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ABSTRACT  

   

In many natural systems aqueous geochemical conditions dictate the reaction 

pathways of organic compounds. Geologic settings that span wide ranges in temperature, 

pressure, and composition vastly alter relative reaction rates and resulting organic 

abundances. The dependence of organic reactions on these variables contributes to 

planetary-scale nutrient cycling, and suggests that relative abundances of organic 

compounds can reveal information about inaccessible geologic environments, whether 

from the terrestrial subsurface, remote planetary settings, or even the distant past (if 

organic abundances are well preserved). Despite their relevance to planetary modeling 

and exploration, organic reactions remain poorly characterized under geochemically 

relevant conditions, especially in terms of their reaction kinetics, mechanisms, and 

equilibria. 

In order to better understand organic transformations in natural systems, the 

reactivities of oxygen- and nitrogen-bearing organic functional groups were investigated 

under experimental hydrothermal conditions, at 250°C and 40 bar. The model compounds 

benzylamine and α-methylbenzylamine were used as analogs to environmentally relevant 

amines, ultimately elucidating two dominant deamination mechanisms for benzylamine, 

SN1 and SN2, and a single SN1 mechanism for deamination of α-methylbenzylamine. The 

presence of unimolecular and bimolecular mechanisms has implications for temperature 

dependent kinetics, indicating that Arrhenius rate extrapolation is currently unreliable for 

deamination. 

Hydrothermal experiments with benzyl alcohol, benzylamine, dibenzylamine, or 

tribenzylamine as the starting material indicate that substitution reactions between these 
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compounds (and others) are reversible and approach metastable equilibrium after 72 

hours. These findings suggest that relative ratios of organic compounds capable of 

substitution reactions could be targeted as tracers of inaccessible geochemical conditions. 

Metastable equilibria for organic reactions were investigated in a natural low-

temperature serpentinizing continental system. Serpentinization is a water-rock reaction 

which generates hyperalkaline, reducing conditions. Thermodynamic calculations were 

performed for reactions between dissolved inorganic carbon and hydrogen to produce 

methane, formate, and acetate. Quantifying conditions that satisfy equilibrium for these 

reactions allows subsurface conditions to be predicted. These calculations also lead to 

hypotheses regarding active microbial processes during serpentinization. 
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CHAPTER 1 

INTRODUCTION 

As evidence continues to emerge for the presence of organic material and liquid 

water in a variety of environments throughout the solar system, it seems that aqueous 

organic chemistry is common place in many planetary settings (e.g., Porco et al., 2006; 

Matson et al., 2007). According to accretionary heating models (e.g., Robuchon and 

Nimmo, 2011) and observations of carbonaceous meteorites (e.g., Pizzarello and Shock, 

2010), aqueous organic chemistry should have been even more common following solar 

system formation. Water-rock reactions that are also expected to be common throughout 

the solar system, such as serpentinization (Holm et al., 2015), can produce conditions 

sufficient to generate a thermodynamic drive for organic synthesis from inorganic carbon 

(McCollom and Seewald, 2007; Etiope and Sherwood Lollar, 2013). While geologic 

settings can host a wide range of temperatures, pressures, and compositions, the effects of 

geochemically relevant conditions on relative rates of organic reactions and their 

resulting product distributions are not sufficiently characterized to model planetary 

environments. 

In this study, we aim to characterize the kinetics, mechanisms, and equilibria for a 

variety of reactions involving oxygen- and nitrogen-bearing organic compounds. 

Hydrothermal experiments were performed involving model compound amines under 

acidic-buffered conditions in which two deamination mechanisms were elucidated and 

their kinetics quantified. These findings have implications for developing models for 

biomass degradation, and therefore for understanding nitrogen cycling. Similar 

unbuffered hydrothermal experiments demonstrate the reversibility of certain substitution 
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reactions between oxygen- and nitrogen-bearing organic compounds, as well as an 

approach toward metastable equilibrium. This suggests relative abundances of organic 

compounds involved in similar reactions might record the temperatures, pressures, or 

compositions of their source environments. Samples from a natural low temperature 

continental serpentinizing system were also analyzed, and metastable equilibria were 

evaluated for a variety of inorganic and organic carbon transformations, allowing 

predictions regarding conditions and active processes at the surface and in the subsurface. 

1.1 Deamination Reaction Mechanisms under Acidic Hydrothermal Conditions 

The nitrogen cycle on Earth is well characterized in terms of processes that take 

place at the surface of the Earth (e.g., Galloway et al., 2004; Knicker, 2004), but less so 

in deeper geologic settings (Berner, 2006; Boudou et al., 2008). However, as a result of 

biomass burial the amount of organic nitrogen in sediments and crustal rocks has been 

estimated to be greater than that of the biosphere (Boudou et al., 2008). While our 

understanding of organic nitrogen transformations at ambient conditions is aided by 

extensive studies of conventional gas phase and aqueous phase organic chemistry 

(Clayden et al., 2001) and biochemistry (Nelson et al., 2008), far less attention has been 

given to characterizing reactions at higher temperatures and pressures, and ranges of 

compositional conditions (such as pH) relevant to geologic settings. 

Based on the structure of cellular material (Fernandez-Reiriz et al., 1989; Simon 

and Azam, 1989; Delgado et al., 2013), amino acids serve as the main reservoir for 

nitrogen in biomass, suggesting the reactivity of the amine functional group plays a 

central role in nitrogen cycling. Although many experimental studies have reported rates 

of amino acid decomposition under hydrothermal conditions, few have attempted to 
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describe the kinetics of competing reactions, and fewer still have characterized individual 

reaction mechanisms. As an example, comparing the well-characterized deamination 

reaction mechanism for aspartic acid at lower temperatures, ≤ 135°C (Bada and Miller, 

1970), to the less-resolved multiple mechanisms for aspartic acid deamination at higher 

temperatures, 170 – 260°C (Cox and Seward, 2007; Faisal et al., 2007), suggests that 

deamination mechanisms change with temperature. Understanding mechanistic changes 

is crucial for extrapolating reaction rates across the temperature, pressure, and pH ranges 

common to natural, organic-rich, geologic environments.  

As a step toward building useful models for amino acid reactivity, this study aims 

to provide a detailed description of the kinetics and mechanisms for deamination of 

primary and secondary amine functional groups under acidic hydrothermal conditions. 

Time series experiments were performed for hydrothermal deamination of model amine 

compounds based on benzylamine (BA) and α-methylbenzylamine (α-CH3-BA), buffered 

at pH 3.3 at 250°C and 40 bar (Psat). Deamination of the amines under these conditions 

forms alcohols as the major primary products. The deamination mechanisms were 

investigated by determining the kinetics of reaction of ring-substituted BA and α-CH3-

BA derivatives, which provided information on the nature of the charge buildup in the 

transition state. The results support nearly equal contribution from two substitution 

mechanisms, specifically SN1 (kSN1 ≈ 2.4  10-6 s-1) and SN2 (k SN2 ≈ 2.7  10-6 s-1), for 

the deamination of BA to form benzyl alcohol. In contrast, α-CH3-BA deaminates almost 

exclusively via a much faster SN1 mechanism (kα ≈ 7.6  10-4 s-1). Accordingly, under 

dilute, acidic hydrothermal conditions primary amines are expected to undergo 

essentially exclusive deamination followed by hydration to form alcohols. The 
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observation of two competing mechanisms for BA deamination/hydration implies that 

Arrhenius extrapolation of rate data to other temperatures is currently unreliable, since 

this is likely to be accompanied by a change in the dominant reaction mechanism. This 

observation of rapid substitution suggests that in the presence of nucleophiles that are 

stronger than water, amines can also react to generate other metastable organics, possibly 

producing larger compounds with heteroatoms. 

1.2 Metastable Equilibrium Among Oxygen- and Nitrogen-Bearing Organic 

Compounds in Hydrothermal Experiments 

Organic compounds are produced in geologic systems that are otherwise difficult 

to access (e.g., subterranean and extraterrestrial); if they are mobilized and released, they 

have the potential to bear signatures of their environments (Cruse and Seewald, 2006; 

Tassi et al., 2007). However, little is known about how relative abundances of many 

organic compounds are controlled by geochemical source conditions. One form of 

progress in this area is identifying organic reactions that are known to reach metastable 

equilibrium (Seewald, 1994; Seewald et al., 2006). This is because concentration ratios of 

compounds at equilibrium can be combined with thermodynamic calculations to assess 

temperature, pressure, and composition for unexplored environments. This type of 

analysis may even hold for ancient environments if ratios are preserved over time, as may 

be the case in carbonaceous meteorites (Pizzarello and Shock, 2010). Hydrothermal 

conditions promote rapid, reversible reactions between organic compounds, sometimes 

resulting in steady state ratios due to an approach toward metastable equilibrium (e.g., 

Shipp et al., 2014). Nitrogen-bearing organic compounds are typically abundant in 

natural systems, and their reactivity is particularly sensitive to pH conditions (e.g., 
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Garrett and Tsau, 1972; Smith and Hansen, 1998), potentially allowing them to serve as 

tracers of acidity. However, there are few examples of reactions involving organic 

nitrogen compounds approaching metastable equilibrium under hydrothermal conditions. 

The aim of this study is to characterize reversible and irreversible reactions 

between hydrothermally-treated alcohols, primary amines, secondary amines, tertiary 

amines, and their products. Four sets of aqueous experiments were performed with model 

organic compounds at 250°C and 40 bar (liquid/vapor saturation pressure of water, Psat). 

The initial reactants for each set of experiments were benzyl alcohol, benzylamine, 

dibenzylamine, and tribenzylamine. In each case, the reactant solutions were prepared 

with the same bulk composition according to the amount of organic reactant added and 

the addition of varying amounts of ammonium hydroxide and ammonium chloride. After 

2 hours of heating, all four of the initial reactants could be observed in each of the 

experiments, indicating rapid reversibility of amination/deamination substitution 

reactions. After 72 hours, reaction quotients for substitution reactions between the model 

compounds converged for each of the four sets of experiments, strongly suggesting an 

approach toward metastable equilibrium. The empirical reaction ratios are in good 

agreement with calculated equilibrium constants for the amination reactions. Similar, but 

even faster, convergences of compound ratios were observed for ether and imine 

formation reactions, providing evidence of metastable equilibrium for other ionic reaction 

mechanisms. Some compounds were identified whose ratios did not converge among the 

four experiments, including those from redox-sensitive reactions and electrophilic 

aromatic substitution reactions; thereforee, these products were distinguished as being 

linked to irreversible reactions.  
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These findings identify classes of organic compounds and reactions to target for 

environmental analysis that may reflect the conditions at which they last equilibrated. 

They also demonstrate experimental techniques that can be used to characterize 

reversible and irreversible reactions under hydrothermal conditions. The agreement 

between experimental results and independent thermodynamic calculations validates the 

methods and interpretations used for each.  

1.3 A Thermodyanmic Assessment of Carbon Chemistry during Low Temperature 

Continental Serpentinization 

Active serpentinizing environments have been investigated across a range of 

aqueous geochemical conditions, from near-critical submarine systems (e.g., Charlou et 

al., 2002) to near-ambient surface settings (e.g., Szponar et al., 2013), and various 

combinations of temperatures and pressures in between (e.g., Kelley et al., 2001). At this 

range of conditions, serpentinization generates high pH fluids bearing molecular 

hydrogen (Moody, 1976), which typically causes carbonate mineral precipitation and 

produces a thermodynamic drive for the chemical reduction of inorganic carbon to 

organic carbon, respectively (Kelemen et al., 2011). Observations of abundant methane 

and other small organic compounds support the notion that inorganic carbon reduction 

occurs (McCollom and Seewald, 2007; Etiope and Sherwood Lollar, 2013). Whether this 

occurs abiotically or biologically has implications for serpentinization’s role in 

generating habitable conditions in both modern and prebiotic environments (Russell et 

al., 2010; Holm et al., 2015). 

However, it still remains unclear what portion of these organic compounds are 

being actively added to solution from the abiotic reduction of inorganic carbon during 
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serpentinization, versus a variety of other processes (Etiope and Sherwood Lollar, 2013; 

McCollom, 2013b). These processes include the release of ancient organics from mineral 

inclusions that formed during crystallization and cooling of high-temperature ultramafic, 

as well as the thermogenic breakdown of dead biomass. Since these processes can also 

produce observable methane and other small organic compounds, disentangling the 

contribution from each process requires analytical strategies beyond simply quantifying 

compound concentrations. Sufficiently low temperature systems also have the potential to 

actively produce small organic compounds via microbial metabolisms, such as 

methanogenesis, which further challenges interpretations of abiotic methane formation 

mechanisms (Shrenk et al., 2013). Numerous strategies are in place for attempting to 

directly determine which source processes are producing which organic compounds, such 

as probing isotopic ratios that bear signatures of specific abiotic, thermogenic, or 

biological reactions (Etiope and Sherwood Lollar, 2013). 

In this study, we borrow from these existing strategies and provide an additional 

technique for identifying source processes that employs thermodynamic calculations to 

infer where organic formation reactions take place in a low temperature serpentinizing 

system, at the Samail Ophiolite in the Sultanate of Oman. To perform this analysis, we 

collected water samples from shallow groundwater (Type I fluids), representative of input 

fluids to serpentinization, hyper-alkaline seeps (Type II fluids), representative of output 

fluids from serpentinization, and surface fluid mixing zones. We determined aqueous 

concentrations of molecular hydrogen, dissolved inorganic carbon (DIC), formate, 

acetate, methane and its stable carbon isotopic ratios, and a suite of other geochemical 

solutes. 
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These analyses indicate that the vast majority of DIC in Type I fluids that happens 

to undergo serpentinization precipitates in the subsurface as carbonate minerals; however, 

it seems that a significant amount of DIC is also converted into methane, formate, and 

acetate, and expelled at the surface in Type II fluids. Based on thermodynamic 

calculations, we generate a series of plausible hypotheses regarding the conditions under 

which each of these organic compounds last equilibrated, and in some cases how they 

have been perturbed away from equilibrium. Though we outline multiple possibilities, it 

seems most likely that acetate is actively forming in Type I and Type II fluids at the 

surface, as it has reached metastable equilibrium with measured abundances of H2(aq) 

and DIC, the latter of which is buffered by carbonate minerals. Methane abundances in 

both fluid types are low relative to equilibrium with respect to DIC and H2(aq), probably 

indicating that methane oxidation is actively occurring at the surface. Howeverm it may 

be the case that methane is formed in a carbon-limited zone in the deep subsurface. 

Formate is generally below detection in Type I fluids, but has high abundances relative to 

equilibrium in Type II fluids. This latter observation suggests that formate is either 

formed in the shallow subsurface, where DIC is still buffered by carbonate minerals but 

H2(aq) is more abundant, or that formate is formed as a result of methane oxidation. 

Methane oxidation to carbon dioxide or formate is thermodynamically favorable, and 

evidence for this type of microbial metabolism is observed in the stable carbon isotopes 

of methane in fluid mixing zones, where the environment for redox chemistry is ideal. 

However, isotopic values in Type II fluids cannot rule out methane as biologically 

sourced from a carbon-limited zone in the deep subsurface. 
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 In summary, the geochemical observations in this work support previous models 

of carbon flow through the Samail Ophiolite. Thermodynamic calculations present new 

evidence characterizing regions of the system within which organic formation reactions 

are occurring. Stable isotope trends in mixing fluids test and do not refute plausible 

hypotheses for microbial metabolisms, providing strong evidence for active microbial 

oxidation in surface fluids. Together, these techniques help to constrain conditions and 

identify potential active processes in surface and subsurface fluids that lead to carbon 

transformations during low temperature serpentinization. 
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CHAPTER 2 

DEAMINATION REACTION MECHANISMS UNDER ACIDIC 

HYRDROTHERMAL CONDITIONS  

2.1 Introduction 

The large part of abiotic organic chemistry in nature takes place in the presence of 

water, with the most rapid and diverse reactions likely occurring in hydrothermal fluids. 

A wide range of organic compounds have been found in analyses of terrestrial 

hydrothermal systems (e.g., Leif and Simoneit, 1995; Proskurowski et al., 2008; Lang et 

al., 2010; Shock et al., 2013), as well as in carbonaceous meteorites and asteroids, which 

appear to have experienced heating in the presence of water (e.g., Cronin et al., 1988, 

Verdier-Paoletti et al., 2017). Experiments and thermodynamic models have 

demonstrated the potential for abiotic organic synthesis and increasing organic 

complexity under hydrothermal conditions (e.g., McCollom and Seewald, 2007; Shock et 

al., 2013). Models of heat generation during and after planetesimal formation suggest 

hydrothermal reaction conditions capable of driving organic reactions have existed 

throughout the solar system (e.g., Robuchon and Nimmo, 2011), and there is a growing 

body of evidence that there is much more liquid water in the rest of the solar system than 

there is on Earth alone (e.g., Encrenaz, 2008). There are, however, several challenges to 

the development of useful and predictive models of hydrothermal organic reactivity. 

Among these are that much of the work on hydrothermal organic chemistry to date has 

focused on determining reaction products; detailed mechanistic studies are rare. Another 

is that much of the traditional work on the mechanisms of organic reactions has tended to 
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focus on reactions in nonpolar solvents, at near-ambient conditions, often with rare metal 

catalysts or unstable synthetic reagents (Clayden et al., 2001). 

Several of the more interesting features of hydrothermal organic chemistry arise 

from the behavior of liquid water at high temperatures. Specifically, the pKa of H2O at 

250°C (at liquid/vapor saturation pressure, Psat) is ~11; this results in a neutral pH of 5.5 

and a pOH of 5.5 (Sweeton et al., 1974), and influences the equilibrium speciation of 

dissolved species and the kinetics of any reactions involving protons or hydroxide. Under 

these same hydrothermal conditions, the dielectric constant of H2O lies between that of 

methanol and acetone under ambient conditions (25°C, 1 bar), mainly as a result of a 

decrease in hydrogen bonding at higher temperatures (Uematsu and Franck, 1980). 

Consequently, the solubility of organic compounds in water increases dramatically with 

increasing temperature, which means that hydrothermal fluids represent an excellent 

medium for organic chemical reactions. For example, the solubility constant (Ksol) for 

toluene in water is ~10-2.2 at 25°C, but increases to ~10-0.5 at 250°C; this translates 

roughly to a saturation change from ~0.006 to ~0.3 molal toluene (Anderson and 

Prausnitz, 1986; Brown et al., 2000). In addition to being a good solvent, hydrothermal 

water can act as a catalyst and a reagent in many reactions (e.g., Shipp et al., 2013; 2014). 

With increasing temperature, the rates of organic reactions increase and the 

reactions are increasingly controlled by entropic rather than enthalpic effects. 

Consequently, reactions that are unlikely at ambient become possible at high 

temperatures. This results in hydrothermal organic product distributions that are often 

difficult to predict and explain based on corresponding reactions at ambient (Katritzsky et 

al., 2001; Rushdi and Simoneit, 2002; Yang et al., 2012), especially in the absence of 
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reliable mechanistic information. For example, hydration, hydrogenation, and carbon-

carbon sigma bond breaking reactions have been found to occur via substitution, addition, 

and radical formation mechanisms (Glein, 2012; Yang et al., 2012; 2014; Shipp et al., 

2013; 2014; Fecteau, 2016) for which there are no equivalent reactions at ambient. 

Reactions are often reversible under hydrothermal conditions, and metastable equilibrium 

may be achieved in certain cases (e.g., Seewald, 1994).  

Understanding reaction mechanisms is necessary in order to build models for 

natural systems. For example, observed rates of compound degradation or formation may 

be determined by contributions from multiple mechanisms, that could even lead to the 

same products (see below) but have, for example, very different temperature 

dependencies. Also, the kinetics of different mechanisms may respond differently to 

other environmental parameters, such as pH or reactant concentration, the latter for 

example if the rate determining step for a mechanism is unimolecular or bimolecular. 

Quantitative descriptions of reactions in terms of rate order, rate constants, and how 

environment and temperature influence these quantitative descriptors should advance 

predictive models that may allow the relative rates of competing mechanisms to be 

extrapolated across a wide range of geochemical conditions and geochemically-relevant 

timescales. Our group has been building mechanistic and kinetic descriptions of organic 

hydrothermal reactions for organic structures containing C, H, and O (Glein, 2012; Yang 

et al., 2012; 2014; Shipp et al., 2013; 2014). Here we extend this work to a detailed 

mechanistic and kinetic description of nitrogen containing organic structures. 

Characterizing the reactivity of organic nitrogen compounds under various 

geochemical conditions is crucial to develop models of the Earth’s modern and ancient 
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global nitrogen cycles (Berner, 2006; Boudou et al., 2008), the habitability of planetary 

systems (Shock and Canovas, 2010; McCollum and Seewald, 2007), and perhaps even 

the emergence of life (Schoonen and Xu, 2001; Brandes et al., 2008; Martin and Russell, 

2007). The major transformations of nitrogen compounds that can occur at ambient 

conditions have been extensively studied in conventional gas phase and aqueous phase 

organic chemistry studies (Clayden et al., 2001), and because of the importance of 

nitrogen containing structures in biochemistry, particular focus has been given to research 

aimed at characterizing the nitrogen cycle at the surface of the Earth (e.g., Galloway et 

al., 2004; Knicker, 2004). The broader topic of geological nitrogen cycling, which scales 

vast temperatures, pressures, and compositional changes, has received far less attention, 

particularly from a mechanistic organic perspective. 

Proteins and nucleic acids serve as the main reservoirs of organic nitrogen 

common to all living organisms, with the former dwarfing the latter in terms of percent 

composition of N in cellular mass (Fernandez-Reiriz et al., 1989; Simon and Azam, 1989; 

Delgado et al., 2013). The quantity of organic nitrogen in sediments and crustal rocks is 

estimated to be significantly larger than that in the biosphere, mainly due to burial of 

biomass (Boudou et al., 2008). Buried material in ocean sediments eventually undergoes 

subduction, and exposure to increasing temperatures and pressures. A major initial 

reaction for proteins in water is hydrolysis to amino acids, especially at elevated 

temperatures (Kang and Chun, 2004; Rogalinski et al., 2005), suggesting that the 

reactions of amino acids, such as deamination, play a key role in governing geological 

nitrogen cycling. Indeed, high abundances of ammonium have been measured in both 

marine (e.g., Von Damm et al., 1985) and continental (e.g., Holloway et al., 2011) 
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sediment-hosted hydrothermal systems, implying significant nitrogen loss during 

hydrothermal processing of biomass. Similarly, amino acids and other primary amines 

may even be the dominant reservoirs for organic nitrogen in strictly abiotic systems, as 

suggested by analyses of soluble organic compounds in meteorites (e.g., Pizzarello and 

Shock, 2010). Meteoritic compounds potentially provide insight into the organic 

inventory of early planetary systems in the solar system. Thereforee, understanding the 

reactions of these compounds under conditions analogous to accretionary heating could 

provide insight into planetary habitability. Perhaps similar to sediment-hosted terrestrial 

systems, insoluble carbonaceous meteoritic materials have been shown to release 

ammonium when subjected to hydrothermal conditions at 300°C (Pizzarello et al., 2011). 

This suggests that the nitrogen-containing material had not previously been subjected to 

water under these conditions for a sufficient length of time to liberate nitrogen. Given 

that little is known about the variables governing these reactions, experimental 

investigations into the mechanisms of deamination of amines with respect to temperature 

and composition could help to put limits on ancient conditions and their evolution over 

geologic timescales. 

Several studies of hydrothermal reactions of organic nitrogen compounds have 

been reported (e.g., Abraham and Klein, 1985; Katritzky et al., 1990; Benjamin and 

Savage, 2004), including those involving amino acids (e.g., Imai et al., 1999; Cleaves et 

al., 2009; Fuchida et al., 2014). Reactions of organic nitrogen can be sensitive to pH due 

to the basicity of amines and imines. Garrett and Tsau (1972) explored the pH-

dependence (0.15 to 9.50) of solvolysis of cytosine and cytidine at lower temperatures (< 

90°C), demonstrating both acid and base catalysis for this reaction. Smith and Hansen 
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(1998) also demonstrated both acid and base catalysis for peptide bond hydrolysis at low 

temperature (37°C) over a wide range of pH values (0 to 14). Bada and Miller (1970) 

studied the deamination of aspartic acid up to 135°C, also over a wide range of pH (1 to 

13). This reaction was found to be subject to base catalysis only and inhibited at low pH , 

though there is some evidence that the reaction vessel material may have affected the 

reaction (Cox and Seward, 2007). 

More recently, Faisal et al. (2007) found almost no effect of pH on the kinetics for 

aspartic acid deamination at higher temperatures (200 – 260°C); however, products due 

to reactions other than deamination complicated the mechanistic analysis. A detailed 

kinetic study by Cox and Seward (2007) under hydrothermal conditions (>170°C) found 

that aspartic acid decomposed by up to six different competing reactions, two of which 

were deaminations. Although these studies provide very useful information, the 

observations of multiple mechanisms and changes in mechanism with temperature 

suggest that Arrhenius rate extrapolations for organic reactions (e.g., Bada and 

McDonald, 1995; Radzicka and Wolfenden, 1996) be performed with caution, since 

reaction mechanisms may change with temperature. 

While such studies have provided important information about possible reaction 

pathways involved in organic nitrogen degradation (e.g., Aubrey et al., 2009), 

preservation (e.g., Lee et al., 2014), and even synthesis (e.g., Marshall, 1994), few 

specific mechanisms for the hydrothermal reactions of amines have been reported. To 

some extent this is because mechanistic analysis is complicated when there are numerous 

competing reactions. In the case of amino acids, for example, potential reactions include 

deamination, decarboxylation, decarbonylation, and cyclization, among others (Imai et 
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al., 1999; Lemke, 2003; Lemke et al., 2009; Aubrey et al., 2009; Cleaves et al., 2009; 

Abdelmoez et al., 2010; Otake et al., 2011; McCollom, 2013a; Fuchida et al., 2014). It 

follows that making progress on mechanistic characterization will be facilitated by 

implementing strategies that can isolate specific reactions for analysis. 

One way to simplify the problem of competing reactions is to minimize their 

number by using model compounds that are designed to probe specific reactions (e.g., 

Yang et al., 2012; Fecteau, 2016). Thus, reactions of individual functional groups in 

multi-functional group compounds can be targeted for study. Well-designed model 

compounds allow the effects of structural and electronic modifications near a functional 

group of interest to be studied and can provide valuable insight into reaction mechanisms.  

These techniques have been extensively exploited in conventional organic chemistry at 

ambient conditions, and were successfully used in an investigation of hydrothermal 

decarboxylation (Glein, 2012). 

One important way to restrict the number of reactions available to amines is to 

isolate the unprotonated and protonated (aminium) forms, which are likely to undergo 

different reactions. Aqueous amines speciate according to Eq. (1), 

 

R-NH2  +  H2O  ⇌  R-NH3
+  +  -OH         (1), 

 

where R represents a generic organic functional group. Therefore, controlling 

experimental pH relative to the aminium pKa under hydrothermal conditions is an 

important requirement for studying amine reaction mechanisms. Isolating individual 
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reaction mechanisms by controlling protonation state was successfully used in previous 

studies on the decarboxylation of carboxylic acids (Glein, 2012). 

In the present study, high temperature phosphate buffers were used to control pH 

and isolate the reactions of protonated aminiums (R-NH3
+). Few hydrothermal organic 

experimental studies attempt to control and characterize pH at high temperatures (≥ 

150°C); those that do typically estimate the unbuffered solution pH (e.g., Lee et al., 2014) 

or buffer pH using mineral assemblages (e.g., Seewald, 2001). A feature of the present 

work is that aqueous buffers are used to control pH and maintain the amines in their 

protonated forms. Mineral buffers were specifically avoided to prevent any surface 

catalytic and/or reactive effects with organic compounds (McCollom, 2013b; Shipp et al., 

2014) that would complicate mechanistic analysis. Although intermediate to low pH 

environments where amines are likely to be protonated are relevant to some basaltic and 

granitic hydrothermal systems (Henley et al., 1984), the main purpose of isolating 

reactions to the protonated forms is to simplify the experimental system in order to 

facilitate a step-wise mechanistic understanding of amine reactions. Specifically, at 

higher pH unprotonated amines hydrothermally decompose via multiple competing 

reactions that would require several experimental approaches in parallel to deconvolute 

the reaction mechanisms (Katritzky et al., 1990; 2001; Table A3). 

Herein, the model organic compounds benzylamine (BA, Fig. 1) and α-

methylbenzylamine (-CH3-BA, Fig. 1) were used in a complementary manner to 

investigate the hydrothermal deamination reaction mechanisms of primary (1°) and 

secondary (2°) α-carbon bonded aminiums. Subcritical hydrothermal experimental 

studies have previously been performed with benzylamine (Katritzky et al., 1990; 2001), 
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Fig. 1. Structures and abbreviations for the amines studied in this work. The -

methylbenzylamine -CH3-BA used was the single (S) enantiomer, see experimental. 
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 similar benzyl carbon bonded amines (Abraham and Klein, 1985; Torry et al., 1992), and 

some other related amines (Katritzky, 1990; 2001). However, few mechanistic studies 

have been performed on amines while controlling pH at high temperatures. Unbuffered 

experimental studies have provided mechanistic insight at subcritical temperatures (≤ 

340°C) for reactions with organic nitrogen, but not for deamination (Belsky and Brill, 

1999; Li and Brill, 2003). Other researchers have characterized hydrolysis mechanisms in 

unbuffered, supercritical solution (Klein et al., 1990; Benjamin and Savage, 2004), the 

latter involving methylamine deamination. However, characterization of methylamine 

reactivity (Klein et al., 1990) is unlikely to be widely applicable to the behavior of other 

amines at subcritical temperatures, due to the unique behavior of supercritical water 

(Savage, 1999). Additionally, methylamine may not be a representative amine since it 

cannot deaminate via elimination to form an alkene, as does for example aspartic acid 

(Bada et al., 1970); nor is methylamine likely to form a formally charged intermediate 

due to the lack of neighboring functional groups that could provide charge stabilization 

(Schwarz, 2011). 

Comparing the deamination rates of the primary amine BA and the secondary 

amine α-CH3-BA not only provides insight into the mechanisms of their reactions, but 

also potentially provides useful insight into the chemistry of environmentally relevant 

amines. Many natural amines are bonded to differently substituted carbons, e.g., amino 

acids and various lipid structures (Sohlenkamp and Geiger, 2015). Aromatic model 

compounds were chosen for three reasons: 1) the aromatic ring is relatively inert and 

allows the reactivity of the aminium functional group to be studied in the absence of 

competing primary reactions, 2) classical, physical organic chemistry mechanistic probes 
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can be employed; specifically, ring-substituted derivatives can be used to probe charge 

generation in the rate determining steps (e.g., Brown and Okamoto, 1958), and 3) the 

majority of reaction products are readily extracted at the end of the experiments and their 

quantities can be accurately quantified using gas chromatography-flame ionization 

detection (GC-FID) methods (e.g., Yang et al., 2012). At 250°C, pH 3.3, and 40 bar (Psat), 

deamination followed by hydration to form the corresponding alcohol was found to be 

the dominant primary reaction for the amines in the present study. The mechanisms were 

probed using ring-substituted benzylamines and α-methylbenzylamines with electron 

withdrawing and donating groups and concentration-dependent kinetic studies. These 

observations suggest the presence of two competing deamination mechanisms for 

benzylamine (i.e., SN1 and SN2), and a single deamination mechanism for α-

methylbenzylamine (SN1); these results have implications for extrapolating deamination 

rates across temperature. 

2.2 Experimental 

2.2.1 Materials 

Reagents, buffers, standard compounds, and gases were purchased from Sigma-

Aldrich (S-A), Alfa Aesar (AA), Oakwood Chemical (OC) Matrix Scientific (MS), 

Mallinckrodt (M), Synquest Laboratories (SL), Aldlab Chemicals (AC), Glycopep 

Chemicals (G.C.), and Praxair (PA) with the following specifications for purchased 

organic compounds: ≥ 99.5% benzylamine (S-A), > 98% 3-chlorobenzylamine (S-A), ≥ 

98% 3-trifluromethylbenzylamine (S-A), ≥ 97% 3,5-Bis(trifluoromethyl)benzylamine 

(MS), ≥ 98% 3-methylbenzylamine(AA), ≥ 97% 3,5-dimethylbenzylamine, ≥ 97% 4-

methylbenzylamine (S-A), 3-methoxybenzylamine (SL), ≥ 98% 4-methoxybenzylamine 
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(S-A), ≥ 98% 3-fluorobenzylamine (SL), ≥ 97% (S)-1-[3-(trifluoromethyl)phenyl]-

ethylamine (SL), ≥ 97% (R)-1-[3,5-bis(trifluoromethyl)phenyl]-ethylamine (SL), ≥ 98% 

S-(-)--methylbenzylamine (S-A), ≥ 97% R-(+)--methylbenzyl alcohol (S-A), ≥ 97.0% 

dibenzylamine (S-A), ≥ 99.0% tribenzylamine (S-A), ≥ 99.8% benzyl alcohol (S-A), ≥ 

99.0% n-benzylidenebenzylamine (S-A), ≥ 99.9% toluene (S-A), ≥ 95% 3-benzylbenzyl 

alcohol (AC), ≥ 95% 2-benzylbenzyl alcohol (AC), ≥ 98% (4-benzylphenyl)methanol 

(G.C.), ≥ 99% methanesulfonic acid (Acros Organics), ≥ 99.0% dodecane (S-A), ≥ 

99.9%. Inorganic compounds included: ≥ 85.0% phosphoric acid (S-A Fluka Analytical), 

≥ 99.9% monosodium (dihydrogen) phosphate (M), sodium bicarbonate (M), a mixed ion 

standard (Thermo Scientific, Waltham, MA, USA), and a mixed cation standard 

(Environmental Express, Charleston, SC, USA). 

2.2.2 Analytical Procedures  

Organic compounds were analyzed to confirm purity using a Varian CP-3800 Gas 

Chromatograph (GC) and a Bruker Scion 456 Gas Chromatograph (GC), both equipped 

with Varian CP-8400 auto-samplers, Supelco EquityTM-5 columns (30m x 0.25mm x 

0.5μm capillary fused silica), and flame ionization detectors (FIDs).  For oven methods, 

peak assignment, and peak integration, Varian Star Chromatography: Integration Work 

Station software and Compass Chromatography Data System Version 3.0 Core Software 

were used by the GCs described above, respectively. Response factors for each 

compound relative to a fixed concentration (0.01 M) of the internal standard, dodecane, 

were calculated from three-point (for the ring substituted benzylamines) or five point (for 

all other compounds) linear calibration curves with R2 ≥ 0.995. Dichloromethane (DCM) 

was used as the solvent for all GC analyses. The GC method used an ultra-high purity (≥ 
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99.999%) helium:sample split ratio of 15:1 for all calibration standards and experiments. 

The oven temperature profile method is summarized in Table A1; longer methods (≥ 60 

min) were periodically conducted to look for products at longer retention times. A subset 

of experiments was also analyzed using a chiral column (Agilent J&W CP-Chirasil-Dex 

CB) with the same oven heating method. 

Each compound of interest was verified by standard compound addition. A JEOL 

GCmate gas chromatograph/mass spectrometer (GC-MS, an Agilent 6890/5973 with the 

same Supelco EquityTM-5 column as above) was also used to identify compounds based 

on their molecular ion fragments. 

Yields of total ammonia (NH3 + NH4
+) were quantified via ion chromatography 

using suppressed conductivity detection. An aliquot (50 μL) of the aqueous phase of 

replicate experiments (quantitative GC and IC analyses could not be performed on the 

same sample) was diluted with deionized (DI) water (18.2 MΩ-cm from a Barnsted 

Nanopure DIamond purifier) to 5 mL, and injected in duplicate (2.5 mL) onto a Dionex 

DX-600 ion chromatography system via an AS-40 autosampler. The system was 

equipped with a 75 µL sample loop, CG-16 and CS-16 cation exchange columns, and a 

CERS500 electrolytically-regenerated suppressor and operated with Chromeleon 

software (version 6.8). The suppressor was regenerated via an external source of DI water 

to improve the signal-to-noise ratio of the analysis. Ammonium and other cations were 

eluted isocratically with 19 mM methanesulfonic acid at 0.5 mL/minute. Calibration was 

completed externally using a serial dilution of a commercially available mixed cation 

standard (Environmental Express, Charleston, SC, USA) that were fit with a second-order 

polynomial through the origin between 0.005 and 25 mg/L ammonium. Quantification 
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accuracy was verified by analysis of an independent mixed ion standard (Thermo 

Scientific, Waltham, MA, USA). 

2.2.3 Experimental Procedures 

Reaction solutions were prepared with DI water. Phosphoric acid and sodium 

phosphate buffers were used at double the concentration of the initial reactants to control 

solution pH under hydrothermal conditions. The correct proportions of the buffer species 

to achieve desired pH at high temperatures and pressures (3.3 at 250 °C and 40 bar) were 

calculated using the revised HKF equations of state from Tanger and Helgeson (1988), 

Shock et al. (1992), and the revised HKF parameters for H3PO4(aq), H2PO4
-, HPO4

2- PO4
3-

, 

and similar pyrophosphate species, that occur in significant abundance at high 

temperatures, from Shock et al. (1989; 1997) via the SUPCRT92 software package from 

Johnson et al. (1992) and the thermodynamic properties from Wagman et al. (1982) and 

Kelley (1960) and EQ36 (Wolery, 1992). These calculations revealed the required 

phosphate acid:salt ratios to reach the desired pH at high temperature, as well as the 

appropriate low-temperature pH (2.2 at 25 °C) at which reactant solutions should be 

prepared, which was verified with a Thermo Orion SB20 pH meter. 

These solutions were bubbled in 7 mL Supelco clear glass vials with ultra-high 

purity, ≥ 99.999%, argon (PA) for ≥ 20 minutes before being loaded into silica tubes 

sealed at one end (eventual reaction vessels). Silica tubes were purchased from GM 

Associates and Technical Glass Products as 2 x 6 mm (inner diameter x outer diameter) 

“fused quartz” (silica) tubing. This material was used as the reaction container because 

previous studies showed that stainless steel and other container-materials can catalyze 

organic reactions (e.g., Kharaka et al., 1993; Bell et al., 1994). A welding torch (≥ 



24 

99.95% H2 (PA) and ≥ 99.5% O2 (PA)) was used to seal the tube ends to produce closed 

reaction vessels. Upon loading the solution, the tubes were immediately immersed in 

liquid nitrogen to freeze the reactant solution, the tube headspace was briefly purged with 

argon, and the headspace was vacuum pumped to ≤ 100.0 millitorr to remove remaining 

atmospheric gases. Still submerged in liquid nitrogen above the height of the frozen 

reactants and under vacuum, the open ends of the tubes were sealed with the torch. 

Sealed reaction vessels were kept frozen and in the dark prior to conducting high-

temperature experiments. Several frozen reaction vessels were thawed and analyzed 

without high-temperature exposure to confirm that no alteration to the initial reagent had 

occurred during storage. 

For most experiments, a Varian GC oven (similar to the model mentioned above) 

was preheated with screw-capped iron pipes (to provide thermal inertia) to 250°C for ≥ 2 

hours.  As verified by two Fluke 52 II thermocouples, the air temperature within the 

preheated iron pipes varied spatially and temporally by no more than ± 2.5°C.  Reaction 

vessels were placed inside the preheated iron pipes, and the temperature within the pipes 

was observed to stabilize after 30-60 minutes.  Due to the temperature stabilization time 

of the vessels within the oven, rate constants for experimental reaction kinetics were 

calculated only from kinetic time series of experiments with ≥ 2 hours of heating time; 

the starting time, t = 0, for most reactions was considered to be 120 or 240 minutes of 

heating (theat, Table A2). For faster reactions, namely those involving S-(-)--

methylbenzylamine, R-(+)--methylbenzyl alcohol, 4-methoxybenzylamine, and 3-

methyl-α-methylbenzylamine, a brass block heating apparatus with cartridge heaters and 

an internal thermocouple was used to provide more contact and thus faster heating times 
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(as in Yang et al., 2014). The reaction vessels in the block heater had an observed 

temperature stabilization time of 5 minutes; therefore, rate constants derived from heating 

block experiments were calculated from kinetic time series of experiments with theat ≥ 5 

minutes of heating time. 

At the end of each experiment, the reaction vessels were quickly removed from 

their heating source and submerged in room temperature water to rapidly quench the 

reactions and preserve the products.  The time at which the reaction vessels were 

removed from the oven was considered the final experimental time (normalized for time 

of heating).  After quenching the reactions in water, the reaction vessels were frozen and 

left in the dark until they were extracted and analyzed. Several duplicate experiments 

were immediately analyzed without the freezing step to verify that no significant changes 

in product distribution occurred during the freezing or storage processes. 

Prior to extracting organic reaction products, the solutions were transferred to 7 

mL Supelco clear glass vials with polytetrafluoroethylene/silicone septa lids. Then the 

solutions were brought to a pH of ~12 using 0.085 M potassium hydroxide (KOH in DI) 

saturated with dibasic sodium carbonate (Na2CO3; the solution bubbled if sample pH was 

insufficiently raised by the KOH, prompting further pH adjustment). This step was taken 

to deprotonate the amine functional groups and ensure they would partition into the DCM 

during liquid/liquid extraction. Dichloromethane, containing 0.01 M dodecane as an 

internal standard, was added to the solution in a 10:1 ratio for the liquid/liquid extraction 

procedure.  This mixture was intermittently gently shaken for ≥ 15 minutes and the 

organic layer was separated and immediately taken for GC or GC-MS analysis. 
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In order to ensure reaction of only the protonated forms of benzylamine and α-

methylbenzylamine, all experiments were buffered at pH 3.3.  At this pH, the amines are 

more than 98% in the protonated forms if their pKa values at 250°C are ~5 or greater. The 

pKa values of several amines have been measured as a function of temperature; they 

decrease with increasing temperature, as shown in Fig. 2. The pKa values of these amines 

are all 8.5 – 10.7 at 25°C, and all decrease to around 5 – 6 at 250°C, specifically, 

ammonium (pKa = 5.2, Read, 1982), cyclohexaminium (pKa = 6.0, Mesmer and Hitch, 

1997), morpholinium (pKa = 5.2, Ridley et al., 2000), dimethylaminium (pKa = 6.1, 

Bénézeth et al., 2001), and ethanolaminium (pKa = 5.5, Bénézeth et al., 2003). 

Benzylaminium, α-methylbenzylaminium, and ammonium have similar pKa values at 

25°C (9.4, 9.9, and 9.2, respectively; Richner, 2013; Gluck and Cleveland Jr., 1994; and 

Read, 1982, respectively). Although the pKa values of benzylamine and -

methylbenzylamine have not been measured at high temperature, we expect they will 

follow the same general trend exhibited by the other amines, and their pKa values should 

be in the range 5 – 6 at 250°C. Within this pKa range, the amines should be almost 

completely protonated at pH 3.3 (Fig. 2). The ring substituted benzylamines included in 

the present study have pKa values ranging from 8.6 to 9.6 (Blackwell et al., 1964) at 25°C 

(Fig. A1), and thus their unprotonated forms should exist only in very low abundance 

under experimental conditions. 

