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ABSTRACT

Hardware-Assisted Security (HAS) is an emerging technology that addresses the

shortcomings of software-based virtualized environment. There are two major weak-

nesses of software-based virtualization that HAS attempts to address – performance

overhead and security issues. Performance overhead caused by software-based virtu-

alization is due to the use of additional software layer (i.e., hypervisor). Since the

performance is highly related to efficiency of processing data and providing services,

reducing performance overhead is one of the major concerns in data centers and enter-

prise networks. Software-based virtualization also imposes additional security issues

in the virtualized environments. To resolve those issues, HAS is developed to offload

security functions from application layer to a dedicated hardware, thereby achiev-

ing almost bare-metal performance and enhanced security. As a result, HAS gained

more popularity and the number of studies regarding efficiency of the technology is

increasing.

However, there exists no attempt to our knowledge that provides a generic test

mechanism that is universally applicable to all HAS devices. Preparing such a testbed

for each specific HAS device is a time-consuming and costly task for hardware man-

ufacturers and network administrators. Therefore, we try to address the demands

of hardware vendors and researchers for a generic testbed that can evaluate both

performance and security functions of the HAS-enabled systems.

In this thesis, the HAS device evaluation framework (HEF ) is defined for hard-

ware vendors, network administrators, and researchers to measure performance of

the system with HAS devices. HEF provides a generic test environments for a given

HAS device by providing generic test metrics and evaluation mechanisms. HEF is

also designed to take user-defined test metrics and test cases to support various hard-

ware. The framework performs the entire process in an automated fashion, and thus
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it requires no user intervention. Finally, the efficacy of HEF is demonstrated by per-

forming a case study using Intel QuickAssist Technology (QAT) adapter, which is a

dedicated PCI express device for cryptographic tasks.
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Chapter 1

INTRODUCTION

Advance in hardware technology during the past few decades led to an emergence

of new classes of computers. Mobile devices (cell phones, tablet computers, etc), for

example, have become one of the primary computing platforms these days. Comput-

ing capability of those devices also outperforms that of the desktop computers from

merely a decade ago. As the processing power increases, the amount of data that

are processed by servers in data centers have also drastically increased. Today, data

centers around the world process incredible amount of data that is exchanged via com-

munication channels and networks. It is not only the hardware that advanced over

time — technologies for utilizing the ample resources of high-performance systems in

data centers has also advanced.

Virtualization is one of such technologies that has emerged not only in enterprise

networks but also in other systems including personal and mobile platform. The

main purpose of virtualization is to create a virtual platform (whether it is in a form

of network interface, storage, or software component) to share the ample, physical

resources of the host system. In this way, multiple platforms or services can be

provided with less cost and the waste of computing resources can also be prevented.

Nevertheless, performance is still a major concern in today’s data centers. This is

mainly because virtualized environments impose significant performance overhead to

the host. Such performance overhead is mainly caused by additional software layer

called hypervisor. Hypervisor manages execution of guest systems and sharing of

host resources among those guest environments, and the functions of hypervisor as a

mediator between host and guest systems create the overhead. There are two types
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of hypervisors — Type-I and Type-II hypervisors. While Type-II hypervisor is the

most popular type of hypervisor in today’s virtualization technology, it is also main

source of the performance overhead (see Chapter 2).

In addition to the performance overhead caused by hypervisor, the increasing

amount of data exchanged throughout the network also affects the performance of

servers in data centers. For example, annual global IP traffic forecast published by

CISCO anticipates the global IP traffic will increase threefold up to 2020 [6]. This

phenomenon is natural because the number of services provided by today’s network

is increasing (for e.g., images, video streams, cloud database, etc). Thus, the fact

that amount of data is increasing makes the performance a critical factor that must

be considered by network administrators.

Another important aspect that must be considered in the virtualized computing

environments is security, i.e., how to provide secure execution environment for the vir-

tualized environments. Other than the fact that techniques and tools used by attack-

ers constantly advance, virtualization itself imposes numerous security issues [26],[22].

Therefore, hardening the security of those environments becomes critical for service

providers. Consequently, the architecture in data centers and high performance com-

puting sites is in constant state of change with cutting-edge technologies to balance

hardware cost, operational expenditures, performance and security.

Hardware-Assisted Security (HAS) has emerged in an attempt to address the

aforementioned disadvantages of virtualization technology. HAS device offloads se-

curity functions from software layer to a dedicated hardware, and thus, increasing

performance and providing hardened security to the system. In fact, HAS is al-

ready a popular choice in embedded systems architecture and is also being applied

to enterprise data centers and high performance computing setups to achieve almost

bare-metal performance. Therefore, it is of a great importance for hardware manu-

2



facturers, system administrators, and researchers that they are able to validate and

analyze the performance of HAS products. However, most studies related to HAS

or hardware-assisted virtualization environments in high performing platforms and

data centers concentrate only on either benchmarking the performance of a specific

HAS device or enhancing security through HAS with minimum performance over-

head [5],[25],[24].

