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ABSTRACT

Topological methods for data analysis present opportunities for enforcing certain in-

variances of broad interest in computer vision: including view-point in activity analysis,

articulation in shape analysis, and measurement invariance in non-linear dynamical mod-

eling. The increasing success of these methods is attributed to the complementary infor-

mation that topology provides, as well as availability of tools for computing topological

summaries such as persistence diagrams. However, persistence diagrams are multi-sets

of points and hence it is not straightforward to fuse them with features used for contem-

porary machine learning tools like deep-nets. In this paper theoretically well-grounded

approaches to develop novel perturbation robust topological representations are presented,

with the long-term view of making them amenable to fusion with contemporary learning ar-

chitectures. The proposed representation lives on a Grassmann manifold and hence can be

efficiently used in machine learning pipelines. The proposed representation.The efficacy of

the proposed descriptor was explored on three applications: view-invariant activity analy-

sis, 3D shape analysis, and non-linear dynamical modeling. Favorable results in both high-

level recognition performance and improved performance in reduction of time-complexity

when compared to other baseline methods are obtained.
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Chapter 1

INTRODUCTION

Over the years, tools from topological data analysis (TDA) have been used to character-

ize the topological structure of data, where the data is perceived as a noisy sampling from

an underlying space. One of the prominent TDA tools is persistent homology. It provides a

multi-scale summary of different homological features (Carlsson et al. (2005)). This multi-

scale information is represented using a persistence diagram (PD), a 2-dimensional (2D)

Cartesian plane with a collection of points. For a point (b, d) in the PD, a homological

feature appears at scale b and disappears at scale d. Due to the simplicity of PDs, there has

been a surge of interest to use persistent homology for summarizing high-dimensional com-

plex data and has resulted in successful implementation in several research areas (Anirudh

et al. (2016)). However, application of machine learning techniques on the space of PDs

has always been a challenging task. The gold-standard approach for measuring the ‘dis-

tance’ between PDs is the bottleneck or the Lp-Wasserstein metric (Edelsbrunner et al.

(2002)). These distance measures make it possible to do clustering of PDs. However, a

simple metric structure is not enough to use other machine learning tools such as support

vector machines (SVMs), neural networks, random forest decision trees, principal compo-

nent analysis and so on. Also, these metrics are only stable under small perturbations of

the data which the PDs summarize, and the complexity of computing distances between

PDs grows in the order ofO(n2), where n refers to the number of points in the PD. Several

efforts have been made to overcome these problems by attempting to map PDs to spaces

that are more suitable for machine learning tools (Adams et al. (2017)). Keeping the above

issues in mind, one would prefer a suitable representation of the PDs that has the following

desired properties -
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1. Computationally efficient.

2. Can be easily integrated with machine learning tools.

3. Is stable with respect to topological noise.

4. Interpretable relationship to the PD from which it was computed.

Using a novel perturbation framework, in this paper we propose a topological noise

robust representation of PDs that attempts to incorporate the above traits. We first gener-

ate a set of perturbed PDs by randomly shifting the points in the original PD by a certain

level. A perturbed PD is analogous to extracting the persistence diagram from data that

is subjected to topological noise. Next we construct a 2D probability distribution function

(PDF) using kernel density estimation on each of the perturbed PDs. Finally, we simplify

the end representation-space of the set of 2D PDFs to be a Grassmannian, which is a non-

constantly curved manifold. We can develop very efficient machine learning pipelines over

the topological descriptors by leveraging known metrics and statistical results on the Grass-

mann manifold space. Our experiments suggest that our proposed framework recovers the

lost performance due to functional methods, while still enjoying orders of magnitude faster

processing times over the classical Wasserstein and bottleneck approaches.

Outline of thesis: Section 1.1 discusses related work in more detail. Chapter 2 and

Chapter 3 provides the necessary background on Topological Data Analysis, persistent ho-

mology, scalar-field topology and the Grassmannian. Chapter 4 gives a detailed description

of the proposed framework and end representation of the PD for statistical learning tasks.

Section Chapter 5 describes the experiments and results. Chapter 6 concludes the thesis.

1.1 Related Work

In persistent homology, PDs provide a compact multi-scale summary of the occurrence

of different topological features. The traditional metrics used to compare the (dis)similarity

between PDs are the bottleneck and the Lp-Wasserstein metrics. These measures are sta-

2



ble with respect to small continuous deformations of the topology of the inputs, which is

the main reason for their popularity (Cohen-Steiner et al. (2005)). For a set of PDs these

metrics can be used to calculate Fréchet mean, variance and perform clustering (Turner

et al. (2014)). However, these methods perform poorly under large deformations condi-

tions which we will demonstrate later in section 4. Also, different machine learning tools

demand more than just a metric structure. To overcome this complication, researchers have

resorted to transforming PDs to other suitable representation spaces (Anirudh et al. (2016)).

Bubenik proposed the notation of persistence landscapes (PL), which is a stable functional

representation of a PD lying in a Banach space (Bubenik (2015)). It can be thought of as

a sequence of envelope functions defined on the points in the PD which are ordered based

on their importance. Bubenik’s main motivation for defining PLs was to get a unique mean

representation for a set of PDs. However, the major drawback of using PLs is that they pro-

vide decreasing amount of importance to higher order homology groups, which are more

informative than their lower-order counter parts.Kernel methods have also been proposed

Rouse et al. create a simple vector representation by overlaying a grid over a PD and

count the number of points that fall into each bin (Rouse et al. (2015)). This method is not

stable, since a small shift in the points can result in a different end feature representation.

Despite the fact, this idea has appeared in many other forms (Adams et al. (2017)). Our

feature representation is also a variant of the above grid count method. Donatini et al. and

Ferri et al. transformH0 homology PDs into persistence surfaces by fitting and summing up

Gaussian distribution centered at each point in the PD (Donatini et al. (1998)). Reininghaus

et al. create a more stable representation by taking the weighted sum of positive Gaussians

centered on each point above the diagonal and mirror the same below the diagonal but with

negative Gaussians (Reininghaus et al. (2014)). Adams et al. design persistence images

(PI), by computing the integral over each bin of the grid defined over the Gaussian-surface

representation of the PD (Adams et al. (2017)). Both PI and the multi-scale kernel defined

3



by Reininghaus et al. show stability with respect to the traditional Wasserstein metrics.

However, these methods perform well under small perturbation conditions and resort to

weighting of points based on their lifetime. Depending on the problem, one may like to use

a different weighting function. Giving importance to points with medium lifetimes helped

Bendich et al. to best distinguish the data (Bendich et al. (2016)). Cohen-Steiner et al. ben-

efited by prioritizing points near the death-axis and away from the diagonal (Cohen-Steiner

et al. (2005)). In this paper, we propose a unique perturbation framework that goes around

the task of selecting a weighting function by considering all the possible topological noise

one could expect to see in the PD. We summarize this information and treat it as a point

on the Grassmann manifold. We later show the effectiveness of our features in sections 4

5 for different different classification problems using data collected from different sensing

devices.

