-
nation population.

In [20]: #Tiefelsdorf's model
model = smf.glm('Data~C(Origin, Sum):boxcox+C(Destination,
Sum):boxcox+np.log(Oi)+np.log(Dj)',

data=mig_90, family=families.Poisson()).fit()
df = model.params.to_frame()

with pd.option_context('display.max_rows', None, 'display.max_columns', 3):
print(df)

0
Intercept 173.668230
C(Origin, Sum)[mean]:boxcox -17.956129
C(Origin, Sum)[S.Alabama]:boxcox 0.160532
C(Origin, Sum)[S.Arizona]:boxcox 0.323655
C(Origin, Sum)[S.Arkansas]:boxcox -0.228826
C(Origin, Sum)[S.California]:boxcox 1.901954
C(Origin, Sum)[S.Colorado]:boxcox 0.174147
C(Origin, Sum)[S.Connecticut]:boxcox -0.059304
C(Origin, Sum)[S.Delaware]:boxcox -1.308107
C(Origin, Sum)[S.District of Columbia]:boxcox -1.579128
C(Origin, Sum)[S.Florida]:boxcox 1.359368
C(Origin, Sum)[S.Georgia]:boxcox 0.640888
C(Origin, Sum)[S.Idaho]:boxcox -0.778474
C(Origin, Sum)[S.Illinois]:boxcox 0.946250
C(Origin, Sum)[S.Indiana]:boxcox 0.379437
C(Origin, Sum)[S.Iowa]:boxcox -0.155303
C(Origin, Sum)[S.Kansas]:boxcox -0.154231
C(Origin, Sum)[S.Kentucky]:boxcox 0.041982
C(Origin, Sum)[S.Louisiana]:boxcox 0.138122
C(Origin, Sum)[S.Maine]:boxcox -0.668079
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C(Origin, Sum)[S.Maryland]:boxcox 0.249410
C(Origin, Sum)[S.Massachusetts]:boxcox 0.437842
C(Origin, Sum)[S.Michigan]:boxcox 0.785607
C(Origin, Sum)[S.Minnesota]:boxcox 0.273698
C(Origin, Sum)[S.Mississippi]:boxcox -0.230062
C(Origin, Sum)[S.Missouri]:boxcox 0.372460
C(Origin, Sum)[S.Montana]:boxcox -0.989473
C(Origin, Sum)[S.Nebraska]:boxcox -0.546235
C(Origin, Sum)[S.Nevada]:boxcox -0.560289
C(Origin, Sum)[S.New Hampshire]:boxcox -0.762817
C(Origin, Sum)[S.New Jersey]:boxcox 0.645933
C(Origin, Sum)[S.New Mexico]:boxcox -0.499373
C(Origin, Sum)[S.New York]:boxcox 1.260408
C(Origin, Sum)[S.North Carolina]:boxcox 0.630077
C(Origin, Sum)[S.North Dakota]:boxcox -1.229284
C(Origin, Sum)[S.Ohio]:boxcox 0.888105
C(Origin, Sum)[S.Oklahoma]:boxcox -0.011182
C(Origin, Sum)[S.Oregon]:boxcox 0.064339
C(Origin, Sum)[S.Pennsylvania]:boxcox 0.943050
C(Origin, Sum)[S.Rhode Island]:boxcox -1.097635
C(Origin, Sum)[S.South Carolina]:boxcox 0.104833
C(Origin, Sum)[S.South Dakota]:boxcox -1.173425
C(Origin, Sum)[S.Tennessee]:boxcox 0.353824
C(Origin, Sum)[S.Texas]:boxcox 1.380090
C(Origin, Sum)[S.Utah]:boxcox -0.445062
C(Origin, Sum)[S.Vermont]:boxcox -1.392153
C(Origin, Sum)[S.Virginia]:boxcox 0.600860
C(Origin, Sum)[S.Washington]:boxcox 0.546039
C(Origin, Sum)[S.West Virginia]:boxcox -0.583558
C(Origin, Sum)[S.Wisconsin]:boxcox 0.289591
C(Destination, Sum)[S.Alabama]:boxcox 0.087461
C(Destination, Sum)[S.Arizona]:boxcox 0.212637
C(Destination, Sum)[S.Arkansas]:boxcox -0.243473
C(Destination, Sum)[S.California]:boxcox 1.741744
C(Destination, Sum)[S.Colorado]:boxcox 0.191695
C(Destination, Sum)[S.Connecticut]:boxcox 0.001977
C(Destination, Sum)[S.Delaware]:boxcox -1.288698
C(Destination, Sum)[S.District of Columbia]:boxcox -1.427668
C(Destination, Sum)[S.Florida]:boxcox 1.125218
C(Destination, Sum)[S.Georgia]:boxcox 0.460639
C(Destination, Sum)[S.Idaho]:boxcox -0.718299
C(Destination, Sum)[S.Illinois]:boxcox 0.959362
C(Destination, Sum)[S.Indiana]:boxcox 0.351919
C(Destination, Sum)[S.Iowa]:boxcox -0.064706
C(Destination, Sum)[S.Kansas]:boxcox -0.125325
C(Destination, Sum)[S.Kentucky]:boxcox 0.030959
C(Destination, Sum)[S.Louisiana]:boxcox 0.259956
C(Destination, Sum)[S.Maine]:boxcox -0.672630
C(Destination, Sum)[S.Maryland]:boxcox 0.194508
C(Destination, Sum)[S.Massachusetts]:boxcox 0.462526
C(Destination, Sum)[S.Michigan]:boxcox 0.783468
C(Destination, Sum)[S.Minnesota]:boxcox 0.254635
C(Destination, Sum)[S.Mississippi]:boxcox -0.209600
C(Destination, Sum)[S.Missouri]:boxcox 0.333352
C(Destination, Sum)[S.Montana]:boxcox -0.835284
C(Destination, Sum)[S.Nebraska]:boxcox -0.459640
C(Destination, Sum)[S.Nevada]:boxcox -0.701004
C(Destination, Sum)[S.New Hampshire]:boxcox -0.769210
C(Destination, Sum)[S.New Jersey]:boxcox 0.669383
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C(Destination, Sum)[S.New Mexico]:boxcox -0.464286
C(Destination, Sum)[S.New York]:boxcox 1.326184
C(Destination, Sum)[S.North Carolina]:boxcox 0.461714
C(Destination, Sum)[S.North Dakota]:boxcox -1.016626
C(Destination, Sum)[S.Ohio]:boxcox 0.863405
C(Destination, Sum)[S.Oklahoma]:boxcox 0.064020
C(Destination, Sum)[S.Oregon]:boxcox -0.016879
C(Destination, Sum)[S.Pennsylvania]:boxcox 0.907927
C(Destination, Sum)[S.Rhode Island]:boxcox -1.023301
C(Destination, Sum)[S.South Carolina]:boxcox -0.017305
C(Destination, Sum)[S.South Dakota]:boxcox -1.037689
C(Destination, Sum)[S.Tennessee]:boxcox 0.246767
C(Destination, Sum)[S.Texas]:boxcox 1.330532
C(Destination, Sum)[S.Utah]:boxcox -0.399505
C(Destination, Sum)[S.Vermont]:boxcox -1.337763
C(Destination, Sum)[S.Virginia]:boxcox 0.485051
C(Destination, Sum)[S.Washington]:boxcox 0.415370
C(Destination, Sum)[S.West Virginia]:boxcox -0.470879
C(Destination, Sum)[S.Wisconsin]:boxcox 0.295156
np.log(Oi) -2.840261
np.log(Dj) -2.599338