In this thesis, a design for an automated, generic framework for evaluating perfor-

mance of HAS devices is proposed. The HAS hardware evaluation framework (named

HEF ) defined in this thesis enables hardware vendors, system administrators, and re-

searchers to analyze performance of the system with a given HAS device. To this

end, HEF provides a generic performance analysis mechanism that can be applied to

any HAS hardware in standard servers. HEF is also designed to take user-defined

test metrics and test-cases to support various test cases. HEF requires no user in-

tervention after taking user inputs, and thus, provides an enhanced usability through

automation. The efficacy of HEF is demonstrated by performing a case study us-

ing Intel QuickAssist Technology (QAT) adapter, which is a dedicated PCI express

(PCIe) device for various cryptographic tasks.

The contributions made by this thesis are summarized as follow:

1. The design for a generic, automated performance analysis framework for evalu-

ating HAS hardware, named HEF, is proposed.

2. HEF provides an environment for hardware vendors to validate the security

functions of given HAS device. It also performs performance benchmark to

measure the performance of the system on which the HAS device is installed.

Then, HEF generates a comparative analysis using the performance benchmark

3



results from HAS-enabled and HAS-disabled environments.

3. An instance of HEF is implemented to demonstrate its efficacy and effectiveness.

For case study, Intel QAT adapter, one of the HAS devices, is used in this thesis

for the demonstration.

Structure of the remaining thesis is as follow:

The motivation of this thesis are listed in Chapter 3. After the goals are clearly

identified, the detailed architecture of HEF are discussed in Chapter 4, along with the

explanation of how the framework is implemented in Chapter 5. The functionalities

of HEF is demonstrated using Intel QAT device and the results are analyzed in

Chapter 6. And then, the efficacy and limitations of the framework are discussed in

Chapter 9. Other works that influenced HEF are introduced in Chapter 8. Finally,

Chapter 10 concludes this thesis.
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Chapter 2

BACKGROUND ON HARDWARE-ASSISTED SECURITY

In this chapter, we introduce the background knowledge required to understand what

HAS is. In order to understand the history and mechanism of HAS, we first have

to look at virtualization; its advantages and disadvantages, and attempts to address

those disadvantages.

2.1 Virtualization

In computer architecture domain, virtualization means an insertion of a layer in

the logical stack to abstract underlying hardware or software layer. More specifically,

virtual machines represent computing environments that simulate and share the ex-

isting hardware resources of the host system. One of the main reasons for using the

technology is to avoid wasting of processing power and improve resource utilization

by abstracting the host resources. Virtualization is also used to address specific prob-

lems, such as providing support for legacy functionality, and standardizing interface

in logical models [16].

Advance in hardware and cloud computing technologies make virtualization tech-

nology a popular solution that can provide on-demand, elastic, and highly efficient

self-service in terms of resource utilization [14]. In particular, primary benefit of

virtualization for enterprise networks and data centers is that it reduces the waste

of computing resources. The technology also improves stability and reliability of the

system because any errors, or even crash, taking place in guest systems does not affect

the host.

In virtualization, the guest systems are running on top of a piece of software
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called hypervisor, which is the core software layer in virtualization technology [20].

At high level, hypervisor enables the guest machines to share computing resources

of the host machine. To enable the guest systems to share the host resources and

communicate with the underlying hardware efficiently, hypervisor simulates machine

I/O instructuctions. There are two types of hypervisor; one is Type-I hypervisor (or

bare-metal hypervisor), which is running directly on hardware. Since Type-I hypervi-

sor is running without host operating system, it minimizes performance overhead by

communicating with the underlying hardware directly. For the same reason, Type-I

hypervisor is also considered to be more secure than Type-II hypervisor. A virtualized

environment using Type-I is shown in Figure 2.1. However, the cost for maintenance

and updating hardwares with bare-metal hypervisor is high, because the hypervisors

are running as an embedded software on hardware. It also requires certain skill sets

for operation.

Figure 2.1: Virtualized Environment using Type-I Hypervisor

The other type of hypervisor is Type-II hypervisor (or hosted hypervisor), which

runs on top of host operating system. Since the host operating system manages
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hardware, the hosted hypervisor can support various hardwares. The hosted hyper-

visors are also easy to setup and the cost is low. Hosted hypervisors, however, cause

higher performance overhead and low stability and security due to more points of

failure compared to bare-metal hypervisors. Figure 2.2 illustrates a virtualization

using Type-II hypervisor.

Figure 2.2: Virtualized Environment using Type-II Hypervisor

Modern data centers and middle-to-large enterprise networks use virtualization

as the technology that enables host systems to share their ample resources. In other

words, each server can dynamically provision multiple services to users through the

technology. The trend in virtualization was utilization of bare-metal hypervisors be-

cause of their advantages. However, traditional virtualizion technology, regardless

of the type of hypervisor used, imposes two major challenges. One is performance

overhead. Even with today’s advanced hardware, virtualization creates significant

performance overhead as the hypervisor is running as a piece of software intercepting

all interaction between the guest systems and host hardware [1],[21]. Consequently,

there could be 100 – 400% performance overhead caused by hypervisors [15], es-

7



pecially when Type-II hypervisors are used. There is another type of virtualization

technology that attempts to minimize performance degradation — paravirtualization.

paravirtualization [2] modifies the guest systems to make system calls to the hyper-

visor rather than emulating the hardware environment. In this way, the workload

of emulating hardware for hypervisor decreases, and hence decrease the performance

overhead. However, it does not totally eliminate the overhead because the hypervisors

still act as a mediator between host hardware and guest systems. The actions as a

mediator include creating device driver for guest systems, sending instructions from

guest to host, and accessing the host hardware on behalf of the guest systems.

