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ABSTRACT 

 

Understanding customer preference is crucial for new product planning and marketing 

decisions. This thesis explores how historical data can be leveraged to understand and 

predict customer preference. This thesis presents a decision support framework that 

provides a holistic view on customer preference by following a two-phase procedure. 

Phase-1 uses cluster analysis to create product profiles based on which customer profiles 

are derived. Phase-2 then delves deep into each of the customer profiles and investigates 

causality behind their preference using Bayesian networks. This thesis illustrates the 

working of the framework using the case of Intel Corporation, world’s largest 

semiconductor manufacturing company.  
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Chapter 1 

INTRODUCTION 

 

1.1 New Product Planning: 

New product research and development is one of the key areas of business spending that 

has an enormous impact on a firm’s overall business performance [1, 2]. New product 

introductions allow firms to remain attractive in the market and are crucial for a firm to 

maintain or expand its market share. A recent benchmarking study [2]  suggests a strong 

connection between new product development and business valuation. According to this 

study, an average business generates 27.5% of its sales revenue from new products 

launched in the past three years, whereas the top 20% of businesses realize 38% of sales 

revenue from new products. 

One of the biggest challenges that accompanies new product development is product 

planning and forecasting. Well before a product is launched into the market, a firm is 

interested in knowing the important features of the product its customers care about. This 

would help them to price their product appropriately and forecast its sales accurately. 

Predicting customer preference is essential for efficient product planning and development, 

which is key to a new product to succeed in the market. Typically, firms depend on 

judgment, domain expertise or standard market research techniques such as surveys, field 

studies, focus groups, etc., to predict customer preference for their new products. However, 

these approaches can be time-consuming, expensive and sometimes misleading. Today, 

with the wealth of data that is available from actual sales of previous products, firms are 
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interested in knowing whether this data can be leveraged to extract insightful patterns in 

customer sales, which can be used to predict customer preference for their future products. 

Such an approach can be more appealing to the senior management as it is “data-driven” 

and based on demonstrated customer behavior. The broad objective of this thesis is to 

explore different data mining techniques that can be used to extract customer preference 

from historical sales data of previous products. The numerous challenges associated with 

obtaining customer preference from historical data are briefly discussed in chapter 2.  

Semiconductor technology companies face the challenge of new product planning and 

forecasting on a regular basis, as their product features improve and evolve continuously 

by Moore’s law [6] (revisited in section 1.3); thus, the semiconductor industry makes a 

good case for this study. This thesis uses Intel, a pioneer semiconductor manufacturing 

company, as an example to present and validate its methodology and findings.  

The rest of this chapter is organized as follows: section 1.2 gives a brief introduction to 

Intel and its customers, section 1.3 provides an overview of Moore’s law which sets the 

pace for new product introductions by semiconductor manufacturing companies in general, 

including Intel, section 1.4 elaborates the nuances of the business problem related to new 

product planning that Intel faces as a consequence of Moore’s law [6] and, its complex 

manufacturing process, section 1.5 introduces the solution approach to this problem 

proposed by this thesis, and finally, section 1.6 provides an outline of the remaining 

chapters in this thesis. 
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1.2 Intel: 

Intel was founded by Robert Noyce and Gordon Moore in 1968 and today is the world’s 

largest semiconductor manufacturing company with a 2016 revenue of $59.38 billion [3]. 

Intel offers a range of products for a variety of markets including desktop, mobile, server, 

network, and storage [3, 4]. Intel’s major customers are not typically consumers but other 

businesses including, but not limited to [5]: Original equipment manufacturers (OEMs), 

original design manufacturers (ODMs) who make computer systems, cellular handsets, 

handheld computing devices, telecommunications and networking communications 

equipment, and other manufacturers who make a wide range of industrial and 

communications equipment. 

1.3 Moore’s law and Manufacturing Process Advancement: 

Moore’s law is an observation and forecast by Intel co-founder Gordon Moore that the 

number of transistors per square inch on integrated circuits (IC) doubles approximately 

every two years, with repeated advances of semiconductor manufacturing processes [4, 6]. 

The increase in transistor density implies faster, cheaper, more powerful and efficient 

computing. Intel has embraced Moore’s law for decades, which has resulted in new and 

improved products being launched on a continuous basis across the different markets that 

it serves.  

More specifically, for meeting the evolving demand of its desktop, mobile and server 

markets, Intel launches a new generation of processors with improved features 

https://en.wikipedia.org/wiki/Robert_Noyce
https://en.wikipedia.org/wiki/Gordon_Moore
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approximately every one and a half years. Table 1 [7] provides details about past, present 

and future generations launched by Intel.  

Table 1   Intel processor generations: past, present and future (Source: [7]) 

Generation Release date 

Presler, 
Cedar Mill, 

Yonah 

2006-01-05 

Merom 2006-07-27 

Penryn 2007-11-11 

Nehalem 2008-11-17 

Westmere 2010-01-04 

Sandy Bridge 2011-01-09 

Ivy Bridge 2012-04-29 

Haswell 2013-06-02 

Haswell Refresh, 
Devil's Canyon 

2014-05-11, 
2014-06-02 

Broadwell 2014-09-05 

Skylake 2015-08-05 

Kaby Lake 2017-01-03 

Coffee Lake 2H/2017 

Cannonlake 2018 

Icelake 2018 

Tigerlake 2019 
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1.4 The Business Problem 

While this ongoing process and product improvement cycle has been crucial to Intel’s 

success in maintaining its position as the market leader in the desktop, mobile and server 

verticals, it has also been challenging from a planning point of view. For instance, Intel’s 

primary customers (as noted in section 1.2) include original equipment, design, and other 

manufacturers who build products for the end consumers or other businesses. Months 

before launching a new generation of processors, Intel needs to divulge information about 

the expected performance, specifications and, price range of the new generation processors 

so that its customers can plan and design their products accordingly. Another interesting 

aspect of the manufacturing process at Intel is its inherent stochasticity. Unlike many other 

products, the silicon wafers that go into a manufacturing facility at Intel result in a range 

of processors with different performance and feature specifications, and Intel must market 

this distribution efficiently to its customers. Thus, long before a new generation of 

processors is launched, for efficient planning and marketing decisions, the senior 

management at Intel needs to predict customer preference for each new type of processors 

that are going to be offered. However, as processor features improve and change over time, 

this becomes an increasingly difficult prediction exercise.  

Fig. 1b displays a sample list of processors with their key features- Cores (C) and Power 

(W) and Speed (GHz) across six different generations for the server market’s DP (dual 

processor) segment. As one can observe in the figure, the processor features improve as we 

move forward from one generation to another: 
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Fig. 1b: Processor feature improvement from one generation to another 

 

1.5 The Solution Approach: 

This thesis presents a decision support framework that integrates techniques and concepts 

from cluster analysis and Bayesian networks to extract useful patterns in customer sales 

from the historical data that is available from previous generations. The framework 

provides a holistic view on customer preference by following a two-phase procedure. In 

phase 1, cluster analysis is used to form customer profiles based on historical processor 

sales. In phase 2, Bayesian networks are used to perform causal inference on product 

features that drive sales for the individual customer profiles that are identified in phase 1. 

