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ABSTRACT  

   

Thin-film modules of all technologies often suffer from performance degradation over 

time. Some of the performance changes are reversible and some are not, which makes 

deployment, testing, and energy-yield prediction more challenging. The most commonly 

alleged causes of instability in CdTe device, such as “migration of Cu,” have been 

investigated rigorously over the past fifteen years. As all defects, intrinsic or extrinsic, 

interact with the electrical potential and free carriers so that charged defects may drift in 

the electric field and changing ionization state with excess free carriers.  Such complexity 

of interactions in CdTe makes understanding of temporal changes in device performance 

even more challenging. The goal of the work in this dissertation is, thus, to eliminate the 

ambiguity between the observed performance changes under stress and their physical root 

cause by enabling a depth of modeling that takes account of diffusion and drift at the 

atomistic level coupled to the electronic subsystem responsible for a PV device’s function. 

The 1D Unified Solver, developed as part of this effort, enables us to analyze PV devices 

at a greater depth.  

In this dissertation, the implementation of a drift-diffusion model defect migration 

simulator, development of an implicit reaction scheme for total mass conservation, and a 

couple of other numerical schemes to improve the overall flexibility and robustness of this 

coupled Unified Solver is discussed. Preliminary results on Cu (with or without Cl-

treatment) annealing simulations in both single-crystal CdTe wafer and poly-crystalline 

CdTe devices show promising agreement to experimental findings, providing a new 

perspective in the research of improving doping concentration hence the open-circuit 

voltage of CdTe technology. Furthermore, on the reliability side, in agreement of previous 
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experimental reports, simulation results suggest possibility of Cu depletion in short-

circuited cells stressed at elevated temperature. The developed solver also successfully 

demonstrated that mobile donor migration can be used to explain solar cell performance 

changes under different stress conditions. 
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CHAPTER 1 

INTRODUCTION 

The total energy consumption in the US had reached 98.3 quadrillion Btu in 2014, 

which is a 1 % increase from 2013. A large portion (81 %) of the energy consumption is 

supplied by fossil fuels, such as petroleum (35 %), natural gas (28 %) and coal (18 %). 

However, the storage of these fossil fuels is limited on earth and they are considered non-

renewable energy sources. As a result, renewable energy (including Biomass, hydropower, 

solar, wind and geothermal, 10% of the total consumption) usage has seen rapid growth in 

the last decade. In the US, between the years of 2008 to 2013, the total renewable electricity 

generation increased by 40 %, and now occupies 14.8 % of the total electricity capacity 

and 13.1 % of the annual electricity generation.  

In particular, Photovoltaic (PV) technology is experiencing the fastest growth 

among all energy source. In 2014, newly installed PV capacity reached 6.2GW, growing 

30% over 2013’s total. Solar power accounted for 32 percent of the nation’s new generation 

capacity in 2014, beating both wind energy and coal for the second year in a row. Moreover, 

PV systems generated 15,874 GWh of power in 2014, almost doubled its 8121 GWh 

generation in 2013.  

Photovoltaic technology is not only experiencing fast growth in market share, but 

also in technology development. Figure 1.1 below shows the continuous improvements of 

the best research solar cell efficiencies over the last four decades. Some important 

accomplishments include: 46 % overall conversion efficiency achieved by concentrated 

III-V multi-junction solar cells, 25.6 % efficiency achieved by single-crystalline Si solar 
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cells, 22.3 % efficiency achieved by CIGS solar cell and 22.1 % conversion efficiency 

achieved by thin-film CdTe technology. Despite the fast growth of PV technology, the 

percentage of electrical power generated by PV is much smaller than the other energy 

sources. In 2014, less than 0.5% of the US overall electricity generation was contributed 

by PV. Even after 2 years of rapid growths, only 1.7% of the US overall electricity was 

generated by photovoltaic devices, between July 2016 and July 2017.  

US Department of Energy launched the SunShot initiative, aiming to make large-

scale PV system cost-comparable to other energy sources by 2020, to further increase the 

market share of Photovoltaics.  Among all of the PV technologies, thin-film solar cells 

show great potential in achieving the goals of improving cell efficiency while further 

reducing the manufacturing cost. CdTe PV is one of the leading candidates in this 

competition. 

 

 Figure 1.1. Efficiency chart of best research solar cells. 
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1.1 CdTe PHOTOVOLTAICS 

As one of the most successful thin-film photovoltaic technologies, CdTe has a 

market share of 8% in the PV industry; this exceeds all other non-silicon solar cells. 

Research in CdTe photovoltaics dates back to the 1950s, when the 1.5eV bandgap of CdTe 

material was found to be almost perfectly matched to the solar spectrum in terms of optimal 

conversion to electricity [1]. 

Due to the poor quality of n-type doping of polycrystalline (px-) CdTe, a simple 

heterojunction design evolved in early 60s in which p-type CdTe was matched with an n-

type CdS as the window layer. Cadmium Chloride (CdCl2) treatment became standard 

during the 70s, as it can drastically increase the solar to electrical conversion efficiency of 

CdS/CdTe thin film solar cells by improving the quality of px-CdTe [2]. A thin CdS layer 

(usually less than 200 nanometers) was developed in the 1990s to allow more photons to 

reach the CdTe absorber, thus resulting in 15% conversion efficiency [3]. Transparent 

Conducting Oxide (TCO) layers were also introduced to CdTe technology to facilitate the 

lateral movements of carriers across the top of the cell. The efficiency record of 

polycrystalline CdTe technology has been frequently updated in the recent years, and has 

reached 22.1% for solar cells and 18.6% for large area PV modules, surpassing the records 

for px-Si technologies [4]. 

1.2 MOTIVATION OF THIS WORK 

The record efficiencies of thin-film CdTe technology are still ten absolute percent 

lower than the Shockley-Queisser limit. As short-circuit current density (JSC) is 

approaching the theoretical limit, both open-circuit voltage (VOC) and fill factor (FF) are 
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far below the theoretical limits for most devices. Although VOC larger than 0.9V have been 

reported for single crystal (sx-) CdTe solar cells [5], low VOC still limits the performance 

of polycrystalline CdTe devices [6].  

Since VOC is a strong function of the doping concentration in the absorber layer, 

better understanding of doping mechanism and defect formation is necessary. Like most 

common dopants in px-CdTe, Copper (Cu) forms multiple species of defects including 

interstitial donors (Cui), substitutional acceptors on Cd site (CuCd) and tightly-bounded 

complexes such as Cui-CuCd and Cdi-CuCd. The resulting amount of uncompensated 

acceptor impurities is usually three or four orders of magnitude smaller than the total 

atomic Cu concentrations, which limits the VOC of Cu-doped CdTe solar cells significantly 

[7], [8]. Figure 1.2 below shows typical doping concentrations and total Cu concentrations 

achieved in the CdTe absorber layer fabricated at Colorado State University through varied 

Cu anneal temperatures[9]. Despite the fact that atomic Cu concentrations increased from 

1017cm-3 to 1018cm-3 with increasing annealing temperature, the free carrier (holes) 

concentration remained constant around 1015cm-3. Similar phenomena have been reported 

by various other sources [10]–[13]. The low VOC of px-CdTe solar cells is also believed 

to be due to a large defect density, and short minority carrier lifetimes in the absorber layer 

[14]. The self-compensated active Cu dopants also provide active defects (recombination 

centers) in CdTe material as well [15], which results in poor minority carrier lifetime, that 

once again connects Cu with the low VOC found in px-CdTe PV cells. 

Although total Cu concentration profiles can be measured by the secondary ion 

mass spectrometry (SIMS) technique [16], the concentration of different species of Cu 
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(mainly Cui and CuCd) generally cannot be identified. Lacking a description of the 

transition process, the theoretical concentrations of the related defects were estimated from 

the charge neutrality equation with formation energies of defects obtained from First 

Principles calculations [17]. Given this information, gaining a better understanding of 

kinetics behind migration and transformation of related defects in CdTe is of crucial 

importance to further enhance the performance of CdTe solar cells.  

 

Figure 1.2. Typical Cu and free carrier concentrations presented in px-CdTe solar cells. Free 

carrier concentration measured by CV profiling.  

Moreover, PV modules (multiple solar cells electrically connected) are expected to 

function properly for more than 20 years, in order to provide electricity at proper cost. 

However, due to the fast diffusion and reaction rates of Cu atoms, the gentle balance 

between mutually compensating Cu impurities could be subject to temporal or permanent 

changes causing metastabilities or degradation observed in CdTe solar cells [18], which 
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also makes the predictive simulation of device performance more important. As shown in 

Figure 1.3, permanent Cu depletion was found after 1000 hours of short-circuit stress at 

elevated temperature under 1 sun illumination, while no such behavior is observed from 

the open-circuit stressed sample [9]. Thus, gaining a better understanding of mechanisms 

that govern the formation and interactions between Cu-related defects is of crucial 

importance for further advancement of the CdTe photovoltaics.  

 

Figure 1.3. Cu migration observed from long term stress at elevated temperature. The 

corresponding free carrier concentration shows minor correlation to atomic Cu concentration.  

Therefore a unified solver is needed, which brings multiple disciplines together as 

a joint effort, to address the aforementioned multi-time scale and multi-length scale issues. 

As depicted in Figure 1.4, the goal of such a unified solver is to eliminate the ambiguity 

between the observed performance changes under stress and their physical root cause by 

enabling a depth of modeling that takes account of diffusion and drift at the atomistic level 
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coupled to the electronic subsystem responsible for a PV device’s function. This 

dissertation only focuses on Cu and Cl point defects in CdTe solar cells. Such a unified 

solver scheme can and should be applied to grain boundaries and other species of defects 

in more advanced 2D/3D simulations [19] and to other photovoltaic technologies, such as 

perovskite or CIGS, as well. 

 

Figure 1.4. Schematic block-diagram that illustrates the use of the Unified Solver to tune the 

model and study CdTe device metastability.  

1.3 OUTLINE OF THIS DISSERTATION 

This dissertation is organized as follows. 

Chapter 2 focuses on previous research related to Cu’s role in CdTe solar cells. 

Since previous simulation effort on this topic is rather limited, we will examine recent 

works related to (1) theoretical calculations of the formation of Cu defects in CdTe, (2) 



  8 

experimental (characterization) work on Cu related defects in CdTe, (3) metastable 

behavior in CdTe solar cells, and (4) previous simulation effort on Cu migration in CdTe.  

Chapter 3 discusses the physical models we investigated and implemented in our 

simulator. In Section 3.1, the general form of the Diffusion-Reaction equations is firstly 

introduced. In Section 3.2, reaction models, including the calculation of reaction 

parameters for both the Defect-Defect reaction and the Defect-Carrier interaction is 

discussed in detail. In Section 3.3, the common species of Cu and Cl defects are presented. 

The reactions related to p-type doping formation and device metastabilities in CdTe solar 

cells are also discussed in this section. 

In Chapter 4, the numerical methods and simulation schemes we implemented to 

study defect migration are described. In Section 4.1, the general coupling of device 

simulation and defect migration solver is presented first. With such coupling applied in the 

simulation, defect migration in semiconductors can be simulated accurately with real-time 

electric field and carrier distributions.   In Section 4.2, the solution technique of the 

Diffusion-Reaction equations is introduced. In particular, the fully implicit reaction 

schemes developed specifically for this research are presented.  Following this discussion, 

the overall simulation scheme for the Cu annealing process and device metastabilities is 

explained in Section 4.3. 