Two separate time series experiments were performed with benzylamine at 

concentrations of 0.05 and 0.15 molal and phosphate buffer concentrations of 0.1 and 0.3 

molal, respectively. The two concentrations allowed us to to determine the effect of 

reactant and buffer concentrations on reaction kinetics and provided a test for the  
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Fig. 2. Calculated experimental pH (single filled circle) and empirically-derived literature 

pKa values (open symbols) vs. temperature for ammonium (Read, 1982) and a variety of 

protonated amines: 3-methoxypropylaminium (Rhee et al., 2010), morpholinium (Ridley 

et al., 2000), cyclohexylaminium (Mesmer and Hitch, 1977), dimethylaminium (Bénézeth 

et al., 2001; Bergström and Olofsson, 1977), ethanolaminium (Bénézeth et al., 2003), 

benzylaminium (Bunting and Stefanidis, 1990; Hanai et al., 1997; Richner, 2013), and α-

methylbenzylaminum (Gluck and Cleveland, 1994). The calculations for experimental 

pH were performed using the program EQ36 (Wolery, 1992), SUPCRT92 (Johnson et al., 

1992), and empirical data and estimated thermodynamic properties therein (Tanger and 

Helgeson, 1988; Shock et al., 1992; Wagman et al., 1982; Kelley, 1960; Shock et al., 

1989; 1997). The box illustrates the range of empirically measured (Blackwell et al., 

1964) and predicted pKa values at 25°C for the ring-substituted benzylamine derivatives 

used in this study (Fig. A1). The experimental, phosphate-buffered pH was calculated 

using the thermodynamic properties of ammonia and ammonium as a proxy for 

benzylamine and its derivatives, since there are no published pKa data for benzylamine 

above 80°C.  
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presence of 2nd order decomposition kinetics. Additionally, previous super- and near-

critical hydrothermal experiments have demonstrated enhanced rates for the hydrolysis of 

benzyl-carbon-bonded amines with increasing ionic strength (Torry et al., 1992), so the 

two concentrations allowed an evalulation of this effect. Experiments with even higher 

concentrations of benzylamine and phosphate buffer were attempted, but abandoned due 

to problems with precipitation of solids upon reactant solution preparation, which 

complicated the experimental setup and cast doubt as to the reactant solubility at high 

temperature. 

2.2.4 Kinetic Modeling 

Kinetic models were developed to test whether a pseudo-first-order rate analysis 

would provide sufficiently accurate deamination reaction rates constants for the various 

benzylamines to yield insight into deamination reaction mechanisms. Kinetic modeling 

using simple 1st-order decay functions and consecutive 1st-order models was performed 

by fitting experimental data in KaleidaGraph software (version 4.1.0). More complex 

kinetic models utilized the COPASI program (version 4.20); all COPASI rate constants in 

this study were solved using the “Levenberg-Marquardt” method. Identical products 

formed by multiple different irreversible reactions were tracked in some models 

according to which reaction formed them by running a “time course” method. Additional 

details regarding the kinetic models employed are provided in Sections 2.3.2 and 2.3.3 

below. 

2.3 Results and Discussion 

2.3.1 Benzylaminium (BA) reaction paths 
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Reaction of benzylamine (BA) at 250°C, 40 bar, and pH 3.3 for 20 hours results 

in 33% conversion to benzyl alcohol and ammonium (NH4
+), which are each formed in 

near stoichiometric equivalence to BA loss during this reaction time (Table A2 and A3). 

This suggests that substitution of the amine by water is the primary reaction path for the 

benzylamine, via the protonated form, BAH+.  Unless otherwise specified in this 

manuscript, all reactions of the various benzylamines under the experimental conditions 

are assumed to proceed via their protonated forms, and so reaction of BA is understood to 

imply reaction via BAH+. 

Although the reaction yields benzyl alcohol and NH4
+ as essentially the only 

products at early times, other minor products were detected, including: dibenzylamine, 

toluene, dibenzylimine, and tribenzylamine. Of these minor products, toluene was formed 

as < 0.2 mole% of total product yield at early reaction times. Toluene is typically the 

major product in unbuffered supercritical and subcritical hydrothermal experiments 

involving BA (Houser et al., 1989; Katritzky et al., 1990; 2001), which suggests toluene 

is a product of reactions involving unprotonated BA rather than BAH+. 

At later reaction times, numerous other small peaks were observed in the GC 

chromatograms (Fig. A2) with retention times that correspond to structures containing 

two, three, and four phenyl rings. These products may be similar to those observed in 

previous hydrothermal BA experiments by Katritzky et al. (1990; 2001) that were 

performed with higher BA concentrations and unbuffered conditions. Multi-ring products 

can form via electrophilic aromatic substitution of the primary product benzyl alcohol 

(mechanisms are discussed below). 
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At later reaction times, multi-ring products constitute a larger portion of the total 

product mixture, and specific electrophilic aromatic substitution products (EAS products) 

could be clearly identified. In particular, the ortho-, meta-, and para-isomers of benzyl-

benzyl alcohol were identified by comparison with authentic standards (see further 

below). After 140 hours (longest reaction time) these three products contributed ~10 

mole% of total products, normalized to number of phenyl rings (e.g., 1 eq. benzyl-benzyl 

alcohol ≡ 2 eq. phenyl rings). Support for electrophilic aromatic substitution reactions of 

benzyl alcohol also comes from separate experiments performed starting with α-

methylbenzylamine as well as the chiral compound R-(+)-α-methylbenzyl alcohol (see 

Section 2.3.3 and Appendix A). EAS products have also been detected in other 

hydrothermal experiments starting with benzyl alcohol (Fecteau, 2016). Any kinetic 

reaction scheme must, therefore, take these secondary electrophilic aromatic substitution 

reactions into account. 

2.3.2 Kinetics of the BA Reaction 

The decrease in concentration of BA with time, and concomitant rise in the 

concentrations of benzyl alcohol (BAL) and NH4
+ as the products is shown in Fig. 3. 

Under the experimental conditions, BA is almost exclusively in the reactive protonated 

form, BAH+. The benzyl alcohol concentration increases at early times and later 

decreases due to secondary electrophilic aromatic substitution reactions mentioned above. 

The benzyl alcohol concentration is lower than that of NH4
+ at all reaction times due to 

these follow-up reactions, which limit the maximum attainable concentration of benzyl 

alcohol. A kinetic model that includes conversion of BA to BAL, and the follow-up 

reactions is shown in Fig. 4.  
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Fig. 3. Reactant and product concentrations vs. time in hydrothermal experiments 

(250°C, Psat) with 0.05 molal benzylamine, BA, buffered at pH 3.3 using phosphate salts. 

The solid curve through the BA data (filled circles) represents the best fit to a first-order 

kinetic model, Eq. (2). The solid curve through the benzyl alcohol, BAL, data (open 

triangles) represents the best fit to a consecutive first-order kinetic model, Eq. (4). The 

NH4
+ data (open squares) are not fit with an equation, but are compared to predicted 

NH4
+ concentrations (solid curve) assuming BA deamination follows 1:1 stoichiometry 

with deamination, Eq. (3). The dotted lines represent best fits to a kinetic model that 

includes second-order reactions for the decomposition of benzyl alcohol (see Fig. 7). For 

visual clarity, the data are presented as mole% of BA at t = 0, with products normalized 

to zero mole% for t = 0. Duplicate experiments can be seen for some reaction times. 

Analytical uncertainties (±1 standard deviation for triplicate GC injections for organics 

and duplicate injections for NH4
+) are smaller than the data points. 
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In principle, conversion of BA to BAL is reversible. Under the experimental 

conditions, however, the reverse reaction is negligible since the experiments are 

performed at very low reactant concentration that drive the reaction toward the alcohol 

and ammonia. The experiments are also performed at low pH, and under these conditions 

the nitrogen leaves as NH3 and will be rapidly protonated to NH4
+. This also precludes 

the reverse reaction since the protonated NH4
+ is neither basic nor nucleophilic enough to 

react with the alcohol product. The rate constant for reaction of the BA is thus assumed to 

be pseudo-first-order and irreversible (kobs
1, Fig. 4). The electrophilic aromatic 

substitution and other follow-up reactions of the benzyl alcohol were also modeled using 

collective, irreversible 1st-order kinetics (kobs
2).  

 This consecutive first-order decay model was used to fit the time-dependent data 

shown in Fig. 3 according to Eq. (2 – 4): 

 

     [BA] = [BA]0 e
-k

obs
1 t   (2),    

[NH4
+]p = 100 – [BA]    (3),    

[BAL] = (kobs
1 [BA]0)/(kobs

2 – kobs
1) (e-k

obs
1
 – e-k

obs
2
)  (4),    

 

where [BA] is the concentration of BA at a given time, [BA]0 is the concentration of BA 

at time zero, [BAL] is the concentration of benzyl alcohol, and [NH4
+]p is the predicted 

concentration of NH4
+ assuming it is produced in a 1:1 stoichiometric ratio to BA loss.  

The values of the rate constants that gave the best fit to the data, shown as the solid lines 

in Fig. 3, are 5.1  10-6 s-1 and 4.0  10-6 s-1 for kobs
1 and kobs

2, respectively. These 

observed rate constants can be deconstructed into more elementary rate constants. As  
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Fig. 4. A kinetic model for the hydrothermal decomposition of benzylamine, BA. The 

observed rate constants for the decomposition of BA (kobs
1) and the decomposition of 

benzyl alcohol, BAL, (kobs
2) were modeled using irreversible, first-order kinetics (see 

text). Reactions of both the amine and the alcohol are assumed to proceed via their 

protonated forms, which are not shown (see text). 
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discussed above, under the experimental conditions BA will be protonated, and it is the 

protonated form, BAH+, that reacts (Fig. 5). The rate constants for protonation, k+H+BA, 

and deprotonation, k–H+BA, can be assumed to be much larger than the rate constant for 

the deamination of BAH+
, kr

BAH+
, thereforee reversible protonation can be represented as 

an equilibrium process. The ratio of k+H+BA to k–H+BA is equal to the equilibrium constant 

for reversible protonation, KBA. The equilibrium constant can be used with the 

experimental pH to calculate the fraction of BAH+ present in experiments, f(BAH+) (Fig. 

5). With an experimental pH of 3.3 and an estimated minimum value for KBA of 105 (pKa 

= 5) (see Section 2.2.3 and Fig. 2), more than 98% of BA will be in the protonated BAH+ 

form, i.e., f(BAH+) > 0.98. The rate constant for the deamination of BAH+, kr
BAH+

, is 

equal to the observed rate constant, kobs
1, multiplied by f(BAH+). Because f(BAH+) is 

nearly unity, kobs
1 ≈ kr

BAH+
. Accordingly, although we refer to BA reactions, since total 

benzylamine concentrations are determined after extraction and GC analysis, it is the 

protonated BAH+ form that reacts, and for which the reaction mechanisms are relevant. 

The situation for kobs
2 for BAL is similar. It is also determined by the rate constant 

for reaction of the protonated alcohol multiplied by the fraction of the alcohol that is in 

the protonated form (Fig. 6). Unlike the amine, the fraction of the alcohol in the 

protonated form was not estimated since the follow-up electrophilic aromatic substitution 

reaction mechanisms were not the focus of this work. Reaction of the benzyl alcohol to 

form EAS and other products was considered to be pseudo-first-order based on the 

assumption that the concentration of phenyl rings in solution is roughly constant. The 

formation mechanism for one of the benzyl alcohol derived EAS products that was 

positively identified in the product mixture, para-benzylbenzyl alcohol, is shown 
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Fig. 5. The observed rate constant for reaction of the amine, kobs
1, is given by the fraction 

of the amine that is in the protonated form f(BAH+), multiplied by the rate constant for 

reaction of the protonated form, kr
BAH+.   
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Fig. 6. Proposed mechanism for formation of p-benzylbenzyl alcohol from benzyl alcohol 

(BAL), as an example electrophilic aromatic substitution product (EAS product), which 

builds up at later reaction times. The electrophilic aromatic substitution mechanism 

consists of two steps: first, addition of the cation to an aromatic ring, EAS (1), and 

second, loss of a proton to regenerate a new substituted aromatic ring, EAS (2). The 

observed rate constant for reaction of the alcohol, kobs
2, is given by the fraction of the 

alcohol in the protonated form f(BALH+), multiplied by the rate constant for reaction of 

the protonated form, kr
BALH+

.    
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in Fig. 6. Protonation of the benzyl alcohol, similar to protonation of the starting amine, 

generates a very good leaving group for the alcohol, i.e., water. Loss of water from the 

protonated alcohol forms a benzyl cation, which can in principle react with any aromatic 

ring in solution via the conventional two-step electrophilic aromatic substitution 

mechanism, i.e., addition of the cation to the benzene ring of an aromatic compound, 

EAS (1), followed by deprotonation to form a new substituted aromatic structure, EAS 

(2) (Fig. 6). Corresponding electrophilic aromatic substitution reactions can, in principle, 

occur with any aromatic molecule in solution, including an aromatic product of a prior 

electrophilic aromatic substitution reaction. On this basis, we assume a roughly constant 

concentration of aromatic ring structures that can react with benzyl alcohol; this allows 

the additional assumption of pseudo-first-order kinetics for the follow-up reactions of the 

benzyl alcohol.  

To test the assumptions of pseudo-first-order-kinetics, a more complex kinetic 

model that describes the benzyl alcohol reaction as a second-order process involving the 

reaction of two benzyl alcohol molecules was considered (Fig. 7). The rate of reaction of 

the benzyl alcohol is now described by a second-order rate constant, kobs
(2). In addition to 

the first-order reaction to form the alcohol, the starting amine is allowed to react with the 

alcohol product in another second-order reaction, fit with the same rate constant, kobs
(2) 

(Fig. 7). In this model, the time-dependent concentrations of BA and benzyl alcohol were 

fitted using a non-linear least-squares method to give the best values for the two rate 

constants, kobs
1 and kobs

(2). These best fit values were 4.8  10-6 s-1 and 4.8  10-5 M-1 s-1, 

respectively. 
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Fig. 7. Kinetic scheme for reaction conversion of benzylamine, BA, into benzyl alcohol, 

BAL, kobs
1, and reaction of the alcohol to give electrophilic aromatic substitution 

products via second-order reaction with another alcohol, kobs
(2), and also via a second-

order reaction with the starting amine, with the same rate constant, kobs
(2). This kinetic 

model is compared to the simpler, consecutive first-order model of Fig. 4. 
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The values of the first-order rate constants for reaction of the amine to give the 

alcohol, kobs
1, are 5.1  10-6 s-1 for the simple, first-order model (Fig. 4) and 4.8  10-6 s-1 

for the model that includes the second-order reactions (Fig. 7). The difference in these 

two values is small, because the majority of the amine decomposes via the first-order 

process.  As mentioned above, after ~30% conversion of the amine, no EAS products are 

detectable; they only become significant for amine conversions approaching 70%. The 

results from the kinetic model that includes the second-order pathways suggest, via a 

“time course” method (Section 2.2.4), that only 10% of the amine reacts via second-order 

reaction with the alcohol product after 140 hours. 

The significance of competing second-order reactions was further investigated by 

determining the dependence of BA reaction kinetics on the concentration of the amine. 

Two time-series experiments were performed to compare reaction kinetics for 0.05 molal 

amine with those of 0.15 molal amine (Table A4); the corresponding phosphate buffer 

concentrations were 0.1 molal and 0.3 molal, respectively. Loss of the amine at 0.15 

molal could be described by first-order kinetics (R2 = 0.992) with a kobs
1 of (6.9  0.5)  

10-6 s-1. This value is larger than the corresponding rate constant for 0.05 molal amine by 

a factor of only 1.4. Pure second-order kinetics would be expected to increase the 

observed first-order rate constant, kobs
1

, by a factor of 9 at the start of the reaction when 

tripling the concentration of reactant. This observation, together with the small difference 

in the kobs
1 for the two kinetic models (i.e., Fig. 4 vs. Fig. 7), and the fact that the amine 

decay kinetics fit well to a first-order model (Fig. 3), suggest the simpler first-order 

kinetic model gives reaction rate constants that are sufficiently accurate for the present 
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study. This is especially evident when considering that the rate constants for ring 

substituted compounds range over almost four orders of magnitude (see below). 

Two possible mechanisms for the substitution reaction to form benzyl alcohol can 

be considered (Clayden et al., 2001), Fig. 8. In the first (SN1), unimolecular C–N bond 

cleavage in the protonated benzylaminium forms a benzyl cation, with NH3 as a leaving 

group. Subsequent C–O bond formation occurs by water addition to the cation, followed 

by deprotonation to form the alcohol.  The first step is rate determining in this 

mechanism, since energy is required to break the C–N bond. In the second mechanism 

(SN2), water attacks the protonated amine, the C–O bond forms and the C–N bond breaks 

at the same time (a concerted reaction). Subsequent deprotonation forms the alcohol, and 

the rate determining step is the concerted bond breaking/bond making step. Under the 

experimental conditions, the NH3 that leaves in both the SN1 and the SN2 reactions will 

be quickly protonated to form NH4
+. Mechanisms involving radical intermediates are not 

considered since no significant quantities of expected radical products, such as toluene or 

bibenzyl (combined < 0.6 mole%), were observed even at the longest time experiments 

(140 hrs). 

Although the rate determining step in the SN2 mechanism is a bimolecular 

reaction between the protonated amine and water, the reaction will obey pseudo-first-

order kinetics because water is the solvent, and its concentration is much larger than that 

of the amine and changes negligibly over the timescale of the reaction progress. Since 

both are formally first-order for the protonated amine, the SN1 and SN2 mechanisms 

would be indistinguishable in the absence of additional mechanistic information. It is  



41 

 

Fig. 8. SN1 (blue) and SN2 (red) reaction mechanisms for the substitution reaction of 

BAH+ to form BAL.  
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important to distinguish between these two mechanisms so that useful kinetic models of 

reactivity can be developed. For example, the two mechanisms would be expected to 

have different temperature-dependent changes in rate, since one is unimolecular and the 

other is bimolecular, the former being more entropically favored. Thus, a series of 

experiments were performed on structural derivatives of BA in order to determine 

whether the SN1 or the SN2 mechanism was the most important in the formation of benzyl 

alcohol (see Section 2.3.4). 

2.3.3 α-methylbenzylaminium (α-CH3-BA) kinetics 

Similar experiments as a function of time were performed with 0.05 molal α-

methylbenzylamine, α-CH3-BA, under the same conditions as those for BA. A methyl 

group on the α-carbon of α-CH3-BA compared to BA should influence the relative rates 

of the SN1 and the SN2 reaction mechanisms quite differently. This methyl group should 

increase the rate of amine decomposition via the SN1 reaction compared to BA because 

the methyl group will stabilize the intermediate benzyl cation via hyperconjugation. In 

addition, the presence of this methyl group should decrease the rate of α-CH3-BA 

decomposition via the SN2 mechanism compared to BA, because steric hindrance 

decreases the rate of nucleophilic attack by H2O or other nucleophiles (Clayden et al., 

2001). The time-dependence of the loss of α-CH3-BA is shown in Fig. 9, along with the 

formation of α-methylbenzyl alcohol (α-CH3-BAL) and styrene. Unlike with BA, alkene 

formation (styrene in this case) is possible for α-CH3-BA via an elimination mechanism. 

The data in Fig. 9 indicate that after ~20 mins the alcohol and styrene reach a near-

constant ratio, suggesting that formation of styrene from the alcohol by dehydration is 

rapid and reversible. Similar to BA, the sum of the α-CH3-BAL and the styrene (~50 
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Fig. 9. Reactant and product concentrations vs. time for experiments with 0.05 molal α-

methylbenzylamine, α-CH3-BA, solutions phosphate-buffered at pH 3.3 at 250°C. The 

curves through the data points for α-CH3-BA (closed circles), α-methyl benzyl alcohol 

(α-CH3-BAL, open squares), and styrene (open diamonds), represent the best fits to the 

data using the kinetic model summarized in Fig. 10, that includes first-order reaction of 

α-CH3-BA to give α-CH3-BAL, and second-order reaction of α-CH3-BAL with α-CH3-

BA and α-CH3-BAL to give electrophilic aromatic substitution products. For clarity, the 

data are plotted as mole% of α-CH3-BA at t = 0 (see Table A2 for molal concentrations). 

The concentration scale on the left is for α-CH3-BAL and the concentration scale on the 

right is for right is α-CH3-BAL and styrene. Duplicate experiments can be seen for 

certain time points. Analytical uncertainties (±1 standard deviation for triplicate GC 

injections) are smaller than the data points. 

  



44 

mole% at t = 60 min) is less than the quantity of α-CH3-BA lost (~90 mole% at t = 60 

min), presumably due to reactions that give EAS products analogous with those from 

benzyl alcohol. The kinetic scheme for the α-CH3-BA reaction is shown in Fig. 10. The 

values of the rate constants kobs
1, kobs

(2), kobs
3f and kobs

3r that give the best fit to the data 

(the solid lines in Fig. 9) are 7.0  10-4 s-1, 2.3  10-2 M-1 s-1, 6.9  10-3 s-1 and 5.3  10-3 

s-1, respectively. Fitting the α-CH3-BA concentration alone to first-order kinetics gives a 

value for kobs
1 of 7.6  10-4 s-1

. Since this value is within 10% of kobs
1 for the more 

complex model (i.e., 7.0  10-4 s-1) we assumed that first-order decay fits are sufficiently 

accurate for all substituted benzylamine compounds in the present study. 

The absolute values of kobs
3f and kobs

3r are not accurate, because the rates of these 

two processes are significantly faster than the rate at which the alcohol is formed from 

the amine and thus their values cannot be obtained from the data.  The ratio kobs
3f/kobs

3r, 

however, determines the ratio of styrene to alcohol, and this ratio is determined with 

much higher accuracy. The ratio represents an empirical equilibrium constant for 

alcohol/alkene interconversion of 1.3. Both benzyl alcohol, BAL, and the α-methylbenzyl 

alcohol, α-CH3-BAL, form electrophilic aromatic substitution products (EAS products), 

presumably via benzyl cations that are formed by elimination of water after protonation. 

The value of the second-order rate constant for reaction to give EAS products, kobs
(2), is 

480 times larger for α-CH3-BAL than for BAL. This difference can be explained in 

terms of the relative stabilities of the intermediate benzyl cations.  The α-methyl 

substituent in α-CH3-BAL stabilizes the benzyl cation via hyperconjugation. This makes 

it easier to form and results in a faster reaction. The pseudo-first-order rate constant for  
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Fig. 10. A kinetic model for the hydrothermal decomposition of α-CH3-BA. The rate 

constant for the deamination/dehydration of α-CH3-BAH+ (kobs
1) was modeled using 

irreversible first-order kinetics. The resulting α-methylbenzyl alcohol (α-CH3-BAL) can 

dehydrate reversibly to form styrene (kobs
3f and kobs

3r). Secondary benzyl cations (not 

shown) are assumed to be present in equilibrium with α-CH3-BAL, and can undergo 

electrophilic aromatic substitution with phenyl rings in solution, including α-CH3-BAL 

itself and α-CH3-BA to form multi-ring electrophilic aromatic substitution products 

(EAS products), with a second-order rate constant kobs
(2).  
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formation of the alcohol α-CH3-BAL from the amine α-CH3-BA, kobs
1, is larger than the 

corresponding rate constant for conversion of BA to BAL by a factor of 150.  This 

observation can be explained in the same way if this reaction proceeds via an SN1 

mechanism (Fig. 8), since this reaction for α-CH3-BA would generate the same, more 

stable, benzyl cation intermediate as in the corresponding alcohol reactions. 

In Fig. 10, styrene is shown as a product of elimination of H2O from the primary 

alcohol product, even though in principle styrene could also be formed in an elimination 

reaction of the starting amine.  However, two lines of evidence suggest that elimination 

from the amine does not occur to a significant degree. First, at early reaction times the 

ratio of α-CH3-BAL to styrene is much larger than unity and approaches 0.8 at later 

times (Fig. 10, Table A5). This suggests the alcohol is the primary product of reaction of 

the amine, not styrene, and that styrene is indeed formed as a secondary reaction of the 

alcohol.  Second, hydrothermal reaction of the (R)-enantiomer of α-CH3-BAL, R-(+)--

methylbenzyl alcohol, forms the corresponding (S)-enantiomer much faster than it 

produces styrene; i.e., substitution is much faster than elimination. See Appendix A for 

more details on these experiments and discussion regarding these lines of evidence. 

Overall, these findings suggest that α-CH3-BA primarily undergoes reaction to 

form the corresponding alcohol via an SN1 mechanism. The rate of reaction of α-CH3-BA 

increases relative to BA, consistent with an SN1 mechanism for both of these amines. 

However, it is also theoretically possible that BA actually reacts via an SN2 mechanism, 

and that the addition of the α-methyl substituent to BA simply decreases the rate of the 

SN2 mechanism and increases the rate of the SN1 mechanism, i.e., effectively switching 

the mechanism from SN2 for BA to SN1 for α-CH3-BA. This is possible because the α-
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methyl substituent will sterically hinder nucleophilic attack in an SN2 attack, reducing its 

rate. The α-methyl substituent will also stabilize the carbocation intermediate formed in 

an SN1 reaction via hyperconjugation and increase the reaction rate. Further experiments 

were performed using ring-substituted benzylamines to probe the deamination/hydration 

substitution reaction mechanisms for both compounds. 

2.3.4 Ring substituent effects 

Experiments were performed with ring substituted BA and α-CH3-BA 

derivatives, at 0.05 molal and the same experimental conditions. Ring substituents were 

chosen that would either donate electron density to the benzene ring (electron donating 

groups) or withdraw electron density from the benzene ring (electron withdrawing 

groups). Electron donating groups are expected to greatly increase the rate of reaction if a 

positive charge is generated in the benzene ring in the rate determining step, as would be 

the case for the SN1 mechanism that forms a benzyl cation intermediate (Fig. 8, blue). 

Electron withdrawing groups are correspondingly expected to strongly decrease the rate 

of an SN1 reaction because they destabilize the benzyl cation intermediate. The SN2 

mechanism does not result in build-up of charge in the benzene ring in an intermediate or 

transition state (Fig. 8, red), so ring substituents are expected to have a relatively weak 

influence on the rate of an SN2 reaction. In this way, substituent effects can provide 

information on reaction mechanisms. 

 Rate constants for the decay of the variously ring-substituted BA and α-CH3-BA 

derivatives are summarized in Table 1. The rate constants were obtained assuming 

pseudo-first-order kinetic fits. The R2 values for each kinetic fit are included in Table 1 

(see Table A2 for a more extensive summary of the experimental data). From Table 1 it is  
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Table 1  

Hammett parameters (σ+) and rate constants (log k) for ring-substituted  

BA and α-CH3-BA compounds. 

Substituent(s) σ+ a log k, s-1 c 

BA compounds   

4-OCH3 -0.648 -2.23 

4-CH3 -0.256 -4.62 

3,5-diCH3 -0.13 b -4.81 

3-CH3 -0.065 -5.05 

H (BAH+) 0 -5.29 

3-OCH3 0.047 -5.13 

3-F 0.352 -5.68 

3-Cl 0.399 -5.59 

3-CF3 0.52 -5.49 

3,5-diCF3 1.04 -5.70 

α-CH3-BA compounds   

3-CH3 -0.065 -2.73 

H (α-CH3-BAH+) 0 -3.10 

3-CF3 0.52 -4.37 

3,5-diCF3  1.04 b -5.67 

a σ+ values were obtained from Gordon and Ford, 1972. 
b This was calculated by multiplying meta-σ+ value by 2. 
c These values were calculated from 1st order kinetics fits to the data. 
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clear that electron donating substituents, such as –OCH3, increase the reaction rate 

constant by orders of magnitude for both BA and α-CH3-BA. This strongly suggests a 

positively charged intermediate and transition state, consistent with an SN1 mechanism. 

In addition, electron withdrawing substituents, such as –CF3, decrease the reaction rate 

constants by orders of magnitude for α-CH3-BA, again consistent with an SN1 

mechanism. Electron withdrawing substituents have a much weaker effect on the rate 

constant for reaction of BA, suggesting only a weak build-up of charge in the transition 

state for the rate determining step, consistent with an SN2 mechanism. 

This discussion of substituent effects can be put in a quantitative framework by 

using a Hammett analysis. Here, the electron donating and withdrawing abilities of 

substituents are quantified by assigning them a value; the parameter is a quantitative 

measure of their influence on a related reaction. In the original work by Hammett (1935), 

substituent effects were quantified in terms of their influence on the ionization constant 

for benzoic acid. More appropriate for the present reaction are substituent  values 

derived from rate constants for the closely related SN1 solvolysis reaction of α,α-

dimethylbenzyl chloride (tert-cumyl chloride) reported by Brown and Okamoto (1958). 

The substituent effects for this reaction were given the specific label +, since they 

quantify the influence of the substituent on a reaction that generates a positive charge on 

a benzene ring in the rate-determining step. 

The Hammett equation, Eq. (5): 

 

log kx = ρσ+ + b, (5),   
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represents a linear free energy relationship if the substituent effects on the rate-

determining step for tert-cumyl chloride solvolysis is directly proportional to the 

substituent effects on the rate-determining step for the reaction of interest (Brown and 

Okamoto, 1958). In this version of the equation, kx is the rate constant for the reaction of 

the ring-substituted benzylamines (where the subscript x represents the substituent; e.g., 

“H” for the parent), ρ is a constant for the reaction that characterizes its sensitivity to the 

substituent effects, and b is the y-intercept that, assuming a perfect fit, is equal to log kH. 

For reactions that generate a positive charge on a benzene ring, electron donating 

substituents have negative + values and electron withdrawing substituents have positive 

+ values (Brown and Okamoto, 1958). Thus, a Hammett plot with  values has a 

negative slope for a reaction that builds-up positive charge in the ring in the rate-

determining step. Table 1 includes the σ+ values for each of the ring substituents (Gordon 

and Ford, 1972), together with the first-order rate constants for the decomposition of each 

of the substituted and parent compounds (log kx, s
-1). 

The Hammett plot for this data is shown in Fig. 11. According to the Hammett 

relationship, a constant reaction mechanism for all of the substituted structures should 

result in a linear relationship; This is observed for α-CH3-BA hydrolysis (straight dashed 

line). A linear least squares regression fit this data with an R2 of 0.997 and a slope of -

2.50 (ρ1α, Fig. 11, left). The negative slope and linear correlation strongly support a 

constant mechanism for all of the substituted -methylbenzylamines, which generates a 

positively charged transition state, i.e., reaction via the SN1 mechanism. In turn, this is in 

agreement with the observation of faster reaction for the unsubstituted α-CH3-BA 

compared to unsubstituted BA discussed above. Thereforee, the first-order rate constant 
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Fig. 11. Top, a Hammett plot based on 250°C deamination/hydration kinetics for ring-

substituted BA (filled circles) and α-CH3-BA (open circles) from data compiled in Table 

1. Two additive linear functions were used to fit the BA data (curved dashed line), and 

the best fit parameters were used to solve for the linear functions associated with a 

positively charged transition state (blue line) and a more neutrally charged transition state 

(red line). The data for α-CH3-BA were fit with a single linear function (straight dashed 

line). The reaction constants (ρ), equal to the slope of each linear function, are displayed 

on the plot. Bottom, another Hammett plot following the same formatting, based on the 

90-100°C acetolysis of two aryl tosylates is shown for comparison. This plot was 

constructed using data compiled from the following studies: Winstein et al., 1952; 

Winstein et al., 1953; Lancelot et al., 1969; S. Harris et al., 1969; Coke et al., 1969. 
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for the decomposition of α-CH3-BA is attributed to an SN1 reaction mechanism (kα ≈ 7.6 

 10-4 s-1). 

The relationship for BA (curved dashed line), however, is clearly non-linear. 

Curved Hammett plots are usually taken as strong evidence for a change in mechanism 

with changes in the substituents ability to stabilize or destabilize charge (see below). In 

this case, the two competing mechanisms are likely to be SN1 and SN2. To properly 

describe the Hammett relationship for all of the substituted BA, the contributions of each 

of these mechanisms needs to be considered. The rate constant for the BA structures was 

modeled as a linear sum of rate constants for the two mechanisms. Each mechanism is 

 

 

described by its own linear Hammett relationship, according to Eq. (6): 

 

log kx = log [10(ρ1*σ+ - b1) + 10(ρ2*σ+ - b2)] (6). 

 

This equation was fit to the data using nonlinear least squares regression analysis 

to solve for the parameters ρ1, b1, ρ2, and b2. For this equation, ρ1 and b1 are the 

reaction constant and y-intercept for the SN1 mechanism, while ρ2 and b2 are the reaction 

constant and y-intercept for the SN2 mechanism. The best fit values for each  

parameter are as follows: ρ1 = -5.20, b1 = -5.55 (SN1 reaction), ρ2 = -0.21, and b2 

= -5.50 (SN2 reaction). 

The b1 and b2 intercept values obtained from the best fit of Eq. (6) were used to 

calculate the contribution of each mechanism to the reaction of the parent, unsubstituted 
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BA. This analysis gave an SN1 contribution of ~47% and an SN2 contribution of ~53%. 

From these percentage contributions, rate constants for the individual mechanisms were 

obtained, i.e., kSN1 ≈ 2.4  10-6 s-1 and kSN2 ≈ 2.7  10-6 s-1. For comparison with ring 

substituted benzylamines, reaction of 4-methoxybenzylamine (most electron donating) 

had more than 99.9% contribution from SN1, while reaction of 3,5-

bis(trifluoromethyl)benzylamine (most electron withdrawing) had more than 99.9% 

contribution from SN2. 

The reaction constant (ρ1) for the SN1 mechanism for the benzylamines is much 

more negative than the reaction constant (ρ1α) for the SN1 mechanism for α-CH3-BA 

(-5.20 vs. -2.50, respectively). This is expected, because the α-methyl group should 

stabilize the charged transition state and delocalize charge away from the ring due to 

hyperconjugation, thus making reaction kinetics less sensitive to ring substituent effects 

compared to the benzylamines.  

The dependence of the rate constants on substituents shown in Fig. 11 is 

consistent with other mechanistic studies of substitution reactions reported in the 

literature. Specifically, studies of lower temperature (90-100°C) acetolysis of substituted 

1-phenyl-2-ethyl tosylates (Lancelot et al., 1969; Winstein et al., 1952; Harris et al., 

1969; Winstein et al., 1953; Coke et al., 1969) give a Hammett plot with curvature very 

similar to that for BA (Fig. 11). Again, a switch from an SN1-like mechanism (in the area 

of strong dependence on substituent) to an SN2 mechanism (in the area of weak 

dependence on substituent) was proposed to account for this behavior. For these 

structures a simple SN1 mechanism is not possible because the leaving group is on a 

primary carbon atom. Instead, a mechanism in which the tosylate leaves by anchimeric 
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assistance from the benzene ring was proposed. This still generates a positive charge on 

the benzene ring, but the structure of the cation is somewhat different. The reaction 

parameters for this data are ρ2 = -0.04 in the SN2 region (even smaller than for BA), and 

ρ1 = -2.96 in the SN1-like region. This is also smaller than the reaction constant for BA in 

the SN1 region, which may be because the structure of the cation intermediate is simply 

not the same for both reactions. 

The Hammett plot for substituted secondary tosylates exhibits similar behavior to 

the secondary -CH3-BA (Fig. 11). The plot for the secondary tosylates exhibits a linear 

trend (R2 = 0.954), and has a negative slope with reaction constant ρ1 = -1.27 (Fig. 11). 

Just as for -CH3-BA, this indicates a single mechanism for all structures that generate a 

positive charge on the benzene ring. Like the BA and α-CH3-BA again, the reaction 

constant for the secondary structures (ρ1 = -1.27) represents a less negative slope than 

that for the primary structures discussed above (ρ1 = -2.96), presumably due to charge 

delocalization into the α-methyl group, which reduces the charge on the ring, and thus the 

sensitivity to ring substituents. 

Comparison of the Hammett plots for the amine hydrothermal substitutions with 

those for more conventional SN1 reactions also supports our mechanistic interpretation. 

Solvolysis of α,α-dimethylbenzyl chloride and ionization reactions of diphenyl methanol 

and triphenyl methanol all generate benzyl cations. The reaction constants for these 

processes are ρ = -4.54, ρ = -4.74 and ρ = -3.44, respectively (Brown and Okamoto, 

1958). Here again, the reaction constant is less negative for the carbons that have more 

extensive delocalization of the positive charge away from the benzyl carbon. Thus, the 

mechanistic conclusions related to the hydrothermal substitution reactions of BA and α-
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CH3-BA derived from the Hammett analysis are in accord with the literature on closely 

related reactions. 

2.3.5 Implications for modeling 

Primarily, the results of this study serve as a warning that Arrhenius style rate 

extrapolation under hydrothermal conditions should be treated with caution, especially in 

the case of kinetic modeling of organic compound reactions whose mechanisms remain 

unknown.  

Evidence for two competing mechanisms, SN1 and SN2, during the hydrothermal 

reactions of BA at low pH has implications for kinetic modeling of experimental and 

natural systems. Each mechanism contributes roughly equally to BA deamination under 

the experimental conditions, and yet these two mechanisms give identical products for 

BA and thereforee would be indistinguishable in the absence of the substituent studies 

described here. Since the unimolecular SN1 mechanism is more entropically favorable 

than the bimolecular SN2 mechanism, the SN1 would be expected to become increasingly 

favored with increasing temperature. Correspondingly, the SN2 would be expected to be 

favored over SN1 at lower temperatures. Thereforee, a linear extrapolation of observable 

reaction rate constants across hydrothermal temperature regimes using Arrhenius 

methods would not be reliable or valid for this particular reaction. Proper characterization 

of the reaction mechanism with temperature would require developing Hammett 

relationships at different temperatures (e.g., 200 and 300°C) so that SN1 and SN2 

mechanisms and their Arrhenius parameters could be quantified at different temperatures. 

For the α-CH3-BA reactions, the rate constants for the SN1 mechanism could be 

more reliably extrapolated to higher, subcritical temperatures without further mechanistic 
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investigation since we expect the SN1 mechanism will dominate at higher temperatures 

and that competing SN2 reaction could be ignored. Extrapolation to lower temperatures, 

however, would be unreliable since it is not known at what temperature the SN2 

mechanism may become significant, or even dominate the decomposition kinetics. Other 

mechanisms for amine decomposition may also be possible at lower temperatures. Bada 

and Miller (1970) described an elimination deamination mechanism for aspartic acid, 

which also has an amine bonded to a secondary carbon just like α-CH3-BA. 

The structures studied here are model amines, chosen so that substituent effects 

could be properly explored to obtain mechanistic insight.  However, the rates of their 

reactions may be related to those of more common naturally occurring amines if the 

reactions proceed via intermediates of similar stability. Based on kinetic studies of 

carbocation formation for various chlorides and tosylate compounds (Beste and 

Hammett, 1940; Brown and Rei, 1964; Schadt et al., 1976; Fujio et al., 1990; Fujio et al., 

1994), it can be approximated that 2° benzyl cations have similar stabilities to 3° alkyl 

cations, and that 1° benzyl cations have similar stabilities to 2° alkyl cations. On this 

basis, the reaction rate of α-CH3-BA might be similar to those of alkyl amines that form 

tertiary cation intermediates, and the reaction rate of BA might be similar to alkyl amines 

that form a secondary cation intermediates under acidic hydrothermal conditions. Our 

work also suggests that under these conditions, substitution mechanisms uncovered here 

may even outcompete previously proposed lower temperature deamination (elimination) 

mechanisms for amino acids (Bada and Miller, 1970). 

The present results suggest that acidic, dilute hydrothermal conditions should 

result in almost exclusive deamination of amines to form alcohols as primary products by 
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hydration. Rapid deamination would be consistent with observations of abundant NH4
+ in 

(intermediate pH) sediment-hosted hydrothermal systems (Von Damm et al., 1995; 

Holloway et al., 2011) and hydrothermally-treated carbonaceous meteoritic material 

(Pizzarello et al., 2011). Thus, one should expect that amines make up a 

disproportionately small component of aqueous organic nitrogen in acidic hydrothermal 

(≥ 250°C) systems. The observation of rapid substitution for the compounds studied here 

suggests that related substitution reactions should occur in the presence of nucleophiles 

other that water, which could be even more reactive. Examples include unprotonated 

amines (Brotzel et al., 2006), carbanions, and sulfides. Such reactions could generate 

larger, more stable organic compounds, perhaps containing heteroatoms via either an SN1 

or SN2 mechanism. 