The subsequent chapters show how this framework can efficiently handle feature 

improvement from one generation to another. The potential uses of this framework include: 
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1. Predicting which customer is going to buy how much of what type of processors in a 

new generation (for production planning decisions). 

2. When a new generation of processors is launched, making better product 

recommendations for existing customers and new customers who are similar to the 

existing customers (for sales and marketing decisions). 

3. Detailed understanding of customer preference for making informed product 

development decisions for the future generation of processors. 

The Intel server market’s DP segment is used as an example to illustrate the framework 

and its utility. 

1.6 Organization of Thesis: 

The rest of the chapters are organized as follows: 

Chapter 2 presents a brief review of the existing work in customer preference modeling 

and provides an overview of the techniques used in the framework, namely cluster analysis, 

and Bayesian networks. Chapter 3 introduces the server market’s DP segment data and its 

features and explains the preprocessing steps that were performed before the two-phase 

procedure. Chapter 3 then provides a detailed elaboration of phase 1 (customer profiling) 

and phase 2 (feature preference elicitation) in the procedure. Chapter 4 concludes the thesis 

with a discussion on the potential uses of the framework. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Existing Techniques in Customer Preference Modeling: 

One of the most frequently used approaches in customer preference modeling is choice 

modeling. Choice models can be broadly classified into stated preference and revealed 

preference models [8–12].  

Stated preference analysis extracts customer preference under experimental conditions 

typically by conducting customer surveys [10–11]. Popular stated preference techniques 

include self-explicated methods which usually take a “bottoms-up” approach, where 

potential customers rate individual features which are then used to determine the overall 

product preferences [13–16]. Another set of techniques such as the MaxDiff [17] and 

conjoint analysis [18-19] take a “top down” approach where customers are asked to choose 

between different hypothetical products by giving their relative preference for each of the 

products under consideration, which is then used to derive preference for individual 

product features [12, 14]. The major disadvantages of stated preference models is the 

discrepancy between what customers “state” in a survey and their actual behavior in a real 

market situation [12, 20–23]. 

Revealed preference models are based on observational data that “reveals” choices already 

made by the customer [8, 10-12]. The main advantage of revealed preference analysis is 

that it reflects the actual behavior of a customer in a real market situation. It’s a convenient 

form of analysis when the required data is available relieving expensive market research 
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experiments [10, 12, 24]. The major disadvantages of revealed preference models are: its 

limited applicability to testing new products having attributes that are quite different from 

existing product attributes and the potential presence of multicollinearity as the data used 

is observational and not experimental [10, 12, 25]. Recently, with the advent of state of art 

machine learning techniques, there are numerous methods available to tackle the issue of 

multicollinearity. For example, [12] shows an effective way to identify key attributes of 

technology products from actual market data. However, most of the existing methodologies 

in the literature handle observational inference and little work has been done to draw causal 

inference on customer behavior from observational data.  

2.2 Cluster Analysis: 

Cluster analysis involves applying a broad range of techniques for grouping similar 

observations in a dataset [26–28]. Similarity (or dissimilarity) between observations are 

measured using a distance metric. There is a plethora of distance metrics available 

depending on the type of data under consideration. Some of the most common are 

Euclidean distance and Manhattan distance for numerical data, Jaccard dissimilarity and 

Hamming distance for Boolean data and, Edit distance and Damerau Levenshtein 

distance for string data [29]. Once a suitable distance metric is chosen, there are many 

algorithms that can be used for clustering the observations. The two most popular being 

the k-means algorithm and the hierarchical clustering algorithm. The main idea of using 

cluster analysis is to form meaningful clusters that make the most sense in the domain of 

interest [27]. There are no universally accepted rules (though there are some guidelines) 

http://reference.wolfram.com/language/ref/EditDistance.html
http://reference.wolfram.com/language/ref/DamerauLevenshteinDistance.html
http://reference.wolfram.com/language/ref/DamerauLevenshteinDistance.html
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for decisions regarding the choice of the algorithm, the distance metric or the number of 

clusters and the user typically needs to determine them experimentally [26, 27, 30].  

This thesis uses cluster analysis to create processor clusters based on processor features 

and customer clusters based on customer preference for each of the processor clusters that 

are created. Here customer preference is inferred from the relative sales quantity bought 

from each of the processor clusters (a form of revealed prefernce).   

Cluster analysis has been used extensively by a wide variety of businesses for marketing 

research problems to group similar products and similar customers for target marketing. 

[31] offers great insights on clustering techniques used in marketing research. Although 

cluster analysis has appeared in various applications, little has been done that caters to 

specific intricacies of the semiconductor market.  

2.3 Bayesian Networks:  

Bayesian networks are probabilistic graphical models used to represent the relationship 

between variables in the domain of interest [32, 33]. There are mainly 2 elements to a 

Bayesian network, a qualitative element and a quantitative element [34]. The qualitative 

element is the network structure, which is basically a directed a-cyclical graph (DAG), 

representing how the variables are related to each other. The quantitative element 

represents the probabilistic relationship between these variables as represented by the 

network structure, using conditional probability distributions. In other words, a Bayesian 

network is a compact representation of the joint probability distribution (JPD) of the 
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variables of interest. Fig 2a depicts a Bayesian network representing the relationship 

between variables A, B, C and, D.  

 

 

 

 

 

Fig. 2a Bayesian network example 

In the above network, A and C do not depend on any other variable. Thus values taken by 

A and C can be represented by marginal probability distributions P(A) and P(C) 

respectively. B depends on its parent nodes A and C, and thus is represented by the 

conditional probability distribution P(B| A, C) while D only depends on B and is 

represented by the P(D|B). Finally, the JPD of the network is described as:   

                               P(A, B, C, D) =  P(A)P(C) P(B|A, C) P(D|B). 

The structure of a Bayesian network can be modeled by the user entirely using his domain 

knowledge or can be learned from data. It is also the case that the user can start with an 

initial structure, and use data to learn the rest of the structure, or the user can modify a data 

learned structure [34]. The algorithms that are used to learn the structure of a Bayesian 

network can be broadly classified into two classes [34]. The first is constraint based 

algorithms, where links (arrows in Fig. 2a) between variables are added or deleted using 

A 

C 

B 

D 
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statistical or correlation based tests. The second is score based algorithms which select a 

network after comparing scores of candidate networks that typically depends on the fit of 

a network to data as well as its overall complexity. Once the structure is learned, the next 

step (also known as parameter learning) is to learn the probabilistic relationships between 

the variables from data, typically using the maximum likelihood estimation approach.   