While the population weighted centroids and trend surfaces that Tiefelsdorf uses are not avail-
able, the model on the basic population and distance data results in local distance coefficient
estimates that are very similar in sign and magnitude. Even where there are differences in
signs, it is important to note that these are local coefficients that are centered on a global mean
coefficients and variations in the local coefficients are therefore very slight. More importantly,
it can be seen above that the unexpected negative coefficients for the origin and destination are
replicated.

1.3 Now lets estimate the same model but with only an origin-specific local distance-
decay.

In [21]: model = smf.glm('Data~C(Origin, Sum):boxcox+np.log(Oi)+np.log(Dj)',
data=mig_90, family=families.Poisson()).fit()

df = model.params.to_frame()

with pd.option_context('display.max_rows', None, 'display.max_columns', 3):
print(df)

0
Intercept 152.248487
C(Origin, Sum)[mean]:boxcox -16.211557
C(Origin, Sum)[S.Alabama]:boxcox 0.298973
C(Origin, Sum)[S.Arizona]:boxcox 0.432889
C(Origin, Sum)[S.Arkansas]:boxcox -0.384872
C(Origin, Sum)[S.California]:boxcox 3.164634
C(Origin, Sum)[S.Colorado]:boxcox 0.221817
C(Origin, Sum)[S.Connecticut]:boxcox -0.036357
C(Origin, Sum)[S.Delaware]:boxcox -2.214747
C(Origin, Sum)[S.District of Columbia]:boxcox -2.565113
C(Origin, Sum)[S.Florida]:boxcox 2.140246
C(Origin, Sum)[S.Georgia]:boxcox 1.038871
C(Origin, Sum)[S.Idaho]:boxcox -1.386434
C(Origin, Sum)[S.Illinois]:boxcox 1.666185
C(Origin, Sum)[S.Indiana]:boxcox 0.690968
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C(Origin, Sum)[S.Iowa]:boxcox -0.220273
C(Origin, Sum)[S.Kansas]:boxcox -0.269598
C(Origin, Sum)[S.Kentucky]:boxcox 0.119269
C(Origin, Sum)[S.Louisiana]:boxcox 0.302201
C(Origin, Sum)[S.Maine]:boxcox -1.205903
C(Origin, Sum)[S.Maryland]:boxcox 0.480455
C(Origin, Sum)[S.Massachusetts]:boxcox 0.804996
C(Origin, Sum)[S.Michigan]:boxcox 1.384898
C(Origin, Sum)[S.Minnesota]:boxcox 0.460126
C(Origin, Sum)[S.Mississippi]:boxcox -0.343512
C(Origin, Sum)[S.Missouri]:boxcox 0.652058
C(Origin, Sum)[S.Montana]:boxcox -1.730365
C(Origin, Sum)[S.Nebraska]:boxcox -0.912358
C(Origin, Sum)[S.Nevada]:boxcox -1.062662
C(Origin, Sum)[S.New Hampshire]:boxcox -1.358901
C(Origin, Sum)[S.New Jersey]:boxcox 1.140122
C(Origin, Sum)[S.New Mexico]:boxcox -0.881860
C(Origin, Sum)[S.New York]:boxcox 2.228159
C(Origin, Sum)[S.North Carolina]:boxcox 1.040452
C(Origin, Sum)[S.North Dakota]:boxcox -2.108765
C(Origin, Sum)[S.Ohio]:boxcox 1.573724
C(Origin, Sum)[S.Oklahoma]:boxcox 0.009751
C(Origin, Sum)[S.Oregon]:boxcox 0.042120
C(Origin, Sum)[S.Pennsylvania]:boxcox 1.690851
C(Origin, Sum)[S.Rhode Island]:boxcox -1.738649
C(Origin, Sum)[S.South Carolina]:boxcox 0.145812
C(Origin, Sum)[S.South Dakota]:boxcox -2.000920
C(Origin, Sum)[S.Tennessee]:boxcox 0.593037
C(Origin, Sum)[S.Texas]:boxcox 2.326843
C(Origin, Sum)[S.Utah]:boxcox -0.760149
C(Origin, Sum)[S.Vermont]:boxcox -2.364460
C(Origin, Sum)[S.Virginia]:boxcox 0.960692
C(Origin, Sum)[S.Washington]:boxcox 0.809132
C(Origin, Sum)[S.West Virginia]:boxcox -0.916183
C(Origin, Sum)[S.Wisconsin]:boxcox 0.535825
np.log(Oi) -5.482206
np.log(Dj) 0.930544