The geometric properties of the Grassmannian have been used for various computer

vision applications, such as object recognition, shape analysis, human activity modeling

and classification, face and video-based recognition, etc. (Gopalan et al. (2012)). Lin et

al. obtain descriptive projections by optimizing over the Grassmann manifold . Begelfor

and Werman do clustering of shapes by using the affine shape space of the Grassmannian

(Begelfor and Werman (2006)). Turaga et al. develop models that encode a linear subspace

structure for image and video-based recognition applications. We suggest our readers to

the following papers that provide a good introduction to the geometry, statistical analysis

and techniques for solving optimization problems on the space of the Grassmann manifold

(Turaga et al. (2010)). In our framework, the set of 2D PDFs obtained after perturbing the

PD are mapped to a point on the Grassmann manifold.
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Chapter 2

TOPOLOGICAL DATA ANALYSIS

This chapter provides a relatively detailed yet mathematically concise introduction to

the rapidly emerging field of Topological Data Analysis (TDA). A very important tool in

this exploratory space is persistent homology which will be presented in detail.

2.1 TDA -Introduction

Topological Data Analysis (TDA) refers to a collection of data analysis methods that

find topological structure in data ( Carlsson (2009)). This field of TDA has emerged from

various advances in applied and algebraic topology and computational geometry and was

pioneered by the works of Edelsbrunner et al. (2000) and Zomorodian and Carlsson (2005)

in the persistent homology and was popularized by Carlsson (2009).

The main motivation of TDA is that data has shape and shape matters to gain powerful

insights about its qualitative and quantitative features. Approaches to achieve this lie within

topology and geometry ( Chazal (2016)).

The goal of TDA is to provide well-founded mathematical and algorithmic methods to

analyze and summarize the complex topological structures contained in the high-dimensional

data using low-dimensional algebraic representations. Data is typically represented as point

clouds in Euclidean space and in general metric spaces. TDA is also applied on functions

defined on data. We will in detail, cover algorithms and concepts involved in TDA with

respect to both these types of data i.e., point clouds in metric spaces and functions defined

over data.
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Since TDA is a very fast evolving field, a number of approaches have been proposed

to achieve this and as mentioned earlier persistent homology is one of the most common

approaches of it. Persistent homology is a multi-scale approach to extract the topological

features of data. A typical pipeline of implementing TDA will be as follows Chazal and

Michel (2017).

2.1.1 TDA -pipeline

1. The input data is typically a finite set of points with some notion of distance or

similarity between them. This notion of similarity or distance plays a key role in the

process of extraction of interesting topological structure of data. This distance can

be induced by a metric in the ambient space or as an intrinsic metric provided by a

pair wise distance metric. The choice of this distance or similarity is carefully made

according to the application. Inmost cases this could be the familiar Euclidean metric

when the data are embedded in (Rd).

2. Simplicial complexes are then built on the data to highlight the latent topology . This

step is needed because point clouds in themselves carry does not non-trivial topology.

Filtration i.e, nested simplicial complexes forms the vital step in the analysis. Sim-

plicial complexes can be seen as higher dimensional generalizations of neighboring

graphs. We will discuss simplicial complexes and the process of filtration in more

detail in a subsequent section.

3. Upon completion of the process of filtration on the point cloud data we now extract

topological or geometric information. This generally results in triangulation of the

shape underlying the data from which summaries can be extracted by using tools like

persistent homology.
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4. The final stage of the pipeline is to use these extracted features to gain insights

about the shape of the data by visualization and or use these features for analysis

in machine-learning tasks. The choice of using these features in a stand-alone fash-

ion or to explore its complementary properties with other features is again guided by

application.

2.2 Homology

We will first discuss the concepts related to homology for the input data which is rep-

resented as point cloud in (Rd). We will look at various definitions of topology associated

theorems and concepts of simplicial complexes. The goal of persistent homology is the

measurement of the scale or resolution of a topological features. A short introduction to

homology is as follows. Homology is a very involved subject in it’s own right.Here an em-

phasis is laid on the intuition behind the idea rather than on its involved math. Homology

characterizes sets based on connected components and holes. That is to say that homology

is the concept utilized to summarize the connectivity of a topological space. The homology

of a given spaceM is the collection of Abelian groups of various dimensions. The kth di-

mensional group representing the kth dimensional holes inM. the kth homology group is

represented by Hk(M). The rank of this group βk is called the kth Betti number. Generally

speaking, the kth Betti number βk is the number of kth dimensional holes inM, that is β0

is the number of connected components ofM, β1 is the number of loops, β2 is the number

of enclosed voids and so on.

2.3 Simplicial Complexes

We will now briefly review the concepts involved in simplicial complexes. As men-

tioned earlier simplicial complexes, can be seen as generalization of neighborhood graphs

7



Figure 2.1: The circle has one connected component and one 1-dimensional hole: β0 = 1,
β1 = 1. A sphere in R3 has one connected component and one 2-dimensional hole (void):
β0 = 1, β1 = 0, β2 = 1. While the torus has one connected component, two 1-dimensional
holes and one void: β0 = 1, β1 = 2, β2= 1

in higher dimensions. Given a set X = {x, . . . , xp} ⊂ Rd of p+1 affinely independent

points , the k-dimensional simplex σ = [x, . . . , xp] spanned by X is the convex hull of

X.Affinely independent means that the k vectors xi - xo for i = 1 . . . ,p are linearly indepen-

dent.

Vertices of σ are the points of X and faces of σ are the simplices spanned by the subsets

of X.

A simplicial complex K in Rd is a collection of simplices such that

1. Any face of a simplex of K is a simplex of K

2. the intersection of any two simplices of K is either a common face or empty or both

The underlying space of K ⊂ Rd which is a union of the simplices of K inherits from

the topology of Rd. Hence K can be viewed as a topological space through its underlying

space Chazal and Michel (2017).

2.3.1 Building Simplicial Complexes

There are various methods that can be employed to build simplicial complexes on the

given data set or in a general a topological or metric space. Here some of the most common

approaches in practice are presented. We will first discuss about the widely-used Vietoris

8



Rips Complex.

Vietoris-Rips Complex

Let we be given point cloud X in a metric space (M , ρ) and a real number ε ≥ 0. The

Vietoris-Rips complex of diameter ε is the simplicial complex or the set of simplices [x, . . . , xk]

such that d( xi, xj) ≤ ε for all (i,j). This complex is denoted by Ripsε(X).That is consider

the vertices {v, . . . , vp} corresonding to the given data points. The simplex [v,v,. . . ,vk ]

is added to the simplicial complex iff the diameter of the set {x, . . . , xk} is less than ε

Čech complex

Again lets start with a set of points X ={x, . . . , xp}.Now for any given ε > 0, balls of

radius ε around each point are then constructed.