The other challenge is security issues related to the technology. Additional soft-

ware layer created by using hypervisors introduced new vulnerabilities and attacks.

For example, VM escaping, VM sprawling, and attack between VMs are among the

new threats [13] imposed by virtualization. Those new vulnerabilities obviously en-

able attackers to compromise both the guests and host systems if they are not man-

aged properly. In other words, hypervisors introduces multiple attack surfaces and

points of failures. Fortunately, there are numerous studies that attempt to address

the hypervisor-related issues [13],[23],[19],[18]. However, those studies still fail to ad-

dress the performance overhead issue, or even impose more overhead as the solution

utilizes extra software in an attempt to resolve the given problem [3].

2.1.1 Hardware-Assisted Virtualization and Hardware-Assisted Security

Performance and security issues remain for any type of virtualization technologies

as long as additional software layer (i.e., hypervisor) exists. HAS is an emerging

technology that attempts to address the issues of virtualization. HAS is, in essence,

utilizes hardware-assisted virtualization. Unlike other types of virtualization that

uses hypervisors, HAS hardware achieves full access to physical function (PF) of
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host hardware without intervention of hypervisors. The core hardware-assisted vir-

tualization technology leveraged by HAS hardware is called single-root input/output

virtualization (SR-IOV).

SR-IOV is a standard for I/O device virtualization. Any I/O device with SR-IOV

(whether it is HAS device or not) creates multiple virtual functions (VFs) that are

shared by multiple guest virtual machines [7]. In addition, SR-IOV creates direct

I/O path between the device and guest virtual machine, instead of emulating I/O

instructions for PF. In this way, bare-metal performance is achieved by having a

dedicated hardware for certain security-related tasks and minimizing the intervention

of hypervisors [7]. Figure 2.3 illustrates a virtualized environment using SR-IOV

enabled device. Majority of security functions provided by today’s HAS devices is

various cipher suites for encryption/decryption of data that are either at rest (i.e.,

data stored in a database) or in transit.

Security-related issues in traditional virtualization can also be resolved by using

specific security VFs provided by HAS devices. This is because those security func-

tions provided by a certain hardware guarantees more security and trustworthiness

than software-based security functions, which are more vulnerable to modification

and reverse engineering [27].
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Figure 2.3: Virtualized Environment with SR-IOV
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Chapter 3

PROBLEM STATEMENT

In this Chapter, we define the problems we want to address first. Then, based on the

problems identified, we also define the goal of this thesis. In general, we aim to design

and implement a fully automated, generic performance analysis framework that can

be applicable to any HAS devices. The problems we identified and specific goals to

address those problems are as follow:

1. With the rise of HAS techonlogy, there has been a lot of studies regarding its

application in data centers and high performance computing setups. However,

there is no attempt to provide an universal performance analysis mechanism

for HAS devices. To our best knowledge, existing frameworks are in ad-hoc

manner — in other words, those frameworks are device-specific. HEF addresses

this issue by not only performing a performance benchmark but also providing

a comparative analysis of using HAS technology.

2. Current studies only concentrate on either enhancing the security of system

using HAS technology or increasing the performance by using hardware virtual-

ization. A goal of this thesis is to encompass both aspects by demonstrating the

security functions of the system with a HAS device and analyze performance of

the system.

3. Other existing benchmarking frameworks are designed in ad-hoc manner and

only for their target HAS devices. Another goal of this thesis is to devise a

generic framework that is applicable to all HAS devices in standard servers.

11



4. Those existing frameworks also require a lot of time, skills, and costs to create

and run the benchmark. HEF automates the benchmark process so that it can

also minimize the effort and enhance usability.
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Chapter 4

FRAMEWORK DESIGN AND ARCHITECTURE

The design requirements of the framework is discussed in this chapter, along with the

details of architecture and components of the framework. We also define input and

output of HEF in this chapter.

4.1 Design Goals

First, we define the design goals of HEF. The limitations of other existing frame-

works for HAS devices include their limited applicability to other devices, high cost

for setup, and low usability. The framework devised in this thesis attempts to address

those issues by achieving the following design goals:

1. Automation: The framework must be able to perform the benchmark without

user intervention. In other words, HEF runs the entire performance benchmark

and analysis by itself from the moment the user provides input. HEF should

also be able to generate the output and provide it to the user. Thus, the entire

process from test case generation to results analysis should be automated.