Since the destination-specific distance-decay is removed, the destination population coefficient
estimate is no longer negative and is now 0.93, which would be a typical value that is expected.
The origin population coefficient estimate is still negative, but origin variables are typically
dropped when estimation an orihin-specific model like this.

1.4 We can also try removing the origin-specific distance-decay and only have a
destination-specific distance-decay.

In [106]: model = smf.glm('Data~C(Destination, Sum):boxcox+np.log(Oi)+np.log(Dj)',
data=mig_90, family=families.Poisson()).fit()

df = model.params.to_frame()

with pd.option_context('display.max_rows', None, 'display.max_columns', 3):
print(df)

0
Intercept 140.496952
C(Destination, Sum)[mean]:boxcox -15.251498
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C(Destination, Sum)[S.Alabama]:boxcox 0.236691
C(Destination, Sum)[S.Arizona]:boxcox 0.314741
C(Destination, Sum)[S.Arkansas]:boxcox -0.386925
C(Destination, Sum)[S.California]:boxcox 2.881259
C(Destination, Sum)[S.Colorado]:boxcox 0.234018
C(Destination, Sum)[S.Connecticut]:boxcox -0.005452
C(Destination, Sum)[S.Delaware]:boxcox -2.107530
C(Destination, Sum)[S.District of Columbia]:boxcox -2.249567
C(Destination, Sum)[S.Florida]:boxcox 1.820241
C(Destination, Sum)[S.Georgia]:boxcox 0.848451
C(Destination, Sum)[S.Idaho]:boxcox -1.248326
C(Destination, Sum)[S.Illinois]:boxcox 1.603619
C(Destination, Sum)[S.Indiana]:boxcox 0.621115
C(Destination, Sum)[S.Iowa]:boxcox -0.133930
C(Destination, Sum)[S.Kansas]:boxcox -0.238806
C(Destination, Sum)[S.Kentucky]:boxcox 0.109520
C(Destination, Sum)[S.Louisiana]:boxcox 0.417939
C(Destination, Sum)[S.Maine]:boxcox -1.177481
C(Destination, Sum)[S.Maryland]:boxcox 0.394777
C(Destination, Sum)[S.Massachusetts]:boxcox 0.772196
C(Destination, Sum)[S.Michigan]:boxcox 1.307596
C(Destination, Sum)[S.Minnesota]:boxcox 0.406518
C(Destination, Sum)[S.Mississippi]:boxcox -0.302365
C(Destination, Sum)[S.Missouri]:boxcox 0.574100
C(Destination, Sum)[S.Montana]:boxcox -1.498614
C(Destination, Sum)[S.Nebraska]:boxcox -0.797514
C(Destination, Sum)[S.Nevada]:boxcox -1.124508
C(Destination, Sum)[S.New Hampshire]:boxcox -1.331216
C(Destination, Sum)[S.New Jersey]:boxcox 1.099371
C(Destination, Sum)[S.New Mexico]:boxcox -0.803850
C(Destination, Sum)[S.New York]:boxcox 2.189629
C(Destination, Sum)[S.North Carolina]:boxcox 0.848611
C(Destination, Sum)[S.North Dakota]:boxcox -1.815237
C(Destination, Sum)[S.Ohio]:boxcox 1.473246
C(Destination, Sum)[S.Oklahoma]:boxcox 0.077994
C(Destination, Sum)[S.Oregon]:boxcox -0.015494
C(Destination, Sum)[S.Pennsylvania]:boxcox 1.561410
C(Destination, Sum)[S.Rhode Island]:boxcox -1.623319
C(Destination, Sum)[S.South Carolina]:boxcox 0.057334
C(Destination, Sum)[S.South Dakota]:boxcox -1.792218
C(Destination, Sum)[S.Tennessee]:boxcox 0.470417
C(Destination, Sum)[S.Texas]:boxcox 2.180622
C(Destination, Sum)[S.Utah]:boxcox -0.666752
C(Destination, Sum)[S.Vermont]:boxcox -2.231926
C(Destination, Sum)[S.Virginia]:boxcox 0.814587
C(Destination, Sum)[S.Washington]:boxcox 0.655937
C(Destination, Sum)[S.West Virginia]:boxcox -0.759251
C(Destination, Sum)[S.Wisconsin]:boxcox 0.500290
np.log(Oi) 0.907872
np.log(Dj) -4.967968