After this, an abstract collection of vertices {v, . . . , vp} corresponding to the given

points are considered. Vertices vi,vj are connected by an edge if the balls Br(xi )and Br(xj)

Krim et al. (2016). If three balls Br(xi), Br(xj) and Br(xk) we add the triangle [vi,vj ,vk ].

This process of adding higher dimensional simplices if the balls intersect is continued in

the similar fashion. What results by this procedure is what is called as Čech complex. One

of the major disadvantages of this complex is that in order to build this on data you need to

know the actual embedding of the data in ambient space.

Rips and Čech complexes are related by

Ripsε(X) ⊆ Cechε(X) ⊆ Rips2ε(X)

and that if X subset Rd then Čechε(X) and Rips2ε(X)have the same set of vertices and

edges. Chazal and Michel (2017)

9



2.4 Persistent Homology

As mentioned earlier Persistent homology is the most widely used tool to compute and

study multiscale topological features efficiently. This tool has multifold uses.

1. Compute Betti Numbers of each complex

2. Encoding of the evolution of homology groups of the nested complexes across the

scales.

As we noted earlier, in general, a filtration of a topological space S is a collection of

subspaces (Sr)r∈T , where T ⊆ R, such that for any r, r′ ∈ T , if r ≤ r′ then Sr ⊆ Sr′

and, S = ∪r∈TSr. As an example, if f : S → R is a function, then the family Sr =

f−1((−∞, r]), r ∈ R defines a filtration called the sublevel set filtration of f .

Filtrations in TDA are generally of two kinds.

1. Filtration on point cloud

2. Sublevel set filtrations

Let us now look at different examples for both of these with respect to persistent ho-

mology.

Example on point cloud data Consider the point cloud data as show in Figure 2.2 and is

inspired from ??. We will consider the filtration obtained by a union of balls of increasing

radii on the points C.

(a) Radius r = 0, hence it is the data itself. Each point corresponds to 0-dimensional

features also called as connected components. Hence birth for each of these features

are at r = 0 .

10



(b) As r keeps increasing some balls start overlapping resulting in death of some con-

nected components. This will be encoded in the persistence diagram by a point on

the y-axis

(c) As r increases again, now, all the individual connected components are merged giv-

ing raise to a single connected components. However, there is still two 1 -dimensional

holes that need to be captured in the persistence diagram. Their start points birth are

at this radius

(d) As we increase r more, one 1-dimensional hole gets collapsed.Hence at this radius

one 1-dimensional feature has died. So, this will be represented in a persistence

diagram as the pair(birth,death) where birth and death of this particular feature is the

radius in step c and step d respectively.

(e) When r has been further increased, the remaining 1-dimensional features also gets

merged.

This process has been beautifully captured by the representation of barcodes and persis-

tence diagrams. The long the interval of the barcode the farthest is it from the diagonal

in the persistence diagram. In this particular case there were two 1 dimensional holes

and 1 connected components. This would map directly to our initial discussion of Betti-

numbers. That is β0=1 and β1=2. So, persistence diagrams can be viewed as mutli-scale

topological feature encoding the homology of union of balls for all radii and its evolution

with r.

Example: Filtrations on functions :consider the Figure 2.3.

For all ε < p1, Fe is empty hence there is no information whatsoever in the barcode

diagram or in the diagram. However, as ε = p1, we can see that a connected component

appears in Fp1 . We thus register p1 as the birth time of the first connected component and an

11



a) b)

e)

c) d)

Persistence barcode

Persistence diagram

X

f)

Figure 2.2: Filtration of the distance function to a point cloud and the “construction” of its
persistence barcode as the radius of balls increases.

interval starting at p1 will thus be started to track this connected component.As we proceed

further to ε = p2, we observe that another connected component appears. We thus create

another interval starting at ε = p2 to track this component. At ε = p3 one more connected

components starts to appear, so in a similar fashion we create an third interval starting at

ε = p3 to track this feature. When ε reaches p4 the two connected components created at

p1 and p3 merge together to give raise to a larger component. Hence the interval started at

p3 will now be ended at p4 which is denoted appropriately in the barcode as well as in the

persistence diagram.The lifespan which is defined as the death-birth of the feature is thus

p4-p − 3. At ε = p5, we notice that the connected component that had its birth time at p2

dies. Thus we represent this as the point (p2, p5) in the persistence diagram. However, the

12



birth

death
y

x

p6

p5

p4

p3
p2
p1

0 1 p1 p2 p3

Figure 2.3: The Persistence Barcode and the Persistence Diagram of a Function f :
[0, 1]→ R.

interval created for the connected component that was born at p1 continues to exist till p6

if we stop the filtration at p6 thus it can be represented as (p1, p6). Note that if the filtration

is not stopped at p6 but extends to +∞, the filtration doesnot change after p6, hence the

interval or the (birth,death) representation of this connected component will be (p1,+∞).

Having seen these two examples on two different kinds of data, we can now formally

define what is a persistence diagram. (Vr | r ∈ T )

Definition 1 A generalized persistence diagram is a countable multiset of points in R2 i.e.,

{(x, y) ∈ R2 | x, y ≥ 0, x < y} along with the diagonal ∆ = {(x, y) ∈ R2 | x = y},

where each point on the diagonal has infinite multiplicity.

It is not difficult to see why it is a multiset of points once we consider the example

figure shown in 2.3. Here, it can be observed that in the persistence barcode there could

be several copies of the same interval for a function. Correspondingly, in the persistence

diagram, which is nothing but the representation of the birth and death of the connected

components,each point has an integer -valued multiplicity. Hence persistence diagram is

indeed a multiset of points in R2. A feature cannot die before it is born i.e., death≥ birth

hence the condition x≤y. However, why is the other condition that each point on the
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diagonal has infinite multiplicity imposed?. The answer to that question is stability. In fact,

without the guarantee that these diagrams are stable with respect to small perturbations in

the input data, we cannot infer information about the data from its persistence diagram.That

is to say that persistence diagrams are only useful when we are certain that a slight change

in the data does not have a huge impact in the diagram Chazal (2016). To formulate this

notion of stability, we will need to have some notion of distance or similarity between any

two given persistence diagrams.

There is a innate metric associated to persistence diagrams called as bottleneck distance.

Definition 2 Bottleneck distance

Let A and B be two persistence diagrams. The bottleneck distance between these two

persistence diagrams is given by

dL∞(A,B) = inf
φ:A→B

sup
x∈A
‖x− φ(x)‖

and the infimum is taken over all possible bijections between these two persistence dia-

grams.

That is to say that bottleneck distance is found out by minimizing the largest distances

of any two corresponding points, found over all bijections between the diagrams.

Definition 3 Space of persistence diagrams

The space of the persistence diagrams D can be defined as

D = {x | d(x, ∅) <∞} .

where ∅ is a diagram with only a diagonal.