One of the key features of Bayesian networks is the ability to be used as a tool to draw a 

causal inference from observational data [32, 34–36]. It is important to note however that 

Bayesian networks by default offer observational or statistical inference, like many other 

statistical techniques. However, under a certain set of assumptions and after careful 

validation by domain experts, Bayesian networks can be used for making causal inference 

from observational data, something which is usually considered possible only with 

controlled experiments [34]. There are two stages [34] to drawing causal inference from 

observational data: stage 1- identification, that requires determining conditions under 

which causal effects can be identified and listing confounders that need to be adjusted, 

followed by stage 2- estimation, where the identified effects are estimated after adjusting 

for the confounders that were listed in stage 1. There are two possible approaches to this 

[34, 37]: 

1) The first approach involves encoding causal understating of the domain of interest 

in the form of a DAG and using a graphical identification criteria (such as the 

adjustment criteria [38]) to identify confounders (stage 1) that need to be adjusted, 

and subsequently using data to estimate the causal effects (stage 2) after adjusting 

for the identified confounders (typically using techniques such as linear regression). 
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This approach mandates a complete causal understanding of the domain in the form 

of a DAG where the link directions represent actual causal directions, as it is a 

prerequisite for the identification stage. The disadvantage of this approach is that 

it’s sometimes not feasible when the number of variables involved is large or when 

there is no clear understanding of the entire causal structure, i.e. how all the 

variables are related to each other.   

2) The second approach starts with the identification of confounders (stage 1) using 

the disjunctive cause criterion [39] and learns a Bayesian network from data. Here 

the sole purpose of the network is to approximate the JPD of the variables of 

interest, which is required for estimating the causal effects (stage 2), using 

techniques such as likelihood matching. The second approach does not mandate a 

complete understanding of the causal structure of how all the variables are related 

to each other (thus the arrows in the network need not imply the actual causal 

directions). However, this approach still requires a basic causal understanding at 

the variable level for applying the disjunctive cause criterion to identify 

confounders. This makes the second approach much more practical for real world 

problems.    

Nevertheless, one common assumption for both these approaches is the absence of 

additional observed or unobserved confounding variables that can influence the domain of 

interest, other than the variables that are considered. If this assumption turns out to be false, 

the effect estimate obtained in stage 2 would be biased [34, 37]. 



14 

 

This thesis uses Bayesian networks (using the 2nd approach) for estimating the causal 

effects of the each of the processor features on customer preference as measured by their 

relative purchase volume. This is necessary as in phase 1 of the procedure, even though 

customer profiles are identified based on customer preference for different processor 

clusters (or processor types), it does not give additional insight on the impact of individual 

processor features. 

Bayesian networks have been used in a wide variety of domains [40] including Medicine 

[41–43], Engineering [44–46] and Computer Science [47–49], among others. However, 

previous work application of Bayesian networks in marketing research is scarce, especially 

for making causal inference. 
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Chapter 3 

METHODOLOGY 

 

3.1 Data 

The data from Intel server market’s DP segment consists of a list of processor features 

along with their sales by each customer. This data covers 4 different Intel generations 

(Table 1a) namely, Westmere (launched in Q1 2010), Sandy Bridge (launched in Q1 2011), 

Ivy Bridge (launched in Q2 2012) and, Haswell (launched in Q2 2013).  

The data includes a total of 117 processors distributed across the 4 generations as below: 

• Westmere (24) 

• Sandy Bridge (31) 

• Ivy Bridge (30) 

• Haswell (32) 

And, there is a total of 70 customers from the DP segment who have bought at least one of 

these processors. 

3.1.1 Processor Features 

The processor features that were considered can broadly be classified into 6 technical, 1 

Marketing and 3 derived features. These are the most critical features that can impact the 

sales of a processor, as per Intel’s senior management: 
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Technical Features 

• Performance: performance value of a processor, as measured by a 3rd party software 

(passmark software). The performance values of the 117 processor range from 

1,797 - 22,520 

• Cores: No of computing cores in a processor, range: 2 - 18 

• Threads: No of threads that can be processed simultaneously by Intel’s hyper-

threading technology, range: 4 - 36 

• Base Frequency: The clock rate at which a processor performs its internal 

operations, range: 1.6 GHz - 3.6 GHz 

• Turbo Frequency: Max overclock frequency enabled by Intel’s turbo boost 

technology, range: 1.6 GHz - 4 GHz 

• Power (TDP): Max amount of heat generated by a processor that the cooling 

system in a computer is designed to dissipate in a typical operation, range: 40 W-

160 W 

Marketing 

• List Price: Recommended list price available from Intel website range: $191- $4015 

Derived 

• Performance/Price 

• Base Frequency/Price 
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• Turbo Frequency/Price 

The box plots in Fig. 3a below shows the range of processor feature values across the 4 

generations (viz Westmere, Sandy Bridge, Ivy Bridge and, Haswell) 

 

                                                        Fig. 3a   Processor features 
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3.1.2 Feature Standardization 

As the processor features improve and change from one generation to another, they need 

to be standardized, for a fairer comparison across generations; for instance, it does not 

make much sense to compare a processor with a performance value of say, 10000, from 

Westmere with a processor with similar performance value from Haswell. As one can 

observe in the “Performance” box plots in Fig. 3a, the maximum performance of processors 

offered in Westmere is roughly around 10000, which is less than the median performance 

of processors in Haswell. Moreover, for the same price, processors from Haswell offer 

better performance than Westmere (note the improvement in “Performance/Price” from 

Westmere to Haswell in Fig. 3a).  Here is a specific example: Processor X5690 from 

Westmere, with performance value somewhere around 10000 (9171 to be exact) was priced 

around $1664 whereas processor E5-2623 V3 from Haswell with similar performance 

(9097 to be exact) was priced at only $ 444! The same argument holds for the rest of the 

features. 

To manage feature improvement across generations, the processor features were 

standardized within each generation so that their values vary continuously from 0 to1, using 

the below feature scaling formula (formula 3.1): 

                                                  𝑃𝑠𝑡𝑑
𝑥  =

𝑃𝑥−𝑀𝑖𝑛𝑔𝑃
𝑥

𝑀𝑎𝑥𝑔𝑃
𝑥 −𝑀𝑖𝑛𝑔𝑃

𝑥                                              (3.1) 
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Where, 

𝑃𝑠𝑡𝑑
𝑥 : standardized value of feature x of processor P 

𝑃𝑥: Actual value of feature x of processor P 

𝑀𝑖𝑛𝑔𝑃
𝑥 : Minimum value of feature x within the generation g in which processor P was 

launched 

𝑀𝑎𝑥𝑔𝑃
𝑥 : Maximum value of feature x within the generation g in which processor P was 

launched 

x: Any of the 10 features elaborated in section 3.1 

P: Any of the 117 processors that are considered  

g : Any of the four generations- Westmere, Sandy Bridge, Ivy Bridge, Haswell  

Feature standardization also takes care of the difference in number and variety of 

processors from one generation to another, as we now have a single list of processor 

features that is generation independent, whose values vary continuously from 0-1 as shown 

in Fig. 3b. (Please note that, from this point onwards, wherever this report mentions 

“processor features,” “product features” or “features” it refers to the standardized processor 

features, unless specified otherwise).  
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Fig. 3b   Processor features after standardization 
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3.2 Customer Profiling 

The first phase in the 2-phase procedure deals with creating customer profiles consisting 

of customers who have shown interest in purchasing similar processors in the past. Phase 

1 consists of 2 steps: step 1-processor clustering and step 2- customer clustering as 

elaborated in the forthcoming sections. 