The results are now the opposite of the previous models where the origin population coefficient
estimate is no longer negative and is takes on a typical value and now the distance population
variable is negative, thought it should be dropped since this is a destination-specific model.
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1.5 Finally, if neither an origin- or destination-specific model is used it can be seen
that neither the origin or the destination population coefficient estimates is nega-
tive.

In [23]: model = smf.glm('Data~boxcox+np.log(Oi)+np.log(Dj)', data=mig_90,
family=families.Poisson()).fit()

df = model.params.to_frame()

with pd.option_context('display.max_rows', None, 'display.max_columns', 3):
print(df)

0
Intercept 37.029388
boxcox -11.698338
np.log(Oi) 0.875737
np.log(Dj) 0.896145

1.6 This next experiment demonstrates that mis-specified population functional form
can cause the boxcox methodology to over-compensate on the transformation of
the distance variable to try to correct for having the wrong functional form of
the population variable. This means that Tiefelsdorf’s method cannot isolate dis-
tance/spatial structure effects. The experiment involves boxcox transforming the
destination population variable using q = {-4, -3, -2, -1, 0, 1, 2, 3, 4}. Then flows
are generated using Tiefelsdorf’s simulated data and a basic gravity model data-
generating process. Here, the flows are generated using a logged populations and
distance (q = 0), which implies power functions. Then, instead of directly using
logged destination population, each of the boxcox transformed destination popu-
lations are used for the above values of q. For each one, an optimal boxcox trans-
formation on the distance variable is produced using Tiefelsdorf’s methodology
of optimizing the log likelihood. If the method is robust then it should always
return q = 0 for the distance variable indicating the correct functional form of a
power function. However, it will be seen that this is not the case.

1.6.1 Prepare the data and all of the boxcox transforms

In [103]: oi = np.array([10,10,10,10,10,10,
10,10,10,10,10,10,
10,20,20,20,20,20,
20,30,30,30,30,30,
30,20,20,20,20,20,
20,10,10,10,10,10,
10,10,10,10,10,10])

dj = np.array([10,20,30,20,10,10,
10,20,30,20,10,10,
10,10,30,20,10,10,
10,10,20,20,10,10,
10,10,20,30,10,10,
10,10,20,30,20,10,
10,10,20,30,20,10])

dij = np.array([1.0,2.0,3.0,4.0,5.0,6.0,
1.0,1.0,2.0,3.0,4.0,5.0,
2.0,1.0,1.0,2.0,3.0,4.0,
3.0,2.0,1.0,1.0,2.0,3.0,
4.0,3.0,2.0,1.0,1.0,2.0,
5.0,4.0,3.0,2.0,1.0,1.0,
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6.0,5.0,4.0,3.0,2.0,1.0])

origins = np.array([1,1,1,1,1,1,
2,2,2,2,2,2,
3,3,3,3,3,3,
4,4,4,4,4,4,
5,5,5,5,5,5,
6,6,6,6,6,6,
7,7,7,7,7,7])

dests = np.array([2,3,4,5,6,7,
1,3,4,5,6,7,
1,2,4,5,6,7,
1,2,3,5,6,7,
1,2,3,4,6,7,
1,2,3,4,5,7,
1,2,3,4,5,6])

#Set dj to have different transforms
q4 = stats.boxcox(dj, 4)
q3 = stats.boxcox(dj, 3)
q2 = stats.boxcox(dj, 2)
q1 = stats.boxcox(dj, 1)
q0 = stats.boxcox(dj, 0)
qn4 = stats.boxcox(dj, -4)
qn3 = stats.boxcox(dj, -3)
qn2 = stats.boxcox(dj, -2)
qn1 = stats.boxcox(dj, -1)

#Simulate data using power function of distance,
#boxcox transformed destination pop and natural (power) origin pop
flows = np.exp(np.log(oi) +\

np.log(dj) + \
-1.0*np.log(dij)) + \
np.random.normal(0, .005)

data = pd.DataFrame({'Data':flows,
'Origin': origins,
'Oi': oi,
'Dj': dj,
'Dij':dij,
'Dest':dests,
'q2': q2,
'q0':q0})

data['Origin'] = data['Origin'].astype(str)
data['Dest'] = data['Dest'].astype(str)