2.4 Conclusions 

This study uses model compounds and traditional techniques from physical 

organic chemistry to determine the mechanisms for deamination/hydration reaction of 

primary amines under acidic, hydrothermal conditions. The influence of substrate 

concentration, the effect of an α-methyl substituent, and aromatic ring substituent effects 

on reaction kinetics were quantified and interpreted mechanistically. The mechanistic 

analysis demonstrated two competing substitution mechanisms (SN1 and SN2) and 

allowed determination of the individual rate constants for each of the two mechanisms for 

deamination of BA and its substituted analogues at 250°C and 40 bar (Psat). The 

mechanistic analysis suggests an SN1 deamination mechanism for α-CH3-BA and its 

substituted analogues. Based on these findings, BA kinetics cannot be reliably 

extrapolated across temperature using Arrhenius methods without further experiments 
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characterizing the temperature dependence of each mechanism. On the other hand, α-

CH3-BA kinetics can be more confidently extrapolated using Arrhenius methods at least 

to higher temperatures where unimolecular mechanisms such as SN1 are expected to 

dominate. This study provides an experimental framework for targeting individual 

reactions using model compounds that can be used to understand organic chemistry under 

geochemically relevant conditions. 
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CHAPTER 3 

METASTABLE EQUILIBRIUM AMONG OXYGEN- AND NITROGEN-BEARING 

ORGANIC COMPOUNDS IN HYDROTHERMAL EXPERIMENTS 

3.1 Introduction 

Recent advances in organic compound analysis have enabled the detection of 

organic compounds in environments once thought to be devoid of organic carbon, such as 

crack surfaces (e.g., Tingle et al., 1990) and interiors of igneous rocks (e.g., Potter and 

Konnerup-Madsen, 2003), as well as volcanic gases (e.g., Graeber et al, 1979; 

Giggenbach et al., 1994; Tassi et al., 2007). With decreasing detection limits, the 

diversity and complexity of identified organics also continue to increase, generally 

accompanied by more accurate and precise quantification. Organic molecules containing 

the elements most abundant in living systems (C, H, O, and N) have been observed in 

comets (Mumma and Charnley, 2011) and meteorites (Pizzarello and Shock, 2010), 

primordial representatives of our local system, as well as in distant nebulae (Ehrenfreund 

and Charnley, 2000) and (more preliminarily) in exoplanetary atmospheres (Swain et al., 

2008; Tsiaras et al, 2016). In some of these systems, organic inventories represent one of 

the most compositionally diverse data sets that can be feasibly attained. The potential for 

organic richness is often introduced in organic chemistry classrooms with the following 

type of example: there are 3 structural isomers for the chemical formula C5H12, 14 

isomers for C5H12O, and 182 for C5H12NO. In nature, organic richness is exemplified 

outside of the biosphere by the current cumulative identification of more than 1000 

different abiotically formed organic compounds in meteorites (Pizzarello and Shock, 

2010). 
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In addition to their abundance and compositional diversity, organic compounds 

make for good analytical targets because they are often volatile and can escape from the 

natural systems in which they are produced, which are sometimes difficult to directly 

access. This makes them attractive targets for probing hidden processes, such as those 

taking place in Earth’s subsurface or in extraterrestrial environments. One of the best 

examples for this potential is the discovery of a suite of small organic compounds in the 

water ice plumes rising from Saturn’s moon, Enceladus (e.g., Porco et al, 2006; Matson 

et al., 2007). There is some evidence that Jupiter’s moon, Europa, also has plumes, which 

NASA’s Europa Clipper mission is designed to investigate for organic compounds via a 

spacecraft mass spectrometer (Brockwell et al., 2016). Therefore, characterizing 

conditions under which certain organic compounds are generated, and which classes of 

compounds bear signatures of their source environments, could aid in natural system 

exploration. Indeed, organic compounds may even provide information regarding 

processes and conditions from the distant past if they are preserved over long timescales, 

as with certain deep-circulating terrestrial fluids (e.g., Lippmann-Pipke et al., 2011; 

Young et al., 2017) and meteorites (e.g., Cronin et al., 1988). 

One key factor affecting the preservation of organic compounds is the diversity of 

organic functional groups that allow the potential for numerous reactions with a vast 

range of temperature-dependent reaction rates. A general rule for chemistry is that as 

temperatures are lowered reaction rates become slower (Arrhenius, 1889); however, 

while this suggests colder temperatures are ideal for eventual organic preservation, higher 

initial temperatures may be required for abiotic organic transformations to generate 

compositions that reflect the local conditions that control them (Tassi et al., 2007, 
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McCollom, 2013b). High temperatures also mobilize organic compounds, via 

vaporization or dissolution in water (Shock et al., 2013, and references therein), releasing 

them from geologic systems. Ideal organic analytes from inaccessible systems of interest 

will have been subjected to high temperatures to equilibrate, traveled with some mobile 

phase to become accessible, and experienced temperature quenching to preserve organic 

abundances. One type of environment that generally satisfies these criteria is a 

hydrothermal system with fluids that migrate outward from planetary interiors. Thus, 

characterizing hydrothermal organic reactions may aid in developing the use of organic 

compounds as predictive tools regarding inaccessible environments. 

Many organic reactions that are irreversible at ambient conditions (25°C, 1 bar) 

become rapidly reversible under hydrothermal conditions, as demonstrated in many 

experimental studies (e.g., Yang et al., 2012; Shipp et al., 2013; 2014). In some 

experiments, reversibility has resulted in an approach toward metastable equilibrium, as 

evidenced by steady state ratios of organic compounds that in some cases are in near-

agreement with equilibrium values from thermodynamic calculations (Seewald, 1994; 

Seewald et al., 2006). Because reaction ratios approaching metastable equilibrium are 

dependent on temperature and pressure, these latter variables can be determined if 

concentration data are combined with thermodynamic data for a given reaction. 

Similarly, compositional variables (e.g., reactant or product concentrations) can be 

determined if temperatures and pressures are well-constrained. 

Such calculations have been performed for several environmental systems to 

determine if certain organic reactions approach metastable equilibrium, and at what 

conditions they last equilibrated. In certain oil field brines with moderate temperatures 
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(~90 to 150°C) and long fluid duration (millions of years), metastable equilibrium was 

identified for redox reactions between a variety of carboxylic acids, alkanes, and 

inorganic carbon sources (Helgeson et al, 1993). Importantly, light hydrocarbon 

abundances do not seem to approach metastable equilibrium values in these systems, 

suggesting higher temperatures may be required for certain reactions to proceed. In 

higher temperature submarine hydrothermal systems (>185°C) at Juan de Fuca Ridge, 

reactions involving light hydrocarbons plus those involving unsaturated hydrocarbons 

were investigated to constrain subsurface fluid temperatures (Cruse and Seewald, 2006); 

the results demonstrate a significant temperature difference between the source fluids for 

two sites, which is corroborated by other geochemical observations. Notably, the organic 

reactions investigated by Cruse and Seewald (2006) seem to have last equilibrated at 

different temperatures, suggesting some reactions may be better for investigating higher 

temperature systems and others better for lower temperature systems. Temperature and 

reduction/oxidation (redox) source conditions have been predicted for volcanic gases 

from many different systems according to various combinations of ratios for CO2, light 

hydrocarbons, and associated alkenes (Giggenbach et al., 1994; Tassi et al., 2005; Taran 

and Giggenbach, 2003). Some of these volcanic gas studies indicate that minimum 

temperatures are required to reach metastable equilibrium between alkanes, but 

importantly, not all organic reaction ratios reflect equilibrium at higher temperatures 

(e.g., Tassi et al., 2007); this implies some reactions must remain kinetically inhibited. 

Collectively, these studies demonstrate that different organic compounds may 

serve as better tools in certain environments than others. They also highlight the need for 

experimental characterization of organic reactions as irreversible vs. reversible under a 
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diversity of conditions. In addition, thermodynamic analyses of organic compounds have 

been applied successfully to only a few natural systems (e.g. Cruse and Seewald, Tassi et 

al., 2007; Helgeson et al., 1993); these types of calculations have also only been 

performed for a tiny fraction of the potential organic reactions, mainly the C-, H-, and 

sometimes O-bearing organic compounds mentioned above. This is in part because 

thermodynamic data and estimation strategies are relatively scarce for aqueous organic 

compounds (as compared to gas and liquid phase organics); this is especially true for N-

bearing organics when compared to C-, H-, and O-bearing organics (Cabani et al., 1981; 

Domalski and Hearing, 1993; Belousov and Panov, 1994; Plyasunov and Shock, 2001: 

numerous references in each). Measurements of thermodynamic property data (e.g., 

calorimetric and volumetric measurements) are often motivated by the exploration of 

fundamental physical chemistry (e.g., Archer, 1987; Fenclová et al., 2004), or by 

industrial and engineering applications (e.g., Shvedov and Tremaine, 1997; Xie and 

Tremaine, 1999; Collins et al., 2000); these types of studies do not always produce 

thermodynamic data relevant to environmentally-abundant compounds. However, on 

occasion the collection of thermodynamic data has been motivated by natural system 

exploration (e.g., Nichols and Wadso, 1975; Nichols et al., 1976; Touhara et al., 1982; 

Jolicoeur et al., 1986). Experiments that identify which hydrothermal organic reactions 

approach metastable equilibrium, and thus would be useful analytical targets in natural 

systems, could provide guidance and motivation for expanding thermodynamic data sets 

for individual compounds or reactions relevant to natural system exploration. 

Expanding experiments to include organic nitrogen reactions is particularly 

attractive because N-bearing organics make up a large portion of the organic material in 
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the biosphere (Fernandez-Reiriz et al., 1989; Simon and Azam, 1989; Delgado et al., 

2013), and because the total amount of organic nitrogen that is buried in the terrestrial 

geosphere may be even greater (Berner, 2006; Boudou et al., 2008). A diversity of 

organic nitrogen compounds has also been identified in hydrothermally-altered 

meteorites (e.g., Pizzarello and Shock, 2010), suggesting that the presence of such 

compounds could be expected in similar abiotic extraterrestrial environments. Many 

organic nitrogen reactions are very sensitive to pH (e.g., Garrett and Tsau, 1972; Smith 

and Hansen, 1998) and have the potential to reflect of acidity levels in subsurface fluids. 

For example, aqueous amines exist in protonated (R–NH3
+) and unprotonated (R–NH2) 

forms, according to Eq. (7): 

 

R–NH2  +  H2O  ⇌  R–NH3
+  +  OH-  (7). 

 

There is some evidence these forms undergo different hydrothermal reactions that result 

in different products, some that form reversibly and others irreversibly (e.g., comparing 

Katritzky et al., 1990; 2001 to Chapter 2 herein). Much is already known about the 

volatilities of aqueous amines due to their long-time use as anti-corrosives in boiler 

systems (e.g., Maguire, 1954), more recent interests in amine transport during 

atmospheric processes (e.g., Leng et al., 2015), and their geo-engineering applications for 

CO2 capture (e.g., Du et al., 2017). This makes them even better targets as organics that 

might be expelled from geologic systems in plumes of gas. 

Reversibility has been observed for individual reactions involving amines in some 

hydrothermal studies, but an approach to metastable equilibrium has only been rarely 
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demonstrated, especially for multiple, simultaneous reactions. In a detailed kinetics study, 

Radzicka and Wolfenden (1996) reported empirical equilibrium constants for a variety of 

hydrothermal (≤ 160°C) amide bond formation reactions by calculating the ratio of 

forward and reverse reaction rate constants. In terms of whether these reactions actually 

reach metastable equilibrium, however, no explicit evidence was presented demonstrating 

these reactions would reach consistent reaction ratios, or whether competing reactions 

might cause departures from steady state. 

Bada and Miller (1968; 1970) comprehensively characterized the primary 

deamination mechanism for aspartic acid under moderate hydrothermal conditions (≤ 

135°C) via a detailed experimental kinetics analysis, demonstrating reversibility as well 

as rate dependencies on temperature and pH. In these experiments, product 

concentrations from aspartic acid deamination level off over time, hinting at an approach 

to steady state. The authors (Bada and Miller, 1968) calculated equilibrium constants for 

this reaction by letting the forward deamination reaction run to long times; we note they 

did not obtain reaction ratios from the reverse reaction at long time scales. The authors 

also point out that ionizable species (such as amines) in reactions of interest can produce 

apparent equilibrium reaction quotients that vary with pH (true equilibrium ratios do not 

vary with composition, including pH). Apparent equilibrium reaction quotients are 

calculated using the total (protonated and unprotonated) concentrations of products and 

reactants. This is a useful concept because analytical techniques often yield total 

concentrations. 

Recently, amino acid degradation experiments by Lee et al. (2014) demonstrated 

an approach toward metastable equilibrium over time for the reversible reaction of 
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glutamic acid to pyroglutamic acid (i.e., amide bond formation). Their evidence included 

reaction ratios calculated for the forward reaction that appear to reach consistent values 

over time. The authors went on to identify an irreversible reaction step in their 

degradation reaction network that was primarily responsible for the cumulative mass lost 

from glutamic acid and its reversibly formed products. Characterizing processes that 

deplete certain organic reservoirs is useful because it could provide comparable 

timescales of preservation for organic compounds involved in reactions that reach 

metastable equilibrium. 

To build upon this useful body of experimental work, the present study was 

designed to test whether multiple simultaneous organic reactions would reach metastable 

equilibrium in a hydrothermal system involving C-, H-, O-, and N-bearing organics. Four 

sets of experiments were performed, each with a different initial organic compound. Each 

compound was expected to be part of the same reaction network in a series of potentially 

reversible amination reactions, from an alcohol to a primary (1°) amine, then a secondary 

(2°) amine, and then a tertiary (3°) amine. Model compounds with aromatic rings were 

used to ensure that most organic products could be accurately and precisely quantified 

using a single analytical technique, gas chromatography. These compounds were: benzyl 

alcohol, benzylamine, dibenzylamine, and tribenzylamine.  The four experimental 

reactant solutions were prepared with the same bulk composition according to the amount 

of each initial organic reactant and the addition of ammonium hydroxide (NH4OH) and 

ammonium chloride (NH4Cl); thus, the starting compounds could all theoretically 

interconvert with one another via the substitution of organic functional groups, water, and 

ammonia. 
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Amination reaction quotients calculated over time from these experiments 

compared to calculated equilibrium constants for amination reactions, provide strong 

evidence that reactions between the four organic reactants approach metastable 

equilibrium. Trends in apparent equilibrium reaction quotients (i.e., Bada and Miller, 

1968) over time provided similar evidence of an approach to metastable equilibrium for 

two other substitution reactions; these reactions involved new products (not used as 

reactants), an ether and an imine. There is strong evidence for the irreversible formation 

of toluene; this reaction has redox implications for the experimental system. Additionally, 

there is some indication that a diverse suite of multi-ring products forms irreversibly via 

electrophilic aromatic substitution reactions. This study demonstrates an approach toward 

metastable equilibrium by multiple, simultaneous organic reactions between C-, H-, O-, 

and N-bearing organics. It also provides analytical and experimental techniques for 

robustly testing reversibility vs. irreversibility for hydrothermal reaction networks. 

3.2 Experimental 

This section describes the materials and techniques used to setup and analyze 

hydrothermal experiments performed with aqueous organic compounds as well as 

NH4OH and NH4Cl in anoxic, silica glass reaction vessels. It also outlines some 

calculations performed to establish whether a similar pH could be assumed for 

experiments containing different initial reactant solutions. Many of the experimental and 

analytical techniques herein follow those in Chapter 2, as indicated below when relevant. 

3.2.1 Materials  

Reagents, buffers, standard compounds, and gases were purchased through 

Sigma-Aldrich (S-A), Mallinckrodt (M), Aldlab Chemicals (AC), Glycopep Chemicals 
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(G.C.), and Praxair (PA) with the following specifications: ≥ 99.5% benzylamine (S-A), 

benzylamine hydrochloride (S-A), ≥ 97.0% dibenzylamine (S-A), ≥ 99.0% 

tribenzylamine (S-A), ≥ 99.8% benzyl alcohol (S-A), ≥ 99.0% n-benzylidenebenzylamine 

(S-A), ≥ 99.9% toluene (S-A), ≥ 99.0% dodecane (S-A), ≥ 99.9% sodium bicarbonate 

(M), ≥ 99.99% ammonium chloride (S-A), 14.8 M ammonium hydroxide (EMD 

Chemicals Inc.), ≥ 99.0% bibenzyl (S-A), ≥ 96.0% stilbene (S-A), ≥ 99.0% benzyl ether 

(S-A), ≥ 99.5% benzaldehyde (S-A), ≥ 95% 3-benzylbenzyl alcohol (AC), ≥ 95% 2-

benzylbenzyl alcohol (AC), ≥ 98.0% (4-benzylphenyl)methanol (G.C.), ≥ 99.999% ultra 

high purity (UHP) helium (PA), ≥ 99.999% UHP argon (PA), ≥ 99.95% H2 (PA), and ≥ 

99.5% O2 (PA), ≥ 99% methanesulfonic acid (Acros Organics), mixed ion standard 

(Thermo Scientific, Waltham, MA, USA), and mixed cation standard (Environmental 

Express, Charleston, SC, USA). Reaction vessel materials were purchased from GM 

Associates and Technical Glass Products as 2 x 6 mm (inner diameter x outer diameter) 

“fused quartz” (silica) tubing. 

3.2.2 Analytical techniques  

Gas chromatography flame ionization detection (GC-FID) and mass spectrometry 

(GC-MS) were employed to ensure organic compound purity and to develop calibration 

curves used to quantify product abundances in experiments, as previously described in 

Chapter 2. Unlike the previous methods, however, response factors derived from 

dibenzylamine and tribenzylamine calibration curves were used to estimate total 

concentrations of numerous low abundance unidentified compounds that populated the 

two phenyl and three phenyl ring-bearing product regions of the GC chromatograms, 

respectively. Benzyl ether calibration curves were used to obtain the approximate 
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concentrations for the identified benzyl-benzyl ethers, which were included in cumulative 

two ring product estimates. Liquid/liquid organic extraction and sample storage methods 

for experimental analysis exactly followed those of Chapter 2. Concentrations of total 

ammonia (NH3 + NH4
+, referred to as ΣNH3 for the remainder of this study) were 

quantified via ion chromatography with suppressed conductivity detection for a subset of 

experiments. The aqueous phases of replicate 72-hour experiments (quantitative GC and 

IC analysis could not be performed on the same sample) for each of the four sets of 

experiments (described below in Section 3.2.3) were analyzed using methods described 

in Chapter 2. The abundances of nitrogen-bearing organic compounds were used to 

estimate the ΣNH3 for all other experimental time points, as described in Appendix B and 

shown in Table B1. 

3.2.3 Experimental setup 

Reactant solutions were prepared using anoxic methods; 300 μL was loaded into 

each silica glass reaction vessel and sealed, as described in Chapter 2. The reaction 

vessels were placed in preheated screw-capped iron pipes in a 250°C oven; this was 

considered the experimental starting time (t = 0 hours). Note that this is different from the 

methods in Chapter 2, where the designated starting time began after a heating period, 

because the study focused on kinetics. At the end of the desired reaction time, the pipes 

were removed from the oven and submerged in room temperature water to quench the 

experiments. The reaction vessels were then subsequently frozen until analysis. Details 

concerning the equipment and techniques used regarding the anoxic, heating, quenching, 

and storage methods can be found in Chapter 2. 
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Four aqueous reactant solutions with different starting materials were prepared for 

each set of experiments according to the initial reactant ratios in Fig. 12. Alcohol 

experiments were prepared with 0.5 molal benzyl alcohol, 0.25 molal NH4Cl, and 0.25 

molal ammonium hydroxide (NH4OH). Primary amine experiments were prepared with 

0.25 molal benzylamine and 0.25 molal benzylamine hydrochloride. Secondary amine 

experiments were prepared with 0.25 molal dibenzylamine and 0.25 molal NH4Cl. 

Tertiary amine experiments were prepared with 0.167 molal tribenzylamine, 0.25 molal 

NH4Cl, and 0.083 molal NH4OH. Each reactant solution was prepared with the same bulk 

composition, based on the stoichiometry shown in Fig. 12; thus, they all could 

hypothetically be transformed into one another via substitution reactions. 

Aqueous amines, like NH3, rapidly speciate into protonated and unprotonated 

forms (see Eq. 7). The speciation of amines in water therefore affects solution pH. 

Additionally, the protonated and unprotonated forms of the various amines are expected 

to have unique reaction paths (compare Chapter 2 with Katritzky et al., 1990; 2001). 

Equal molar concentrations of protonated and unprotonated amines (including NH3) were 

added to all experiments in an attempt to establish pH-buffered conditions via the 

reactants themselves (Fig. 12). The four sets of experiments were expected to have 

similar initial pH and fairly consistent pH over reaction time due to the similar 25°C pKa 

values for ammonium (9.2; Read, 1982), benzylaminium (9.4; Carothers et al., 1927; 

Richner, 2013), and dibenzylaminium (8.52; Graton et al., 2001) (tribenzylaminium has 

an abnormal pKa, discussed below). Additionally, changes in experimentally determined 

pKa values across temperature for a variety of other aminium compounds are fairly 

consistent, as seen in Fig. 13. For experiments starting with benzyl alcohol (not shown in 
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Fig. 12. Stoichiometric ratios of initial reactants used in each of the four sets of 

hydrothermal (250°C, 40 bar) experiments. Black reversible arrows indicate bulk 

transformations that produce and then increase the degree of amines via amination 

reactions from left to right, beginning with alcohols and ending with tertiary amines. 

Grey reversible arrows indicate chemical mass balance between all initial reactants. 

Preparation of experiments included the following reactants: (with corresponding short 

hand): benzyl alcohol (R-OH), ammonium chloride (NH4
+ in this figure only), 

ammonium hydroxide (NH3 in this figure only), benzylamine (R-NH2), benzylamine 

hydrochloride (R-NH3
+), dibenzylamine (R-NH-R), and tribenzylamine (NR3). Since 

water is the solvent and its concentration changes negligibly during reactions, its 

stoichiometry can be ignored. The geometric symbols are used to illustrate experimental 

results from different starting reactant solutions in Fig. 15 and 20. 
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Fig. 13. Experimentally measured pKa values vs. temperature for ammonium (Read, 

1982) and a variety of protonated amines, including: 3-methoxypropylaminium (Rhee et 

al., 2010), morpholinium (Ridley et al., 2000), cyclohexylaminium (Mesmer and Hitch, 

1977), dimethylaminium (Bénézeth et al., 2001; Bergström and Olofsson, 1977), 

ethanolaminium (Bénézeth et al., 2003), benzylaminium (Bunting and Stefanidis, 1990; 

Hanai et al., 1997; Richner, 2013), dibenzylaminium (Graton et al., 2001), and 

tribenzylaminium (Canle L. et al., 2004). Since ΣNH3, Σbenzylamine (analogous to 

ΣNH3), and/or Σdibenzylamine, are the most abundant buffer species for all experiments 

at any given time (even for tribenzylamine experiments), the pH is expected to fall within 

the pKa values of the aminium compounds at 250°C (Psat). Modified after Fig. 2 in 

Chapter 2. 
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the figure), which presumably has very little effect on solution pH, equilibrium between 

NH3 and NH4
+ was expected to provide sufficient pH-buffering capacity.  

Tribenzylaminium is an anomalously acidic aminium (pKa = 4.9 at 25°C; Canle L. et al., 

2004). Because of this, thermodynamic calculations were performed to test the buffer 

capacity of NH3/NH4
+ in the tribenzylamine experimental time series using the chemical 

speciation software EQ36 (Wolery, 1992) and thermodynamic data and property 

estimations therein (Kelley, 1960; Wagman et al., 1982; Tanger and Helgeson, 1988; 

Shock et al., 1989; 1990; 1992; 1997). The results of the calculations indicate that a 0.25 

molal NH4Cl and 0.25 molal NH4OH solution at room temperature (measured pH25°C = 

9.3) would have a pH of 5.4 at 250°C. Tribenzylamine was conservatively assumed to 

have no basic (proton accepting) properties. This is shown to be a good assumption 

according to thermodynamic estimations explained in more detail in Appendix C. 

Accordingly, a solution of 0.083 molal NH4OH and 0.25 molal NH4Cl was mixed at 

room temperature (measured pH25°C = 8.9), leaving out the 0.167 molal tribenzylamine. 

The calculated pH for this solution at 250°C was 5.0. This conservative assumption sets a 

maximum pH deviation (-0.4) at the outset of tribenzylamine experiments; this difference 

should decrease in magnitude as tribenzylamine reacts to form other amines (see below). 

3.3 Results and Discussion 

The hydrothermal experiments (250°C, Psat) with different initial organic reactants 

(i.e., benzyl alcohol, benzylamine, dibenzylamine, and tribenzylamine (Fig. 12)), each 

produce detectable abundances of the three other compounds even at the shortest reaction 

time (2 hours; Table B2). At the longest reaction time (72 hours), each set of experiments 

produces similar compositions of buffering species (amines and ΣNH3) supporting our 
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expectations that the pH for all sets of experiments should be very similar. Additionally, 

by 72 hours ammonia and ammonium are the dominant buffering species in all four sets 

of experiments. Toluene and dibenzylimine were also detectable throughout all 

experiments, resulting from reduction and oxidation (redox) reactions, respectively. Two 

minor products were also monitored throughout experiments, benzyl ether and 

benzaldehyde; the latter is also an oxidation product relative to the starting materials. A 

gas chromatogram of the major products is shown in Fig. B1. Determining whether 

reactions involving these eight compounds approach metastable equilibrium was the 

focus of this study. 

3.3.1 Reversible substitution reactions  

Substitution reactions involve the loss of one organic functional group and 

replacement by another. The formation of all four initial reactants in each experiment 

starting with only one compound suggests that substitution reactions occur, and are 

probably reversible under experimental conditions. Whether substitution reactions 

between organic compounds in this study were approaching metastable equilibrium was 

assessed by calculating apparent equilibrium reaction quotients for a variety of reactions 

in each experiment. Balanced reaction equations for a series of substitution reactions are 

shown in Fig. 14. These reactions are (1) dehydration of benzyl alcohol and amination by 

NH3 to form benzylamine and H2O, (2) deamination of benzylamine and amination by 

benzylamine to form dibenzylamine and NH3, and (3) deamination of benzylamine and 

amination by dibenzylamine to form tribenzylamine and NH3. Reactions (4) and (5) show 

substitution reactions involving the initial reactants as well as novel products. These 

reactions are: (4) dehydration of benzyl alcohol and reaction with another benzyl alcohol  
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Fig. 14. Balanced reactions used to calculate reaction quotients for experiments, shown in 

Fig. 15 and 20. Reactions (1), (2), and (3) are amination reactions that that produce 

primary, secondary, and tertiary amines, respectively. Reactions (4) and (5) each involve 

at least one novel compound that was not used as an initial reactant in the experiments. 

All are substitution reactions except (5), which is technically an addition reaction 

followed by an elimination reaction; overall reaction (5) substitutes one organic 

functional group for another. 
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to form benzyl ether and H2O, and (5) hydration of dibenzylimine followed by 

deamination to form benzaldehyde and benzylamine. The last reaction (5) is technically 

an addition reaction followed by an elimination reaction, but the combined effect of these 

two processes results in the substitution of one functional group for another. All of these 

reactions are expected to take place via ionic mechanisms (Clayden et al., 2001). 

Reactions (1 – 3) in Fig. 14, numbered blue, share similarities to the reaction 

equations used to demonstrate stoichimetric balance for the reactant solutions shown in 

Fig. 12. Each number represents an amination reaction that increases the degree of the 

product amine. Unlike the stoichiometry shown in Fig. 12, the reaction equations in Fig. 

14 are written with neutral species only. Alternative amination reactions to those shown 

in Fig. 14 can be written, but only three can be considered without redundancy. This 

stems from the fact that there are six different compounds involved in these amination 

reactions and four different compounds involved in each reaction (two reactants and two 

products). Reactions (1), (2), and (3) were chosen over alternatives based on organic 

chemistry principles of nucleophilicity, steric hindrance, and leaving group stability 

(Clayden et al., 2001). Apparent equilibrium reaction quotients (Bada et al., 1970) were 

calculated for Reactions (1 – 5) (Fig. 14) using total compound concentrations, as 

approximations for activities, for each set of experiments over time, as shown in Fig. 15. 

When calculating reaction quotients, H2O was was assumed to be in its pure standard 

state since it was the experimental solvent; thus, H2O is not shown in the calculation. 

Each plot in this Fig. 15 represents a different reaction, and each geometric symbol 

indicates which starting compound reacted to produce the given apparent equilibrium 

reaction quotient. The general trend for plots (1), (2), and (3) in Fig. 15 is a convergence 
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Fig. 15. Apparent equilibrium reaction quotients vs. time, calculated using total compound concentrations 

(Σ) as measured by GC or IC, for experiments conducted at 250°C and Psat. Values are shown for four sets 

of experiments with different initial organic reactants, as indicated by geometric symbols. The reactions 

represented are shown and numbered, corresponding to Fig. 14. The convergence of apparent equilibrium 

reaction quotients over time provides evidence for reversibility and an approach toward metastable 

equilibrium from the different starting conditions. 



78 

of apparent equilibrium reaction quotients (geometric symbols) over time, regardless of 

starting composition. This provides strong evidence for the reversibility of these 

amination reactions, as well as an approach toward metastable equilibrium. For each 

reaction (one per plot), compound ratios from different experiments converge at different 

rates. For example, the apparent equilibrium reaction quotients for benzylamine 

formation from benzyl alcohol (1) seem to converge by 45.5 hours, while those for 

tribenzylamine formation from benzylamine and dibenzylamine (3) seem to converge by 

72 hours, suggesting more rapid reversibility for benzylamine formation. The apparent 

equilibrium reaction quotients calculated for reaction (4) are very near in value after only 

2 hours, and also remain fairly consistent over time, suggesting this reaction approaches 

metastable equilibrium very quickly. The same can be seen for reaction (5).  

Deviations from these general trends of convergence for the calculated apparent 

equilibrium reaction quotients seem to be mainly attributable to the set of experiments 

with tribenzylamine as the initial reactant (triangles). These experiments are typically the 

slowest to achieve stable reaction ratios. We hypothesize that this is due to the 

anomalously low pKa of tribenzylamine, which likely favors its neutral form relative to 

the other amines (Fig. 13). Protonated amines are much better “leaving groups” than 

unprotonated amines (Clayden et al., 2001), based on the pKb (a proxy for stability) of 

NH3 versus NH2
-, and thus participate more readily in substitution reactions shown in 

Fig. 14. Indeed, experiments starting with benzylamine and dibenzylamine both show 

~64% conversion by 22 hours; in contrast, tribenzylamine experiments at similar times 

have less conversion (~53%). Note, the conversion calculations were performed after 

normalizing the initial reactants to 100% at 2 hours to avoid irregularities in 
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decomposition rates that may have been caused by reaction vessel heating times upon 

placement into the oven (Section 3.2.3). 

3.3.2 Irreversible substitution reactions 

 Although there is strong evidence for an approach toward metastable equilibria 

for the reactions mentioned above, there is an overall loss of mass from compounds in the 

apparent metastable system of C-, H-, O-, and N-bearing organics over reaction time. By 

72 hours, the seven organic compounds shown in Fig. 14. only account for ~50 mole% of 

the starting materials (Table B2); mole% was calculated in terms of phenyl rings (e.g., 1 

equivalent of dibenzylamine ≡ 2 equivalents of phenyl rings). Therefore, one or more of 

these compounds must undergo reactions not represented in Fig. 14 and 15. 

As with tribenzylamine, benzyl alcohol also decomposes more slowly than the 

other amines (~36% conversion at 22 hours). This can be attributed to the fact that benzyl 

alcohol should be the least protonated of the initial reactants, and hydroxide (OH-) is a 

worse leaving group than NH3 (based on pKb). There is evidence that the small fraction of 

benzyl alcohol that becomes protonated is highly reactive (Chapter 2), but it mostly 

dehydrates and (re)hydrates via the water solvent to reform benzyl alcohol. Previous 

hydrothermal experiments suggest that benzyl alcohol undergoes dehydration followed 

by electrophilic aromatic substitution reactions with phenyl groups in solution (Fecteau, 

2016), especially under acidic conditions (Chapter 2). This latter finding follows the same 

logic concerning leaving groups: since H2O is a better leaving group than OH- according 

to pKb. In previous studies, the ortho, para, and meta isomers of benzyl-benzyl alcohol 

were identified as electrophilic aromatic substitution products (Fecteau, 2016; Chapter 2). 

In the present study, the same three isomers were detected in all 72-hour experiments. 
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The summed concentration of benzyl-benzyl alcohol isomers is greatest in experiments 

with benzyl alcohol as the initial reactant (~1.5 mole%, in terms of phenyl rings) relative 

to experiments with amines as the initial reactants (~0.5 mole%). This finding 

corroborates evidence from the studies mentioned above, that benzyl alcohol serves as a 

precursor to electrophilic aromatic substitution reactions under hydrothermal conditions. 

In addition to the benzyl-bendzyl alcohol isomers, numerous other small peaks (> 

100 peaks at 72 hours) were observed in the GC-FID chromatograms (Fig. B1). These 

compounds were not identified, but the apparent high diversity and low abundance of 

these products supports the occurrence of electrophilic aromatic substitution reactions, 

since electrophilic aromatic subsitution reactions are expected to be nonselective due to 

the high reactivity of benzyl cations with variety of different aromatic structures in 

solution. The retention times of these unidentified peaks correspond to distinct two, three, 

and four phenyl ring-bearing product regions of the chromatograms. The groups of peaks 

look similar to those observed in Chapter 2, which provided evidence for electrophilic 

aromatic substitution reactions involving benzyl alcohol. The four ring product region 

was composed of mostly small, poorly resolved peaks. Because no four ring products 

were identified, any proxy compound would lilkely be unreliable for estimating product 

abundances. Therefore, cumulative concentrations were only estimated for two and three 

ring product regions (see Section 3.2.2 and Table B2). 

Estimates of two and three ring product concentrations are shown in Fig. 16. The 

highest concentrations of the multi-ring compounds are found in benzyl alcohol 

experiments (circles). Additionally, tribenzylamine expriments accumulate the least of  
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Fig. 16. Cumulative concentrations of unidentified multi-ring compounds vs. time for the 

four sets of experiments, that began with benzyl alcohol (circles), benzylamine (squares), 

dibenzylamine (diamonds), and tribenzylamine (triangles). Unidentified two ring 

products (left) were quantified using the GC-FID response factor of dibenzylamine, and 

unidentified 3-ring products (right) were quantified using the response factor of 

tribenzylamine (Section 3.2.2). 
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these two and three ring products over time. This is presumably because these same 

experiments accumulate benzyl alcohol more slowly than the other amine experiments 

(Table B2).  Since these findings corroborate evidence for electrophilic aromatic 

substitution reactions of benzyl alcohol from previous studies (Fecteau, 2016; Chapter 2), 

we hypothesize that these unidentified multi-ring compounds are mainly products of 

electrophilic aromatic substitution reactions. 

Since electrophilic aromatic substitution reactions produce C–C bonds, which are 

recalcitrant with respect to further substitution chemistry, it is possible they represent an 

irreversible loss of mass from the metastable reservoir of C-, H-, O-, and N-bearing 

organics (Fig. 14 and 15). If the proposed electrophilic aromatic substitution products are 

forming reversibly, their concentrations over time should level off and approach steady 

state concentrations. However, for each set of experiments the sums of these unidentified 

products do not reach consistent values, and in some cases, increase more over time (Fig. 

16). In experiments starting with benzyl alcohol, cumulative concentrations of the seven 

reversibly formed organic compounds (Fig. 14) decrease faster than in the other sets of 

experiments and show no sign of approaching steady state (Table B2). This suggests that 

the formation of electrophilic aromatic substitution products from benzyl alcohol could 

be a dominant irreversible reaction pathway from the metastable system. 

3.3.3 Redox Reactions 

The production of dibenzylimine and toluene during each of the four sets of 

experiments indicates that organic carbon oxidation and reduction reactions are occuring. 

The formation of these two compounds involve production and consumption of hydrogen 

atoms (H), respectively, as shown in Fig. 17. 
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Fig. 17. Redox reactions showing the dehydrogenation of dibenzylamine to form 

dibenzylimine (top), and the reductive hydrogenolysis of mono, di, or tribenzylamine to 

form toluene and an amine of a lower degree. The transfer of hydrogen atoms (H) is 

tracked with red labels, illustrating that the reactions might be linked by H2 production 

and consumption. If the two reactions are combined, H2 cancels from the products and 

reactants. The single arrow indicates that toluene formation is proposed to be irreversible 

(see below). 
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In order to test whether these redox reactions are linked by the transfer of 

hydrogen, the dibenzylimine:toluene ratio was calculated for all experiments, as seen in 

Fig. 18. Except for a single experiment, these ratios are always ≥ 1. At early reaction 

times the ratios range from ~1 to 17; at longer times the ratios converge and approach 

values slightly greater than unity (1.14 to 1.18 at 72 hours). Based on these trends, we 

hypothesize that dibenzylimine and H2 are produced first via dibenzylamine oxidation 

(i.e, dehydrogenation, top reaction in Fig. 17). Next, the resulting H2 is proposed to 

participate in hydrogenolysis of amines in solution to form toluene and NH3 (bottom 

reaction in Fig. 17). Note, this interpretation requires H2 to be available first for C–N 

bonds to be reduced in this way. 

Further evidence for this series of reactions comes from the differences in the 

dibenzylimine:toluene ratios for the four sets of experiments at 2 and 22 hours, prior to 

their convergence (Fig. 18). First, the generally high dibenzylimine:toluene ratios for 

benzyl alcohol experiments (shown as circles) indicate that toluene formation is sluggish 

relative to dibenzylimine formation in those experiments. This could be because the 

homolytic dissociation energy of C–O bonds is greater than that of C–N bonds (~83 vs 

~72 kcal mole-1, respectively; Blanksby and Ellison, 2003); therefore, toluene is formed 

more slowly from benzyl alcohol than from the amines. At longer reaction times, after 

sufficient concentrations amines are produced via the amination of benzyl alcohol, 

toluene concentrations approach those of dibenzylimine. Additionally, the descending 

dibenzylimine:toluene ratios correlates to their descending pKa values for each of the 

starting amines used in experiments. This suggests that their neutral, unprotonated 
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Fig. 18. The ratio of Σdibenzylimine:Σtoluene vs. time in each of the four sets of 

experiments, that began with benzyl alcohol (circles), benzylamine (squares), 

dibenzylamine (diamonds), and tribenzylamine (triangles). 
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forms undergo hydrogenolysis, while their protonated forms do not (or do so much more 

slowly). Previous experiments under similar low pH (3.3) buffered hydrothermal 

conditions (250°C), demonstrated that benzylamine produces very little toluene (< 0.2 

mole% at 140 hours; see Chapter 2). In constrast, in unbuffered experiments that should 

heavily favor unprotonated benzylamine, toluene is the dominant product (~73 mole% at 

120 hours; Katritzky et al., 1990). Accordingly, the solution pH (5.4) in the present study 

relative to the two aforementioned (Katritzky et al., 1990; Chapter 2) is intermediate, and 

intermediate amounts of toluene were observed (~1 to 5 mole % toluene at 72 hours).  

This suggests an intermediate amount of toluene would be expected at time scales 

comparable to the two aforementioned studies. Therefore, higher pH seems to promote 

the hydrogenolysis of amines to form alkyl groups and ammonia. Bibenzyl, a common 

product of benzyl radical coupling, was also observed in 72-hour experiments at 

concentrations up to ~1 mole %, suggesting that the mechanism for hydrogenolysis may 

involve radical intermediates. 

The potential for the reversibility of both redox reactions (Fig. 17) was 

investigated with additional experiments. A 142-hour experiment with 0.5 molal toluene 

and 0.5 molal NH4OH was performed (in duplicate) under the same hydrothermal 

conditions as the other experiments. No benzylamine or other products were observed, 

indicating toluene formation was not reversible. A similar experiment, with 0.25 molal 

dibenzylimine and 0.1 molal phosphate buffer (calculated pH of ~4 at 250°C), generated 

~0.01 molal (4 mole%) dibenzylamine after 8 hours. This suggests that dibenzylimine 

reduction is fairly rapid, and further that dibenzylamine dehydrogenation is potentially 



87 

reversible. It was not obvious which organic product was oxidized to provide H or H2 

needed for the reduction to dibenzylamine. 

3.3.4 Hydrothermal reaction pathways for C-, H-, O-, and N-bearing organics  

This study into potential reversibility and metastable equilibria for substitution 

and redox reactions between C-, H-, O-, and N-bearing organic compounds under 

hydrothermal conditions has provided sufficient information to generate a reaction 

pathway scheme (Fig. 19). The initial reactants used in experiments are shown in boxes 

and their interconversion reactions are numbered in blue (as in Fig. 14). The proposed 

reversible reactions (parallel opposing arrows) are informed in most cases by the 

convergence of apparent equilibrium reaction quotients, as with reactions (1 – 5) from 

Fig. 14 and 15. In certain cases, reversible vs. irreversible reactions (single arrows) were 

determined by additional experiments, as with dibenzylimine and toluene formation 

(Section 3.3.3). There is also evidence for irreversible electrophilic aromatic substitution 

reactions that form multi-ring products, based on the steadily increasing concentrations of 

unidentified 2 and 3 phenyl ring products over time (Fig. 16), in addition to the 

expectation that typical C–C bonds are less reactive in terms of substitution chemistry 

than C–O or C–N bonds (Clayden et al., 2001). 

3.3.5 Independent equilibrium constant calculations 

 In experiments with different starting compositions, the observation of 

apparent equilibrium reaction quotients converging to similar values over time provides 

strong evidence for an approach to metastable equilibrium (as in Fig. 15). For the 

amination reactions (1 – 3) of Fig. 14, we further tested the approach to metastable 

equilibrium by comparing independently calculated equilibrium constants for these  
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Fig. 19. A proposed hydrothermal reaction network for C-, H-, O-, and N-bearing organic 

compounds observed in experiments (250°C, Psat). Parallel opposing arrows indicate 

reversible reactions, while single arrows indicate irreversible reactions. Numbered 

reactions (blue for amination/deamination) follow those in Fig. 14. Redox reactions are 

identified by addition or loss of H2, labeled red as in Fig. 18. Products of electrophilic 

aromatic substitution reactions are labeled “EAS multi-ring products.” 
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reactions with the experimentally-determined (empirical) reaction quotients. To make this 

comparison, it was necessary to calculate the concentrations of the neutral forms of the 

amines and NH3, since apparent equilibrium reaction quotients (Bada et al., 1970) that 

use total concentrations, as in Fig. 15, do not relate to individual reactions, and thus 

cannot becompared to reaction equilibrium constants. Quantifying the neutral species 

required calculating dissociation constants for the aminium species. The estimates of the 

amination reaction constants and aminium dissociation constants were achieved at 

experimental conditions (250°C, Psat) by using existing standard state thermodynamic 

data (at 25°C), new group contribution correlation strategies for primary, secondary, and 

tertiary amines and aminiums, and the revised Helgeson-Kirkham-Flowers (HKF) 

equations of state via the Microsoft Excel-based Deep Earth Water (DEW) model 

(Kelley, 1960; Wagman et al., 1982; Tanger and Helgeson, 1988; Shock et al., 1989; 

1990 Sverjensky et al., 2014). A complete description of these methods, including 

previous literature sources, is found in Appendix C. 

The results of these thermodynamic calculations are shown in Fig. 20. The 

reaction quotients for the amination reactions (1 – 3) from Fig. 14 were calculated with 

only neutral compound concentrations for each of the four sets of experiments over time, 

along with equilibrium constants calculated for each amination reaction using the HKF 

equations of state. The calculations assume concentrations are equal to activities, while 

H2O is treated as being in its standard state, and does not appear in the reaction quotient 

for reaction (1). The empirical reaction quotients are mostly in good agreement with the 

independently calculated equilibrium constants. The independently calculated 

equilibrium constants for reactions (1), (2), and (3) are 2.30, 1.02, and 1.02, respectively.  
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Fig. 20. Reaction quotients calculated using neutral compound concentrations vs. time, 

compared to calculated equilibrium constants (dashed lines) for each reaction (250°C and 

Psat). Data symbols and depicted reactions follow those in Fig. 14 and 15. Amine 

dissociation constants, used to calculate neutral compound concentrations, and reaction 

equilibrium constants were both calculated using a variety of thermodynamic data and 

estimation strategies (Appenidx C). 
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Comparatively, the empirical 72-hour reaction quotients averaged from the four sets of 

experiments at 72 hours are 1.17 ± 0.10, 4.24 ± 1.11, and 1.78 ± 0.55, respectively 

(uncertainties are ±1 standard deviation). 