It is easy to see that bottleneck distance is indeed a metric on the space of the persistence

diagrams D. That is because,
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1. dL∞(A,B) = 0 iff A = B.

2. dL∞(A,B) = dL∞(B,A) and

3. dL∞(A,B) ≤ dL∞(A,C) + dL∞(C,B)

The more general class of distances for measuring the distance between two persistence

diagrams is the Wasserstein distance.

Definition 4 p-Wasserstein Distance

dL,p(A,B)p = ( inf
φ:A→B

∑
x∈A

‖x− φ(x)‖p)

It should be noted that as p→∞ p-Wasserstein distance becomes bottleneck distance.

Theorem 1 (Stability of persistence diagrams) Turner et al. (2014) let f, g are two tame

Lipschitz functions f, g : X→ R

dL2(Diag(f),Diag(g)) ≤ 2
k+2
2

[
C‖f − g‖2−k

∞
]1/2

,

k ∈ [1, 2) and C depends on Lipschitz properties of f, g.

Hence by having a infinite multiplicty of the points on the diagonal we can achieve

stability with respect to small perturbations in the given data.

It is also important to note that the space of the persistence diagrams D is not a hilbert

space but an Alexandrov space with non-negative curvature Turner et al. (2014). Hence

these diagrams which are very non-linear in nature can not be used directly in the traditional

machine learning paradigms. A number of approaches have been proposed in literature to

over come this problem and are discussed in 1.1

The recent developments in the field of computational topology have enabled many

efficient computation methods to compute topological invariants from data. There are

15



many freely available software now to perform TDA such as Gudhi Library(C++ and

python) Maria et al. (2014) , TDA-R package Fasy et al. (2014), Javaplex(matlab) Adams

et al. (2014), a highly distributed program DIPHA(python) Bauer et al. (2014) etc. These

easy to use and efficient software have enabled researchers to apply TDA to very challeng-

ing tasks.
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Chapter 3

DIFFERENTIAL GEOMETRY

In this section, a brief and terse introduction of differential Geometry is provided along

with key concepts. We will look at a specific manifold called Grasmann Manifold for the

reasons mentioned earlier.We also suggest the readers to refer to excellent textbooks such

as Absil et al. (2009) and this chapter by Turaga et al. (2010).

Manifold: A topological space is called a manifold if it is locally Euclidean i.e.,

Definition 5 A Hausdorff spaceM is defined as a manifold if for each point p ∈M, there

exists a neighborhood U of p and a mapping f : U → Rn such that f(U) is open in Rn and

where f is a diffeomorphism.

A topological manifold with globally defined differential structure is a differentiable

manifold. This implies that there exists a map that goes from small neighborhoods to open

sets of euclidean spaces thus allowing us to perform calculations in euclidean space. If

many such mappings exists then they are compatible or their compositions are smooth.

Tangent and tangent space: The set of all possible tangent vectors for a given point

p ∈M is called a tangent space at p. It is denoted by TpM. It is important to note that the

tangent space is a vector space. Hence this allows us to do familiar operations such as PCA,

regression etc. The dimension of the tangent space is same as that of the manifold. Tangent

vectors can be viewed as directional directives. For example consider a point p ∈M. Now

consider a curve γ(t) on the manifold passing through p such that γ(0) = p. The derivative

of this curve at p, γ′(0), is the tangent or the velocity vector. If one considers all possible

curves through this point {γi(t)}, i = 1, 2, . . . , then the set of all velocity vectors {γ′i(0)}

is the tangent space TpM, at this point. The pole of the tangent space is the point at which
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the tangents .The collection of all the tangent spaces ofM is called the tangent bundle of

M.

Riemannian metric: Now, we wish to obtain a metric onM. In order to achieve this one

should impose a Riemannian structure on the manifold. A Riemannian metric is function

that smoothly associates, to each point p ∈ M, an inner product on the tangent space

TpM. A smooth manifold equipped with a Riemannian metric is called a Riemannian

manifold. Fletcher (2010)

Geodesic: In the euclidean space, the shortest path between any two points is a straight

line. However, for non-linear spaces this is not true. In order to discuss the similar notion

notion of the shortest distance between two points on a given manifold, consider a curve

on the manifold γ : [p1, p2] → M such that γ(p1) = x and γ(p2) = y. Let the energy

function be E =
∫ b
a
||γ′(t)||2 dt. The curve that achieves the minimum of this functional E

is called the geodesic.This is the curve that minimizes the path length between two points

on the manifold. The norm ||.|| is induced by the Riemannian metric at γ(t).

It has earlier been noted that since tangent space is a vector space, many computations

that are not possible to be performed in non-linear spaces can be performed. Hence it is

convenient for us to do our calculations on the tangent space rather than on the manifold

directly because of its complex structure.In order to do this we need two maps defined.

One to go to tangent space from the manifold and two from the tangent space back to

the manifold. The first map is called exponential map and the second is called inverse-

exponential or logarithm map. We provide definitions of both of the maps below

Exponential Map:Given that a unique geodesic γ(t) exists locally at p ∈M and γ(0) = p

and γ′(0) = v ∈ TpM, the exponential map at p is the function expp : TpM→M given

by expp(v) = γ(1). For a neighborhood, U ⊂ TpM containing 0, it can be shown that

expp is a diffeomorphism, i.e., it has an inverse which is also continuous.

Logarithm Map: There is an inverse map of the exponential map that exists at least in the
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Figure 3.1:

neighborhood U ⊂ TpM containing 0, called the logarithm map given by exp−1
p : M →

TpM.

The algorithm for computing the Exponential and logarithm maps depends both on the

manifold of interest and the pole of the tangent space.

3.1 Grassmann Manifold

Definition: Let n, p be two positive integers such that n > p > 0. The set of p-dimensional

linear subspaces in Rn is called a Grassmann manifold, denoted by Gp,n or G(p, n). Each

point Y on Gp,n is represented as a basis, i.e. a linear combination of the set of p orthonor-

mal vectors Y1, Y2, . . . , Yp as shown below

Y =

[
Y1, Y2, . . . , Yp

]
=


y1,1 . . . yp,1

... · · · ...

y1,n . . . yp,n

 (3.1)

Distance Metrics: The geodesic distance (dG) between two points Y1 and Y2 on the Grass-

mann manifold is the length of the shortest constant speed curve that connects these points.
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To do this first the velocity matrix AY1,Y2 or the inverse exponential map needs to be cal-

culated, such that the geodesic path starts at Y1 and ends at Y2 in unit time. AY1,Y2 can be

computed using a numerical approximation method described in Liu et al. (2003). Once we

have AY1,Y2 , the distance between Y1 and Y2 can be represented by the following equation,

where (.)T is the transpose operator

dG(Y1,Y2) = trace(AY1,Y2 .AY1,Y2
T) (3.2)

