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ABSTRACT 

Membranes are a key part of pervaporation processes, which is generally a more 

efficient process for selective removal of alcohol from water than distillation. It is 

necessary that the membranes have high alcohol permeabilities and selectivities. 

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have 

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71) 

demonstrated promising alcohol separation abilities. In this dissertation, we present 

fundamental studies on the synthesis of ZIF-71/PDMS MMMs.  

Free-standing ZIF-71/ PDMS membranes with 0, 5, 25 and 40 wt % ZIF-71 

loadings were prepared and the pervaporation separation for ethanol and 1-butanol from 

water was measured. ZIF-71/PDMS MMMs were formed through addition cure and 

condensation cure methods. Addition cure method was not compatible with ZIF-71 

resulting in membranes with poor mechanical properties, while the condensation cure 

method resulted in membranes with good mechanical properties. The 40 wt % ZIF-71 

loading PDMS nanocomposite membranes achieved a maximum ethanol/water selectivity 

of 0.81 ± 0.04 selectivity and maximum 1-butnaol/water selectivity of 5.64 ± 0.15.  

The effects of synthesis time, temperature, and reactant ratio on ZIF-71 particle 

size and the effect of particle size on membrane performance were studied. Temperature 

had the greatest effect on ZIF-71 particle size as the synthesis temperature varied from -

20 to 35 ºC. The ZIF-71 synthesized had particle diameters ranging from 150 nm to 1 

µm. ZIF-71 particle size is critical in ZIF-71/PDMS composite membrane performance 

for alcohol removal from water through pervaporation. The membranes made with 
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micron sized ZIF-71 particles showed higher alcohol/water selectivity than those with 

smaller particles. Both alcohol and water permeability increased when larger sized ZIF-

71 particles were incorporated.  

ZIF-71 particles were modified with four ligands through solvent assisted linker 

exchange (SALE) method: benzimidazole (BIM), 5-methylbenzimidazole (MBIM), 5,6-

dimethylbenzimidazole (DMBIM) and 4-Phenylimidazole (PI). The morphology of ZIF-

71 were maintained after the modification. ZIF-71/PDMS composite membranes with 25 

wt% loading modified ZIF-71 particles were made for alcohol/water separation. Better 

particle dispersion in PDMS polymer matrix was observed with the ligand modified ZIFs. 

For both ethanol/water and 1-butanol/water separations, the alcohol permeability and 

alcohol/water selectivity were lowered after the ZIF-71 ligand exchange reaction.    
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1 INTRODUCTION 

1.1 Biofuels 

Biofuels are a very promising alternative to fossil fuels. Biofuels are solid, 

gaseous or liquid fuels produced from renewable resources. Three sources of biofuels are  

food crops (corn, sugar cane or soybeans), known as first generation biofuels; agricultural 

residues (stems, leaves, etc) or non-food crops, known as second generation biofuels; and 

algae, known as third generation biofuels.[1] A number of liquid biofuels such as 

methanol, ethanol, butanol, propanol and biodiesel can be produced from renewable 

biomass. Methane and hydrogen can also be produced as biogases.[2] The ethanol 

concentration contained in the bio-fermentation broth varies from 1 to 15 wt%.[3] 

According to the Renewable Fuel Standard (RFS) established by the US Congress in 

2005, 36 billion gallons of biofuels should be included in transportation fuel by 2022.[4] 

In the U.S., one commercial scale cellulosic ethanol plant was formally opened in 2014 in 

the Midwest.[5] Additional biofuel plants will be built in Brazil and elsewhere.  
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Figure 1-1. POET-DSM Advanced Biofuels cellulosic ethanol plant which was opened on 

September 3, 2014 in Emmetsburg, Iowa. (Source: http://poet-dsm.com/liberty) 

Biofuels are attractive because they can be partially substituted for conventional 

transportation fuel without affecting car performances. Up to 15-20% volume percent of 

bioethanol can be blended with gasoline without any issues.[6] According to the U.S. 

Department of Energy, up to 12.5% of bio-butanol can also be blended with gasoline in 

order to make sure that the oxygen content limit is 3.7% when it is blended with 

ethanol/gasoline mixtures.[7] 

The production of biofuels includes several steps: preprocessing (e.g. milling), 

fermentation, distillation and dehydration.[8, 9] The existence of the ethanol-water 

azeotrope (with a composition of 95.63 wt% ethanol and 4.37 wt% of water) means that 

standard distillation purification yields a product ethanol concentration of approximately 

95 wt%.[10] However, in the production of fuel grade ethanol, the maximum allowable 

water content is 0.3 wt% according to European standard.[11] Therefore, in order to meet 

the standard, the excess water that is not removed through standard distillation is further 
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removed through molecular sieve adsorption processes. In addition, while distillation has 

been widely used to separate biofuels due to its simplicity and reliability, it is an energy 

intensive process.[12] Motivated by this, separation processes that consume less energy 

have been extensively pursued. Pervaporation has emerged as a potential energy efficient 

alternative to distillation.  

1.2 Pervaporation 

Membrane technology is one of the promising low energy alternatives to 

separation processes such as distillation. Pervaporation membrane processes for 

separating biofuels are an attractive option because of their energy efficiency compared 

to distillation.[13] Pervaporation is used to separate liquid mixtures through dense, non-

porous or microporous membranes. The permeate side of the membrane is usually 

maintained under vacuum. The driving force of the process is the chemical potential 

gradient across the membrane.[14] Figure 1-2 shows a schematic diagram of the 

pervaporation process. A hot feed liquid contacts the feed side of the membrane, then 

different feed components permeate through the membrane at different rates and 

evaporate into vapor phase. Unlike processes such as membrane distillation, the 

pervaporation membrane has selectivity towards the individual components of the feed. 

The vapor is then condensed and collected as permeate. In laboratory environment, the 

vacuum is usually created on the downstream side by a vacuum pump. The condensation 

of the permeate enables continuous removal of the components through the membrane. 

The difference in affinities and diffusion rate enables the separation of different 

species.[15] In distillation, the phase change consumes a significant amount of energy 
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because of the volume of material that undergoes the phase change is large. Conversely, 

in pervaporation only a relatively small amount of liquid feed solution is heated and as a 

result the energy consumption is much less than distillation.[16] Additionally, different 

from normal distillation, pervaporation can separate azeotrope mixtures.[17] Another 

advantage of pervaporation is the operation temperature is much lower than distillation, 

therefore it can be used to separate heat sensitive mixtures.[18]  

 

Figure 1-2. Schematic diagram of pervaporation process.[19] 

 For pervaporation, two parameters are directly calculated: flux and separation 

factor. Two additional parameters are calculated which describe the intrinsic membrane 

separation performances: selectivity and permeability. Permeability is determined by the 

sorption coefficient and diffusion coefficient. Sorption coefficient is governed by the 

chemistry of membrane materials while diffusion is related to the permeants’ 

mobility.[20] Permeability is calculated by normalizing flux (as is shown in equation 
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(1.1)) with driving force and membrane thickness. The equation describing separation 

factor is shown in equation (1.2). Selectivity is defined by the ratio of permeability of 

different components. Selectivity, as is shown in equation (1.3) indicates the separation 

capacity of different components through the membrane.  

 
                                    (1.1) 

where Mi (grams) is the mass of permeate component i, A (m2) is the effective membrane 

area and t (h) is the operating time. 

                                                                                                         (1.2) 

where β is alcohol/water separation factor, Y and X represents the component weight 

fractions in the permeate and feed side, respectively. 

               

                                                            (1.3) 

 where ji (cm3 s-1 cm-2)(STP) is the molar flux of component i; l (cm) is membrane 

thickness; the subscript o represents the feed solution, the subscript l represents the 

permeate; γio is the activity coefficient of component i in feed solution (unitless); xio is the 

mole fraction of component i in the feed solution (unitless);  (cmHg) is the saturated 

vapor pressure of component i in the feed; and pil (cmHg) is the partial pressure of 

component i on the permeate side of the membrane. The activity coefficients γ was 

calculated with the UNIFAC model through Aspen Plus simulation software and the 

Ji =
Mi

At

β =

YAlcohol
YWater( )

XAlcohol
XWater( )

Pi = ji
l

γ ioxio pio
sat − pil

pio
sat
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Dortmund Data Bank (DDB) website.[21] The Antoine equation was used to determine 

the saturated pressure psat.   

 Sometimes permeance is used when the membrane thickness is unknown. It is 

defined as flux normalized by driving force. 

                                                                                                          
(1.4) 

Selectivity is the ratio of permeabilities. 

                                                                        
(1.5) 

where aij is the selectivity of component i over j. Pj is the permeability of component j.  

     According to Baker et al., analysis based on permeability and selectivity is more 

reliable and yields results with decreased dependence on operating conditions compared 

with flux and separation factor.[20] In this thesis we primarily report our pervaporation 

data in permeability and selectivity.  

The most developed application of pervaporation is the separation of water from 

organic solvents (e.g. ethanol, isopropanol).[16] The first commercialized ethanol 

dehydration plant was built by GFT Membrane Systems in 1982. The pervaporation 

process reduces water concentration in ethanol from 10% to less than 1%.[18] Another 

application of pervaporation is the separation of a small quantity of volatile organic 

compounds (VOCs) from aqueous solutions. Pervaporation can be applied to remove 

alcohols from biofuel fermentation broths to eliminate the inhibitory effect on bacterial 

metabolism, which occurs when the alcohol concentration is greater than 20 g/L.[22] 

Pervaporation can also be used for organic-organic mixture separations, which is the 

Pi
l
=

ji
γ ioxio pio

sat − pil

αij =
Pi
PJ
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most challenging application for this membrane process as the components have similar 

sorption properties in general.[16] Swelling of membranes in organic mixtures is also an 

important topic. Therefore, the development of membrane materials that have better 

selectivity as well as limited swelling is needed. The pervaporation unit can be used alone 

or can be integrated with other liquid separation processes to reduce energy 

consumption.[23-25]  

1.3 Pervaporation membranes 

1.3.1 Solution-diffusion theory 

  The solution-diffusion model is used to describe the transport mechanism through 

the membrane in pervaporation. The mechanism describes the transport in three steps (as 

Figure 1-3 depicts): (1) the permeant molecule dissolves in the membrane material; (2) 

diffusion of the dissolved molecules through the membrane under chemical potential 

gradient; (3) evaporation of the molecule from the membrane into the downstream side of 

the membrane.[26]   
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Figure 1-3. The schematic diagram of solution-diffusion mechanism in pervaporation. 

(https://www.slideshare.net/EngineersAustralia/1345-sule.) 

1.3.2 Pervaporation membrane materials 

To be competitive with distillation separation, the membrane material is critical. 

Membrane affects the entire pervaporation separation performances. Three major types of 

pervaporation membranes have been studied over the years including polymeric 

membranes, crystalline inorganic or metal-organic microporous membranes and mixed 

matrix membranes (MMMs).  

1.3.2.1 Polymeric membranes 

Polymeric membranes are the most commonly used materials in membrane 

technology because of the many advantages they possess such as low capital cost, easy to 

fabricate and scale up.[27] Polymeric membranes are formed through the cross-linking of 
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polymer chains and the tiny spaces between polymer chains enable the diffusion of 

molecules. However, polymeric membranes suffer the trade-off between permeability 

and selectivity, which is known as the “upper bound” limit.[28]  

Polymeric membranes are widely used for solvent dehydration pervaporation 

processes. Hydrophilic cross-linked polyvinyl alcohol (PVA) is one of the most 

commonly used commercialized polymer materials for dehydration applications. PVA 

exhibits excellent film formation ability, low cost, good flexibility and high tensile 

strength.[29, 30] Moreover, PVA has excellent water selective properties. Other 

commercial hydrophilic membranes includes Chitosan, polyimides, etc.[31] 

Polydimethysiloxane (PDMS) is the benchmark hydrophobic membrane material 

for recovering organic compounds from water through pervaporation.[32] PDMS exhibits 

high chemical and thermal stability, as well as good separation ability for common VOCs 

(shown in Figure 1-4).[33] 

 

Figure 1-4. PDMS polymer separation performances of VOCs from water. Image 

reproduced from Baker et al.[33] 

 The ethanol/water selectivity of PDMS is about 0.6 indicating the polymer is still 

water-selective.[20] Membrane materials that possess higher selectivities have been 

explored, such as poly(1-trimethylsilyl-1-propyne) (PTMSP). PTMSP is hydrophobic, 
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has remarkably high free volume up to 25% and is one of the rare polymer materials that 

are ethanol and butanol permselective.[34-36] The key disadvantage preventing further 

application of PTMSP is physical aging, which results in a decline in transport properties 

over time. Several attempts have been made to improve the stability of PTMSP, for 

instance by adding elastomeric filler materials.[37] Overall, PDMS is still the state-of-art 

material for VOC/water separation applications.  

1.3.2.2 Crystalline microporous membranes 

The second type of pervaporation membranes is crystalline microporous 

membranes. Microporous materials are classified as materials with pore size less than 2 

nm.[38] Microporous crystalline materials can be categorized into two groups: zeolites 

and metal-organic-frameworks (MOFs). Those crsytalline membranes have many 

advantages over polymeric membranes such as: high permeabilities, no swelling, high 

thermal and chemical stabilities.[39, 40] However, the cost to make the membranes is 

significantly higher than polymeric membranes and the scalability is limited.[41] 

Additionally, the appearance of intercrystalline pores is detrimental to membrane 

selectivities in most cases.[42]  

Zeolitic membranes are microporous inorganic aluminosilicate crystalline 

materials that could separate liquid mixtures based on sorption and diffusion differences. 

Zeolites have well-defined molecular-size pores. The alumina to silica ratio varies with 

different types of zeolites and zeolites of higher Al/Si ratios are more hydrophilic.[43] 

 In general, zeolite membranes are prepared on porous support such as ceramic 

supports to provide mechanical strength. The synthesis of zeolite membranes involves 
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several steps: pretreatment of supports, synthesis of zeolite membranes on the support 

(e.g. in-situ hydrothermal synthesis, secondary growth method, microwave method, etc.) 

and defect elimination.[44-47] 

Type A zeolites, with a Si/Al ratio of 1, are hydrophilic and exhibit higher organic 

dehydration properties than ZSM-5, X-type, Y-type and T-type zeolite membranes.[48] 

Type A zeolite membranes was firstly commercialized for solvent dehydration 

applications by Mitsui Engineering and Shipbuilding Co. Ltd.[49] However, the high 

capital cost remains the major disadvantage limiting the commercial use. The most 

promising hydrophobic zeolite membranes for removing ethanol from water are silicalite-

1 membranes. The comparison of three different hydrophobic zeolite membranes for 

alcohol/water separations is shown in Figure 1-5. Silicalite-1 is aluminum-free and 

exhibited greater alcohol permeability and selectivity over hydrophobic ZSM-5 zeolite 

membranes. Silicalite-1 membranes synthesized via in-situ crystallization technique were 

reported to have maximum ethanol/water separation factor of 106.[50] A higher 

separation factor of 125 was achieved by coating silicalite-1 membranes with PDMS 

polymer, yet the ethanol flux was significantly lower.[51]  
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Figure 1-5. The separation performances for 1-5 wt% alcohol/water solutions through 

silicalite-1, Ge-ZSM-5 and B-ZSM-5 zeolite membranes at 30 °C.[48] 

MOFs, including zeolitic imidazolate frameworks (ZIFs), are the second type of 

microporous crystalline materials that have been intensively studied. MOFs are 

crystalline nanoporous materials formed by metal ions or clusters connected with organic 

ligands. MOFs have notably high porosities, typically higher than 50% and up to 90%. 

MOFs also possess great surface areas ranging from 1000 to 10,000 m2/g. More than 

20,000 MOFs have been synthesized from the multitude of metal ions and organic 

ligands.[52, 53] MOFs are applied to a number of fields such as gas storage (e.g. 

hydrogen), carbon dioxide capture, catalysis as well as separations.[54-61] UiO-66 is one 

typical example used for organophilic pervaporation separations. Miyamoto reported the 

separation performances of UiO-66 membranes for separating methanol, ethanol and 

acetone from water.[62] The ethanol/water separation factors obtained ranges from 4.3 to 

4.9 when testing temperature varies from 303 to 343K with 10 wt% ethanol/water feed 
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solution. For methanol/water separation with UiO-66 membranes, the separation factor is 

5.0 at 323K when 10 wt% methanol/water is used as feed.  

ZIFs are a subclass of MOFs, which are composed of transition metal ions (e.g. 

Zn, Co) that are connected by imidazole organic linkers.[63] ZIFs have zeolitic 

topologies because the metal-imidazole-metal angle of 145 ° is similar to the angle of the 

Si-O-Si bridges in zeolites (Figure 1-6). ZIFs have high surface areas, like MOFs, but 

notably improved thermal and chemical stabilities compared to most MOFs.[64] 

Generally, ZIFs possess small pore sizes of less than 5 Å (Table 1-1), which are in the 

range of the kinetic diameter of several important gas and liquid molecules. Therefore, 

ZIFs are attractive in many applications such as carbon dioxide capture, gas storage, gas 

and liquid separations. Two typical ZIFs studied for separation applications are ZIF-71 

and ZIF-8.[65] ZnO supported organophilic ZIF-71 membranes were prepared by Dong 

et al. for solvent separation through pervaporation.[66] The membranes exhibited 

promising solvent separation properties: the methanol/water selectivity was 4.32, the 

ethanol/water selectivity obtained was 1.50 and the dimethyl carbonate/methanol 

selectivity was 8.08. Propane/propylene separation is one of the most important industrial 

separation processes. Crystalline ZIF-8 membranes have been synthesized and studied for 

this separation purpose. Pan et al. prepared ZIF-8 membranes via secondary growth 

method.[67] The membranes demonstrated propylene permeance in the order of 10-8 

mol/m2 s Pa and propylene/propane separation factors greater than 30. The separation 

performances obtained with ZIF-8 membranes successfully overcame the “upper bound” 

limit of both polymeric membranes and carbon membranes. Hara et al. synthesized ZIF-8 
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membranes for the same separation and their results showed that the separation of 

propylene/propane is governed by diffusion separation.[67]  

 

Figure 1-6. The similarity of bridging angles existed in ZIFs and zeolites. Image is 

reproduced from Park, et al.[64] 

Table 1-1. Composition, topology and pore size of representative ZIFs. 