2. Generalization: The framework should be applicable to any HAS device unless

it requires specific set of hardware. One of the assumptions in this thesis is that

target HAS devices are installed in standard servers (see Chapter 9). To be

applicable to any HAS devices, the framework can also take in user-defined

inputs for test metrics. In this way, HEF can support various test cases. Thus,

the framework defined in this thesis should be able to perform both the security

function demonstration and performance analysis for any HAS devices that are

13



used in standard servers.

3. High Modularity: To achieve high usability and minimize the effort, HEF

consists of several modules, each of which performing certain automated task

required for performance benchmark of the given HAS device. High modularity

also enables users to plug in the test cases that they generated easily. It is also

easy for them to troubleshoot.

4.2 Architecture

This section presents the overall architecture of the framework, followed by de-

scriptions for each of its components. At high level, the framework consists of three

agents, and some of each agent is also composed of a group of sub-modules. Each

agent represents a specific task during the performance analysis process. The whole

architecture of the framework is illustrated in Figure 4.1. The specific descriptions

for each component is as follow:

1. Preparation Agent: This agent is responsible for processing inputs, generat-

ing test-cases, and configuring test environments. Preparation agent consists of

the following sub-modules for specific tasks:

Input Collection Module: This agent is responsible for managing default

and user-defined input. Each input (i.e., test metrics) is managed by two sub-

modules (Default Input Manager and User-defined Input Manager) in the Input

Collection Agent. Default Input Manager and User-defined Input Manager

simply take the inputs through the user interface, parse the input, store, and

give the processed input to the other modules when necessary. User-defined

Input Manager can also take other user-defined specifications, such as different
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test metrics, test cases, and software tools. In this way, HEF can support

different test cases for various HAS devices.

There are two types of inputs used in HEF. Default inputs are the ones

that are given to the user by default. Default inputs (i.e., default test metrics,

test cases and software tools) are selected as defined in RFC 2544, which is a

standard for benchmarking communication devices [4]. User-defined input is the

other type of input that can be plugged into User-defined Input Manager. This

agent is also responsible for retrieving resource information from the system.

Test-case Generation Module: As the name indicates, Test-case Gen-

eration Agent generates test cases that for performance benchmark using the

inputs. The other responsibility of this module is storing and retrieving the

user-defined test cases when necessary.

Test Environment Configuration Agent: Based on the test-cases gen-

erated, Test Environment Configuration Agent configures the testbed and cre-

ates test environment using the list of software tools (whether default or user-

defined). The list of software tools that are defined by the user is passed to this

agent and used to download the required software during the preparation of the

test environment.

2. Test Agent: Test Agent is one of the two key components of HEF. This agent

collects processed inputs and test-cases from appropriate agents and runs the

benchmark using them. After collecting the benchmark results, Test Agent

stores them in the result database. This agent is also responsible for error

reporting by logging any exceptions/errors and passing them to the user for

troubleshooting.

3. Analysis Agent: This agent is the other key component of HEF. It retrieves
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raw result data from the result database and performs a comparative analysis

to visualize performance enhancement by using the HAS device. The main

responsibilities of this agent is, therefore, performing analysis and visualizing

the analysis results.

Figure 4.1: Architecture Overview of HEF

4.2.1 Input Definition

The input types for the framework are also defined in this section because HEF

takes not only one type of inputs but a series of multiple types of inputs. The

framework allows the user to choose either one or both types of input, which is used

by the framework to generate test cases and run the benchmark. Table 4.1 lists

possible series of input. First, all types input fall into on of the following categories:
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Input Type Categories

Default Input
Test Metrics, Test Cases, Software Tools

User-Defined Input

Table 4.1: Types and Categories of Input

1. Test Metrics: The default test metrics are defined according to RFC 2544 [4],

which is the benchmarking methodology for network interconnect devices de-

fined by Network Working Group. It includes three test metrics — Bult Through-

put (Gbps), Connections per second (CPS), and CPU Utilization (utilization

per core measured in %). The user can define test metrics and other categories

of the input, so that the framework can perform the benchmark as intended.

2. Test Cases: Using the test metrics defined, the framework generates test cases

for the benchmark. This can be also defined by the user, and therefore, the user-

defined test cases can be an input in this case. In this thesis, the default test

cases are generated by using Intel QuickAssist Device (QAT), which is used for

the case study (see Chapter 6). The case study demonstrates the efficacy of

HEF.

A combination of different elements are used to create the default test-cases,

dividing the test-cases into five categories:

(a) Environments that defines two different configurations of the testbed —

the web server-client and web server-proxy-client environments.

(b) QAT option — either enabled or disabled

(c) Cipher suite used for each test case

(d) The number of CPU cores used on the device under test (DUT) device,
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and

(e) The default test metrics

Categorizing the test cases using the elements above, over 480 cases are gener-

ated by the framework.

3. Software Tools: This category is created to allow the users to use specific

software tools required to run his/her own test-cases. The default tools provided

by the framework include iperf for the bulk throughput, and top and mpstat for

the cpu utilization. CPS is measured by using web servers that are configured

to measure the number of connections. More details about how the benchmark

is performed are explained in Chapter 6.