Chapter 5 focuses on the simulation results obtained from this work. In Section 5.1, 

the simulated results of Cu anneal in single-crystal and poly-crystal CdTe is compared to 

experimental Cu profiles. Good matching was achieved between simulation and 

experiments, providing models and parameters in sx-CdTe material with correct physical 
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meanings. Qualitatively matching between simulation and experiment is achieved for poly-

crystal CdTe devices, showing that our simulation, in some degree, represent the real Cu 

migration in CdTe solar cells. Following that, in Section 5.2, simulated device performance 

under long-term stress conditions is presented with experimental data. The simulated 

results show similar behavior to the measured device under variety of stress conditions, 

showing that this simulation approach is promising for predictive simulation of long-term 

device performance. An investigation of short-term light soaking’s impact on CdTe solar 

cell performance is presented in Section 5.3. Qualitatively matching between measured and 

simulated device performance is obtained, especially when Cu-Cl interactions are included 

in the modeling. 
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CHAPTER 2 

REVIEW OF LITERATURE 

As Cu has been introduced into CdTe for a long time, a significant amount of 

experimental, theoretical and numerical research has been conducted in this area. In this 

chapter, we will carefully examine previous works that are related to (1) theoretical 

calculations of formation of Cu defects in CdTe, (2) experimental work on Cu defects in 

CdTe, (3) metastable behavior commonly presented in CdTe solar cells and (4) numerical 

simulation efforts on Cu migration in CdTe. 

 As CdTe is commonly used in solar cells, infrared detectors and radiation detectors 

for x-rays, gamma rays, beta particles and alpha particles [20], a lot of theoretical 

calculations were conducted for CdTe material. In 2000, Wei and his co-authors first 

reported using first principle calculations of defect formation energies and the defect 

transition energy levels of CuCd substitutional defects in CdTe [21]. Ma et al. further 

derived formulas to calculate carrier density for multiple dopants in CdTe [17].  With their 

system, compensation (in good agreement with experimental observations) is achieved 

between popular Cu defects in CdTe. In 2013, Krasikov and his team showed that shallow 

dopants alone cannot cause the low carrier concentrations in Cl-treated CdTe samples [22]. 

Several other related work have been published since then [8], [23]-[25]. Yang and his 

colleagues also reported the multiple-barrier diffusion theory of Cui in CdTe [26]. In this 

work, their calculated diffusivity agrees well with experimental measurement. In 2017, 

Krasikov further reported the most favorable pair complexes formed in Cu-Cl doped CdTe 

absorber [27], as illustrated in Figure 2.1.  
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Figure 2.1. Sankey diagram qualitatively showing the defect evolution during Cl treatment 

and Cu doping stages. Exact concentrations and flows of defects depend on experimental 

conditions [27].  

 In the meantime, a large amount of experimental work on extrinsic defects in CdTe 

have been reported. Hofmann and his team first identified chlorine A centers (ClTe-VCd) in 

CdTe using photoluminescence [28]. The binding energy of this acceptor was estimated as 

0.12 eV.  Mendis et al. also used time-resolved cathodoluminescence method to capture a 

47 meV shallow oxygen-related acceptor at grain boundary [29]. Recently, many 

experiments have been performed for Cu-related defects. Warren and his team identified 

two optical sub-bandgap transitions in CdTe thin-film solar cells using detailed transient 

photocapacitance and transient photocurrent spectroscopy measurements. One of these two 

defects is further identified as EV+0.9eV Cu-related defects.  Kuciauskas et al. used 

photoluminescence spectroscopy to study recombination in px-CdTe solar cells with VOC > 

0.899 V [15]. Defects with an activation energy of 0.11-0.12 eV were identified. Also this 

carrier lifetime limiting defect was connected to CuCd in a second report by the same group 

[30].  
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 As CdTe technology drew more and more attention in industry and academia, a lot 

of work has been published on its metastable behavior. Light soaking could improve the 

conversion efficiency of CdTe solar cells, as Ref. [31] reported. Such effect was found to 

be reversible upon unbiased dark storage, and ascribed to the existence of trap states in the 

absorber junction which depopulate when the cell is forward biased [32]. Samples also 

show that measured device performance can vary greatly depending on the precondition 

procedures, as shown in Refs. [33], [34]. The diffusion of Cu ions away from the back 

contact metallization in CdTe devices can explain much of the observed long-term device 

degradation (see Ref. [35]-[37]). The internal electric field of CdTe solar cells and Cu 

migration under such a field, is also demonstrated as a key factor in the degradation of 

CdTe devices [18]. More recently, Cu depletion is observed from CdTe cells that have been 

short-circuited for 831 hours at 65oC [9]. While in the same experiment, no significant Cu 

migration is observed from open-circuit-stressed devices, which further proves that internal 

electric field of CdTe solar cells can also push Cu towards the back contact. Gretener and 

his team also reported that Cu redistribution reduces device performance by decreasing 

hole concentration in the absorber layer of substrate configured px-CdTe solar cells [10]. 

However, no significant Cu migration was presented in that work.  

 Traditionally, Cu migration in CdTe bulk has been treated as a pure diffusion 

process, described by Fick’s law. In the work of Jones et al. [38], the activation energy and 

diffusion coefficients for Cu in CdTe were obtained by fitting experimental Cu 

concentration profiles obtained at different annealing temperatures with an infinite source 

of Cu. Teeter et al. modeled Cu migration in poly-crystalline CdTe solar cells with different 

solubility limits and various diffusivities with a finite source [39]. An improved version of 
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the two-dimensional (2D) Fisher diffusion model that accounts for segregation at the grain 

boundary was developed for Cu in CdTe by Akis et al [16]. In all three works, some 

effective Cu diffusion process was employed without atomistic mechanisms accompanying 

Cu diffusion. This led to a significant scatter of the obtained diffusion parameters. Thus, 

the reliability and predictive ability of such models is very limited. In 2016, Mao and et al. 

utilized Tof-SIMS to obtain high resolution 2D chemical map of polycrystalline CdTe and 

reported that no segregation of Cu can be detected at the grain boundaries within the 

sensitivities of the Tof-SIMS measurement [40].   

 In somewhat more detailed simulations [41], [42], drift and reactions of Group-I 

defects with Cd atoms were taken into account, which explained the snow plow effect 

causing the peak shaped profile of Group-I impurities inside single-crystal CdTe wafers. 

However, all such defect reactions were assumed to be in equilibrium at any moment of 

time. More importantly, that work focused only on the migration of Cu and Ag atoms when 

Cd or Te pressure is applied to single crystal CdTe wafers, but not on limited incorporation 

and compensation mechanism of Cu dopants that have crucial importance on the 

performance of CdTe solar cells. 
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CHAPTER 3 

PHYSICAL MODELS 

In this chapter, we will thoroughly examine the physical models investigated and 

implemented within our simulator. 

3.1  DIFFUSION-REACTION EQUATIONS 

 The developed 1D simulator solves the diffusion-reaction equations for both free 

carriers and point defects.   

3.1.1  Diffusion-Reaction Model 

 The diffusion-reaction model allows one to calculate the evolution of concentration 

profiles caused by reactions between different species and their fluxes [43], [44]: 

  
[ ] X

X

d X dJ
R

dt dx
          (3.1) 

Where RX is the net production rate of each defect and JX is the flux of the target defect X. 

Similar to the drift-diffusion model widely used in semiconductor device simulations, these 

fluxes are driven by the gradient of electrochemical potential which accounts for the 

electric potential of charged species as well as their standard formation energies. Namely, 

the flux expression for a species X (target defect) is of the form: 

  
[ ] [ ] [ ]

( )X X

d X X d q G
J D

dx kT dx

 
        (3.2) 

Here in Equation 3.2, DX is the diffusivity of defect X, q stands for the electric charge 

carried by the species, kT is the thermal energy, φ is the electrostatic potential and G is the 
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spatially dependent formation energy of the defects. It is important to note that since we 

are dealing with Cu migration in hetero-junctions with multiple layers of different materials, 

the formation energy term, G, plays a crucial role on determining the segregation factor of 

point defects across the hetero-interface between two different materials. 

3.1.2  Calculation of Reaction Rates  

 For typical reactions in CdTe semiconductors, including all applications in this 

work, two reaction prototypes based on the number of reactants, are considered: single 

molecular and bimolecular. For example, the forward reaction in Equation 3.3a and both 

directions of reaction in Equation 3.3b are bimolecular reactions and the backward reaction 

of Equation 3.3a is single molecular. 

1

1

F

B

K

A B C
K

X X X         (3.3a) 

2

2

F

B

K

A D E F
K

X X X X        (3.3b) 

For convenience we will denote the production rates of species A in Equation 3.3a and 3.3b 

as RA
1 and RA

2, respectively. Although reactions involve three defects in one side of the 

reaction equations might be possible, the possibility of such reactions is statistically low in 

usual configuration of devices. The rate law is applied to calculate the reaction rates for 

them. For example, the production rates for species A in Equation 3.3 are written as:  

1

1 1( )A F A B B CR K X X K X         (3.4a) 

2

2 2( )A F A D B E FR K X X K X X        (3.4b) 
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The rate constants for these reactions, based on the species of reactants, is discussed in the 

following section. And for each species of defects, the net production rate would be sum 

of all involved individual reactions. For example, if both Reaction 3.3a and 3.3b are 

involved for defect A, assuming sufficient reactants are provided, the instantaneous net 

production rate of defect A should be calculated as 

1 2

A A AR R R          (3.5) 

3.2  REACTION MODELS 

Besides differentiating the reactions based on the number of the reactants, reactions 

could also be divided into two types, considering whether free carriers are participating in 

the reactions; namely, defect-defect reactions without free carriers and defect-carrier 

interactions. 

3.2.1  Defect-Defect Reactions 

 As reactions should occur between two or more reactants physically close to each 

other, most likely, two immobile defects located far away will not interact, even a large 

energy release is favored for such reactions. Moreover, due to the fact that usual 

concentration of extrinsic defects in CdTe thin-film devices is orders of magnitude smaller 

than the lattice site concentration, the mean distance between two immobile defects would 

be thousand times larger than the lattice constant, thus the interactions between two 

immobile defects are neglected in this work as well. Another limitation on the interactions 

is the Coulomb interactions between two charged defects. For example, if two reactants are 

both positively charged, the Coulomb force would prevent them from moving together, 
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thus the possibility of such reactions occurring is significantly lower. On the contrary, if 

two reactants are oppositely charged, the Coulomb force would force them to join each 

other within certain range. With the above limitations, defect interactions that involves two 

oppositely charged defects with at least one of them mobile, as in Equation 3.6, should be 

our primary interests.  

( )A B C DX X X X          (3.6) 

The reaction constant for such reactions (diffusion-limited reactions) in general is found as 

a function of the diffusivity, Di, and the capture radii, Rcapt of individual reactants [43].  

  
1

4 exp
j

A
capt i

i

E
K R D

kT




   
   

  
      (3.7) 

The capture radius of this type of interactions is the balance distance between Coulomb 

force and the centrifugal force of the circular movement of the free mobile defect. 

  

2

1 2

2

th
e

capt capt

v q q
F m k

R R
       (3.8) 

By assuming the free mobile defect is in thermal equilibrium, in which the kinetic energy 

of the free carrier equals to the thermal energy, we get 

1 2 1 2

2

| |
capt e e

th B

q q q q
R k k

mv k T
        (3.9) 

Usually the reaction barrier energy in Equation 3.7, EA, is set to zero in this type of reactions 

as no additional energy is required to move two reactants close to each other. Due to the 
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nature of thermodynamic equilibrium of the defect system, the reaction constant of the 

reverse direction of Equation 3.7 is usually described as: 

    0exp /b f fK K E kT n          (3.10) 

Note that in single-molecular reactions, n0 is the concentration of lattice sites. For 

bimolecular reverse reactions, it equals one. ∆Ef, represent the energy change in the 

reactions, is estimated as the difference between formation enthalpies of products and 

reactants obtained from first-principle calculations using large supercells and the range-

separated hybrid functional [27]. 