In [93]: #helper function for running each optimization and collecting the results
def plot_scores(Q, i):

scores = {}
#Search q values for specification using local distance-decay
#but global origin and destination population estimates
for q in np.arange(-2,2, .1):

data['boxcox'] = stats.boxcox(data['Dij'], q)
model = smf.glm('Data~C(Origin, Sum):boxcox+np.log(Oi)+'+Q,

data=data, family=families.Poisson()).fit()
scores[q] = model.deviance

scores = sorted(scores.items(), key=lambda s: s[0])
x,y = zip(*scores)

fig, ax = plt.subplots(figsize=(4,4))
plt.tick_params(labelsize=8)
plt.plot(x,y)
plt.title('Optimal distance boxcox q value when pop q =' + str(i))
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plt.xlabel('q value', size=12)
plt.ylabel('score', size = 12)

min_x = x[np.where(np.array(y) == min(y))[0][0]]
ax.axvline(min_x, color='r', alpha=.3)
ax.axvline(0, color='r', linestyle='--', alpha=.3)
return min_x

1.6.2 Now a plot is produced for each scenario where the destination population has a mis-
specified functional form due to the different q values that indicates the score function
(blue), the optimal q value that was found (solid red line) and the actual q value that
should have been found if the method was robust (dashed red line).

In [94]: qs = ['q4', 'q3', 'q2', 'q1', 'q0', 'qn1', 'qn2', 'qn3', 'qn4']
q_num = [4, 3, 2, 1, 0 , -1, -2, -3, -4]
mins = []
for i, q in enumerate(qs):

mins.append(plot_scores(q, q_num[i]))
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These plots show that as q is increased from 0 to 4 for the boxcox transform of the destination
population variable, there is larger bias in the optimal q value that is selected for the distance
variable. This means that as the functional form mispecification increases on one variable, it
can cause the boxcox methodology to overcompensate on another variable. In addition, the
plots also show that some bias can occur in the q value selected for distance when the q value
for destination population decreases from 0 to -4. However, this bias is smaller and there seems
to be a lower bound on the potential bias because the same amount of bias is incurred for q
values of -1, -2, -3, and -4. A summar of the bias incurred for each q = {-4, 4} can be seen in
the plot below where bias is defined as the difference between the selected q value for boxcox
transformed distance and the true functional form used to generate the data (i.e. q =0).

In [95]: fig, ax = plt.subplots(figsize=(4,4))
plt.plot([4, 3, 2, 1, 0, -1, -2, -3, -4], mins)
plt.tick_params(labelsize=9)
plt.title('Bias in distance boxcox for varying pop q value')
plt.xlabel('q value', size=12)
plt.ylabel('bias', size = 12)
ax.plot(0, 0, marker='o' )

Out[95]: [<matplotlib.lines.Line2D at 0x121acf550>]

It seems the reason there is a lower bound on the bias that is incurred by negative q values
is that by q = -1 the boxcox transformation has already altered the data to have essentially no
variation. It can be seen below that for q = {-4, -1} the destination population barely varies for
negative q values.

In [34]: print qn1
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[ 0.9 0.95 0.96666667 0.95 0.9 0.9 0.9
0.95 0.96666667 0.95 0.9 0.9 0.9 0.9
0.96666667 0.95 0.9 0.9 0.9 0.9 0.95
0.95 0.9 0.9 0.9 0.9 0.95
0.96666667 0.9 0.9 0.9 0.9 0.95
0.96666667 0.95 0.9 0.9 0.9 0.95
0.96666667 0.95 0.9 ]

In [35]: print qn2

[ 0.495 0.49875 0.49944444 0.49875 0.495 0.495 0.495
0.49875 0.49944444 0.49875 0.495 0.495 0.495 0.495
0.49944444 0.49875 0.495 0.495 0.495 0.495
0.49875 0.49875 0.495 0.495 0.495 0.495
0.49875 0.49944444 0.495 0.495 0.495 0.495
0.49875 0.49944444 0.49875 0.495 0.495 0.495
0.49875 0.49944444 0.49875 0.495 ]

In [36]: print qn3

[ 0.333 0.33329167 0.33332099 0.33329167 0.333 0.333 0.333
0.33329167 0.33332099 0.33329167 0.333 0.333 0.333 0.333
0.33332099 0.33329167 0.333 0.333 0.333 0.333
0.33329167 0.33329167 0.333 0.333 0.333 0.333
0.33329167 0.33332099 0.333 0.333 0.333 0.333
0.33329167 0.33332099 0.33329167 0.333 0.333 0.333
0.33329167 0.33332099 0.33329167 0.333 ]

In [37]: print qn4

[ 0.249975 0.24999844 0.24999969 0.24999844 0.249975 0.249975
0.249975 0.24999844 0.24999969 0.24999844 0.249975 0.249975
0.249975 0.249975 0.24999969 0.24999844 0.249975 0.249975
0.249975 0.249975 0.24999844 0.24999844 0.249975 0.249975
0.249975 0.249975 0.24999844 0.24999969 0.249975 0.249975
0.249975 0.249975 0.24999844 0.24999969 0.24999844 0.249975
0.249975 0.249975 0.24999844 0.24999969 0.24999844 0.249975 ]

While the power functional forms of the locational attributes the and the power and expone-
tional function form of distance are rooted in the conceptual and technical history of spatial
interaction models, other functional forms implied by the boxcox methodology have little-to-
no justification. It appears that the boxcox transform removes (tempers) the variation (i.e., spa-
tial structure) so that we cannot capture/understand it. For instance, using the boxcox method
would make it impossible to spot outliers like more flows than expected from NY to FL, which
can likely be accounted for by a measurable variable. Therefore, boxcox is not good for model
building.