The inputs for the framework are then divided into two main types:

1. Default Input: This type of inputs are provided to the users by default. The

user can choose whether the given inputs are used or not in the benchmark.

2. User-defined Input: This is a type of input that can be defined by the

users and plugged into the framework through the user interface. Due to the

high modularity supported by the framework, the user can easily plug-in the

customized input, test-cases, and required software tools to the framework.

However, the user must define and provide all three items (i.e., test metrics,

test cases, and software tools) correctly in order for the framework to perform

the benchmark.
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Chapter 5

IMPLEMENTATION

An instance of HEF is implemented to demonstrate its functionalities and efficacy.

As discussed in Chapter 4, five different agents are implemented using Python 2.7.6,

JavaScript, and HTTP in approximately 3, 500 lines of code, supporting the design

goals explained in Section 4.1. More specifically, all five agents are implemented using

Python langauge, while the web user interface is implemented using JavaScript and

HTTP for enhanced usability, which is also one of the design goals.

For the later use of experimental results, the analysis agent in HEF is isolated from

the testing agent and runs comparative analysis to effectively showcase performance

gaps between QAT-installed and non-QAT settings. The raw experimental data are

stored as spread sheets (.csv format) and graphs (.png format) after all the verification

and benchmark is complete.
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Chapter 6

CASE STUDY

In this section, we demonstrate the functionalities and efficacy of HEF using In-

tel QuickAssist Technology (QAT) device. The detailed explanation on experiment

setups are provided. The output (i.e., the experimental results) is then discussed.

For the case study, we used Intel QAT. Intel QAT is a PCI Express (PCIe) hard-

ware that accelerates and compresses cryptographic workloads by offloading the task

to a dedicated hardware through SR-IOV [9]. In other word, one PF of a device can be

divided into multiple VFs, as explained in Chapter 2. Security functions provided by

QAT are various cryptographic functions, including symmetric cryptography (AES,

DES,etc), elliptic curve cryptography (ECDSA and ECDH), and hash algorithms

(SHA-1, SHA-2, etc). Those functions are run and tested in the web server-client

and server-proxy-client environments (see Section 6.1.4). To perform the benchmark,

test-cases for each cryptographic function are given to the framework, along with

other elements required (i.e., test metrics and software tools required to configure the

environment).

6.1 Test Cases and Environment

In this section, the methods used to create test cases and environments are dis-

cussed. The hardware and software specifications required for the physical testing

servers are also explained. At high level, performance of two environments with and

without QAT is measured. One test environment is a plain web server-client setup,

while the other environment consists of a web server, client, and a proxy in-between

the two.
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6.1.1 Test Case Generation

To measure CPS and Bulk throughput, more than two different entities (server and

client) must exchange the data so that the traffic between them can be monitored

and analyzed. Also, other elements are considered in generating test-cases other

than test metrics and cryptographic functions provided by the QAT. Those other

criteria include configuration of test environments, the presence of QAT in the testing

environment, number of CPU cores, and the maximum transmission unit (MTU).

These criteria are selected to create various test-cases so that we can compare the

performance of the device under testing (DUT) with different configurations.

Configuration of environments defines two different test environments — a typical

web server-client and web server-proxy-client environment. The purpose of having a

proxy in-between the server and client is to obtain the performance results in different

network environments and compare them with the web server-client setup. Similarly,

the number of CPU cores and MTU are selected to try out different configurations and

compare the performance difference. Finally, impact of the presence of QAT (whether

QAT is installed or not) is measured in terms of performance to prove efficiency of

the HAS device. Table 6.1 lists all the criteria for generating test cases. With all

possible combinations, over 450 test cases are generated. The test cases generated

are given as inputs to HEF and the benchmark is performed automatically, without

any user intervention.

6.1.2 Hardware Ingredients

Table 6.2 lists the hardware specifications used in this case study. It contains all

the hardware components for both the DUT and client. All hardware components are

carefully selected so it assembles standard servers used in today’s enterprise networks.
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A B C D E ETC

Environment QAT option Cipher # of cores Measurement MTU

Server-Client,

Server-Proxy-Client
Non-QAT, QAT

AES128-SHA,

AES128-GCM-SHA256,

ECDHE-ECDSA-AES128-SHA,

ECDHE-RSA-AES128-SHA

1, 2, 4, 6, 8

Bulk Throughput,

CPS,

Utilization

1500, 9000

Table 6.1: Test Cases Generated for Intel QAT Device

Category Description Qty

DUT CPU Intel E5-2699v3 1

Client CPU Intel E5-2658v3 1

Memory
Samsung 8GB 288-Pin DDR4 SDRAM ECC Registered DDR4

2133 (PC4 17000) 2RX8, Server Memory Model M393A1G43DB0-CPB0
8

QAT Adapter Intel QuickAssist Adapter 8950-SCCP 2

NIC X520(2xPorts)
Intel Ethernet Converged Network Adapter X520-DA2 - Network

adapter - PCI Express 2.0 x8 low profile
1

NIC X710(4xPorts) Intel X710 Network Adapter 10GB PCIe-3.0 x8 SFP+ x 4 X710DA4FH 1

Table 6.2: Hardware Components for Physical Servers

6.1.3 Software Ingredients

Table 6.3 lists the software components used in the benchmark. It contains all

the software components for both the DUT and client servers. We also modified the

source code of NGINX web server and encryption library of OpenSSL to make them

compatible with QAT and count the number of connections for CPS.