3.2.2  Defect-Carrier Reactions  

 Similarly to the single molecular reactions described in the previous session, defect-

carrier reactions can also be considered as diffusion-limited reactions, as the interaction 

between charged defects and free carriers should be faster than the actual movement of free 

carriers and point defects. Moreover, the diffusion speed of free carriers should also be 

orders of magnitude larger than the point defects, thus the point defects can be treated as 

immobile in this case. Hence, the reaction constant for a charged donor capturing one free 

hole or for a charged acceptor capturing one free electrons and their reverse reactions 

(neutral dopants release free carriers), should have the same form as Equation 3.7 and 3.9: 

  4f

eh captK D R        (3.11a) 

 0/ 1 1

0

exp /b f

V

g
K K kT N

g
           (3.11b) 
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Here the diffusivity of the mobile defect is replaced by the diffusivity of free carriers in the 

forward reaction, the ionization level of the dopant is employed as the energy barrier 

required to release free carriers and n0 is replaced by the density of states with the 

degeneracy factor. Theoretical approach of obtaining the ionization level of the dopants is 

also reported in Ref. [27]. 

3.3  COPPER DEFECTS IN CDTE 

 So far, the diffusion-reaction model has only been introduced as a general 

numerical problem. In this session, we will discuss Cu-related defects and their interactions 

in CdTe material. 

3.3.1  List of Defect Species  

Besides the common Cu defects, as discussed in Chapter 2, including Cu interstitial, 

(Cui), Cu on Cadmium site (CuCd), Cu complex (Cui-CuCd & Cdi-CuCd), we are also 

interested in Cl-related Cu defects, such as Cli-CuCd and ClTe-CuCd, for their interactions 

with Cu dopants that potentially could generate doping compensation. Figure 3.1 

schematically illustrated the major reactions we considered to describe Cu’s migration in 

CdTe without presence of Cl point defects. Table 3.1 below lists the properties of major 

extrinsic point defects presented in this study [17], [24]–[26], [45], with the presence of 

both Cu and Cl species.  
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Figure 3.1. Common Cu-related reactions in CdTe material. (Courtesy of Dr. Dmitry 

Krasikov from First Solar) 
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Table 3.1.  List of active defects and their properties in CdTe 

Defect D0 (cm2/s) EA (eV) Charge State EIonization (eV) 

Cui(+) 6.3×10-3 0.46 donor 0.14 

Cui(0) 3.53×10-3 0.28 neutral - 

CuCd(-) - - acceptor 0.22 

CuCd(0) - - neutral - 

Cdi(2+) 3.21×10-3 0.47 donor 0.21 

Cui-CuCd(0) - - neutral - 

ClTe(+) - - donor 0.35 

Cli(-) 1.18×10-2 0.89 acceptor 0.12 

Cli(+) 5×10-4 0.6 acceptor 0.2 

Cli(0) 4.82×10-4 0.28 neutral - 

Cli-ClTe(0) - - neutral - 

Cli-ClTe(+) - - donor  

Cli-ClTe(2+) - - donor  

Cli-CuCd(0) - - neutral - 

Cli-CuCd(+) - - donor 0.17 

Cli-CuCd(2+) - - donor 0.39 
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3.3.2  List of Reactions 

 In this session, we introduce the reactions that usually take place during anneal and 

stress conditions of Cu doped CdTe solar cells. In the figure below, we first introduce 

reactions between Cu defects and intrinsic CdTe defects schematically.  

 It is important to note that the bracket in the figure represents two isolated point 

defects seating close to each other, and the reactions between them do not require extra 

energy to bring them closer. In Table 3.2 below, the above interactions are listed with 

detailed calculation of their corresponding reaction constants. As Cl is commonly present 

in CdTe devices, Cu’s interaction with Cl defects, also needs to be addressed. D. Krasikov 

and his colleagues at First Solar developed the theory regarding Cu & Cl-related defects 

reactions in CdTe. In this case an energy loop is formed among three major ClTe defects, 

indicating that the total entropy is conserved in our simulation. Similarly, these type of 

reactions, and the calculation their reaction constants are listed in Table. 3.3. 

 

Figure 3.2. Common Cu-Cl reaction loops presented in CdTe. (Courtesy of Dr. Dmitry 

Krasikov from First Solar) 
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Table 3.2.  List of Cu related reactions  

NO. REACTION EQUATION REACTION CONSTANT 
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f
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Table 3.3.  List of Cu-Cl reactions. 

NO. REACTION EQUATION REACTION CONSTANT 

7 
0

f

b

K

i V i
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13 
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 The actual reactions involved in our simulations include, but are not limited to these 

ten reactions. For example, as one of the most common intrinsic defects in CdTe, Cd 

vacancies, are not discussed in this work, despite the fact that they are usually included in 

simulations. However, the effect of VCd may not be that significant as its concentration is 

usually not that high and the major reaction it participates in, such as the formation of CuCd 

from Cui and VCd, does not convert donors or neutral defects into acceptors. Hence, it is 

not discussed in this dissertation. 
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CHAPTER 4 

NUMERICAL MODELS AND SIMULATION SCHEME 

In this chapter, we will focus on the numerical solutions of the self-consistent 

diffusion-reaction simulator. 

4.1  SOLVING DIFFUSION-REACTION EQUATIONS 

 In the previous chapter, we already introduced the generalized form of diffusion-

reaction equations, as Equation 3.1 and 3.2 described. However, in order to reduce 

numerical artifact, and to achieve convergence between fast reactions and “slow” 

diffusions, a split scheme is applied to solve the diffusion-reaction scheme. In detail, a fully 

implicit reaction simulator was isolated from drift-diffusion equation to avoid negative 

concentration of point defects and to achieve conservation of total atoms. However, for the 

device simulation part, no such splitting is employed as only current is required to be 

conserved in semiconductor devices, but not free carriers, due to boundary conditions and 

recombination-generation term of free carriers in drift-diffusion model simulator. Thus, 

two isolated equations serve as the general diffusion-reaction equation [19]: 

  
[ ] XdJd X

dt dx
         (4.1) 

[ ]
X

d X
R

dt
         (4.2) 

Usually the drift-diffusion equations are solved after the reaction part, in order to allow 

drift-diffusion process of mobile defects before device simulation. 
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4.1.1  Solution of Drift-Diffusion Equations 

 To solve the drift-diffusion equation, one need to discretize the continuity equations 

first. Schafetter-Gummel discretization scheme [46] is employed to solve the drift-

diffusion equations with acceptable linear potential variation between neighboring mesh 

points. Thus, by using half-point difference scheme, Equation 4.1 can be rewritten as: 

  1/2 1/2

1

[ ]

( ) / 2

X X X

i i

i i

d X dJ J J

dt dx dx dx

 




  


     (4.3) 

Where the superscript X denotes the species of defects X, subscript i (and i-1, i+1/2 and i-

1/2) represent the number of the grid point. For example, JX
i+1/2, indicating the flux of the 

defect X goring from grid point i to grid point i+1, should be calculated by the standard 

drift-diffusion equations (as shown in Equation 3.2) 

1/2 1/2

[ ] [X]
( )X X

i i

X d d
J D

kT dx dx


         (4.4) 

Where ϕ denotes the sum of electrical potential and standard Gibbs energy of formation of 

defect X: 

q G           (4.5) 

In Equation 4.5, q denotes the charge of the defects. By inserting 'exp( )ix x
X X

A


   

into Equation 4.4, we could get 
X

iA D   , 'exp( )i
i X

x x
X X

D



   and 
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1/2 1/2 1

'
exp( ( ) )X X X

i i i i i

dX
J D x x D

dx
         (4.6) 

Hence, moving the exponential term into the LHS and integrating this equation from xi to 

xi+1, we get  

1
1/2

exp( / )
(1 exp( / ))

exp( / )

X
X X i i i i
i i i i X

i i

X X dx D
J dx D

dx D


 







      (4.6) 

Therefore, the drift-diffusion model defect flux can be written as,  

1/2
1/2 1 1

1( )
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i i
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X D
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   (4.7) 
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     (4.8) 

Where B is the Bernoulli function. Substituting Equation 4.7 and 4.8 into Equation 4.3, 

gives the following equation that allows one to calculate the changes of defect 

concentration caused by drift and diffusion 

1/2 1 1 1/2 1 1
1 1
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           (4.9) 

Applying time discretization,  

[ ]
new old

i iX Xd X

dt t





       (4.10) 
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where Δt is the time step interval. One can get the discretized continuity equation as follows 

1 1
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1 1
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  (4.11) 

Many solution techniques can be employed to solve this set of partial differential equations. 

As in our case, both LU decomposition and MATLAB Backslash (direct inverse of the 

coefficient matrix) work fine with this scheme. These two solution techniques are identical.   

4.1.2  Solving Reactions Implicitly 

 Here we describe the solution techniques for implicit reactions. There are two major 

reasons for a split implicit reaction simulator in this work: (1) to achieve conservation of 

total atoms, (2) to avoid negative concentration of point defects.  

 If point defects are treated with explicit schemes, such as SRH recombination of 

free carriers in drift-diffusion equations, large reaction terms may cause negative 

concentration of point defects when time step is large. For example, let us consider one 

artificial case, where reactant X1 is transferring into resultant X2 with reaction constant Kf. 

For simplicity of this example, the reverse reaction constant, Kb, is neglected or can be 

considered as infinitely small.  
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1 2

f

b

K

K
X X         (4.12) 

 Using explicit scheme, one can arrive at 

1

1 1 1 1 (1 )j j j j

f fX X K t X X K t             (4.13) 

Where the superscripts j and j+1 represent time step j and the next time step j+1. This 

equation is only valid when Kf∙Δt is smaller than 1, otherwise negative concentration of X1 

will be presented at time step j+1. Although time step can be calculated based on the 

reaction constants, for our case, where multiple reactions are running with reaction rates 

varied with orders of magnitude, limiting slow reactions with the smallest time step are not 

a practical option. Thus, an implicit reaction scheme that is guaranteed to perform reactions 

without leading to negative concentrations is required.  

 If we could calculate the net reactions based on X1 of time step j+1 but not X1 of 

time step j, usually called implicit scheme, X1 will always be positive regardless of the 

reaction constant and time step: 

1 1

1 1 1

j j j

fX X K t X           (4.14) 

1 1
1

1

j
j

f

X
X

K t

 
 

       (4.15) 

It is important to note that such implicit scheme is employed only to avoid negative 

concentrations for reactions with large value of the K∙Δt product, but not to calculate such 

reactions accurately. To calculate fast reactions precisely, smaller Δt is required. Such 
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scheme would benefit us when multiple reactions with huge difference in reaction rates are 

presented in simulations. With the implementation of implicit scheme, the time step would 

only be limited by the most important reaction, which usually is the reaction with largest 

reaction rate but not largest reaction constant. The other reactions, usually with low 

concentration of reactants, could be calculated with the numerically stable implicit scheme 

regardless of the choice of the time step. 