The arc-length0 metric is another commonly used distance measure that is derived from

the intrinsic geometry of the Grassmann manifold Edelman et al. (1998). It takes the L-2

norm of the subspace angles computed between two subspaces as the distance measure.

d2
arc(Y1,Y2) =

N∑
i=1

θ2
i (3.3)

The symmetric directional distance is one of many methods to compute distances be-

tween subspaces of different dimension p Sun et al. (2007); Wang et al. (2006). It is a

widely used measure in several fields, such as computer vision da Silva and Costeira (2009);

Basri et al. (2011); Bagherinia and Manduchi (2011); Luo and Huang (2014); Yan and

Pollefeys (2006), communications Sharafuddin et al. (2010), applied mathematics Draper

et al. (2014) and so on. It is equivalent to the chordal metric defined in Ye and Lim (2016).

dchordal(Y1,Y2) =
(

max(k, l)−
k,l∑
i,j=1

(y1i
T.y2j)

2
) 1

2
(3.4)

In the above equation k and l are the subspace dimensions for the orthonormal matrices

Y1 = [y11, y12, . . . , y1k] and Y2 = [y21, y22, . . . , y2l] respectively. We restrict ourselves to

distance computations between same-dimensional subspaces, where k = l. In this paper

we perform recognition with the d2
arc and dchordal distance metrics using a nearest neighbor

classifier.
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Chapter 4

PERTURBED TOPOLOGICAL SIGNATURES

In this chapter, we provide a detailed description of our proposed approach, with a goal

to create robust representations of persistence diagrams with respect to topological noise.

We call our representations as PTS short for Perturbed Topological Signatures. We explain

our proposed approach in this section after the extraction of persistence diagrams(PDs). As

explained in chapter 2, we extract persistence diagram by using two methods depending on

the type of the input data. If the input data considered is point cloud data in Rn, we use

the Vietoris-Rips complex filtration and if the input data is actually functional data where

functions are defined over the input data then sub-level set filtration is employed to extract

persistence diagrams. The choice of representation of input data, that is, is it point cloud

or function valued data is dataset and task specific and we explain the choices made and

the methodology used to extract persistence diagrams for each of the experiments on three

different datasets in chapter 5.

As discussed earlier, the goal is to create robust representation of persistence diagrams

with respect to topological noise. The approach is straight forward and is as follows. A

given persistence diagram is perturbed many times, thus resulting in a set of perturbed per-

sistence diagrams for the same given data. An intelligent summarization of these set of

perturbed persistence diagrams is achieved. This summarization, which in our case is a

point on a Grassmann Manifold is then used for different classification tasks. This idea

is similar to data augmentation practices employed in the computer vision community to

obtain representations invariant to a property of interest. Examples include Gopalan et al.

(2012), where robust descriptors of face images with respect to blur are obtained by con-

volving an image with a complete set of ortho-normal basis vectors which is equivalent to
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blurring the image at various levels. Data augmentation has also been gaining steady pop-

ularity in the deep learning researchers as well, be it to increase the amount of training data

available because the original available data is less Dosovitskiy et al. (2014) or achieving

rotation invariance Marcos et al. (2016).

As noted, the space of persistence diagrams is not the familiar Hilbert space on which

a number of standard machine learning algorithms exist but rather Alexandrov space with

non-negative curvature, making it not conducive to standard machine learning.

So, in order to able to use the rich topological information encoded in the persistence

diagrams for classification tasks there should be a mapping function that can represent

these diagrams in a familiar space. However, the resultant representation of PDs should

be ideally stable with respect to input noise, be efficient to compute and should not loose

too much of information. Once such a representation is achieved for all the PDs, along

with the augmented PDs, we then wish to create an intelligent summary of these represen-

tations(which are in a familiar vector space). This summary need not be a vector space.In

fact, the choice we made is that, this summary of representation of PDs, is that of a point

on a Grasssmann Manifold of a fixed dimension.

The problem of achieving robustness to topological noise is a challenging one. There

is a good body of work and established theorems in literature such as Cohen-Steiner et al.

(2005) and Chazal et al. (2008) that show that persistence diagrams are stable with respect

to small perturbations in input data with respect to the chosen metric of Wasserstein dis-

tance. However, when the input data is noisy by a good extent, this stability no longer

holds. As a consequence, there is a serious fall in the performance when these are used in

the machine learning paradigms such as classification tasks. This reduction in performance

with respect to the increase in noise level of the input data will be demonstrated in our

experiment on the synthetic dataset on 3-D shapes. We will also show that, in the exper-

iments section that by the proposed approach we could obtain a considerable boost in the
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performance on different datasets on various domains such as 3-D shape retrieval, Action

recognition from motion-capture and Multi-view action recognition on IXMAS dataset.

An important thing to note is that our approach is blind to the method in which per-

sistence diagrams are extracted,be it through Vietoris-rips complex filtration or sub-level

set filtration. We will now start the description of our approach after the extraction of

persistence diagram as discussed before.

1. Rotating Persistence Diagrams: Recollect that persistence diagrams are defined as

a multi set of points in R2 i.e., {(x, y) ∈ R2 | x, y ≥ 0, x < y} along with the

diagonal ∆ = {(x, y) ∈ R2 | x = y}, where each point on the diagonal has infinite

multiplicity given in definition 1. Now, we define a transformation G : R2 → R2

such that G(b, d) = ( b+d
2
, d − b) where b and d are the birth-time and death-time

of a topological feature in the persistence diagram. This is equivalent to rotating

the persistence diagram in the clock-wise direction. The y-axis that is (death-birth)

now represents the life-time or the persistence of the given topological feature in a

persistence diagram. This construction helps in optimally utilizing the 2D space. The

reasons for such a claim will be provided in the subsequent paragraphs.

2. Creating a set of Perturbed PDs: For each PD extracted and rotated, we create a set

of m PDs where each PD in this set has it’s points randomly displaced by a certain

amount within a fixed radius. The obtained set of randomly perturbed PDs retain the

same topological information of the input data as the original PD. However, together

they capture all probable variations of the input data when subjected to changes in

scale. This step allows us to incorporate noise-robustness, when the input data is

subjected to a certain level of noise.

3. Converting PDs to 2D Probability Distribution Functions: We convert the initial

PD and each of the m randomly perturbed rotated PDs to 2D probability distribution
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functions (PDFs) by treating the points in the PD as samples from an underlying PDF.

We fine tune the bandwidth parameter to get best results. One could avoid the hassle

of fine tuning this parameter by generating multiple PDFs using a range of different

bandwidth parameters for each of the m + 1 PDs and still obtain optimal results as

we shall show in our experiments. For now let us consider that we generate only one

2D PDF per PD.