22



Category Description

Operating System Fedora 20

Kernel Linux kernel 3.11.5

Hypervisor Oracle VirtualBox 5.1.18

Software packages

C Development Tools and Libraries

Development Tools

kernel-devel

zlib-devel

glibc-devel

openssl-devel

sysstat

OpenSSL AES-NI ver 1.0.2g

Web server NGINX ver 1.6.2

CPU utilization measuring tool mpstat

Remote script execution parallel-ssh

Table 6.3: Software Components Required for Case Study

6.1.4 Test Environments

Figure 6.1 and 6.2 illustrates the testbed setup for the web server-client and web

server-proxy-client environments respectively. To measure how much performance

improvement QAT can achieve, the web server (i.e., the DUT) is implemented as a

VM assigned with the VFs of QAT, while the traffic generator (client) is implemented

in separate physical server. Similarly, the web server-proxy-client is created using two

VMs for web server and proxy to simulate a simple virtual network. The configuration

of those environments are performed by Environment Configuration module of HEF.
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Those configurations performed by HEF include updating kernel to the compatible

version with QAT, downloading and installing required drivers and software tools.

Figure 6.1: Web Server-Client Test Setup

Figure 6.2: Web Server-Proxy-Client Test Setup
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The physical server in which the DUT is implemented contains a 10Gbps quad

network interfaces, which is connected to the client that has a X520 dual port 10G

NIC. The DUT server is also equipped with the Intel QAT adapter with single Intel

Xeon CPU (E5-2699v3), and the client is equipped with dual Intel Xeon CPUs (E5-

2658v3). In this setup, the maximum theoretical network bandwidth is 10G.

During the experiments, several messages are exchanged between the DUT and

client to establish secure connection including data transmission and session termina-

tion. Each test-case runs for 200 seconds at a time, while NGINX (version 1.6.2) [17]

is running on the DUT to provide a web service using the QAT functions. Perfor-

mance of DUT during each test run is monitored and recorded by mpstat and top.

HEF executes every test case 10 times and collects the results in a remote machine.

OpenSSL v1.0.2g is used on each tester machine, and QAT compatible OpenSSL

v1.0.1-async is installed on the DUT. OpenSSL libcrypto patch (version 0.4.9-009) is

also applied on DUT for the optimal performance.

6.2 Performance Benchmark

After the benchmark, the results are analyzed by Analysis Agent of HEF. The

agent retrieves the raw data from the results database whenever necessary and con-

ducts comparative analysis. The comparative analysis shows performance gaps be-

tween the test environment with- and without-QAT.

Figure 6.3, 6.4, 6.5, and 6.6 show the experimental results in QAT-installed and

non-QAT environments with single CPU core. Figure 6.3 and 6.4 are the performance

comparison between the two environments for different cipher suites, while Figure 6.5

and 6.6 are the CPU utilization comparison between the two environments while

measuring throughput and CPS respectively.

The major contribution made by generating the comparative analysis is that it
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Figure 6.3: Throughput Result with 1 Core in QAT and Non-QAT Environments

provides not only performance measurement but also helps the user identify any

bottleneck if exists. For example, the throughput result of AES128-GCM-SHA256

cipher suite in Figure 6.3 indicates that the performance of non-QAT environment

exceeds that of QAT-installed one. The result indicates that there might be a possible

bottleneck for the specific cipher function of QAT because QAT is the only device

that is running AES128-GCM-SHA256 cipher suite. The result means that QAT

is not optimized and creates performance overhead for the cipher suite. Therefore,

manufacturers (in this case, QAT manufacturers) can identify the bottleneck for their

devices from the in-depth analysis generated by HEF. The issue is reported to Intel
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Figure 6.4: CPS Result with 1 Core in QAT and Non-QAT Environments

along with the results generated by HEF. The entire experimental results are included

in Section 7.
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Figure 6.5: CPU Utilization Result for Throughput Experiment with 18 Cores
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Figure 6.6: CPU Utilization Result for CPS Experiment with 18 Cores
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Chapter 7

EXPERIMENTAL RESULTS

7.1 Results in Web Server-Cient Environment

This section provides the result graphs generated by Ananlysis Module of HEF.

The results presented here are the performance analysis of the web server-client test

environment with- and without-QAT. We first conducted the experiment to measure

bulk throughput of the web server-client environment. Figure 7.1 and 7.2 illustrates

the bulk throughput results obtained from the test environment. Each of four different

cipher suites (AES128-SHA, AES128-GCM-SHA256, ECDHE-ECDSA-AES128-SHA,

and ECDHE-RSA-AES128-SHA) is used for encryption/decryption while measuring

the throughput.