The deviation from agreement between the empirical reaction quotients and the 

calculated equilibrium constants (Fig. 20) may be systematic, according to whether 

benzylamine is a reactant or a product in the reaction. For example: when benzylamine is 

a product, as for reaction (1), the reaction quotient is slightly lower than the equilibrium 

constant; when benzylamine is a reactant, as for reaction (3), the reaction quotient is 

slightly higher than the equilibrium constant; lastly, when there are two benzylamines in 

the reactant, as for reaction (2), the reaction quotient is much higher than the equilibrium 

contant. This trend suggests that benzylamine is somewhat depleted relative to metastable 

equilibrium for these reactions. A possible cause is the participation of benzylamine in 

other reactions that have competitive rates relative to reactions (1 – 3). It seems plausible 

that benzylamine would be more reactive than the other amines due to the fact that its 

single phenyl ring causes steric hindrance (Clayden et al., 2001), specifically for SN2 

reaction mechanisms, which are shown to be relevant in Chapter 2. 

The calculated equilibrium constants for amination reactions (2) and (3) are the 

same because the thermodynamic property estimation scheme involves group 

contribution correlations that are additive and follow strong linear trends (Fig. C1 and 

C2). For example, the differences in thermodynamic properties between NH3 and 

methylamine, methylamine and dimethylamine, and dimethylamine and trimethylamine, 

are approximately the same (Fig. C1). If this estimation scheme holds for a wider 

diversity of amines, then equilibrium constants for substitution reactions between amines 
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that have similar functional groups will be near unity, with little preference in favorability 

for products or reactants. This suggests that reactions (2) and (3) may not be ideal targets 

for exploring environmental systems because their equilibrium constants, and thus their 

reaction ratios, would not change significantly with changes in temperature and pressure. 

On the other hand, reaction (1) has an equilibrium constant that is highly dependent on 

temperature and pressure because the alcohol and the amine have different temperature 

and pressure dependent thermodynamic properties. 

Comparison of the equilibrium constants provides strong evidence that the trends 

in organic concentrations in these experiments represent an approach to metastable 

equilibrium, rather than an approach to arbitrary steady state ratios. Furthermore, the 

empirical results provide support for the methods used to combine existing 

thermodynamic data, the new group contribution scheme, and the HKF equations of state 

in order to predict equilibrium constants for amines and aminiums under hydrothermal 

conditions. 

3.3.6 Implications for natural systems 

Based on the findings in this study, hydrothermal conditions (250°C, Psat) are 

expected to induce rapid substitution reactions that approach metastable equilibrium on 

short timescales (days) for several organic compounds, including: alcohols, primary, 

secondary, and tertiary amines, ethers, imines, and aldehydes. Accordingly, on geologic 

timescales (millennia) and/or with environmental catalysts (e.g., minerals; McCollom, 

2013b) present, approach toward metastable equilibrium for these classes of substitution 

reactions might be expected at much lower temperatures. Environmental compounds 

involved in similar reactions and their thermodynamic properties could therefore reflect 
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temperature and pressure conditions of the systems that produced them. Similarly, if 

temperature and pressure conditions are well-constrained then unknown compositional 

variables could be calculated for individual reactions. The equilibrium constants 

estimated for the amination reactions above indicate that substitution reactions involving 

different heteroatoms in organic functional groups (such as alcohols reacting to form 

amines; Fig. 14), will possess greater temperature and pressure dependencies than 

reactions involving similar function groups (such as amines reacting to form amines). 

This concept not only provides a framework that guides the choice of analytical targets in 

the environment, but also motivates thermodynamic measurements needed to expand the 

property estimates herein to wider classes of environmentally-relevant amines. 

Most of the organic functional groups produced in these experiments are abundant 

in the natural world, composing amino acids (amines, alcohols), carbohydrates (alcohols, 

ethers), nucleobases (imines, amines), and certain lipid headgroups and linkages (amines, 

alcohols, ethers). Therefore, these natural compounds may be similarly (highly) reactive 

under hydrothermal conditions, and could serve as targets within organic reservoirs 

whose functional group compositions potentially reflect metastable equilibrium 

conditions. The rapid reversibility of substitution reactions involving heteroatom leaving 

groups (e.g. H2O, NH3, amines, and alcohols) allows speculation that similar or better 

leaving groups also undergo substitution chemistry under hydrothermal conditions. Some 

groups that likely fit this criterion (based on pKb) include esters, thioesters, thiols, and 

carbon-bonded phosphates, all of which are relevant to biological systems. 

The results in this study also indicate that C-, H-, O-, and N-bearing organic 

reservoirs under hydrothermal conditions are expected to lose mass irreversibly to 
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electrophilic aromatic substitution reactions involving alcohols. Since relatively high 

activation energies are required to break phenyl group aromaticity, the occurrence of this 

bond-breaking process during electrophilic aromatic substitution suggests that almost any 

C–C pi bond will readily react via this process to irreversibly form a new C–C bond and 

an adjacent or resonance-allowed hydroxyl (C–OH) group (Clayden et al., 2001). Over 

sufficiently long timescales, iterations of this process will theoretically produce ever 

larger organic compounds, for which intramolecular electrophilic aromatic substitution 

reactions may occur. Eventually having grown large enough to become insoluble in water 

and populated with conjugated double bonds, such products may begin to resemble coal 

(Vandenbroucke and Largeau, 2007). 

Another irreversible reaction for which there is evidence in this study is the 

hydrogenolysis of neutral mono, di, or tribenzylamines to form toluene and NH3 or a 

lower-degree amine (Fig. 17). Although the C–O bond takes more energy to break than 

the C–N bond (Blanksby and Ellison, 2003), it is possible that on geologic time scales the 

hydrogenolysis of alcohols could be a significant source of alkyl group formation. The 

irreversible loss of heteroatoms in this way represents a path toward enrichment of 

alkanes within organic reservoirs under reducing (H2-abundant) conditions. This 

hydrogenolysis path may be an alternative or parallel model for petroleum formation, that 

differs from the typical model involving the decarboxylation of fatty acids to form 

alkanes (Vandenbroucke and Largeau, 2007). 

The results of this study show strong evidence that an approach to metastable 

equilibrium occurs for hydrothermal substitution reactions involving organic compounds. 

Ideal natural system test cases for metastability between similar C-, H-, O-, and N-
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bearing organic include those rich in organic carbon and NH3, such as the sediment-

hosted hydrothermal systems of Guaymas Basin in the Gulf of California (Von Damm et 

al., 1985), and the Washburn Hot Springs in Yellowstone National Park (Holloway et al., 

2011), among others. These active hydrothermal systems also possess mid-pH fluids, 

which allow unprotonated nucleophiles (e.g., R–NH2) and protonated leaving groups 

(e.g., NH3 for R–NH3
+) to exist simultaneously; this should increase the rate of 

substitution reactions. If more cases of organic metastability can be verified and 

corroborated with thermodynamic calculations in these well-studied natural systems, then 

these tools may be applied to plumes of fluids issuing from less accessible systems, such 

as subducting slabs or the icy ocean worlds of our outer solar system. Additionally, for 

organic nitrogen rich meteorites with reasonable constraints on duration of hydrothermal 

exposure, these tools could be applied to make inferences about ancient solar system 

conditions. 

3.4 Conclusions 

Hydrothermal experiments, with constant temperature, pressure, and bulk 

composition, deomstrated that rapid and reversible transformations take place between: 

benzyl alcohol, benzylamine, dibenzylamine, and tribenzylamine. Convergence of the 

organic reaction quotients between experiments over time implies that metastable 

equilibrium is achieved for the following substitution reactions: (1) dehydration of benzyl 

alcohol and amination by NH3 to form benzylamine and water, (2) deamination of 

benzylamine and amination by benzylamine to form dibenzylamine and NH3, and (3) 

deamination of benzylamine and amination by dibenzylamine to form tribenzylamine and 

NH3. Similarly, reaction quotients converged for (4) alcohol condensation to form ethers 
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and (5) hydration and deamination of dibenzylimine to form benzaldehyde and 

benzylamine. Mass loss to the resulting metastable C-, H-, O-, and N-bearing organic 

system is attributed to irreversible electrophilic aromatic substitution reactions of benzyl 

alcohol with phenyl rings and to irreversible reductive hydrogenolysis of amines to form 

toluene. The oxidation of dibenzylamine to form dibenzylimine and H2 appears to be 

reversible, but the amine reduction to toluene seems to irreversibly consume available H2; 

therefore, the reverse formation of dibenzylamine is inhibited. The approach toward 

metastable reaction quotients indicates that measurements of alcohols, amines, and NH3 

escaping from otherwise inaccessible natural systems could be supplemented with 

thermodynamic calculations to assess geochemical variables such as temperature, 

pressure, and composition. 
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CHAPTER 4 

A THERMODYNAMIC ASSESSMENT OF CARBON CHEMISTRY DURING LOW-

TEMPERATURE CONTINENTAL SERPENTINIZATION 

4.1 Introduction 

Serpentinization of ultramafic rocks is a common water-rock reaction in the solar 

system, likely for much of its history. This idea is supported by terrestrial observations, 

characterization of meteorites, remote sensing of solar system objects, and by theoretical 

models (Holm et al., 2015). This widespread geochemical process has become a focus of 

the astrobiological community because it generates aqueous conditions that have 

implications for planetary habitability and for prebiotic chemistry (Russell et al., 2010, 

Holm et al., 2015). Serpentinization is also being examined in an anthropocentric context, 

due to the potential ability for natural serpentinizing systems to sequester atmospheric 

carbon dioxide (Kelemen and Matter, 2008). 

During serpentinization, ferromagnesian minerals are hydrated and partially 

oxidized by H2O to produce hydrous silicates, ferric minerals, and molecular hydrogen 

(Moody, 1976). Calcium hydroxide is also generated during mineral transformation, 

which increases the pH of solution and causes the precipitation of dissolved inorganic 

carbon as carbonate minerals (McCollom and Bach, 2009; Kelemen et al., 2011). When 

reduced fluids encounter inorganic carbon and other oxidants, there is an energetic drive 

to produce organic carbon and initiate other reduction/oxidation (redox) reactions, 

respectively (Shock et al., 2010; Canovas et al., 2017). Many redox reactions are sluggish 

(kinetically inhibited) at low temperatures and thus, can be catalyzed by life and 

harnessed for metabolic energy (Shock and Boyd, 2015). The presence of abundant 
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metals like iron and nickel, potentially capable of catalyzing hydrogenation reactions in 

serpentinizing systems, may promote a variety of abiotic organic synthesis reactions 

(McCollom, 2013b). 

Current NASA mission plans for a fly-by of Jupiter’s icy ocean moon, Europa, 

will feature a spacecraft equipped to analyze organic compounds in rising plumes (via 

mass spectrometry; Brockwell et al., 2016) that may be linked to serpentinization 

occurring beneath a subsurface ocean (Vance et al., 2016). Evidence already exists for 

molecular hydrogen and a suite of small organics within plumes rising from an alkaline 

subsurface ocean on Saturn’s icy moon, Enceladus (Porco et al., 2006; Matson et al., 

2007; Waite et al., 2017). As more organic observations are obtained, interpreting the 

sources of these compound distributions will rely on studies that characterize abiotic 

versus biological contributions to organic transformations during serpentinization as a 

function of temperature, pressure, and geochemical composition. Quantifying fluxes of 

volatile organic compounds for a range of serpentinizing environments on Earth may 

ultimately help to determine whether anthropogenic carbon sequestration in these systems 

is a feasible idea or not. Relevance to these wide-ranging endeavors, which have 

significant scientific and public interest, suggest that investigations into carbon chemistry 

during serpentinization have a high potential to produce results with broad applications. 

4.1.1 Organic compound production in natural serpentinizing systems 

As mentioned above, an energetic drive to transform inorganic carbon into 

organic carbon exists in serpentinizing environments, primarily resulting from the 

production of H2. Molecular hydrogen has been detected and quantified in many systems 

suspected to have active serpentinization, and often serves as a primary diagnostic tool 
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for identifying such systems. In marine serpentinizing environments, abundant H2 has 

been measured in the warm (< 100°C) carbonate-precipitating fluids of the Lost City 

hydrothermal vents (Kelley et al., 2001; Proskurowski et al., 2006), and in the more 

magmatically influenced (> 350°C) fluids of the Rainbow vent field (Charlou et al., 

2002). A handful of other hot (295 - 355°C) Mid-Atlantic Ridge hydrothermal fields like 

Logatchev 1, Ashadze 1, Ashadze 2 (Charlou et al., 2002; Proskurowski et al., 2006; 

Charlou et al., 2010), and the hot (> 370°C) Nibelungen hydrothermal field (Melchert et 

al., 2008) of the southern Mid-Atlantic Ridge have also been shown to have abundant H2.  

Continental systems suspected of undergoing present or past serpentinization also 

exist. Hydrogen measurements have been made for many low temperature (< 50°C) sites, 

including the Samail Ophiolite of Oman (Neal and Stanger, 1983; Paukert, 2014; Miller 

et al., 2016; Rempfert et al., 2017; Canovas et al., 2017), the focus of this study, as well 

as the Tablelands Ophiolite of Newfoundland, Canada (Szponar al., 2013), the Cedars 

Peridotite of California, USA (Morrill et al., 2013), the Zambales Ophiolite of the 

Philippines (Abrajano et al., 1988), Socorro Island of Mexico (Taran et al., 2010), and the 

Tekirova Ophiolite of Turkey (Hosgormez et al., 2008; Etiope et al., 2011). Hydrogen in 

continental serpentinizing systems is typically measured as percent volume from sampled 

gases, though some studies report dissolved hydrogen, H2(aq), concentrations (Szponar et 

al., 2013; Canovas et al., 2017). These concentrtions are typically lower than in 

submarine systems, but in certain cases reach millimolar levels in subsurface samples 

taken from boreholes (Paukert, 2014; Miller et al., 2016; Rempfert et al., 2017). 

Abundant methane (CH4) and other organic compounds often accompany H2 in 

serpentinizing systems. From the same corresponding studies listed above, high 



100 

abundances of CH4 have also been measured in Lost City, Rainbow, Logatchev 1, 

Ashadze 1 and 2, Nibelungen, the Samail Ophiolite, Tablelands, Zambales, The Cedars, 

and Socorro, as well as at Conical Seamount and South Chamorro Seamount in the 

Mariana Forearc (Mottl et al., 2003), Logatchev 2 (Charlou et al., 2010), and at Gruppo 

di Voltri of Italy (Cipolli et al., 2004). Consistent observations of abundant CH4 in 

serpentinizing systems suggests that CH4 formation might be inherent to this geochemical 

process, even in the lower-temperature continental systems. A variety of non-biological 

processes that could generate CH4 in these systems are summarized in reviews by 

McCollom and Seewald (2007), Etiope and Sherwood Lollar (2013), and McCollom 

(2013b). These processes include: thermogenic degradation of biomass, the release of 

microfluidic inclusions during water rock reactions, and abiotic CH4 generation from an 

inorganic carbon source. Evidence for these non-biological processes in active systems 

comes from examining the relative concentrations of light hydrocarbons and their stable 

carbon and hydrogen isotope ratios (e.g., Proskurowski et al., 2008; Taran et al., 2010; 

Etiope et al., 2011; Szponar et al., 2013; Morrill et al., 2013). Typically, these 

hydrocarbons are enriched in heavier isotopes. The investigations and reviews above also 

contain isotopic and other techniques used for disentangling non-biological sources from 

each other and distinguishing biological sources. Several argue that active abiotic 

inorganic carbon reduction is the dominant source of CH4 in low temperature systems. 

In contrast, abiotic experimental studies sometimes display inconsistent trends in 

isotopic fractionation, likely as a result of minor differences in experimental conditions 

(see McCollom, 2013b and references therein). As an example, variations in the percent 

of inorganic carbon converted to CH4 can greatly affect resulting isotopic ratios of 
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reactants in closed systems due to Rayleigh fractionation. Experiments have also yet to 

demonstrate inorganic carbon reduction to CH4 under geochemically relevant conditions 

below temperatures at which life is known to persist, e.g., 122°C (Cowan, 2004; Takai, 

2008). Recent taxonomic investigations have reported evidence for methanogenic and 

methanotrophic microbial communities in certain serpentinite-hosted ecosystems 

(Bradley and Summons, 2010; Shrenk et al., 2013; Miller et al., 2016; Rempfert et al., 

2017). Aside from the obvious caveat that methanogens produce CH4, the potential 

presence of both communities in these systems complicates interpretations of isotopic 

analyses with respect to abiotic and biological processes since the former is expected to 

deplete heavier isotopes in CH4 reservoirs (e.g., Valentine et al., 2004), and the latter is 

expected to enrich heavier isotopes (e.g., Templeton et al., 2006; Rasigraf et al., 2012). 

Thermodynamic calculations have shown that methanogenesis is energetically viable in 

fluids undergoing active serpentinization (Canovas et al., 2017), and thus ancient 

processes and higher temperature conditions need not be invoked to explain the presence 

of CH4. Thereforee, it seems likely that generation of CH4 during low-temperature 

serpentinization is partially the result of biological processes, maybe even to a greater 

extent than from abiotic processes. The results presented herein provide evidence for 

microbial metabolisms involving CH4 in a serpentinizing system. 

In addition to methane, small organic acids have been observed in fluids 

associated with serpentinites, sometimes as a substantial percentage of the dissolved 

organic carbon (DOC; Haggerty and Fisher, 1992; Lang et al., 2010). Haggerty and 

Fisher (1992) observed significant formate and acetate abundances (and more rarely, low 

propionate and malonate abundances) in serpentine-associated interstitial fluids from the 
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Mariana forearc. When detected, formate was generally the dominant organic acid 

observed, with concentrations on the order of 100 μM (but ranging up to 2.272 mM); 

acetate concentrations were typically in the 10s of μM. The authors suggest that the 

presence of these organic acids is most likely due to the degradation of more complex 

organic material, possibly via alkaline hydrolysis of ester functional groups; however, 

they could not speculate whether such a degradation process was predominantly 

microbially or thermally mediated. In either case, the complex organic material being 

degraded seems to be biologically sourced in these sediments; this falls into a similar 

category as thermogenic-degradation of biomass to produce CH4. 

In hyper-alkaline vent fluids discharging from the actively-serpentinizing Lost 

City hydrothermal field, Lang et al. (2010) observed similarly high formate and acetate 

abundances (36-158 μmol kg-1 and 1-35 μmol kg-1, respectively). In order to examine the 

sources of these compounds, the authors present: stable carbon isotopic ratios (δ13C) for 

formate and acetate approximated from isotopic DOC measurements, relative abundances 

of formate and acetate in mixing fluids, thermodynamic calculations for DIC-H2-formate 

equilibrium, and results from previous theoretical and laboratory studies (e.g., Shock, 

1992; Shock and Schulte, 1998; McCollom and Seewald, 2003). With these data, they 

conclude that formate is likely formed via abiotic reduction of inorganic carbon, and that 

acetate is likely formed via microbial metabolism. However, with regard to the potential 

abiotic production of formate, even though the reaction is thermodynamically favorable, 

this is instrinsically true for the reaction whether it proceeds abiotically or via a biological 

process, and the fluids sampled are well within the temperature limit of life (Lang et al, 

2010; Takai, 2008; Cowan, 2004). They also suggest that formate bears an abiotic 
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signature in its enriched δ13C values. However, in addition to uncertainties associated 

with these values being approximated, the carbonate minerals of the Lost City vent 

chimneys can have anomalously enriched δ13C values as well, weakening this particular 

line of evidence. Therefore, it seems that a biological source for formate cannot be ruled 

out in this system. 

Lang et al. (2010) also calculated apparent temperatures of equilibration among 

DIC, H2, and formate, based on fluid geochemistry, but did not generate reasonable 

temperature predictions; their calculations yield colder values than were measured in 

sampled fluids. We took a similar thermodynamic approach in the current study at the 

Samail Ophiolite, and generated useful predictions regarding formate formation under 

different subsurface conditions that might have existed prior to discharge and sampling of 

serpentinized fluids. Though different in temperature, these predictions may apply to Lost 

City as well (see below). 

More convincing evidence exists for abiotic formate production from inorganic 

carbon in higher temperature, lower pH systems, such as the Mid-Cayman, Von Damm 

deep sea hydrothermal vents (McDermott et al., 2015). These hydrothermal systems have 

temperatures up to 226°C and high H2 concentrations (~18 mM). They are hosted in 

gabbro, basalt, and ultramafic rock, though based on an average observed pH of ~6, these 

fluids are clearly not dominated by serpentinization geochemistry to the extent of Lost 

City fluids, which have pH up to 11. Nevertheless, the study provides useful insights 

regarding formate formation in higher temperature natural systems that may capture the 

hotter side of the transition from biological to abiotic inorganic carbon reduction. While 

McDermott et al. (2015) use a similar thermodynamic drive argument to that of Lang et 
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al. (2010), the temperatures of their samples are generally high enough to exclude 

biological production; although, the possibility of thermogenic breakdown of biomass 

cannot be excluded. The Von Damm fluid calculations show metastable equilibrium 

among DIC, H2, and formate in near-endmember fluids (226°C) and most hydrothermal-

seawater mixing fluids (114-151°C), most of which are above the current demonstrated 

temperature limit of life (Takai, 2008; Cowan, 2004). This apparently rapid equilibration 

makes thermogenic breakdown seem much like likely. While this last study provides 

fairly strong evidence that formate can form abiotically in high temperature 

serpentinizing environments, it seems less likely that this is the case at the near-ambient 

conditions (~20 – 60°C), addressed in the current study. 

4.1.2 Active serpentinization in the Samail Ophiolite 

We made field measurements and collected samples at the actively-serpentinizing 

system of the Samail Ophiolite, in the Sultanate of Oman, during January 2014. An 

overview of serpentinization in this continental system is described in Kelemen et al. 

(2011). Focusing specifically on the reaction pathways of carbon, this overview is 

illustrated in Fig. 21 and can be summarized in three simplified steps: (1) Meteoric water 

in equilibrium with atmospheric CO2 reacts with previously altered peridotite at or near 

the surface to produce circumneutral magnesium bicarbonate (Mg-HCO3) fluids. (2) 

Some of these Mg-HCO3 fluids permeate deeper into the subsurface and react with fresh, 

unaltered peridotite, through serpentinization, to produce calcium hydroxide (Ca-OH) 

fluids and molecular hydrogen (H2). The increase in pH results in the precipitation of 

magnesium and calcium carbonate minerals, such as magnesite (MgCO3) and dolomite  
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Fig. 21. Cartoon cross section showing the reaction pathways of carbon during low 

temperature serpentinization in the Samail Ophiolite, as described in Kelemen et al. 

(2011) and summarized in the text with corresponding steps (1 – 3). The flow of water 

through the system is indicated with arrows. Regions of magnesium-rich and calcium-

rich carbonate mineral precipitation are shown as yellow and beige polygons, 

respectively. A region potentially depleted of carbonate minerals is invoked with a 

dashed outline based on observations by Paukert (2014) and results below. 
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(MgCa[CO3]2). The production of H2 generates a thermodynamic drive to reduce 

inorganic carbon to organic carbon, potentially reflected in observations of CH4 and 

organic acids (Miller et al., 2016). (3) The serpentinizing Ca-OH fluids eventually return 

to the surface, and upon encountering atmospheric CO2, calcium carbonate minerals 

precipitate, dominantly in the form of calcite (CaCO3). 

Kelemen et al. (2011), and other authors, refer to Mg-HCO3 fluids at the surface 

as shallow groundwater Type I fluids and to Ca-OH fluids that have resurfaced as Type II 

fluids. Based on tritium-helium dating techniques, Type I fluids develop in shallow 

aquifers over 20-40 years; Type II fluids reside in the subsurface for > 60 years (Paukert, 

2014) and cannot be better constrained by these dating techniques. However, reaction 

path models by Paukert et al. (2012) suggest that Type II fluids may take as long as 500-

6,500 years to reach their composition between pH 11-12. Noble gas and stable water 

isotopic measurements suggest Type II fluids may have recharged as far back as the 

glacial period of the late Pleistocene (15 to 25 ka). The reaction path models also indicate 

that during the development of Type II fluids, magnesite, dolomite, and calcite should 

precipitate in the subsurface in a molar ratio of ~500:10:1, respectively. Stable isotope 

studies performed on carbonate mineral samples from this system provide formation 

temperature estimates of 23-60°C (Kelemen et al., 2011; Streit et al., 2012). In short, it 

appears that hyper-alkaline Type II fluids have undergone gradual serpentinization at 

near-ambient temperatures in the subsurface for at least thousands of years before 

discharging from the Samail Ophiolite. 

4.2. Methods 
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Geochemical sampling and in-field measurements for this study took place at the 

following locations in the Sultanate of Oman: Falej, Qafifah, Al-Banah, and the Dima Wa 

Al Tayeen Municipality, as indicated in Fig. 22. These efforts took place during January 

2014. Laboratory geochemical analyses took place at the W. M. Keck Foundation 

Laboratory for Environmental Biogeochemistry, the Goldwater Environmental Lab, and 

the GEOPIG (Group Exploring Organic Processes in Geochemistry) Lab; all are at 

Arizona State University. 

4.2.1 Field Measurements 

The pH of Type I groundwater fluids, Type II hyperalkaline fluids, and mixtures 

of these two fluids was analyzed in the field using a WTW 3110 meter with WTW 

SenTix 41-3 probe. Conductivity and temperature were measured using a YSI Model 30 

probe and meter. The following dissolved species concentrations were analyzed using a 

Hach 2800 or 2400 Spectrophotometer: ferrous iron (Method 8146), high range oxygen 

(Method 8166), low range oxygen (Method 8316), and total sulfide (Method 8131), 

according to methods described in Hach (2007). 

4.2.2 Sample collection and Laboratory Analyses 

Water samples from hyper-alkaline springs and shallow groundwater pools were 

collected for laboratory geochemical analyses using a polytetrafluoroethylene (PTFE) 

scoop. Subsurface water samples were collected using a steel bailer lowered into 

boreholes. For both surface and subsurface sampling, the collected water was transferred 

to a one liter Nalgene high density polyethylene (HDPE) bottle. The bottle had a 

polypropylene tube inserted through a hole cut into the lid leading to a 140 mL plastic 

syringe (Covidien, Inc.). All plastic components were rinsed three times with each  
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Fig. 22. Geologic map of the Samail Ophiolite, modified after Nicolas and Boudier 

(2001) by James Leong, with labeled sampling sites marked with filled circles. The 

capitcal city of Oman, Muscat, is also indicated with a filled star. 
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sample prior to filtration. This (mostly) closed-system setup was designed to minimize 

contamination and exchange of volatiles between the sample and the atmosphere as it 

was being apportioned into different types of sample containers. 

Each sample was filtered through an Acrodisc® Supor® 0.8/0.2 μm filter 

membrane to remove particulates and cells; filters were rinsed with >130 mL of sample 

prior to sample collection for the analyses herein. Filtered water was collected in various 

sample containers (see below) for different types of analyses in the following order (with 

specified volume): dissolved inorganic carbon (DIC; ~40 mL), major dissolved cation 

(~30 mL), major dissolved anion (~30 mL), dissolved trace element analysis (~60 mL, 

not reported herein), dissolved organic carbon (DOC) (~40 mL), and organic acid anions 

(~30 mL). The sequence of sample bottle filling was chosen to preserve samples on the 

front end that might suffer from atmospheric exchange, and to reduce organic 

contaminants inherent to the filter via rinsing for samples later in the sequence. 

Water samples for DIC were collected in 40 mL VWR CS24 amber glass vials 

with butyl rubber septa (which have low permeability to gases), both of which were 

soaked in 10-20% hydrochloric acid for > 12 hours, then rinsed with deionized water (DI) 

and dried prior to field work. Samples for DOC were collected in 40 mL VWR trace 

clean amber glass vials with polytetrafluoroethylene (PTFE) septa (which do not leech 

significant organics). Prior to field work, DOC vials were muffled at 500°C for > 12 

hours, the PTFE septa were soaked in DI for > 12 hours then dried, and each bottle was 

spiked with 100 μL of 85% Sigma-Aldrich phosphoric acid to drive off inorganic carbono 

as CO2, with the added benefit of sterilizing sample fluids upon collection, and thus 

preserve the DOC. 
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Major dissolved ion samples were collected in 30 mL HDPE Nalgene bottles. 

Both major ion bottles were frozen until analysis upon return to the GEOPIG Lab. Cation 

bottles were spiked with 95 µL of methane sulfonic acid prior to field work in 2014 in 

order to prevent precipitation of calcium carbonate or other minerals that might sequester 

cations. 

Samples for organic acid analysis were collected in 20 mL Qorpak amber glass 

bottles with PTFE cap inserts. The amber glass bottles and their PTFE cap inserts were 

rinsed three times with DI, and then the cap inserts were soaked for 24 hours. The glass 

bottles then baked in a muffle furnace at 500°C for 24 hours in order to remove any 

potential residual organic carbon. Then the cap inserts were dried and these bottles were 

closed for transport to the field. Upon return from the field, the amber glass bottles were 

refrigerated until analysis. All samples were analyzed within five weeks of their 

collection.  

Dissolved gas samples were collected using a peristaltic pump to transfer water 

samples into a plastic syringe, where they were gently shaken in order to allow dissolved 

gases to equilibrate with a headspace. The headspace was injected into evacuated Mylar 

bags for storage. Details regarding dissolved gas sample collection are found in Canovas 

et al. (2017). 

4.2.3 Laboratory Analyses 

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) 

measurements were performed using an OI-Analytical total organic carbon (TOC) 

analyzer coupled to a continuous flow Thermo Electron DeltaPlus Advantage isotope 

ratio mass spectrometry (IRMS). The setup and methods for the coupled TOC-IRMS 
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were derived from Gilles St-Jean (2003). Briefly, the method consists of heating, 

followed by acidification of the sample with phosphoric acid to drive off the DIC as 

carbon dioxide (CO2), which is sent to the IRMS. This is followed by continued heating 

and the addition of sodium persulfate to oxidize and then drive off the DOC as CO2, 

which is sent to the IRMS as a separate aliquot. Though both measurements were made 

for each DIC and DOC vial, because of the different sample bottle preparation 

techniques, only DIC values from DIC-prepped vials and only DOC values from DOC-

prepped vials are reported herein.  

Concentrations of major anions (Cl-, SO4
2-, NO3

-) and major cations (Na+, Ca2+, 

Mg2+, NH4
+) were determined on separate Dionex DX-600 ion chromatography systems in 

the GEOPIG lab using suppressed conductivity detection and operated by Chromeleon 

software (version 6.8), following methods in Fecteau (2016). The anion system employs a 

potassium hydroxide eluent generator, a carbonate removal device, and AS11-HC/AG11-

HC columns. The hydroxide concentration of the eluent is held isocratically at 5 mM for 5 

minutes, followed by a non-linear (i.e., Chromeleon curve 8) hydroxide concentration 

gradient applied over 31 minutes, after which the column is re-equilibrated at 5 mM 

hydroxide for 10 minutes before the next sample injection. The eluent flow rate is held 

constant at 1.0 mL/minute. The cation system is equipped with CS-16 and CG-16 columns 

and cations are eluted isocratically with 19 mM methanesulfonic acid (MSA) at 0.5 

mL/minute. Both systems are plumbed with an external source of deionized water for 

suppressor regeneration to improve the signal-to-noise ratio of the analyses. Injection 

volumes are 100 µL and 75 µL for anions and cations, respectively. Quantification is 

achieved externally via calibration curves constructed from a series of dilutions of mixed-
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ion standards (Environmental Express, Charleston, SC, USA). Quantification accuracy is 

verified daily by analysis of an independent mixed ion standard (Thermo Scientific, 

Waltham, MA, USA). Uncertainties in reported inorganic ion concentrations are estimated 

to be ± 5%. 

Dissolved gas measurements of methane (CH4) concentrations were analyzed 

using a gas chromatograph with a flame ionization detector (GC-FID, Peak Laboratories, 

LLC). Hydrogen (H2) concentrations were analyzed via a GC with a reductively coupled 

photometric detector (GC-RCP), following the methods described in greater detail in 

Canovas et al. (2017). Both instruments used are in the GEOPIG laboratory at Arizona 

State University. Gas bags were analyzed ~1 year later for δ13CH4. In order to test for 

leaks, since they could cause unintended fractionation, the bags were first reanalyzed for 

CH4 concentrations and those with significant (> 1 standard deviation) decreases in their 

concentrations were discarded. Those that hadn’t leaked were injected in triplicate into a 

Picarro cavity ring-down spectrometer G2201-I equipped with a small-sample isotope 

module. Ultra Zero Air from Praxair was used as the carrier and for diluting samples and 

standards; standards were purchased from Air Liquide and used to make three-point 

calibration curves with R2 values > 0.999, with the following δ13CH4 values: -69 

± 1, -36 ± 1, and 5 ± 1 ‰, all at 500 ppmV concentrations. Each sample was diluted to 

approximately 500 ppmV (when possible) and 20 mL of the resulting diluted sample was 

injected into the instrument. 

Organic acid analysis was performed using a Dionex ICS-1500 ion 

chromatograph equipped with a Dionex IonPac® ICE-AS6 ion exclusion column (9 x 

250 mm), a Dionex AMMS-ICE 300 suppressor, a Dionex DS6 heated conductivity cell 
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detector, and a Dionex AS40 autosampler. Samples were spiked with 25 μL of 3.75 M 

hydrochloric acid prior to analysis so that sample pH was < 7, in order for organic acids 

to speciate into the proper proportions of protonated versus unprotonated for interaction 

with the column. Each sample was run twice, and each run consisted of duplicate 

injections. The first run used 0.60 mM heptafluorobutyric acid (HFBA) as an eluent, and 

was designed to isolate the formate peak from coeluting interferences. The second run 

used 0.15 mM HFBA to isolate the acetate peak. In both cases the eluent flow rate was 

set to 1.00 mL/min. The suppressor regenerant used was 5.00 mM tetrabutylammonium 

hydroxide (TBAOH), set to a nitrogen pressure-driven flow of ~3mL/min. Five-point 

calibration curves with R2 > 0.993 were generated for formate and acetate using standards 

purchased from High-Purity Standards. Natural sample peaks were verified in all cases 

by overlaying sample and standard chromatograms, and in some cases verified by 

standard addition. Instrument detection limits for organic acid anions were ~0.2 μM. 

4.2.4 Thermodynamic Methodology 

In order to investigate carbon transformations involving inorganic and organic 

carbon species in Type I and Type II fluids, calculations were performed using the 

measured concentrations of the dissolved species described above. For near-endmember 

Type I and Type II fluids, activities of H2(aq) and CO3
2- that satisfied equilibrium 

conditions were calculated for organic formation reactions as well as carbonate mineral 

precipitation reactions. These equilibrium activities were compared to actual H2(aq) and 

CO3
2- from sample measurements (the latter calculated using DIC and pH) in order to 

assess what processes may have caused fluid chemistry to deviate from equilibrium with 

respect to certain reactions. 



114 

For all of these calculations, it was necessary to speciate solutions using the 

analytical aqueous geochemistry data, meaning that electrolyte complexes were 

accounted for and activities were calculated for chemical species in their free forms. This 

process utilized the software package EQ3 (Wolery, 1992), its associated estimation 

strategies (Shock et al., 1989; Shock et al., 1992; Shock et al., 1997), and existing 

thermodynamic data (Wagman et al., 1982; Shock and Helgeson, 1990;). The resulting 

activities were used to calculate activity products (Q, also known as reaction quotients) 

for separate reactions between methane, formate, acetate, and the corresponding reaction 

species for each individual sample site. In some cases, only partial activity products were 

calculated, appointing the activities, aCO3
2- and aH2, as variables. As mentioned above, 

comparing these partial activity products to equilibrium constants (K) derived from 

SUPCRT92 (Johnson et al., 1992) for mineral and organic formation reactions allowed 

the quantification of theoretical equilibrium activities for those geochemical variables 

that satisfy equilibrium, and thus generated hypotheses regarding active processes in the 

surface and subsurface, whether abiotic or biological (see below). 

Affinities were calculated for carbonate mineral precipitation reactions and for a 

non-exhaustive set of redox reactions potentially relevant to microbial metabolisms 

involving formate, acetate, and methane, according to Eq. (8): 

 

A = RT ln(K/Q)  (8), 

 

where R is the universal gas constant, T is the temperature in Kelvin, and A is the 

affinity, or the free energy available for a reaction. A positive affinity calculated for a 
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given reaction means that it is thermodynamically favorable proceeding as written from 

left to right. The inspiration and methods for these calculations come from Shock et al. 

(2010), who calculated and ranked affinities for an extensive set of redox reactions in the 

hot springs of Yellowstone National Park. Affinity calculations for this work were 

performed for samples taken from shallow groundwater (Type I) fluids, serpentinized 

(Type II) fluids, and mixtures of these fluids. 

4.3. Results and Discussion 

Carbon chemistry is central to many processes during low temperature 

serpentinization. It is involved in the precipitation of carbonate minerals as fluids become 

more alkaline. It is inherent to any biological structures that exist in the system, and 

potentially powers biological metabolisms via carbon redox reactions (Canovas et al., 

2017). The following results of geochemical and thermodynamic analyses explore 

existing models of carbon flow within the fluids of the Samail Ophiolite (Kelemen et al., 

2011) and expand upon what is known about transformations between inorganic and 

organic carbon reservoirs during low temperature serpentinization. 

4.3.1 General visual observations 

Shallow groundwater (Type I) fluids and serpentinized (Type II) fluids are often 

observed in similar geographic locations, as described in Kelemen et al. (2011). Type I 

fluids often have visible signs of photosynthesis (green pigments), and Type II fluids do 

not. Instead, Type II fluids often have visible signs of carbonate precipitation as brittle, 

white films forming on the surface of stagnant pools, or white flocculant material at the 

bottom of pools and outflow channels. This makes Type II fluids visually easy to 

distinguish. Both fluids typically have distinct sources; we attempted to sample both 
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types as endmembers, and in some cases across regions where their outflow channels 

mixed together. The geochemistry of these fluids suggests that some mixing may also 

occur in the subsurface; silica concentrations were used as proxies for the extent of this 

mixing (see below). The compilation of geochemical data used in this study can be found 

in Tables D1 – D4. 

4.3.2 Aqueous inorganic chemistry  

Many of the geochemical measurements in the present study corroborate 

descriptions of carbon flow through low temperature actively serpentinizing systems 

from previous studies (Barnes and O’Neil 1969; Barnes et al. 1967, 1978), and other 

more quantitative investigations (Bruni et al. 2002, Cipolli et al. 2004, Kelemen at al., 

2011). Measurements of pH from Type I shallow groundwater fluids at the Samail 

Ophiolite yield circumneutral values, ranging from ~7 to 9; the pH of Type II 

hyperalkaline fluids is generally ~11.5; fluids mixing at the surface span an intermediate 

pH range. At intermediate pH, the geochemical analytes typically span an intermediate 

concentration range with respect to the analyte concentrations at pH extremes (Fig. 23). 

According to the model presented in Kelemen et al. (2011, and references therein) 

the carbon in the actively-serpentinizing Samail Ophiolite is primarily derived from the 

atmosphere. In surface fluids, dissolved inorganic carbon (DIC) concentrations have an 

inverse linear correlation with pH, as shown in Fig. 23a. Due to differences in pH, DIC 

should be predominantly in the form of bicarbonate (HCO3
-) in Type I fluids and 

carbonate (CO3
2-) in Type II fluids. The fact that DIC in Type II fluids is relatively low is 

consistent with dolomite and magnesite precipitation as alkalinity increases during 

serpentinization (Kelemen et al., 2011; Paukert et al. 2012), as summarized in 
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Fig. 23. Aqueous species concentrations vs. pH from shallow groundwater and 

hyperalkaline seeps, Type I and Type II fluids, respectively. Samples at intermediate pH 

values are from mixtures of these fluids that occur naturally at the surface. The data used 

to make these plots are found in Table D1, D2, and D4. 
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Section 4.1.2. Dissolved magnesium (Mg2+) follows a similar trend to the DIC; it is 

abundant in Type I fluids (> 1.8 mmolal) from the weathering of altered peridotite at the 

surface and depleted in Type II fluids (< 0.01 mmolal), owing to the precipitation of 

magnesium-rich carbonate minerals in the subsurface as Type I fluids transform into 

Type II fluids (see Fig. 23). In contrast, dissolved calcium (Ca2+) is roughly a factor of 4 

more concentrated in Type II fluids (~2.0 mmolal) than in Type I (~0.5 mmolal), owing 

to the exclusion of Ca2+ from transforming minerals during serpentinization in the 

subsurface. Calcium is roughly the same concentration across low and intermediate pH 

(~7-11) and is depleted relative to hyper-alkaline fluids (pH > 11). The difference in 

behavior of these divalent cations across intermediate pH suggests differences in Mg2+ 

versus Ca2+ carbonate mineral precipitation rates may be occurring in these mixing zones. 

We investigated this notion of preferential precipitation of certain carbonate 

minerals was investigated by performing thermodynamic affinity calculations to assess 

carbonate mineral saturation states (in fluid samples) with respect to calcite, magnesite, 

and dolomite, according to Eq. (9 – 11): 

 

Ca2+  +  CO3
2-  ⇌  CaCO3 (calcite)     (9), 

 

               Mg2+  +  CO3
2-  ⇌  MgCO3 (magnesite)       (10), and 

 

 Mg2+  +  Ca2+  +  2CO3
2-  ⇌  MgCa(CO3)2 (dolomite)      (11). 
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The results of these calculations (Fig. 24a) indicate that Type I fluids are generally at 

saturation with respect to all three minerals, while Type II fluids are saturated with 

respect to calcite only, and undersaturated with respect to magnesite and dolomite. This 

suggests that Type I fluids are in contact with all three minerals and their DIC is buffered 

according to their pH and divalent cation concentrations. On the other hand, Type II 

fluids have not been in contact with magnesite or dolomite recently and seem to be 

actively precipitating calcite. Samples of these two fluids mixing at the surface, which 

occupy intermediate pH, are saturated with respect to calcite and magnesite and 

oversaturated with respect to dolomite, suggesting formation of the latter may be 

inhibited in real time. 