The same implicit scheme can be applied to reactions with multiple reactants. Let 

us consider the single molecular reaction given by Equation 3.1 

,
F

B

K

i j k
K

i B j k F i

j F i B j k

k F i B j k

X X X

X K X X K X

X K X K X X

X K X K X X

 

  

  

  

      (4.16) 

This could, for instance represent the knock-off reaction described by Reaction 1 in Table 

2, where interstitial Cu replaces lattice cadmium, resulting in CuCd and an interstitial 

cadmium atom. Note that the number of total atoms are conserved here. Using Implicit 

Euler method, we could write the first ODE for time step t as an algebraic expression 

1 1 1 11
( )t t t t t

i i B j k F iX X K X X K X
t

     


    (4.17) 

Since Δt should be small, we move it to the RHS to avoid numerically unstable division by 

a small number.  

1 1 1 1( )t t t t t

i i B j k F iX X K X X K X t           (4.18) 
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Using our conservation laws, we can also write Xj and Xk in terms of Xi from time step t+1 

and t 

1 1

1 1

t t t t

j j i i

t t t t

k k i i

X X X X

X X X X

 

 

  

  
      (4.19) 

Substitution yields   

1 1 1 1( )( )t t t t t t t t t

i i B j i i k i i F iX X K t X X X X X X K tX             (4.20) 

Further derivation reveals that this is a quadratic equation for Xi
t+1. Rearrangement and 

expansion yields the three coefficient as 

1 2 1( ) 0
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    (4.21) 

We can then use the quadratic formula to yield 

2
1

2

4 2

2 4

t

i

B B AC C
X

A B AC B

   
 

 
    (4.22) 

Again, A is removed from the denominator to avoid unstable division by a small number 

as it is proportional to Δt. Since B is always negative for positive concentrations, we can 

also determine the appropriate sign of the square root to obtain our final solution.Xj
t+1 and 

Xk
t+1 can be calculated by Equation 4.11 with updated Xi. 
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 Similarly, bimolecular reactions can be discretized using Implicit Euler method and 

conservation laws in the same manner as the single molecular reactions.  

F

B

K

i j k l
K

X X X X        (4.23) 

A quadratic equation can be obtained, with the following coefficients. 
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   (4.24) 

Solution of this equation is given by Equation 4.14. 

4.1.3  Iteration by Reactions and Common Source of Error 

Since reactions are isolated from the drift-diffusion equations, we no longer need 

to calculate the net production rate of each point defect as Equation 3.4 does. Instead, the 

implicit reaction scheme solves reactions by pairs. Hence, reactions are performed 

iteratively pair by pair in this work. Figure 4.1 shows the detailed flow chart of the 

diffusion-reaction solver with iteration of reactions. In general, in each time step, reactions 

are performed by pairs prior to the calculation of drift-diffusion of each species of defects, 

or wise versa. Many numerical experiments were conducted in order to understand the 

accuracy of this particular approach, such as switching orders of drift-diffusion reaction, 

switching orders in reaction iteration and simulations with different time step. The 

conclusion is that errors could be introduced with two different mechanisms, especially 

when larger timestep is involved.  
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Figure 4.1. Flow chart of the Diffusion-Reaction part of this solver. 

First source of these error is the iteration of reaction itself when non-appropriate 

timesteps were employed. Figure 4.2 below shows three 0-D reaction simulation using 

different time steps. With time evolution, larger time steps started to generate discrepancies 

comparing to the case with smallest timestep. The simulation fails due to a particular single 

participant chain reaction presented in this test case: 

 A B C         (4.1) 

Due to fast A to B and very fast B to C process, B can be treated as catalyst in one reaction 

with slow forward reaction rate.   

BA C        (4.2) 

Due to the reaction in pair procedure, this linear reaction was separated into two reactions 

in this approach, and the overall reaction rate from A to C hence is limited by the 

intermiediate product B. In extreme cases, where even more intermiediate products are 
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present, like Figure 4.2 depicts, poor timestep selection could cause slower A to B 

transition (and potetentially B to C, C to D transition in a chain). Thus, due to implicit 

scheme’s nature, questionable concentration of the final product is obtained. Despite this 

potential error introduced in this extreme cases, no significant error was observed in 

simulation with realistic Cu and Cl defects, where typical reaction time constant is around 

mili-second level and no long chain reaction is present. 

 

Figure 4.2. A test case with long chain reactions where iteration scheme fails. 

Timestep increased from 0.1ns to 1ns and 10ns from left to right. 

  Another common source of error is the coupling between reaction and drift-

difusion solvers, especially when fast mobile ions are also presented in fast reaction. In 

reality, both reaction and migration of point defects should be progressing continuosly but 

in simulations, due to time domain discretization, such statement may not hold. Assume 

the same reaction discussed earlier in this section, where defect A converts to C with B as 

intermediate state. For extreme cases where B is a fast diffuser, determine the ratio of defect 

B being drifted or transitioned into C is of crucial importance in the accuracy of simulations. 



  36 

As defect reactions are usually orders of magnitude faster than drift-diffusions of defects 

in this research, limiting the simulation timestep by reaction works well in this research 

work.  

4.2  COUPLING BETWEEN DEVICE SIMULATION AND DEFECT MIGRATION 

4.2.1  General Two-Loop Scheme 

The most important feature of this numerical simulator is the coupling achieved 

between device simulation and diffusion-reaction of defects. Coupling these two parts 

enables one to simulate defects migration with real-time electrostatic environment, 

especially for charged interstitials such as Cui(+) and Cli(-) in this particular research. A 

two-loop scheme is applied to couple device simulations and defect migrations in this work 

[47]. One outer loop is employed to handle diffusion and reactions of the defects, with time 

step determined by the rate of reactions and diffusions, while another inner loop is applied 

to solve the steady states of the device (or bulk) based on the defect distribution calculated 

from the outer loop.  Figure 4.3 schematically illustrates the flow chart of the simulator.  

In the inner loop, we are solving drift-diffusion model, in which Poisson’s equation 

and the continuity equations for electrons and holes are solved self-consistently using 

Gummel’s iteration method [48]. It should be noted that the drift-diffusion equations 

describing the evolution of free carriers, have the same mathematical form as those 

describing the migration of point defects.  
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Figure 4.3. Schematic Flowchart of the simulator. 

4.2.2  Defect Migration Induced Oscillation in Simulation 

 As point defects, especially charged mobile interstitials, respond to real-time 

electrostatic potential obtained from steady-state device simulation, small spatial variation 

in electro-potential potential could grow into strong oscillations, both in time domain and 

in spatial domain. Such phenomena is more commonly observed and has been well studied 

for free carriers (which can also be treated as charged mobile point defects) in numerical 

simulation of submicron semiconductor devices [49]. To handle such problems, mesh size 

should be limited by Debye length and time step by the dielectric relaxation time. Similarly 

to electrons and holes, the dielectric relaxation time constants for point defect is calculated 

as following:  

/ (k T)
D

BqND


        (4.1) 
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where ε is the dielectric constant, q is the charge of the defect, N is the concentration, D is 

the diffusivity, kBT is the thermal energy.  Based on the preliminary parameters employed 

in this research, Figure 4.4 shows the dielectric time constant that is able to deliver little or 

none oscillation in CdTe with different amount of ions at different temperature conditions. 

Assuming 1016 cm-3 is the common concentration of mobilized Cui(+) and Cdi(+), time 

step small as 10us or 1ms should be applied to avoid oscillations in 300oC annealing or 

100oC stress simulations.   

 

Figure 4.4. Time steps required for oscillation-free simulations with different amount 

of ions at different temperatures. Black line is for electrons with 100cm2/Vs mobility. 

Such numbers are not practical for meaningful simulations of neither tasks, as 

millions of time steps would be required for a 10 minutes annealing or 30 hour stress. 

Furthermore, such time step requirement is employed to limit mobile ions transport 

between neighboring mesh points [49].  Increase in spatial mesh size, by breaking Debye 

length limits, which could significantly reduce such transport, helps to further relax time 
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step requirement in theory. But, mesh size also plays important role in convergence and 

accuracy of the device simulation part [48], thus limited effort was performed to increase 

time step in this direction. Instead, two other approaches were investigated and applied in 

this work.  

 Since these oscillations are usually triggered by small spatial variation in 

electrostatic potential, apply smooth electric field for the drift of mobile ions helps to 

reduce oscillation. Particularly, Ohmic contact / Dirichlet boundary condition that are 

directly applied to CdTe absorber layer, creating variations near the boundary, should be 

avoided. Figure 4.5 shows a typical boundary oscillation caused by defect migration and 

Dirichlet boundary conditions in simulations. In this case, concentration of 1017 cm-3 

immobile acceptors was uniformly distributed in the absorber layer. For mobile donors 

(usually Cui(+) in CdTe), Dirichlet boundary condition is applied to assume an infinite 

source of the same 1017 cm-3 concentration. Ohmic contact / Dirichelt boundary condition 

was applied in device simulation, where electrostatic potential at the boundary was pinned 

at intrinsic level due to charge neutralization in this case. In the figure, mobile donor 

concentration at the second mesh point is plotted against time evolution with different time 

steps applied. As illustrated, oscillations occurred when donor concentration is getting 

close to acceptor, where net donor concentration is minimum and tiny changes in its value 

could cause large potential variations. As shown on the top panel, increasing time step to 

5 times dielectric relaxation time constant results in unresolved oscillation while the 

simulator handles smaller time steps more adequately. On the bottom plot of Figure 4.5, 

where larger spatial mesh size was applied, same simulation can utilize larger time steps.  
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Figure 4.5. Typical defect migration induced oscillations in simulation. Top: small 

mesh size (5nm) requires dielectric relaxation time to overcome oscillation. Bottom: 

larger (5x) time step can be applied with larger spatial mesh size (20nm). 

To solve this issue, buffer layer at the boundary is introduced in this research to 

avoid pinning potential and mobile donor concentration at the CdTe boundary. With a 

buffer layer, both electrostatic potential and mobile ions concentration at the CdTe surface 

are flexible, thus the chances of them creating spatial variations could be significantly 

reduced. No quantitative investigation was conducted on the effect of applying these buffer 

layers. In the next section, using this buffer layer as Cu source and back contact of CdTe 
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solar cells will also be addressed. From another perspective, due to the flip-flop nature of 

these migration-induced-potential-change-induced-migration problem, simply reduction 

of the potential update between neighboring time steps by 50% could significantly decrease 

mobile ions response to oscillating potentials, especially when perfect flip-flops are 

invoked. Such approach is semi-empirical but effective.  

 However, as non-uniform mesh and more than one species of mobile charged ions 

are usually employed in real simulations, calculation of the proper time step of multiple 

species at different mesh points is practical but impacts the overall efficiency of simulations, 

because the simulator usually can handle time steps a couple of times larger than that time 

constant. Using 50% potential update further relaxes the time step limitation. Simply 

applying the smallest dielectric relaxation time constants expense too much unnecessary 

computational power. Thus, a more practical approach was employed: simulation usually 

starts with a smaller time step, in millisecond scale, to avoid devastating oscillations at the 

beginning of simulations. Based on the status of the simulation, time steps are 

automatically increased by a factor (for example, 2 times) after a few thousands of time 

steps. Once oscillations are detected, time step is decreased by the same factor to 

accommodate small dielectric relaxation time constants appeared in the system. In detail, 

usually it takes 10 to 20 time steps to stabilize oscillations if appropriate time step was 

applied. If not, extra reduction of time step will be performed until stabilization is achieved.  

Although this particular empirical scheme works well in this research, more advanced 

implicit schemes should be able to further reduce oscillations and related computational 

burdens.    
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4.2.3  Automatic Damping in Device Simulations 

Similarly to the oscillation problems induced by this self-consistent coupling of 

mobile dopants and electrostatic potentials, free carriers, electrons and holes more 

specifically, can also create divergence in device simulations. Due to high mobility of 

dopants, in this particular research, where non-inform, or even worse, abrupt doping 

profiles are commonly presented, such issue is further raised.  