In [ ]:

17

351



APPENDIX B

EXPLORING THE VECTOR-BASED MORAN’S I TECHNIQUE
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1 Replicating and Validating the Vector-based Moran’s I technique

In this appendix, the vector-based spatial autocorrelation statistic based on Moran’s
I (VMI) of (Liu et al., 2014) is explored. The VMI is a relatively new statistic and
has only been applied once to taxi trips in China. Furthermore, to the knowledge of
the author, no software is currently available for employing this statistic. Therefore,
before it can be applied in this research, it needs to be replicated and validated. The
statistic seeks to compare the direction and magnitude of a single vector to all others,
which can be computed as

I =
n∑

i

∑
jMij

∑
i

∑
jMij(uiuj + vivj)∑
i(ui2 + v2i )

(1)

where u = (xD − xO) − (x̄D − x̄O), v = (yD − yO) − (ȳD − ȳO), the O and D
superscripts denote whether the planar coordinates x and y are associated with origins
or destinations, and Mij is a spatial weight matrix used to define spatial association
amongst flows. Within the original conception of this vector-based Moran’s I, distance-
decay weights are utilized to define proximity between either vector origins or vector
destinations, though the authors claim any theoretically justifiable weight could be
used just as well.

1.1 Replicating the vector-based Moran’s I autocorrelation statistic

Four scenarios are presented below in figure 97 that Liu et al. (2014) theorize
to represent (a) positive autocorrelation from the perspective of vector origins, (b)
positive autocorrelation from the perspective of vector destinations, (c) negative
autocorrelation from the perspective of vector origins, and (d) no autocorrelation
(random) from the perspective of either vector origins or destinations. After developing
the code to carry out the VMI statistic, vectors that are representative of scenarios
(a) and (b) were synthesized. Details regarding the vectors are summarized in table
8 where the vector coordinates as given represent scenario (a) and swapping the
origin and destination points results in scenario (b). Then, the test statistic was
computed from the perspective of origins, VMIo, and the perspective of destinations,
VMId, which resulted in VMIo = 0.65 for and VMId = −0.76 for scenario (a) and
VMIo = −0.76 and VMId = 0.65 for scenario (b). This pattern very closely matches
the pattern found in the results reported by Liu et al. (2014) that VMIo = 0.996 for
and VMId = −0.194 for scenario (a) and that VMIo = −0.194 and VMId = 0.996 for
scenario (b). Of course, the VMI values are not the same because the coordinates of
the original vectors are not known and the statistic will be sensitive to any deviations
in coordinates form the original vectors to those generated here. Nevertheless, the
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Figure 97: Four patterns of vectors. Pattern (a) results in positive vector auto-
correlation from the perspective of origins; pattern (b) results in positive vector
autocorrelation from the perspective of destinations; pattern (c) results in negative
vector autocorrelation from the perspective of origins; and pattern (d) results in no
vector autocorrelation. Image is reproduced from (Liu et al., 2014).

fact that the individual signs and overall patterns match provides initial evidence that
the statistic has been sufficiently replicated.

Further validation of the VMI statistic was achieved by simulating 100 random

vectors in a given study area and computing the VMI, as is done by Liu et al. (2014).

Figure 98 considers three scenarios:

• (a) vectors are random anywhere in the study area;

• (b) origins are constrained to a moderately sized nucleus in the center of the

study area and destinations are random anywhere in the study area;
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Figure 98: Three scenarios of 100 randomly generated vectors and their corresponding
distribution of VMI for 1000 realizations. The top row illustrates the random vectors
where scenario (a) is generated by selecting origins and destinations at random from
the entire study area; scenario (b) is generated by selecting origins from inside a
moderately sized nucleus in the center of the study area and selecting destinations
at random from the entire study area; and scenario (c) is generated by selecting
origins from inside a very small nucleus in the center of the study area and selecting
destinations at random from the entire study area. The bottom row displays the
distribution of 1000 VMI statistics computed from 1000 realizations of 100 vectors for
each scenario. Image is reproduced from (Liu et al., 2014).
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Table 8: A set of six vectors and their corresponding origin and destination coordinates.
These vectors are representative of the pattern in figure 97 (a). Swapping the origins
and destinations of these vectors results in a set of vectors that are representative of
the pattern in figure 97 (b).

Number Origin-x Origin-y Destination-x Destination-y

1 55 60 100 500
2 60 55 105 501
3 500 55 155 500
4 505 60 160 500
5 105 950 105 500
6 155 950 155 499

• (c) origins are constrained to a very small nucleus in the center of the study

area and destinations are random anywhere in the study area.