Inhibition of rapid precipitation of Mg2+ minerals is supported by the mixing 

trends shown in (Fig. 24b), the result of sampling across a single mixing zone, which 

includes data from a Type I fluid sample, a Type II fluid sample, and two samples from 

where these two fluids mix (Fig. 1D – 3D). Sodium (Na+) is higher in Type II fluids than 

in Type I fluids, potentially due to a longer duration of water-rock interaction, and is 

expected to mix conservatively at the surface mixing zone that was sampled. Analysis of 

aqueous cations shows a conservative mixing trend of Mg2+ versus Na+ between both 

types of fluid, compared with the unconservative mixing trend of Ca2+ versus Na+
, and 

DIC versus Na+. The low Ca2+ and DIC in the two mixing sites suggests that calcite is 

actively precipitating, corroborating the visual observations of white mineral precipitation 

mentioned above, as well as previous mineralogical studies which have identified calcite 

as the dominant carbonate mineral at hyperalkaline springs. (Kelemen et al., 2011, Streit 

et al., 2012). 
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Fig. 24. On the left, affinity calculations for the reaction of aqueous species to form 

carbonate minerals, Eq. (9 – 11), versus pH for Type I and Type II fluids, as well as fluid 

mixing zones. Calculations were performed using spring geochemistry to obtain activity 

products using the software program EQ36 (Wolery, 1992), while the program 

SUPCRT92 (Johnson et al., 1992) was used to obtain equilibrium constants. Positive 

affinities indicate that minerals are oversaturated while negative affinities indicate 

minerals are undersaturated with respect to fluid chemistry. Calculations for mineral 

formation reactions that yield affinities between -4.184 and 4.184 kJ mol-1 (± 1 kcal mol-

1) are considered to be at equilibrium saturation. On the right are DIC and cation 

measurements from samples at a single mixing site where a Type I fluid mixes with a 

Type II fluid. Given that sodium is presumed to mix conservatively, the plot indicates 

that Mg2+ mixes conservatively as well, while Ca2+ and DIC do not. This suggests that 

calcium-rich carbonate minerals, such as calcite, are actively precipitating upon mixing 

of these two fluids. 
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Evidence for various states of mineral saturation, as well as active precipitation in 

these different fluids, allows for predictions to be made regarding DIC abundances for 

fluids of different composition within the subsurface. For example, since calcium 

hydroxide rich Type II fluids are actively precipitating calcite and have not achieved 

equilibrium with atmospheric carbon dioxide, these fluids should be actively deviating 

from subsurface compositions that are more depleted of inorganic carbon. The abundance 

and speciation of DIC in surface versus subsurface fluids has implications for the 

production of organic carbon compounds, whether by biological and abiotic processes 

(see below). 

Volatile species measured in fluids of the Samail Ophiolite span wide 

concentration ranges. Dissolved hydrogen concentrations in Type II fluids exceed those 

in Type I fluids typically by ~1 to 3 orders of magnitude, the large variation resulting 

from wide concentration ranges in both fluids, but more so in Type II fluids (Fig. 23c, 

Table D2). Visual observations in the field suggest that in most cases low H2(aq) 

concentrations in Type II fluids (≥ 0.476 µmolal) come from sampling larger stagnant 

pools of fluid that presumably have been subject to degassing and atmospheric mixing. 

However, in some cases fluids sampled after very short residence times at the surface 

also have low H2(aq) concentrations. Therefore, in addition to degassing there are likely 

other surface or subsurface processes causing H2(aq) concentrations to range widely. One 

possible alternative process is microbial hydrogen oxidation. Evidence for this exists 

based on sequencing of 16S rRNA genes closely related to aerobic hydrogen oxidizers, 

performed on filtrides of water sampled from peridotite hosted boreholes (Miller et al., 

2016; Rempfert et al., 2017). The range of H2(aq) concentrations in Type I fluids (0.01 to 
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0.24 µmolal), all anomalously high for typical freshwater at the surface of the Earth, can 

be attributed to gases from serpentinization separating from subsurface Type II fluids and 

diffusing upward through Type I fluids, providing a unique habitat for microorganisms. 

These observations suggest that Type II fluids may be subject to H2 loss before reaching 

the surface, and thereforee could contain higher H2(aq) concentrations in the subsurface. 

This notion is supported by measurements from boreholes in the Samail Ophiolite that 

find millimolar concentrations of H2(aq) (Paukert et al, 2014; Miller et al., 2016; 

Rempfert et al., 2017). Greater H2(aq) concentrations in the subsurface are invoked in 

hypotheses regarding the formation of formate in Type II fluids (see below). 

4.3.3 Aqueous organic chemistry 

Dissolved methane, CH4(aq), concentrations generally follow a similar trend to 

H2(aq) concentrations across pH, with a higher and larger range of CH4(aq) 

concentrations for Type II fluids (3.98 µmolal to 242.42 µmolal) and a lower and smaller 

range for Type I fluids (≤ 0.63 µmolal) (Fig. 23d). However, sites with the highest 

CH4(aq) do not typically have the highest H2(aq), and vice versa, as seen by comparing 

Table D2 and D4. Instead, the observation that the highest abundance CH4(aq) sites have 

lower H2(aq) may be indicative of H2(aq) consumption during the reduction of DIC to 

produce CH4(aq). 

Formate and acetate concentrations measured in fluid samples follow similar 

general trends to H2(aq) and CH4(aq) across pH (Fig. 23e and 21f, respectively). Most 

formate concentrations in Type I fluids are below the detection limit of the instrument, 

while acetate concentrations in these fluids are on average lower than those measured in 

Type II fluids. In Type II fluids formate is never below detection limits, ranging from 
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0.43 to 5.93 µmolal. Only a single acetate measurement from Type II fluids was below 

detection limits, otherwise ranging from 0.40 to 4.19 µmolal. Formate and acetate 

concentrations have a weak direct correlation with one another, which can be surmised 

from Table D4. This suggests that formate and acetate may have minor commonalities in 

terms of processes affecting their production and consumption within the system. It is 

possible that dissolution of atmospheric formic and acetic acid contributes to high 

abundances observed in Type II fluids, since this is extremely thermodynamically 

favorable at high pH (Ervens et al., 2003). However, there is not enough available data to 

constrain contributions process at this time, so this possibility is not addressed in the 

current study (addressed in Chapter 5). 

There is not an obvious trend with DOC versus pH, and thus this particular 

relationship is not shown in any figures, but the data can be compared in Table D1 and 

D4. This is probably because DOC potentially represents a large diversity of individual 

compounds that are affected by many different processes. However, DOC concentrations 

relative to other organic compounds from multiple samples across a single mixing zone 

may reflect biological processes, as discussed below. Notably, formate and acetate 

typically compose < 5% of the DOC in Type I fluids, and > 10% in Type II fluids. 

4.3.4 Classifying near-endmember (N-E) Type I and Type II fluids 

Based on the data presented in Fig. 23, it can be seen that pH separates variations 

between Type I and Type II fluid geochemistry quite distinctly for most species. 

However, as described above, Type II fluids with pH above 11 often have a wide range of 

concentrations of species relevant to serpentinization and carbon chemistry, making it 

difficult to identify a representative endmember for this fluid. A likely cause for these 
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large variations is mixing with atmospheric fluids, including air and Type I fluids, at or 

below the surface. Mixing with Type I fluids is expected to cause more rapid changes 

than atmospheric exchange. Small amounts of exposure to these fluids could cause large 

changes in Type II fluid geochemistry due to the introduction of atmospherically derived 

inorganic carbon to relatively depleted fluids, the exsolution of gases derived from the 

subsurface, and the reaction of reduced compounds, including organics, with atmospheric 

oxygen. However, small amounts of mixing may not significantly affect the pH of 

hydroxide-rich Type II fluids, and furthermore, proton (H+) concentrations are not 

expected to behave conservatively upon mixing for a variety of reasons. 

 Outside of the conservative mixing of solutions, H+ concentrations can be affected 

by certain mineral precipitation and dissolution reactions. Type II fluids are oversaturated 

with respect to brucite, MgOH2 (Paukert et al., 2012), the precipitation of which would 

decrease pH. Conversely, Type II fluids are undersaturated with respect to magnesite and 

dolomite (Fig. 24a), which if contacted should dissolved and increase the pH. 

Additionally, numerous redox reactions become available when reduced fluids mix with 

oxidized fluids, many of which produce or consume H+ (Shock et al., 2010, Canovas et 

al., 2017), see below. Perhaps related to redox chemistry is the observation that pH 

increases down Type II fluid outflow channels that are in contact with the atmosphere; 

we observed this for two outflow channels, as indicated in Table D1. Together, these 

theoretical expectations and empirical observations suggest that increasing pH may not 

be the best indicator of pristine fluids, especially for Type II water. 

 Instead, work by Leong et al. (in prep) suggests that aqueous silica 

concentrations, presented in Table D3, may best serve to characterize the extent of 
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mixing between Type I and Type II fluids both at the surface and into the subsurface, and 

thus also serve to identify near-endmember fluids for each water type. Silica is expected 

to mix conservatively between fluids in this system due to its lack of involvement in 

redox chemistry, as well as its relatively sluggish kinetics associated with silicate mineral 

precipitation and dissolution at ambient conditions, based on field observations (Paukert 

et al., 2012; Chavanac et al., 2013) and kinetic studies (Schott et al., 2009). The use of 

silica(aq) as a conservative mixing species also possesses a unique advantage over non-

redox species which are highly soluble, e.g., Na+, because equilibrium silica(aq) 

concentrations can be independently derived from thermodynamic reaction path 

modeling for an endmember Type II fluid that has undergone serpentinization, reaching 

equilibrium between chrysotile and brucite (Leong et al., in prep). No equivalent reaction 

exists for determining a Na+ concentration for a Type II fluid. This reaction path 

modeling allows Leong et al., (in prep) to compare empirical and theoretical silica(aq) 

values for Type II fluids, which find good agreement. 

 As a result, silica(aq) concentrations were used to classify near-endmember Type 

I and Type II fluids in this study according to the highest and lowest measuremeants from 

fluid samples, respectively; see Appendix D (text and Table D3). For the remainder of 

this study, these near-endmember fluids will be referred to as N-E Type I and N-E Type 

II fluids. Using this characterization, we assess the differences in energetics between N-E 

fluids for a variety of carbon transformation reactions via thermodynamic calculations. 

These calculations are designed to generate and test hypotheses regarding the sources and 

sinks of inorganic carbon and organic carbon during low temperature serpentinization. 

4.3.5 Thermodynamic modeling of organic carbon formation reactions 
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As described above, the production of H2 in the presence of inorganic carbon 

during serpentinization theoretically generates an energetic drive for the formation of 

organic compounds. Given that methane, formate, and acetate are generally observed in 

greater abundance in Type II fluids relative to Type I fluids (Fig. 23d – f), we 

hypothesize that these compounds are formed from redox reactions along the flow path of 

water in this system. Also mentioned above, Type II fluids issuing at the surface are 

estimated to have residence times in the subsurface of up to 6,500 years (Paukert et al., 

2012) and may travel to kilometer depths (Kelemen et al., 2011), potentially allowing for 

a large gradient of fluid compositions and habitats in which organic compounds could be 

produced. Identifying the conditions under which individual organic compounds form 

could help to predict the location of active processes, which may include microbial 

communities metabolizing different carbon species. 

We performed thermodynamic calculations to assess whether organic compound 

abundances from water samples were in equilibrium with their associated N-E Type I and 

N-E Type II fluid chemistries. If an organic compound was out of equilibrium, we 

hypothesized active processes at the surface that could account for the perturbation from 

equilibrium observed, or we determined plausible differences in subsurface conditions 

that would satisfy equilibrium for the concentrations of organic compounds observed. 

Organic compound formation was considered from DIC and H2, with equilibrium 

abundances calculated from combining activity products with equilibrium constants, 

according to the redox reactions shown in Eq. (12 – 14):  

 

CO3
2-  +  4H2(aq)  +  2H+  ⇌  CH4(aq)  +  3H2O  (12) 
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CO3
2-  +  H2(aq)  +  H+  ⇌  CHOO-  +  H2O   (13) 

 

2CO3
2-  +  4H2(aq)  +  3H+  ⇌  CH3COO-  +  4H2O  (14) 

 

Results from these calculations, which determine the equilibrium activities of H2 

and CO3
2- for the above reactions, are shown as lines or bands in Fig. 25 for near-

endmember (N-E) Type I fluids, plot a, and N-E Type II fluids, plot b. Near-endmember 

fluids were designated by silica(aq) abundances in water samples, as described briefly in 

Section 4.3.4 and in more detail in Appendix D (Leong et al., in prep). Equilibrium 

activity calculations were performed at the temperatures measured for each sample (solid 

lines), plotted as bands to show the ranges of results from the samples, and then again at 

60°C (dashed lines) for only the maximum values, since carbonate mineral formation has 

been estimated to have occurred up to that temperature in the active system (Kelemen et 

al., 2011; Streit et al., 2012). More details on how these calculations were performed can 

be found summarized in Section 4.2.4. 

Equilibrium activities can be compared to actual H2(aq) and CO3
2- activities of 

individual fluid samples, which are shown as square symbols on the plots. Some data 

points are colored in the case that an organic analyte necessary for performing 

calculations for a given reaction is below the detection limit of the instrument (BDL); in 

those samples equilibrium activities (bands) were calculated using instrumental detection 

limit values for organic compounds. By comparing the activities of H2(aq) and CO3
2- in 

fluid samples to their equilibrium activities, these plots allow one to quantify changes in  
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Fig. 25. Equilibrium activity diagrams for carbonate mineral and organic compound 

formation reactions. Equilibrium values of aH2(aq) and aCO3
2- for each reaction (lines) 

can be compared to actual activities of these species in near-endmember (N-E) Type I 

fluids (a) and N-E Type II fluids (b). Colored symbols indicate organic measurements for 

particular samples that were below the detection limits of the instrument (BDL). Black 

symbols contain all measurements. Equilibrium values of aCO3
2- (grey lines) for 

carbonate minerals were calculated as averages for the fluid samples in each plot. 
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the geochemistry of the samples, in terms of aH2 and aCO3
2-, that would satisfy 

equilibrium for the different organic compound formation reactions. 

Simply put, if a symbol in the plot falls on a given line, the corresponding organic 

compound formation reaction is at equilibrium in that sample. If a symbol plots above a 

line, then that organic formation reaction is out of equilibrium in that sample and would 

need to proceed from left to right to approach equilibrium, i.e., reactant to product ratios 

are too high relative to equilibrium. Conversely, if a symbole plots below a line, then that 

organic formation reaction is also out of equilibrium in that sample, but would need to 

proceed from right to left to approach equilibrium. 

Based on these calculations, Fig. 25a shows that N-E Type I fluids are generally 

in equilibrium with the carbonate minerals calcite, magnesite, and dolomite, as well as 

the organic compounds formate, and acetate, according to Eq. (9 – 11, 13, 14), 

respectively. Notably, however, most formate measurements are BDL, so for its 

formation reaction this is less certain. Additionally, N-E Type I fluids are slightly out of 

equilibrium with respect to the methane formation reaction, Eq. (12), having too little an 

abundance of products relative to reactants, e.g., too little methane relative to the 

geochemistry of the fluids. However, when calculations are performed at the maximum 

estimated carbonate formation temperatures for the system, 60°C (Kelemen et al., 2011; 

Streit et al., 2012), N-E Type I fluids appear to be essentially in equilibrium with respect 

to Eq. (12) according to the general agreement between the data points and the range of 

values covered between the solid and dashed green lines. The reliability of using this 

upper temperature for N-E Type I fluid calculations is discussed below. 



130 

The relationships between N-E Type I fluid geochemistry and calculated 

equilibrium activities serve to generate hypotheses concerning the origins of methane, 

formate, and acetate in shallow groundwater fluids. As mentioned above, the formation 

reaction for acetate appears to be at equilibrium in N-E Type I fluids, which implies that 

forward and reverse reactions for Eq. (14) proceed sufficiently faster than competing 

reactions that would perturb equilibrium. Abiotic redox reactions that form organic 

compounds from DIC and H2(aq) have typically been shown to be inhibited under a 

variety of experimental conditions up to 200°C (see McCollom, 2013b and references 

therein). Because of the low temperatures (Kelemen et al., 2011; Streit et al., 2012) and 

short residence times (Paukert et al., 2012) estimated for shallow groundwater fluids of 

the modern Samail Ophiolite, we hypothesize that an approach toward metastable 

equilibrium for acetate formation, Eq. (14), is facilitated and catalyzed by 

microorganisms in N-E Type I fluids or host sediments at the surface where fluid samples 

were collected. 

The source of CH4(aq) in N-E Type I fluids is less certain due to its low 

abundance relative to equilibrium with DIC and H2(aq), as well as its volatility. While 

calculations performed at 60°C satisfy equilibrium for the methane formation reaction, 

Eq. (12), there is no evidence that suggests Type I shallow groundwater fluids reach these 

temperatures, since the annual average air temperature is 30°C and the geothermal 

gradient is 24°C per kilometer depth in the region (Paukert, 2014). Therefore, it seems 

that Eq. (12) does not reach equilibrium in N-E Type I fluids. 

It is possible that CH4(aq) formation is kinetically inhibited from reaching 

equilibrium, but given that acetate is in equilibrium with N-E Type I fluid geochemistry, 
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and should require more reaction steps to form than CH4(aq) from DIC and H2(aq), this 

kinetic explanation is unsatisfactory without further investigation into microbial 

processes. Diffusion of H2 from deeper Type II fluids upward into Type I fluids could 

explain why CH4(aq) activities are relatively low, since H2(aq) is on the reactant side of 

Eq. (12), but again requires that acetate equilibrates with H2 via Eq. (14) faster than CH4 

does via Eq. (12). Exsolution is not considered as an explanation for relatively low 

CH4(aq) abundances, since CH4(aq) should degas more slowly than H2(aq). 

A more likely contributing factor for relatively low CH4 abundances in N-E Type 

I fluids is microbial oxidation of CH4(aq), shown to be thermodynamically favorable in 

Type I fluids for aerobic as well as anaerobic metabolisms, with O2 as an oxidant as well 

as NO3
-, NO2

-, or SO4
2-, respectively (Canovas et al., 2017, and below). For this 

hypothesis to be sensible, oxidation of CH4(aq) would also need to be significantly faster 

than oxidation of H2(aq), since H2(aq) is a reactant in Eq. (12), and has a larger 

stoichiometric coefficient in the reaction than CH4(aq). This means that changes in 

H2(aq) abundance cause larger perturbations to the reaction quotient than changes in 

CH4(aq). A potential caveat to this hypothesis is that acetate does not seem to undergo 

oxidation in a way that perturbs it from equilibrium with Eq. (14), despite acetate 

oxidation also being quite energetically favorable (see below). 

Narrowing down this list of plausible hypotheses could be achieved by identifying 

potential microbial metabolisms involving involving these organic compounds occurring 

in N-E Type I fluids or host sediments at the surface. Through sequencing, Rempfert et 

al. (2017) identified 16S rRNA genes closely related to methylotrophs, methanogens, and 

aerobic hydrogen oxidizers, as well as identifications suggestive of acetogenesis in 
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peridotite hosted fluids with pH ≤ 8.5 from boreholes in the Samail Ophiolite, which 

provides some validation for the above hypotheses. However, though somewhat 

compositionally similar, as indicated by similar aqueous silica concentrations, it is 

uncertain how relevant the communities of these subsurface fluids might be to the N-E 

Type I fluids from the present study, which were sampled at the surface. Additionally, the 

pumping methods used in Rempfert et al. (2017) to obtain borehole fluids could 

conceivably cause mixing of both fluid types (I and II), mixing their microbial 

communities during sampling. As investigations continue into comparisons between 

subsurface and surface taxonomy (A. Howells, personal communication, October 20, 

2017), further clarity for the above hypotheses could be gained from microbial incubation 

experiments by comparing rates of organic acid, H2, and methane redox metabolisms. 

Unlike N-E Type I fluids, 23b shows that N-E Type II fluids only approach 

equilibrium with respect to calcite saturation and acetate formation from DIC and H2(aq), 

Eq. (9) and (14), respectively. This observation finds commonalities with similar 

observations of metastable equilibrium achieved between acetate and calcite in 

sedimentary basins (Helgeson et al., 1993), suspected to be biologically mediated. 

Although notably, the Samail Ophiolite is a much lower temperature system in which 

metastable equilibrium is achieved between these carbon species. 

 Also in N-E Type II fluids, CH4(aq) is extremely low in abundance relative to 

equilibrium for Eq. (12), while formate is actually high in abundance relative to 

equilibrium for Eq. (13), the latter a similar observation to Lang et al. (2010), who 

suggest that formate at Lost City is abiotically produced. At ambient conditions in the 

Samail Ophiolite, it is more likely that biology exploits carbon redox reactions (Shock 
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and Boyd, 2015), and as mentioned above, this can be hypothesized for acetate in Type I 

fluids, suggesting contact with microbial communities operating metabolisms for both the 

forward and reverse reactions for Eq. (14). Since some portion of Type I fluid is 

presumed to permeate into the subsurface and undergo serpentinization, it may have 

potential to “seed” the rest of the system, including Type II fluids, with organisms 

capable of similar metabolic reactions. While microbially-mediated pathways seem to 

achieve acetate formation equilibrium in both N-E Type I and N-E Type II fluids, the 

same cannot be said for organic formation reactions of formate and methane, Eq. (12) and 

(13), respectively, which are both extremely out of equilibrium in N-E Type II fluids. 

Similar to N-E Type I fluids, low CH4(aq) abundances relative to equilibrium in 

N-E Type II fluids could also be explained by kinetic inhibition of Eq. (12), as well as 

methane oxidation metabolisms which are also thermodynamically favorable in Type II 

fluids (Canovas et al., 2017). These hypotheses bear the same caveats as their analogs for 

Type I fluids (see above). In addition to assuming that these disequilibria describe 

geochemical or biochemical processes largely responsible for the composition of N-E 

Type II fluids, we also consider the possibility that these organic abundances are 

representative of previous equilibrium states under different geochemical conditions. This 

different approach seems sensible given that N-E Type II surface fluids have only just 

been exposed to surface conditions prior to sampling and, as mentioned previously, rapid 

calcite precipitation at Type II surface seeps indicates that these fluids are rapidly 

exchanging with the atmosphere and thereforee far from equilibrium. Prior to surfacing, 

these fluids potentially have thousands of years (Paukert et al., 2012) to reach equilibrium 

with respect to the organic formation reactions of interest. 
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Here we quantify potential compositional differences in Type II fluids prior to 

reaching the surface that satisfy equilibrium for formate and methane reactions, Eq. (12) 

and (13), and could be possible in the subsurface. As seen in Fig. 25b, N-E Type II 

surface fluids have extremely low abundances of CH4(aq) relative to H2(aq) and CO3
2-, 

requiring activities of CO3
2- and/or H2(aq) several orders of magnitude lower to satisfy 

equilibrium. Therefore, these calculations allow for the possibility that CH4(aq) last 

equilibrated in a carbon and/or hydrogen limited zone in the subsurface. However, it is 

difficult to conceptualize how H2(aq) could be lower in abundance in subsurface Type II 

fluids, given that the formation of Type II fluids and H2(aq) are entangled in the 

subsurface via serpentinization, and H2(aq) abundances should be generally increasing 

with depth due to decreasing atmospheric exchange. Therefore, we rule this possibility 

out and instead hypothesize that CH4(aq) in N-E Type II fluids is produced and last 

equilibrates in an extremely carbon-limited zone in the subsurface (aCO3
2- ≤ 10-14), with 

similar or greater levels of H2(aq) as measured in Type II surface fluids, prior to 

atmospheric infiltration or exchange. A similar general hypothesis is proposed in Miller 

et al. (2016) on the basis of borehole fluid CH4 stable carbon isotopes, which we discuss 

below with additional isotopic analyses. Such an environment would be undersaturated 

with respect to carbonate minerals, and thereforee devoid of them. The hypothesis for a 

carbon limited zone also finds support from preliminary work on samples from deep 

wells by Paukert (2014), which suggests that calcite is less common below 150 meters 

depth. A similar carbon limitation hypothesis was not considered to explain low CH4 

abundances for Type I fluids, due to the short residence times and signatures of 

atmospheric influence in the geochemistry of these fluids (Paukert et al., 2012). 
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 In contrast to CH4(aq), equilibrium is satisfied for the formate formation reaction, 

Eq. (13), under conditions where H2(aq) and/or CO3
2- activities are greater than what is 

measured in N-E Type II surface fluids. However, it is difficult to conceptualize how 

CO3
2- could be higher in abundance in subsurface Type II fluids, given that the 

atmosphere should have less influence with increasing depth, and Mg2+ concentrations 

are far too low in N-E Type II fluids to suggest recent contact with Mg2+-rich carbonate 

minerals, which would buffer CO3
2- at greater abundacnes. Thereforee we hypothesize 

that formate is produced and last equilibrates in the subsurface under similar geochemical 

conditions, except with more abundant H2, prior to transport to the surface where H2 is 

lost via atmospheric exchange.  

Although perhaps counterintuitive, this hypothesis is not mutually exclusive with 

the formation of CH4(aq) in a carbon limited zone of the subsurface. Instead, since this 

hypothesis requires greater activity of H2(aq) at depth, it simply requires even lower 

activities of CO3
2- in a carbon-limited zone where CH4(aq) is formed, presumably deeper 

in the system. Accordingly, these two hypotheses suggest formate forms shallower, in the 

upper 150 meters of the subsurface, where atmosphere has infiltrated to precipitate calcite 

(Paukert, 2014), which buffers CO3
2- activities, but H2(aq) has not yet sufficiently 

diffused out of N-E Type II fluids. Measurements of H2(aq) down boreholes by Paukert 

(2014) and Miller et al., (2016) yield millimolar abundances, which is up to a factor of 4 

greater than the highest H2(aq) concentrations measured in Type II surface fluids herein 

(Fig. 23c). These observations provide some support for a suitable subsurface 

environment in which formate is produced and equilibrates in Type II fluids, but these 

particular H2(aq) concentrations are still insufficient for satisfying equilibrium. If formate 
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is formed in the subsurface, we expect that a subsurface microbial community is 

responsible for forward and reverse formate formation reactions that allow Eq. (13) to 

approach equilibrium. 

Another hypothetical process that could simultaneously explain the relatively high 

abundances of formate and the relatively low abundances of CH4(aq) in N-E Type II 

fluids is microbial oxidation of CH4(aq) to formate, which does not proceed with the final 

oxidation step for some portion of carbon. Thermodynamic calculations show that 

aerobic methane oxidation to formate as the product is quite energetically favorable in 

Type II fluids (∆rG ≈ -100 kJ/mol e-), see below. Based on culture sequencing of 

methanotrophs and methylotrophs, formate is produced during oxidation of C1 

compounds as a discrete molecule (Ward et al., 2004), and methylotrophs do not 

necessarily have to proceed with the final oxidation step (Chistoserdova et al., 2004), 

though this latter study reports that after formate is excreted into culture medium, it is 

later consumed via some other metabolic process during growth. In part this hypothesis 

could also help to explain low CH4(aq) abundances relative to equilibrium for Eq. (12), if 

cumulative forms of CH4(aq) oxididation are significantly faster than H2(aq) oxidation. 

This set of hypotheses for formate formation could also potentially apply to 

observations of formate at the Lost City hydrothermal vents (Lang et al., 2010), since 

formate abundances are also high relative to equilibrium with DIC and H2(aq) in that 

system. Additionally, findings by Haggerty and Fisher (1992), described in Section 4.1.1, 

also suggest that high levels of formate in serpentinite-hosted ecosystems may be the 

product of biomass degradation in organic rich sediments. While it seems that there is not 

comparably abundant organic material in the hyperalkaline fluids of either the Samail 
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Ophiolite or Lost City, the possibility that an overabundance in these fluids relative to 

equilibrium may be the product of biomass degradation cannot be ruled out, since 

microbial communities are present. 

Sequencing work has also been performed on subsurface Type II fluids from 

boreholes, with studies by both Rempfert et al. (2017) and Miller et al. (2016) identifying 

16S rRNA genes closely related to those of methylotrophs, methanogens, aerobic 

hydrogen oxidizers, as well as identifications suggestive of other relevant metabolic 

pathways, including acetogenesis, fermentation, and small organic acid oxidation 

(Rempfert et al. (2017). As mentioned above, fluids in these previous studies are not 

perfect analogs to the surface fluids sampled in this study. This is even more so the case 

when comparing Type II fluids between studies, as subsurface fluids from the studies 

with sequencing have silica(aq) concentrations that are greater by at least a factor of 5 in 

high pH peridotite hosted samples, likely an indication of subsurface mixing with Type I 

fluids (Leong et al., in prep). Still, the fluids in these sequencing studies have otherwise 

very similar geochemistry to the samples in the current study, and provide some 

credibility to the hypotheses for N-E fluids herein. 

As with Type I fluids, the hypotheses above concerning organic formation 

reactions in Type II fluids can be tested by expanding taxonomic investigations to surface 

fluids, and moving into the realm of investigating relative metabolic rates for redox 

reactions involving CH4(aq), H2(aq), formate, and acetate. The sequencing results of 

Rempfert (2017) and Miller et al., (2016) certainly provide sufficient confidence that 

such work would yield some amount of activity from metabolic processes. The organic 

formation reactions that have been calculated to be in equilibrium with respect to surface 
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fluid chemistry also allow us to more confidently make predictions regarding microbial 

metabolisms in these environments. Specifically, we predict that the metabolic potential 

exists and is active for reversible acetate formation, Eq. (13), in surface environments 

with N-E Type II fluids and N-E Type I fluids. In contrast, multiple hypotheses remain 

plausible for organic formation reactions that calculations have revealed to be out of 

equilibrium with respect to fluid geochemistry in samples. Because these hypotheses 

involve different biological processes, we used additional geochemical observations 

below to test for the presence of active metabolic processes. 

4.3.6 Evidence for active metabolic processes involving carbon 

To gain energy from serpentinizing environments, microorganisms catalyze a 

diversity of redox reactions (Canovas et al., 2017). It follows that mixtures of oxidant-

rich Type I shallow groundwater fluids and reductant-rich Type II serpentinized fluids 

make for ideal environments for redox metabolisms to operate. To test this, affinity 

calculations were performed, as described in Section 4.2.4, which quantify the energy 

available for a non-exhaustive set of potential metabolic reactions involving methane, 

formate, and acetate. 

 These affinity calculations are presented as energy ranges in Fig. 26 in near-

endmember (N-E) Type I fluids, N-E Type II fluids, and all other samples, termed 

“Mixing fluids.” This figure shows the energetics for a variety of different reactions in 

which all three organic compounds are oxidized, coupled to the reduction of dissolved 

oxygen (O2), nitrate (NO3
-), sulfate (SO4

2-), and carbonate (CO3
2-). Affinity values are 

also shown for reactions involving the reduction of formate and acetate, coupled to the 

oxidation of H2(aq), as well as a fermentative reaction, acetate decarboxylation (reaction  
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Fig. 26. Affinities for potential metabolic reactions involving formate (CHOO-), acetate 

(CH3CHOO-), and methane (CH4). Reaction affinities are shown in kJ per mole of 

electrons transferred, and as energy ranges calculated for N-E Type II fluids (purple), N-

E Type I fluids (green), and all other samples, termed “Mixing fluids” (orange). All 

species in these reactions are in their aqueous forms. This diagram was calculated using 

the same style of affinity calculations as the central focus of Shock et al., 2010 and 

Canovas et al., 2017. 
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K). Each equation in the figure is thermodynamically favorable if the net reaction 

proceeds, as written, from left to right; accordingly, none are energetically favorable to 

proceed from right to left. Notably, Eq. (12 – 14) used in Fig. 25 can be found among 

these reactions, with Eq. (13) being written in reverse, labeled (13)r, since N-E Type II 

fluids have a high abundance of formate relative to equilibrium with respect to Eq. (13).  

 Specific reactions will be referred to below when considering hypotheses 

regarding potential metabolic pathways that could explain organic abundances relative to 

thermodynamic equilibrium from Section 4.3.5. More broadly, to be gleaned from this 

figure is the fact that N-E Type I fluids have the lowest average energy yields for 

essentially all reactions. This seems to follow common logic, as N-E Type I fluid samples 

are derived from shallow groundwater, so they have been in greater contact with the 

atmosphere and are already quite oxidized. On the other hand, Type II fluids have the 

highest average energy yields for essentially all reactions. Again, this follows common  

logic, given that these fluids have been in contact and equilibrating with reduced minerals 

in the subsurface for up to thousands of years (Paukert et al., 2012), and just prior to 

sampling they are exchanging with the atmosphere for the first time, which creates redox 

disequilibria and thus enormous amounts of chemical potential energy. All reactions 

shown are more energetically favorable in N-E Type II fluids than in N-E type I fluids, 

with the exception of CH4 oxidation via NO3
- reduction (reaction J). Interestingly 

however, the maximum energies available for a variety of reactions in “Mixing fluids” 

sometimes exceed the energies available in Type II fluids. Thereforee the general 

hypothesis that mixtures of Type I and Type II fluids should provide ideal environments 

for redox metabolisms finds some support in these thermodynamic calculations. 
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To further test the general hypothesis that carbon redox metabolisms should be 

enhanced during the mixing of Type I and Type II fluids, an examination of geochemical 

data was performed across a single mixing zone, which was first mentioned above in the 

context of calcite precipitation, Fig. 24. As above, Na+ concentrations from this fluid 

mixing zone are used to test conservative mixing trends, in this case for a variety of 

organic analytes, as shown in Fig. 27. As a reminder, the Type I fluid sample in these 

plots has the lowest Na+ concentration, the Type II fluid sample has the highest Na+ 

concentration, and thereforee the two mixing zone samples have intermediate Na+ 

concentrations according to their degree of mixing. 

In Fig. 27a, CH4(aq) is shown to have the highest abundance in the Type II fluid 

sample and the lowest abundance in the Type I fluid sample, with an unconservative 

mixing trend for the mixing samples, which are low abundance in CH4(aq) by ~50 – 75 

μM relative to conservative mixing (dashed line). Since CH4 is volatile, it is possible that 

degassing partially contributes to this trend. However, if degassing were the only process 

affecting this trend, it would be expected that the two mixing zones would have different 

amounts of CH4(aq), since time is required for fluid mixing to occur across the landscape 

(Fig. 1D – 3D). Instead, the two mixing sites have CH4(aq) values that are not 

significantly different, suggesting degassing may not be a rapid process relative to the 

timescales of mixing. Both mixing fluids are also orders of magnitude above CH4(aq) 

saturation from the atmosphere, suggesting even though there is a drive for degassing of 

CH4, it may actually be quite slow relative to mixing. Therefore we conclude that a 

significant amount of CH4(aq) is being oxidized during the mixing of Type I fluids and 

Type II fluids in this location. 
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Fig. 27. Unconservative mixing trends for a variety of organic analytes. Plot “a” shows 

dissolved organic carbon (DOC) and CH4(aq) concentrations versus Na+ concentrations, 

while plot “b” shows formate (CHOO-) and acetate (CH3COO-) concentrations versus 

Na+ concentrations. Note that conservative mixing line was drawn to a value of 0.0 μM 

formate, but this value could be up to that of the detection limit of the instrument, 

depicted on the plot.  
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 Conversely, total dissolved organic carbon (DOC) concentrations, which do not 

include CH4(aq) concentrations by nature of analysis (Section 4.2.3), can be seen spiking 

in one mixing zone sample by ~20 μM. This is potentially a signature of CH4(aq) being 

partially oxidized into organic carbon of intermediate oxidation states and released into 

the extracellular environment. The other source of this DOC production could be from 

the chemical reduction of DIC. However, although DIC decreases in this mixing zone 

sample relative to conservative mixing, it is matched by a decrease in Ca2+ (Fig. 24), 

which suggests that the DIC decrease is due to precipitation of calcite, as described in 

Section 4.3.2. It is possible that dissolution of atmospheric CO2 could provide additional 

inorganic carbon that gets reduced to DOC. Still, these unconservative mixing trends 

together provide some support that active biological CH4(aq) oxidation is occurring in 

this mixing zone. Additional isotopic evidence supporting this notion is discussed below. 

In some sense this mixing zone represents an extreme analog with regard to the mixing of 

oxidants into Type II fluids as they surface. It follows that when Type II fluids encounter 

atmospheric fluids, microbial CH4 oxidation could be contributing to the low CH4(aq) 

abundances observed relative to equilibrium for the CH4 formation reaction, Eq. (12), 

illustrated in Fig. 25b. 

 Like CH4(aq), acetate concentrations are also low relative to conservative mixing 

in mixing samples, as shown in Fig. 27b. Acetate is actually unique relative to other 

organic analytes in that concentrations are lower in both mixing zones than 

concentrations in either the Type I or Type II fluid, also indicating that mixing zone 

conditions are causing it to be consumed by some process. One possible abiotic 

explanation for this, supported by calcite precipitation experiments performed by Haile 
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(2011), is that acetate anions may be depleted from solution in mixing zones by 

adsorbing to the surface of actively precipitating calcite, which is occurring rapidly 

according to our interpretations in Section 4.3.2. Alternatively, but not mutually 

exclusive, some portion of acetate may be consumed via potential oxidation (Rempfert et 

al., 2017), reduction, or decarboxylation metabolisms by microorganisms in mixing 

zones, a subset of which are shown to be favorable in Fig. 26 (reactions B, C, D, I, K, L, 

and N). 

 Some of these reactions indicate that it is thermodynamically favorable to produce 

formate from redox reactions involving acetate (reactions C, D, and L). This could also 

explain why formate has a high abundance relative to conservative mixing while acetate 

has a low abundance relative to conservative mixing in the same sample Fig. 27b. 

Notably, the sample with high relative formate concentrations is not the same sample that 

has a high relative DOC concentration, so these observations are seemingly governed by 

different processes. In addition to production from acetate, it is also thermodynamically 

favorable to produce formate from oxidation of CH4 (reaction F). This reaction was 

discussed in Section 4.3.5 as a possible explanation for why N-E Type II fluids have low 

CH4(aq) abundances and high formate abundances relative to equilibrium for Eq. (12) 

and (13), respectively. The increase in formate in the mixing sample seems to strengthen 

this hypothesis, making this potential metabolic pathway a good target for taxonomic 

investigations as well as microbial incubation experiments that analyze for in situ 

methane consumption and formate production, along the lines of analyses performed on 

cultures (Chistoserdova et al., 2004). 

 More generally, active CH4(aq) oxidation of any kind was investigated from a via 
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the analysis of stable carbon isotopic ratios for CH4 in dissolved gas samples, abbreviated 

as δ13CH4(aq). As described above in Section 4.1.1, numerous investigations into natural 

serpentinizing systems have attempted to use δ13C measurements to characterize the 

source of CH4. Here we present δ13CH4(aq) across pH for our entire sample set where 

measurements were possible (Fig. 28, geochemistry compiled in Tables D2 and D4). 

Values of δ13CH4(aq) for the single mixing zone discussed above could not be compared 

to one another with completeness because the Type II dissolved gas sample from the 

single mixing zone leaked prior to isotopic analysis, and could not be analyzed, but the 

remaining three values can be identified in Table D4. However, Fig. 28 still seems to 

possess strong general trends across our entire sample set, probably due to pH still 

reflecting mixing, if only at a course grained level compared to silica(aq), for O2-rich 

Type I fluids and CH4-rich Type II fluids, which we expect to enhance microbial CH4(aq) 

oxidation.  

A characteristic of these data is consistency in δ13CH4(aq) values between each 

set of near-endmember (N-E) fluid samples. Two N-E Type I fluid samples (only two out 

of four samples were able to be analyzed due to leakage), which are between pH of 7 and 

8, possess the most depleted δ13CH4(aq) values, below -30 ‰. Similarly, four N-E Type 

II fluid samples (four out of five were able to be analyzed), which all have pH values of 

~11.5, possess δ13CH4(aq) values between -12 and -7 ‰. All but one of the remaining 

Type II dominated fluids between pH 11.3 and 11.7 range in δ13CH4(aq) between -12 and 

-4 ‰. The depleted δ13CH4(aq) values in N-E Type I fluids appear to be nearly in 

equilibrium with CH4 from air sampled in Oman, likely due to atmospheric exchange. On 

the other hand, N-E Type II fluids appear to have their own unique signature, perhaps 
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Fig. 28. Stable carbon isotopes of dissolved methane, δ13CH4(aq), versus pH, for fluid 

samples from the Samail Ophiolite. Average analytical uncertainties of one standard 

deviation from three injections are typically 2 – 3 ‰ for dissolved gas samples, and the 

analytical uncertainty of four replicate samples is ~10 ‰ for the value reported for “air” 

collected in Oman, due to atmospheric concentrations being low for the analytical 

technique used; exact uncertainties for each dissolved gas sample can be found in Table 

D4. 
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preserved from the deep or shallow subsurface. The δ13CH4(aq) values for N-E Type II 

fluids are relatively enriched compared to other serpentinizing systems, which are already 

often enriched relative to most other natural systems (e.g., Etiope and Sherwood Lollar, 

2013). As Miller et al. (2016) note, this could either be due to an enriching process like 

preferential microbial oxidation of 12CH4(aq) over 13CH4(aq), or reduction of inorganic 

carbon in a carbon-limited zone of the subsurface, where nearly complete conversion 

takes place. This notion is also echoed by the thermodynamic calculations presented in 

Section 4.3.5, in which extremely low aCO3
2- activities satisfy equilibrium for the 

methane formation reaction, Eq. (12). Additionally, we note that Mg2+-rich carbonate 

minerals, expected to precipitate in the subsurface (Kelemen et al., 2011; Paukert et al., 

2012), contain very similar δ13C ranges (Mervine et al., 2014) to the δ13CH4(aq) we 

report from Type II fluids, which would be expected from complete reduction of a 

mineral reservoir to CH4(aq). 

The most revealing trend in Fig. 28 is that the most positive δ13CH4(aq) values are 

in mid-pH samples, which are representative of mixing zones. It does not seem likely that 

these relatively positive values are simply a result of preferential degassing of 12CH4, 

since some Type II dominated fluids with pH ≥ 11 are stagnant pools that should also be 

actively degassing. Degassing is a form of atmospheric exchange, and should also be 

accompanied by dissolution of atmospheric CH4, which is relatively depleted in 13CH4. 

Additionally, experiments regarding the kinetic isotope fractionation of CH4 during gas 

exchange yield enrichment factors that are inadequate to explain the high δ13CH4(aq) 

values seen in mixing zones (Knox et al., 1992). 

Consequently, high δ13CH4(aq) values in mid-pH mixing zones, ranging up to 6.6 
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± 2.5 ‰, are likely the result of microbial CH4(aq) oxidation. This conclusion fits with 

the observation that CH4(aq) concentrations are depleted relative to conservative mixing 

across the single mixing zone examined in this study, as demonstrated in Fig. 27. 

Therefore, this isotopic signature provides additional support for the hypothesis that 

microbial oxidation may be causing CH4(aq) activities to be low relative to equilibrium, 

Eq. (12), in N-E Type I and N-E Type II fluids. A single high pH, Type II dominated 

fluid, with silica levels indicative of some subsurface mixing with Type I fluids, also 

possesses a high δ13CH4(aq) value of 6.9 ± 1.9 ‰ (Table D1, D3, D4), providing some 

additional validation for this hypothesis. 