ZIF type Composition Topology Pore size/nm 

ZIF-7  Zn(benzimidazole)2 SOD  0.30 

ZIF-8  Zn(2-methylimidazole)2 SOD  0.34 

ZIF-9  Co(benzimidazole)2 SOD  < 0.30 

ZIF-11 Zn( benzimidazole)2 RHO 0.3 

ZIF-71  Zn(4,5-dichloroimidazole)2 RHO  0.48 

ZIF-90  Zn(imidazolate-2-carboxaldehyde)2 SOD  0.35 

 

1.3.2.3 Mixed matrix membranes 

Mixed matrix membranes (MMMs) are defined as the incorporation of a solid 

phase into a continuous polymer base. Ideal MMMs combine the good processability of 

polymers and the superior separation performance of molecular sieves.[68] The 

molecular sieves used in pervaporation MMMs are mostly zeolites and MOFs. Vane et al. 
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found there are three crucial parameters influence the overall MMMs performances: filler 

material particle size, particle loading and particle dispersion.[3] Particle size is important 

in making MMMs, because smaller particles allow the synthesis of thinner membranes 

for enhanced fluxes; yet smaller particles are more likely to aggregate than bigger 

particles because of the strong capillary force between particles. The aggregation of 

particles may create non-selective pathways for the feed components to diffuse through 

and thus reduce the membrane selectivity. Thus, the filler particle size needs to be 

optimized for the sake of maximum membrane separation performance. High filler 

particle loading (without particle agglomeration) is desirable in making MMMs in order 

to achieve higher selectivities and permeabilities. Particle dispersion within the polymer 

matrix is important to limit particle agglomeration that may result in defects in 

membranes, and ultimately may be detrimental to membrane separation performances. As 

a result, uniform particle dispersion is desired in membrane preparation.  

Two primary approaches are reported to improve particle dispersion in polymer 

matrix. (1) sonication and (2) priming. (1) Sonication is an effective way to help disperse 

filler particles in the polymer matrix casting solution. Vane et al. compared the 

membranes prepared with sonication versus the membranes made merely by grinding the 

particles and shaking the membrane casting mixture.[3] They observed severe particle 

agglomeration as well as poor membrane separation performance with the membranes 

made without sonication. Moreover, they found ultrasonic probe-sonicators are more 

powerful than ultrasonic bath to disperse the particles. Usually during the membrane 

preparation, first the filler particles are well dispersed in the synthesis solvent using the 
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probe sonicator before combing the solvent/filler mixture with the polymer/solvent 

mixture. The mixture is then further sonicated with the probe sonicator before membrane 

casting. It is important to note that the probe sonicator can create significant heat during 

the mixing, this may increase the cross-linking of the polymers and reduce the sample 

preparation time. (2) “Priming” of the particles is the second primary method for 

dispersing particles within a polymer matrix. In “pre-priming”, the particles are coated 

with a thin layer of polymer solution prior to the combination with the bulk polymer 

solution. In this process a small amount of polymer solution is added to the 

particle/solvent solution. Priming is reported to be an effective protocol to minimize the 

particle aggregation and enhance the particle/polymer interface.[69-71] Vu et al. applied 

10 wt% of the total polymer solution to the particle solution to carry out the priming 

process.[71] Even distribution of MOF particles in Matrimid®-PI polymer matrix was 

accomplished through this priming method.[71] In this thesis we utilized a 300 W probe-

sonicator and the priming method to combat dispersion challenges of ZIF-71 into PDMS 

matrix.  

High silica zeolites such as silicalite-1 and ZSM-5 exhibited great alcohol/water 

separation potential as mentioned earlier and have been used in MMMs for removing 

dilute organic compounds from water solutions. Vane et al. prepared zeolites (ZSM-5 and 

silicalite1-1) incorporated PDMS MMMs to separate ethanol from water through 

pervaporation (Figure 1-7).[3] The maximum ethanol/water selectivity observed was 3.0 

obtained from 65 wt% ZSM-5 loading MMMs. The separation performance of PDMS 

polymer was significantly improved through the addition of zeolites.  
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Figure 1-7. SEM cross-section view of 50 wt% zeolite loading zeolite/PDMS MMMs. 

Image is reproduced from Vane et al.[3]  

 PVA polymer separation performance can also be enhanced through the addition 

of zeolites. Guan et al. developed PVA MMMs with incorporated KA zeolites for 

ethanol/water dehydration application.[72] The inclusion of zeolites increased both the 

selectivity and permeances of the MMMs as compared to the pure PVA membranes. For 

20 wt% KA zeolite loading membranes, the selectivity was greatly increased from 511 to 

1279 at 60 °C with 80 wt% ethanol/water feed solution. In addition, the water permeance 

was enhanced while the ethanol permeance was reduced because of the hydrophilicity of 

KA zeolites.  

1.4 MOF-based mixed matrix membranes for the removal of alcohols from aqueous 

solutions 

Many MOFs (including ZIFs) have been incorporated into different polymers to 

form MMMs for recovering dilute alcohols from aqueous solutions through 
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pervaporation.  Table 1-2 summarizes recent work in alcohol/water separation results for 

MOF-based MMMs. The current benchmark polymer material for the synthesis of MOF 

MMMs for alcohol/water separation is PDMS. Polyether block amide (PEBA) is another 

polymer used for alcohol/water separation research, yet the separation performance is 

inferior compared to PDMS. Figure 1-8 shows the chemical structure of PEBA.[73] 

PEBA membrane synthesis process is simple and straightforward. It is prepared by the 

solution casting method and no cross-linking is needed.[69] As shown in  Table 1-2, the 

reported ethanol/water separation factors for different MOF-included MMMs are similar. 

According to Baker, in ethanol/water pervaporation the relationship between separation 

factor β and selectivity α is β = (12~15)α.[33] Based on this estimate, all MOF MMMs 

listed in  Table 1-2 have ethanol/water selectivity of less than one, indicating that the 

membranes are still water-selective. Among all the reported membranes, PDMS MMMs 

with 40 wt% loading Materials Institute Lavoisier-53 (MIL-53) (Al) zeolites 

demonstrated highest ethanol normalized flux (16,401 g/m2 h, normalized to 1 µm 

membrane thickness).[74] MIL-53 (Al) is composed of trivalent metal ions Al and 

organic ligand 1,4-benzeneducarboxylic acid (BDC) with 0.85 nm pore size and 

hydrophobic aromatic ring walls. The hydrophobic nature of MIL-53 (Al) facilities the 

ethanol separation through the membrane. 
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Figure 1-8. The chemical structure of polyether block amide (PEBA) polymer. 

 Table 1-2. Alcohol/water separation performance of MOF-based MMMs through 

pervaporation. 

Membrane Alcohol 
MOF 

loading 
(wt%) 

Feed 
Temp 
(°C) 

Alcohol/water 
β 
 

Notes (feed 
conc, 

thickness, 
flux*, etc) 

Ref 

MIL-
53(Al)/PDMS 

Ethanol 40 70 11.1 
5 wt% EtOH, 3 

µm, 
16,401 g/m2 h 

[74] 
 

MAF-6/PDMS Ethanol 15 40 14.9 
5 wt% EtOH, 5 
µm, 6,000 g/m2 

h 

 
[75] 

 

ZIF-71/PDMS Ethanol 16.7 50 α=0.64 
5 wt% EtOH, 9 
µm, ~1,000 

g/m2 h 
[76] 

ZIF-71/PDMS Ethanol 40 50 ~10 (α=0.67) 
5 wt% EtOH, 

2.8 µm, ~3,500 
g/m2 h 

[77] 

ZIF-8/PMPS 

Ethanol 

9.1 80 

~ 12 
1 wt% alchols, 

EtOH 7,000 
Barrer, n-

BuOH 4,612  
g/m2 h 

[78] 
1-

Butanol 
40.1 

ZIF-7/PDMS 
1-

Butanol 
20 60 66 

1 wt% n-
BuOH, 20(±2) 
µm, 1689 g/m2 

h 

 
[79] 
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ZIF-71/PEBA 
1-

Butanol 
20 40 20 (α=4.2) 

1 wt% n-
BuOH, 10-20 
µm, n-BuOH 

200,000 Barrer 

[69] 

Zn(BDC)(TED)2.5 

/PEBA 
1-

Butanol 
20 40 18 

1 wt% n-
BuOH, 10-20 
µm, n-BuOH 

170,000 Barrer 

[80] 

ZIF-8/PDMS 
1-

Butanol 
40 80 81.6 

1.0 wt% n-
BuOH, 4846.2 

g/m2 h, 
[81] 

* The flux listed here is normalized to 1 µm. 

The 1-butanol/water separation factors with MOF included MMMs are 

significantly higher than the separation factors for the same membranes for ethanol/water. 

Based on  Table 1-2, 40 wt% loading ZIF-8/PDMS membranes obtained the highest 

separation factor of 81.6 when tested at 80 °C with 1 wt% 1-butanol/water solution as 

feed. In summary, the MOF MMMs exhibit great potential for bio-butanol production. 

1.5 Surface modification of zeolites and MOFs 

The surface chemistry of zeolites and MOFs can be tailored to meet the need of 

various practical applications. For example, zeolite-polymer interface adhesion in MMMs 

has been improved by surface modification of zeolites with silane coupling agents in 

order to enhance separation performance. Proper silane coupling agents are crucial to 

improve the separation performance of membranes, as some silane agents may reduce 

both the permeability and selectivity. Li et al. modified zeolite 3A, 4A and 5A particles 

with (3-aminopropyl)-diethoxymethyl silane (APDEMS) for the incorporation into 

polyethersulfone (PES) MMMs.[82] The chemistry modification process is described in 

Figure 1-9. No obvious change in total pore volume and BET surface area were observed 
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after the modification. Better adhesion between the zeolite particles and PES polymer 

was proved by the SEM characterization. The gas separation experiments showed that the 

modification resulted in improved He, H2, O2 and CO2 permeability and He/N2, O2/N2, 

O2/N2 and CO2/CH4 selectivity.  

 

 

Figure 1-9. Surface modification process of zeolites with APDEMS coupling agent. 

Image reproduced from Li et al.[82] 

The catalytic properties of zeolites can also be enhanced through surface 

modification. For instance, the conversion of bioethanol to propylene is studied as a 

method to reduce CO2 emission. The surface modification of ZSM-5 zeolite catalysts for 

this conversion reaction was applied to enhance the propylene selectivity. To enhance the 

propylene selectivity, the number of acid sites on the outer surface of zeolites needs to be 

reduced to avoid undesired reactions. Takamitsu et al. were able to achieve this by 

covering the external surface of ZSM-5 zeolites with a thin layer of pure silica ZSM-5 

zeolites.[83] The modified zeolites exhibited higher propylene yield than unmodified 

ones.  
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Post-synthetic surface modification has been studied to modify the surface 

chemistry of MOFs. It is a very useful method to introduce new functionality groups to 

MOFs. The incorporation of silica to the surface of MOF particles not only improves the 

stability, but also enables further modification of the particles for biomedical use. In 

order to form silica on the particle surfaces, the surface can be coated with 

poly(vinylpyrrolidone) (PVP) polymer first followed by the hydrolysis of 

tetraethylorthosilicate (TEOS). PVP polymer is applied to avoid particle agglomeration 

and facilities homogeneous growth during the silica formation on the particle surface. 

Taylor et al. functionalized a silica coated Mn-based nano-MOF material with 

Rhodamine B and cyclicarginine-glycine-aspartate (RGD) peptide.[84] Rhodamine B is 

able to fluoresce and be detected by optical imaging, while RGD peptide is used to target 

cancer cells. Enhanced targeted delivery of the Mn based MOFs to cancer cells was 

observed after the functionalization based on the confocal microscopic imaging 

characterization.  

Post-synthetic surface modification has applied to not only MOF particles, but 

also shaped MOF materials to address their applications. Aguado et al. carried out imine 

synthesis with substituted imidazolate-based MOF (SIM-1) films.[85] First, the untreated 

SIM-1 was synthesized on different support materials (e.g., alumina beads for catalysis 

purpose and alumina tubes for separation applications). The C12 aliphatic groups were 

then added to the film surface through an imino-functionalization reaction. Compared to 

alumina-supported un-modified SIM-1, the catalytic activity of alumina supported C12 

modified SIM-1 was about 15 times higher during the Knoevenagel reaction. Improved 
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surface hydrophobicity reduces the amount of water (secondary product) being adsorbed, 

and is hypothesized to explain the observed improved catalytic performance. SIM-1 was 

synthesized on tubular supports for combustion CO2 capture. Higher CO2 separation 

factor was found with C12 modified SIM-1 membranes for the separation of CO2/N2/H2O, 

yet the CO2 flux was reduced.[85] 

Surface modification of MOFs has also been accomplished through a ligand-

exchange method.[86, 87] The ligand can be partially or completely exchanged by this 

solvent assisted ligand exchange (SALE) method while maintaining the original 

topology.[88] The ligand exchange could be confined to the particle surface during the 

modification due to the steric effect. The SALE approach is able to introduce ligands that 

can be not added directly through normal synthesis routes.  

Recently, SALE of ZIFs has been discovered as an effective approach to improve 

the particle surface hydrophobicity. Liu and coworkers successfully exchanged the 2-

methylimidazole (MIM) ligands on the outer shell ZIF-8 particles with 5,6-

dimethylbenzimidazole (DMBIM) ligands.[87] When they applied UV-vis Raman 

spectroscopy characterization with different exciting laser wavelengths on the DMBIM-

ZIF-8 particles, different composition of the surface and bulk material was observed.  

This indicates that the ligand exchange was confined to the surface as a result of steric 

effects. Improved hydrothermal stability was found with the DMBIM surface-modified 

ZIF-8 particles. A small amount of both ZIF-8 and DMBIM-ZIF-8 particles were soaked 

in water at 80 °C for 24 hours. Afterwards, SEM and XRD were carried out on those 

particles. It was found that ZIF-8 suffered from hydrolysis and completely dissociated 
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into ZnO, while DMBIM-ZIF-8 maintained the crystal structure and morphology. Further, 

DMBIM-ZIF-8 was dispersed in polymethylphenylsiloxane (PMPS) polymer to form 

MMMs to separate isobutanol from water through pervaporation. The isobutanol/water 

selectivity was improved compared to the un-modified ZIF-8 contained PMPS MMMs 

without lowering the isobutanol flux.  

1.6 Research objectives and structure of this dissertation 

 As mentioned above, MMMs are an effective strategy to improve biofuel 

separation performance of hydrophobic PDMS polymer membranes. In this research, we 

chose ZIF-71 as filler material for the synthesis of PDMS MMMs. In order to explore the 

optimization of membrane performance for ethanol and 1-butanol separation from 

aqueous solutions, we considered several factors. The factors studied in this research are 

described in details as follows in three research objectives. 

1.5.1 Research objective 1 

 The compatibility between polymer matrix and filler materials is crucial to 

membrane performance.[89] In our work, for the first time, the compatibility of addition 

cure and condensation cure PDMS systems with ZIF-71 particles was explored. To obtain 

maximum alcohol/water separation, the effect of ZIF-71 loading on membrane separation 

performances was also studied. Three different ZIF-71 loadings were explored: 5, 25 and 

40 wt%. The separation performances will be evaluated through pervaporation 

experiments of separating ethanol and 1-butanol from water solutions.  
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1.5.2 Research objective 2 

 Particle size is one of the most important parameters influencing membrane 

separation performances. The second part of this research aims to figure out how 

different size ZIF-71 particles affect the membrane separation performances. In order to 

obtain different size ZIF-71 particles, different particle synthesis parameters including 

synthesis time, synthesis temperature and reactant ratios were altered. Then the particle 

size effect on membrane separation was explored via pervaporation separation 

experiments. 

1.5.3 Research objective 3 

ZIF-71 surface hydrophobicity can be improved by the SALE technique as 

mentioned earlier in this chapter.  Our objective in this section is to enhance the MMMs 

separation performances by enhancing ZIF-71 surface hydrophobicity. Five different 

imidazole ligands, which are more hydrophobic than the original ligand 4,5-

dichloroimidazole, were selected. Those five imidazole ligands include: 4-

methylimidazole, 4-phenylimidazole, benzimidazole, 5-methylimidazole as well as 5,6-

dimethylbenzimidazole. Ligand-modified ZIFs were incorporated into PDMS at 25 wt% 

loading and the pervaporation separation experiments of ethanol and 1-butanol from 

water solutions were carried out. The effect of ZIF-71 surface modification on separation 

performances will be evaluated based on ethanol and 1-butanol selectivity and 

permeability values.  
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1.7 Structure of dissertation 

The subsequent chapters focus on fulfilling the three objectives mentioned above. 

Specifically, Chapter 2 focuses on Objective 1 to study the compatibility between ZIF-71 

and addition cure, condensation cure PDMS systems. The two chemicals (imidazole 

ligand and zinc salt) that are used to synthesis ZIF-71 are added to the two PDMS 

systems separately. Then the effect of particle loading on alcohol/water separation 

performances is discussed. Objective 2 is addressed by Chapter 3, focusing on the 

varying synthesis parameters to obtain various size ZIF-71 particles, and then the effect 

of particle size on alcohol/water separation membrane performances is demonstrated. 