3.2.1 Phase1- Step 1-  Processor Clustering 

Step 1 involves grouping similar processors using cluster analysis. The goal of this step is 

to identify similar processors types that are offered across generations. Any suitable 

clustering algorithm and distance metric combination can be used for this purpose. Here, 

the k-means algorithm [50] was used to group the 117 processors with 10 standardized 

features. As the standardized processor features are numeric in nature, Euclidean distance 

metric was chosen as the dissimilarity measure.  

3.2.1.1 Choosing the Number of Processor Clusters: 

In k-means cluster analysis (or any other cluster analysis for that matter), the decision 

regarding the choice of the number of clusters is usually influenced by two factors- the 

clustering quality and interpretability. A quality clustering consists of high intra-cluster 

similarity (observations within a cluster are similar) and/or low inter-cluster 

similarity (observations from different clusters are dissimilar) [51]. A useful metric that 

measures clustering quality is the “within cluster sum of squared errors” (also referred to 

as WCSS in short) shown in the formula below:  
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                                          𝑊𝐶𝑆𝑆 (𝐾) = ∑ ∑ 𝑧𝑛,𝑘

𝑁

𝑛=1

𝐾

𝑘=1

‖𝑥𝑛 − 𝜇𝑘‖2                              (3.2) 

Where, 

𝑊𝐶𝑆𝑆 (𝐾) represents within cluster sum of squares for K clusters 

 K: Number of clusters 

 N: Number of observations  

 𝑥𝑛: Feature vector representing 𝑛𝑡ℎ observation of N observations 

 𝜇𝑘: Feature vector representing cluster center of the  𝑘𝑡ℎ cluster of K clusters 

 𝑧𝑛,𝑘: 1 if observation n belongs to the 𝑘𝑡ℎ cluster, 0 otherwise 

 ‖ ‖ :  represents the Euclidean distance (the dissimilarity measure used here for clustering) 

In our example, N =117, (one observation corresponding to each processor) and the length 

of feature vector 𝑥𝑛 is 10 (number of processor features). The less the value of 𝑊𝐶𝑆𝑆, the 

more similar the observations are within each cluster and better the clustering quality. The 

minimum value of 𝑊𝐶𝑆𝑆 (𝐾) is zero, which usually happens when the number of clusters 

K equals the number of observations N (i.e, each observation represents a unique cluster). 

The K means algorithm was run for a variety of values of K, ranging from 1-20, and the 

corresponding  𝑊𝐶𝑆𝑆 (𝐾) was computed for each K. Fig 3c shows a plot of  𝑊𝐶𝑆𝑆 (𝐾) 

v/s K. As it is apparent in Fig. 3c, 𝑊𝐶𝑆𝑆 (𝐾) usually decreases as the number of clusters, 

K increases. However, WCSS should not be used as a sole criterion to choose the number 

of clusters, as a greater number of clusters may not be very interpretable. Having said that, 
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there are no universally agreed upon techniques to determine the “optimal number of 

clusters”, as it often depends upon the problem and the domain under consideration. A 

commonly used heuristic for choosing the number of clusters is the elbow method [52, 53], 

wherein K corresponding to the “elbow point” (or the point which produces a noticeable 

angle in the WCSS v/s K graph- Fig. 3c) is considered to be a good choice for the number 

of clusters. The rationale behind this method is that there is not much marginal gain after 

this point (as measured by the reduction in WWCS) with additional number of clusters. 

Using the elbow method, 4 clusters seems appropriate. However, 5 clusters were finally 

chosen owing to its interpretability, as it made most sense to Intel’s senior management. 

Section 3.2.1.2 discusses the 5 clusters in more detail. 

 

Fig. 3c WCSS(K) v/s   K- Step 1 

 

3.2.1.2 Processor Clusters 

The 5 cluster centers that result from the k means-algorithm is shown in the Table 2. 
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Table 2   Processor Cluster Means 
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The 1st cluster consists of 26 processors with superior features including a high number of 

cores, threads, a high performance and list price. This cluster is named as the “Top-Bin”. 

The 2nd cluster consists of 40 processors with advanced features, that are next in the line to 

the top bin processors and is named “Tier 2 Bin”. The 3rd cluster consists of 16 processors 

with competitive features that provide good value for money and is named the “Value Bin.” 

The 4th cluster named the “Lowend Bin” consists of 15 processors with a lower number of 

cores, threads, low performance and list price. The 5th cluster consists of 20 processors with 

a lower number of cores and threads. However, these processors provide good speed (base 

frequency and turbo frequency) and performance but consume high power (TDP) and are 

named the “Low Core-High Power Bin.” Fig. 3d below shows bar charts that visualizes 

and compares the 5-processor cluster means 

 

 

Fig. 3d   Processor cluster means- comparison 
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Fig. 3e   Processor clusters 2-dimensional visualization using principal components 

analysis 

 

Fig. 3e visualizes the 117 processors across the four generations (Westmere, Sandy Bridge, 

Ivy Bridge and Haswell) within their respective clusters using the first two principal 

components (x-axis PC1, y-axis PC2) of the processor clustering features. More 

information on principal component analysis can be found here [54, 55]. 
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3.2.1.3 Validation of Processor Clusters: 

Cluster validation is a challenging task since clustering is a form of unsupervised learning. 

Unlike supervised learning (e.g. a classifier), where we can easily validate a prediction 

algorithm based on how well it predicts the outcome variable of interest on unseen data, in 

unsupervised learning, we often don’t have any external means to validate an algorithm 

since we typically don’t know the ground truth. (i.e., we don’t have an outcome variable 

of interest). In fact, the whole purpose of unsupervised learning is to learn 

structures/patterns that are inherent in the data set.  

This thesis, however, attempts to “soft validate” the processor clustering step by testing it 

on Broadwell processors, a generation of processors that were launched after Haswell 

(Table 1a). The following set of experiments were performed as part of this validation 

exercise: 

1) A list of 30 Broadwell processors that belonged to the server market’s DP segment 

were used as an input in this exercise. The features (section 3.1.1) of the new 

Broadwell processors were then standardized using the formula 3.1.  

2) The processor clusters of the Broadwell processors were predicted using the 

existing processor clustering (with processors from Westmere, Sandy Bridge, Ivy 

Bridge and Haswell). I.e. For each of the 30 Broadwell processors, a prediction was 

performed as to which of the 5 processor types (Top-Bin, Tier 2-Bin, Value-Bin, 

Lowend-Bin, Low Core High Power Bin) it would belong. There are mainly 2 ways 

to perform this prediction a) assign the Broadwell processors to their nearest cluster 

means (as measured by Euclidean distance) from Table 3a, or b) Train a classifier 
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(such as knn or random forests) on the existing processor clustering data with the 

processor features of the 117 processors from Westmere, Sandy Bridge, Ivy Bridge 

and Haswell as input variables and their respective processor clusters as the 

outcome variable. This trained classifier can then be used to predict the processor 

clusters of the Broadwell processors. This thesis uses the “cl_predict" function [56] 

in R, that is based on the latter approach, for predicting the Broadwell processor 

clusters.  

3) The processor features from Broadwell were included in the processor clustering 

step (phase1-step1). 