In a standard device simulation, as dopant profile is typically fixed, damping 

scheme, for example 50% update between Gummul iterations, can be employed to solve 

this issue [50]. On the contrary, in these coupled dynamic simulations, dopant profile 

evolves with time, thus there is no single damping factor to solve all the problems with 

acceptable efficiency. Given this, automatic damping scheme is implemented in the device 

simulator to handle such critical issue: damping factors will only be introduced to the 

device simulator once divergence is detected. Stronger damping between Gummel 

iterations will be applied if the simulator still failed to converge. The limitation on number 

of Gummel iteration allowed in each device simulation is increased accordingly. After 

several reinforcements of damping factors and number of Gummel iterations, solver will 

move onto next time step with the best “converged” solution regardless of whether it truly 

meets convergence requirement, which is usually 10-7 eV maximum potential updates in 

the entire simulation domain. In most cases, a couple of diverged time steps does not 

significantly impact an extended simulation with more than thousands of time steps. 

However, if there is no such limitation, consecutive diverged time steps eventually could 

destroy simulations by creating mobile defect oscillations or simply drive the system into 
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non-physical electrostatic potentials and deadly loops.  Figure 4.6 and 4.7 below show two 

different simulation cases with both oscillation detection and automatic damping for device 

simulation part. These plots illustrate the time interval and number of iterations required 

for each time steps in an annealing simulation at 350oC and a stress simulation for device 

stressed at 65oC.  

 

Figure 4.6. Typical defect migration induced oscillations and automatic damping 

involved in a 350oC annealing simulation. 

In Figure 4.6, each spikes of No. of Iteration represents diverged device simulations 

strengthen damping with extra Gummel iterations to obtain convergence. On the other hand, 

a general trend of increasing timestep is presented, with multiple occasions of oscillation 

invoked timestep reduction. It is interesting to find that sudden divergent device simulation 

is highly synchronized with oscillation detection. Most likely the divergence is caused by 
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oscillated defect migration thus once defects are stabilized, device simulation starts 

working smoothly with minor variations in iteration numbers. In the 65oC stress simulation 

demonstrated in Figure 4.7, gradual increment of time step is presented without any 

oscillation being detected. However, spikes of iteration number are observed during 

light/bias conditions switching. Also, a large portion of the time steps following condition 

changes required extra iteration to achieve convergence in device simulation, which is 

probably caused by doping profile changes in response to different light/bias conditions. 

Both samples show the importance of dynamic time step in defect migration and automatic 

damping in device simulation. To deliver smooth/uninterrupted simulation results, both 

techniques are necessary. 

 

Figure 4.7. Automatic damping involved in a 65oC stress simulation with changing 

light/bias conditions. 
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4.3  SIMULATION SCHEMES 

In this section, we will discuss the general schemes adopted in the solver for 

different types of simulation task.  

4.3.1  Discussions on Cu source layer  

Regardless of whether Cu is introduced in sx-CdTe wafer or px-CdTe prepared for 

solar cell applications, the incorporation of Cu in CdTe is usually achieved by thermal 

treatment or anneal following the deposition of Cu source layer. For the deposition of Cu 

layer, common procedure includes ZnTe:Cu co-evaporation [51], [52], CuCl treatment [9] 

and Cu/Au paste [53], [54]. In some cases, the Cu source layer would also serve as buffer 

layer or contact layer after the thermal treatment [52], [55], [56]. While for some others, 

for example CuCl treatment, the source layer is removed prior to the application of back 

contact in order to eliminate excess Cu in CdTe for long term stability of the device [9], 

[57]. In general, controlled activation of Cu is essential to achieve quality CdTe solar cells. 

Thus, a Cu source layer is usually assumed in our simulations. To simplify the 

complexity of this work, only ZnTe:Cu layer is considered as the source layer in both 

anneal simulations and long term migration simulations, due to better knowledge of the 

properties of ZnTe:Cu. The variance between Cu source layers, most importantly the initial 

Cui injection concentration in CdTe, could be achieved in the assumed ZnTe:Cu layer by 

adjusting Cu source concentration, formation energies of Cu and even doping 

concentration in ZnTe. Hence, the employed ZnTe:Cu layer could effectively serve as other 

Cu source in terms of Cu migration. As for the electronic properties of these buffer\contact 

layers, such assumptions may not hold. However, as the primary goal of this research is 
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about Cu migration in CdTe, the electronic properties of the buffer/contact layer may not 

be that important. Figure 4.8 below schematically illustrated the migration progress of Cu 

atom from the source layer into the CdTe bulk. 

 

Figure 4.8. Schematic illustration of Cu migration from the source layer into CdTe 

material. 

4.3.2  Simulation Scheme for Cu Anneal Process  

In the experiment, following the deposition of Cu source layer, the samples (can be 

sx-CdTe wafer or px-CdTe solar cells) are annealed at high temperature ( usually varied 

between 150 oC to 300 oC) for certain durations (usually less than 30 minutes) [1], [51]. 

For this particular study, ZnTe:Cu/sx-CdTe samples were annealed at 250, 300 and 300 C 

for 40, 20 and 12 minutes, respectively [47]. And for the px-CdTe solar cells fabricated at 

Colorado State University, anneal was conducted around 200 oC for 200 seconds [9]. 

Most importantly, both sx-CdTe samples and px-CdTe cells are commonly 

measured at room temperature. Thus, measurement performed with these samples, 

including ToF-SIMS and IV-characteristics, is not only determined by annealing condition, 

but also affected by cooling process. The cooling effect also has crucial importance in terms 
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of solar cell characterization [34], [58]. Hence simulating cooling process also has crucial 

importance in terms of comparing simulation results with experiments.  

Given this, simulation of temperature changes is performed before we make any 

comparison to experimental results. During each annealing simulation (also stress cases), 

several transient of the simulations will be extracted for the later cooling process. For 

example, in the annealing case, as four different annealing durations were applied in 

experiments, defect distribution (and potentials) at the corresponding time step will be 

extracted. By doing this, we could get four initial profiles for the cooling simulations in 

one annealing simulation. Usually it takes about 10 – 15 minutes for the annealed samples 

to cool down to RT from typical annealing temperature of 200 – 300oC. 

4.3.3  Predictive Simulation of Device Performance Changes 

  As the primary target in this work is defect migration caused by device performance 

changes, the initial condition of defect distribution is of crucial importance. The most 

reliable procedure is to perform long term stress simulations on top of the aforementioned 

annealing simulations: using pre-simulated annealed and cool-downed defect profile as the 

initial condition. Doing this, avoids oscillations or divergence caused by un-equilibrium 

initial guess of defect profiles at the beginning of simulations. More importantly, pre-

simulated defect profile probably is the best initial guess of defect distribution in fabricated 

solar cells. However, such statement can only be made with true confidence in 

employed defect chemistry and annealing simulation results. 

Similarly to the annealing process, temperature change is commonly present in 

stress test for solar devices. Many publications claimed that device performance is 
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measured at room temperature, commonly referred to as ex-situ measurement under STC, 

regardless of the stress conditions [9], [59]. In these cases, people are usually interested in 

the long-term degradation of the device. On the contrary, many also reported continuous 

device measurement conducted during the stress without temperature changes [60], i.e in-

situ measurement. Such arrangement is commonly employed to avoid uncertainties of the 

ex-situ measurement introduced in the cooling process, which is also a part of device’s 

stress history, especially for solar cells with fast transient behaviors at room temperature.  

Given the fact that temperature changes may or may not be presented in these stress 

experiments, corresponding simulations need to accommodate such experiment setup for 

meaningful comparisons between them. 

4.3.4  Tracking of Bias Condition in Predictive Simulations 

As the most common operation mode of photovoltaic devices in their applications, 

Maximum Power Point Tracking is a typical bias condition employed in reliability studies 

of solar cells. Open-circuit is another usual bias condition in these investigations, especially 

when MPP tracking is not available or limited. Although fixed voltage bias could be 

employed to mimic the ever changing Vmp or Voc condition in simulations, larger 

performance changes occurring during these tests could easily challenge this assumption. 

Furthermore, as a self-consistent system, simply set fixed voltage bias condition my results 

in solutions far from the true equilibrium states between device operation and point defect 

evolution. Thus, tracking of bias conditions is essential to eliminate potential errors come 

from fixed voltage bias conditions. 
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Due to the unique integration of device simulations in this developed solver, 

realization of bias condition tracking is straight forward. I-V simulation utilizing real-time 

dopants profiles, are frequently performed in simulations that require bias condition 

tracking. Vmp or Voc extracted from the simulated I-V characteristics is applied to the 

steady states simulation in the next time step to reflect changing in bias conditions, 

electrostatic potential and carrier distributions. Figure 4.9 schematically illustrates the flow 

chart of the integrated solver with bias condition tracking.  

 

Figure 4.9. Flow chart of simulations with bias condition tracking. 

In comparison to the flow chart in Figure 4.3, Apply Bias block is now included in 

the coupling loop to allow bias conditions. Also, free carrier and electrostatic potential 

update is performed prior to the diffusion-reaction process of point defects, so that updated 

bias condition could impact defect migration immediately. However, it is important to note 
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that frequent I-V simulations could significantly increase computational burden of the 

solver, thus it is only invoked when needed.   

4.3.5  Time-Dependent IV Simulation with Active Defects 

Another unique scheme provided by this self-consistent simulator is time-

dependent IV simulations with active defects. In this scheme, we are interested in active 

defects impact on direct IV measurement. As it is well known in the photovoltaic research 

community, IV characteristic with similar conditions could result in complete different IV-

curves from the same device based on the direction of voltage sweep or even sweeping 

frequencies, especially in Perovskite and thin-film technologies. Many have accredited 

such behavior to mobile ions’ presence in these devices [61], thus it could be considered 

as short-term metastability as well. Since the developed solver already integrates defect 

migration with steady-states device simulation, mobile ions migration during IV 

measurement could be investigated using this unified solver. 

The standard procedure for such I-V simulation utilizes the solution of device 

simulation performed at each time stamp, with sweeping voltage bias in a certain direction 

and frequency. Corresponding defect evolution is again, determined by the diffusion-

reaction part, with continuously updated potential and carrier distributions from the steady-

state device simulation. Figure 4.10 below shows typical current output as a function of 

time evolution in this type of simulations. Current density spikes are commonly observed 

at the beginning of new voltage steps, suggesting a certain amount of time stamps inside 

each voltage step is required to achieve stabilization or equilibrium for the given voltage 

bias conditions.  
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Figure 4.10. Typical voltage bias and current output plotted against time evolution in 

time-dependent I-V simulations. 0.1V/s sweeping rate is employed. 

 

Figure 4.11. Comparison of IV-characteristics simulated by different sweeping rate. 

Figure 4.11 compares two time-dependent I-V simulations with different sweeping 

rate. Based on the simplified Cu-only defect model, reducing sweeping rate from 1V/s to 

0.1V/s, raised the fill factor hence overall efficiency of the solar cell, by about 3%. Such 

enhancement most likely is caused by more uniform doping profiles achieved through slow 

migration of Cui(+) towards junction area, or gradual passivation of acceptor centers in the 

depletion region. Such behavior of CdTe thin-film devices has not been reported previously. 
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CHAPTER 5 

SIMULATION RESULTS 

In the rest of this thesis, we discuss the agreement and discrepancy achieved 

between simulation and experiments on Cu migration in CdTe. 