The upper left graph in Figure 7.1 indicates that the throughput result using

AES128-SHA has increased from 3.4 to 7.5 Gbps with the help of QAT, thereby

achieving significant performance gain (221 % increase). Performance of QAT with

ECDHE-ECDSA-AES128-SHA and ECDHE-RSA-AES128-SHA cipher suites also

showed significant increase — 197 % and 215 % increase, respectively. However, we

observed performance degradation while using AES128-GCM-SHA256 cipher suite —

from 7.1 Gbps without QAT to 5.8 Gbps with QAT.

Meanwhile, the throughput with QAT gradually exceeds the throughput without

QAT as the number of cores bound to NGINX web server increases (Figure 7.2).

The results in general show that the throughput without QAT increases linearly

until it reaches its maximum, while the same environment with QAT reaches its

maximum with less number of cores. On one hand, the throughput without QAT us-
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Figure 7.1: Bulk Throughput Results with 1 Core

ing AES128-SHA, ECDHE-ECDSA-AES128-SHA, and ECDHE-RSA-AES128-SHA

keeps increasing up to 45.5, 46.3, and 44.6 Gbps utilizing 18 cores. On the other

hand, the setup with QAT requires only 8 to 10 cores for its maximum throughput

(Figure 7.2). However, the results with AES128-GCM-SHA256 cipher suite shows

different patterns. Up to 8 CPU cores, the environment without QAT generated

more throughput (20 % more in average)compared to the one with QAT. And then,

both setups (with- and without-QAT) reached their maximum at 10 cores. From

the observation, we see that QAT can generate better performance for throughput

with AES128-SHA, ECDHE-ECDSA-AES128-SHA, and ECDHE-RSA-AES128-SHA
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cipher suites. We can also conclude that there is little or no difference in throughput

values when AES128-GCM-SHA256 cipher suite is used.

Figure 7.2: Bulk Throughput Results with Multiple Cores
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The performance improvement by using QAT is more clear when we look at the

CPS results. At most 591 % increase in CPS is observed with AES128-GCM-SHA256

cipher suite (upper right graph in Figure 7.3). The lease increase in CPS by using

QAT is 155 % with ECDHE-ECDSA-AES128-SHA cipher suite (lower left graph in

Figure 7.3).

Figure 7.3: CPS Results with 1 Core
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Figure 7.4: CPS Results with Multiple Cores

The results for CPS in multi-core environments are consistent with that of single-

core environment, with one exception. With AES128-SHA and AES128-GCM-SHA256

cipher suites, CPS in the setups with QAT reached up to approximately 40, 000,

while the one without QAT only reached up to 13, 000. However, the results for

ECDHE-ECDSA-AES128-SHA and ECDHE-RSA-AES128-SHA cipher suites show

only 13, 000 CPS in maximum even with QAT (Figure 7.4). Especially, the result

for ECDHE-ECDSA-AES128-SHA cipher suite shows that the setup without QAT

outperforms the one with QAT (lower left graph in Figure 7.4). We speculate the

reason for this result is due to the limited capacity of the single-core QAT adapter
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we used in this case study. Better performance can be expected with multi-core QAT

adapter because it may be capable of scaling its own performance. This issue is also

reported to Intel, along with the one described in Section 6.2.

We also measure CPU utilization in percentage (%). Figure 7.5 and 7.6 illustrates

the utilization results measured during the throughput and CPS experiments with 18

CPU cores. Both results show QAT achieved the same or better performance with

less CPU resources, while the setup without QAT consumes almost all CPU resources

available. The setup with QAT shows maximum reduction in resource consumption

by 35 % during the each period of 200 seconds for throughput experiment (Figure 7.5).

Figure 7.5: CPU Utilization for Throughput with 18 Cores
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For CPS experiment, QAT shows even more reduction in CPU resource utilization.

While the server without QAT utilized 100 % of the given CPU resources regardless

of the cipher suites, the one with QAT utilized at most 80 % of CPU. Figure 7.6

shows that, with QAT, CPU utilization drops to less than 50 %. From the results,

we can conclude that the server can conserve CPU resources with the help of QAT,

alleviating the overhead of compute-intensive tasks.

Figure 7.6: CPU Utilization for CPS with 18 Cores
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7.2 Results in Web Server-Proxy-Cient Environment

This section also provides the result generated by Analysis Module of HEF. The

results presented here are the performance analysis of the web server-proxy-client test

environment with- and without-QAT. The results from throughput experiment is il-

lustrated in Figure 7.7. The results are consistent with the ones obtained from the web

server-client environment; more throughput is generated using QAT when AES128-

SHA, ECDHE-ECDSA-AES128-SHA, and ECDHE-RSA-AES128-SHA cipher suites

are used. There is at most 158 % increase in throughput when ECDHE-RSA-AES128-

SHA cipher suite is used. For ECDHE-ECDSA-AES128-SHA and AES128-SHA,

there is 141 %, and 150 % increase in throughput respectively. However, the server

without QAT generated more throughput when AES128-GCM-SHA256 cipher suite

is used for the same reason described in Section 6.2.
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Figure 7.7: Bulk Throughput Results with 1 Core

For multi-core environments, the results for all four cipher suites have identical

pattern. Figure 7.8 shows that throughput keeps increasing linearly in the server

without QAT as the number of CPU cores increases. Throughput in the environment

with QAT reaches its upper limit at lower number of cores (10 ∼ 12 cores). In the

web server-proxy-client setup, upper limits are in the range of 30 Gbps ∼ 38 Gbps,

depending on the cipher suites used.