Observations from 2) and 3) are discussed below: 

The WCSS(K) v/s K chart for phase1-step1 after adding the Broadwell processors in the 

clustering step is shown Fig 3f: 

 

Fig 3f WCSS(K) v/s   K- Step 1- after addition of Broadwell processors 
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Fig 3f looks very similar in structure to Fig 3c, both having comparable WCSS(K) values 

corresponding to K=5  

The 5 cluster means after adding the 30 Broadwell processors in the clustering step are 

shown in Table 3.  

As one can observe in Table 3, the cluster means have barely changed even after addition 

of the Broadwell processors to the clustering step (compare it with Table 2).   

Moreover, the cluster assignments form the previous clustering remain unchanged after 

addition of the Broadwell processors. This can be verified by comparing Fig. 3g with Fig 

3e   

Fig. 3g visualizes the 147 processors across the five generations (Westmere, Sandy Bridge, 

Ivy Bridge, Haswell and Broadwell) within their respective clusters using the first two 

principal components (x-axis PC1, y-axis PC2) of the processor clustering features 
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Table 3   Processor cluster means after addition of Broadwell processors 
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Fig. 3g   Processor clusters- after addition of Broadwell processors 

Table 4 compares the predicted processor clusters form 2) with the assigned clusters from 

3) for the Broadwell processors. From the table, we can see that the assigned and predicted 

processor clusters are the same for all the Broadwell processors except a single processor- 

E5-2608LV4 
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Table 4   Broadwell processors- assigned cluster v/s predicted cluster 

Broadwell 
Processor 

Assigned Cluster Predicted Cluster 

E5-2603V4 Lowend-Bin Lowend-Bin 

E5-2608LV4 Lowend-Bin Value-Bin 

E5-2609V4 Lowend-Bin Lowend-Bin 

E5-2618LV4 Value-Bin Value-Bin 

E5-2620V4 Value-Bin Value-Bin 

E5-2623V4 Lowend-Bin Lowend-Bin 

E5-2628LV4 Tier 2 Bin Tier 2 Bin 

E5-2630LV4 Value-Bin Value-Bin 

E5-2630V4 Value-Bin Value-Bin 

E5-2637V4 Low Core-High Power Bin Low Core-High Power Bin 

E5-2640V4 Value-Bin Value-Bin 

E5-2643V4 Low Core-High Power Bin Low Core-High Power Bin 

E5-2648LV4 Tier 2 Bin Tier 2 Bin 

E5-2650LV4 Tier 2 Bin Tier 2 Bin 

E5-2650V4 Tier 2 Bin Tier 2 Bin 

E5-2658V4 Tier 2 Bin Tier 2 Bin 

E5-2660V4 Tier 2 Bin Tier 2 Bin 

E5-2667V4 Low Core-High Power Bin Low Core-High Power Bin 

E5-2680V4 Tier 2 Bin Tier 2 Bin 

E5-2683V4 Tier 2 Bin Tier 2 Bin 

E5-2687WV4 Low Core-High Power Bin Low Core-High Power Bin 

E5-2689V4 Low Core-High Power Bin Low Core-High Power Bin 

E5-2690V4 Low Core-High Power Bin Low Core-High Power Bin 

E5-2695V4 Tier 2 Bin Tier 2 Bin 

E5-2697AV4 Top-Bin Top-Bin 

E5-2697V4 Top-Bin Top-Bin 

E5-2698V4 Top-Bin Top-Bin 

E5-2699AV4 Top-Bin Top-Bin 

E5-2699RV4 Top-Bin Top-Bin 

E5-2699V4 Top-Bin Top-Bin 
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From the above observations, it’s reasonable to conclude the following: 

I. The processor clustering with 5 cluster centers is very robust and the new 

generation processors from Broadwell blends nicely with the existing clusters.  

II. Previous generation processor clustering can provide quite a reliable prediction of 

the new generation processor clusters   

It should be noted at this point that the Broadwell processor features are used in this thesis 

only for validating the processor clustering step. Rest of this thesis uses data from the 117 

processors spanning 4 generations- Westmere, Sandy Bridge, Ivy Bridge, and Haswell 

discussed in section 3.1. 

3.2.2 Phase 1- Step 2 Creating Customer Clusters 

Phase 1- Step 2 groups customers based on their preference levels for the different product 

clusters identified in step1. This thesis uses the relative purchase quantities of different 

products that are available from the customer sales data, as an indicator of preference (or 

revealed preference, to be more precise). However, caution must be exercised before 

engineering the revealed preference of customers from sales data, and ideally, it should be 

validated with domain expertise. In the Intel example, the relative purchase quantities (in 

%) bought by a customer across the five different processor types (Top-Bin, Tier 2-Bin, 

Value-Bin, Lowend-Bin, Low Core High Power Bin) are used to infer their level of 

preference for these processor types. For instance, if customer A bought 5000 processors 

from the Westmere generation, of which 4000 belong to the “Top-Bin”, 200 belong to “Tier 

2-Bin”, 100 belong to the “Value-Bin”, 50 belong to the “Lowend-Bin, ” and 150 belong 
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to the “Low Core High Power Bin”, then customer A’s preference levels (on a scale of 0-

100) for these processor types are inferred as 80, 4, 1 and 3 respectively. Similarly, the 

preference levels of the same customer for the five processor types are computed from the 

relative purchase quantity data available from other generations (Sandy Bridge, Ivy Bridge 

and Haswell) as well. The resulting generation wise preference levels are then averaged to 

obtain an overall aggregate preference level of Customer A for these processor types 

(Please note that even though this thesis uses averaging as a method of aggregation, any 

other suitable aggregation technique can be used for this purpose). Fig. 3h depicts this 

computation for an anonymized customer X, where the generation-wise relative purchase 

quantities are averaged to obtain the aggregate preference levels of Customer X for the five 

different processor types.  

                     

 

Fig. 3h Aggregate preference level computation 
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Once the aggregate preference levels are computed for each of the 70 customers, cluster 

analysis can again be used to identify customers with similar aggregate preference levels 

for the five processor types. The data used for clustering in step 2 of phase 1 consists of 

the 70 customers as observations and their respective aggregate preference levels for the 

five processor types as clustering variables. Again, k means algorithm with Euclidean 

distance metric was used for clustering the customers.    

3.2.2.1 Choosing the Number of Customer Clusters 

Fig. 3i shows WCSS(K) v/s K for the customer clustering step. Here the elbow point is not 

that obvious. Nevertheless, 7 clusters were chosen to owe to its high quality (relatively 

small WCSS) and interpretability (as it made most domain sense to Intel’s senior 

management). Section 3.2.2.2 discusses the customer clusters in more detail.  