4. Projecting 2D PDFs to a point on the mannian: Once we have all the 2D PDFs

and with each PDF having n bins, we vectorize each PDF and stack them together to

get a 2D matrix of size n×m (n >> m), herem being the total number of PDFs. On

this matrix we apply singular value decomposition (SVD) and select the p largest left

singular vectors. This will result in a n × p orthonormal matrix which is a point on

the Grassmann manifold. We will later show how our end Grassmann representation

is robust to noise in the input data and perturbation of the points in the PD.

The pipeline is illustrated in 4.1 with an example from the IXMAS dataset. Specific

details of IXMAS dataset are described in the experiments section. The first column rep-

resents key frames of 3 selected action classes, Check watch, sit down and walk. The

second column represents the respective persistence diagram of each action sequence.Then

the result of the step 2 i.e., a set of perturbed PD’s is shown in figure 3 while the PDF

representation of each of these perturbed PD is shown in column four. Finally the end

representation which is a low -dimensional subspace of these 2-D PDF’s, that lie on the

Grassmann manifold is shown. Once we achieve the final Grassmann Representation, with

its well-studied structure, these representation can be used in machine learning pipelines

such as classification tasks employing algorithms like K-Nearest Neighbor or Support Vec-

tor Machines.
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Figure 4.1: Illustration of the Proposed Framework’s Pipeline.
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Chapter 5

EXPERIMENTAL RESULTS

In this chapter, we show our results on the different experiments carried out. There are

two kinds of experiments conducted. These are Experiments on Synthetic dataset and real

datasets. The synthetic experiment performed asserts our claim that the proposed approach

indeed achieves robustness to perturbations in input data when compared against the gold

standard traditional metrics such as Wasserstein Metrics. We report classification accuracy

achieved through our proposed approach and compare them against standard base-lines.

While the datasets considered for experiments on real dataset are of three different domains

namely, 3-D shapes, motion capture data and videos of human actors performing a specific

task

5.1 Synthetic Experiment

This experiment as mentioned above is to establish the superiority of our method and its

robustness to perturbations in the input data. We considered the SHREC 2010 dataset Lian

et al. (2010). It consists of 200 near-isometric watertight 3D shapes with articulating parts,

equally divided into 10 different classes namely - ants, crabs, spectacles, hands, humans,

octopuses, pliers, snakes, spiders and teddy-bears.

The sample shapes of each class of this dataset is shown in figure 5.1

In this experiment we select one sample per each class at random. Let this set of ten

shapes each representing one sample be denoted by S. The minimum bounding sphere for

each of these shapes has a mean radius of 54.4 with standard deviation of 3.7 centered at

(64.4, 63.4, 66.0) with coordinate-wise standard deviations of (3.9, 4.1, 4.9) respectively.

For each s ∈ S, we add a zero mean Gaussian noise of ten incremental standard deviations
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Figure 5.1: Sample Shapes of SHREC 2010 Dataset

ranging from 0.1 to 1 in steps of 0.1. Thus now the earlier set of original shapes S is

augmented by 100 shapes. 10 perturbed shapes per each shapes. Let this augmented set of

shapes i.e., original shapes along with 100 perturbed shapes be called PS . For each ps ∈

PS , we extract persistence diagrams using sub-level set filtration method. The functions

that we define on these shapes is that of spectral descriptor functions. Scale Invariant- Heat

kernel Signature, a spectral descriptor Sun et al. (2009); Aubry et al. (2011); Kokkinos

et al. (2012) which captures scale invariant macroscopic properties of the shape is used in

this experiment. The number of dimensions of this SIHKS descriptor considered are 17.

Hence 17 persistence diagrams are computed per shape for each ps ∈ PS . Grassmann

representation of these persistence diagrams are obtained through the method explained in

chapter 4.

We now perform a nearest neighbor classification on this set PS using L − 1,L − 2

Wasserstein metrics, bottle− neck distance on the persistence diagrams. These results are

compared against using d∆ and dG i.e., symmetric directional distance and geodesic dis-

tance respectively, defined in section 3.1 on our Grassmann representations. This process is

repeated 100 times. The average accuracy after performing this experiments over 100 folds
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is reported in table 5.1. It can be seen that even though the shapes are highly noisy , we still

get considerably good accuracy against other baselines, see table 5.1 and at a much reduced

computational load. Thus showing that our proposed method indeed achieved robustness

against topological noise of the input data.

Method N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10

Average

Accuracy (%)

Time

(10−4 sec)

L1-Wasserstein 96.50 100.00 95.50 97.30 100.00 100.00 100.00 100.00 100.00 100.00 98.93 256.00

L2-Wasserstein 85.70 99.80 91.40 86.50 99.70 99.60 94.60 94.30 98.40 100.00 95.00 450.00

Bottleneck 90.40 100.00 94.60 93.50 99.90 99.80 99.70 100.00 100.00 100.00 97.79 36.00

Proposed - d∆ 96.60 100.00 99.50 97.00 99.50 100.00 100.00 100.00 100.00 97.70 99.03 1.60

Proposed - dG 97.60 100.00 98.90 95.80 99.60 100.00 100.00 100.00 100.00 97.60 98.89 2.30

Table 5.1: Correct Classification of 100 Noisy Shapes, with 10 Noisy Shapes with Differ-
ent Noise Levels Extracted for 10 Different Shapes from the SHREC 2010 Dataset.

b

Figure provides a good illustration of the dataset. 5 shapes from the set S are chosen.

Their noisy or perturbed versions obtained by adding zero-mean white Gaussian noise are

also shown in column 6. It can be seen that the figures in column 6 are very noisy. Columns

2 and 5 represent the persistence diagram obtained through the SIHKS function defined on

these shapes. Columns 3 and 4 are the visualizations of our Grassmann representations at

1st subspace.

5.2 Real Experiments

We apply the framework described in the previous chapter on three different datasets

with different types of input data - 1) SHREC 2010 3D shape dataset Lian et al. (2010),

2) Motion capture dataset Ali et al. (2007) and, 3) IXMAS video dataset Weinland et al.

(2007)
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Figure 5.2: illustration of original shapes,respective persistence diagrams, visualization
of Grassmann representations from columns 1 to 3. Columns 4 to 6 represent Grassmann
representations,persistence diagrams and perturbed shapes with zero mean Gaussian noise
with standard deviation of 1.

We will first briefly talk about each dataset and later describe the experimental objec-

tives and procedures that were followed.

5.2.1 SHREC 2010

SHREC 2010 shape retrieval dataset consists of 200 near-isometric watertight 3D shapes

with articulating parts, equally divided into 10 different classes namely - ants, crabs, spec-

tacles, hands, humans, octopuses, pliers, snakes, spiders and teddy-bears. Each 3-D mesh

has tens of thousands of faces and vertices. We simplify each of these 3-D meshes to 2000

faces and 1002 vertices as suggested in Li et al. (2014).
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PDs are extracted using the spectral descriptor functions that are defined on each shape

and are isometry-invariant. The following spectral descriptors were used to calculate the

PDs - heat kernel signature (HKS), wave kernel signature (WKS) and scale-invariant heat

kernel signature (SIHKS) Sun et al. (2009); Aubry et al. (2011); Kokkinos et al. (2012).