5.1  COPPER ANNEAL IN SX-CDTE 

An experimental study of Cu migration in single crystal CdTe was done at First 

Solar Inc. (Perrysburg, OH). In this experiment, thin Cu-containing ZnTe (ZnTe:Cu) layers 

were deposited on highly-resistive sx-CdTe substrates provided by JX Nippon. We did not 

apply any additional treatment that could affect the compensation of sx-CdTe before 

ZnTe:Cu deposition, thus the concentration of intrinsic defects, especially Cadmium 

Vacancy (VCd), should be negligible. The target concentration of Cu in the ZnTe:Cu layer 

was set as 4×1020 cm-3. Later experiments suggest that the Cu concentration is around 

6×1019 cm-3 in the ZnTe layer, which is significantly lower than the original target value. 

Such difference could be caused by low resolution and broadening effects of the SIMS 

technique. Diffusion anneals were performed at 250 C, 300 C and 350 C for four different 

durations at each temperature value. The atomic Cu depth profiles were measured in every 

sample using ToF-SIMS. The detection limit of such technique is around 1016 cm-3 (marked 

as the control sample without annealing process in Figure 5.1). Alongside, ten measured 

profiles corresponding to different annealing recipes are also shown in Fig. 5.1. The Cu 

profile for the sample annealed at 350 C for 9 minutes lies close to the profile for the 12 

minutes case, and is also not presented for a better view of the others. It is important to 

note that the ToF-SIMS measurements were conducted at room temperature after a natural 
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cooling process of the samples. The high concentration of Cu appearing in the first 0.5 µm 

is the residual Cu concentration from the ZnTe layer. Focusing on Cu in CdTe, we see that 

Cu penetrates deeper into the CdTe as we increase the annealing time or the annealing 

temperature. In samples that were exposed to higher annealing temperature (350 C 

samples) or longer duration of the annealing process (300 C for 20 minutes sample), 

abnormally high concentration of Cu (>1018 cm-3) is observed in the first 0.5 µm of CdTe 

(0.5<x<1 µm region). This could be explained by the broadening of ZnTe or formation of 

ZnCdTe, caused by Zn diffusion at similar annealing temperature with shorter annealing 

time [51], [52]. However, such behavior is beyond the scope of this paper as Cu in bulk 

CdTe is the primary focus of this work. Another important finding in this experiment is 

that the peak of the Cu concentration in the CdTe layer is 1 to 2 µm beneath the interface. 

This is probably caused by the back diffusion of Cu during the cool down process and will 

be addressed later in this section.  

 

Figure 5.1. Atomic Cu profiles achieved with different annealing recipes. Black 

pentagrams represent the control sample without any annealing. 

 



  54 

For the simulation part, a high concentration (5×1020 cm-3) of Cui was assumed in 

the 0.5 µm thin ZnTe:Cu source layer. This simulated initial Cu concentration is larger than 

the actual measurement and the original target value. Using larger formation energy of Cu 

in ZnTe layer, the equivalent of larger segregation factor across the interface, will eliminate 

the effect of higher Cu source concentration. In particular, a 0.45 eV difference in the 

standard formation energy of Cui was employed to achieve the proper Cu concentration in 

CdTe substrate with different annealing recipe in simulation. A constant 1017 cm-3 p-type 

doping was maintained in this layer during the entire simulation. This assumption is 

consistent with the literature [51]. The thickness of the CdTe bulk was set as 15 µm to 

avoid reflection of defects from the end of the CdTe “wafer”. Negligible amounts (1013 cm-

3) of VCd was initialized in the samples prior to the annealing simulation. Neumann 

boundary conditions were applied for both ends of the simulation domain to maintain 

conservation of all defects. In order to obtain the electric field properly, widely accepted 

carrier transport properties and material properties of px-CdTe and ZnTe were employed 

in the simulations. Although better carrier lifetime and material quality should be expected 

in sx-CdTe, their impact on the Cu profiles in sx-CdTe remained unclear. Nevertheless, 

there may be no considerable impact since no (or negligible) electric current flows through 

the samples during the annealing process.  

Using first principles parameters [21], [25], [26], the fitted diffusivities and 

ionization energies shown in Table 5.1, good agreement between experiment and 

simulation was achieved for the annealing process with different temperatures by the same 

set of diffusion-reaction parameters. The solid lines in Figure 5.2 represent the simulated 

Cu profile with each annealing recipe. As listed in Table 5.1, the fitted diffusion barrier 
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energy of both interstitials were 0.26 eV larger than the DFT value. Such difference may 

come from the implementation of incomplete physical models in this work, which will be 

addressed later in this section. Although the back diffusion of Cu during cool down can be 

qualitatively simulated, some temperature dependency is present: the higher annealing 

temperature, the larger Cu depletion is achieved near the interface, which will be discussed 

later in this section. We also need to point out that the room temperature hole concentration 

in the saturated region of CdTe, as a result of both partial ionization and compensation of 

Cu dopants, crucially depends on this ionization energy of CuCd listed in Table 5.1. By 

using a slightly higher (0.25 eV) ionization energy of CuCd acceptors, the free hole 

concentration is maintained below 3×1015 cm-3 in all “samples” at room temperature.  

 

Figure. 5.2. Atomic Cu profiles achieved with different annealing recipes. Black 

pentagrams represent the control sample without any annealing. Solid lines represent the 

simulated Cu profiles after cooling to room temperature. 
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Table 5.1  List of Employed Parameters and Theoretical Values 

Defect D0 (cm2/s) ED (eV) a ε (eV) b 

Cui(+) 

(DFT value) 

4.9×10-3 

(6.3×10-3) 

0.718 

(0.46) 

1.37 

(1.36) 

CuCd(-) 
- 

- 

- 

- 

0.25 

(0.22) 

Cdi(2+) 
3×10-4 

(3.21×10-3) 

0.727 

(0.47) 

1.3 

(1.29) 

VCd(2-) 
- 

- 

- 

- 

0.36 

(0.36) 
aED here is the energy of the diffusion barriers illustrated in Fig. 2. 
bε is the defect transition energy level (ionization energy) with respect to the valence 

band minimum. 

Figure 5.3 depicts the simulated defect distribution and band diagram of the sample 

right after a 3 minute 350 C annealing process (corresponding to the blue squares and blue 

line in Figure 5.2, but without cooling process), which explains the saturation behavior of 

Cu in CdTe. The original built-in electric field between highly p-type doped ZnTe and 

highly-intrinsic CdTe limits Cui(+) from moving into the CdTe region. However, a small 

amount of Cui is able to diffuse into CdTe. Therefore, Cui(+) quickly knocks Cd atoms off, 

generates immobile CuCd(-) and mobile Cdi(2+) under the backward reaction of  Reaction 

1 listed in Table 3.1. As part of Cdi(2+) being drifted into the ZnTe layer under the same 

built-in electric field across the  interface, normally known as out diffusion, the p-type 

region starts to form in CdTe. It is important to note that since charge is conserved in all 

reactions, achieving p-type doping without Cdi(2+) moving out of CdTe is very difficult. 

As Cu forms acceptors in CdTe, an electric field is generated between the Cu occupied p-

type region and the intrinsic CdTe region without Cu, which again prevents further 

movement of Cui into the intrinsic region of CdTe. Once the distribution of defects gets 

close to the balance of all involved reactions, such as 0.5<x<6 µm region in Figure 5.3, 
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less CuCd will be generated. Hence more Cui can travel through this saturated region to 

occupy Cd sites in the newly formed p-i junction area (x>6 µm in Fig. 4).  The line with 

diamonds (green in the online version) in Figure 5.3, labeled as “Free Holes”, demonstrates 

the distribution of free holes in the simulated sample. This indicates that partial 

compensation between CuCd(-) and Cdi(2+) is achieved at 350 C as the atomic Cu 

concentration is around 2×1017 cm-3 while the holes concentration is about 4×1016 cm-3. 

However, partial ionization of the CuCd acceptors plays a minor role in the compensation 

mechanism since the acceptor level of CuCd is not that shallow. About 90% of CuCd 

acceptors in the saturated area are ionized at 350 C according to detailed results from our 

simulation.  

 

Figure 5.3.  Simulated profiles of major Cu-related defects and free carriers (top panel) 

and band diagram in the ZnTe:Cu/sx-CdTe structure after 3 minutes of annealing at 350 

C (bottom panel).  
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Figure 5.4. Simulated profiles of major Cu-related defects in the sample after 3 

minutes annealing at 350 oC and an extra 12 minute cooling process. Simulated Cadmium 

Vacancies are neglected as the maximum concentration is below 1013 cm-3. 

As we cool down the sample to room temperature with a natural decay of the 

ambient temperature (corresponding to the blue squares and blue line in Fig. 5.2), the Cu 

depletion near the interface is simulated as indicated in Figure 5.4. In general, as the 

temperature decreases, Cui starts to diffuse back into ZnTe due to the 0.45 eV difference 

in the standard formation energies of Cui between CdTe and ZnTe, which triggers the 

dissociation of CuCd (forward reaction of Reaction 1 listed in Table 3.1). As the dissociation 

consumes most of the Cdi, Cdi stored in ZnTe starts to diffuse back into CdTe. Once these 

Cdi reach the reaction-unbalanced CdTe, they continue to dissociate CuCd to reach a new 

equilibrium among involved reactions. Since only the interface region can get 

supplemental Cdi, the Cu reduction is more obvious near the interface. As the temperature 
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further decreases, both the reaction and diffusion rates become quite slow. Still, this 

progress should not be completely stopped right after the cooling process. Experimental 

evidence of Cu movements in CdTe devices stressed at 65oC has been reported recently 

[9].  

This back-diffusion mechanism could also explain Cu depletion’s temperature 

dependency in simulations presented in Fig 5.2. First of all, the back-diffusion mechanism 

itself can be seen as the natural progress of Cu approaching the lower solubility limit during 

the cool down process. Thus, larger difference of Cu concentrations between the interface 

and bulk is presented in simulations with higher annealing temperature. Additionally, the 

simulated Cu concentration is around 4×1016 cm-3 near the interface after cool-down, 

regardless of the annealing temperature (see Fig. 5.2). This does not necessarily denote the 

Cu solubility limit in CdTe at RT, but in some degree represents the Cu solubility at certain 

temperature that diffusion-reaction progress of Cu becomes too slow in our simulations. 

As detailed simulation result suggests, this temperature is in the range of 140 – 160 C. 

Moreover, the simulated Cu depletion heavily relies on the diffusion coefficients of Cui 

and Cdi, as the former one diffuses back into ZnTe:Cu while the latter one diffuses in the 

opposite direction. Higher diffusivity allows more interstitial atoms to move across the 

interface, thus triggering more dissociation reaction of CuCd at high temperature in general. 

As a larger diffusion barrier energy was employed for both of them, such dependency is 

further enhanced due to the larger variance in the diffusion coefficients of both interstitial 

atoms. Also, considering the fact that Cu depletion is clearly present in the 250 C anneal 

experiments but not that well in the corresponding simulations, we believe that the 
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diffusion coefficients used in this case, give good agreement between Cu profiles obtained 

from simulations and experiments, have larger temperature dependency. By including 

donor-acceptor centers, (such as Cdi-CuCd and Cui-CuCd complexes) into the simulator, 

smaller diffusion barrier energy of both Cui and Cdi can be employed to achieve good 

agreement with experimental Cu profiles.  Detailed analysis of this augmented model will 

be published soon [62]. 

Figure 5.4 also shows that the free carrier concentration drops below 3×1015 cm-3 

level with only a smaller reduction in atomic concentration of Cu at room temperature. 