Following Chapter 3, Chapter 4 addresses Objective 3, and aims to modify ZIF-71 

particles with hydrophobic ligands to enhance alcohol separation from aqueous solutions 

through SALE method. The ligand exchange results are demonstrated through various 

characterizations and the effect of modification on membrane separation performance is 

discussed. Finally, Chapter 5 gives a summary of the results demonstrated in this 

dissertation, and some future work recommendations for membrane development for 

biofuel separations. 
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2 FREE-STANDING ZIF-71/PDMS NANOCOMPOSITE MEMBRANES FOR THE 

RECOVERY OF ETHANOL AND 1-BUTANOL FROM WATER THROUGH 

PERVAPORATION 

2.1 Introduction 

As described earlier in Chapter 1, PDMS polymer is the state-of-art hydrophobic 

material for the separation of VOCs through pervaporation. Therefore, we chose PDMS 

as the polymer matrix for the synthesis of MMMs. The filler material selected in this 

research is ZIF-71. ZIF-71 has hydrophobic structure and a window size of 0.48nm.[66] 

It is reported that the MMMs made with ZIF-71 particles have improved gas separations 

(e.g., H2/CH4, H2/CO2), biofuel separations (e.g., butanol, ethanol) and organic/organic 

separations (e.g., dimethyl carbonate/methanol).[66, 90] Particularly, ZIF-71 is reported 

to be promising filler material for biobutanol recovery through pervaporation process. 

Zhang et al. found that ZIF-71 has 1-butanol/water vapor sorption selectivity as high as 

290.[91]  

There are two main categories of PDMS synthesis: condensation cure PDMS and 

addition cure PDMS. In addition cure PDMS synthesis the cross-linking occurs via a 

hydrosilylation reaction between the vinyl-terminated PDMS and the -SiH groups of the 

cross-linker in the presence of platinum-based catalysts without producing by-

products.[92] The reaction mechanism is shown in Figure 2-1.[93] In comparison, in 

condensation cure PDMS synthesis the cross-linking happens through a condensation 

reaction between silanol-terminated PDMS and alkoxy silane groups which is catalyzed 

by tin-based catalysts.[94] The detailed reaction mechanism is demonstrated in Figure 2-
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2. These two types of PDMS have their unique properties and are not compatible with 

one another. The condensation cure PDMS is less expensive, more tear resistant than 

addition cure PDMS. In addition, the tin-based catalysts used in condensation cure are 

not liable to be inhibited while the Pt catalyst used in addition cure PDMS synthesis is 

easily poisoned in the presence of amine or sulfur-containing compounds.[95] The 

inhibition of catalysts prevents the polymer from curing completely. The condensation 

cure PDMS reaction releases by-products that lead to slight shrinkage of the polymer, 

while the addition cure PDMS system provides very little shrinkage. Certain addition 

cure PDMS polymers are skin safe and food safe.  

 

Figure 2-1. The cross-linking reaction mechanism occurred in addition cure PDMS 

preparation. Image reproduced from Stafie et al.[93] 
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Figure 2-2. The cross-linking reaction mechanism occurred in condensation cure PDMS 

system. Image reproduced from Bighane et al.[96]  

It is important to make sure ZIF-71 particles are compatible with the PDMS 

polymer to form a proper composite membrane. The motivation for the ZIF-71/PDMS 

compatibility test is that incomplete cross-linking was observed during the preparation of 

ZIF-71/addition cure PDMS MMMs. The 40 wt% ZIF-71 loading membranes did not 

cure properly (they were gelatinous). As a result, experiments were carried out to study 

the compatibility between ZIF-71 and two types of PDMS systems. To discern the 

influence of Zn salt and imidazole ligand on the cross-linking process, these two 

chemicals were added separately during the PDMS polymer synthesis.  

Two recent references reported polyvinylidene fluoride (PVDF)-supported ZIF-

71/PDMS MMMs for alcohol recovery of water through pervaporation.[76, 77] Both 

studies utilized addition cure PDMS synthesis for their MMMs, conversely here we used 

the condensation cure method and made unsupported membranes. Li et al. reported 
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ethanol/water selectivity of 0.64 from 17 wt% ZIF-71 loading ZIF-71/addition-cure 

PDMS composite membranes on PVDF substrates. Wee et al. reported that 40 wt% 

submicron-sized ZIF-71 loading addition-cure PDMS MMMs on PVDF substrates had an 

ethanol/water selectivity of about 0.66.[77] 

2.2 Experimental 

2.2.1 Materials  

RTV615A (Silicone potting compound) and RTV615B (cross-linking agent) were 

purchased from Momentive Performance Materials. Ethanol (ACS reagent grade, 

≥99.5%), n-heptane (anhydrous, 99%), tetraethyl orthosilicate (TEOS, 99.999% trace 

metals basis) and 2-methylimidazole (mIm) (99%) were obtained from Sigma-Aldrich. 

Alfa Aesar supplied zinc acetate dihydrate (Zn(OOCCH3)2·2H2O) (ACS, 98.0-101.0%) 

and toluene (ACS reagent grade, 99.5%). The 4,5-dichloroimidazole (dcIm) (>97%) was 

purchased from Tokyo Chemical Industry, methanol (HPLC) was purchased from 

LabChem Inc. and BYTAC® surface protector (FEP, white, aluminum) was supplied by 

Cole-Parmer. The silanol terminated polydimethylsiloxane (DMS-S45, 110,000 g/mol), 

titanium 2-ethylhexoxide (AKT867) and di-n-butyldiacetoxytin tech-95 (SND3160) were 

obtained from Gelest. 

2.2.2 Synthesis of PDMS polymers and ZIF-71 particles 

2.2.2.1 Addition cure PDMS synthesis 

The addition cure PDMS membranes were prepared from RTV615 (Momentive 

Performance Materials). The component RTV615A was the vinyl terminated polymer 

base, which included Pt-based catalysts, while RTV615B was the cross-linker with -SiH 
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groups. To prepare free-standing pure PDMS films, RTV615B, RTV615A and toluene 

were mixed at a mass ratio of 1:10:100. The solution was heated to 50 °C while stirring 

until the solution became viscous. The solution was degassed under vacuum after mixing 

for approximately two minutes. Finally, a GARDCO® casting blade was used to cast the 

solution into membranes on borosilicate glass plates coated with BYTAC® (to prevent 

the PDMS film from sticking to the glass plate). After casting, the membranes were dried 

at room temperature for 48 hours and then heated at 100 °C for 15 hours under vacuum 

(to complete cross-linking).  

The preparation of ZIF-71/PDMS nanocomposite membranes was similar to the 

free-standing pure PDMS membranes. RTV615A in toluene was first mixed with a probe 

sonicator (FS-300N, Shanghai Shengxi Ultrasonic Instrument Co., Ltd.). Then, ZIF-71 

particles were dispersed into the RTV615A/toluene solution by sonicating for 1 hour with 

a bath sonicator (FS220, Fisher Scientific). Finally, RTV615B was added to the 

RTV615A/toluene/ZIF-71 solution and stirred, heated, degassed and was cast the same as 

the pure PDMS films.  

2.2.2.2 Condensation cure PDMS synthesis 

The synthesis of the condensation cure PDMS was based on Bighane et al.’s 

method.[96] To prepare pure PDMS films, 8 g of anhydrous heptane was added to 1 g of 

silanol terminated polydimethylsiloxane. To ensure the polymer was thoroughly mixed 

with solvent, first 3 minutes vortex mixing was applied. Next eight repeats of the two-

step process of: (1) 60s of sonication with the probe sonicator at 300 W followed by (2) 

90s vortex mixing were performed. After the sonication repeats were completed, 0.2 g of 
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TEOS was mixed into the solution with 3 minutes vortex mixing. Finally, approximately 

0.012 to 0.04 g of each titanium 2-ethylhexoxide and di-n-butyldiacetoxytin tech-95 were 

added followed with 3 minutes vortex mixing. Then, the solution was poured into a 9 cm 

diameter Teflon flat-bottom evaporating dish in a humidity controlled box under 75% 

relative humidity to cross-link the polymer. After 21 hours, the films were removed from 

the humidity controlled box and dried them in two stages – first in a vacuum oven at 100 

˚C for 20 hours and second in a vacuum oven at 120 ˚C for 11 hours to remove any 

residual solvent and byproducts. 

To synthesis ZIF-71/PDMS MMMs, the PDMS-heptane solution was first 

prepared by adding 8 g of n-heptane to 1 g of silanol terminated PDMS, followed by 3 

minutes vortex mixing. Next, 8 repeats of the combination of 60 s of probe sonication at 

300 W followed by 90 s vortex mixing were performed. Then, a ZIF-71-heptane solution 

was prepared. A fixed amount of ZIF-71 (varies with different loadings) was added to 6 g 

of n-heptane. Then the solution was mixed with probe sonication at 90 W for 3 minutes 

followed by 3 minutes vortex mixing. This sonication-vortex mixing was repeated for 

two cycles. After that, 1 g of PDMS-heptane solution was transferred to the ZIF-71-

heptane solution, followed by 3 minutes probe sonication at 90 W and 3 minutes vortex 

mixing. The remainder of the PDMS-heptane solution was then transferred to the ZIF-71-

PDMS-heptane solution. Again the solution was mixed with probe sonication at 90 W for 

3 minutes followed by vortex mixing 3 minutes. The sonication-vortex mixing 

combination is repeated twice. After that, 8g of n-heptane was removed by evaporation 

while stirring. After stirring, 0.2 g of TEOS was added followed by an additional 3 
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minutes of stirring. Finally approximately 0.012 to 0.04 g of each titanium 2-

ethylhexoxide and di-n-butyldiacetoxytin tech-95 were added to the solution, followed 

with 3 minutes stirring. Similar to the neat PDMS membranes, the solution was then 

poured into the Teflon flat dish in a humidity-controlled box (75 % RH) to cross-link the 

polymer. Again, after 21 hours, the films were removed from the humidity controlled box 

and dried in two stages – first in a vacuum oven at 100 ˚C for 20 hours and second in a 

vacuum oven at 120 ˚C for 11 hours. 

2.2.2.3 ZIF-71 synthesis 

The ZIF-71 nanoparticles were synthesized based on the method published by 

Lively et al. [97] The Zn(OOCCH3)2·2H2O (0.1756g, 1mmol) and dcIm (4mmol, 

0.4383g) each were dissolved individually in 25 mL of methanol. Then, the dcIm was 

added dropwise into the Zn(OOCCH3)2·2H2O/methanol solution. Next, the 

Zn(OOCCH3)2·2H2O/dcIm/methanol solution was stirred at room temperature for 2 hours. 

After completion of the stirring, the ZIF-71 nanoparticles were washed with 

centrifugation and sonication in methanol three times. Finally, the product was dried at 

40 °C for 6 hours to remove any remaining methanol. 

2.2.2.4 ZIF-71 Water stability test 

In order to evaluate the stability of ZIF-71 in water, the ZIF-71 particles were 

dispersed in water at 25 °C and 60 °C for seven days. Then a centrifuge was used to 

remove the water and the particles were then dried in an oven. Finally, XRD was applied 

to confirm the ZIF-71 crystal structure and SEM was carried out to confirm the 

morphology. 
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2.2.2.5 ZIF-71/PDMS compatibility test 

In order to investigate the compatibility of ZIF-71 with the two PDMS synthesis 

methods, the dcIm/PDMS and zinc acetate dihydrate/PDMS membranes were made via 

the same processes as ZIF-71/PDMS membranes. The amount of dcIm and zinc salt used 

was equivalent to the amount of dcIm or zinc salt present in a 25 wt% ZIF-71 loading 

PDMS membrane.  

2.2.2.6 Pervaporation performance 

The pervaporation performance was measured in a batch apparatus with heated-

recirculating feed. The schematic of the setup used in this research is shown in Figure 2-

3. The feed circulation speed was maintained at 60 mL/min. The membrane was fixed at 

the bottom of the feed cell with a porous stainless steel support. The feed solution had a 

mass of 35 g and was either of 2 wt% ethanol in water or 2 wt% 1-butanol in water. The 

support side of the system was connected to a vacuum pump, maintaining a pressure on 

the downstream side of the membrane of 4.67 Pa. The effective surface area of the 

membranes was 1.431×10-4 m2. The thicknesses of the free-standing membranes were 

measured with a Marathon electronic digital micrometer (Part No. CO 030025) of ±2 µm 

accuracy. The average of four measurements from different parts of the membrane was 

taken as the thickness. Prior to collecting permeate, the feed cell and circulation lines 

were heated to 60 °C and the system was stabilized at this temperature for 1.5 hours to 

ensure the system approached steady state operation. The permeate was collected with a 

liquid nitrogen cold trap for two hours. The permeate was weighed and the composition 

was analyzed via gas chromatography (Agilent technologies 7890A GC system). 
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Figure 2-3. Schematic diagram of the pervaporation setup used in this research. 

The composition of feed solution was essentially unchanged during the 

experiment because the mass transferred across the membrane was very small compared 

to the total mass of the feed solution (the mass of the permeate weight was a factor of 600 

less than the mass of feed solution).  

2.2.3 Characterization 

X-ray diffraction (XRD) with powder X-ray diffractometer (Siemens D5000) was 

used to investigate and confirm the crystal structure of the ZIF-71 particles. The 

diffraction patterns were collected on a Panalytical X’pert Pro X-ray Diffractometer 

using Cu Kα radiation. 
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The morphology of the synthesized ZIF-71 particles and membranes were 

evaluated with scanning electron microscopy (SEM) (Philips FEI XL-30). Prior to SEM, 

the samples were sputter coated with gold. Dynamic light scattering (DLS, DynaPro 

MS/X, Protein Solutions Inc.) was applied to quantify the mean diameter of the ZIF-71 

particles. 

Tensile testing with a TA XT Plus Texture analyzer was performed to quantify 

the mechanical properties (Young’s modulus, fracture stress and strain) of the membranes 

at a test speed of 0.5 mm/s at room temperature. For each sample type, it is reported the 

average of 5 samples. The membrane thicknesses vary from 100 to 300 µm depending on 

the ZIF-71 loadings.  

2.3 Results and discussion 

2.3.1 Characterization of ZIF-71 and stability test in water 

Figure 2-4 shows the X-ray diffraction pattern of as-synthesized ZIF-71, ZIF-71 

after immersion in water at room temperature for 7 days, and ZIF-71 after immersion in 

water at 60°C for seven days. In the as-synthesized ZIF-71 data, all of the reflections 

matched the reference diffraction pattern for ZIF-71. For both the reference pattern and 

the pattern of the as-synthesized ZIF-71, there was a characteristic reflection around a 2θ 

of 7.[66] After immersion in water for seven days at both 25 °C and 60 °C, all of the ZIF-

71 reflections were still present in the XRD pattern with no peak shifting or broadening. 

This indicated that the ZIF-71 crystal structure was maintained. As a result, we concluded 

that ZIF-71 was stable in water and can be used for the pervaporation of alcohols from 

dilute aqueous solutions. Decomposition of ZIF-8 was reported by Liu et al. with crystal 
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concentration of 0.6 wt% (WZIF-8/(WZIF-8 + Wwater)) and 0.060 wt% in water at 80 °C for 

24h.[87]  In fact, ZIF-8 was fully converted to ZnO when the crystal concentration is low 

at 0.060 wt%.  The degradation of ZIF-8 in water was also observed by Zhang et al., they 

reported an increase in Zn2+ concentration and pH value in the liquid supernatant when 

ZIF-8 powders were dispersed in pure water solution.[98] This suggests the hydrolysis of 

ZIF-8 crystals in water solution. In contrast to ZIF-8, here we found ZIF-71 to be stable 

in water. We hypothesize this results from the hydrophobicity of dcIm (ligand used in 

ZIF-71) which is higher than mIm (ligand used in ZIF-8). The ligand mIm has water 

solubility of 780 g/L while dcIm is insoluble in water. The hydrophobic nature of dcIm 

ligand enhances the ZIF-71 hydrothermal stability compared to ZIF-8.  
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Figure 2-4. XRD patterns of ZIF-71 and ZIF-71 after immersion in water for seven days 

at two temperatures. The ZIF-71 reference is simulated reflection pattern obtained 

through Cambridge Crystallographic Data Center. 

The morphology of the as-synthesized ZIF-71 particles was also checked using 

SEM imaging. Figure 2-5a shows that the ZIF-71 particles are cubic-shaped. DLS 

showed that the average size of the ZIF-71 particles was 646.2 ± 6.3 nm. The 

morphology of ZIF-71 particles remained the same after exposure to water, which was 

consistent with the XRD data. The particle diameter measured from DLS was 630.0 ± 3.7 

nm after the particles were immersed in water for 6 days at 60°C. Additionally, the SEM 

images confirmed that ZIF-71 was stable after 7 days of immersion in water at 60°C.  
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Figure 2-5. SEM images of (a) ZIF-71, (b) ZIF-71 immersed in water for seven days at 

25°C, and (c) ZIF-71 immersed in water for seven days at 60 °C. 

2.3.2 The effect of dcIm and zinc acetate dihydrate on the cross-linking of PDMS 

An issue was observed with the cross-linking of the PDMS during synthesis of the 

addition cure ZIF-71/PDMS composite membranes. It was found that for the 40 wt% 

ZIF-71 loading PDMS composite membranes synthesized via addition cure, the 

membranes are much less flexible and they tear easily compared to pure PDMS 

membranes. It was unable to obtain a 40 wt% ZIF-71 loaded membrane with enough area 

to test because the membrane tore when we peeled it from the casting plate. Our 

hypothesis was that the imidazole linker interfered with the cross-linking process. 