These descriptors are standard spectral descriptors in shape analysis. HKS is based on the

concept of heat diffusion over a surface. Intuitively, this can be thought of as follows. Let

there be some surface and its initial heat distribution is known. Heat kernel, a function,

gives us an idea of how much heat is transfer reed from one point to another point as the

time increases. Using this as a feature vector will be very complex because the feature

vector will be of very large dimension.Instead Heat kernel signature doesn’t relate to how

much of heat is transferred from one point to another with increase in temporal parameter,

rather it just considers the amount of heat that has changed at a given point with respect

to time resulting in less-dimensional data. SIHKS is the scale invariant version of HKS.

Wave kernel signature on the other hand replace the heat equation with Schrödinger’s wave

equation. WKS can be intuitively thought of set of bandpass filters Bronstein (2011). Thus

WKS captures local features very well but will not fare well when it comes to capturing

global features. However, one inherent challenge in using these spectral descriptor is the

choice of time parameters. We followed the parameters used by Li et al. (2014).

So, in a nut shell, HKS and WKS are used to characterize the microscopic and the

macroscopic shape properties of the 3D meshes and the SIHKS descriptor being a scale-

invariant version of HKS. persistence diagrams are then extracted from these descriptors

and , we follow our pipeline as illustrated in chapter 4. That is we proceed to perturb

the PD’s and extract the 2-D PDF’s. We perturb the persistence diagrams 40 times. As

mentioned earlier, we use a single bandwidth parameter in the kernel density estimation

to obtain 2-D PDF’s. Grassmann representations of various sub-space dimensions p are

then obtained from this set of 2-D PDF’s by performing a principal component analysis.
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To evaluate our performance, a Nearest Neighbor classifier is employed. Achieved perfor-

mance is compared against the baseline methods Li et al. (2014). Li et al. report their best

results after carefully tuning the weights for the weighted sum of the distance matrices ob-

tained through Bag-of-features and Wasserstein distance.In a quest to improve the results

further, they consider fusing with other descriptors such as ISPM etc along with all the three

spectral descriptors namely,HKS,SIHKS and WKS. It should be noted that by using our ap-

proach after combining our end representations of HKS,SIHKS and WKS , we significantly

outperform them without resorting to any further fusion practices. Our method using the

symmetric directional distance metric d∆ achieved an accuracy of 99.50%, outperforming

all other baseline methods.Please see table 5.2 . The average classification result by vary-

ing the subspace-dimension p from 1 to 25 of the Grassmann feature representation Gp,n

is 98.42±0.4 and 98.72±0.25 using d∆ and dG metrics respectively, thereby showing the

stability of our feature.

Spectral

Descriptor
Methods

Nearest

Neighbor (%)

WKS+

HKS+

SIHKS

BoF 97.00

SSBoF 97.50

ISPM 97.50

PD 98.50

BoF+PD 98.50

ISPM+PD 99.00

Proposed (dG) 99.00

Proposed (d∆) 99.50

Table 5.2: Comparison of the Nearest Neighbor Classification Results of the Proposed
Method with Other Baseline Methods Li et al. (2014).
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5.2.2 Motion Capture

This dataset consists of 3D human-body joint motion capture sequences, where each

sequence contains 57 trajectories (19 joint trajectories along 3 axes). There are 5 different

action classes - dance, jump, run, sit and walk, with each class containing 31, 14, 30, 35

and 48 action sample sequences respectively. Since this is a point cloud data in Rn we use

Vietoris-Rips Complex to extract persistence diagrams.

The procedure to extract the PDs is well explained in the paper Venkataraman et al.

(2016).We suggest the readers to consult that paper for further clarity. Here just a brief

summary of procedure to extract PDs from Motion Capture data is provided and is illus-

trated in figure 5.3

The data obtained from sensors is generally a projection of the original dynamic sys-

tem onto a low-dimensional space,hence, it might not have all of the useful information

regarding all the latent variables of the original system, thus rendering this data inade-

quate to model the system. Hence, we would like to reconstruct the attractors to obtain the

phase-space with the constraint that the topological information is preserved in both these

settings. That is we wish to obtain m-dimensional data from the available 1-dimensional

data assuming that all variables of the system have a mutual influence on one other.Thanks

to a theorem due to Takens et al. (1981) called Takens embedding theorem, this can be

achieved.

Once this high-dimensional data which is viewed as a point cloud data is obtained , we

extract persistence diagrams of H0 and H1 homology groups i.e., connected components

and 1-D holes using V-R complex as explained in chapter 2. PDs are extracted over each

trajectory after phase-space reconstruction thus resulting in 57 PDs per action. We only

consider H1 homology group PD’s because they are the ones that have the most useful

information in this context. Each of the 57 PDs when passed through our framework result
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Figure 5.3: Reproduced with approval from Venkataraman et al. (2016). Phase space
reconstruction of dynamical attractors by delay embedding. (a), (e) shows the 3D view of
trajectories of Lorenz and Rossler attractors. The one-dimensional time series (observed)
of the Lorenz and Rossler systems are shown in (b), (f). (c), (g) shows the reconstructed
phase-space from observed time series using delay embedding.

in 57 different Grassmann representations or points, where each point lies on a Grassmann

manifold of a specific sub-space dimension. Let the 57 Grassmann points for a given

action be represented by Y1, Y2 . . .Y57 and their respective Grassmann manifold spaces by

G1(p, n), G2(p, n) . . .G57(p, n).

The evaluation protocol is that of reporting the average classification performance over

100 random splits, with each split having 25 random test samples (5 random test samples

selected from each action class) and remaining 133 training samples. For SVM classifica-

tion, we train non-linear SVMs using the projection kernel defined below Hamm and Lee

(2008).

kp(Xi,Yi) = ‖XiTYi‖2
F (5.1)

Here Xi and Yi are two points on the grasmann manifold Gi(p, n), and ‖.‖F refers to

the Frobenius norm. The results are tabulated in Table 5.3.

It is to be noted that we achieve compare performance with respect to the Wasserstein
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Method Accuracy (%) Time (sec)

Chaos Ali et al. (2007) 52.44 -

VR Complex Zomorodian (2010) 93.68 -

T-VR Complex Venkataraman et al. (2016) 96.48 (1.2±1.23)× 103

Hilbert Sphere

1NN Anirudh et al. (2016)
89.87 (0.059±0.044)

Hilbert Sphere

PGA+SVM Anirudh et al. (2016)
91.68 -

Proposed - NN 85.96 0.300 ×10−4

Proposed - SVM 91.92 -

Table 5.3: Comparison of Accuracies Obtained Using the Proposed Approach to That of
Other Baselines on Mocap Dataset

metric, the gold standard metric for comparing persistence diagrams, we do this at a much

lesser computational time.We also compare our result with that of Anirudh et al. (2016).