4.4 Concluding remarks 

A suite of geochemical analyses, including measurements of organic compounds, 

was performed on samples from shallow groundwater (Type I) and serpentinized (Type 

II) fluids sampled at surface springs from the Samail Ophiolite, in the Sultanate of Oman. 

Trends in the concentrations of aqueous carbon compounds and dissolved species were 

examined in near-endmember (N-E) fluids of both types, as well as mixtures of these 

fluids, to gain insights regarding carbon transformations during low temperature 

serpentinization. Thermodynamic calculations revealed which carbon species are in 

equilibrium in each type of fluid, and for those that are in disequilibrium, hypotheses 

were generated invoking active abiotic or biological processes as the cause. These 

hypotheses were tested by investigating changes in individual organic abundances and 

methane stable carbon isotopes across mixing Type I and Type II fluids, since these were 

expected to be ideal environments for active microbial redox metabolisms.  
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 Based on the analyses of dissolved species, Organic compounds formate, acetate, 

and methane are all more abundant in Type II fluids than in Type I fluids, by varying 

degrees. Aqueous H2 and other reduced species are also more abundant in Type II fluids, 

while DIC is depleted from Type II fluids. Given the likelihood that Type I fluids 

adequately represent the source fluid that is transformed into Type II fluids, it seems that 

the reducing conditions generated by serpentinization drive the reduction of inorganic 

carbon to form organic carbon.  

According to the thermodynamic calculations, acetate is in equilibrium with DIC 

and H2(aq) in both N-E Type I and N-E Type II fluids. Given that redox reactions are 

sluggish at low temperatures, we view this as strong evidence that microbial metabolisms 

control the forward and reverse formation reaction of acetate from these inorganic 

components. This may be the case for formate in N-E Type I fluids as well, but the 

majority of formate measurements were below instrumental detection limits in these 

fluids. Formate is in overabundance relative to equilibrium with DIC and H2(aq) in N-E 

Type II fluids that we sampled. We hypothesize that this is because it formed and last 

equilibrated in the subsurface, where there is more H2, and/or because microbial CH4(aq) 

oxidation near the surface is generating formate. These are not mutually exclusive 

hypotheses. Additionally, CH4(aq) is in low abundance relative to equilibrium with DIC 

and H2(aq) in both fluid types, especially in Type II fluids. This is in agreement with the 

latter hypothesis of formate generation via CH4(aq) oxidation. However, it could also be 

the case that CH4(aq) formed in a deeper carbon-limited zone in the subsurface. Each 

metabolism invoked for a hypothesis was shown to be thermodynamically favorable 

under environmental conditions. 
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Trends in organic compounds across mixing zones of oxidized Type I fluids and 

reduced Type II fluids suggest CH4(aq) oxidation to dissolved organic carbon and 

formate may be occurring. Enriched δ13CH4(aq) values in mixing zones relative to Type I 

and Type II fluids reinforces this hypothesis. Similarly, Type II fluids have enriched 

δ13CH4(aq) values relative to other natural systems, including serpentinizing ones, which 

supports the hypothesis that CH4(aq) oxidation may be the cause of low CH4(aq) 

abundance relative to equilibrium with DIC and H2. Alternatively, enriched δ13CH4(aq) 

values may be indicative of a very carbon-limited zone in the deep subsurface where 

virtually all inorganic carbon is converted into CH4(aq). This alternative hypothesis could 

also explain why CH4(aq) appears to be in low abundance at the surface, since 

equilibrium calculations are performed for fluids that are not carbon limited, since they 

are in contact with the atmosphere and are actively precipitating calcite. 

It is important to note that none of these hypotheses are mutually exclusive. 

Ongoing taxonomic investigations of the microbial communities should help to test these 

hypotheses. A greater degree of clarity could be added by microbial incubation 

experiments that measure relative rates of organic production and consumption under 

environmentally relevant conditions. In addition to generating and testing a set of 

hypotheses regarding carbon cycling during low temperature serpentinization, this study 

provides a thermodynamic framework for predicting subsurface conditions and active 

processes in low temperature serpentinizing fluids. 
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CHAPTER 5 

FUTURE DIRECTIONS 

 In this work the kinetics, mechanisms, and equilibria of oxygen- and nitrogen-

bearing organic compounds were investigated in the context of natural system modeling 

and exploration. Hydrothermal experiments with model amines elucidated reaction 

mechanisms for deamination under acidic conditions; similar, unbuffered experiments 

identified a variety of reversible substitution reactions that approached metastable 

equilibrium; and finally, analyses of inorganic and organic carbon species in a natural 

low-temperature serpentinizing system allowed predictions to be made regarding 

conditions and active processes in surface and subsurface environments. Each of these 

findings has prompted new inquiries, and here I recommend follow-up investigations that 

could improve the applications of this research, which potentially extend from Earth 

systems to other planetary environments. 

 The determination that two competing mechanisms (yielding an identical product, 

benzyl alcohol) are responsible for the deamination of protonated benzylamine, reveals 

the importance of characterizing mechanisms. Since one of these mechanisms is 

unimolecular and the other is bimolecular, the former should dominate at higher 

temperatures, because it is entropically favored, and the latter should dominate at lower 

temperatures. However, both the temperature at which this transition occurs and how 

sharp the temperature transition is remain unknown. Whether a similar transition exists 

for α-methylbenzylamine, which has a single unimolecular deamination mechanism, also 

remains unknown. Mechanistic characterization of aspartic acid deamination at low 

temperatures (≤ 135°C; Bada et al., 1970) suggests that there may be mechanistic 
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transitions for deamination at low temperatures in addition to substitution reactions. 

Experiments exploring these mechanistic transitions across narrower temperature ranges, 

with both these compounds and with different amines, could be used to develop 

predictors for these transitions regarding a wide range of environmentally relevant 

amines. Deamination reaction mechanisms for the unprotonated amines, at higher pH, 

also need to be investigated to make predictions regarding amine reactivty in natural 

systems. 

Additional amines should be selected for hydrothermal experiments to bridge the 

gap between the more easily investigated mechanisms of model compounds and those of 

environmentally-relevant compounds, since reactivities will differ depending on 

compound structure. The mechanistic influences of the phenyl ring on the reactions of 

model compounds studied in this work need to be evaluated. This could be achieved via 

ring substituent experiments with 2-phenylethan-1-amine derivatives; compared to 

benzylamine this compound has an additional CH2 between the amine and the ring, which 

would provide insights regarding aliphatic amine reaction mechanisms. It would also be 

wise to compare mechanistic influences from a variety of other structures found in 

natural compounds, such as amino acids. The challenge in doing this is that amino acids 

have multiple reactive functional groups and undergo several competing hydrothermal 

reactions (e.g. Imai et al., 1999; Lemke, 2003; Aubrey et al., 2009; Cleaves et al., 2009), 

which obscure mechanistic kinetic studies (Cox and Seward, 2006). However, 

mechanistic investigations of hydrothermal decarboxylation have already been performed 

for the model compound, phenylacetic acid (Glein, 2012). A logical next step is to 

investigate multi-functional group model compounds with both amines and carboxylic 
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acids, and eventually “phasing out” the aromatic structure. Some ideal amino acids to 

compare would be phenylglycine and phenylalanine, the latter of which has an extra CH2 

group, following the same logic as above. Studies of this kind may ultimately aid 

development of models that consider relative rates of abiotic degradation of biomass at 

different conditions on the Earth, as well as the persistence of organic nitrogen in abiotic 

planetary environments. 

 The approach toward metastable equilibrium in hydrothermal experiments for 

oxygen- and nitrogen-bearing organic compounds demonstrates that certain hydrothermal 

substitution reactions have the potential to produce ratios of organic compounds that 

reflect environmental conditions. In order to find quantitative application in natural 

systems, this experimental observation of model compound behavior will need to be 

tested using environmentally relevant compounds, for reasons concerning reactivity 

mentioned above. For systems with biological influence (essentially all terrestrial 

systems), biogenic amines, such as amino acids, are the most logical compounds to test 

experimentally due to their high abundance. The meteorite record also shows that amino 

acids are abundant in abiotic environments as well (Pizzarello and Shock, 2010). By 

targeting amino acids, direct comparisons can be made between experimental and 

environmental observations regarding metastability; conveniently, these metastability 

investigations would run parallel to those recommended above for mechanistic 

investigation. In addition to lab experiments, the terrestrial hydrothermal environments 

that have received considerable attention to date could be further investigated to probe 

metastable equilibrium, by first quantifying abundances of relevant compounds, like 

those mentioned above. Ideal candidate systems include the Von Damm submarine 
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hydrothermal vents and the Washburn hot springs of Yellowstone National Parks, both of 

which are rich in organic material and ammonium (Von Damm et al., 1985; Holloway et 

al., 2011). In a decade or so, NASA’s Europa Clipper mission is expected to return 

analyses for a wide diversity of organic compounds in plumes rising into space from the 

icy moon, which might be linked to a subsurface ocean (Brockwell et al., 2016). With our 

current knowledge, the relative abundances of most organic compounds measured in this 

way would find little quantitative use. The experimental and environmental investigations 

into metastability recommended above, however, may allow us to use such data to infer 

subsurface temperatures, pressures, and compositional variables. 

 The equilibrium calculations for carbon transformation reactions at the Samail 

Ophiolite suggest that a variety of biological processes govern formate, acetate, and 

methane production and consumption during low-temperature serpentinization. However, 

in some instances multiple, plausible hypotheses still exist that require further 

microbiological investigations which are beyond the scope of this study. Sequencing, 

performed by other researchers (Miller et al., 2016; Rempfert et al., 2017) on samples 

from Oman, has identified close relatives of known microorganisms potentially capable 

of metabolizing hydrogen, methane, formate, and acetate; however, it is unclear if these 

genomic data sets, acquired from subsurface samples, are relevant for surface 

communities. Still, until taxonomic data sets are reported for surface fluids, these 

sequencing studies provide motivation to investigate rates of various metabolisms. 

Ideally, in situ studies will measure fluxes of relevant compounds in incubation 

experiments, or better yet, use isotopic labels to track carbon atoms as they undergo 

redox transformations into different metabolites, as in Urschel et al. (2015). The 
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calculations performed herein allowed hypotheses to be made about where various 

organics formed in the subsurface of the Samail Ophiolite. These hypotheses may soon 

be tested during the ongoing Oman Drilling Project (Matter et al., 2015), by analyzing 

similar species and determining whether their activities in the subsurface match the 

calculated activities in this study. The final important point to address in order to move 

this work forward, is the potential for atmospherically-derived organic acids to contribute 

to the high abundances of organic acid anions in Type II hyperalkaline fluids; the high 

pH of these fluids potentially promotes extensive dissolution (Ervens et al., 2003). These 

tests would be best done in the field, by collecting Type II water samples and performing 

dissolution rate experiments via exposure of samples to the atmosphere for different 

periods of time. These experiments would potentially find relevance with respect to all 

continental serpentinizing systems.  

Characterizing carbon transformations during low temperature serpentinization 

will ultimately lead to expectations regarding abiotic versus biological production and 

consumption of organic compounds. These expectations will allow for assessing the 

habitability of modern and ancient planetary environments suspected to host 

serpentinization. If abiotic and biological carbon transformations can be quantitatively 

disentangled, relative organic compound abundances in extraterrestrial serpentinizing 

environments may also indicate whether such systems are currently inhabited. 

 The recommendations above each represent large undertakings that include 

experimental and field investigations. The potential future experiments outlined here are 

valuable because they attempt to bridge the gap between model compounds and 

environmentally relevant species. The field work suggested would test a variety of 
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hypotheses, and ultimately test the application of thermodynamic models to low-

temperature systems as a means to explore active processes at the surface and in the 

subsurface. Together, the work herein and the potential future directions outlined 

represent an effort to better model aqueous organic chemistry in natural systems. 

   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



158 

REFERENCES 

 

Abdelmoez, W., Yoshida, H., and Nakahasi, T. (2010). Pathways of amino acid 

transformation and decomposition in saturated subcritical water conditions. International 

Journal of Chemical Reactor Engineering, 8(1). 

 

Abraham, M. H. (1984). Thermodynamics of solution of homologous series of solutes in 

water. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in 

Condensed Phases, 80(1), 153-181. 

 

Abraham, M. A., and Klein, M. T. (1985). Pyrolysis of benzylphenylamine neat and with 

tetralin, methanol, and water solvents. Industrial and Engineering Chemistry Product 

Research and Development, 24(2), 300-306. 

 

Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., Lyon, G. L., Poreda, R. J., and Stevens, 

C. M. (1988). Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or 

shallow origin? Chemical Geology, 71(1-3), 211-222.  

 

Allred, G. C., and Woolley, E. M. (1981). Heat capacities of aqueous acetic acid, sodium 

acetate, ammonia, and ammonium chloride at 283.15, 298.15, and 313.15 K: ΔC°p for 

ionization of acetic acid and for dissociation of ammonium ion. The Journal of Chemical 

Thermodynamics, 13(2), 155-164. 

 

Anderson, F. E., and Prausnitz, J. M. (1986). Mutual solubilities and vapor pressures for 

binary and ternary aqueous systems containing benzene, toluene, m-xylene, thiophene 

and pyridine in the region 100–200° C. Fluid Phase Equilibria, 32(1), 63-76. 

 

Archer, D. G. (1987). Heat capacities of aqueous decyland dodecyl-trimethylammonium 

bromides from 324.6 to 374.6 K. The Journal of Chemical Thermodynamics, 19(4), 407-

415. 

 

Arrhenius, S. (1889). Quantitative relationship between the rate a reaction proceeds and 

its temperature. Journal of Physical Chemistry, 4, 226-248. 

 

Aston, J. G., Sagenkahn, M. L., Szasz, G. J., Moessen, G. W., and Zuhr, H. F. (1944). 

The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of 

trimethylamine. The entropy from spectroscopic and molecular data. Journal of the 

American Chemical Society, 66(7), 1171-1177. 

 

Aubrey, A. D., Cleaves, H. J., and Bada, J. L. (2009). The role of submarine 

hydrothermal systems in the synthesis of amino acids. Origins of Life and Evolution of 

Biospheres, 39(2), 91-108. 

 

Bada, J. L., and Miller, S. L. (1968). Equilibrium constant for the reversible deamination 

of aspartic acid. Biochemistry, 7(10), 3403-3408. 



159 

 

Bada, J. L., and Miller, S. L. (1970). Kinetics and mechanism of the reversible 

nonenzymic deamination of aspartic acid. Journal of the American Chemical 

Society, 92(9), 2774-2782. 

 

Bada, J. L., and McDonald, G. D. (1995). Amino acid racemization on Mars: 

Implications for the preservation of biomolecules from an extinct Martian biota. Icarus,  

114(1), 139-143. 

 

Barnes, I., LaMarche, V. C., and Himmelberg, G. (1967). Geochemical evidence of 

present-day serpentinization. Science, 156(3776), 830-832. 

 

Barnes, I., and O'neil, J. R. (1969). The relationship between fluids in some fresh alpine-

type ultramafics and possible modern serpentinization, western United States. Geological 

Society of America Bulletin, 80(10), 1947-1960. 

 

Barnes, I., O'neil, J. R., and Trescases, J. J. (1978). Present day serpentinization in New 

Caledonia, Oman and Yugoslavia. Geochimica et Cosmochimica Acta, 42(1), 144-145. 

 

Bell, J. L., Palmer, D. A., Barnes, H. L., and Drummond, S. E. (1994). Thermal 

decomposition of acetate: III. Catalysis by mineral surfaces. Geochimica et 

Cosmochimica Acta, 58(19), 4155-4177. 

 

Belousov, V. P., and Panov, M. I. (1994). Thermodynamic Properties of Aqueous 

Solutions of Organic Substances. CRC. 

 

Belsky, A. J., and Brill, T. B. (1999). Spectroscopy of hydrothermal reactions. 14. 

kinetics of the pH-sensitive mminoguanidine− semicarbazide− cyanate reaction 

network. The Journal of Physical Chemistry A, 103(39), 7826-7833. 

 

Bénézeth, P., Palmer, D. A., and Wesolowski, D. J. (2001). Potentiometric study of the 

dissociation quotients of aqueous dimethylammonium ion as a function of temperature 

and ionic strength. Journal of Chemical and Engineering Data, 46(2), 202-207. 

 

Bénézeth, P., Wesolowski, D. J., and Palmer, D. A. (2003). Potentiometric study of the 

dissociation quotient of the aqueous ethanolammonium ion as a function of temperature 

and ionic strength. Journal of Chemical and Engineering Data, 48(1), 171-175. 

 

Benjamin, K. M., and Savage, P. E. (2004). Hydrothermal reactions of methylamine. The 

Journal of Supercritical Fluids, 31(3), 301-311. 

 

Bergström, S., and Olofsson, G. (1977). Thermodynamic quantities for the dissociation of 

the methylammonium ions between 273 and 398 K. The Journal of Chemical 

Thermodynamics, 9(2), 143-152. 

 



160 

Berner, R. A. (2006). Geological nitrogen cycle and atmospheric N2 over Phanerozoic 

time. Geology, 34(5), 413-415. 

 

Beste, G. W., and Hammett, L. P. (1940). Rate and mechanism in the reactions of benzyl 

chloride with water, hydroxyl ion and ccetate ion 1. Journal of the American Chemical 

Society, 62(9), 2481-2487. 

 

Blackwell, L. F., Fischer, A., Miller, I. J., Topsom, R. D., and Vaughn, J. (1964) 

Dissociation of benzylammonium ions. Journal of the Chemical Society (Resumed), 694, 

3588-3591. 

 

Blanksby, S. J., and Ellison, G. B. (2003). Bond dissociation energies of organic 

molecules. Accounts of Chemical Research, 36(4), 255-263. 

 

Boudou, J. P., Schimmelmann, A., Ader, M., Mastalerz, M., Sebilo, M., and Gengembre, 

L. (2008). Organic nitrogen chemistry during low-grade metamorphism. Geochimica et 

Cosmochimica Acta, 72(4), 1199-1221. 

 

Bradley, A. S., and Summons, R. E. (2010). Multiple origins of methane at the Lost City 

Hydrothermal Field. Earth and Planetary Science Letters, 297(1), 34-41. 

 

Brandes, J. A., Hazen, R. M., and Yoder Jr, H. S. (2008). Inorganic nitrogen reduction 

and stability under simulated hydrothermal conditions. Astrobiology, 8(6), 1113-1126. 

 

Brockwell, T. G., Meech, K. J., Pickens, K., Waite, J. H., Miller, G., Roberts, J., Lunine, 

J., and Wilson, P. (2016, March). The mass spectrometer for planetary exploration 

(MASPEX). In Aerospace Conference, 2016 IEEE, 1-17. 

 

Brotzel, F., Chu, Y. C., and Mayr, H. (2007). Nucleophilicities of primary and secondary 

amines in water. The Journal of Organic Chemistry, 72(10), 3679-3688. 

 

Brown, H. C., and Okamoto, Y. (1958). Electrophilic substituent constants. Journal of the 

American Chemical Society, 80(18), 4979-4987. 

 

Brown, H. C., and Rei, M. H. (1964). Comparison of the effect of substitutents at the 2-

position of the norbornyl system with their effect in representative secondary aliphatic 

and alicyclic derivatives. evidence for the absence of nonclassical stabilization of the 

norbornyl cation. Journal of the American Chemical Society, 86(22), 5008-5010. 

 

Brown, J. S., Hallett, J. P., Bush, D., and Eckert, C. A. (2000). Liquid-liquid equilibria 

for binary mixtures of water + acetophenone, + 1-octanol, + anisole, and + toluene from 

370 K to 550 K. Journal of Chemical and Engineering Data, 45(5), 846-850. 

 

Bruni, J., Canepa, M., Chiodini, G., Cioni, R., Cipolli, F., Longinelli, A., Marini, L., 

Ottonello, G., and Zuccolini, M. V. (2002). Irreversible water–rock mass transfer 



161 

accompanying the generation of the neutral, Mg–HCO 3 and high-pH, Ca–OH spring 

waters of the Genova province, Italy. Applied Geochemistry, 17(4), 455-474. 

 

Bunting, J. W., and Stefanidis, D. (1990). A systematic entropy relationship for the 

general-base catalysis of the deprotonation of a carbon acid. A quantitative probe of 

transition-state solvation. Journal of the American Chemical Society, 112(2), 779-786. 

 

Cabani, S., Conti, G., and Lepori, L. (1974). Volumetric properties of aqueous solutions 

of organic compounds. III. Aliphatic secondary alcohols, cyclic alcohols, primary, 

secondary, and tertiary amines. The Journal of Physical Chemistry, 78(10), 1030-1034. 

 

Cabani, S., Mollica, V., Lepori, L., and Lobo, S. T. (1977). Volume changes in the proton 

ionization of amines in water. 2. Amino alcohols, amino ethers, and diamines. The 

Journal of Physical Chemistry, 81(10), 987-993. 

 

Cabani, S., Gianni, P., Mollica, V., and Lepori, L. (1981). Group contributions to the 

thermodynamic properties of non-ionic organic solutes in dilute aqueous solution.  

Journal of Solution Chemistry, 10(8), 563-595. 

 

Canle, L., Demirtas, I., Freire, A., Maskill, H., and Mishima, M. (2004). Base strengths 

of substituted tritylamines, N-alkylanilines, and tribenzylamine in aqueous solution and 

the gas phase: steric effects upon solvation and resonance interactions. European Journal 

of Organic Chemistry, 2004(24), 5031-5039. 

 

Canovas, P. A., Hoehler, T., and Shock, E. L. (2017). Geochemical bioenergetics during 

low-temperature serpentinization: An example from the Samail Ophiolite, Sultanate of 

Oman. Journal of Geophysical Research: Biogeosciences, 122(7), 1821-1847 

 

Carothers, W. H., Bickford, C. F., and Hurwitz, G. J. (1927). The preparation and base 

strengths of some amines. Journal of the American Chemical Society, 49(11), 2908-2914. 

 

Carson, A. S., Laye, P. G., and Yürekli, M. (1977). The enthalpy of formation of 

benzylamine. The Journal of Chemical Thermodynamics, 9(9), 827-829. 

 

Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N. (2002). 

Geochemistry of high H 2 and CH 4 vent fluids issuing from ultramafic rocks at the 

Rainbow hydrothermal field (36 14′ N, MAR). Chemical Geology, 191(4), 345-359. 

 

Charlou, J. L., Donval, J. P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P., and 

Fourré, E. (2010). High production and fluxes of H2 and CH4 and evidence of abiotic 

hydrocarbon synthesis by serpentinization in ultramafic‐hosted hydrothermal systems on 

the Mid‐Atlantic Ridge. Diversity of Hydrothermal Systems on Slow Spreading Ocean 

Ridges, American Geophysical Union, Washington, D. C, 265-296. 

 



162 

Chavagnac, V., Ceuleneer, G., Monnin, C., Lansac, B., Hoareau, G., and Boulart, C. 

(2013). Mineralogical assemblages forming at hyperalkaline warm springs hosted on 

ultramafic rocks: a case study of Oman and Ligurian ophiolites. Geochemistry, 

Geophysics, Geosystems, 14(7), 2474-2495. 

 

Chistoserdova, L., Laukel, M., Portais, J. C., Vorholt, J. A., and Lidstrom, M. E. (2004). 

Multiple formate dehydrogenase enzymes in the facultative methylotroph 

Methylobacterium extorquens AM1 are dispensable for growth on methanol. Journal of 

Bacteriology, 186(1), 22-28. 

 

Cipolli, F., Gambardella, B., Marini, L., Ottonello, G., and Zuccolini, M. V. (2004). 

Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, 

Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Applied 

Geochemistry, 19(5), 787-802. 

 

Clayden, J., Warren, W., Greeves, N., and Wothers, P. (2001). Organic Chemistry. 

Oxford University Press. 

 

Cleaves, H. J., Aubrey, A. D., and Bada, J. L. (2009). An evaluation of the critical 

parameters for abiotic peptide synthesis in submarine hydrothermal systems. Origins of 

Life and Evolution of Biospheres, 39(2), 109-126. 

 

CODATA. (1978). Recommended key values for thermodynamics, 1977. Report of the 

CODATA Task Group on key values for thermodynamics, 1977. Jour. Chem. 

Thermodynamics, 10, 903-906. 

 

Coke, J. L., McFarlane, F. E., Mourning, M. C., and Jones, M. G. (1969). Carbonium 

ions. II. Mechanism of acetolysis of 2-phenylethyltosylate. Journal of the American 

Chemical Society, 91(5), 1154-1161. 

 

Collins, C., Tobin, J., Shvedov, D., Palepu, R., and Tremaine, P. R. (2000). 

Thermodynamic properties of aqueous diethanolamine (DEA), N, N-

dimethylethanolamine (DMEA), and their chloride salts: Apparent molar heat capacities 

and volumes at temperatures from 283.15 to 328.15 K. Canadian Journal of 

Chemistry, 78(1), 151-165. 

 

Cowan, D. A. (2004). The upper temperature for life–where do we draw the line?. Trends 

in Microbiology, 12(2), 58-60. 

 

Cox, J. D., and Pilcher, G. (1970). Thermochemistry of Organic and Organometallic 

Compounds. Academic: London. 

 

Cox, J. S., and Seward, T. M. (2007). The hydrothermal reaction kinetics of aspartic 

acid. Geochimica et Cosmochimica Acta, 71(4), 797-820. 

 



163 

Cronin, J. R., Pizzarello, S., and Cruikshank, D. P. (1988). Organic matter in 

carbonaceous chondrites, planetary satellites, asteroids and comets. Meteorites and the 

Early Solar System, 1, 819-857. 

 

Cruse, A. M., and Seewald, J. S. (2006). Geochemistry of low-molecular weight 

hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca 

Ridge. Geochimica et Cosmochimica Acta, 70(8), 2073-2092. 

 

Delgado, F. F., Cermak, N., Hecht, V. C., Son, S., Li, Y., Knudsen, S. M., Olcum, S., 

Higgins, J. M., Chen, J., Grover, W. H., and Manalis, S. R. (2013). Intracellular water 

exchange for measuring the dry mass, water mass and changes in chemical composition 

of living cells. PloS one, 8(7), e67590. 

 

Domalski, E. S., and Hearing, E. D. (1993). Estimation of the thermodynamic properties 

of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical 

Reference Data, 22(4), 805-1159. 

 

Du, Y., Yuan, Y., and Rochelle, G. T. (2017). Volatility of amines for CO 2 

capture. International Journal of Greenhouse Gas Control, 58, 1-9. 

 

Ehrenfreund, P., and Charnley, S. B. (2000). Organic molecules in the interstellar 

medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annual 

Review of Astronomy and Astrophysics, 38(1), 427-483. 

 

Encrenaz, T. (2008). Water in the solar system. Annual Review of Astronomy and 

Astrophysics 46(1), 57-87. 

 

Ervens, B., Herckes, P., Feingold, G., Lee, T., Collett, J. L., and Kreidenweis, S. M. 

(2003). On the drop-size dependence of organic acid and formaldehyde concentrations in 

fog. Journal of Atmospheric Chemistry, 46(3), 239-269. 

 

Etiope, G., Schoell, M., and Hosgörmez, H. (2011). Abiotic methane flux from the 

Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low 

temperature serpentinization and implications for Mars. Earth and Planetary Science 

Letters, 310(1), 96-104. 

 

Etiope, G., and Sherwood Lollar, B. (2013). Abiotic methane on Earth. Reviews of 

Geophysics, 51(2), 276-299. 

 

Faisal, M., Sato, N., Quitain, A. T., Daimon, H., and Fujie, K. (2007). Reaction kinetics 

and pathway of hydrothermal decomposition of aspartic acid. International Journal of 

Chemical Kinetics, 39(3), 175-180. 

 

Fecteau, K. M. (2016). Organic Carbon in Hydrothermal Systems: From Phototrophy to 

Aldehyde Transformations (Doctoral dissertation, Arizona State University). 



164 

 

Fenclová, D., Perez-Casas, S., Costas, M., and Dohnal, V. (2004). Partial molar heat 

capacities and partial molar volumes of all of the isomeric (C3 to C5) alkanols at infinite 

dilution in water at 298.15 K. Journal of Chemical and Engineering Data, 49(6), 1833-

1838. 

 

Fernández-Reiriz, M. J., Perez-Camacho, A., Ferreiro, M. J., Blanco, J., Planas, M., 

Campos, M. J., and Labarta, U. (1989). Biomass production and variation in the 

biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven 

species of marine microalgae. Aquaculture, 83(1-2), 17-37. 

 

Florián, J., and Warshel, A. (1999). Calculations of hydration entropies of hydrophobic, 

polar, and ionic solutes in the framework of the Langevin dipoles solvation model. The 

Journal of Physical Chemistry B, 103(46), 10282-10288. 

 

Fuchida, S., Masuda, H., and Shinoda, K. (2014). Peptide formation mechanism on 

montmorillonite under thermal conditions. Origins of Life and Evolution of 

Biospheres, 44(1), 13-28. 

 

Fujio, M., Goto, M., Susuki, T., Akasaka, I., Mishima, M., and Tsuno, Y. (1990). 

Substituent Effects. XXI. Solvolysis of Benzyl Tosylates. Bulletin of the Chemical 

Society of Japan, 63(4), 1146-1153. 

 

Fujio, M., Susuki, T., Goto, M., Tsuji, Y., Yatsugi, K. I., Saeki, Y., Hong, K. S., and 

Tsuno, Y. (1994). Solvent effects on the solvolysis of benzyl p-

toluenesulfonates. Bulletin of the Chemical Society of Japan, 67(8), 2233-2243. 

 

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., 

Seitzinger, S. P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., and Karl, D. 

M. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2), 153-226. 

 

Garrett, E. R., and Tsau, J. (1972). Solvolyses of cytosine and cytidine. Journal of 

Pharmaceutical Sciences, 61(7), 1052-1061. 

 

Giggenbach, W. F., Sheppard, D. S., Robinson, B. W., Stewart, M. K., and Lyon, G. L. 

(1994). Geochemical structure and position of the Waiotapu geothermal field, New 

Zealand. Geothermics, 23(5-6), 599-644. 

 

Gill, S. J., Nichols, N. F., and Wadsö, I. (1976). Calorimetric determination of enthalpies 

of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in 

water and their use in establishing the temperature dependence of their solubilities. The 

Journal of Chemical Thermodynamics, 8(5), 445-452. 

 



165 

St‐Jean, G. (2003). Automated quantitative and isotopic (13C) analysis of dissolved 

inorganic carbon and dissolved organic carbon in continuous‐flow using a total organic 

carbon analyser. Rapid communications in mass spectrometry, 17(5), 419-428. 

 

Glein, C. R. (2012). Theoretical and Experimental Studies of Cryogenic and 

Hydrothermal Organic Geochemistry. (Doctoral dissertation, Arizona State University). 

 

Gluck, S. J., and Cleveland Jr., J. A. (1994) Capillary zone electrophoresis for the 

determination of dissociation constants. Journal of Chromatography A, 680(1), 43-48  

 

Gordon, A. J., and Ford, R. A. (1972). Chemist's Companion: A Handbook of Practical 

Data, Techniques, and References. New York: Wiley. 

 

Graeber, E. J., Modreski, P. J., and Gerlach, T. M. (1979). Compositions of gases 

collected during the 1977 east rift eruption, Kilauea, Hawaii. Journal of Volcanology and 

Geothermal Research, 5(3-4), 337-344. 

 

Graton, J., Berthelot, M., and Laurence, C. (2001). Hydrogen-bond basicity pKHB scale of 

secondary amines. Journal of the Chemical Society, Perkin Transactions 2, (11), 2130-

2135. 

 

Hach, D. (2007). 2800 Spectrophotometer: Procedures Manual. Hach Company, 

Germany. 

 

Haggerty, J. A., and Fisher, J. B. (1992). Short-chain organic acids in interstitial waters 

from Mariana and Bonin forearc serpentines: Leg 125. In Fryer, P., Pearce, JA, Stokking, 

LB, et al., Proc. ODP, Sci. Results, 125, 387-395. 

 

Hammett, L. P. (1935). Some Relations between Reaction Rates and Equilibrium 

Constants. Chemical Reviews, 17(1), 125-136. 

 

Hanai, T., Koizumi, K., Kinoshita, T., Arora, R., and Ahmed, F. (1997). Prediction of 

pKa values of phenolic and nitrogen-containing compounds by computational chemical 

analysis compared to those measured by liquid chromatography. Journal of 

Chromatography A, 762(1), 55-61. 

 

Harris, J. M., Schadt, F. L., Schleyer, P. V. R., and Lancelot, C. J. (1969). Participation 

by neighboring aryl groups. V. Determination of assisted and nonassisted rates in primary 

systems. Rate-product correlations. Journal of the American Chemical Society, 91(26), 

7508-7510. 

 

Helgeson, H. C., Knox, A. M., Owens, C. E., and Shock, E. L. (1993). Petroleum, oil 

field waters, and authigenic mineral assemblages Are they in metastable equilibrium in 

hydrocarbon reservoirs. Geochimica et Cosmochimica Acta, 57(14), 3295-3339. 

 



166 

Henley, R. W., Barton, P. B., Truesdell, A. H., & Whitney, J. A. (1984). Fluid-Mineral 

Equilibria in Hydrothermal Systems (Vol. 1). El Paso, TX: Society of Economic 

Geologists. 

 

Høiland, H. (1986). Partial molar volumes of biochemical model compounds in aqueous 

solutions. Thermodynamic Data for Biochemistry and Biotechnology, 17-44. 

 

Holloway, J. M., Nordstrom, D. K., Böhlke, J. K., McCleskey, R. B., and Ball, J. W. 

(2011). Ammonium in thermal waters of Yellowstone National Park: processes affecting 

speciation and isotope fractionation. Geochimica et Cosmochimica Acta, 75(16), 4611-

4636. 

 

Holm, N. G., Oze, C., Mousis, O., Waite, J. H., and Guilbert-Lepoutre, A. (2015). 

Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, 

comets). Astrobiology, 15(7), 587-600. 

 

Hosgormez, H., Etiope, G., and Yalçin, M. N. (2008). New evidence for a mixed 

inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore 

seepage of abiogenic gas. Geofluids, 8(4), 263-273. 

 

Houser, T. J., Tsao, C. C., Dyla, J. E., Van Atten, M. K., and McCarville, M. E. (1989). 

The reactivity of tetrahydroquinoline, benzylamine and bibenzyl with supercritical 

water. Fuel, 68(3), 323-327. 

 

Imai, E. I., Honda, H., Hatori, K., Brack, A., and Matsuno, K. (1999). Elongation of 

oligopeptides in a simulated submarine hydrothermal system. Science, 283(5403), 831-

833. 

 

Jenny, E. F., and Winstein, S. (1958). 14C-Umlagerung, Salzeffekte und Ionenpaar-

Rückkehr in der Solvolyse von [2-(p-Anisyl)-äthyl]-p-toluolsulfonat. Helvetica Chimica 

Acta, 41(3), 807-823. 

 

Johnson, J. W., Oelkers, E. H., and Helgeson, H. C. (1992). SUPCRT92: A software 

package for calculating the standard molal thermodynamic properties of minerals, gases, 

aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 C. Computers and 

Geosciences, 18(7), 899-947. 

 

Jolicoeur, C., and Lacroix, G. (1976). Thermodynamic properties of aqueous organic 

solutes in relation to their structure. Part III. Apparent molal volumes and heat capacities 

of low molecular weight alcohols and polyols at 25 C. Canadian Journal of 

Chemistry, 54(4), 624-631. 

 

Jolicoeur, C., Riedl, B., Desrochers, D., Lemelin, L. L., Zamojska, R., and Enea, O. 

(1986). Solvation of amino acid residues in water and urea-water mixtures: volumes and 



167 

heat capacities of 20 amino acids in water and in 8 molar urea at 25 C. Journal of 

Solution Chemistry, 15(2), 109-128. 

 

Jones, F. M., & Arnett, E. M. (2007). Thermodynamics of ionization and solution of 

aliphatic amines in water. Progress in Physical Organic Chemistry, 11, 263-322. 

 

Kang, K. Y., and Chun, B. S. (2004). Behavior of hydrothermal decomposition of silk 

fibroin to amino acids in near-critical water. Korean Journal of Chemical 

Engineering, 21(3), 654-659. 

 

Katritzky, A. R., Lapucha, A. R., and Siskin, M. (1990). Aqueous high-temperature 

chemistry of carbo-and heterocycles. 12. Benzonitriles and pyridinecarbonitriles, 

benzamides and pyridinecarboxamides, and benzylamines and pyridylamines. Energy 

and Fuels, 4(5), 555-561. 

 

Katritzky, A. R., Nichols, D. A., Siskin, M., Murugan, R., and Balasubramanian, M. 

(2001). Reactions in high-temperature aqueous media. Chemical Reviews, 101(4), 837-

892. 

 

Kelemen, P. B., and Matter, J. (2008). In situ carbonation of peridotite for CO2 

storage. Proceedings of the National Academy of Sciences of the U.S.A., 105(45), 17295-

17300. 

 

Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J. 

(2011). Rates and mechanisms of mineral carbonation in peridotite: natural processes and 

recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and 

Planetary Sciences, 39, 545-576. 

 

Kelley, K. K. (1960). High Temperature Heat Content. Heat Capacity, and Entropy Data 

for Inorganic Compounds, US Bureau Mines Bull, 584. 

 

Kelley, D. S., Karson, J. A., Blackman, D. K., and Fruh-Green, G. L. (2001). An off-axis 

hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature, 412(6843), 

145. 

 

Kharaka, Y. K., Carothers, W. W., and Rosenbauer, R. J. (1983). Thermal 

decarboxylation of acetic acid: implications for origin of natural gas. Geochimica et 

Cosmochimica Acta, 47(3), 397-402. 

 

Klein, M. T., Torry, L. A., Wu, B. C., Townsend, S. H., and Paspek, S. C. (1990). 

Hydrolysis in supercritical water: Solvent effects as a probe of the reaction 

mechanism. The Journal of Supercritical Fluids, 3(4), 222-227. 

 

Knicker, H. (2004). Stabilization of N-compounds in soil and organic-matter-rich 

sediments—what is the difference? Marine Chemistry, 92(1), 167-195. 



168 

 

Knox, M., Quay, P. D., and Wilbur, D. (1992). Kinetic isotopic fractionation during air-

water gas transfer of O2, N2, CH4, and H2. Journal of Geophysical Research: 

Oceans, 97(C12), 20335-20343. 

 

Lancelot, C. J., and Schleyer, P. V. R. (1969). Participation by neighboring aryl groups. I. 

Determination of assisted and nonassisted solvolysis rates by Hammett 

correlation. Journal of the American Chemical Society,91(15), 4291-4294. 

 

Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S., and Lilley, M. D. (2010). 

Elevated concentrations of formate, acetate and dissolved organic carbon found at the 

Lost City hydrothermal field. Geochimica et Cosmochimica Acta, 74(3), 941-952. 

 

Lebedeva, N. D. (1966). Heats of Combustion and Formation of Aliphatic Tertiary 

Amine Homologues. Russian Journal of Physical Chemistry, 40(11), 1465. 

 

Lee, N., Foustoukos, D. I., Sverjensky, D. A., Hazen, R. M., and Cody, G. D. (2014). 

Hydrogen enhances the stability of glutamic acid in hydrothermal environments.  

Chemical Geology, 386, 184-189. 

 

Leif, R. N., and Simoneit, B. R. T. (1995). Ketones in hydrothermal petroleums and 

sediment extracts from Guaymas Basin, Gulf of California. Organic Geochemistry,  

23(10), 889-904. 

 

Leng, C., Kish, J. D., Roberts, J. E., Dwebi, I., Chon, N., and Liu, Y. (2015). 

Temperature-dependent Henry’s law constants of atmospheric amines. The Journal of 

Physical Chemistry A, 119(33), 8884-8891. 

 

Lemke, K. H. (2003). Peptide Synthesis under Simulated Deep-Sea Hydrothermal 

Conditions. Stanford University. (Doctoral dissertation, Stanford University). 

 

Lemke, K. H., Rosenbauer, R. J., and Bird, D. K. (2009). Peptide synthesis in early Earth 

hydrothermal systems. Astrobiology, 9(2), 141-146. 

 

Li, J., and Brill, T. B. (2003). Spectroscopy of hydrothermal reactions 25: Kinetics of the 

decarboxylation of protein amino acids and the effect of side chains on hydrothermal 

stability. The Journal of Physical Chemistry A, 107(31), 5987-5992. 

 

Lippmann-Pipke, J., Lollar, B. S., Niedermann, S., Stroncik, N. A., Naumann, R., van 

Heerden, E., and Onstott, T. C. (2011). Neon identifies two billion year old fluid 

component in Kaapvaal Craton. Chemical Geology, 283(3), 287-296. 

 

Maguire, J. J. (1954). After boiler corrosion. Industrial and Engineering 

Chemistry, 46(5), 994-997. 

 



169 

Marshall, W. L. (1994). Hydrothermal synthesis of amino acids. Geochimica et 

Cosmochimica Acta, 58(9), 2099-2106. 

 

Matter, J. M., Kelemen, P. B., and Teagle, D. A. H. (2015, December). Scientific Drilling 

in the Samail Ophiolite, Sultanate of Oman. In AGU Fall Meeting Abstracts. V11A-3055. 

 

McCollom, T. M., and Seewald, J. S. (2003). Experimental constraints on the 

hydrothermal reactivity of organic acids and acid anions: I. Formic acid and 

formate. Geochimica et Cosmochimica Acta, 67(19), 3625-3644. 

 

Martin, W., and Russell, M. J. (2007). On the origin of biochemistry at an alkaline 

hydrothermal vent. Philosophical Transactions of the Royal Society of London B: 

Biological Sciences, 362(1486), 1887-1926. 

 

Matson, D. L., Castillo, J. C., Lunine, J., and Johnson, T. V. (2007). Enceladus' plume: 

Compositional evidence for a hot interior. Icarus, 187(2), 569-573. 

 

McCollom, T. M., and Seewald, J. S. (2007). Abiotic synthesis of organic compounds in 

deep-sea hydrothermal environments. Chemical Reviews, 107(2), 382-401. 

 

McCollom, T. M., and Bach, W. (2009). Thermodynamic constraints on hydrogen 

generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica 

Acta, 73(3), 856-875. 

 

McCollom, T. M. (2013a). The influence of minerals on decomposition of the n-alkyl-α-

amino acid norvaline under hydrothermal conditions. Geochimica et Cosmochimica 

Acta, 104, 330-357. 

 

McCollom, T. M. (2013b). Laboratory simulations of abiotic hydrocarbon formation in 

Earth’s deep subsurface. Reviews in Mineralogy and Geochemistry, 75(1), 467-494. 

 

McDermott, J. M., Seewald, J. S., German, C. R., and Sylva, S. P. (2015). Pathways for 

abiotic organic synthesis at submarine hydrothermal fields. Proceedings of the National 

Academy of Sciences of the U.S.A., 112(25), 7668-7672. 