More importantly, the new compensation is mostly achieved between CuCd(-) and Cui(+). 

Therefore, during cooling, the compensation mechanism is changed. The observed change 

is a complex process determined by diffusion, drift, reactions, and temperature-dependent 

Fermi-Dirac statistics both for free carriers and CuCd acceptors. Again, the resulting room 

temperature hole density depends crucially not only on donor-acceptor compensation but 

also on the possibility of the ionization of CuCd acceptors: In average, only 30% of CuCd is 

activated as acceptors in the saturation region of this particular “sample”. If larger dopant 

activation energy was employed in our simulation, the ionization could be even weaker. 

For example, replacing this 0.25 eV ionization energy of CuCd acceptors by 0.22 and 0.28 

eV, the resulting room temperature average hole concentration is 5.4 × 1015 and 1.3 × 1015  

cm-3, respectively. The recent development of low-temperature time-resolved 

photoluminescence shows a strong potential to estimate the ionization energy and 

concentration of CuCd acceptors [30], [63], which could further help us on understanding 

the limited incorporation and self-compensation of Cu doping in CdTe.  
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5.2  COPPER ANNEAL IN PX-CDTE DEVICES 

 Experimental study of Cu diffusion in px-CdTe solar cells was done at Colorado 

State University (CSU). In this experiment, CdTe solar cells were fabricated using CSU’s 

standard close-space-sublimation process. CuCl treatment (performed at 160oC, 180oC and 

210oC to control the amount of Cu that is diffused into CdTe) followed by an annealing at 

200oC were performed after a standard 400oC 3 minutes CdCl2 treatment. Once the entire 

fabrication process was finished, ToF-SIMS measurement, IV-characterization and CV 

characterization were performed at room temperature. Details of the experiments can be 

found in [9]. Simulations with the same temperatures were performed in order to get proper 

defect properties and initial Cu distributions in the devices. There are three major 

differences between our simulations and the real devices: (1) no grain-boundary in our 1D 

simulation, (2) Cu-containing ZnTe layer simulated as Cu source instead of CuCl, due to 

the lack of CuCl parameters and (3) Cl-related defects (such Cli, ClTe and ClTe-VCd) were 

neglected in the simulations.  

 Figure 5.5 compares the simulated Cu profile and the SIMS measured profile.  It is 

clear that the atomic Cu profile were matched by our simulation qualitatively, while the 

simulated carrier densities were slightly lower than the measured data. Many possible 

reasons could be related to such discrepancy: it could be an inaccurate defect transition 

energy level which increases the possibilities of acceptors being ionized. Or a non-realistic 

defect chemistry that does not represent the real compensation mechanisms which were 

assumed in the simulations. Another possibility here is the Cl-related defects missing in 

the theoretical model. The atomic concentration of Cl is expected to be 1018 cm-3 in thin-
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film CdTe absorber [64], [65]. Cl defects compensate each other as the carrier 

concentration in Cl treated CdTe thin-films are usually highly intrinsic [2]. Contrary to the 

experimental data, the simulated free carrier density shows some dependency on the Cu 

concentration, which is also an indication that the compensation mechanisms in CdTe are 

not completely understood.  

 

Figure 5.5. Comparison of simulated (lines) and measured Cu profiles (solid marbles) 

and carrier density (open marbles) in CdTe solar cells with the same annealing recipe. 

  Applying the more advanced Cu-Cl interactions listed in section 3.3, simulation can 

be used to predict the detailed distribution of defects in px-CdTe solar cells. Figure 5.6 

depicts the distribution of 17 Cu-Cl defects in CdTe absorber layer at room temperature 

after a 10 minutes 300oC annealing. The total Cu concentration plotted by the black dash 

line is maintained above 1017cm-3 through the entire absorber layer, this particular number, 

although is not in agreement with CSU’s device, is indeed consistent with other reports 
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[27], [51]. Also, in agreement with most reported Cu distribution measurements, a higher 

Cu concentration is present near the back contact and front junction in these new 

simulations with Cu-Cl defects. The bumps near the back is partially due to the source layer 

and diffusion process while the front bump is directly related to the depletion of positively 

charged ions in a p-type depletion region. Better agreement between the Tof-SIMS 

measured total Cu profiles from the CSU device could be achieved with further 

investigation of the parameters of the Cu density or the segregation factor in the source 

layer. 

 

Figure 5.6. Detailed distribution of 17 common Cu-Cl defects achieved in annealing 

simulation. 
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5.3  PREDICTIVE SIMULATION OF LONG TERM DEVICE PERFORMANCE 

A different set of cells were fabricated with the same settings but thicker (2.5 um) 

CdTe layer. Once the entire fabrication and initial characterization are finished, all cells 

were stressed at 65oC under illumination of ~1 sun (1kW/m2) for a total time of 831 hours. 

One set of the cells were stressed at Short-Circuit (SC) conditions while another were 

exposed to Open-Circuit (OC) stress. Device characterization was performed several times 

during that time span. Inspection of the Cu concentration profiles (Figure 5.7) shows that 

OC-stress seems to not move Cu atoms away as the profile is close to the pre-stress curve. 

On the contrary, SC-stressed device has a reduced Cu concentration. Most likely the 

reduction is attributed to the migration of positively charged Cu ions towards the back of 

the device due to the electric field within the SC conditions of the device. Contrary to the 

changes in atomic Cu concentrations, carrier densities remain the same for SC-stressed 

device but increases 100% in the OC-stress experiments.  

 Simulation results show a similar Cu depletion in CdTe layer for SC-stress (Figure 

5.7): 15% of total Cu was reduced during the SC-stress simulation in 100 hours, which is 

slightly faster than the experimental observation that Cu concentration reduces 60% in 831 

hours. Smaller Cu depletion (7% of total Cu) is also presented for the OC-stress in our 

simulations. Most likely, both depletion is caused by the Cui(+) back diffusion due to the 

ZnTe:Cu source layer, while there is no such layer (hence no or less back diffusion of Cui) 

in the experimental setup. The fact that SC-stress depletion is faster could be related to the 

strong electric field existed in the junction area under SC conditions where such electric 

field should be significantly weaker under OC conditions. If the back diffusion of Cui could 
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be reduced or eliminated, by alternating the source layer or changing the formation energy 

of Cui in the source layer, our simulations could provide better understanding of the 

hypothesis that built-in electric field of CdTe solar cells is the main reason for the Cu 

depletion observed in SC-stress.  

 

Figure 5.7. Comparison of SIMS measured profiles of Cu concentration (solid 

marbles) and carrier densities (open marbles) for pre-stress, OC-stress and SC-stress. 

  Figure 5.8 compares the detailed defect distribution before and after both type of 

stresses, showing that the dissociation of CuCd acceptor is the main reason for the p-type 

peak near the junction area. Built-in electric field of the device pushes Cui from the 

depletion region towards the back contact. Due to the missing of Cui, quasi-equilibrium of 

the defect chemistry breaks down, CuCd starts to dissociate. The built-in potential in the 

depletion region once again pushes newly released Cui away, results in further dissociation 

of the CuCd acceptors near the junction area. Due to the increase of p-doping near the 
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interface, depletion region width shrinks, which actually allows more Cui to move towards 

the main junction. However, such movement reflects only the changes of electric field in 

that specific area, but not implications of the actual movements of total Cu atoms. Due to 

the weaker electric field in OC condition, less Cui could be pushed away from the junction 

area, the dissociation of the CuCd acceptors is significantly weaker.  

 

Figure 5.8. Comparison of simulated Cu defect profiles (solid lines) for pre-stress, 

OC-stress and SC-stress devices. 

 Correspnding carrier density for the stressed devices are illustrated in Figure 5.9 as 

well. OC-stress conditions increase the holes density in the absorber layer and decrease it 

near the junction, which conceivably is caused by Cui penetration deeper in the device, 

results in more uniformed distribution of free carriers. On the contrary, SC-stress pushes 

mobile Cui(+) donor away from the right (front) of the device, which implies Cui back 

diffusion accelerated by the electric fields, causing low acceptor in the bulk but high 
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acceptor density near the junction area. It is important to note that the carrier density peak 

between 2 um to 2.5 um for the SC-stressed device (see red dash line in Figure 5.7), is the 

major cause of the Fill-Factor (FF) reduction in our simulations. However, such 

phenomena cannot be observed from the general CV measurement since it is usually 

employed to characterize the mean carrier density in the thin film but not the detailed 

distribution of carriers in the entire thin-film, let alone the fact that measured carrier density 

in the depletion region is always neglected in these measurements.  

 

Figure 5.9. Comparison of simulated net acceptor distributions in CdTe solar cells for 

pre-stress, SC-stress and OC-stress. 

 Corresponding device performance in these stress simulations are presented with 

the experimental data in Figure 5.10. The simulation results agree qualitatively with the 

experiments as FF contributes to the majority of the device performance degradation while 

both JSC and VOC are stable over that time span. The simulated device degradation is 10 
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times faster than the experiments most probably due to inaccurate diffusion-reaction 

parameters employed to simulate Cu’s migration or the Cui back diffusion caused by 

ZnTe:Cu layer that has been discussed in this report. The increasing trend of Voc and the 

gradual redeuction in Jsc in simulation mostlikely are caused by the increasing of p-type 

dopants in the junction area. 

 

Figure 5.10. Comparison of simulated defect distributions in CdTe solar cells for pre-

stress and SC-stress. 

 It is important to note that during these stress simulations, constant carrier lifetime 

(equal to 3 ns) and constant mobility of carriers were assumed in the theoretical model. 

The presented device degradation is purely caused by the variation of the doping profile in 

the device. However, in real experiments, both of them are expected to change during the 

stress test. Kuciauskas et al. reported CuCd as the main recombination center in CdTe [15], 

addressing that carrier lifetime should be calculated precisely in the simulations when 
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massive Cu migration occurs. The inclusion of dopant dependent lifetime and mobility is 

currently being implemented within our group.  

Another possible mechanism that has not been accounted for is the carrier-defects 

interactions. Although steady-state ionization status of each defect is calculated based on 

distribution of carriers (quasi-Fermi level of electrons and holes), the transient of such 

ionization process is not being modeled, as the ionization reaction rates (nanosecond SRH 

recombination lifetime of carriers) were considered to be orders of magnitude faster than 

the defects migration. However, such assumption may not be completely valid. Similar fast 

transient behavior was observed in px-CdTe solar cells fabricated at both National 

Renewable Energy Laboratory (NREL) [66] and CSU. Since the metastable behavior was 

observed within hours of stress at room temperature, massive migration of Cu defects 

probably was not achieved in those solar cells, indicating that such phenomena are not 

caused by the fast movement of dopants in our simulations, but are related to the gradual 

passivation/activation processes of recombination centers commonly presented in CdTe 

thin films. We are also working on simulations of such ionization reactions for further 

investigation of metastable behaviors observed in CdTe thin-film solar cells. 

5.4  PREDICTIVE SIMULATION OF SHORT TERM METASTABILITIES 

The following experiment was performed to further understanding the light soaking 

effect commonly observed from CdTe solar cells: four “CSU” CdTe solar cells with Te/Ni 

back contact [67] were dark soaked at 60°C for up to 17 hours. Afterwards, two samples 

were light soaked at the same temperature with AM1.5 solar irradiance, while the other 

two samples were kept in dark at 60°C. In both groups, one device was short-circuited and 
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the other one was forward-biased: open-circuited in the light soaking group or 0.7V 

forward-biased in the dark group. In the biased case, smaller internal field is expected, 

comparing to the short-circuited cells. Several in-situ light J-V measurement were 

performed for each cells during these soaking experiments at the same stress temperature 

of 60°C. Hence, temperature-dependent behvior of solar cells is avoided in this study.  