Specifically, the platinum-based catalyst participating in the cross-linking reaction was 

poisoned by the imidazole linker. Previously, Yang et al. and Fu et al. observed that 

imidazole was chemically incompatible with Pt catalysts, which was consistent our 

hypothesis. Yang et al. found that imidazole-based Nafion membranes used in fuel cells 

could not generate current as a result of imidazole poisoning the platinum catalyst.[99] Fu 

et al.[100] also observed imidazole molecules poisoning the Pt catalyst in the Nafion-

imidazole membrane fuel cells. They found that the doping of H3PO4 improved the fuel 
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cell performance because incorporated H3PO4 reacted with the imidazole to form 

imidazolium salts, thus suppressing the poisoning effect of the imidazole on the Pt 

catalyst. When Fu et al. replaced the Pt catalyst with a Pd-Co-Mo catalyst, they found the 

Nafion-imidazole-H3PO4 membrane had better performance - even though the Pd-Co-Mo 

catalyst had lower catalytic activity compared to Pt catalyst. These results confirmed the 

incompatibility between imidazole and Pt catalyst.  

Some experiments were performed to test our hypothesis about ZIF-71 interfering 

with PDMS cross-linking. To discern the effect of ZIF-71 incorporation on the cross-

linking of PDMS, the two synthesis components of ZIF-71 (the organic linker dcIm and 

zinc acetate dihydrate) were added separately into the PDMS casting solution during 

preparation of both addition cure and condensation cure PDMS films. It appeared that 

dcIm interfered with the cross-linking of RTV615A and RTV615B as is shown in Figure 

2-6a. Typically addition cure free-standing PDMS films with no extra components are 

optically transparent and can be picked up off of the casting plate. Films loaded with 

dcIm did not form a film, but a gel. We could not quantify the mechanical properties of 

the dcIm/addition cure PDMS with tensile testing because of the lack of film formation. 

These experiments supported our hypothesis that the imidazolate linker dcIm poisoned 

the Pt catalyst during the addition cure formation of PDMS. 
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Figure 2-6. Addition cure PDMS film made with (a) 4,5-dichloroimidazole (dcIm) and (b) 

zinc acetate dihydrate and (c) pure PDMS. Note the white spots in (a) which are dcIm 

and note that a membrane film was not formed in (a), only a gel that could not be picked 

up in a single piece from the casting plate. 

The compatibility test between 2-methylimidazole (mIm), the imidazole ligand 

used in ZIF-8, and addition cure PDMS was also carried out to check if the Pt poisoning 

effect applies to other ZIFs besides ZIF-71.  Similar to the compatibility test of dcIm, 

equivalent to 25 wt% ZIF-8 loading was incorporated into addition cure PDMS synthesis 

solution. The result is shown in Figure 2-7. Same as dcIm, the PDMS did not cure and the 

polymer solution remained like a gel. Therefore, we conclude that ZIFs containing 

imidazole ligands may poison the Pt catalyst and interfere with the addition cure PDMS 

cross-linking process.  
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Figure 2-7. The 2-methylimidazole incorporated addition cure PDMS membrane. The 

amount of 2-methylimidazole added is equivalent to 25 wt% ZIF-8 loading. 

In contrast, normal film formation was observed in zinc acetate dihydrate/addition 

cure PDMS membrane (Figure 2-6b), dcIm/condensation cure PDMS (Figure 2-8b) and 

zinc acetate dihydrate/PDMS membranes (Figure 2-8a). It is concluded that the 

condensation cure method was compatible with ZIF-71 incorporation while addition cure 

PDMS membranes were not compatible with ZIF-71. The permeation and mechanical 

results reported below were based on membranes formed with condensation cure PDMS 

synthesis.   
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Figure 2-8. Condensation cure PDMS films made with (a) zinc acetate dihydrate and (b) 

4,5-dichloroimidazole. Note the white spots in (a) and (b) which are zinc acetate 

dihydrate and 4,5-dichloroimidazole. 

2.3.3 Characterization and pervaporation performance of the ZIF-71/PDMS 

nanocomposite membranes 

SEM was performed to characterize pure PDMS membranes and ZIF-71/PDMS 

nanocomposite membranes. Figure 2-9 shows SEM images that verify the incorporation 

of ZIF-71 in the composite membranes. From the surface view of the membranes good 

film formation with no obvious defects or cracks was observed. The ZIF-71 particles 

appeared evenly distributed through the polymer matrix. No large aggregates in the 

composite membranes were observed, even in the membranes with the highest ZIF-71 

loading (40 wt%). 
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Figure 2-9. SEM images of surface view of condensation-cure PDMS-based membranes 

a) pure PDMS, (b) 5 wt%, (c) 25 wt% and (d) 40 wt% ZIF-71 loading nanocomposite 

membranes. 

Figure 2-10 shows the permeability of water and 1-butanol as well as the 1-

butanol/water selectivity of the various loading membranes. Permeabilities of both 1-

butanol and water as well as 1-butanol/water selectivity increased with increasing ZIF-71 

loading. The 40 wt% ZIF-71 membrane had the largest water permeability of 21758 ± 

2497 Barrer, 1-butanol permeability of 123045 ± 17118 Barrer, and 1-butanol/water 

selectivity of 5.64 ± 0.15 (corresponding separation factor is 69.9±1.8). Liu et al. 

obtained similar results with ZIF-71/PEBA MMMs, they observed an increase in both 

water and 1-butanol permeabilities with higher ZIF-71 loadings.[69] In this research, the 

increased 1-butanol permeability might result from the hydrophobic nature of the ZIF-71 
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particles as well as the loose chain packing of the PDMS polymer matrix. The increased 

1-butanol/water selectivity indicated that the increase in 1-butnaol permeability 

outweighed the increase in water permeability. This was because of the hydrophobic 

nature of the ZIF-71 particles that facilitates the adsorption and transport of 1-butanol 

molecules. 

 Liu et al. obtained a maximum 1-butanol/water selectivity of approximately 5 for 

25 wt% ZIF-71 loading PEBA MMMs, while in our research 40 wt% ZIF-71 loading 

PDMS membranes achieved a higher 1-butanol/water selectivity of 5.64.[69] However, 

ZIF-71/PEBA MMMs had higher 1-butanol and water permeabilities compared to our 

ZIF-71/PDMS membranes. The highest 1-butanol permeability obtained in ZIF-71/PEBA 

membranes was close to 200,000 Barrer compared to 123,045 Barrer achieved in our 

research with ZIF-71/PDMS MMMs. Bai et al. observed a maximum 1-butanol/water 

selectivity of approximately 3.7 for 2 wt % ZIF-8/PDMS MMMs with a feed temperature 

of 60 °C.[101] Bai et al. achieved a 1-butanol permeability approximately half of the 

amount compared with the 40 wt% ZIF-71 loading PDMS MMMs reported here.  
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Figure 2-10. 1-butanol/water selectivity, water permeability, and 1-butanol permeability 

for pervaporation tests at 60 °C. 

Figure 2-11 presents the ethanol and water permeability and ethanol/water selectivity of 

the membranes. Consistent with the separation performance observed for 1-butanol and 

water, these membranes had an increase in both ethanol and water permeability, and 

ethanol/water selectivity as the ZIF-71 loading increased. The ethanol permeability 

increase in 40 wt% ZIF-71 membranes is double that of pure PDMS membranes. The 

water permeability of these membranes increased by a factor of 1.8. The ethanol/water 

selectivity increased from 0.60 ± 0.05 (separation factor of 9.2 ± 0.7) for pure PDMS 

membranes to 0.81 ± 0.04 (separation factor of 12.4 ± 0.3) with 40 wt% ZIF-71 loading 

MMMs. The maximum ethanol/water selectivity achieved here (0.81) is roughly half of 

the value obtained from pure crystalline ZIF-71 membranes, which is 1.5.[66]  
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Figure 2-11. Ethanol/water selectivity, water permeability, and ethanol permeability for 

pervaporation tests at 60 °C. 

2.3.4 Tensile test of ZIF-71/PDMS nanocomposite membranes 

Table 2-1 presents the tensile test results of the pure PDMS and ZIF-71/PDMS 

membranes. The table clearly shows that the fracture strain decreased from 381.4 ± 32.6 

to 35.6 ± 3.1 when the ZIF-71 loading increased to 40wt%. This suggests that the 

membrane ductility was declining with the addition of ZIF-71. This might be attributed to 

the low ductility of ZIF-71 particles. The Young’s modulus increased significantly with 

higher ZIF-71 loadings, indicating that the addition of ZIF-71 stiffened the membranes. 

The enhanced Young’s modulus might result from the ZIF-71 particles restricting PDMS 



 48 

film deformation.[102] Additionally, no significant change of fracture stress was 

observed between all the membranes. 

 
Table 2-1. Young’s modulus, fracture stress and fracture strain of different ZIF-71 

loading MMMs. 

ZIF-71 loading 

(wt%) 

Young’s modulus 

(kPa) 

Fracture stress 

(kg/mm2) 

Fracture strain 

(%) 

0 10.00±0.44 0.28±0.02 381.4±32.6 

5 11.57±1.89 0.24±0.05 255.9±52.5 

25 41.97±1.75 0.32±0.02 242.3±56.0 

40 225.75±26.14 0.21±0.03 35.6±3.1 

2.4 Conclusion 

In this chapter, the stability of ZIF-71 in water was evaluated. It was found that 

ZIF-71 is stable after seven days of exposure to water at 60°C. The imidazole organic 

linker dcIm impairs the cross-linking of the vinyl terminated PDMS (RTV615A) and the 

-SiH groups (RTV615B) by poisoning the Pt catalyst contained in RTV615A, which was 

used in the addition cure PDMS synthesis solution. The imidazole linker dcIm was 

compatible with condensation cure PDMS. The ZIF-71/condensation cure PDMS 

nanocomposite membranes were synthesized with four different ZIF-71 loadings: 0, 5, 25 

and 40 wt%. The alcohol/water separation performances of condensation-cure PDMS 

membranes were enhanced through the incorporation of ZIF-71 particles. The improved 

separation performances can lead to the reduction of energy costs during the 
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pervaporation process. Overall, the membranes with 40 wt% ZIF-71 had the highest 

permeabilities as well as selectivities. For ethanol/water separation, 40 wt% ZIF-71 

loading MMMs had the greatest observed ethanol permeability of 24809 ± 4374 Barrer, 

water permeability of 30661 ± 4015 Barrer and selectivity of 0.81 ± 0.04. For 1-

butanol/water separation, 40 wt% ZIF-71 loading MMMs had the highest 1-butanol 

permeability of 123045 ± 17118 Barrer, water permeability of 21758 ± 2497 Barrer and 

selectivity of 5.64 ± 0.15. According to tensile testing, the fracture strain of the 

membranes decreased significantly with the incorporation of ZIF-71 into the PDMS. The 

Young’s modulus increased considerably with the addition of ZIF-71 particles.   
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3 EFFECT OF ZIF-71 PARTICLE SIZE ON ZIF-71/PDMS COMPOSITE 

MEMBRANES PERFORMANCES FOR ETHANOL AND 1-BUTANOL 

REMOVAL FROM WATER THROUGH PERVAPORATION 

3.1 Introduction 

PDMS is the state-of-art polymer for separating organic compounds from water 

solutions through pervaporation processes. It possesses many advantages over other 

polymers including high selectivity, good mechanical stability and chemical stability.[33] 

However, the separation performances of PDMS membranes need improvement to be 

economically competitive with traditional distillation methods. One of the most 

promising techniques is to incorporate filler materials of high organophilic selectivity 

such as high-silica zeolites into the PDMS polymer to form MMMs.[33] Vane et al. 

observed a significant improvement of PDMS separation performances with the addition 

of high silica ZSM-5 zeolites.[3] They reported an ethanol/water selectivity of 3.0 with 

65 wt% ZSM-5 zeolites incorporated into PDMS membranes.  

Particle size plays a significant role in MMMs separations with variable results. It 

is challenging to predict the effect of particle size on MMM separation performance, and 

mixed results have been observed. Tantekin-Ersolmaz et al. studied the effect of zeolite 

particle size on the O2, N2 and CO2 gas permeabilities through silicalite-1/PDMS 

membranes.[103] They prepared 20 wt% and 40 wt% zeolite loading MMMs with five 

different size silcialite-1 particles: 0.1, 0.4, 0.7, 0.8 and 8 µm. For both zeolite loadings, 

they observed increasing gas permeabilities with increasing particle sizes. It is obvious 

that MMMs made with smaller particles have significantly higher zeolite-polymer 
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interfacial areas. They concluded that the decrease in gas permeability might be the result 

of enhanced mass transfer resistance through the interfaces. Tantekin-Ersolmaz et al. also 

observed the highest CO2/ N2 and CO2/ O2 selectivity with 0.8 µm silicalite-1 

particles.[103] Vane et al. evaluated the effect of high-silica zeolite particle size on 

membrane performances with zeolite/PDMS MMMs for recovering ethanol from water 

through pervaporation.[3] Membranes made with 2.4 µm zeolite particles had better 

separation performances than membranes made with submicron size zeolite particles. 

Another study carried out by Wang et al., however, showed that smaller silicalite-1 

particles (100 and 200 nm) had better compatibility with the PDMS polymer matrix than 

larger particles (400 and 1000 nm).[104] The separation factor of silicalite-1/PDMS 

MMMs was enhanced from 8.9 to 10.5 with smaller size particles. Because the reported 

variable effects of particle size on MMM separation performance, in our research we 

investigated the role of zeolitic imidazolate framework-71 (ZIF-71) particle size in 

PDMS membranes. 

ZIFs are an attractive filler material for the preparation of pervaporation 

MMMs.[69, 76, 77, 105, 106] ZIFs are a subclass of MOFs. They are composed of 

transition metal ions, such as Zn2+, that are connected by imidazole organic linkers.[63]  

ZIFs have zeolitic topologies and their high thermal and chemical stability are attractive 

for challenging separation applications.[87] The numbering convention in ZIFs is 

arbitrary and loosely based on when the ZIF was discovered. ZIF-71, Zn(4,5-

dichloroimidazole)2, was used as the filler material for making PDMS composite 

membranes. ZIF-71 is hydrophobic and has the Rho topology. The pore size is 0.48 nm 
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and ZIF-71 displays high sorption capacity for butanol, ethanol, and other alcohols.[63, 

91, 97] In addition, a number of studies have shown ZIF-71 has good performances in 

removing methanol (MeOH), ethanol and butanol from water solutions via 

pervaporation.[66, 69, 77] Work by Dong et al. shows that ZIF-71 membranes have a 

MeOH/water selectivity of 4.32 and ethanol/water selectivity of 1.50. Zhang et al. found 

that ZIF-71 has a vapor phase 1-butanol/water selectivity of 290 for a 0.25 mol% 1-

butanol/water feed, which is higher than ZIF-8 and ZIF-90.[91] Those results indicate 

that ZIF-71 is a promising filler material for separation of alcohols from water solution.  

Several synthesis techniques have been explored to control the size of ZIFs. 

Sánchez-Laínez et al. synthesized ZIF-11 with average size of 36 ± 6 nm with a 

centrifugation method.[107] Using the same reaction time, Sánchez-Laínez et al. 

synthesized nanoscale ZIF-11 through centrifugation synthesis technique, but only 

obtained micro-sized ZIF-11 through conventional synthesis. Seoane et al. found that 

ZIF-8 and ZIF-20 can be synthesized with ultrasound (US) method.[108] In the US 

method, cavitation of the solvent generates high temperature and pressure, which 

facilitates the synthesis of different type nano-materials. The US synthesis method 

achieved particles two orders of magnitude smaller with narrower size distribution than 

particles made with the traditional solvothermal method.  

Below summarizes the literature on tailoring ZIF sizes by altering different 

parameters such as 1) reactant ratio: ZIF-8 is one of the most reported on ZIF structures, 

Bao et al. altered the reactant ratio and observed ZIF-8 particle size decreased from 350 

to 190 nm when 2-methylimidazole (mIm)/Zn molar ratio increased from 10 to 20 using 
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Zn(OAc)2·2H2O as zinc salt in aqueous solution.[109] Tanaka et al. also altered reactant 

ratio and found that ZIF-8 particle size decreased with increasing mIm/zinc ratio.[110]  2) 

Zinc salt sources: Chi and coworkers reported the size control of ZIF-8 nanoparticles 

through different sources of zinc salts.[111] They obtained nanoparticles of diameters 88, 

240 and 533 nm using zinc nitrate, zinc acetate and zinc chloride, respectively. Owing to 

the solubility and reactivity difference of different zinc sources, the zinc precursors with 

greater solubility provide more Zn2+ ions. As a result, the nucleation rate is enhanced 

which leads to smaller particles sizes.[111] 3) Synthesis temperature: ZIF-7 and ZIF-62 

are much less prevalent in the literature than ZIF-8, however Gustafsson et al. studied the 

influence of synthesis temperature on ZIF-7 and ZIF-62 particle size.[112] They 

determined that the effect of temperature is different for ZIF-7 and ZIF-62, implying that 

the effects of changing the synthesis temperature on particle size are not predictable. The 

particle size of ZIF-7 decreased with increasing temperature while the particle size of 

ZIF-62 increased several times when the synthesis temperature increased from 85 °C to 

110 °C. Tsai et al. observed a decrease in ZIF-8 particle size from 78 to 26 nm when the 

synthesis temperature increased from -15 to 60 °C.[113] The opposite results with 

different ZIFs might because the temperature has different influences on the crystal 

nucleation rates. If the nucleation rate increases with temperature, the final particle size 

will become smaller.[113] 4) Synthesis solvent: Wee et al. prepared ZIF-71 with different 

particle sizes (140, 290 and 430 nm) by changing the MeOH : Dimethylformamide 

(DMF) volume ratio. They found that the deprotonation rate of organic linkers was 

altered upon changing the synthesis solvent, thus the nucleation and crystal growth rate 
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were affected. The addition of DMF solvent into the synthesis solution enhanced the 

ligand deprotonation rate and the nucleation rate. Therefore, smaller particles were 

obtained. 5) Use of additives: research done by Nordin et al. demonstrated that the 

addition of different concentration trimethylamine (TEA) additive results in ZIF-8 

particles of sizes ~134nm and ~288nm.[114]  The presence of TEA facilities the mIm 

deprotonation rate and the nucleation is induced. Smaller size ZIF-8 particles were 

produced with higher TEA concentrations.  