 

Melchert, B., Devey, C. W., German, C. R., Lackschewitz, K. S., Seifert, R., Walter, M., 

Mertens, C., Yoerger, D. R., Baker, E. T., Paulick, H., and Nakamura, K. (2008). First 

evidence for high-temperature off-axis venting of deep crustal/mantle heat: The 

Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary 

Science Letters, 275(1), 61-69. 

 

Mervine, E. M., Humphris, S. E., Sims, K. W., Kelemen, P. B., and Jenkins, W. J. (2014). 

Carbonation rates of peridotite in the Samail Ophiolite, Sultanate of Oman, constrained 

through 14 C dating and stable isotopes. Geochimica et Cosmochimica Acta, 126, 371-

397. 



170 

 

Mesmer, R. E., and Hitch, B. F. (1977). Base strength of amines at high temperatures. 

Ionization of cyclohexylamine and morpholine. Journal of Solution Chemistry, 6(4), 251-

261. 

 

Miller, H. M., Matter, J. M., Kelemen, P., Ellison, E. T., Conrad, M. E., Fierer, N., 

Ruchala, T., Tominaga, M., and Templeton, A. S. (2016). Modern water/rock reactions in 

Oman hyperalkaline peridotite aquifers and implications for microbial habitability.  

Geochimica et Cosmochimica Acta, 179, 217-241. 

 

Moody, J. B. (1976). Serpentinization: a review. Lithos, 9(2), 125-138. 

 

Morrill, P. L., Kuenen, J. G., Johnson, O. J., Suzuki, S., Rietze, A., Sessions, A. L., 

Fogel, M.L., and Nealson, K. H. (2013). Geochemistry and geobiology of a present-day 

serpentinization site in California: The Cedars. Geochimica et Cosmochimica Acta, 109, 

222-240. 

 

Mottl, M. J., Komor, S. C., Fryer, P., and Moyer, C. L. (2003). Deep-slab fluids fuel 

extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling 

Program Leg 195. Geochemistry, Geophysics, Geosystems, 4(11). 

 

Mumma, M. J., and Charnley, S. B. (2011). The chemical composition of comets—

Emerging taxonomies and natal heritage. Astronomy and Astrophysics, 49(1), 471. 

 

Neal, C., and Stanger, G. (1983). Hydrogen generation from mantle source rocks in 

Oman. Earth and Planetary Science Letters, 66, 315-320. 

 

Nelson, D. L., Lehninger, A. L., and Cox, M. M. (2008). Principles of Biochemistry. 

Macmillan. 

 

Nichols, N., and Wadsö, I. (1975). Thermochemistry of solutions of biochemical model 

compounds 3. Some benzene derivatives in aqueous solution. The Journal of Chemical 

Thermodynamics, 7(4), 329-336. 

 

Nichols, N., Sköld, R., Spink, C., and Wadsö, I. (1976). Thermochemistry of solutions of 

biochemical model compounds 6. α, ω-dicarboxylic acids, -diamines, and -diols in 

aqueous solution. The Journal of Chemical Thermodynamics, 8(10), 993-999. 

 

Olofsson, G., Oshodj, A. A., Qvarnström, E., and Wadsö, I. (1984). Calorimetric 

measurements on slightly soluble gases in water enthalpies of solution of helium, neon, 

argon, krypton, xenon, methane, ethane, propane, n-butane, and oxygen at 288.15, 

298.15, and 308.15 K. The Journal of Chemical Thermodynamics, 16(11), 1041-1052. 

 



171 

Otake, T., Taniguchi, T., Furukawa, Y., Kawamura, F., Nakazawa, H., and Kakegawa, T. 

(2011). Stability of amino acids and their oligomerization under high-pressure conditions: 

implications for prebiotic chemistry. Astrobiology, 11(8), 799-813. 

 

Pagé, M., Huot, J. Y., and Jolicoeur, C. (1993). A comprehensive thermodynamic 

investigation of water–ethanolamine mixtures at 10, 25, and 40° C. Canadian Journal of 

Chemistry, 71(7), 1064-1072. 

 

Parks, G. S., Todd, S. S., and Moore, W. A. (1936). Thermal data on organic compounds. 

XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives 

and heterocyclic compounds. Journal of the American Chemical Society, 58(3), 398-401. 

 

Paukert, A. N., Matter, J. M., Kelemen, P. B., Shock, E. L., and Havig, J. R. (2012). 

Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration 

in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chemical Geology, 330, 86-

100. 

 

Paukert, A. (2014). Mineral carbonation in mantle peridotite of the Samail Ophiolite, 

Oman: Implications for permanent geological carbon dioxide capture and storage. 

(Doctoral dissertation, Columbia University). 

 

Pizzarello, S., and Shock, E. (2010). The organic composition of carbonaceous 

meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harbor 

Perspectives in Biology, 2(3), a002105. 

 

Pizzarello, S., Williams, L. B., Lehman, J., Holland, G. P., and Yarger, J. L. (2011). 

Abundant ammonia in primitive asteroids and the case for a possible 

exobiology. Proceedings of the National Academy of Sciences of the U.S.A., 108(11), 

4303-4306. 

 

Plyasunov, A. V., and Shock, E. L. (2001). Correlation strategy for determining the 

parameters of the revised Helgeson-Kirkham-Flowers model for aqueous 

nonelectrolytes. Geochimica et Cosmochimica Acta, 65(21), 3879-3900. 

 

Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., 

Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., 

Johnson, T. V., Rathbun, J., Vererka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., 

Burns, J. A., DelGenio, A. D., Done, L., Murray, C. D., and Squyres, S. (2006). Cassini 

observes the active south pole of Enceladus. Science, 311(5766), 1393-1401. 

 

Potter, J., and Konnerup-Madsen, J. (2003). A review of the occurrence and origin of 

abiogenic hydrocarbons in igneous rocks. Geological Society, London, Special 

Publications, 214(1), 151-173. 

 



172 

Proskurowski, G., Lilley, M. D., Kelley, D. S., and Olson, E. J. (2006). Low temperature 

volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable 

isotope geothermometer. Chemical Geology, 229(4), 331-343. 

 

Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, 

J. E., Sylva, S. P., and Kelley, D. S. (2008). Abiogenic hydrocarbon production at Lost 

City hydrothermal field. Science, 319(5863), 604-607. 

 

Radzicka, A., and Wolfenden, R. (1996). Rates of uncatalyzed peptide bond hydrolysis in 

neutral solution and the transition state affinities of proteases. Journal of the American 

Chemical Society, 118(26), 6105-6109. 

 

Rasigraf, O., Vogt, C., Richnow, H. H., Jetten, M. S., and Ettwig, K. F. (2012). Carbon 

and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation 

by Methylomirabilis oxyfera. Geochimica et Cosmochimica Acta, 89, 256-264. 

 

Read, A. J. (1982). Ionization constants of aqueous ammonia from 25 to 250° C and to 

2000 bar. Journal of Solution Chemistry, 11(9), 649-664. 

 

Rempfert, K. R., Miller, H. M., Bompard, N., Nothaft, D., Matter, J. M., Kelemen, P., 

Fierer, N., and Templeton, A. S. (2017). Geological and geochemical controls on 

subsurface microbial life in the Samail Ophiolite, Oman. Frontiers in microbiology, 8. 

 

Rhee, I. H., Ahn, H. K., Jun, G. H., and Ho, S. C. (2010) Effect of temperature on buffer 

intensity of amine solutions in water-steam cycle of PWRs. New Aspects of Fluid 

Mechanics, Heat Transfer and Environment, 8th IASME /WSEAS International 

Conference, 300-303. 

 

Richner, G. (2013) Promoting CO2 absorption in aqueous amines with benzylamine. 

Energy Procedia, 37, 423-430. 

 

Ridley, M. K., Xiao, C., Palmer, D. A., and Wesolowski, D. J. (2000). Thermodynamic 

properties of the ionization of morpholine as a function of temperature and ionic 

strength. Journal of Chemical and Engineering Data, 45(3), 502-507. 

 

Robuchon, G., and Nimmo, F. (2011). Thermal evolution of Pluto and implications for 

surface tectonics and a subsurface ocean. Icarus, 216(2), 426-439. 

 

Rogalinski, T., Herrmann, S., and Brunner, G. (2005). Production of amino acids from 

bovine serum albumin by continuous sub-critical water hydrolysis. The Journal of 

Supercritical Fluids, 36(1), 49-58. 

 

Rushdi, A. I., and Simoneit, B. R. (2002). Hydrothermal alteration of organic matter in 

sediments of the Northeastern Pacific Ocean: Part 1. Middle Valley, Juan de Fuca 

Ridge. Applied Geochemistry, 17(11), 1401-1428. 



173 

 

Russell, M. J., Hall, A. J., and Martin, W. (2010). Serpentinization as a source of energy 

at the origin of life. Geobiology, 8(5), 355-371. 

 

Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chemical 

Reviews, 99(2), 603-622. 

 

Schadt, F. L., Bentley, T. W., and Schleyer, P. V. R. (1976). The SN2-SN1 spectrum. 2. 

Quantitative treatments of nucleophilic solvent assistance. A scale of solvent 

nucleophilicities. Journal of the American Chemical Society, 98(24), 7667-7675. 

 

Schoonen, M. A., and Xu, Y. (2001). Nitrogen reduction under hydrothermal vent 

conditions: Implications for the prebiotic synthesis of CHON 

compounds. Astrobiology, 1(2), 133-142. 

 

Schott, J., Pokrovsky, O. S., and Oelkers, E. H. (2009). The link between mineral 

dissolution/precipitation kinetics and solution chemistry. Reviews in Mineralogy and 

Geochemistry, 70(1), 207-258. 

 

Schrenk, M. O., Brazelton, W. J., and Lang, S. Q. (2013). Serpentinization, carbon, and 

deep life. Reviews in Mineralogy and Geochemistry, 75(1), 575-606. 

 

Schulte, M. D., and Shock, E. L. (1993). Aldehydes in hydrothermal solution: Standard 

partial molal thermodynamic properties and relative stabilities at high temperatures and 

pressures. Geochimica et Cosmochimica Acta, 57(16), 3835-3846. 

 

Schwarz, H. (2011). Chemistry with methane: Concepts rather than recipes. Angewandte 

Chemie International Edition, 50(43), 10096-10115. 

 

Seewald, J.S. (1994). Evidence for metastable equilibrium between hydrocarbons under 

hydrothermal conditions. Nature, 370, 285-287 

 

Seewald, J. S. (2001). Aqueous geochemistry of low molecular weight hydrocarbons at 

elevated temperatures and pressures: Constraints from mineral buffered laboratory 

experiments. Geochimica et Cosmochimica Acta, 65(10), 1641-1664. 

 

Seewald, J. S., Zolotov, M. Y., and McCollom, T. (2006). Experimental investigation of 

single carbon compounds under hydrothermal conditions. Geochimica et Cosmochimica 

Acta, 70(2), 446-460. 

 

Shahidi, F. (1987). Partial molar volumes of phenalkylamines and their physiologically 

active derivatives in water. Canadian Journal of Chemistry, 65(8), 1924-1926. 

 

Shipp, J., Gould, I. R., Herckes, P., Shock, E. L., Williams, L. B., and Hartnett, H. E. 

(2013). Organic functional group transformations in water at elevated temperature and 



174 

pressure: Reversibility, reactivity, and mechanisms. Geochimica et Cosmochimica 

Acta, 104, 194-209. 

 

Shipp, J. A., Gould, I. R., Shock, E. L., Williams, L. B., and Hartnett, H. E. (2014). 

Sphalerite is a geochemical catalyst for carbon−hydrogen bond activation. Proceedings of 

the National Academy of Sciences of the U.S.A., 111(32), 11642-11645. 

 

Shock, E. L., Helgeson, H. C., and Sverjensky, D. A. (1989). Calculation of the 

thermodynamic and transport properties of aqueous species at high pressures and 

temperatures: Standard partial molal properties of inorganic neutral species. Geochimica 

et Cosmochimica Acta, 53(9), 2157-2183. 

 

Shock, E. L., and Helgeson, H. C. (1990). Calculation of the thermodynamic and 

transport properties of aqueous species at high pressures and temperatures: Standard 

partial molal properties of organic species. Geochimica et Cosmochimica Acta, 54(4), 

915-945. 

 

Shock, E. L. (1992). Chemical environments of submarine hydrothermal systems. 

In Marine Hydrothermal Systems and the Origin of Life (pp. 67-107). Springer 

Netherlands. 

 

Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A., and Helgeson, H. C. 

(1992). Calculation of the thermodynamic properties of aqueous species at high pressures 

and temperatures. Effective electrostatic radii, dissociation constants and standard partial 

molal properties to 1000 C and 5 kbar. Journal of the Chemical Society, Faraday 

Transactions, 88(6), 803-826. 

 

Shock, E. L. (1993). Hydrothermal dehydration of aqueous organic compounds.  

Geochimica et Cosmochimica Acta, 57(14), 3341-3349. 

 

Shock, E. L., Sassani, D. C., Willis, M., and Sverjensky, D. A. (1997). Inorganic species 

in geologic fluids: correlations among standard molal thermodynamic properties of 

aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61(5), 907-

950. 

 

Shock, E. L., and Schulte, M. D. (1998). Organic synthesis during fluid mixing in 

hydrothermal systems. Journal of Geophysical Research: Planets, 103(E12), 28513-

28527. 

 

Shock, E. L., Holland, M., Meyer-Dombard, D. R., and Amend, J. P. (2005). 

Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: 

Obsidian Pool, Yellowstone National Park. Geothermal Biology and Geochemistry in 

Yellowstone National Park, 1, 95-112. 

 



175 

Shock, E., and Canovas, P. (2010). The potential for abiotic organic synthesis and 

biosynthesis at seafloor hydrothermal systems. Geofluids, 10(1‐2), 161-192. 

 

Shock, E. L., Canovas, P., Yang, Z., Boyer, G., Johnson, K., Robinson, K., Fecteau, K., 

Windman, T., and Cox, A. (2013). Thermodynamics of organic transformations in 

hydrothermal fluids. Reviews in Mineralogy and Geochemistry, 76(1), 311-350. 

 

Shock, E. L., and Boyd, E. S. (2015). Principles of geobiochemistry. Elements, 11(6), 

395-401. 

 

Simon, M., and Azam, F. (1989). Protein content and protein synthesis rates of 

planktonic marine bacteria. Marine Ecology Progress Series, 201-213. 

 

Slavik, M., Šedlbauer, J., Ballerat-Busserolles, K., and Majer, V. (2007). Heat capacities 

of aqueous solutions of acetone; 2, 5-hexanedione; diethyl ether; 1, 2-dimethoxyethane; 

benzyl alcohol; and cyclohexanol at temperatures to 523 K. Journal of Solution 

Chemistry, 36(1), 107-134. 

 

Smith, R. M., and Hansen, D. E. (1998). The pH-rate profile for the hydrolysis of a 

peptide bond. Journal of the American Chemical Society, 120(35), 8910-8913. 

 

Sohlenkamp, C., and Geiger, O. (2016). Bacterial membrane lipids: diversity in structures 

and pathways. FEMS Microbiology Reviews, 40(1), 133-159. 

 

Streit, E., Kelemen, P., and Eiler, J. (2012). Coexisting serpentine and quartz from 

carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. Contributions 

to Mineralogy and Petrology, 164(5), 821-837. 

 

Střı́teská, L., Hnědkovský, L., and Cibulka, I. (2004). Partial molar volumes of organic 

solutes in water. XI. Phenylmethanol and 2-phenylethanol at T=(298 to 573) K and at 

pressures up to 30 MPa. The Journal of Chemical Thermodynamics, 36(5), 401-407. 

 

Stull, D. R., Westrum, E. F., and Sinke, G. C. (1969). The Chemical Thermodynamics of 

Organic Compounds. John Wiley & Sons Inc., New York. 

 

Suradi, S., Hacking, J. M., Pilcher, G., Gümrükċü, I., and Lappert, M. F. (1981). 

Enthalpies of combustion of five sterically hindered amines. The Journal of Chemical 

Thermodynamics, 13(9), 857-861. 

 

Swain, M. R., Vasisht, G., and Tinetti, G. (2008). The presence of methane in the 

atmosphere of an extrasolar planet. Nature, 452(7185), 329. 

 

Sweeton, F. H., Mesmer, R. E., and Baes Jr, C. F. (1974). Acidity measurements at 

elevated temperatures. VII. Dissociation of water. Journal of Solution Chemistry, 3(3), 

191-214. 



176 

 

Szponar, N., Brazelton, W. J., Schrenk, M. O., Bower, D. M., Steele, A., and Morrill, P. 

L. (2013). Geochemistry of a continental site of serpentinization, the Tablelands 

Ophiolite, Gros Morne National Park: a Mars analogue. Icarus, 224(2), 286-296. 

 

Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, 

H., Nakagawa, S., Nunoura, T., and Horikoshi, K. (2008). Cell proliferation at 122 C and 

isotopically heavy CH4 production by a hyperthermophilic methanogen under high-

pressure cultivation. Proceedings of the National Academy of Sciences of the U.S.A.,  

105(31), 10949-10954. 

 

Tanger, J. C., and Helgeson, H. C. (1988). Calculation of the thermodynamic and 

transport properties of aqueous species at high pressures and temperatures; Revised 

equations of state for the standard partial molal properties of ions and electrolytes.  

American Journal of Science, 288(1), 19-98. 

 

Taran, Y. A., and Giggenbach, W. F. (2003). Geochemistry of light hydrocarbons in 

subduction-related volcanic and hydrothermal fluids. Special Publication-Society of 

Economic Geologists, 10, 61-74. 

 

Taran, Y. A., Varley, N. R., Inguaggiato, S., and Cienfuegos, E. (2010). Geochemistry of 

H2-and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, 

Mexico. Evidence for serpentinization and abiogenic methane. Geofluids, 10(4), 542-555. 

 

Tassi, F., Martinez, C., Vaselli, O., Capaccioni, B., and Viramonte, J. (2005). Light 

hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio 

(northern Chile). Applied Geochemistry, 20(11), 2049-2062. 

 

Tassi, F., Vaselli, O., Capaccioni, B., Montegrossi, G., Barahona, F., and Caprai, A. 

(2007). Scrubbing process and chemical equilibria controlling the composition of light 

hydrocarbons in natural gas discharges: an example from the geothermal fields of El 

Salvador. Geochemistry, Geophysics, Geosystems, 8(5). 

 

Templeton, A. S., Chu, K. H., Alvarez-Cohen, L., and Conrad, M. E. (2006). Variable 

carbon isotope fractionation expressed by aerobic CH 4-oxidizing bacteria. Geochimica 

et Cosmochimica Acta, 70(7), 1739-1752. 

 

Thermodynamics Research Center Hydrocarbon Project. (1982). Selected values of 

properties of hydrocarbons and related compounds, A-84. Texas AandM University, 

College Station. 

 

Tingle, T. N., Hochella, M. F., Becker, C. H., and Malhotra, R. (1990). Organic 

compounds on crack surfaces in olivine from San Carlos, Arizona and Hualalai Volcano, 

Hawaii. Geochimica et Cosmochimica Acta, 54(2), 477-485. 

 



177 

Torry, L. A., Kaminsky, R., Klein, M. T., and Klotz, M. R. (1992). The effect of salts on 

hydrolysis in supercritical and near-critical water: reactivity and availability. The Journal 

of Supercritical Fluids, 5(3), 163-168. 

 

Touhara, H., Okazaki, S., Okino, F., Tanaka, H., Ikari, K., and Nakanishi, K. (1982). 

Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. 

Aminoethanol and its methyl derivatives. The Journal of Chemical Thermodynamics,  

14(2), 145-156. 

 

Tsiaras, A., Rocchetto, M., Waldmann, I. P., Venot, O., Varley, R., Morello, G., 

Damiano, M., Tinetti, G., Barton, E. J., Yurchenko, S. N., Tennyson, J. (2016). Detection 

of an atmosphere around the super-Earth 55 Cancri e. The Astrophysical Journal, 820(2), 

99. 

 

Uematsu, M., and Frank, E. U. (1980). Static dielectric constant of water and steam.  

Journal of Physical and Chemical Reference Data, 9(4), 1291-1306. 

 

Urschel, M. R., Kubo, M. D., Hoehler, T. M., Peters, J. W., and Boyd, E. S. (2015). 

Carbon source preference in chemosynthetic hot spring communities. Applied and 

Environmental Microbiology, 81(11), 3834-3847. 

 

Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., and Tyler, S. C. (2004). 

Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens.  

Geochimica et Cosmochimica Acta, 68(7), 1571-1590. 

 

Valvani, S. C., Yalkowsky, S. H., and Roseman, T. J. (1981). Solubility and partitioning 

IV: Aqueous solubility and octanol-water partition coefficients of liquid nonelectrolytes.  

Journal of Pharmaceutical Sciences, 70(5), 502-507. 

 

Vance, S. D., Hand, K. P., and Pappalardo, R. T. (2016). Geophysical controls of 

chemical disequilibria in Europa. Geophysical Research Letters, 43(10), 4871-4879. 

 

Vandenbroucke, M., and Largeau, C. (2007). Kerogen origin, evolution and structure.  

Organic Geochemistry, 38(5), 719-833. 

 

Vanderzee, C. E., and King, D. L. (1972). The enthalpies of solution and formation of 

ammonia. The Journal of Chemical Thermodynamics, 4(5), 675-683. 

 

Verdier-Paoletti, M. J., Marrocchi, Y., Avice, G., Roskosz, M., Gurenko, A., and 

Gounelle, M. (2017). Oxygen isotope constraints on the alteration temperatures of CM 

chondrites. Earth and Planetary Science Letters, 458, 273-281. 

 

Verevkin, S. P., and Vasiltsova, T. V. (2004). Thermochemistry of benzyl alcohol: 

Reaction equilibria involving benzyl alcohol and tert-alkyl ethers. Journal of Chemical 

and Engineering Data, 49(6), 1717-1723. 



178 

 

Von Damm, K. V., Edmond, J. T., Measures, C. I., and Grant, B. (1985). Chemistry of 

submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochimica et 

Cosmochimica Acta, 49(11), 2221-2237. 

 

Wadso, I. (1969). Enthalpies of vaporization of organic compounds. Acta Chem. Scand,  

23, 2061. 

 

Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., and Halow, I. (1982). The 

NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 

and C2 organic substances in SI units. National Standard Reference Data System. 

 

Waite, J. H., Glein, C. R., Perryman, R. S., Teolis, B. D., Magee, B. A., Miller, G., 

Grimes, J., Perry, M. E., Miller, K. E., Bouquet, A., and Lunine, J. I. (2017). Cassini 

finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes.  

Science, 356(6334), 155-159. 

 

Ward, N., Larsen, Ø., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A. S., Dimitrov, G., 

Jiang, L., Scanlan, D., Kang., K. H., Lewis, M., Nelson, K. E., Methé, B., Wu, M., 

Heidelberg, J. F., Paulsen, I. T., Fouts, D., Ravel, J., Tettelin, H., Ren, Q., Read, T., 

DeBoy, R. T., Seshadri, R., Salzberg, S. L., Jensen, H. B., Birkeland, N. K., Nelson, W. 

C., Dodson, R. J., Grindhaug, S. H., Holt, I., Eidhammer, I., Jonasen, I., Vanaken, S., 

Utterback, T., Feldblyum, T. V., Fraser, C. M., Lillehaug, J. R., and Eisen, J. A.. (2004). 

Genomic insights into methanotrophy: the complete genome sequence of Methylococcus 

capsulatus (Bath). PLoS biology, 2(10), e303. 

 

Winstein, S., Brown, M., Schreiber, K. C., and Schlesinger, A. H. (1952). Neighboring 

carbon and hydrogen. IX. Neighboring phenyl in benzylmethylcarbinyl p-

toluenesulfonate1 2. Journal of the American Chemical Society, 74(5), 1140-1147. 

 

Winstein, S., Lindegren, C. R., Marshall, H., and Ingraham, L. L. (1953). Neighboring 

carbon and hydrogen. XIV. Participation in solvolysis of some primary 

benzenesulfonates 1. Journal of the American Chemical Society, 75(1), 147-155. 

 

Wolery, T. J. (1992). EQ3/6: A software package for geochemical modeling of aqueous 

systems: package overview and installation guide (version 7.0) (p. 70). Livermore, CA: 

Lawrence Livermore National Laboratory. 

 

Xie, W. W., and Tremaine, P. R. (1999). Thermodynamics of aqueous 

diethylenetriaminepentaacetic acid (DTPA) systems: apparent and partial molar heat 

capacities and volumes of aqueous H 2 DTPA 3−, DTPA 5−, CuDTPA 3−, and Cu 2 

DTPA− from 10 to 55 C. Journal of Solution Chemistry, 28(4), 291-325. 

 



179 

Yang, Z., Gould, I. R., Williams, L. B., Hartnett, H. E., and Shock, E. L. (2012). The 

central role of ketones in reversible and irreversible hydrothermal organic functional 

group transformations. Geochimica et Cosmochimica Acta, 98, 48-65. 

 

Yang, Z., Lorance, E. D., Bockisch, C., Williams, L. B., Hartnett, H. E., Shock, E. L., and 

Gould, I. R. (2014). Hydrothermal photochemistry as a mechanistic tool in organic 

geochemistry: The chemistry of dibenzyl ketone. The Journal of Organic Chemistry, 79, 

7861-7871. 

 

Yang, Z., Hartnett, H. E., Shock, E. L., and Gould, I. R. (2015). Organic oxidations using 

geomimicry. The Journal of Organic Chemistry, 80, 12159-12165. 

 

Young, E. D., Kohl, I. E., Lollar, B. S., Etiope, G., Rumble, D., Li, S., Haghneghdar, M. 

A., Schauble, E. A., McCain, K. A., Foustoukos, D. I., Sutclife, C., Warr, O., Ballentine, 

C. J. (2017). The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms 

controlling isotopic bond ordering in abiotic and biotic methane gases. Geochimica et 

Cosmochimica Acta, 203, 235-264. 

  



180 

APPENDIX A 

SUPPORTING DATA FOR CHAPTER 2 



181 

The following descriptions and figures are the supporting data for the 

experimental methods, results, and interpretation in Chapter 2. The sections are presented 

in the same order in which they are referenced in Chapter 2. 

 Gas chromatography with flame ionization detection (GC-FID), sometimes 

complemented with mass spectrometry (GC-MS), was used to identify and quantify 

organic compounds abundances in experiments. All gas chromatography analyses used 

the same GC oven heating method (Table A1). 

A key objective of this work was to study the deamination of protonated amines, 

and thus to ensure that amines with different structures (e.g., α-methyl, and ring 

substituents) were near-completely protonated under the experimental hydrothermal 

conditions (250°C, Psat). Evidence for protonation was provided for benzylamine (BA) 

and α-methylbenzylamine (α-CH3-BA; see Chapter 2 and Fig. 2) by estimating 

experimental pH (3.3) and estimating the pKa values for these amines under experimental 

conditions. The latter was done by comparing existing pKa values that have been 

measured to high temperatures (pKa values range from 5 – 6 at 250°C) for a variety of 

amines that possess similar low temperature pKa values (8.5 – 10.7) to BA and α-CH3-

BA (9.4 and 9.9, respectively) (Richner, 2013; Gluck and Cleveland Jr., 1994). In Fig. 

A1, we show that low temperature pKa values for ring-substituted benzylamines also span 

a range (8.6 – 9.6) that is encompassed by the range of existing pKa values for amines. 

Some of these values are experimental (Blackwell et al., 1964), and some were estimated 

using a linear relationship between the pKa values of the ring-substituted benzylamines 

and their  
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Table A1  

GC oven heating method used for all calibration standards and experiments. 

atarget heating temperatures for the oven 
brate of heating between target temperatures 
chold times at each target temperature  
dsometimes this hold time was extended to ensure that no larger compounds eluted at 

later times. 

  

T (°C)a Rate (°C/min)b Hold (min)c 

40.0 - 0 

140.0 10.0 0 

220.0 5.0 0 

300.0 20.0 5.0d 
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Fig. A1. pKa values (black filled circles) at 25°C vs. sigma values (σ) for ring-substituted 

BA from Blackwell et al. (1964); the pKa values are to be accurate to ± 0.02 units. A 

linear regression provides pKa predictions for the remaining BA derivatives (grey text) 

used in this study. Sigma values were obtained from Gordon and Ford (1972). For the 

two-substituent compounds (e.g., 3,5-diCH3), σ values were calculated by doubling the 

sigma values of their one-substituent counterparts (e.g., 3-CH3). 
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Hammett σ values (Fig. A1); description of the Hammett σ values are found in Chapter 2 

(Section 2.3.4) and in previous literature (Hammett, 1935). 

The major products of reaction of benzylamine under acidic hydrothermal 

conditions were benzyl alcohol (BAL) and ammonium (NH4
+). The time series 

concentration data for BA decomposition, BAL production, and NH4
+ production (see 

Chapter 2 and Fig. 3) look strikingly similar to data from a subcritical (340 C) 

hydrothermal experimental study that observed the decomposition of benzylphenylamine 

and the production of benzyl alcohol, aniline (analogous to ammonia), and toluene 

(Abraham and Klein, 1985), suggesting that benzylphenylamine might decay via a 

similar mechanism to that of BA. However, reactions with benzylphenylamine were not 

buffered, so mechanisms for it and BA should not be expected to be identical. 

Additionally, the extensive diversity of organic compound products seen in BA 

experiments was not reported for benzylphenylamine. 

Fig. A2 shows GC-FID chromatograms for 68-hour (top) and 140-hour (bottom) 

experiments with 0.05 molal BA. Organic compound peaks are labeled, or if not visible, 

labels for approximate organic compound retention times are indicated. The scale in the 

top image is more extensive in order to show the most major products and their relative 

retention times, while the scale for the bottom image is zoomed in to display the product 

regions where two, three, and four phenyl ring compounds are expected to elute. The 

numerous peaks in these regions are suspected to be a large diversity of electrophilic 

aromatic substitution (EAS) products, and in fact, three isomers of benzyl-benzyl alcohol 

(expected EAS products) were identified for this and longer  
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Fig. A2. Gas chromatograms (signal intensity, μV, vs. retention time, min) from 0.05 

molal benzylamine experiments with 0.1 molal phosphate buffer (pH of 3.3) heated at 

250°C (Psat) for 68 hours (top) and 140 hours (bottom). The top image shows the 

chromatogram until after the three phenyl ring products no longer elute (34 min) from the 

column, since no four ring products were seen in 68-hour experiments. The bottom image 

shows a zoomed in scale of the chromatogram from the 140-hour experiment, displaying 

the plethora of unidentified peaks in the two, three, and four phenyl ring regions, 

assumed to mainly be products of EAS reactions. There are also numerous peaks that are 

not visually resolved in the bottom image. Note that peak heights do not necessarily 

correspond to relative abundance, because different compounds have different peak 

shapes. These images were obtained using CompassCDS software. 
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time experiments.  

The primary focus of this work was to characterize deamination mechanisms for 

amines under acidic hydrothermal conditions. Comparing decomposition kinetics of ring-

substituted BA and α-CH3-BA provided the strongest evidence that the former reacts via 

two deamination mechanisms (SN1 and SN2), while the latter reacts via a single 

deamination mechanism (SN1). Table A2 shows the time-dependent concentration data 

for experiments involving these ring-substituted compounds. From these data, first-order 

rate constants and the R2 values for their fits were calculated. Also shown in the table are 

R2 values for second-order rate constants that were calculated from the same data. 

Comparing the first- and second-order R2 values demonstrates that the first-order fits 

were better, a finding that is in accordance with the proposed SN1 (first-order) and SN2 

(pseudo-first-order) mechanisms of deamination. 

Similar preliminary hydrothermal experiments with benzylamine buffered at high 

pH (250°C, 40 bar, pH 9) were also performed, revealing a more complicated set of 

competing reactions. These experiments were performed with 0.5 molal benzylamine and 

0.1 molal phosphate buffer; the calculations for the buffer were performed using the same 

methods as described in Chapter 2. The reactant and product concentrations observed at 

different experimental times are shown in Table 3A. There is quite a contrast between 

these experimental data and those of protonated benzylamine at low pH. Protonated 

benzylamine (at high pH) decomposes much more slowly and produces much higher 

abundances of potential primary products, including: toluene (up to ~20%), 

dibenzylamine (up to ~5%), and dibenzylimine (up to ~10%); this indicates that it likely 

undergoes different primary reactions. 
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Table A2  

Ring substituent experimental time series with concentration data and kinetics calculations  

   time d [reactant] e S.D. f log k g 

1st 

order 

2nd 

order 

substituent(s) σ+ a # expts.c s x 10-3 molal molal s-1 R2 h R2 h 

4-OCH3 -0.648 8 0.0 0.02354 0.00036 -2.23 0.982 0.842 

theat = 5 min   0.1 0.01080 0.00075    

   0.2 0.00698 0.00053    

   0.2 0.00579 0.00004    

   0.3 0.00455 0.00010    

   0.3 0.00328 0.00012    

   0.4 0.00178 0.00012    

   0.5 0.00118 0.00002    
4-CH3 -0.256 7 0.0 0.04130 0.00028 -4.62 0.972 0.970 

theat = 5min   0.0 0.04395 0.00006    

   7.2 0.03425 0.00012    

   7.2 0.03304 0.00020    

   14.4 0.03163 0.00013    

   21.6 0.02469 0.00009    

   28.8 0.02104 0.00008    
3,5-diCH3 -0.13 b 10 0.0 0.01771 0.00030 -4.81 0.937 0.915 

theat = 240 min   0.0 0.01756 0.00012    

   28.8 0.00998 0.00005    

   28.8 0.00945 0.00024    

   30.6 0.01499 0.00004    

   30.6 0.01463 0.00009    

   72.0 0.00571 0.00005    

   72.0 0.00482 0.00004    

   118.8 0.00212 0.00002    

   158.4 0.00192 0.00001    
3-CH3 -0.065 8 0.0 0.03254 0.00011 -5.05 0.964 0.885 

theat = 240 min   0.0 0.03029 0.00003    

   72.0 0.02218 0.00005    

   72.0 0.01968 0.00023    

   72.0 0.01660 0.00015    

   118.8 0.01253 0.00016    

   158.4 0.00654 0.00004    

   244.8 0.00401 0.00001    
H (parent) 0 8 0.0 0.04760 0.00024 -5.29 0.995 0.863 

theat = 240min   32.4 0.03539 0.00001    

   72.0 0.03375 0.00025    

   72.0 0.03037 0.00020    

   160.2 0.01954 0.00007    

   244.8 0.01432 0.00003    

   244.8 0.01321 0.00005    

   504.0 0.00334 0.00002    
3-OCH3 0.047 8 0.0 0.02716 0.00032 -5.13 0.990 0.877 

theat = 240min   45.9 0.02288 0.00032    

   72.0 0.01483 0.00024    
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   143.1 0.00997 0.00016    

   143.1 0.00846 0.00006    

   236.7 0.00502 0.00008    

   236.7 0.00484 0.00005    

   333.9 0.00234 0.00005    
3-F 0.352 10 0.0 0.04666 0.00003 -5.68 0.961 0.891 

theat = 240min   0.0 0.04320 0.00046    

   72.0 0.03476 0.00002    

   158.4 0.03311 0.00009    

   158.4 0.02957 0.00007    

   331.2 0.02298 0.00002    

   417.6 0.02257 0.00011    

   594.0 0.01228 0.00004    

   594.0 0.01169 0.00005    

   261.9 0.02845 0.00012    
3-Cl 0.399 12 0.0 0.04092 0.00013 -5.59 0.971 0.807 

theat = 240min   0.0 0.04030 0.00006    

   0.0 0.03816 0.00023    

   72.0 0.03446 0.00008    

   72.0 0.03310 0.00005    

   261.9 0.01850 0.00006    

   309.6 0.01980 0.00020    

   309.6 0.01965 0.00012    

   504.0 0.01590 0.00006    

   504.0 0.00982 0.00009    

   504.0 0.00897 0.00004    

   1022.4 0.00278 0.00004    
3-CF3 0.52 11 0.0 0.03682 0.00031 -5.49 0.976 0.840 

theat = 240min   0.0 0.03900 0.00005    

   72.0 0.03423 0.00025    

   72.0 0.03388 0.00016    

   302.4 0.01673 0.00008    

   302.4 0.01572 0.00001    

   504.0 0.00753 0.00007    

   504.0 0.00676 0.00006    

   504.0 0.00565 0.00001    

   504.0 0.00585 0.00005    

   1022.4 0.00171 0.00003    
3,5-diCF3 1.04 b 8 0.0 0.04765 0.00013 -5.70 0.997 0.941 

theat = 240min   72.0 0.04352 0.00010    

   158.4 0.03813 0.00014    

   327.6 0.02587 0.00007    

   327.6 0.02582 0.00005    

   504.0 0.01974 0.00002    

   838.8 0.00910 0.00002    

   1022.4 0.00692 0.00001    

   0.0 0.00000 0.00000    
3-CH3, α-CH3 -0.065 8 0.0 0.02998 0.00008 -2.73 0.934 0.909 
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theat = 5min   0.12 0.02678 0.00006    

   0.3 0.01657 0.00005    

   0.42 0.01625 0.00009    

   0.6 0.00970 0.00001    

   0.72 0.00587 0.00001    

   0.9 0.00451 0.00008    

   1.2 0.00442 0.00007    
α-CH3 0 10 0.0 0.02119 0.00007 -3.10 0.901 0.705 

theat = 5min   0.6 0.01247 0.00002    

   1.2 0.00523 0.00012    

   1.2 0.00457 0.00003    

   1.8 0.00706 0.00000    

   1.8 0.00354 0.00004    

   1.8 0.00333 0.00002    

   2.7 0.00150 0.00003    

   3.6 0.00230 0.00002    

   3.6 0.00099 0.00000    
3-CF3, α-CH3 0.52 7 0.0 0.05378 0.00003 -4.37 0.985 0.834 

theat = 120min   7.2 0.03123 0.00006    

   16.2 0.02085 0.00001    

   21.6 0.01251 0.00003    

   21.6 0.01140 0.00003    

   86.4 0.00058 0.00001    

   165.6 0.00004 0.00001    
3,5-diCF3, α-

CH3 1.04 7 0.0 0.05436 0.00007 -5.67 0.976 0.909 

theat = 240min   72.0 0.04159 0.00010    

   72.0 0.03828 0.00007    

   248.4 0.02628 0.00003    

   504.0 0.01350 0.00004    

   504.0 0.01234 0.00003    

   1281.6 0.00241 0.00002    
a σ+ values were obtained from Gordon and Ford, 1972. 
b This was calculated by multiplying meta σ+ value by 2. 
c The number of rate experiments performed with each compound. 

d The time of each experiment conducted, in seconds x 10-3. Note, time zero begins after a heating time, theat
 

e Average reactant concentrations from 3 autosampler injections on the GC-FID. 

f Analytical uncertainties determined from 3 autosampler injections on the GC-FID.  
g These values were calculated from 1st order kinetics fits in KaleidaGraph. 
h These R2 values were determined by fitting 1st and 2st order kinetics fits in KaleidaGraph. 
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Table A3  

Hydrothermal experiments (250 °C, 40 bar) with 0.5 molal benzylamine buffered  

with 0.1 molal phosphate at pH 9.0. 

 benzyl- benzyl dibenzy- tribenz- dibenz- tol- 

time a amine alcohol lamine ylamine ylimine uene 

s x 10-3 molal molal molal molal molal molal 

79.2 0.46875 0.00068 0.00221 B.D.L. 0.00237 0.00052 

79.2 0.47210 0.00002 0.00003 B.D.L. 0.00007 0.00003 

194.4 0.33057 0.01242 0.01055 B.D.L. 0.01718 0.01556 

194.4 0.33060 0.01390 0.01069 B.D.L. 0.01862 0.01645 

320.4 0.27910 0.02583 0.01480 0.00170 0.02628 0.03062 

320.4 0.34269 0.01161 0.01205 B.D.L. 0.01345 0.01287 

406.8 0.20302 0.05519 0.02391 0.00178 0.03920 0.05808 

406.8 0.22561 0.05572 0.02481 0.00178 0.04169 0.06721 

604.8 0.12570 0.08275 0.03167 0.00198 0.04506 0.09212 

604.8 0.13658 0.07752 0.03015 0.00193 0.04382 0.08987 

867.6 0.04809 0.10401 0.02716 0.00236 0.04031 0.10806 

867.6 0.06544 0.09518 0.02693 0.00214 0.03793 0.09850 
a The time of each experiment conducted, in seconds x 10-3. 

Organic concentrations are averages from 2 autosampler injections on the cation IC. 

B.D.L. indicates when concentrations were below detection limits of the instrument. 
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The presence of second-order kinetics was also investigated by performing BA 

experiments with starting concentrations of initial reactant and phosphate buffer species 

that were a factor of three greater than the rest of the experiments conducted in the study 

(0.15 vs. 0.05 molal BA). The resulting time-dependent concentrations are shown in 

Table A4, along with first-order decomposition rate constants which were calculated 

from that data. The difference in rate constants is small, suggesting that there are only 

minor contributions to decomposition kinetics from second-order reactions, interactions 

with buffer species, or ionic strength effects.  
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Table A4  

Experimental concentration-dependence and NH4
+ measurements 

starting time a [BA] b S.D. c log k d  [BAL] b S.D. c [NH4
+] e S.D. c 

conditions s x 10-3 molal molal s-1 molal molal molal molal 

0.05 molal 0.0 0.04760 0.00024 -5.29 0.00279 0.00002 0.00240 0.00171 

BA 32.4 0.03539 0.00001  
0.00753 0.00002 

  

0.10 molal 72.0 0.03375 0.00025  0.01534 0.00014 0.01658 0.00101 

buffer 72.0 0.03037 0.00020  0.01427 0.00010   
theat=240min 160.2 0.01954 0.00007  0.02133 0.00009   

 165.6      0.03088 0.00036 

 244.8 0.01432 0.00003  0.02173 0.00008 0.03703 0.00020 

 244.8 0.01321 0.00005  0.02186 0.00003   

 504.0 0.00334 0.00002  0.01715 0.00040 0.04680 0.00418 

0.15 molal 0.0 0.12990 0.00011 -5.16     
BA 72.0 0.08183 0.00022      

0.30 molal 158.4 0.03985 0.00015  
  

  
buffer 158.4 0.03326 0.00010      
theat=240min 244.8 0.02839 0.00013      

 331.2 0.01611 0.00001  
  

  

 331.2 0.01633 0.00004      

 504.0 0.00859 0.00001      
a The time of each experiment conducted, in seconds x 10-3. Note, time zero begins after a heating time, theat. 

b Average reactant concentrations from 3 autosampler injections on the GC-FID. 

c Analytical uncertainties determined from 3 autosampler injections on the GC-FID. 
b Calculated from simple first-order kinetic fits using KaleidaGraph. 
e Average reactant concentration from 2 autosampler injections on the cation IC. 
f Solutions were buffered using phosphate salts. 
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Also shown in Table A4 are concentrations of benzyl alcohol (BAL) and NH4
+ 

over time for the lower concentration BA experiments. These values show that for the 

first 20 hours of reaction (72.0 x 10-3 s), benzyl alcohol and NH4
+ increase proportionally 

with a 1:1 ratio to benzylamine conversion, according to the reaction scheme in Fig. 4 of 

Chapter 2. This suggests that deamination and hydration are the dominant primary 

reactions occurring in the experiments. 