The top of figure 98 provides a visual example of each scenario, while the bottom

illustrates the distribution of VMI values computed on the sets of random vectors

for 1000 simulations. It can be seen that only scenario (c) yields results centered

on the expected null VMI value of -0.01 for 100 vectors. Scenarios (a) and (b) have

distributions centered on values larger than the expected null VMI value with scenario

(a) being centered on a much larger value (approximately 0.48). This experiment

was replicated for scenario (a) and (c) using 50 vectors. The results are summarized

below in figure 99 where the top row provides a visual that is very similar to the

top row of figure 98 (left and right) from the original experiment. In addition, the

observed mean of the VMI for scenario (c) is essentially equal to the expected null

values of -0.0204 for 50 vectors (figure 98 bottom right) as was the case for the

original experiment. Finally, the observed mean of the VMI for scenario (a) is higher

than the expected null value (figure 98 bottom left), as was also the case for the

original experiment. Two important conclusions may be drawn. First, replicating this
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experiment further confirms that the VMI statistic was accurately replicated. Second,

and more importantly, any application of this statistic should thoroughly discuss

what the null pattern of random vectors is thought to be for a given process and

acknowledge that low to mild autocorrelation as typically indicated by a Moran’s I

statistic may actually indicate what would intuitively be regarded as complete spatial

randomness. A consequence is that significance testing of the statistic is exceedingly

important.

Two methodologies for randomly permuting vectors are put forth by Liu et al.

(2014) to carry out significance testing, since the underlying distribution of the

statistic needed to develop an analytical test is unknown. Method (1) creates random

permutations by assigning each vector origin to the origin of another vector while

maintaining the same destination. This is effectively a geometric translation as the

original vector origin and destination are shifted by the coordinates of the new origin.

A consequence is that some of the randomized vectors may be outside the study

area. Method (2) creates random permutations by assigning each vector origin to the

destination of another vector, which ensures all vectors are inside the study area. Both

permutation methods are tested by obtaining 1000 randomizations and computing

pseudo p-values for a set of 100 vectors that indicate moderate autocorrelation (VMI

= 0.436), which results in p = 0.001 for method (1) and p = 0.023 for method (2).

As a result, it is concluded by Liu et al. (2014) that both methods provide sufficient

theoretical random patterns with method (1) being more liberal than method (2)

because it does not respect the limitations of the study area boundaries (i.e., edge

effects). However, this reasoning is at odds with statistical intuition since each

method preserves (or does not preserve) different features of the original set of vectors.

Method (1) preserves the distribution of vector magnitudes, the distribution of vector
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directions and the set of origin points, though it does not preserve the set of destination

points. In contrast, method (2) preserves both the set of origin points and destination

points, but it preserves neither the distribution of magnitudes nor the distribution

of directions. Naturally, one would expect these two different methods to result in

different statistical conclusions. Furthermore, results are only presented for a single

realization of the experiment, which means they cannot indicate how this test will

behave when sampling variation is considered. To fully explore the validity of these

randomization techniques, an additional experiment is needed that produces many

realizations of the hypothesis tests for each method and then analyzes the power and

size of the tests.

1.2 Evaluating the power and size of significance tests

As indicated above, no analysis of the properties of the significance tests was

provided by Liu et al. (2014). Two important properties regarding significance testing

are the power and the size of a test. Test power, which ranges from 0 to 1, refers

to the ability of the test to confirm an expected positive test (accept an alternative

hypothesis rather than the null hypothesis). Higher power is desirable, denoting a

high rate of true positives, a decrease in the tendency to yield false negatives, and

that a test can accurately identify a trend from noise. In contrast, the test size, which

also ranges from 0 to 1, refers to the ability of a test to reject an expected negative

test (accept null hypothesis). Smaller test size is preferable with the expectation that

some false positives may occur purely by random chance. Many tests are performed

using a 95% confidence interval and a critical value of α = 0.05. This implies that

out of 100 realizations of a test, no more than 5% (five out of 100) of the tests are
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Figure 99: A partial replication of the results summarized in figure 98 that includes
scenario (a) (left) and scenario (c) (right) using 50 vectors. The top row is illustrative
of random vectors for each scenario while the bottom row is the distribution of the VMI
statistics from 1000 realizations for each scenario. Here, the bottom right distribution
pertains to the vectors generated from scenario (c) and the bottom left distribution
pertains to the vectors generated from scenario (a).

expected to yield false positives. To summarize, test power measure the ability (i.e.

probability) of a test to detect an effect when it is present and test size measures the

ability of a test to accept the null hypothesis when there is no effect present. It is

important to evaluate the power and size of a test to make sure that the test will

actually help in making effective decisions regarding a particular statistic.

A simulation study was therefore designed to remedy the lack of analysis of the

power and size of significance tests for both permutation methods. To explore the
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Figure 100: 50 positively autocorrelated vectors from the perspective of destinations.

power and size, two sets of 50 vectors were generated: the first has random origins and

destinations (figure 99 top left) and the second has a pattern that is known to result in

a positive VMI from the destination perspective (figure 100). Each set of vectors was

randomly permuted 99 times for each permutation method and the pseudo p-values

were computed. This was then repeated 1000 times in order to obtain a distribution

of p-values that could be used to compute the power (using the correlated vectors)

and the size (using the random vectors) of the significance tests.