 

Fig. 3i WCSS(K) v/s K -Step 2 
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3.2.2.2 Customer Clusters  

Table 5 below shows the 7-customer cluster means (rounded to the nearest integer). The 

first cluster consists of 4 customers who have shown a high preference towards purchasing 

processors belonging to the “Top-Bin” processor type, with an aggregate preference level 

mean of 81 for the “Top-Bin” processors, across the 4 generations that were considered 

(Westmere, Sandy Bridge, Ivy Bridge and Haswell).  This cluster is named as the “Top-

Bin Cluster.” Similarly, the “Tier 2 Cluster” consists of 9 customers who have shown very 

high preference towards purchasing the “Tier 2 Bin” processors (with an aggregate 

preference level mean of 81), the “Value-Cluster” has 6 customers who have shown a high 

propensity towards purchasing the “Value Bin” processors (with an aggregate preference 

level mean of  75). The “Value and Tier 2 Cluster” consists of 12 customers who have 

shown preference towards purchasing the “Value-Bin” and the “Tier 2-Bin” processors, 

with an aggregate preference level mean of 46 and 36 respectively, similarly the “Top Bin 

and Tier 2 Cluster” consists of 10 customers who have shown interest in purchasing the 

“Top Bin” (aggregate preference level mean of 46) and “Tier 2-Bin” (aggregate preference 

level mean of 33) processors. The “Lowend Cluster” consists of 5 customers who have 

shown a high preference (aggregate preference level mean of 66) towards purchasing 

processors from the “Lowend Bin”. 
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Table 5 Customer cluster means 

Customer Cluster Top-Bin Value-Bin Lowend-Bin Tier 2-Bin 
Low Core 

High Power 

Bin 

Top Bin Cluster  81 13 0 3 2 

Tier 2 cluster  4 4 6 81 6 

Value Cluster  15 75 4 5 1 

Top Bin and Tier 2 Cluster  46 10 5 33 5 

Value and Tier 2 Cluster  7 46 10 36 1 

Lowend Cluster  3 16 66 16 0 

Everything Cluster  19 28 20 22 11 

 

 

Finally, the “Everything Cluster” consists of 24 customers who haven’t shown a strong 

preference towards purchasing any one of the five processor types, and tend to purchase 

processors evenly across the five processor types. An interesting takeaway here is that none 

of the customer clusters have shown a strong preference towards purchasing the “Low-

Core High Power Bin” processors. Fig 3.j below shows pie charts that compares the 7-

customer cluster means.                                       
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                                  Fig. 3j Customer cluster means-comparison 
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Fig. 3k below visualizes the 70 customers, within their respective clusters using the first 

three principal components (x-axis PC2, y-axis PC3, z-axis PC1) of the step 2 clustering 

features.  

 

Fig. 3k   Customer clusters 3-dimensional visualizations using principal components 

analysis 
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Fig 3l below shows the sales and revenue contributions by each of the 7 customer clusters 

across the four generations- Westmere, SandyBridge, Ivy Bridge and Haswell. As 

apparent in the figure, a major share (>50%) of both sales and revenue is contributed by 

customers belonging to “Everything Cluster”. 

 

 

Fig. 3l Customer Clusters – Sales and Revenue % Contributions 
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3.2.3 Customer Profiles  

Clustering customers based on their preference levels provide an insightful way to 

analyze their purchasing behavior across generations. For example, Fig. 3m below shows 

customers belonging to the “Top-Bin Cluster”. 

 

                                                  Fig. 3m Customer Profile- Top-Bin Cluster 

The figure represents the generation wise relative distribution of the volume (in %) bought 

by the “Top-Bin Cluster” customers across the five different processor types. As one can 

observe in the figure, all the 4 customers belonging to this cluster have historically shown 

a strong preference towards purchasing the “Top-Bin” processors. Another interesting 
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pattern that we can observe among customers within the “Top-Bin Cluster” is that their 

relative distribution of purchase volumes across the 5 processor types stays more or less 

the same in each of the 4 generations, even as the number, variety  and, features of these 

processors change from one generation to another. This is a useful insight for Intel, as it 

better informs their planning and marketing decisions concerning the “Top-Bin Cluster” 

customers for future generations. For instance, Fig. 3n below provides a summarized 

version of Fig. 3m, with the relative % volumes averaged across the 4 generations.  

 

 

Fig. 3n Customer Profile Summary- Top-Bin Cluster 
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Consider customer “Mbe82” (anonymized) as an example. From Fig. 3m, we learn that 

Mbe82, historically, has purchased an average of ~ 70% of their total volume from the 

“Top-Bin” and the rest (~ 30%) from the “Value-Bin”. Now when Intel launches a new 

generation of processors, and  we expect Mbe82 to purchase a total of say, 5000 units from 

this new generation,  this knowledge can be used to forecast how much Mbe82 is going to 

purchase from each of the five different processor types in this new generation of 

processors. Thus a good forecast based on the knowledge we have on Mbe82 would be 

3500 units (70% of 5000) from the “Top-Bin” and 1500 units (30% of 5000) from the 

“Value-Bin” processors and 0 units from the rest. Another use of customer profiles is as a 

recommender system. For instance, the knowledge that the “Top-Bin Cluster” customers 

have historically shown a high propensity towards purchasing the “Top-Bin” processors 

can be used to recommend them specifically the processors that belong to the “Top-Bin” 

category in a new generation of processors (content-based filtering). Now when Intel 

attracts a new customer in future, and with subsequent market research studies, if it can be 

shown that they are similar to an existing customer(s) who belongs to the “Top-Bin 

Cluster”; this information can still be used to recommend processors to this new customer 

(collaborative filtering), even if Intel does not have any prior transaction history with this 

customer. Fig. 3o and Fig. 3p presents similar charts for customers belonging to “The Tier 

2 Cluster”. The customer profile charts of the remaining 5 customer clusters are included 

in the appendix. 
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Fig. 3o Customer Profile- Tier2-Bin Cluster 

 

Fig. 3p Customer Profile Summary- Tier2-Bin Cluster 
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3.3 Phase 2- Feature Preference Elicitation 

Even though phase-1 (customer profiling) in the 2-phase procedure helped us discover 

groups of customers who are interested in purchasing similar types of processors, it doesn’t 

provide us with any additional insight on why they are interested in purchasing these 

processor types. For instance, the “Top-Bin” processor type consists of processors with a 

high number of cores and threads, high performance, high turbo frequency etc.  From the 

customer profiling results (phase 1), we know that the “Top-Bin Cluster” customers have 

shown high preference towards purchasing the “Top-Bin” processors. Phase 1 however, 

does not tell us anything about the impact of individual processor features on their 

preference; like do they value “Cores” more than “Performance”? and if yes, by how much?   

 

Phase 2 in the procedure attempts to answer these questions by quantifying the causal 

effects of individual features on preference of each of the 7 customer clusters identified in 

phase 1. As discussed in Chapter 2, phase 2 uses Bayesian networks for making causal 

inference from observational data that is available in the form of processor sales by each 

customer.  

3.3.1 Phase 2 Illustration 

Perhaps, phase 2 and its purpose can be best explained with the case of the “Everything 

Cluster” customers. The “Everything Cluster” consists of 24 customers who haven’t shown 

a strong preference towards purchasing any one of the 5 processor types and, the majority 

of both sales and revenue form the DP segment is contributed by the customers belonging 
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to the “Everything Cluster” (Fig 3l). Thus, it’s both important and interesting to learn which 

of 10 processors features they value the most, by quantifying the impact of each of the 

these features on their preference. Again, the data considered consists of 117 processors 

across the 4 generations (Westmere, Sandy Bridge, Ivy Bridge, Haswell). Here, the 10 

processor features are considered as potential treatment variables that can have an impact 

on the response variable of interest- the “Preference Score”. The “Preference Score” for a 

processor P by a customer C is essentially its volume purchased by customer C, 

standardized within the generation in which P was launched (Once again, a function of the 

relative purchase quantity of a processor bought by a customer is assumed as an indicator 

of their preference for that processor). The “Preference Score” is computed for each of the 

customer-processor combination in the “Everything Cluster” using formula 3.3 below, 

where  𝑆𝑉𝑃
𝑐 > 0. Note here that formula 3.3 is same in structure as formula 3.1 except for 

a few notational changes.   