Several groups have reported synthesizing ZIF-71 of different particle sizes by 1) 

using different solvents, 2) using additives, and 3) by increasing temperature above room 

temperature. 1) Japip et al. reported ZIF-71 with particle size less than 100 nm.[90] They 

obtained the nanoparticles with a room temperature method using DMF as synthesis 

solvent. They also obtained ZIF-71 particles of 30, 200 and 600 nm with different MeOH 

: DMF volume ratios based on Wee et al.’s research. Lively et al. synthesized one 

micrometer diameter ZIF-71 particles at room temperature in MeOH.[97] As mentioned 

earlier, Wee’s group obtained different size ZIF-71 particles by varying MeOH : DMF 

volume ratios. However, DMF has a kinetic diameter of 5.2-5.5 Å, which is larger than 

the window size of ZIF-71 (4.8 Å). Thus, DMF is hard to remove from the framework 

structure and lowers the surface area of the particles.[97] Therefore, methanol with a 

smaller kinetic diameter (3.6 Å) is easier to remove from the network and is a better 

option for ZIF-71 synthesis. 2&3) Wang et al. added formic acid into the synthesis 

solution (with MeOH as solvent) at room temperature, and obtained smaller size (450 

nm) particles compared to synthesized without additives (800 nm).[115] They also 
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observed an increase in particle size (1~2 µm) when synthesis temperature was increased 

from room temperature to 50 and 80 °C with a solvothermal synthesis process.[115]  

 Although there have been several research reports on the synthesis of ZIF-71 

particles with different sizes (as described above), to our knowledge, the effect of 

synthesis temperature, reaction ratio and reaction time on ZIF-71 size has not been 

systematically studied for the non-solvothermal synthesis process when MeOH is used as 

solvent.[77, 90, 115] Note that Wee et al. previously reported the effect of ZIF-71 particle 

size on ZIF-71/PDMS MMMs performances for ethanol removal from water. However, 

Wee et al. synthesized addition cure PDMS membranes, conversely we report results 

from condensation cure PDMS membranes. Based on our previous research, 

condensation cure PDMS is more compatible with ZIF-71 particles than addition cure 

PDMS.[116] In addition, we observed different particle size effect on membrane 

performances than Wee et al. The goals are to investigate the influence of different 

synthesis parameters (temperature, reaction ratio, reactant time) on ZIF-71 particle size 

and study the impact of ZIF-71 particle size on free-standing ZIF-71/PDMS MMMs 

performances for removing ethanol and 1-butanol from water through pervaporation.  

3.2 Materials 

For the synthesis of ZIF-71 particles, zinc acetate dihydrate (Zn(OAC)2·2H2O) 

(ACS, 98.0-101.0%) was purchased from Alfa Aesar, 4,5-dichloroimidazole (dcIm) 

(>97%) was purchased from Tokyo Chemical Industry and MeOH (HPLC) was supplied 

by LabChem Inc. Gelest supplied the silanol terminated PDMS (DMS-S45, 110,000 

g/mol), titanium 2-ethylhexoxide (AKT867) and di-n-butyldiacetoxytin tech-95 
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(SND3160) for ZIF-71/PDMS composite membrane synthesis. The n-heptane 

(anhydrous, 99%) and tetraethyl orthosilicate (TEOS, 99.999% trace metals basis) were 

purchased from Sigma-Aldrich.  

3.3 Sample preparation and characterization instrumentation 

 X-ray diffraction (XRD) with powder X-ray diffractometer (X’pert Pro, 

Panalytical) was carried out to evaluate the crystal structure of ZIF-71 particles. Using 

scanning electron microscope (SEM) imaging (XL-30 ESEM), the morphology of both 

ZIF-71 particles and membranes were evaluated. Dynamic light scattering (DLS) 

(DynaPro MS/X, Protein Solutions Inc.) was performed to study the ZIF-71 particle size 

and distribution. For DLS sample preparation, a sonication bath (FS220, Fisher 

Scientific) was used. Gas chromatography (GC, Agilent technologies 7890A GC system) 

was used to analyze the composition of the permeance solution from the pervaporation 

experiments. For membrane synthesis, the synthesis solution was sonicated with probe 

sonicator (FS-300N, Shanghai Shengxi Ultrasonic Instrument Co., Ltd.) and the solution 

was also mixed by VWR fixed speed vortex mixer (Model No. 945302).  

3.4 Preparation and characterization of different sizes of ZIF-71  

The synthesis of ZIF-71 particles was based on a method presented by Lively et 

al.[97] MeOH was used as the synthesis solvent. The molar ratio of dcIm to 

Zn(OAC)2·2H2O was varied from 1:1 to 7:1 at room temperature. The synthesis time was 

altered from 0.5 to 4 hours at room temperature. To study the influence of synthesis 

temperature on particle size, different temperatures (-20, -10, 0, 10, 15, 30 and 35 °C) 
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were used with a dcIm: Zn(OAC)2·2H2O molar ratio of 4:1 and a reaction time of two 

hours.  

 To perform the synthesis at -20, -10, 0, 10 and 15 ºC, the beakers containing the 

dcIm/MeOH and Zn(OAC)2·2H2O/MeOH solutions were placed in a bath of MeOH and 

dry ice or an ice water bath at the appropriate temperature. The solutions were allowed to 

reach a steady temperature before dropwise addition of the dcIm/MeOH solution to the 

Zn(OAC)2·2H2O /MeOH solution. The appropriate temperature was maintained for two 

hours of stirring by periodically adding small amounts of ice or dry ice to the water or 

MeOH bath. To increase the synthesis temperature to 30 and 35 ºC, the solutions were 

placed on a hot plate during dissolution of dcIm and Zn(OAC)2·2H2O, and were allowed 

to reach steady temperature before mixing. The beakers were covered to minimize MeOH 

evaporation. After completion of the reaction, the particles were washed in MeOH 

(centrifugation and decanting of supernatant) three times and dried overnight in an oven 

at 40 °C.   

XRD was used with CuKα radiation at 45 kV, 40 mA with a scan step size of 

0.025 to confirm that the crystal structure of the synthesis products matched the published 

ZIF-71 pattern. The XRD samples were prepared by grinding the synthesized particles 

into a fine powder and pressing onto a zero background plate. To determine the particle 

diameter produced at each synthesis condition, the samples were analyzed by DLS. The 

DLS samples were prepared by dispersing 5 wt% of the synthesized particles in MeOH 

with a sonication bath at 250 W for 2 hours prior to analysis. SEM showed particle size 
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and shape and confirmed the particle diameters obtained by DLS were not influenced by 

aggregation.  

ZIF-71 particle size distribution is presented in a box and whisker plot. The 

horizontal line through the box represents the median value of the data. The upper and 

lower whiskers represent the maximum and minimum values of the data. The small 

square box inside the larger box indicates the 50th percentile the value. While the top of 

the box represents the 75th percentile value and the bottom of the box represents the 25th 

percentile value  

3.5 Membrane preparation 

The synthesis of condensation cure pure PDMS membranes followed the protocol 

mentioned earlier in chapter 2.  

 The ZIF-71/PDMS MMMs were made with three different ZIF-71 sizes: 152 ± 45 

nm made at -20 ºC, 506 ± 28 nm made at 25 ºC and 1030 ± 385 nm made at 35 ºC. We 

followed a similar procedure as pure PDMS synthesis to prepare the 25 wt% loading ZIF-

71/PDMS MMMs. The 25 wt% ZIF-71 loading was chosen based on the optimum ZIF 

loading reported previously.[69, 79, 117] The detailed ZIF-71/PDMS MMMs synthesis 

method is described in chapter 2. SEM characterization was carried out to investigate the 

membrane morphology and particle distribution in the polymer matrix. The membranes 

synthesized have thicknesses ranges from 140 to 390 µm. 

3.6 Pervaporation test 

The membrane was tested in a batch pervaporation as mentioned in chapter 2. The 

pervaporation setup used in our lab is shown in Figure 3-1. The test parameters (feed 
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concentration, test temperature, etc) are the same as in chapter 2. Permeability and 

selectivity data is calculated to quantify the membrane performances. The equations are 

listed earlier in chapter 1.  

 

Figure 3-1. Pervaporation apparatus used for the pervaporation measurements in the lab.  

3.7 Results 

3.7.1 Effect of synthesis temperature on ZIF-71 particle size 

Figure 3-2 shows the XRD patterns of the particles synthesized at different 

temperatures. This confirms that the particles all have the same crystal structure of ZIF-
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71 as the reference pattern. Lower XRD peak intensity was observed with samples made 

at -10 and -20 ºC. This may result from the significant decrease in particle size as shown 

in DLS and SEM results mentioned later.  

 

Figure 3-2. XRD patterns of ZIF-71 particles made at different temperatures. The ZIF-71 

reference data is simulated reflection pattern obtained from Cambridge Crystallographic 

Data Center. 

Figure 3-3 presents the particle size distribution measured by DLS for ZIF-71 

produced at varying synthesis temperatures and a common reactant molar ratio of 4:1. 

Table 3-1 summarizes the particle diameter and distribution. Clearly, the mean particle 

diameter increases with increasing temperature. Also, the ZIF-71 particles synthesized at 

temperatures of 30 °C and 35 °C have a much broader size distribution than those 
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synthesized at lower temperatures. This is in contrast to what Gustafsson et al. reported 

for ZIF-7 and ZIF-8, where ZIF-7 crystal size increased from 2.4 to 4.7 µm when the 

synthesis temperature decreased from 110 to 85 °C at reactant ratio of (Zn:Im:bIm) equal 

to (1:6:9).[112]  Tsai et al. observed ZIF-8 particle size decrease from 78 to 26 nm as 

synthesis temperature increased from -15 to 60 °C.[113] Similarly to ZIF-62, here the 

ZIF-71 particle diameter increases with increasing temperature.[112] Our hypothesis is 

temperature has the opposite effect on the nucleation rates during the synthesis of ZIF-71 

and ZIF-62 compared to ZIF-7 and ZIF-8. ZIFs that have a decrease in particle size is a 

result of enhanced nucleation rate when synthesis temperature increases. This increase in 

nucleation was observed during ZIF-8 synthesis.[118] Whereas in the case of ZIF-71, the 

increase in particle size may be caused by the reduction of nucleation rate with increasing 

temperature. 



 62 

 

Figure 3-3. DLS data of the ZIF-71 particles made at different temperatures.  

 
 
Table 3-1. Particle size distribution of ZIF-71made at different temperatures. 

Temperature 

(°C) 
-20 -10 0 15 25 30 35 

Particle size 

(nm) 
152 ± 45 161 ± 20 192 ± 72 278 ± 47 506 ± 28 749 ± 408 1030 ± 385 

 

The formation of crystals starts from nucleation followed by the growth of the 

nucleus. Nucleation occurs when the solution is supersaturated and the diffusion of ions 

and molecules promotes the growth of crystals. We hypothesize that in the case of ZIF-
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71, on one hand, increasing the temperature decreases the degree of the supersaturation 

which leads to the decrease in the nucleation rate. On the other hand, crystal growth from 

the nuclei is enhanced when temperature increases because of enhanced diffusion rate of 

ions to the crystal surface. Therefore, in the synthesis of ZIF-71 at 35 °C, there is less 

nucleation and a higher crystal growth rate which leads to the larger crystals than those 

synthesized at lower temperatures.  

Figure 3-4 (a)-(f) present SEM images of ZIF-71 synthesized at different 

temperatures. These images confirm that the particle diameter dramatically increases with 

increased synthesis temperature. The particle diameters visually observed in Figure 3-4 

are consistent with the average diameters measured by DLS. Figure 3-4 (f) shows 

individual particles with largest particle diameters, confirming that the large particle sizes 

measured in the DLS are not the result of particle agglomeration.  
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Figure 3-4. SEM of ZIF-71 particles made at (a) -20 °C, (b) -10 °C, (c) 0 °C, (d) 15 °C, 

(e) 25 °C and (f) 35 °C. 

3.7.2 Effect of dcIm/zinc ratio on ZIF-71 particle size 

Figure 3-5 shows the representative XRD patterns for ZIF-71 produced with 

various molar ratios (from 1:1 to 7:1) of dcIm to Zn(OAC)2·2H2O. All molar ratios 

(except 1:1) produced particles with the ZIF-71 crystal structure that matches the 

reference XRD patterns. The crystal structure of ZIF-71 is not retained in the 1:1 molar 

ratio sample. In this case, there is inadequate dcIm is present to produce the correct ZIF-

71 crystal, because the molar ratio of imidazole to zinc in the ZIF-71 structure is 2:1. 

Similar results were observed with ZIF-8 synthesis. Cravillon et al. found that extra mIm 

is essential to synthesis ZIF-8 in methanol. They were able to  acquire good results with a 

mIm/Zn molar ratio of 8.[119] Tanaka et al. did not obtain the sodalite structure in 

particles synthesized at a low mIm/Zn molar ratio of 4 in an aqueous system.[110] 

However, they were able to synthesize pure phase ZIF-8 when mIm/Zn ratio ranges from 

40 to 100. Bao et al. also showed that ZIF-8 structure was not obtained until the mIm/Zn 
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molar ratio is above 5 in aqueous solution under microwave irradiation.[109] It is 

important to note, that the crystal growth mechanism is reported to be different in water 

versus organic solvents. 

 

Figure 3-5. XRD pattern of ZIF-71 made at different reactant ratios. 

Figure 3-6 presents the DLS results of ZIF-71 produced at different reactant molar 

ratios at room temperature. Small variations in the particle size distribution are evident. 

While changes in reactant molar ratios have proven to alter particle size significantly in 

ZIF-8, the particle diameter of ZIF-71 is only altered slightly by changing the reactant 

ratios.[109] Note that both references carried out the synthesis of ZIF-8 in aqueous 

solutions while here we reports methanol as solvent for ZIF-71 synthesis. We 

hypothesize, based on the 2:1 molar ratio of imidazole to zinc in the ZIF-71 structure, 
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that Zn(OAC)2·2H2O is the limiting reactant in the ZIF-71 formation process.[120] 

Increasing dcIm concentrations has no significant influence on the extent of reaction 

beyond a molar ratio of 2:1. 

 

Figure 3-6. DLS results of ZIF-71 particles made at different reactant ratios.  

3.7.3 Effect of synthesis time on ZIF-71 particle size 

Figure 3-7 shows the particle size distribution measured with DLS for ZIF-71 

produced by altering synthesis time from 0.5 to 4 hours at room temperature (25 °C). The 

average particle diameter is around 500 nm for samples synthesized for 1 hour or more. 

The particles synthesized at 0.5 and 1 hour have broader size distributions than those 

synthesized at longer times. We conclude that during the first one hour, the nucleation 

and growth occur simultaneously leads to formation of broad range of particle sizes. 
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After one hour, the medium of solute decreases significantly (or supersaturation depletes) 

and that may cease nucleation, therefore growth occurs and leads to formation of 

monodisperse particles.[121] We believe that the reaction is finished within two hours of 

beginning the synthesis and increasing synthesis time does not significantly influence the 

particle diameter.  

 

Figure 3-7. DLS results of ZIF-71 particles synthesized with different stirring time at 

dcIm/zinc ratio of 4:1 at room temperature.  

3.7.4 Effect of ZIF-71 particle size on membrane performance 

Figure 3-8 presents SEM images of the surface view of 25 wt% ZIF-71 loading 

MMMs made with three different particle sizes. From these SEM images, increased 

particle agglomeration was observed in membranes made with the smaller particle sizes 

(the 152 ± 45 nm diameter particles made at -20 ºC) than in the membranes made with 
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larger particles (the 506 ± 28 nm particles made at 25 ºC). In addition, the agglomeration 

size is much larger in MMMs made with -20 °C ZIF-71 particles than the membrane 

made with 25 °C ZIFs. The membrane made with 35 °C ZIF-71 particles has no obvious 

particle agglomeration and even dispersion of the particles in the polymer matrix was 

observed.  While ZIF-71 is considered more “hydrophobic” than other ZIFs and MOFs, 

according to Lively et al. the ZIF-71 particle surfaces still have hydrophilic character 

from the  –N-H group in the imidazole ligand.[97] The smaller ZIF-71 particles have a 

higher surface area to volume ratio than the larger particles. Therefore, because of this 

hydrophilic surface nature, the smaller ZIF-71 particles are thermodynamically driven to 

agglomerate when dispersed into the n-heptane based-casting solution. This effect is 

stronger for the smaller particles (~150 nm) than for the larger particles (~1000 nm) 

particles thus yielding less agglomeration of the larger particles in the final membranes. 
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Figure 3-8. SEM image surface view of 25 wt% ZIF-71 loading PDMS MMMs. 

Membranes synthesized with ZIF-71 particles made at three temperatures: (a) and (b) 

were made at -20 °C, (c) and (d) were made at 25 °C, (e) and (f) were made at 35 °C.  

Figure 3-9 and Figure 3-10 present the pervaporation performance results of the 

membranes for the separation of both ethanol/water and 1-butanol/water solutions. The 

calculated selectivity and permeability results are also listed in Table 3-2 and Table 3-3. 