For the positively autocorrelated vectors, the expectation is that the significance

tests for both permutation methods will produce primarily small p-values that indicate

we should reject the null hypothesis of no autocorrelation and can meaningful interpret

the associated VMI statistic. The number of realizations that adhere to this particular

outcome, divided by the total number of realizations yields the power of the test. The

results of this procedure for permutation method (1) and permutation method (2)

are given in figure 101 on the left and right, respectively. Figure 101 shows that for
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method (1) all of the p-values are either zero or near-zero, which results in a power

of 1, since we would always reject the null hypothesis in favor a pattern of vector

autocorrelation at the 95% confidence interval (or even the 99.9% confidence interval).

In contrast, the p-values that pertain to method (2) are trending towards a uniform

distribution (figure 101 right), which results in a power of 0.054 and means that this

technique is rarely able to reject the null hypothesis of random vectors even when

there is a clear pattern. Overall, method (1) has an appropriate power while method

(2) has little-to-no power.

For the random vectors, the expectation is that the p-values will be uniformly

distributed since there is no pattern in the data and any p-value has an equal chance

to occur. This also means that we should only reject the null hypothesis by random

chance at a rate equivalent to our critical value. Here, we choose α = 0.05 for a 95%

confidence interval so that we expect no more than 50 out of 1000 realizations to

produce a p-value less than or equal to 0.025 (0.05
2

because the statistic ranges from -1

to 1). Dividing the number of p-values that less than or equal to 0.025 by the total

number of realizations produces the test size, which is expected to be about the same

as α. Figure 102 shows that the test size for method (1) is much larger than 0.05

(0.863 is observed) with most of the p-values being clustered at values smaller than

0.05 rather than being uniformly distributed as expected. In contrast, method (2)

produces the expected uniform distribution of p-values for the 1000 realizations and

results in a test size of 0.054, which is close to the expected value of 0.05. Overall,

method (2) has an appropriate test size while method (1) does not have a satisfactory

test size.

Combing the results for test power and size, two trends become clear. First,

method (1) is too liberal and tends to reject the null hypothesis whether there is a
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pattern present or not. Second, method (2) is too indecisive and only rejects the null

hypothesis by random chance, whether there is a pattern present or not. Additional

experiments were carried out from both the origin and destination perspective, using a

square study area and Manhattan as a study area and while varying the distance-decay

(-10.0, -2.5, -2.0, -1.75, -1.5, -1.25, -1.0, -0.5) of the spatial weight and the sample

size (90, 180, 360). A third permutation method was also explored, which starts

with method (1) and then removes randomized vectors out that are outside of the

study area. None of these variations produced drastically better results and often

when the size was improved for method (1) it was at the cost of the power and vice

versa for method (2). The only alteration that was able to produce acceptable test

properties was adopting the pattern from figure 99 (top right) where all of the origins

are clustered in a single location and destinations are random as the null hypothesis

of no vector autocorrelation for method (1). The result was a test power of 1 and a

test size of 0.045 (figure 103), which is perhaps not surprising since this pattern also

achieved the expected null VMI value. However, this pattern of clustering all of the

vector origins at a single location does not align with an intuitive notion of random

vectors across a study area. Since no sufficient permutation method can be defined, it

was decided to forego applying this statistic on empirical data since it would not be

possible to make informed interpretations from the results.
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Figure 101: Distribution of p-values for VMI statistic applied to 1000 realizations of
sets of vectors known to have positive autocorrelation, which are representative of the
test power. Distribution to the left corresponds to method (1) and distribution to the
right corresponds to method (2).

Figure 102: Distribution of p-values for VMI statistic applied to 1000 realizations of
sets of vectors with random origins and destinations, which are representative of the
test size. Distribution to the left corresponds to method (1) and distribution to the
right corresponds to method (2)
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Figure 103: Distribution of p-values for VMI statistic using method (1) applied to
1000 realizations of sets of vectors known to have positive autocorrelation, which are
representative of the test power (left) and distribution of p-values for VMI statistic
applied to 1000 realizations of sets of vectors with highly clustered origins and random
destinations, which are representative of the test size (right).
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APPENDIX C

SIMULATION EXPERIMENT FULL RESULTS (CHAPTER 5)

365



Figure 104: Results for models calibrated on datasets with uniform points.
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Figure 105: Results for models calibrated on datasets with random points.
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Figure 106: Results for models calibrated on datasets with clustered points.

368



Figure 107: Results for models calibrated on datasets with uniform points and then
aggregated to a 24 by 24 grid.
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Figure 108: Results for models calibrated on datasets with random points and then
aggregated to a 24 by 24 grid.
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Figure 109: Results for models calibrated on datasets with clustered points and then
aggregated to a 24 by 24 grid.
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Figure 110: Results for models calibrated on datasets with uniform points and then
aggregated to a 12 by 12 grid.
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Figure 111: Results for models calibrated on datasets with random points and then
aggregated to a 12 by 12 grid.
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Figure 112: Results for models calibrated on datasets with clustered points and then
aggregated to a 12 by 12 grid.
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