 

Figure 5.11. Device performance under different soaking conditions. In-situ IV 

characterization performed at stress temperature (60oC), thus avoid potential transients 

could occur before STC test. 

Figure 5.11 shows the changes in device performance of all four devices as a 

function of time, under different light and voltage bias conditions as indicated. It is clear 

that performance enhancement is presented in both forward-biased devices (marbles), 

regardless of the light conditions. On the other hand, no significant increment were 
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observed in both short-circuited devices (squares). However, steady decrease in efficiency 

and fill factors were presented in the short-circuited and light-soaked device (red solid 

squares), which could be an indication of commonly observed light-induced degradation 

in CdTe solar cells [68], [69]. Stable performance was observed in the short-circuited 

device under dark soaking (blue open squares), as neither light nor voltage bias was applied 

to it. No significant changes were presented in JSC of all devices thus they are neglected in 

this discussion. Between the forward-biased (performance enhanced) solar cells, VOC 

curves share similar path, which might suggest that the VOC growth is caused by the 

reduced internal field in these devices. However, the FF curves do not follow with each 

other: gradual increase was presented in the dark soaked device (green open marbles) with 

minor fluctuations after 10 hour of stress while an initial increment followed by steady 

reduction was observed in the Light & Biased cell (black solid marbles). Since the other 

light-soaked but short-circuited cell (red solid squares) shows similar degradation of FF, 

especially after 6 hour of light soaking, it is highly possible that the drop in FF is related to 

light soaking itself. Such reduction in FF also limited the efficiency growth of the Light & 

Biased device. In summary, experiment shows that light soaking (light-generated excess 

carrier) decreases FF hence overall device performance while forward-bias helped to boost 

VOC, FF and overall conversion efficiency.  

From simulation side, a standard ZnTe/CdTe/CdS structure is employed with 

simplified dopant compensation picture. Namely, 1016 cm-3 CuCd(-), 0.4×1016 cm-3 Cui(+) 

and 0.5×1016 cm-3 background donor concentration are uniformly distributed in CdTe as 

the initial defect distribution, resulting in 1015 cm-3 hole density in the CdTe absorber layer.   
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Since solar cells were dark soaked for 17 hours prior to any soaking experiment, 

we first simulate the equilibrium of the defect system in CdTe cells under dark without any 

voltage applied. Figure 5.12 shows the equilibrium distribution of Cu dopants as well as 

the band diagram of the solar cell under dark at 60oC. Due to built-in potential of the p-n 

junction, most of Cui(+) is pushed away from the depletion region, resulting in higher net 

acceptor concentrations in the junction area. Figure 5.11 also gives the equilibrium defect 

distribution the cells under 1 Sun illumination with 0.7V forward bias (or MPP/VOC). In 

contrast to the dark equilibrium case, under light illumination and forward bias, Cui(+) 

moves deeper into the depletion region due to reduced potential difference across the 

junction, further decreasing the net acceptor density near the junction. As we have 

discussed in the experimental section above, expected behavior of Cu dopants is observed 

for the dark-soaked and forward-biased cell. For the case of dark-soaked and short-

circuited device, no significant migration was observed. Based on the evolution of dopant 

profiles, both our 1D solver and Silvaco Atlas predict an increment in FF for the forward-

biased device, as shown in Figure 5.13.  
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Figure 5.12. Equilibrium of the solar cells under dark condition at 60oC (left) and cells 

under light soak with forward bias condition at 60oC (right). 
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Figure 5.13. Comparison of simulated net acceptor distribution under different bias 

conditions and their corresponding IV curves. 

As a time-dependent solver was employed in this work, continuous migration of 

the defects and transient behavior of device performance were simulated as well.   

Simulated device performance changes, under different conditions are presented in Figure 

5.14.  Again, forward-biased “devices” show performance enhancement while no change 

is observed in the zero-biased “devices”.  But, neither does the short-circuit condition 

decrease FF nor does the forward bias considerably boost VOC. However, both phenomena 

were presented in our previous work, in which CuCd(-) and Cui(+) interactions were 

investigated in the context of long term stability of CdTe solar cells [70]. It is also important 

to point out that very small diffusion coefficients were applied in simulations in order to 

achieve hours-long metastability behaviour. Using DFT number results in performance 

changes completed in less than 0.1 hour.  
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Figure 5.14. Device performance changes as a function of soaking time with various 

conditions. See Table 5.1 below for the conditions applied for each simulation. 

Table 5.1  List of Different Soaking Conditions 

Soak Illumination Voltage Bias Mechanism 

A 1 Sun 0.8 V Light & Biased 

B 1 Sun 0 V Light & Short-Circuit 

C Dark 0.8V Dark & Biased 

D Dark 0 V Dark & Short-Circuit 

E 1 Sun 0.8 V No Diffusion 

F 1 Sun 0.8 V Small Diffusivity 10-12 cm2/s 

G 1 Sun 0.8 V Small Diffusivity 10-13 cm2/s 

Soak F & G are simulated with smaller Cui diffusivity. 

To address such huge discrepancies among first principle calculation, experiment 

and simulations, interaction of Cu and Cl in real CdTe absorbers, that lead to formation of 
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pair complexes, introducing new mechanisms of slow defect migration and new instability 

mechanisms related to association/dissociation of complexes [27], which were listed in 

Section 3.3 above, were investigated by the same approach as well. Nanmely, anneal 

simulations and complete dark soak were performed to provide “device” for following 

metastability researches.  

 

Figure 5.15. Equilibrium of the solar cells under dark condition at 60oC. Blue dash line 

for Cui(+) donor. 

Figure 5.15 shows typical point defect profiles achieved with both Cu and Cl point 

defects in simulations. It is important to note that due to more complicated and 

compensated defect chemistry, total Cu concentration as high as 1017cm-3 can be achieved. 

On the left, defect distribution and net dopant concentration are plotted for the device with 
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complete dark soak, where stronger non-uniform doping was achieved. In Figure 5.16 

below, distributions are plotted after extended light soak under 60oC for 30 hours with 

forward bias applied. Again, due to the smaller electric field presented in the junction of 

this case, much more mobile donors migrated towards junction area, thus reduced doping 

concentration and rasied depletion region width in the CdTe absorber layer. Futher 

investigation on these defect systems could be conducted to achieve doping profiles that 

can be somewhat verified by experiments. 

 

Figure 5.16. Equilibrium of the solar cells under light soak conditions with forward 

bias at 60oC. Blue dash line for Cui(+) donor. 

Similarly to the simplified case, these new simulations shows comparable device 

performance changes induced by defect migration, as shown in Figure 5.16 below. Further 
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more, due to the complicated defect reactions, complexes associated with mobile dopants 

more specifically, lower concentration of mobile ions is achived in simulations. Thus, the 

migration of mobile ions are limited by the dissociation rate of these complexes. Results in 

significantly reduced rate of device performance changes. Even using first principle 

calculated defect parameters, 20 hour long metastable behaviour can be achieved in 

simulation, which can not be done by the previous over simplified case. However, more 

effort is required to reproduce the excat curves obtained from simulation demonstrated in 

Figure 5.11.  

 

Figure 5.17  Normliazed Voc changes under different light sokaing conditions with 

first principle calculated diffusion-reaction parameters. 
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CHAPTER 6 

CONCLUSIONS 

A self-consistent 1D numerical solver for simulating defect migration in CdTe was 

successfully implemented with advanced kinetic models, including defect reactions and 

defect-carrier interactions developed. Time-dependent Drift-Diffusion equations for the 

mobile atomistic defects are solved using the Schafetter-Gummel discretization scheme, to 

investigate their migration under the complicated annealing and operating conditions of the 

solar cells. The reactions of point defects, including defect-defect interactions and defect-

free carrier interactions are isolated from the drift-diffusion part and solved by a unique 

implicit scheme in the time domain to maintain total atom conservation and to avoid 

unphysical concentration introduction as a numerical artifact of the regular explicit scheme. 

This approach also enables the usage of larger time intervals in time domains with 

acceptable accuracy in most cases. 

The drift-diffusion model used in semiconductor device simulators has been 

integrated into the Unified Solver, by a two-loop scheme, to the obtain real-time electronic 

environment based on the ever-changing profiles of point defects. Potential oscillations 

introduced by this coupling scheme are significantly reduced by an ad-hoc treatment, in 

which the practical time domain discretization with less computational burden is assured 

under different simulation conditions. Inside this device simulator, automatic damping is 

applied to resolve devastating electronic subsystems with harsh point defect (dopants) 

profiles that could generate divergent solutions of the electrostatic potentials and have 

catastrophic effects on the evolution of point defects. The device simulator, also models 

real-time solar cell performance under different stress and operation conditions. 



  80 

Furthermore, it enables maximum power point tracking, short-circuit, open-circuit and 

different voltage-bias conditions of solar cells in the simulations for a variety common 

stress tests in the field of photovoltaic device reliability. Hence, correlation between point 

defect evolution and performance changes introduced by these test conditions can be 

investigated utilizing this scheme.  

Good agreement with the atomic concentration profiles of Cu in CdTe was achieved 

between simulation and experiment on ZnTe:Cu/sx-CdTe samples. Simulation results 

further suggest a possible explanation for “slow” diffusion of Cu profiles observed in CdTe 

material: the internal electric field between the Cu-doped p-type region and the Cu-free 

intrinsic or slightly doped region, creates substantial drift flux of Cui(+) mobile ions in the 

reverse direction of the diffusion flux of the same species, which in general limits the 

“diffusion” velocity of Cu atoms overall. Simulation results also indicate that the formation 

of the CuCd(-) acceptor itself, consumes the main diffuser, Cui(+),  and slows down the 

overall diffusion process as well. This investigation further demonstrates that the Cu 

solubility is a complicated equilibrium states between different species of point defects. In 

this simplified model, increasing the source concentration of Cui(+) could successfully 

raise Cu’s “solubility” in CdTe material. The speculated reason of the observed Cu dips in 

the CdTe bulk near the source layer interface, back diffusion of Cui(+) during the cool 

down process, is also confirmed by simulations in this work, with segregation factors 

applied.   

Based on this over-simplified model of the Cu chemistry in CdTe, migration of Cu 

atoms under different stress conditions were also investigated, both in the long term 
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reliability field and in the short-term metastability area. Cu depletion during long term SC 

stress was successfully simulated by this solver, with Fill Factor-induced device 

performance degradation, that is reported in experimental works. Simulations on the short-

term metastability of CdTe solar cells further suggest such recoverable performance 

changes are partially, if not solely, caused by the drift-diffusion process of point defects, 

as a result of changing environment and evolving electronic subsystems. 

The flexibility and healthiness of the solver developed in this work is further 

confirmed by more complicated Cu-Cl co-existence models. In these cases, more than 17 

point defects and 19 reactions are successfully integrated in this Unified Solver. Simulation 

of Cu annealing in Cl-treated poly-crystalline CdTe solar cells delivered qualitative 

matching between experimental and simulated Cu profiles in these devices. Similar 

agreement in the concentrations of free carriers is also obtained between experiment and 

simulation. Due to the complicated defect chemistry in these advanced models, in 

agreement of experimental findings, 20-hour long defect migration and metastable device 

performance are achieved in simulations, with first principle calculated diffusion 

parameters of Cu and Cl interstitial defects. These simulations could potentially explain 

the huge discrepancy between slow device performance changes and fast diffusion 

parameters of common point defects in CdTe thin-film photovoltaic devices. 
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