For the reaction of α-CH3-BA under acidic hydrothermal conditions, styrene was 

one of the observed products, assumed to come from an elimination reaction, potentially 

either from the alcohol (α-CH3-BAL) as a secondary product or from the amine as a 

primary product. Amine elimination would complicate the extraction of kinetic 

parameters and also jeopardize comparison of α-CH3-BA and BA kinetics. Therefore it 

was necessary to investigate whether the decomposition kinetics of the amine were 

significantly enhanced by a reaction to form styrene. The following two lines of evidence 

suggest that the major primary reaction of α-CH3-BA is substitution to form α-

methylbenzyl alcohol (α-CH3-BAL), and then the alcohol rapidly eliminated to form 

styrene: 

1) After 5 minutes of heating (theat = 5, t = 0 minutes, see Section 2.2.3) α-CH3-

BA at 250°C, the ratio of α-CH3-BAL to styrene is 4.3. Then, at t = 10 minutes the ratio 

is 1.0 and thereafter the average ratio is approximately 0.8, seemingly reaching steady 

state in favor of styrene (Table A5). The inversion of the ratio suggests that α-CH3-BAL 

is formed first, and then dehydrates rapidly to form styrene as a secondary product. An 

experiment with α-CH3-BA was also conducted at 200°C to observe the ratio of the 

alcohol to styrene after even less reaction progress. At t = 10 minutes the ratio is 19.7,  
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Table A5. 

α-CH3-BA experimental time-dependent concentrations and products   

time [α-CH3-BA] S.D. a [α-CH3-BAL] S.D. a styrene S.D. a 

s x 10-3 molal molal molal molal molal molal 

0.00 0.02114 0.00007 0.00077 0.00001 0.00018 0.00000 

0.01 0.01248 0.00002 0.00304 0.00001 0.00316 0.00002 

0.02 0.00528 0.00012 0.00436 0.00002 0.00620 0.00006 

0.03 0.00357 0.00004 0.00439 0.00000 0.00609 0.00003 

0.03 0.00706 0.00000 0.00442 0.00001 0.00415 0.00001 

0.06 0.00232 0.00002 0.00507 0.00001 0.00491 0.00001 

0.06 0.00099 0.00000 0.00465 0.00001 0.00612 0.00002 
a Analytical uncertainties determined from 3 autosampler injections on the GC-FID 
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clearly demonstrating that α-CH3-BAL was first being produced at a rapid rate, followed 

by the more sluggish reaction to produce styrene. This finding is depicted in the previous 

reaction path shown in Fig. 10, above. 

2) Another experiment was conducted with chiral R-(+)-α-CH3-BAL under 

similarly buffered hydrothermal conditions at 200°C. The products of this experiment 

were analyzed using a chiral column. Both S-(-)-α-CH3-BAL and styrene are produced, 

presumed to be the results of a substitution (SN1 or SN2) reaction and an elimination (E1 

or E2) reaction, respectively. At t = 10 minutes, the mixture of R and S alcohols is nearly 

racemic (R/S ratio of 1.03), and the ratio of total alcohol to styrene is 4.8, suggesting that 

the substitution reaction must be much more rapid than the elimination reaction. The 

near-racemic mixture shows that water rapidly substitutes for the hydroxyl at these 

conditions. Comparatively, α-CH3-BA decomposes very little (< 5%) by t=10 minutes at 

200°C, indicating that water substitutes much more rapidly with the alcohol than the 

amine. Therefore the alcohol likely racemizes via an SN1 mechanism, since a protonated 

hydroxyl group should be the best leaving group in any experiments herein based on pKb 

(pKb H2O < pKb NH3 < pKb OH- < pKb NH2-). This finding suggests that the alcohol 

protonates and dehydrates to form the benzyl cation much more rapidly, strengthening 

the case for the general reaction path of alcohol to EAS products outlined above (Chapter 

2, Fig. 6 and 9). 
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APPENDIX B  

SUPPORTING DATA FOR CHAPTER 3 
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As mentioned in Section 3.2.2, total ammonia (ΣNH3) measurements were only 

made for 72-hour experiments of each time series. These measurements were used only 

for calculating reaction quotients that were compared with independently calculated 

equilibrium constants in Section 3.3.5. The measurements were also compared to the 

amount of ΣNH3 in solution according to how much nitrogen was bonded to identified 

organic compounds, according to Eq. (B1): 

 

Σ[NH3]  =  0.5  -  (Σ[BA]  +  Σ[DBA]  +  Σ[TBA]  +  Σ[DBI]) (B1), 

 

where each species (BA: benzylamine, DBA: dibenzylamine, TBA: tribenzylamine, DBI: 

dibenzylimine) concentration in the equation is the sum of its protonated and 

unprotonated forms and the value 0.5 corresponds to the intended molal concentration of 

nitrogen added to each experiment. As seen in Table B1, the 72-hour ΣNH3 

measurements accounted for an average of 73.1 ± 6.1% (±1 standard deviation) of the 

total ammonia calculated by equation Eq. (B1). The discrepancy between measured and 

estimated ΣNH3 at 72 hours was probably due to the lack of quantification of the 

numerous unidentified organics that appear at later reaction times (Section 3.3.2), some 

of which could contain nitrogen. It is also possible that some larger products at later 

reaction times were not analyzable via GC due to their lack of solubility or volatility; 

these could also contain unaccounted nitrogen. However, since reaction quotients 

calculated for the four sets of experiments spanned up to 5 orders of magnitude, this 

discrepancy, a factor of 0.73, was not expected to make a large difference in the trends of 

Fig. 15 or 9, nor in the resulting interpretations. Most importantly, since ΣNH3 was  
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Table B1 

Measurements and estimates of total ammonia concentration, Σ[NH3],  

in hydrothermal experiments 

initial  calculateda measured substract NH3(g)  

organic time Σ[NH3] Σ[NH3] Σ[NH3]  

reactant hours molal molal molal  

benzyl 2.0 0.488  0.477  

alcohol 22.0 0.431  0.420  

 22.0 0.435  0.424  

 45.5 0.407  0.398  

 28.0 0.439  0.429  

 72.0 0.418 0.264 0.258*  

      

benzyl- 2.0 0.181  0.177  

amine 5.0 0.222  0.217  

 9.0 0.277  0.270  

 22.0 0.210  0.205  

 28.0 0.349  0.340  

 45.5 0.374  0.365  

 72.0 0.392 0.308 0.301*  

 72.0 0.394 0.308 0.301*  

      

dibenzyl- 2.0 0.305  0.298  

amine 22.0 0.339  0.331  

 28.0 0.359  0.350  

 28.0 0.362  0.353  

 45.5 0.411  0.401  

 45.5 0.428  0.418  

 72.0 0.405 0.293 0.286*  

      

tribenzyl- 2.0 0.299  0.292  

amine 22.0 0.356  0.347  

 28.0 0.377  0.368  

 45.5 0.346  0.337  

 72.0 0.409 0.303 0.296*  
a: calculated using Eq. (B1): Σ[NH3]  =  0.5  -  ([BA]  +  [DBA]  +  [TBA]  +  [DBI]) 

* measured Σ[NH3] used to calculate this value 
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measured for 72 hours experiments, the reaction quotients calculated from these 

experiments are more robust than if Eq. (B1) had been used to calculate Σ[NH3]. 

Calculations were performed to determine how much gaseous NH3 would 

partition into the headspace of the reaction vessels using the software program, 

SUPCRT92 (Johnson et al., 1992), which employs the Helgeson-Kirkham-Flowers 

revised equation of state (Kelley, 1960; Wagman et al., 1982; Tanger and Helgeson, 

1988; Shock et al., 1989; 1990; 1992; 1997). This was necessary because NH3 was the 

most volatile reactant/product in experiments. Based on the density of water at 250°C the 

experimental solution:headspace volume ratio was determined to be 3.1. The calculations 

predict that 3.4% of the ΣNH3 measured at 72 hours would be in the gas phase at the 

calculated experimental pH of 5.4 (Section 3.2.3). Therefore, the estimated ΣNH3 values 

were multiplied by a factor of 0.976 to properly calculate all reaction quotients (Table 

B1).  

The eight major products that were monitored and quantified in experiments were 

benzyl alcohol, benzylamine, dibenzylamine, tribenzylamine, dibenzylimine, toluene, 

benzyl ether, and benzaldehyde. Cumulative concentrations of unidentified two and three 

phenyl ring products (the two ring group included three identified benzyl-benzyl alcohol 

isomers) were also estimated (see Section 3.2.2). Concentrations of these compounds can 

be seen for each of the four sets of experiments over time in Table B2. 

 

 

 

 



200 

Table B2  

Organic compound concentrations from time series experiments 

initial  benzyl benzyl- dibenzyl- tribenzyl- dibenzyl- tol- benzyl benzal- 2 ring 3 ring 

organic time alcohol amine amine amine imine uene ether dehyde region region 

reactant hours molal molal molal molal molal mmol mmol mmol mmol* mmol* 

benzyl 2.0 0.4387 0.00731 0.00309 0.000331 0.00092 0.05 3.90 0.15 1.09 0.08 

alcohol 22.0 0.2925 0.04739 0.01789 0.002819 0.00132 0.99 6.17 0.07 7.56 3.64 

 22.0 0.2647 0.04467 0.01576 0.001775 0.00299 0.76 4.38 0.09 7.35 3.54 

 45.5 0.2044 0.05364 0.02455 0.005504 0.00893 5.31 2.85 0.11 6.96 6.97 

 28.0 0.2036 0.0454 0.01360 0.001288 0.00039 0.45 2.20 0.08 6.89 2.64 

 72.0 0.1787 0.04533 0.02156 0.007965 0.00708 6.02 2.36 0.11 12.60 20.44 

            

benzyl 0.0 0.0133 0.27486 0.04122 0.001759 0.00121 0.23 B.D.L 0.02 0.01 0.02 

amine 3.0 0.0317 0.20385 0.06595 0.006255 0.00200 0.63 0.03 0.02 0.03 0.12 

 7.0 0.0721 0.13557 0.06845 0.014481 0.00468 1.63 0.23 0.04 0.15 0.54 

 22.0 0.0896 0.09955 0.10778 0.068673 0.01382 7.06 N.Q. N.Q. N.Q. N.Q. 

 28.0 0.1432 0.06931 0.04786 0.017751 0.01629 14.52 1.27 0.13 1.64 2.74 

 45.5 0.1523 0.05584 0.03756 0.013213 0.01981 16.26 1.52 0.14 2.73 5.02 

 72.0 0.1592 0.0413 0.02931 0.008481 0.02891 28.40 1.18 0.22 4.99 8.96 

 72.0 0.1567 0.03861 0.02855 0.007678 0.03069 28.51 1.10 0.26 4.64 8.33 

            

dibenzyl 2.0 0.0193 0.03756 0.13966 0.014337 0.00322 0.99 0.01 0.05 0.04 0.29 

amine 22.0 0.1234 0.06807 0.05038 0.026022 0.01671 9.38 0.97 0.12 1.16 2.03 

 28.0 0.148 0.06378 0.04053 0.018580 0.01806 15.38 1.08 0.15 1.84 2.68 

 28.0 0.1435 0.05963 0.03959 0.019905 0.01925 16.69 1.14 0.15 1.95 2.84 

 45.5 0.1446 0.05308 0.02247 0.002570 0.01106 6.96 1.08 0.18 3.67 3.21 

 45.5 0.1180 0.04101 0.01491 0.004493 0.01148 8.34 1.05 0.19 3.55 3.10 

 72.0 0.1578 0.03712 0.02365 0.004753 0.02997 25.99 1.48 0.27 6.19 8.89 

            

tribenzyl 2.0 0.0140 0.00262 0.01366 0.180857 0.00339 3.03 0.11 4.28 0.54 0.01 

amine 22.0 0.0737 0.02243 0.02105 0.085544 0.01523 12.45 0.77 1.09 1.16 0.53 

 28.0 0.0881 0.03315 0.02402 0.052041 0.01383 9.91 1.02 0.23 1.12 0.65 

 45.5 0.1288 0.03374 0.03513 0.055684 0.02990 22.85 3.23 0.35 5.12 1.58 

 72.0 0.1437 0.03353 0.02224 0.008661 0.02680 22.97 3.60 0.28 3.76 1.65 

B.D.L.: This product was below the detection limits of the instrument 

N.Q.: This product was not quantified for this experiment 

One standard deviation from the mean measurement (3 injections per sample) was typically < 2% 

*estimations using dibenzylamine and tribenzylamine calibration curves for 2 and 3 ring product regions, respectively 
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 The same compounds in Table B2 are labeled on a gas chromatogram (Fig. B1, 

top) from an experiment with 0.25 molal benzylamine and 0.25 molal benzylamine 

hydrochloride heated at 250°C (Psat) for 72 hours. Each peak on the chromatogram 

(signal intensity, μV, vs. retention time, min) represents an organic compound. In 

addition to the compounds mentioned above, three isomers of benzyl-benzyl alcohol were 

identified as was the compound bibenzyl. The two, three, and four phenyl ring regions 

are also shown on a zoomed in version of this chromatogram (Fig. B1, bottom). The sum 

of peak areas from unidentified two ring regions and three ring regions (including 

identified benzyl-benzyl alcohol isomers) were used separately to calculate their 

cumulative concentrations, as shown in Fig. 16 of Chapter 3 and Table B2. 
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Fig. B1. Gas chromatogram from a hydrothermal experiment with 0.25 molal 

benzylamine and 0.25 molal benzylamine hydrochloride heated at 250°C (Psat) for 72 

hours. The top image shows the chromatogram at a scale where all major identified 

products and their retention times can be seen. The bottom image shows a zoomed in 

scale of the same chromatogram to display the numerous unidentified peaks in the two, 

three, and four phenyl ring regions; these are assumed to be products of EAS reactions. 

There are numerous peaks that are not visually resolved in the bottom image. Note that 

peak heights do not necessarily correspond to relative abundance, because different 

compounds have different peak shapes. These images were obtained using CompassCDS 

software. 
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APPENDIX C  

ESTIMATING THERMODYNAMIC PROPERTIES OF PRIMARY, SECONDARY, 

AND TERTIARY AMINES AND AMINIUMS 
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Thermodynamic calculations were performed to independently test whether the 

approach to steady state reaction ratios observed in hydrothermal experiments was indeed 

an approach to metastable equilibrium. To do this, equilibrium constants for amination 

reactions as well as ionization constants for amines were needed at experimental 

conditions (250°C, Psat). Since high temperature and pressure thermodynamic data sets do 

not exist for aqueous benzyl alcohol, benzylamine, dibenzylamine, and tribenzylamine, 

and since data for the amines at reference conditions (25°C, 1 bar) are scarce, a 

combination of thermodynamic property estimation strategies and equations of state were 

used to calculate equilibrium constants under experimental conditions. 

 The revised Helgeson-Kirkham-Flowers equations of state (HKF) were ultimately 

used to calculate thermodynamic properties of individual organic compounds and hence 

equilibrium constants for reactions at experimental conditions via the Microsoft Excel-

based Deep Earth Water (DEW) model (Kelley, 1960; Wagman et al., 1982; Tanger and 

Helgeson, 1988; Shock et al., 1989; 1990; Sverjensky et al., 2014). In order to use the 

HKF equations of state for the desired reactions the minimum requirements for the DEW 

model are the standard state partial molar properties of individual compounds at reference 

conditions, including: Gibbs energy of formation (ΔƒG̅°), enthalpy of formation (ΔƒH̅°), 

third law entropy (S̅°), constant pressure heat capacity (C̅°P), and volume (V̅°). These 

data exist for benzyl alcohol (see below), and most of these types of data exist in the 

literature for benzylamine and benzylaminium. However, similar data is lacking for 

dibenzylamine, tribenzylamine, and their protonated forms, so group additivity 

relationships were explored for a variety of other primary, secondary, and tertiary amines 

and applied to estimate the thermodynamic properties of benzylamines. Thermodynamic 
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properties for a variety of individual amines as well as reaction properties that were used 

to develop estimation strategies can be seen in Table C1. This table also presents the 

properties of benzylamines that exist or can be calculated from current data (labeled 

calc.), and those that were estimated from correlation strategies shown in the figures 

below (Fig. number indicated in table). Other non-amine compounds that were used in 

the development of correlation strategies are also shown in this table. 

The correlation strategies for estimating thermodynamic properties of primary, 

secondary, and tertiary amines at reference conditions can be seen in Fig. C1. These plots 

show that the properties of each amine change in a linear fashion (solid lines) with 

respect to increasing the degree of the amine. Essentially, consecutively replacing each 

hydrogen of ammonia with a given functional group changes each thermodynamic 

property by a consistent amount. We assume that this relationship holds for 

benzylamines, and linear functions (dashed lines) were used to calculate the properties of 

dibenzylamine and tribenzylamine from those of ammonia and benzylamine. A 

correlation strategy following the same principles was applied to estimate the properties 

of benzylaminiums (Fig. C2). 

 Also seen in Fig. C1 and C2 are labels which indicate that S̅° and C̅°P were 

estimated (hollow symbols) for benzylamine and benzylaminium, respectively. These 

estimations required separate correlation strategies, which are shown in Fig. C3 and C4. 

These figures compare the respective thermodynamic properties of primary amines (or 

aminiums) to those of other organic compounds that serve as representatives of single 

functional groups attached to nitrogen. The properties of amines and their corresponding 

organic compounds that are plotted against one another follow Eq. (C1) and (C2): 
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Table C1 

Thermodynamic partial molar standard state properties of aqueous organic compounds used to estimate aqueous properties of 

primary, secondary, and tertiary amines and aminiums  

  properties of individual compoundsd properties of ionization reactionse 

 ΔƒH̅° S̅°  C̅°P V̅° ΔionH̅° ΔionS̅° ΔionC̅°P ΔionV̅° 

aqueous speciesa b J mol-1 J mol-1 K-1 J mol-1 K-1 cm3 mol-1 J mol-1 J mol-1 K-1 J mol-1 K-1 cm3 mol-1 

methylamine  -68280f 127.6f 154.8f 41.9h  -55150i 18.8i   -5.6i 

methylaminium calc. calc. 122.2j calc.     
dimethylamine  -69630k 163.5l 260.4m 58.7m  -49620i 37.2i   
dimethylaminium calc. calc. 187.0n 55.1n     
trimethylamine  -73910k 165.3o 360j 78.8p  -36860i 64.0i   
trimethylaminium calc. calc. 216j 72.8p     
ethylamine  -99700f 140.6f 237.7f 58.6h  -57360i 12.13i  -31.0q  -5.4i 

ethylaminium calc. calc. calc. calc.     
diethylamine  -137600r 190.9s 486p* 91.68p  -53260i 32.22i  -63.2q  -2.8i 

diethylaminium calc. calc. calc. calc.     
triethylamine  -162500r 214.2s 609j 120.9p  -43180i 60.25i   -0.10i 
triethylaminium calc. calc. 457.2j calc.     
propylamine  -128400f 170.7f 326.4f 74.2h  -57910i 7.95i  -31.8q  -4.7i 

propylaminium calc. calc. calc. calc.     
dipropylamine  -188800r 242.0t 652j 123.06p  -55100i 25.94i   -2.2i 

dipropylaminium calc. calc. 577u calc.     
tripropylamine  -239800v        
tripropylaminium         
butylamine  -151100f 197.5f 422.6f 89.8h  -584900i 7.53i  -9.2q  -4.3i 
butylaminium calc. calc. calc. calc.     
dibutylamine  -247100w 303.3t  155.4p  -571500i 23.85i   -2.5i 

dibutylaminium calc. calc.  calc.     
ethanolamine   193x 59.78x    -26.4q  -6.2i 

ethanolaminium   calc. calc.     
diethanolamine   310.5y 83.08y     
diethanolaminium   291y 88y     
ammonia  -81340z 108.0p 77.0aa 24.3aa     
ammonium  -133300bb 111.3bb 66.9bb 18.1bb     
benzylamine 24370cc Fig. C3 375dd 104.7dd  -55600ee  -6.3ee   -5.79ff 

benzylaminium calc. calc. Fig. C4 calc.     
dibenzylamine Fig. C1 Fig. C1 Fig. C1 Fig. C1  -47400gg 4gg   
dibenzylaminium calc. calc. Fig. C2 Fig. C2     
tribenzylamine Fig. C1 Fig. C1 Fig. C1 Fig. C1  -50500gg  -76gg   
tribenzylaminium calc. calc. Fig. C2 Fig. C2     
benzyl alcohol  -88700hh 214.6ii 402.1jj 101.36kk     
pentylamine  223.8ll       
hexylamine  251.9ll       
acetamide  165.3mm       
methane  87.8nn       
ethane  112.2nn       
propane  139.6nn       
butane  167.4nn       
pentane  198.7nn       
hexane  221.3nn       
acetaldehyde  138.1oo       
toluene  183.7f 430.1pp      
glyince   39.3qq      
alaninec   141.4qq      
ethylene diaminium  185rr      
hexylaminium   574.2j      
acetate   25.9ll      
propionate   129.3ll      
ethanol   260.2ss      

a. Functional group always bonded to the farthest carbon from the nitrogen except where otherwise noted. b. All alkyl groups are 

straight chain “n-alkyl” groups. c. Note in the case of alanine, the carboxylate functional group is not bonded to the farthest carbon 
from the nitrogen. d. The designation "calc." means the value was determined from the properties in the line above, while reference to 

a Fig. indicates the property was estimated from the strategy used the given figure. e. Ionization for the reaction:  H+  NR3  =  HNR3
+. 

f. Calculated from standard partial molal reaction properties given by Abraham (1984) using standard partial molal properties of gases 
taken from Stull et al. (1969). g. Cabani et al., 1981. h. Høiland, 1986. i. Cabani et al., 1977. j. Bergström and Olofsson, 1977 

combined with SUPCRT92 OH-. k. Calculated from standard partial molal reaction properties given by Florián and Warshel (1999) 

using standard partial molal properties of gases taken from Cox and Pilcher (1970). l. Calculated from standard partial molal reaction 
properties given by Florián and Warshel (1999) using standard partial molal properties of gases taken from Stull et al. (1969). m. 
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Shvedov and Tremaine, 1997. n. Calculated from standard partial molal properties of aminium chloride solutions taken from Shvedov 

and Tremaine (1997) and corrected with chloride values from Collins et al. (2000). o. Calculated from standard partial molal reaction 

properties given by Florián and Warshel (1999) using standard partial molal properties of gases taken from Aston et al. (1944). p. 

Cabani et al., 1974. q. Jones and Arnett, 1974. r. Calculated from standard partial molal reaction properties given by Cabani et al. 
(1981) using standard partial molal properties of gases taken from Wadso (1969). s. Calculated from standard partial molal reaction 

properties given by Cabani et al. (1981) using standard partial molal properties of gases taken from Stull et al. (1969). t. Calculated 

from standard partial molal reaction properties given by Cabani et al. (1981) using estimated standard partial molal properties of gases 
taken from Domalski and Hearing, 1993. u. Calculated from standard partial molal properties of aminium chloride solutions taken 

from Bergström and Olofsson, (1977) and corrected with chloride values from Collin et al. (2000). v. Calculated from standard partial 

molal reaction properties given by Jones and Arnett (1974) using standard partial molal properties of gases taken from Lebedeva 
(1966). w. Calculated from standard partial molal reaction properties given by Cabani et al. (1981) using standard partial molal 

properties of gases taken from Suradi et al. (1981). x. Pagé et al., 1993. y. Collins et al., 2000. z. Vanderzee and King, 1972. aa. Allred 

and Wooley, 1981. bb. CODATA, 1978. cc. Calculated from standard partial molal reaction properties given by Nichols and Wadso 
(1975) using standard partial molal properties of gases taken from Carson et al. (1977). dd. Derived from standard state partial molal 

enthalpy of formation by Nichols and Wadso, 1975. ee. Calculated from temperature-dependent pKa values from Bunting and 

Stefanidis, 1990. ff. Shahidi, 1987. gg. Canle L. et al., 2004. hh. Verevkin and Vasiltsova, 2004. ii. Calculated with solubility data 
from Valvani et al. (1981) and partial molar reaction properties from Nichols and Wadso (1975) using standard properties of pure 

liquids from Parks et al. (1936) and Verevkin and Vasiltsova (2004). jj. Slavik et al., 2007. kk. Střı́teská et al., 2004. ll. Estimated by 

Shock and Helgeson, 1990. mm. Estimated by Shock, 1993. nn. Calculated from standard partial molal reaction properties given by 

Olofsson et al. (1984) using standard partial molal properties of gases taken from the Thermo. Res. Cent. Hydrocar. Proj. (1982). oo. 

Calculated in Schulte and Shock, 1993. pp. Gill et al., 1976. qq. Jolicoeur et al., 1986. rr. Nichols et al., 1976. ss. Jolicoeur and 

Lacroix, 1976. 
*Heat capacity value not referenced to infinite dilution, but expected to be within 5 J mol-1 K-1 of infinite dilution value based on 

comparisons in Belousov and Panov, 1994. 
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Fig. C1. Standard state thermodynamic properties (at 25°C, 1 bar) for a variety of amines 

vs. their degree, including methylamines (circles), ethylamines (squares), propylamines 

(diamonds), butylamines (triangles), ethanolamines (inverted triangles), and benzylamine 

(indicated). The experimental data show linear relationships, suggesting that increasing 

the degree of a particular amine (e.g., (0°) ammonia to (1°) methylamine to (2°) 

dimethylamine to (3°) trimethylamine) incrementally changes each property by a 

consistent value. Assuming this remains true for benzylamine, the dotted line can be used 

to calculate the properties of dibenzylamine and tribenzylamine from the experimental 

properties of benzylamine and ammonia. Data used in this figure can be found in Table 

C1, along with sources of the data. Note that the partial molar standard state third law 

entropy (S̅°) of benzylamine (hollow symbol) was estimated using a correlation method 

(see text and Fig. C3). 
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Fig. C2. Standard state thermodynamic properties (at 25°C, 1 bar) for a variety of 

aminiums vs. their degree, including methylaminiums (circles), ethylaminiums (squares), 

propylaminiums (diamonds), butylaminiums (triangles), ethanolaminiums (inverted 

triangles), and benzylaminium (indicated). The experimental data show linear 

relationships as with amines (Fig. C1). The dotted line can be used to calculate the 

properties of dibenzylaminium and tribenzylaminium from the experimental properties of 

benzylaminium and ammonium. Data used in this figure can be found in Table C1, along 

with sources of the data. Note that the partial molar standard state heat capacity at 

constant pressure (C̅°P) of benzylamine (hollow symbol) was estimated using a 

correlation method (see text and Fig. C4). 
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S̅°(amine) vs. S̅°(organic)   ;   (amine)  +  H2  =  (organic)  +  NH3  (C1) 

 

C̅°P(aminium) vs. C̅°P(organic)   ;   (aminium)  +  H2  =  (organic)  +  NH4
+  (C2) 

 

 Note that the reaction equations in Eq. (C1) and (C2) are only used to describe the 

properties being plotted, but the generic reactions themselves are of no additional use for 

this study. Because Fig. C3 and C4 display strong linear relationships, the properties of 

toluene (indicated with arrows) were used to estimate the missing properties (S̅° and C̅°P) 

for benzylamine and benzylaminium, respectively. As mentioned above, these estimated 

values were then used to further estimate the same properties for dibenzylamine, 

tribenzylamine, and their protonated forms, respectively (Fig. C1 and C2). 

 The resulting standard state partial molar thermodynamic properties for benzyl 

alcohol, benzylamine, dibenzylamine, tribenzylamine, and the protonated aminiums can 

be seen in Table C2, which contains values from previous literature as well as estimated 

values described above. These values were inputted into the DEW model (Sverjensky et 

al., 2014) to calculate the revised HKF equations of state parameters (a1, a2, a3, a4, c1 ,c2, 

ωe) for each compound (Kelley, 1960; Wagman et al., 1982; Tanger and Helgeson, 1988; 

Shock et al., 1989; 1990; Sverjensky et al., 2014), also shown in the table. The DEW 

model was then used to calculate amination reaction equilibrium constants going from 

benzyl alcohol to tribenzylamine (Chapter 3, Fig. 14) and ionization constants for each 

amine. Notably, the resulting pKa of tribenzylaminium was calculated to be 0.27, 

confirming assumptions that were used in Section 3.2.3 to estimate the maximum 

deviation in pH for experiments which used tribenzylamine as the intial reactant. These 
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constants were then used to compare experimental reaction ratios to independently 

calculated equilibrium constants, yielding good agreement (Chapter 3, Fig. 20). 
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Fig. C3. Standard state partial molar third law entropy (S̅°) at 25°C for amines vs. their 

associated organic compounds, according to Eq. C1 (i.e., (amine)  +  H2  =  (organic)  +  

NH3). The linear trend observed was used to calculate S̅° for benzylamine from that of 

toluene. Note that acetamide (not a traditional amine) seems to follow this trend as well. 

References for data used in this figure can be found in Table C1. 
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Fig. C4. Standard state partial molar heat capacity at constant pressure (C̅°P) at 25°C for 

aminiums vs. their associated organic compounds, according to Eq. C2 (i.e., (aminium)  +  

H2  =  (organic)  +  NH4
+). The linear trend observed was used to calculate C̅°P for 

benzylaminium from that of toluene. References for data used in this figure can be found 

in Table C1. 
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APPENDIX D 

SUPPORTING DATA FOR CHAPTER 4 
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This appendix contains the entirety of geochemical measurements of surface 

fluids issuing from the Samail Ophiolite that were used in this study, as well as 

supporting pictures identifying sampling locations from a single mixing zone (Fig. D1 – 

D3) used in Fig. 22 and 25. It contains information regarding the classification of near-

endmember (N-E) Type I and N-E Type II fluids that were ultimately the focus of a series 

of thermodynamic calculations involving aqueous carbon chemistry.  

As mentioned in Section 3.3.4, Leong et al. (in prep) determined that silica 

concentrations are the best single geochemical variable for quantifying mixing between 

Type I and Type II fluids, and thus designating which fluid samples are most 

representative of endmembers of those fluid types. Accordingly, the same authors used 

aqueous silica concentrations to perform mixing calculations, and from these calculations 

five Type II fluid samples that showed less than 0.5% mixing with Type I fluids were 

designated to represent N-E Type II fluids in the current study. Similarly, four Type I 

fluid samples that showed less than 40% mixing with Type II fluids were designated as 

N-E Type I fluids. These designations can be seen in Table D1 – D4. 

Notably, certain samples were omitted from qualifying as N-E Type I or Type II 

fluid for thermodynamic equilibrium calculations involving organic compound formation 

reactions. As indicated in Table D1 – D4, these samples include those with visible mixing 

of Type I and Type II fluids at the surface, since the chemistry of these fluids was 

expected to be vastly out of equilibrium and thereforee less informative for determining 

formation conditions for organic compounds. Other samples were omitted because they 

lack H2(aq) measurements, which are essentially for performing calculations involving 

carbon redox reactions. 
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Fig. D1. Picture of Type II fluid region of single mixing zone. Sample number and Na+ 

concentration are shown, which correspond to values in Table D3. 
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Fig. D2. Picture of Type II dominated fluid region of single mixing zone. Sample number 

and Na+ concentrations are shown, which correspond to values in Table D3. 
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Fig. D3. Picture of Type I dominated fluid region of single mixing zone. Sample number 

and Na+ concentrations are shown, which correspond to values in Table D3. 
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Table D1 

Sample coordinates, pH, conductivity, and temperature 

Sample ID Coordinates (UTM)   cond. temp. 

YYMMDD E N pH  µS cm-1 °C 

140116B I 486065 2588474 7.909 760 26.5 

140116C * 486045 2588468 8.714 777 27.3 

140111G I 646074 2533668 8.936 586 22.6 

140116D * 486036 2588465 9.104 777 27.1 

140110B I 663409 2542560 8.425 568 23.5 

140114S I 608552 2526491 7.650 787 21.0 

140111H * 646074 2533678 10.240 597 20.2 

140112L * 663441 2542640 9.774 659 21.3 

140111I * 646074 2533674 10.870 683 18.8 

140110D * 663442 2542636 10.394 778 21.8 

140117J * 486048 2588470 11.309 1387 31.6 

140111F 646074 2533679 11.624 1470 23.8 

140114U 608551 2526487 11.355 1479 21.7 

140112M 663442 2542628 11.376 2058 28.2 

140110C 663446 2542620 11.392 2011 27.0 

140112K 663447 2542634 11.379 1870 26.9 

140113O 608433 2525961 11.430 2329 28.4 

140114V 608559 2526485 11.407 1803 24.4 

140117F NA a NA a 11.480 1868 26.2 

140117K c 485981 2588423 11.491 1980 27.4 

140115X 487585 2575981 11.398 2949 29.5 

140117I 486046 2588489 11.313 2000 32.3 

140115Y b II 487584 2575975 11.579 2778 24.5 

140113P II 608426 2525966 11.490 2224 25.9 

140117L d † 485981 2588426 11.561 2087 27.3 

140114T II 608564 2526487 11.421 2061 27.2 

140117H II 485980 2588429 11.485 2067 29.6 

140115Z II 487338 2576127 11.330 4050 32.2 
a GPS reading not taken, but site is approximately one meter away from 140117G 
b Outflow channel from 140115X 
c Outflow channel from 140117H 
d Outflow channel from 140117H, downstream of 140117K 
I Designated Type I near-endmember, used in calculations 
II Designated Type II near-endmember, used in calculations 

* Not designated as near-endmember due to visible mixing at surface 
† Not used in calculations due to lack of dissolved gas measurements 
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Table D2 

Dominant analyses relevant to inorganic carbon chemistry 

Sample ID H2(aq) SD a DIC SD b Mg2+ b Ca2+ b O2(aq)  

YYMMDD μmolal μmolal mmolal mmolal mmolal mmolal mg L-1 

140116B I 0.062 S 5.13 0.16 2.805 0.562 4.0 

140116C * 9.351 S 4.75 0.25 2.676 0.634 7.3 

140111G I 0.240 S 4.11 0.16 2.142 0.359 7.1 

140116D * 12.486 S 3.98 0.11 2.432 0.715 6.9 

140110B I 0.016 S 3.63 0.18 1.840 0.485 7.8 

140114S I 0.015 S 4.39 0.17 2.011 0.603 5.5 

140111H 1.058 0.037 1.80 0.05 1.171 0.214 8.9 

140112L 0.025 S 1.88 0.09 1.149 0.313 8.1 

140111I 1.580 0.688 0.85 0.02 0.807 0.368 7.4 

140110D 0.065 S 0.81 0.04 0.782 0.475 6.5 

140117J 217.754 S 0.07 NA c 0.019 0.828 1.0 

140111F 247.118 15.247 0.04 NA c 0.004 1.688 0.3 

140114U 0.017 S 0.17 NA c 0.016 1.175 7.0 

140112M 28.170 3.483 0.05 NA c 0.001 1.979 0.5 

140110C 6.124 0.352 0.05 NA c 0.001 1.958 0.6 

140112K 0.476 0.012 0.04 NA c 0.002 1.890 0.3 

140113O 31.478 8.769 0.06 NA c 0.001 2.085 1.9 

140114V 0.551 0.670 0.23 NA c 0.006 1.715 6.1 

140117F 264.613 S 0.03 NA c 0.002 1.848 0.8 

140117K NA - 0.03 NA c 0.001 2.082 1.2 

140115X 214.031 19.076 0.03 NA c 0.000 1.887 1.4 

140117I 227.347 S 0.05 NA c 0.008 1.859 0.4 

140115Y 20.789 S 0.11 NA c 0.001 1.792 4.5 

140113P 56.286 8.531 0.05 NA c 0.001 2.031 1.6 

140117L † NA - 0.02 NA c 0.001 2.145 0.7 

140114T 27.293 0.780 0.04 NA c 0.002 1.915 0.5 

140117H 225.403 S 0.03 NA c 0.001 2.079 0.7 

140115Z 211.761 20.345 0.03 NA c 0.000 2.368 1.1 
a Sampling error calculated from multiple samples unless otherwise stated 
b Analytical error from two injections is typically < 1% 
c Only a single injection was performed 

NA: No sample taken; definition specific to only this table. 

S: Singlet sample; analytical error calculated from three injections typically < 5% 

* Not designed as near-endmember due to visible mixing subsurface 
† Not used in calculations due to lack of dissolved gas measurements 
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Table D3 

Major dissolved ions, sulfide, and silica 

Sample ID Na+ a NH4
+ a Cl- a SO4

-2 a NO3
- a Σ sulfide  silica(aq) 

YYMMDD mmolal μmolal mmolal mmolal μmolal μg L-1 μmolal 

140116B I 1.058 0.233 1.277 0.696 433.763 8 302.59 

140116C * 1.371 1.158 1.536 0.680 406.935 20 278.69 

140111G I 1.529 0.566 1.525 0.326 124.958 3 276.35 

140116D * 1.863 2.543 1.918 0.612 361.387 21 260.49 

140110B I 1.308 BDL 1.579 0.346 159.410 11 183.39 

140114S I 3.202 0.305 3.186 0.443 295.663 1 200.48 

140111H 3.592 3.798 3.079 0.182 31.784 39 145.00 

140112L 3.724 3.379 3.751 0.243 93.220 7 111.13 

140111I 4.362 5.966 3.686 0.154 21.417 65 100.25 

140110D 4.921 6.610 4.794 0.180 68.486 42 91.38 

140117J 5.828 16.852 4.713 0.111 0.193 74 48.94 

140111F 5.859 15.486 4.659 0.011 3.806 217 10.52 

140114U 8.093 11.874 4.718 0.176 66.723 109 7.43 

140112M 7.895 21.097 7.361 0.011 0.148 515 5.60 

140110C 7.914 19.831 7.447 0.011 1.187 438 4.26 

140112K 7.592 22.660 7.160 0.018 0.282 535 3.88 

140113O 9.400 33.634 7.919 0.004 0.467 187 3.68 

140114V 8.431 20.283 6.980 0.018 3.261 266 2.75 

140117F 6.408 18.323 5.347 0.004 1.113 151 2.65 

140117K 7.164 21.266 5.760 0.002 0.237 101 2.26 

140115X 13.854 58.734 11.407 0.005 0.889 223 2.22 

140117I 6.276 19.364 5.322 0.006 0.251 104 1.96 

140115Y 14.279 50.536 11.752 0.010 4.102 115 2.16 

140113P 9.528 29.234 7.896 0.008 8.860 63 1.94 

140117L † 7.328 22.723 5.814 0.002 0.247 115 1.87 

140114T 7.974 30.625 6.893 0.013 1.572 568 1.84 

140117H 7.138 23.542 5.766 0.002 0.282 175 1.66 

140115Z 17.131 87.604 12.643 0.003 0.317 200 1.38 
a Analytical error from two injections is typically < 1% 

BDL: below the detection limits of the instrument 

* Not designated as near-endmember due to visible mixing at the surface 
† Not used in calculations due to lack of dissolved gas measurements  
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Table D4 

Dissolved organic species 

Sample ID formate SD a acetate SD a CH4(aq) SD b δ13CH4(aq) SD c DOC 

YYMMDD μmolal μmolal μmolal μmolal μmolal μmolal ‰ ‰ μmolal 

140116B  BDL - 1.471 0.031 0.003 S -35.4 5.3 21.74 

140116C * BDL - 1.581 - 0.899 S -12.7 3.9 37.22 

140111G  BDL - 1.206 0.031 1.624 S 2.2 2.2 30.92 

140116D * BDL - 1.361 0.062 0.122 S NA d - 36.84 

140110B  0.435 0.133 BDL - 0.004 S NA d - 23.637 

140114S  BDL - 0.854 0.156 0.018 S -30.1 5.3 34.061 

140111H 1.974 0.027 0.656 0.062 7.714 0.311 1.8 2.9 33.193 

140112L 0.735 0.133 BDL - 0.464 S NA d - 23.738 

140111I 1.280 0.106 0.920 0.062 7.754 S 6.6 2.5 48.476 

140110D 0.754 0.106 BDL - 8.912 S NA d - 21.647 

140117J 0.528 0.053 BDL - 13.277 S -11.2 2.1 20.98 

140111F 1.918 0.053 1.757 0.125 141.334 18.320 NA d - 32.347 

140114U 3.270 0.159 2.484 0.405 0.090 S -12.1 5.3 24.783 

140112M 0.735 0.080 BDL - 226.529 14.013 6.9 1.8 12.573 

140110C 4.190 0.080 1.294 0.156 200.971 2.839 NA d - 19.299 

140112K 0.942 0.159 0.788 0.249 256.821 16.724 NA d - 14.604 

140113O 4.791 0.027 3.893 0.218 4.119 0.694 -5.0 1.9 11.08 

140114V 0.979 - BDL - 1.489 0.045 -5.0 2.1 22.678 

140117F 1.223 0.027 1.449 - 13.296 S -11.9 2.2 30.94 

140117K 0.547 0.080 1.294 0.343 NA - NA d - 13.16 

140115X 4.303 0.027 4.113 0.218 6.847 1.054 -4.4 1.9 13.85 

140117I 0.491 0.319 BDL - 13.591 S NA d - 16.18 

140115Y 1.711 0.027 2.858 - 3.248 S -7.2 2.7 21.34 

140113P 1.599 0.080 2.197 0.374 13.320 0.964 -9.4 2.4 19.029 

140117L † 0.491 0.053 0.964 0.062 NA - NA d - 10.45 

140114T 5.505 0.080 3.034 0.187 38.952 2.681 -7.9 2.4 14.913 

140117H 1.073 0.398 BDL - 12.707 S -11.3 1.9 11.44 

140115Z 3.045 0.106 3.210 0.311 18.187 1.103 NA d - 12.04 
a Analytical uncertainty, one standard deviation, calculated from two injections 
b Sampling uncertainty, one standard deviation, calculated from multiple samples unless otherwise stated 
c Analytical uncertainty, one standard deviation, calculated from three injections 
d No analysis; sample bags leaked prior to isotopic analysis 

BDL: Below the detection limit of the instrument 

S: Single sample; analytical uncertainty, one standard deviation, calculated from three injections typically < 5% 

* Not designated as near-endmember due to visible mixing at surface 
† Not used in calculations due to lack of dissolved gas measurements 

 

 

 

 

 

 

 

 