 

                                         𝑃𝑆𝑃
𝑐  =

 𝑆𝑉𝑃
𝑐−𝑀𝑖𝑛𝑆𝑉𝑔𝑃

𝑐

𝑀𝑎𝑥𝑆𝑉𝑔𝑃
𝑐 −𝑀𝑖𝑛𝑆𝑉𝑔𝑃

𝑐                                             (3.3) 

 

Where, 

𝑃𝑆𝑃
𝑐: Preference Score for processor P by customer C  

 𝑆𝑉𝑃
𝑐:  Volume of processor P purchased by customer C 
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𝑀𝑖𝑛𝑆𝑉𝑔𝑃

𝑐 : Minimum individual processor purchase volume by customer C in the 

generation g in which processor P was launched 

𝑀𝑎𝑥𝑆𝑉𝑔𝑃

𝑐 : Maximum individual processor purchase volume by customer C in the 

generation g in which processor P was launched 

C: Any of the 24 customers in the “Everything Cluster” 

P: Any of the 117 processors that were considered  

g: Any of the four generations- Westmere, Sandy Bridge, Ivy Bridge, Haswell  

Thus, to summarize, the observational data from the “Everything Cluster” customers used 

in phase 2 consists of 10 processor features that can potentially impact the variable of 

interest- the “Preference Score”, 𝑃𝑆𝑃
𝑐. As discussed in chapter 2, phase 2 uses the 2nd 

approach to causal inference from observational data using Bayesian networks. It starts 

with identification of confounders using the disjunctive cause criterion [39] in stage 1, and 

then learns a Bayesian network from the data, for estimating causal effects using Jouffe’s 

likelihood matching algorithm [34, 37] in stage 2. This thesis uses BayesiaLab, a 

commercial software, for implementing phase 2. 

 

Before moving forward, it’s important to list the main assumptions for estimating these 

causal effects. It is critical to note at this point that these assumptions are domain specific 

and must be backed by domain expertise [34, 37]: 



49 

 

1) The “Preference Score”, 𝑃𝑆𝑃
𝑐  is an accurate reflection of preference of customer C for 

processor P. 

2) There are no other observed or unobserved confounders that affects this domain (10 

processor features + the response variable: “Preference Score”). As discussed earlier in 

Chapter 2, this is an important assumption and if it turns out to be false, the effect 

estimates obtained would be biased. 

3) In stage 1, using the disjunctive cause criterion for confounder selection, when 

estimating the effect of each of the 10 processor features on “Preference Score”, the 

other 9 processor features are listed as confounders as all the 10 processor features here 

can potentially impact the “Preference Score”.  

Now, stage 2 involves learning a Bayesian network form the observational data we have, 

for estimating the causal effects. Since we are dealing with continuous variables (both 

processor features and the Preference Score, varying continuously from 0-1), and since we 

don’t have any prior assumptions regarding any functional forms that control these variable 

distributions, it makes sense to learn a non-parametric Bayesian network from data, where 

the continuous variables are discretized (binned) as a preliminary step before a network is 

learned from data.  

The discretization of variables can be done both manually as well as using a suitable 

algorithm. However, it should be validated with domain expertise and one should also take 

into consideration aspects regarding the computation complexity, the number of 

observations available, etc. before the discretization step. For instance, the score based 

structural learning algorithms in BayesiaLab [34] are based on the Minimum Description 
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Length score (MDL), which depends on the strength of the relationships between variables 

as well as the overall network complexity. Here, Increasing the number of discrete states 

per variable increases the complexity of the resulting conditional probability distributions 

between variables, thus requiring more data to find relationships that can compensate for 

the additional complexity. 

For our purpose, the 10 processor features and the response variable- “Preference Score” 

were discretized into 5 bins, using the “K-Means Discretization” module in BayesiaLab ( 

which runs a k-means clustering algorithm underneath for splitting each of the variables 

into 5 bins). The variable distributions after the discretization step is as shown in Fig. 3q 

below. 

 

Fig. 3q Phase 2 variables after discretization 

http://library.bayesia.com/display/FAQ/K-Means+Discretization
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After all the variables were discretized, a Bayesian network was learned from data. As 

discussed chapter 2, the sole purpose of this network is to represent the joint probability 

distribution (JPD) connecting the variables in the network, and the link directions does not 

necessarily mean causality. An augmented naïve Bayes structure is learned from data, and 

the conditional probability distributions relating these variables are estimated using 

maximum likelihood estimation. Fig. 3r below shows the network structure.  

 

 

                                           Fig. 3r The Bayesian network structure 
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Before moving ahead and estimating the effects of the 10 processor features on the 

“Preference Score”, its perhaps useful to gather some insight on the working of Jouffe’s 

likelihood matching algorithm (or LM algorithm) [34, 37], which runs on the background 

of BayesiaLab, while estimating these effects. As [57] explains “The LM algorithm 

searches for a set of likelihood distributions, which, when applied on the Joint Probability 

Distribution (JPD) encoded by the Bayesian network, allows obtaining the posterior 

probability distributions defined (as constraints) by the user.”  In our case, suppose we 

want to estimate the causal effect of the feature “Cores” on “Preference Score”, we would 

want to make sure that there are no confounding effects from the 9 other features that we 

have listed as potential confounders in assumption 3 (and we have already assumed that 

there are no other variables that affects this domain in assumption 2). In other words, we 

need to adjust for the effect of these 9 features, before we can estimate the actual (causal) 

effect of “Cores” on “Preference Score”. One way to do this is to fix the probability 

distributions of the 9 other features (Threads, Performance, Base Frequency, Turbo 

Frequency, Power, List Price, Performance/Price, Base Frequency/Price and Turbo 

Frequency/Price) in the JPD represented in Fig.3r, while we change the states (or levels) 

of the probability distribution of “Cores”. This is made possible by the LM algorithm. The 

LM algorithm searches for prior probability distributions for all the 9 confounding features 

that when applied on the JPD represented in Fig.3r, matches their posterior distributions, 

upon changing the levels of “Cores”. Thus, the probability distributions of the 9 other 

features are maintained while we change the levels of “Cores”; which gives us the actual 

effect (or as BayesiaLab terms it -the “Direct Effect”) of “Cores” on the “Preference 
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Score”. This is illustrated in Fig. 3s. In the figure, when we fix the interval (level) of cores 

to 0-0.157 (with a mean value of 0.025), its results in a distribution of “Preference Score” 

with a mean value of 0.129. Now when we change the level of “Cores” to 0.157-0.4 (with 

a mean value of 0.228), the distribution of “Preference Score” changes, as shown in Fig. 3t 

to a mean value of 0.149, while the distribution of the 9 confounding features remain 

unchanged.  