We outperform Anirudh et al. (2016) which uses squareroot framework to represent the

2-D PDF’s onto a hilbert sphere, followed by Principal Geodesic analysis and SVM classi-

fication with linear kernel.

This is to say that even though there is a slight reduction in performance when compared

to Wasserstein distance, we achieve comparable performance with our SVM approach and

at much faster speed.

5.2.3 IXMAS Dataset

The IXMAS multi-view action dataset consists of synchronized action videos captured

from 5 different views. Out of these five views, four of them are side views and one is a

top view. This is a popular dataset in multi-view action recognition settings. It contains

videos of 11 daily-life actions performed 3 times by 10 actors. The 11 action classes are as

follows - check watch, cross arms, scratch head, sit down, get up, turn around, walk, wave,
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punch, kick, pick up. We follow the protocol as mentioned in Junejo et al. (2011). That is

we employ a leave one out strategy which implies that the same actor’s action videos would

not be present in training and testing sets simultaneously.

We follow the following approach to obtain persistence diagrams on this dataset. Hav-

ing inspired from works on shape analysis using descriptors such as DM1,DM2,DM3,AM3

etc Som et al. (2016, 2017); Som (2016) and Venkataraman and Turaga (2016),we extract

histograms of these descriptors across 5 different scales and 50 bins per each frame. We ex-

tract one PD per bin across all the frames. So in total for a given action sequence we extract

250 PDs.After processing through our pipeline we extract 250 Grassmann representations

of each action sequence.This is a lot of data, comparing two sets of Grassmann points for 2

action sequences is itself not easy and to do it over the entire dataset is impractical. Instead

we can summarize all this information and map it to just one point on a another Grasmann

manifold. We do this by first selecting the 1st k subspaces (k < p) from each of these

points and stack them together to get a n × (250.k) matrix. We then perform a Principal

component analysis,and hence the resultant is a point on the Grassmannian.Now each se-

quence is mapped to a point on the Grassmannian and we use the well defined kernels to

map this to RKHS Hamm and Lee (2008).

It has been established in Junejo et al. (2011) and other papers that self-similarity ma-

trix(SSM) i.e., a pairwise distance matrix of low-level features such as Histogram of Ori-

ented Gradients, optical flow serve as good descriptors for view-independence. They define

a log-polar descriptors on these matrices. Using Bag of features approach and chi-squared

kernels, classification using SVM’s are carried out. We exploit the complementary capabil-

ities of our method in IXMAS by combining our extracted kernels by using kernels defined

on Grassmann to those of the kernels extracted from SSM’s and show significant boost in

the same-camera and cross-camera settings.please see table 5.4
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Method
Same Camera

Accuracy (%)

Any-To-Any

Accuracy (%)

SSM-hog 67.30 52.60

SSM-of 66.60 53.80

SSM-hog-of 76.28 61.25

SSM-hog + PG-AM3 73.15 58.36

SSM-hog + PG-DM1 74.25 59.26

SSM-hog + PG-DM2 74.92 59.77

SSM-hog + PG-DM3 76.18 60.33

SSM-of + PG-AM3 72.01 58.85

SSM-of + PG-DM1 73.67 59.56

SSM-of + PG-DM2 73.45 60.60

SSM-of + PG-DM3 74.41 61.50

SSM-hog-of + PG-AM3 79.30 64.92

SSM-hog-of + PG-DM1 79.60 65.39

SSM-hog-of + PG-DM2 79.85 65.70

SSM-hog-of + PG-DM3 81.12 66.16

Table 5.4: Comparison of Accuracies Obtained Using the Proposed Approach to That of
Other BaselinesJunejo et al. (2011) on IXMAS Dataset
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5.3 Time-complexity of Comparing Topological Representations

Dataset
Average Number

of Points in PD

Average Time Taken (10−4 sec) Subspace Dimension (p)

of PTS FeatureL1-Wasserstein L2-Wasserstein Bottleneck dG d∆

SHREC 2010 Lian et al. (2010) 71 256.00 450.00 36.00 2.30 1.60 10

IXMAS Weinland et al. (2007) 23 16.00 16.00 3.43 2.21 0.68 20

Motion Capture Ali et al. (2007) 27 22.00 22.00 2.72 0.24 0.19 1

Table 5.5: Comparison of the Average Time Taken to Measure Distance Between Two PDs
Using the L1, L2-Wasserstein and Bottleneck Metrics, and Between Two PTS Features Us-
ing dG and d∆ metrics. The Time Reported is Averaged Over 3000 Distance Calculations
Between the Respective Topological Representations for All Three Datasets Used in Sec-
tion 5

The dG and d∆ metrics used to compare different PTS representations are fast and com-

putationally less complex compared to the bottleneck and Wasserstein distance measures.

The average time taken to compare two topological signatures (PD or PTS) for each of the

datasets is tabulated in table 5.5. The table also shows the average number of points seen

per PD and the subspace dimension p used for the PTS representation to get best results.

All experiments are carried out on a standard Intel i7 CPU using Matlab 2016b with a

working memory of 32 GB.
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Chapter 6

CONCLUSION

In this thesis, we have presented a method for achieving robustness to input noise data

by creating an intelligent summary of the topological signatures.The synthetic experiment

shows the superiority of our approach when the input is subjected to a significant amount of

topological noise. Experiments on SHREC 2010 datasets show that the proposed approach

also greatly helps in correctly classifying different 3-D shapes.On the MoCap system, we

achieve comparable performance with respect to Wasserstein metric and we outperform

the results reported Anirudh et al. (2016) while On the IXMAS dataset, the proposed ap-

proach’s, complementary strengths are explored and exploited. It has to be noted that the

computation time required to compare the end representations using the proposed methods

is orders faster than the traditional methods.

6.1 Future Directions

There are several future avenues for research. They include fusion with contempo-

rary deep-learning architectures for exploiting the complementarity of both paradigms. We

expect that topological methods will push the state-of-the-art in invariant representations,

with key contributions being to recast the required invariance as a topological property of an

appropriately redefined metric space. Additionally, the proposed methods may help open

new feature-pooling options in deep-nets. At the heart of this thesis is the question how

do we generate appropriate summaries of persistence diagrams with a specific objective

of making them robust with respect to input topological noise.This research choose that

summary to be as a point on a Grassmann Manifold. However, this meant that we need to
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first represent the PDs in familiar space on which statistical analysis such as PCA or SVD

could be performed. This was because of the space of the persistence diagrams i.e., an

Alexandrov space is a mathematically complex space. One possible direction of research

is to develop kernel functions that could embed points in this space in RKHS or RKKS.

One another direction of further scope could be to model topological noise and derive a

generalized model to extract a more stable representation of persistence diagrams.
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