The original flux and permeate concentration results are shown in Table 3-4. Compared 

with pure PDMS membranes, the incorporation of different size ZIF-71 particles 

significantly improved the permeability and selectivity for both ethanol/water and 1-

butanol/water separations. For ethanol/water separation, both ethanol and water 

permeability increased with increasing ZIF-71 particle size. Compared with the MMMs 

made with -20 °C ZIF-71 particles, the ethanol permeability was doubled in the 

membranes synthesized with 35 °C particles. Meanwhile, the ethanol/water selectivity 

also increased from 0.67 ± 0.07 to 0.82 ± 0.10 with increasing particle sizes. In the case 
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of 1-butanol/water separation, the membranes made with the 25 °C and 35 °C ZIF-71 

particles had higher 1-butanol and water permeability than the membranes made with -20 

°C particles. Again, the 35 °C ZIF-71/PDMS membranes had the greatest 1-butanol/water 

selectivity 5.09 ± 0.94 over the other two.  

 

Figure 3-9. Ethanol/water pervaporation results of PDMS membranes with three 

different size ZIF-71 particles performed at 60 ºC with a 2 wt% ethanol/water feed 

mixture. 
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Table 3-2. Ethanol/water pervaporation results of ZIF-71/PDMS MMMs made with 

different particle sizes.  

ZIF-71 particle 

size 

(nm) 

Ethanol permeability 

(Barrer) 

Water 

permeability 

(Barrer) 

Ethanol/water 

selectivity 

PDMS 10,428±2393 17,162±3708 0.60±0.05 

152 ± 45 11,472±2600 17,305±3972 0.67±0.07 

506 ± 28 17,992±2265 23,431±3139 0.77±0.02 

1030 ± 385 21,042±2754 25,883±3443 0.82±0.10 

 

	

Figure 3-10. 1-Butanol/water pervaporation results of PDMS membranes made with 

three different size ZIF-71 particles tested at 60 ºC with a 2 wt% 1-butanol/water feed 

mixture.  
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Table 3-3. 1-Butanol/water pervaporation results of ZIF-71/PDMS MMMs made with 

different particle sizes. 

ZIF-71 particle 

size 

(nm) 

1-Butanol 

permeability 

(Barrer) 

Water 

permeability 

(Barrer) 

1-Butnaol/water 

selectivity 

PDMS 57,347±10677 14,305±3275 4.03±0.20 

152 ± 45 68,866±13207 16,761±3341 4.11±0.07 

506 ± 28 99,359±3374 21,604±1292 4.60±0.15 

1030 ± 385 90,966±27004 17,647±2337 5.09±0.94 

 

Table 3-4. Thickness normalized flux and permeate concentration pervaporation results 

of ZIF-71/PDMS MMMs made with different particle sizes for 2 wt% 1-butanol/water 

separation at 60 º C. All the flux results are normalized to 1 µm. 

Alcohol 

ZIF-71 particle 

size 

(nm) 

Alcohol flux 

(*103 g m-2 h-1) 

Water flux 

(*103 g m-2 h-1) 

Permeate alcohol 

concentration 

(wt %) 

Ethanol 

PDMS 1.62±0.49 8.35±1.82 16.11±1.52 

152 ± 45 1.57±3.55 7.62±1.75 17.12±1.57 

506 ± 28 2.47±0.77 10.32±1.38 19.24±0.28 

1030 ± 385 2.47±0.75 9.63±2.48 20.25±1.79 

1-Butanol PDMS 6.07±1.28 6.14±1.41 50.47±1.21 



 73 

 

We hypothesize that the increase in permeability of membranes synthesized with 

larger ZIF-71 particles is the result of less tortuous pathways through the membrane that 

provides less transport resistance compared to membranes made with smaller particles. 

Similar to our results, Nordin et al. and Chi et al. also observed the increase in 

permeability of membranes made with larger ZIF-8 particles in gas separation.[114] The 

decrease in selectivity of membranes made with smaller ZIF-71 particles may be caused 

by particle agglomeration, which can be observed from the SEM images in Figure 3-8. 

Particle agglomeration may introduce defects, which can act as non-selective pathways 

through the membrane and decrease the membrane selectivity performance. Vane et al. 

observed the same behavior with zeolite/PDMS MMMs, they obtained lower 

ethanol/water separation with submicron size zeolites. They concluded that the 

agglomeration of the submicron size particles lowered the separation performance.[3]  

Compare with other reported membranes, ZIF-71/PDMS MMMs synthesized in 

this work have good alcohol permeability and selectivity as is shown in  

152 ± 45 7.47±1.43 7.20±1.44 50.96±0.42 

506 ± 28 10.78±3.66 9.28±055 53.77±0.79 

1030 ± 385 9.87±2.93 7.58±1.00 55.88±4.61 

Membrane 

 

T 

(ºC) 

Feed solution 

 

Alcohol 

permeability 

(Barrer) 

Selectivity 

 

Separation 

factor 

 

Reference 
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. The 1-butanol/water selectivity measured in this work is higher than that of ZIF-

71/PEBA and ZIF-8/PMPS membranes, and the 1-butanol permeability of the 

membranes in this work is in between ZIF-8/PMPS and ZIF-71/PEBA membranes. In 

terms of ethanol/water separation, ZIF-71/PDMS MMMs have higher ethanol 

permeability and selectivity than ZIF-8/PMPS membranes. The ethanol permeability is 

comparable with ZSM-5/PDMS membranes, while the selectivity measured with ZIF-

71/PDMS MMMs is lower.[33] Overall, the ZIF-71/PDMS membranes reported here 

have comparable or better alcohol/water separation performances compared to other ZIF 

contained MMMs, except for ZSM-5/PDMS MMMs. 

Table 3-5. Pervaporation performance compared with other published membrane 

performances. 

ZIF-71/PEBA 40 1 wt% 1-butanol ~160,000 4.88 - [69] 

ZIF-8/PMPS 80 
1 wt% 1-butanol ~18,300 - ~37.5 

[78] 
1 wt% ethanol ~6,500 - ~11.5 

ZSM-5/PDMS 75 2 wt% ethanol ~21,350 ~2.25 - [33] 

ZIF-71/PDMS 60 
2 wt% 1-butanol 90,966 5.09 63.0 

This work 
2 wt% ethanol 25,882 0.82 12.2 

Membrane 

 

T 

(ºC) 

Feed solution 

 

Alcohol 

permeability 

(Barrer) 

Selectivity 

 

Separation 

factor 

 

Reference 

 

ZIF-71/PEBA 40 1 wt% 1-butanol ~160,000 4.88 - [69] 
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3.8 Conclusions 

In the synthesis of ZIF-71, the molar ratio of dcIm to Zn(OAC)2·2H2O, the 

synthesis time, and the synthesis temperature were altered. Synthesis temperature had 

significant influence on particle size – smaller particles at lower temperature and larger 

particles at higher temperature. An increase of only 10 ºC above room temperature results 

in an over 100% increase in the particle diameter of the ZIF-71 particles, as determined 

by DLS and SEM characterization. This small change in temperature required to alter 

particle size makes this MeOH-derived method more favorable than a DMF-based 

solvothermal method for synthesis of ZIF-71; because the DMF-based synthesis uses 

more expensive solvents, is more difficult to remove from the framework then MeOH, 

and has much greater heat requirements to achieve similarly sized ZIFs.[122] The ZIF-71 

particle size did not change significantly with synthesis time; this is because the reaction 

appears to reach completion within two hours. Additionally, the change in reactant molar 

ratio has limited effect on particle diameter. ZIF-71 particles were still consistently 

produced at a molar ratio of 2:1. This is a lower molar ratio than that published by Lively 

et al. and may provide an opportunity to reduce synthesis costs (as the previously 

published synthesis procedure called for a molar ratio of 4:1).[97] By deriving a 

ZIF-8/PMPS 80 
1 wt% 1-butanol ~18,300 - ~37.5 

[78] 
1 wt% ethanol ~6,500 - ~11.5 

ZSM-5/PDMS 75 2 wt% ethanol ~21,350 ~2.25 - [33] 

ZIF-71/PDMS 60 
2 wt% 1-butanol 90,966 5.09 63.0 

This work 
2 wt% ethanol 25,882 0.82 12.2 
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correlation between the particle size and synthesis temperature, we eliminate the need for 

trial and error experimentation with alternative ligands, which is costly and difficult to 

predict.  

We incorporated these ZIF-71 particles with different sizes into PDMS 

membranes for bio-alcohol separations through pervaporation and we found that ZIF-71 

particle size had significant influence on ZIF-71/PDMS MMMs performances. We 

observed particle agglomeration in membranes made with nano-size ZIF-71 particles. 

However, the membranes made with micron-sized ZIF-71 particles had better particle 

dispersion in the polymer matrix and no particle aggregation was found. Membranes 

made with 500 nm and micron-sized ZIF-71 particles outperformed those made with 150 

nm particles, and higher alcohol and water permeability as well as higher alcohol/water 

selectivity were observed.   
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4 EFFECT OF ZIF-71 LIGAND-EXCHANGE SURFACE MODIFICATION ON 

BIOFUEL RECOVERY THROUGH PERVAPORATION 

4.1 Introduction 

ZIFs are porous crystalline materials composed of tetrahedral transition metal ions 

(e.g. Zn, Co) bridged by imidazole organic linkers.[123, 124] ZIFs possess high surface 

area,[125] high porosity[126] and low density.[127] Due to these attractive properties, 

ZIFs are attractive in many applications such as carbon dioxide capture,[128] gas 

storage,[129] gas and liquid separations.[90, 130-132]  

Among all ZIFs, ZIF-71 is one of the most studied materials for biofuel recovery 

through pervaporation separation.[69, 76, 77, 116] ZIF-71 has a RHO topology with an 

eight-membered-ring window size of 0.48 nm and a large cage size of 1.68 nm.[133] 

Owing to the hydrophobic nature of the framework, ZIF-71 demonstrated promising 

alcohol (e.g. 1-butanol) recovery ability from water solutions.[91] Additionally, enhanced 

alcohol recovery was achieved by incorporating ZIF-71 as filler materials to fabricate 

mixed matrix membranes (MMMs).[69, 76, 77, 116] 

However, to compete with distillation separation, ZIF-71 with improved biofuel 

separation performances is needed. As mentioned in chapter 1, it has been reported that 

surface chemistry modification on ZIFs through SALE is an effective technique to 

enhance VOCs separation performance. By exchanging hydrophobic ligands into the ZIF 

material, the improved hydrophobicity facilitates the selective transport of VOCs (e.g. 

iso-butanol) over water.[87] 
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SALE is one of the most studied techniques to post modify surface chemistry of 

ZIFs.[87, 134] It is a useful technique to introduce new coordinative ligands or metal ions 

to functionalize pre-synthesized ZIFs without changing the framework crystallinity and 

topology. ZIFs that are not able to be synthesized directly from traditional synthesis 

methods can be formed through the SALE technique.[133] Liu et al. modified the surface 

of ZIF-8 with DMBIM via SALE reaction.[87] They successfully exchanged 9.1% 

(ligand exchange molar ratio) of DMBIM into ZIF-8 particles. After the introduction of 

the hydrophobic imidazole ligand DMBIM, the hydrothermal stability of ZIF-8 particles 

was improved significantly. The DMBIM modified ZIF-8 was stable in water at 80 °C for 

24 hours, while the unmodified ZIF-8 had suffered complete hydrolysis. The improved 

hydrophobicity results from the hydrophobic property of DMBIM. The isobutanol 

diffusivity through the particles was also increased after the modification. Additionally, 

improved isobutanol recovery from water was observed when DMBIM-ZIF-8 was 

incorporated to PMPS membranes. Moreover, the iso-butanol/water selectivity was 

increased without reducing the isobutanol flux.  

To the best of our knowledge, little has been done to study ligand exchange 

modification of ZIF-71 particles and their subsequent influence on the recovery of 

ethanol and 1-butanol from aqueous solutions. Our goal is to study the effect of ZIF-71 

modification on ZIF alcohol (ethanol and 1-butanol) sorption capacity and ZIF/PDMS 

composite membrane alcohol/water separation abilities. The ZIF-71 modification was 

carried out by introducing new hydrophobic imidazole ligands through the SALE 

technique. In order to improve the hydrophobicity of ZIF-71 particles, four imidazole 
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ligands that are more hydrophobic than dcIm were chosen: BIM, MBIM, DMBIM and PI. 

The chemical structures of the ligands are listed in Figure 4-1. The hydrophobicity of 

these ligands based on the log D value is: BIM<MBIM<PI<DMBIM. The D value is the 

distribution coefficient, which is the ratio of the sum of the concentration of all forms of 

the compound in octanol to the concentration in water. So higher log D value indicates 

the compound is more hydrophobic. Both original and ligand-modified ZIF-71 particles 

were incorporated into PDMS polymer to form MMMs to determine their alcohol/water 

separation performances. 

 

Figure 4-1. Chemical structure of dcIm and the imidazole ligands used for SALE 

experiments. 
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Table 4-1. The log D values of different ligands obtained from ChemAxon log D 

predictor.  

Ligand 
Log D 

pH=5 

Log D 

pH=6 

Log D 

pH=7 

Log D 

pH=8 

BIM 0.63 1.08 1.24 1.26 

MBIM 0.99 1.42 1.71 1.77 

PI 1.15 1.65 1.86 1.88 

DMBIM 1.45 1.84 2.2 2.28 

 
 

4.2 Materials 

4,5-dichloroimidazole (dcIm) (>97%) was purchased from Tokyo Chemical 

Industry. Zinc acetate dihydrate (Zn(OOCCH3)2·H2O) (ACS, 98.0-101.0%) was obtained 

from Alfa Aesar. Methanol (HPLC) was purchased from Honeywell. 5,6-

Dimethylbenzimidazole (≥99%), 5-Methylbenzimidazole (98%), Benzimidazole (98%), 

4-Phenylimidazole (97%), n-heptane (anhydrous, 99%) ethanol (ACS reagent, ≥99.5%), 

1-butanol (anhydrous, 99.8%) and tetraethyl orthosilicate (TEOS, 99.999% trace metals 

basis) were provided by Sigma-Aldrich. Silanol terminated polydimethylsiloxane (DMS-

S45, 110,000 g/mol), titanium 2-ethylhexoxide (AKT867) and di-n-butyldiacetoxytin 

tech-95 (SND3160) were obtained from Gelest Inc. Methanol-d4 (D, 99.8%) and 35% 

(w/w) deuterium chloride (DCl, D, 99.5%) in D2O solution were obtained from 

Cambridge Isotope Laboratories, Inc. All chemicals were used as received.  
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4.3 Synthesis of ZIF-71 particles 

The room temperature ZIF-71 particles were prepared based on Lively et al’s 

research.[97] Detailed synthesis procedures are described in chapter 2.  

4.4 Ligand exchange experiments 

We carried out ZIF-71 ligand exchange with four imidazole ligands: BIM, 

MBIM, PI and DMBIM. Methanol was used as solvent. A certain amount of ZIF-71 

particles, the exchanging ligand and methanol was added to a glass container and then 

well sealed. The mixture was sonicated in a sonication bath for 10 minutes to make sure 

ZIF particles were well dispersed in methanol. The molar ratio of ZIF-71 to the new 

ligand equals to 1:0.75. The mass ratio of solvent methanol to ZIF-71 is 150:1.  

The mixture was placed in an oven at 55 ºC for 72h to carry out the ligand 

exchange reaction. Followed by this, after cooling of the solution to room temperature, 

we centrifuged the mixture and washed the particle with methanol for three times. 

Afterwards, the ligand exchange particles were soaked in methanol for three days to 

remove any residual imidazole ligands. Fresh methanol was replaced every day. Finally, 

the particles were centrifuged and dried in an oven at 40 ºC overnight.  

4.5 Sorption test with ethanol and 1-butanol 

The alcohol (ethanol and 1-butanol) sorption test of ZIF materials was carried out 

to investigate the effect of SALE modification on ZIF alcohol absorption capacity.  

Unmodified ZIF-71 (0.1g) is the control group. All the ligand-exchanged ZIF-71 

samples were derived from 0.1 g original synthesized ZIF-71 particles. For ethanol/water 

sorption test, ZIF particles were soaked in 4 g of 0.5 wt% ethanol/water solution for 24 
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hours. For 1-butanol/water sorption experiment, ZIF samples were soaked in 4 g of 1 

wt% 1-butanol/water solution for 24 hours. After the sorption test, the solutions were 

filtered with 0.2 µm syringe filter. Gas chromatography (GC) was applied to determine 

the alcohol composition of the solutions before and after the test. The amount of ethanol 

or 1-butanol absorbed is calculated from equation below: 

 

where q (g/g) is the amount of alcohol per unit mass of the ZIF-71 particles, w1 is the 

weight fraction of the original alcohol solution, m1 is the mass of the original solution, w2 

is the weight fraction of alcohol solution after sorption test, m2 is the mass of the alcohol 

solution after sorption test, m is the mass of ZIF-71 materials used as adsorbent.  

4.6 Membrane synthesis 

Ligand modified ZIF-71 particles were incorporated into PDMS polymer to 

synthesis MMMs. The particle loading applied for all the membranes is 25 wt%. Detailed 

membrane synthesis procedures are described in chapter 2. The condensation cure PDMS 

system was used for all the membranes. 