 

 

Fig. 3s LM algorithm illustration part 1 
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Fig. 3t LM algorithm illustration part 2 

Fig. 3u and Fig. 3v contrasts this with the observed effect of “Cores” on “Preference Score” 

(i.e., without fixing the distributions of the 9 confounding features), where the “Preference 

Score” distribution changes from a mean value of 0.214 to 0.244 when the variable “Cores” 

changes from 0-0.157 (with a mean value of 0.025) to 0.157-0.4 (with a mean value of 

0.228) 
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Fig. 3u LM algorithm illustration part 3 

 

 

Fig. 3v LM algorithm illustration part 4 
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The direct effect visualization function in BayesiaLab plots the changes in mean value of 

the “Preference Score” distribution as we change the levels of “Cores”, while fixing the 

distributions of the 9 confounding features.  

 

 

 

Fig. 3w Actual effect of “Cores” on “Preference Score” for the “Everything Cluster” 

 

As we can observe in Fig. 3w, the feature “Cores” has a random, zig-zag effect on the 

“Preference Score” for the “Everything Cluster” customers. The peak value for the 

“Preference Score” mean (0.22) is reached corresponding to a value near the 3rd quartile 

(0.7) with respect to the “Cores” mean. Overall no strong, consistent pattern is apparent 

from the chart.  

Similarly, the actual causal effects (or direct effects) of 9 other features on the “Preference 

Score” were computed, and their charts are plotted below (Fig. 3x– Fig. 3af): 
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Fig. 3x Actual effect of “Threads” on “Preference Score” for the “Everything Cluster” 

 

Fig. 3y Actual effect of “Performance” on “Preference Score” for the “Everything 

Cluster” 
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Fig. 3z Actual effect of “Base Frequency” on “Preference Score” for the “Everything 

Cluster” 

 

 

Fig. 3aa Actual effect of “Turbo Frequency” on “Preference Score” for the “Everything 

Cluster” 
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Fig. 3ab Actual effect of ”List Price” on “Preference Score” for the “Everything Cluster” 

 

 

Fig. 3ac Actual effect of “Power” on “Preference Score” for the “Everything Cluster” 
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Fig. 3ad Actual effect of “Base Frequency/Price” on “Preference Score” for the 

“Everything Cluster” 

 

Fig. 3ae Actual effect of “Turbo Frequency/Price” on “Preference Score” for the 

“Everything Cluster” 
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Fig. 3af Actual effect of “Performance/Price” on “Preference Score” for the “Everything 

Cluster” 

 

Like “Cores”, “Threads” have a zig-zag effect on “Preference Score”, with no clear pattern 

apparent in Fig. 3x.  “Performance” (Fig. 3y) and “Base Frequency” (Fig. 3z) exhibit an 

inverted “V” pattern reaching a maximum “Preference Score” mean of roughly 0.20 at 0.4 

and 0.25 at 0.5 respectively. This suggests an existence of a sweet spot for both 

“Performance” and “Base Frequency” around midway of their respective feature values. 

However, the maximum mean “Preference Score” attained is relatively less (<0.25) for 

both these features. “Turbo-Frequency” exhibits an inverted “W” curve (Fig. 3aa) with 2 

sweet spots, with a maximum mean “Preference Score” of 0.22 attained near the 1st 

quartile. “List Price” (Fig. 3ab) and “Power” (Fig. 3ac) exhibit a consistent declining 
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pattern with respect to the “Preference Score” mean, suggesting that the “Everything 

Cluster” customers are price sensitive and, they prefer purchasing processors that consume 

less power. Perhaps the most insightful result from phase 2 concerning the “Everything 

Cluster” is the effect of “Performance/Price” on “Preference Score” (Fig. 3af). A strong, 

consistent increasing pattern in “Preference Score” mean, with an increasing 

“Performance/Price” mean suggests that the “Everything Cluster” customers prefer 

purchasing processors that offer good performance for the price they pay. Similarly, “Base 

Frequency/Price” (Fig. 3ad) and “Turbo Frequency/Price” (Fig. 3ae) exhibit a consistent 

increasing pattern with respect to the “Preference Score” (though not as strong as 

“Performance/Price”). Similar analysis can be performed for other customer clusters as 

well. 
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Chapter 4 

CONCLUSION 

 

Understanding customer preference is crucial for new product planning and marketing 

decisions. This thesis illustrated how data mining techniques can be used for understanding 

customer preference from historical data, instead of relying entirely on expert judgment or 

expensive marketing research experiments. However, mining customer preference from 

historical data is not a trivial task and requires careful validation by domain expertise as 

discussed in chapters 2 and 3. Using Intel Corporation as an example, this thesis presented 

a decision support framework that provides a holistic view on customer preference by 

following a 2-phase procedure. Phase 1 uses cluster analysis to create product profiles in 

step 1 and further creates customer profiles based on their preference levels for these 

product profiles in step 2. Phase 2 then delves deep into each of the customer profiles that 

are created in phase 1 and investigates causality behind their preference using Bayesian 

networks.  

The customer sales data of processors from Intel server market’s DP segment was used as 

an input to the 2-phase procedure. The data consists of 117 processors that span over four 

generations: Westmere, Sandy Bridge, Ivy Bridge and Haswell. From phase1, five 

processor clusters (or processor types ) namely, Top-Bin, Tier 2-Bin, Value-Bin, Lowend-

Bin, Low Core High Power Bin) were identified based on processor features in step 1. The 

five processor clusters were then validated using the processor features from the Broadwell 

generation (a newer generation of processors launched in Q1 2016 after Haswell). In step 



64 

 

2, seven customer clusters: Top-Bin Cluster, Tier2-Bin Cluster, Value-Cluster, Top-Bin 

and Tier2 Cluster, Tier2 and Value Cluster, Lowend Cluster, and, Everything Cluster were 

identified based on their preference levels for these processor types.  

Phase 2 then determines the casual effects of the individual processor features on  

preference of the seven customer clusters and, identifies the preferred features that drove 

sales within each cluster. Phase 2 is elaborated using the example of the “Everything 

Cluster” in section 3.3.1. 

As illustrated in section 3.2.3, the potential uses of phase 1 include: 

1) Forecasting the demand mix of the new generation processors, i.e., how much an 

existing customer is going to purchase from each of the five processor types in a new 

generation.  

2) When a new generation of processors is set to be launched, making better product 

recommendations for existing customers and new customers who are similar to the 

existing customers 

Phase 2 enables a deeper understanding of customer preference at a product feature level 

and can be a useful input for product design and development of future generation 

processors.  

Moving forward, future work includes: 

 

1) Validation of phase-1 demand mix forecasts based on sales data of new 

generation processors from Broadwell. 
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2) Research on how the input from phase 2 can be used efficiently for product design 

and development decisions of new generation processors.  
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APPENDIX A 
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1. Customer profile- Value Bin Cluster 
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2. Customer profile- Lowend Cluster 
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3. Customer profile- Top Bin and Tier 2 Cluster 
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4. Customer profile- Value and Tier 2 Cluster 
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5. Customer profile- Everything Cluster 
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