4.7 Characterization 

XRD was carried out with powder X-ray diffractometer (Siemens D5000) to 

confirm the crystal structure of the ZIF-71 and modified ZIF-71 particles. The particle 

and membrane surface morphology were evaluated by SEM. Attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR, Nicolet 6700) was applied to 

determine if the new ligands were incorporated into ZIF-71 particles. Proton nuclear 

q = w1m1 −w2m2

m
⎛

⎝
⎜

⎞

⎠
⎟
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magnetic resonance (1H NMR, Varian MR400) was utilized to quantify the amount of 

new ligand exchanged into the ZIF-71 particles. To prepare 1H NMR samples, the ZIF 

particles were dried at 75 °C under vacuum for 12 hours. Then about 0.01 g of particles 

were digested in 750 µL of methanol-d4 and 30 µL of 35% DCl in D2O solution. The 

molar ratio of new ligand exchanged into the ZIF-71 particles equals to (Mligand / (Mligand 

+ MdcIm)). Here, Mligand and MdcIm is the relative integration of the new ligand and dcIm 

obtained from 1H NMR spectra. The Brunauer-Emmett-Teller (BET) surface areas, t-plot 

micropore volumes and pore size distributions were determined through the N2 

physisorption measurements (TriStar II 3020). The ZIF samples were activated at 100 °C 

for 12 hours in a vacuum oven before the measurement. 

4.8 Pervaporation performances 

Pervaporation tests were carried out to study the effect of ligand-exchange 

modification of ZIF-71 particles on alcohol (ethanol and 1-butanol)/water separation 

performance. The pervaporation tests were conducted in a batch setup with feed 

circulation rate of 1 mL/s. The feed was circulated close to the surface of the membrane 

to minimize concentration polarization. The effective surface area was 1.43 cm2. We used 

35g of 2 wt% ethanol/water or 1-butanol/water solution as feed. The feed solution was 

heated to 60 °C with a heating jacket. We allowed the system to run 1.5 hours to reach 

steady state before the permeate was collected. For each membrane, we collected the 

permeate for two hours with the assistance of liquid nitrogen. Then we analyzed the 

permeate composition via GC. 
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The selectivity and permeability was calculated to evaluate the membrane 

separation performance.  

4.9 Results and Discussion 

4.9.1 Characterizations of ligand exchange ZIF-71 particles 

 

Figure 4-2. ATR-FTIR spectra of ZIF-71 and surface modified ZIF-71 materials. 

 The ATR-FTIR spectra confirmed the exchange of the new ligands into the ZIF-

71 particles. As shown in Figure 4-2, some new peaks showed up in the range of 675-900 

cm-1 for the SALE modified ZIF-71 samples compared to unmodified ZIF-71 sample. 

These peaks correspond to the out-of-plane C-H bending, which is the used to distinguish 

aromatic compounds. This indicates the successful incorporation of the new ligands into 
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the particles. Therefore we conclude that ZIF-71 particles were successfully modified 

with the four ligands applied here. 

 

Figure 4-3. The 1H NMR spectra of ZIF-71, benzimidazole and benzimidazole-ZIF-71. 

Green and red dots indicate BIM and dcIm, respectively.  

In order to quantify the amount of ligand exchanged into ZIF-71 particles, 1H 

NMR characterization was performed. Take benzimidazole modified ZIF-71 particles as 

an example, in Figure 4-3, the peaks labeled with green dots indicate BIM and the peak 

labeled with red dot indicates dcIm. The numbers under the peaks represent relative 

integration. Therefore, the BIM ligand exchange molar ratio is (1/(1+3.23)), equals to 

23.64%. Same as BIM, the ligand exchange molar ratio of MBIM, DMBIM, PI was also 

calculated and the results are listed below in Table 4-2. Interestingly, the amount of PI 

exchanged into the ZIF material is significantly lower than the other three ligands. This is 
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probably owing to the steric effect of PI. If we look at the structure of BIM, MBIM and 

DMBIM, the imidazole ring and the phenyl ring are in the same plane. However, the 

phenyl ring in PI has free rotation around the carbon-carbon single bond, which makes it 

significantly bulkier than the other three ligands. As a result, the steric effect lowered the 

amount of PI exchanged into the ZIF material. Regarding the other three ligands, the 

amount exchanged is BIM < MBIM < DMBIM. The ligand exchange ratio of these three 

increased when the pKa value increased based on Table 4-2. This might because ligands 

with higher pKa values (more basic) yield stronger bonds with the zinc metal centers and 

are easier to be exchanged into the framework.[133]  

Table 4-2. The ligand exchange molar ratio of surface modified ZIF-71 particles. 

Ligand Ligand exchange molar ratio (%) pKa 

BIM 23.64 12.56 

MBIM 25.82 13.15 

DMBIM 27.68 13.46 

PI 7.04 13.3 
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Figure 4-4. XRD patterns of un-modified ZIF-71 and surface modified ZIF-71 

particles.  The ZIF-71 reference is simulated reflection pattern obtained through 

Cambridge Crystallographic Data Center (CCDC). 

To compare the crystal structure of ZIF-71 particles before and after the SALE 

treatment, XRD characterization was carried out. As shown in Figure 4-4, all the peaks of 

ZIF-71 after ligand exchange reaction seemed to be the same compared to unmodified 

ZIF-71 particles. No new peaks were observed. In order to further understand the crystal 

structure of the particles, unit cell parameter was calculated with HighScore Plus 

software based on the XRD patterns. The results are shown in Table 4-3. The modified 

ZIF-71 exhibited 0.08-0.42% smaller unit cell parameters compared to the original ZIF-

71. The shrinkage of the framework after the modification is possibly caused by the 
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stronger Zn-ligand bond after the SLAE modification. The Zn-ligand bond length is 

smaller if the bond is stronger, which might attributes to smaller unit cell parameters. 

Table 4-3. Unit cell parameters of the as-synthesized and modified ZIF-71 particles 

calculated with HighScore Plus software based on the XRD patterns. 

Sample Unit cell parameter (Å) Change as respect to as 
synthesized particles (%) 

ZIF-71 28.730 _ 

BIM-ZIF-71 28.706 -0.08 

MBIM-ZIF-71 28.671 -0.21 

DMBIM-ZIF-71 28.608 -0.42 

PI-ZIF-71 28.684 -0.16 

 

 

Figure 4-5. SEM images of un-modified (a) ZIF-71and modified ZIF-71 particles with (b) 

BIM, (c) MBIM, (d) DMBIM and (e) PI.  

The morphology of the ZIF-71 particles before and after surface modification 

were evaluated with SEM imaging. The particle diameter of the as synthesized ZIF-71 is 

about 500 nm based on the SEM shown in Figure 4-5. It is obvious that the particle size 
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and morphology maintained after the SALE modification. No defects were observed on 

the particle surface. Similar results were observed by Liu et al. with the DMBIM surface 

modified ZIF-8 particles.[87] 

The nitrogen adsorption isotherms of as-synthesized and modified ZIF-71 

particles were measured at 77 K. The BET surface area, t-plot micropore volume and 

pore size distribution (DFT model) were then determined.  

Typical I isotherm with no obvious hysteresis was observed with all the 

measurements shown in Figure 4-6 indicating the microporous structure of the as-

synthesized and SALE modified ZIF-71 materials. The maximum quantity of N2 

absorbed was lowered after the ZIF-71 SALE modification in comparison to the as-

synthesized ZIF-71. The amount of nitrogen absorbed was: ZIF-71 > BIM-ZIF-71 > PI-

ZIF-71 > MBIM-ZIF-71 > DMBIM-ZIF-71. Both the BET surface area and micropore 

volume decreased after the SALE modification of ZIF-71 as is shown in Table 4-4. The 

decrease in BET surface area as well as micropore volume after SALE modification was 

likely owing to the weight gain from the new ligand as well as the shrinkage of the 

structure as shown earlier from the lattice parameters.  

Table 4-4. BET surface area and micorpore volume of as-synthesized and modified ZIF-

71 particles.   

Sample 
BET surface area 

(m²/g) 

t-plot micropore volume 

(cm³ (STP)/g) 

ZIF-71 996.4 0.332 

BIM-ZIF-71 989.6 0.325 
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MIBIM-ZIF-71 928.9 0.303 

DMBIM-ZIF-71 856.0 0.276 

PI-ZIF-71 969.6 0.309 

 

 

Figure 4-6. The N2 adsorption isotherms (77K) of as-synthesized and modified ZIF-71 

particles.  

The DFT model was applied to determine the pore size distribution of these ZIF 

materials, and the results are shown in Figure 4-7. ZIF-71 showed major pore size 

distribution centered at ~13 Å. DMBIM-ZIF-71 demonstrated major pore size 

distribution centered at ~11.2 Å, which was significantly lower than original ZIF-71. 

ZIF-71 modified with the other three ligands overall showed slightly smaller main pore 

size as respect to original ZIF-71. The shift of the primary pore size to smaller values 



 91 

after SALE modification of ZIF-71 indicates that the new ligands, BIM, MBIM, DMBIM 

and PI, had reduced the average pore size. This is reasonable since these four ligands 

have larger molecular size compared to dcIm. 

 

Figure 4-7. Pore size distribution based on the density functional theory (DFT) of as-

synthesized and modified ZIF-71 particles. 

4.9.2Alcohol sorption test with ZIF materials 

The alcohol sorption capacity of different ligand modified ZIF-71 materials was 

measured. The alcohol/water concentration after the sorption test is shown below in 

Table 4-5 and Table 4-7. In order to determine the statistical significance of the mean 

concentration value of different ligand modified ZIFs, the independent student T test was 

applied to those results. The T test results are listed in Table 4-6 and Table 4-8. A student 

t-test is a statistical method that’s used to determine if the means from two sets of data 
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differ significantly when the sample follows normal distribution. The significance level 

of 0.05 is often used as the threshold, so a p value below 0.05 indicates the mean values 

are statistically different.  

As shown in Table 4-6, for ethanol sorption, all the p values calculated are below 

0.05 besides the BIM-ZIF-71 and PI-ZIF-71 data set. This indicates that the ethanol 

adsorption amount is approximately equal for BIM and PI modified ZIF-71 particles, yet 

different compared to other ligand modified ZIF-71 materials. For 1-butanol sorption test, 

all the p values listed in Table 4-8 are less than 0.05, indicating the 1-butanol 

concentrations after the sorption test are statistically different.  

Table 4-5. Ethanol/water concentration after the sorption test. 

 

Sample 
Ethanol concentration after sorption test 

(wt%) 

Average 

(wt%) 

ZIF-71 0.4910 0.4904 0.4919 0.4891 0.4869 0.4890 0.4918 0.4863 0.4897±0.0021 

BIM-

ZIF-71 
0.4740 0.4710 0.4753 0.4731 0.4791 0.4745 0.4791 0.4802 0.4758±0.0033 

MBIM-

ZIF-71 
0.4703 0.4650 0.4682 0.4683 0.4680 0.4662 0.4700 0.4700 0.4683±0.0019 

PI-ZIF-

71 
0.4769 0.4756 0.4764 0.4767 0.4690 0.4773 0.4711 0.4783 0.4752±0.0002 

DMBIM-

ZIF-71 
0.4661 0.4670 0.4654 0.4707 0.4656 0.4635 0.4654 0.4673 0.4664±0.0021 
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Table 4-6. Student T test ethanol/water sorption results. 

Ethanol sorption Sig. (1-tailed) 
ZIF-71 

BIM-ZIF-71 
1.9E-07 

BIM-ZIF-71 
MBIM-ZIF-71 

7.7E-05 

MBIM-ZIF-71 
PI-ZIF-71 

0.00015 

MBIM-ZIF-71 
DMBIM-ZIF-71 

0.041 

PI-ZIF-71 
BIM-ZIF-71 

0.36 

 
 
Table 4-7. 1-Butanol/water concentration after the sorption test. 

Sample 
1-Butanol concentration after sorption test  

(wt%) 

Average 

(wt%) 

ZIF-71 0.4936 0.4911 0.4964 0.4909 0.4899 0.4919 0.4929 0.4916 0.4923±0.0020 

BIM-

ZIF-71 
0.5429 0.5437 0.5446 0.5449 0.5425 0.5436 0.5384 0.5428 0.5429±0.0002 

MBIM-

ZIF-71 
0.5524 0.5573 0.5552 0.5417 0.5545 0.5561 0.5548 0.5535 0.5532±0.0049 

PI-ZIF-

71 
0.5141 0.5180 0.5225 0.5201 0.5142 0.5190 0.5214 0.5224 0.5190±0.0034 

DMBIM-

ZIF-71 
0.5858 0.5855 0.5830 0.5825 0.5838 0.5824 0.5835 0.5843 0.5839±0.0013 
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Table 4-8. Student T test 1-butanol/water sorption results. 

1-Butanol sorption Sig. (1-tailed) 
ZIF-71 

BIM-ZIF-71 
1.7E-17 

BIM-ZIF-71 
MBIM-ZIF-71 

0.00017 

ZIF-71 
PI-ZIF-71 

2.1E-10 

MBIM-ZIF-71 
DMBIM-ZIF-71 

7.0E-08 

The amount of ethanol and 1-butanol absorbed per unit mass of ZIF materials 

were calculated based the equation introduced earlier in this chapter. The results are 

shown below in both Figure 4-8 and Table 4-9. 

 

Figure 4-8. Ethanol and 1-butanol sorption test results of unmodified and ligand 

modified ZIF-71 materials. 
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Table 4-9. The amount of ethanol or 1-butanol absorbed with different ZIF materials.  

For ethanol sorption test, the amount of ethanol absorbed into ZIF materials was: 

DMBIM-ZIF-71 > MBIM-ZIF-71 > PI-ZIF-71 ≈ BIM-ZIF-71 > ZIF-71. This indicates 

enhanced hydrophobicity of ligand modified ZIFs by the introduction of hydrophobic 

new ligands. The ZIFs modified with the most hydrophobic PI-ZIF-71 and BIM-ZIF-71 

have similar ethanol sorption capacity based on the statistical significance study earlier. 

The ZIF-71 materials modified with the most hydrophobic ligand DMBIM showed the 

highest ethanol sorption capacity. 

However, different results were obtained for 1-butanol adsorption test. 

Surprisingly, the equilibrium adsorption amount of 1-butanol of the modified ZIFs was 

less compared to the original ones. This observation is in good agreement with the 

literature. Liu et al. also showed that after the SALE modification of ZIF-8 with DMBIM 

ligand, the equilibrium adsorption capacity of isobutanol decreased.[87] The reason is 

probably that ZIF-71 pore size decreased after the ligand modification. Smaller pore size 

hinders the absorption of 1-butanol molecule into ZIF material, hence less 1-butanol was 

absorbed into the material. Furthermore, as is shown earlier DMBIM-ZIF-71 showed the 

smallest pore size, here DMBIM-ZIF-71 showed the least 1-butanol absorption. We 

didn’t observe this problem with ethanol absorption, probably due to the fact that ethanol 

has a smaller kinetic diameter of 4.5 Å than 1-butanol 5.0 Å.[135]  

Sample ZIF-71 BIM-ZIF-71 PI-ZIF-71 MBIM-ZIF-71 DMBIM-ZIF-71 

q (ethanol)  0.0272±0.0032 0.0321±0.0040 0.0325±0.0038 0.0348±0.0031 0.0354±0.0031 

q (1-butanol) 0.2281±0.0100 0.2111±0.0100 0.2191±0.01058 0.2077±0.0110 0.1974±0.0099 
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4.9.3 Characterization of original and modified ZIF-71/PDMS MMMs with SEM 

imaging 

 

Figure 4-9. SEM images of PDMS MMMs made with (a) unmodified ZIF-71 particles 

and modified ZIF-71 particles with (b) BIM, (c) MBIM, (d) DMBIM and (e) PI.  

 SEM imaging were used to characterize the surface morphology of ZIF/PDMS 

MMMs. Compared to un-modified ZIF-71/PDMS MMMs, the surface modified ZIF-

71/PDMS MMMs showed better particle dispersion in the polymer matrix. Some particle 

agglomerations were evident in the unmodified ZIF-71 membranes, while membranes 

made with modified ZIF-71 particles exhibit even particle distribution in the polymer 

matrix. This might be a result of improved particle surface hydrophobicity, which 

enhanced the compatibility between ZIF-71 and PDMS polymer matrix.[136]   

4.9.4 Pervaporation results of ZIF/PDMS MMMs for the removal of 1-butanol and 

ethanol from water solutions 

To study the effect of ZIF-71 SALE surface modification on ethanol and 1-

butanol recovery from water, both modified and unmodified ZIF particles were 
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incorporated into PDMS polymer to form MMMs. The particle loading used for all the 

membranes is 25 wt%. The separation of both ethanol and 1-butanol from water were 

tested with the membranes through pervaporation. 

 

Figure 4-10. The effect of SALE modification of ZIF-71 particles on ethanol/water 

separation permeability and selectivity through pervaporation at 60 °C with 2 wt% 

ethanol/water feed solution. 

 Beyond our expectation, the surface modification did not improve the 

ethanol/water separations as shown in Figure 4-10. The ethanol permeability was 

declined with all the surface modified ZIF-71/PDMS MMMs. Interestingly, the 

permeability of ethanol decreased successively when ZIF-71 is modified with BIM, 

MBIM and DMBIM. In pervaporation, permeability Pi = Di •Ki , where Di (cm2/s) 

represents diffusion coefficient of component i and Ki (cm3(STP)/cm3 cmHg) represents 

sorption coefficient of component i. Our hypothesis is that the ethanol diffusion 
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coefficient was lowered as the ZIF-71 pore windows after SALE reaction are narrowed 

compared to unmodified ZIF-71, since the ligands applied to SALE modification of ZIF-

71 are larger than the original dcIm ligand. Although the ethanol sorption coefficient is 

benefited from the hydrophobicity of the new ligands, the decrease in ethanol diffusion 

coefficient is more evident which results in decreased ethanol permeability. Same trend 

was also observed for water permeability with BIM, MBIM and DMBIM modified ZIF-

71 particles. As to PI modified ZIF-71, the ethanol permeability is lower while the water 

permeability was similar compared to original ZIF-71/PDMS MMMs.  

The ethanol/water selectivity shown in Figure 4-10 was also lowered by the 

presence of new ligands compared to unmodified ZIF-71/PDMS MMMs. Interestingly, if 

compare the selectivity of membranes made with BIM, MBIM and DMBIM modified 

ZIF-71 particles, the opposite trend appeared compared to ethanol or water permeability. 

The ethanol/water selectivity increased successively with BIM, MBIM and DMBIM 

modified ZIF membranes. The equation of membrane selectivity is α = (Di

Dj

)(Ki

K j

) , where 

Di

Dj

 is the mobility selectivity and Ki

K j

 is the solubility selectivity of components i and j. 

Since the kinetic diameter of water (0.268 nm) is smaller than ethanol (0.45 nm), the 

blocking effect of new ligand on water mobility is less compared to ethanol. As a result, 

the mobility selectivity of ethanol to water is suppressed. The solubility selectivity, 

however, is enhanced by cause of hydrophobicity of these three ligands. The constant 

increase of ethanol/water selectivity in BIM, MBIM and DMBIM modified ZIF-71 

MMMs is associated with the increasing hydrophobicity of the three ligands.  
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Figure 4-11. The effect of SALE modification of ZIF-71 particles on 1-butanol/water 

separation permeability and selectivity through pervaporation at 60 °C with 2 wt% 1-

butanol/water feed solution. 

 Similar to ethanol/water separation, no enhancement in 1-butanol/water 

separation was seen with modified ZIF-71/PDMS MMMs as is shown in Figure 4-11. 

Same as ethanol/water separation, both 1-butanol and water permeability were decreased 

successively with BIM, MBIM and DMBIM modified ZIF MMMs. The 1-butanol/water 

selectivity follows the opposite trend compared to permeability, which increased 

successively with BIM, MBIM and DMBIM modified MMMs. As to PI modified 

MMMs, both 1-butanol and water permeability were slightly lower than unmodified ZIF 

MMMs. No obvious change in 1-butanol/water selectivity was observed when PI 

modified ZIF MMMs is compared to unmodified membranes. The decrease in 1-butanol 
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and water permeability is possibly caused by the decrease in pore size after the ligand 

exchange modification. 

4.10 Conclusions 

 We attempted to modify ZIF-71 particles with four different ligands: BIM, 

MBIM, DMBIM and PI through SALE reaction. The ligand exchange molar ratio was 

23.66%, 25.82%, 27.68% and 7.04% for BIM, MBIM, DMBIM and PI, respectively. The 

unite cell parameters decreased after the modification. Based on the SEM 

characterization of the ligand exchanged ZIF materials, the surface morphology 

maintained. The BET surface area and micropore volume were also lowered with the 

modified ZIF materials compared to pure ZIF-71 based on the N2 adsorption test. 

Different ligand modified ZIF-71 materials were mixed with PDMS polymer as MMMs 

(25 wt% particle loading) to separate ethanol and 1-butanol from water via pervaporation. 

Compared to unmodified ZIF-71/PDMS MMMs, the surface modification on ZIF-71 

particles did not improve the alcohol recovery from water. Reduced ethanol and 1-

butanol permeability were obtained from all the ligand modified ZIF/PDMS membranes. 

Meanwhile, the ethanol/water as well as 1-butanol/water selectivity were lower than 

unmodified membranes. The ZIF-71 pore size is narrowed from the new ligand 

exchanged into the crystal structure, as the new ligands are larger in size than the original 

ligand dcIm. As a result, the alcohol diffusion through ZIFs are slowed down which 

causes the decrease in permeability. The membranes modified with BIM, MBIM and 

DMBIM demonstrated a constant decrease in alcohol and water permeability, while 

constant increase in alcohol/water selectivity.   
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5 SUMMARY AND RECOMMENDATIONS 

5.1 Summary 

This dissertation presented the synthesis, modification and characterization of free-

standing ZIF-71/PDMS MMMs for recovering ethanol and 1-butanol from water 

solutions through pervaporation. The effect of various synthesis parameters on membrane 

performance were studied systematically. These parameters include: different PDMS 

systems, ZIF-71 loading, ZIF-71 particle size and ZIF-71 ligand modification. The 

membranes we synthesized demonstrated better alcohol separation performances 

compared to other reported ZIF-71/PDMS MMMs.  

The first objective of this research is to study the compatibility between ZIF-71 and 

PDMS polymer, and the effect of ZIF-71 loading on membrane performances. For the 

first time, the compatibility between ZIF-71 and two PDMS systems were explored. As is 

shown in chapter 2, addition cure PDMS system was not compatible with ZIF-71, for the 

Pt based catalyst was poisoned by the imidazole ligand existed in ZIF-71. The addition 

cure PDMS polymer did not cure properly when ZIF-71 was present. On the contrary, the 

condensation cure PDMS system was compatible with ZIF-71 particles. Condensation 

cure PDMS system utilizes tin-based catalysts and no curing issue was observed in our 

research. As a result, we concluded condensation cure PDMS system is applicable in this 

research for the synthesis of ZIF-71/PDMS MMMs. 

ZIF-71 hydrothermal stability test was carried out in chapter 2. ZIF-71 particles 

were soaked in water for seven days at both room temperature and 60 °C, since the 

membranes were tested at 60 °C with dilute alcohol/water solutions as feed. Retained 
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crystallinity and morphology were observed from XRD and SEM results. The ZIF-71 

particle size was also maintained confirmed by the DLS results. Therefore ZIF-71 is 

stable under the testing conditions applied in this research. 

The effect of ZIF-71 loading on membrane separation performance was also 

studied in chapter 2. In this chapter, MMMs with three ZIF-71 loadings were made: 5, 25 

and 40 wt%. Improved alcohol permeabilities as well as alcohol/water selectivities were 

demonstrated when ZIF-71 was added. The highest selectivities achieved were 0.81 ± 

0.04 for ethanol/water separation and 5.64 ± 0.15 for 1-butanol/water separation with the 

40 wt% ZIF-71 loading MMMs. Increased stiffness and reduced ductility of the MMMs 

was observed with the incorporation of ZIF-71 particles based on the tensile testing 

results.  

The second objective, which is to study the effect of particle size on membrane 

separation performance, was addressed in chapter 3. Firstly ZIF-71 particles of various 

sizes ranging from 150 nm to 1 µm were synthesized through varying synthesis 

temperatures from -20 to 35 °C. Temperature was found to have significant influence on 

ZIF-71 particle size, higher synthesis temperature produces larger size particles. 

Synthesis time and reactant ratio had little effect on ZIF-71 particle size. Three different 

size ZIF-71 particles were incorporated into condensation cure PDMS system: 152 ± 45 

nm, 506 ± 28 nm and 1030 ± 385 nm. Particle agglomeration was observed with 

membranes made with 152 nm and 506 nm ZIF-71 particles. Membranes made with 1030 

nm ZIF-71 particles had uniform particle distribution in the polymer matrix and no 

particle agglomeration was observed. All the 25 wt% ZIF-71 loading membranes have 
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enhanced alcohol separation performances compared to pure PDMS membranes. Both 

the alcohol permeability and alcohol selectivity increased with increasing particle size. 

The increase in alcohol and water permeabilities observed with larger ZIF-71 particles 

might because of less transport resistance through the membranes. Membranes made with 

smaller particles provide more tortuous pathways and more transport resistance, and thus 

lower alcohol and water permeabilities. The decrease in alcohol selectivity with nano-size 

ZIF-71/PDMS membranes might due to the particle agglomeration. 

SALE modification is an effective post-synthetic technique to control the surface 

chemistry of ZIF materials. Chapter 4 addresses objective 3 to study the effect of ligand 

exchange effect on membranes separation performances. ZIF-71 particles were modified 

successfully by BIM, MBIM, DIBIM and PI ligands through SALE reaction for the first 

time. Improved hydrophobicity of modified ZIF-71 materials was confirmed through the 

ethanol/water sorption test results. The amount of ethanol absorbed into the ZIF material 

was enhanced continuously with increasing hydrophobicity of the exchanged ligands. 

The amount of 1-butanol absorbed, however, was lower than the un-modified ZIFs. 

Possible reason is that the new ligand exchanged into the ZIF material is larger than the 

original dcIm and the pore size was lowered.  This pore narrowing effect prevented the 

absorption of 1-butanol into the pores and decreased the absorption ability.  

The effect of ligand exchange modification of ZIF-71 materials on membrane 

separation performance was also studied in chapter 4. No membrane separation 

improvement was found with the ligand modified ZIF-71/PDMS MMMs. The alcohol or 

water permeability was lowered for both ethanol/water and 1-butanol/water separation 
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compared to un-modified ZIF membranes. Also the alcohol/water selectivity decreased 

compared to the unmodified membranes. Our hypothesis is that although the 

hydrophobicity of ZIF-71 was enhanced through the modification, the diffusion of 

different components was affected. Since water (kinetic diameter of 0.268 nm) is much 

smaller than both ethanol (kinetic diameter of 0.45 nm) and 1-butanol (kinetic diameter 

of 0.5 nm), the diffusion of alcohols was lowered more significantly than water. So, the 

alcohol/water diffusion selectivity decreased after the ligand exchange modification. As a 

result, the alcohol selectivity was lowered.  

5.2 Recommendations 

5.2.1 Synthesis of ZIF-71/PDMS MMMs with ZIF-71 loadings higher than 40 wt% 

Our work presented in chapter 2 has shown that the alcohol separation 

performance was enhanced with increasing ZIF-71 loading. The highest ZIF-71 loading 

carried out in this research was 40 wt%. According to the literature, Vane et al. has 

reported 65 wt% zeolite loading PDMS membranes with ethanol/water selectivity of 3.[3] 

In order to further improve the membrane separation performances, we believe 

membranes with higher ZIF loadings are worth to try. ZIF-71 loadings such as 60 wt% 

and 70 wt% are recommended.  

5.2.2 Study the effect of concentration polarization on the membrane performances 

In this research all the pervaporation tests carried out utilized a feed circulation 

line (circulation rate 1mL/s) to reduce concentration polarization near the membrane 

surface. We noticed that when the feed was not circulated, the flux was significantly 

lowered. In order to obtain the best alcohol/water separation, it could be useful to study 
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the effect of concentration polarization on the membrane separation performances. 

Different feed circulation rates are suggested to apply to the pervaporation experiments to 

determine the optimum feed circulation rate. 

5.2.3 Further study into the transport diffusivity of alcohols with the surface modified 

ZIF-71 materials 

The influence of ZIF-71 surface modification with hydrophobic ligands through 

SALE technique has been studied in this research. In our work we proposed that the 

diffusion of alcohols are lowered due to the size of the new ligands larger than the 

original dcIm in our discussion. Further experiments are needed to calculate the exact 

transport diffusivity of ethanol and 1-butanol through the modified ZIF-71 materials. 

Also combine the alcohol transport diffusivity study with the adsorption study, one can 

predict the pervaporation separation performances easier than testing the membranes.  
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APPENDIX A 
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Wi = mass of permeate component i (g) 

Ji = flux of component  i (g m−2 h−1) 

A = effective membrane area (m2) 

t = test time (h) 

Pi = permeability of component  i (Barrer) 

Pj = permeability of component  j (Barrer) 

Ji = molar flux of component  i (cm3 (STP) cm−2 s−1) 

l = membrane thickness (cm) 

γio = activity coefficient of component  i in feed solution 

xio = molar fraction of component  i in feed solution 

𝑃"#
$%&= saturated vapor pressure of component  i in feed solution (cmHg) 

pil = partial pressure of component i in the permeate (cmHg) 

αij = selectivity of component  i over  j 

β = separation factor 

YAlchol = alcohol weight fraction in permeate  

YWater = water weight fraction in permeate 

XAlcohol = alcohol weight fraction in feed 

XWater = water weight fraction in feed 

q = the amount of alcohol absorbed per unit mass of absorbents (g/g) 

w1 = alcohol weight fraction in the feed 

m1 = mass of feed solution (g) 

w2 = alcohol weight fraction of feed solution after sorption test 
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m2 = mass of feed solution after sorption test (g) 

m = mass of absorbents (g) 

Di = diffusion coefficient of component i (cm2/s) 

Ki = sorption coefficient of component i (cm3(STP)/cm3 cmHg) 

Dj = diffusion coefficient of component j (cm2/s) 

Kj = sorption coefficient of component j (cm3(STP)/cm3 cmHg) 
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APPENDIX B 

 ACTIVITY COEFFICIENT DATA USED IN PERMEABILITY CALCULATION  
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The ethanol and water activity coefficient values shown below used in 

ethanol/water solution are obtained from the Dortmund Data Bank (DDB). The link is: 

http://www.ddbst.com/ 

The 1-butanol and water activity coefficient values are calculated from Aspen 

Plus software. 

Activity coefficient values used in the permeability calculation with UNIFAC model. 

Component Activity coefficient γ 

Ethanol 6.653 

Water (EtOH/water solution) 1.029 

1-Butanol 30.5 

Water (1-butanol/water solution) 1.0 
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APPENDIX C 

PREPARATION OF CONDENSATION CURE PDMS MEMBRANES 
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1. Prepare a 20 mL scintillation vial. Add 1 g of the silanol terminated PDMS and 8 

g of n-heptane to the vial. 

2. Mix the solution for 3 minutes with the help of a vortex mixer. 

3. Then mix the polymer with the solvent with a probe sonicator at 300 W for 60s. 

Make sure to insert the probe tip half way into the solution to achieve good 

mixing results. Then close the vial and mix the solution with a vortex mixer for 

90s. If the solution is still very hot, keeping vortexing the solution until it cools 

down before the next sonication-vortex cycle.  

4. Repeat the 60s sonication and the 90s vortex mixing for 7 more times (total 8 

cycles). 

5. Add 0.2 g of TEOS solution into the PDMS/n-heptane solution and vortex the 

solution for 3 minutes. 

6. Finally add 0.012 to 0.04g of each titanium 2-ethylhexoxide and di-n-

butyldiacetoxytin tech-95 catalysts to the solution and again vortex it for 3 

minutes.  

7. Pour the solution into a 9 cm diameter flat-bottomed Teflon evaporating dish. 

Transfer the Teflon dish to a closed box with 75 RH%. Leave the membrane in 

the humidity controlled box for 21 hours. To create the 75 RH% enviroment, we 

placed a beaker filled with saturated sodium chloride solution into a sealed box at 

room temperature. A Teflon dish is used so the membrane is easily peeled off 

from the substrate.  
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8. Remove the Teflon dish and transfer it to a vacuum oven. Dry the membrane at 

100 ºC for 20h and then 120 ºC for 11h.  

9. Then peel the membrane off from the Teflon dish and cut with a scissor into 

desired shape.   
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APPENDIX D 

ALCOHOL/WATER PERVAPORATION TEST  
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1. Prepare 35 g of 2 wt% ethanol/water (or 1-butanol/water) solution as feed solution. 

2. Cut a piece of membrane with a scissor based on the size of the porous stainless 

steel support. 

3. Place the membrane with the porous stainless support at the bottom side of the 

stainless steel pervaporation cell (shown in Figure 2-3) with the membrane facing 

the feed and seal it with o-rings.  

4. Insert the feed circulation tubing into the feed cell and seal the top part of the 

pervaporation cell. Pump in the feed solution with the help of a Masterflex® 

peristaltic pump. Then keep the pump speed at 1 ml/s throughout the test. 

5. A custom-made heating jacket is applied to the pervaporation feed cell control the 

feed temperature. Turn on the heating jacket and set the temperature at 60 ºC. 

6. Turn on the vacuum that connects to the downstream side of the membrane. Run 

the setup for 1.5 hours to allow the setup to reach steady state before collecting 

any permeate.  

7. After 1.5 hours, apply liquid nitrogen to the cold trap to condense and collect the 

permeate. Refill the liquid nitrogen every 30~40 minutes to maintain the cold 

atmosphere around the cold trap.  

8. After the test is done, record the test time t, turn off the vacuum and close the 

valves connecting to the cold trap. Weigh the cold trap with the permeate as M1. 

Then add a certain amount of water into the cold trap to dilute the permeate (the 

permeate is too little and cannot be collected and measured), measure the weight 

of cold trap+permeate+water as M2.  
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9. Dry the cold trap and measure the weight of the empty cold trap as M3. 

10. Analyze the diluted permeate sample with GC. Calculate the diluted permeate 

alcohol concentration as C2 based on the calibration curve. 

11. Calculate the permeate alcohol concentration C1 with the equation C1= C2 (M2-

M3)/(M1- M3). 

12. The mass of permeate component i Wi can be calculated based on the mass and 

concentration of permeate. Then the flux, permeability and selectivity are 

calculated according to the equations shown in equation 1.1, 1.2 and 1.3.  
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APPENDIX E  

PROTON NUCLEAR MAGNETIC RESONANCE  
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1. Proton nuclear magnetic resonance (1H NMR) (Varian MR400) was applied to the 

SALE modified ZIF-71 particles to quantify the amount of new ligand exchanged 

into the ZIF material.  

2. Dry the ZIF powder at 75 ºC for 12 hours in a vacuum oven before the sample 

preparation.   

3. Measure 0.01 g of the ZIF material or the new ligand (BIM, MBIM, DMBIM and 

PI) into a glass vial. 

4. Add 75 µL of methanol-d4 solution and then 30 µL of 35% DCl in D2O solution 

to the ZIF material. Mix the solution with a vortex mixer. The solution becomes 

clear after the addition of DCl/D2O solution.  

5. Then transfer the solution to NMR tubes.  

6. Run the sample at room temperature. 

 