38



Figure 7.8: Bulk Throughput Results with Multiple Cores

Figure 7.9 shows that significant improvements in CPS values are made by using

QAT. For AES128-GCM-SHA256 cipher suite, there is 567 % increase in CPS from

864.2 to 4903.3 CPS. The least increase in CPS are observed in ECDHE-ECDSA-

AES128-SHA cipher suite (157 % increase). The results indicate that QAT can handle

thousands of more concurrent connections in a second, even with a single CPU core.

The results also mean using QAT can achieve significant performance increase in

terms of CPS.
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Figure 7.9: CPS Results with 1 Core

Figure 7.10 are the results generated by HEF for CPS in multi-core environments.

In general, CPS under the environment without QAT increased linearly up to 18 cores,

while CPS in the environment with QAT reaches the upper limit at lower number of

cores (4 ∼ 8 cores). In ECDHE-ECDSA-AES128-SHA, however, the maximum CPS

generated QAT (approximately 11,000 CPS) is less than that of without-QAT setup

(approximately 26,000 CPS). This result also stems from the limitation of single-core

QAT adapter employed in this experiment, as explained in Section 7.1. Note that,

in the setup without QAT, CPS reaches its maximum value at 12 cores. What is

interesting is that, after reaching its maximum at 12 cores, CPS decreases up to 18
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Figure 7.10: CPS Results with Multiple Cores

cores. The fluctuation in CPS indicates that there may exist some problems in proxy,

such as load-balancing with multiple CPU cores.

The results in Figure 7.11 are also consistent with the ones from web server-client

test environment. While the DUT without QAT utilizes almost 100 % of the CPU

resources regardless of the cipher suites, DUT with QAT utilizes only 74 ∼ 85 % of

the resource, reducing the CPU utilization by maximum 26 %. Figure 7.12 shows

CPU utilization results for CPS experiments with 18 cores. The results indicate that

the DUT with QAT can outperform the without-QAT setup using even less CPU

resources, when dealing with CPS. The maximum reduction in CPU utilization is
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Figure 7.11: CPU Utilization for Throughput with 18 Cores

57 %, when ECDHE-RSA-AES128-SHA cipher suite is used. Another interesting

result generated is the lower left graph in Figure 7.12 (for ECDHE-ECDSA-AES128-

SHA cipher suite); DUT without QAT showed considerably huge fluctuation in CPU

utilization, with 57.7 % utilization in average.
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Figure 7.12: CPU Utilization for CPS with 18 Cores
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Chapter 8

RELATED WORKS

In this Chapter, other studies related to HEF are introduced. First, the config-

uration of test environments for the study case of QAT is influenced by Intel Open

Network Platform [10]. ONP is a server reference architecture that is designed to

support network function virtualization (NFV) [8] and software-defined network [12].

VANFC devised by Smolyar et al. [21] proposes a new SR-IOV network interface

cards (NIC) design that can prevent a certain attack using Ethernet pause frames.

The authors first demonstrated that they can successfully exploited the vulnerability

in NIC with SR-IOV caused by the lack of flow control. To address this issue, the

authors implemented a prototype of virtual functions that makes the NIC aware of

the type of flow. The virtual functions also include the filtering function that can

filter certain flow at zero performance overhead.

NFV-VITAL [5] is a virtualized network function (VNF) characterization frame-

work that characterizes VNFs based on user preference and available resources. A

simple performance benchmark is also performed to show the level of performance

overhead created by using NFV-VITAL. The idea of using the user-defined input in

HEF is inspired by the design of NFV-VITAL. However, NFV-VITAL is only appli-

cable to certain VNF platform (Clearwater IMS) and is not directly related to the

problems address in this thesis.
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Chapter 9

DISSCUSSION

In the previous chapters, we discuss our motivation, approach, implementation, and

case study to demonstrate the effectiveness of HEF. In this chapter, limitations and

assumptions of HEF are discussed.

HEF possesses certain limitations. Even though it is designed to be generic and

automated framework for any HAS hardware, the user has to define test cases and

metrics for each device if required. Configuration of test environments may also

require certain degree of user intervention. For example, one of the software require-

ments for QAT benchmark is QAT compatible OpenSSL, which must be patched by

modifying the source code. The task cannot be automated because it is the task

required for QAT specifically. Another task that cannot be automated is enabling

intel VT-d from system booting menu to use SR-IOV [11], and thus, it must be per-

formed by the user. Therefore, it requires the user to prepare certain inputs and may

also require manual preparation of test environments depending on the HAS deviced

evaluated.

In addition, HEF is created with certain assumptions. HAS technology concerned

in this thesis is limited to the devices that are installed in standard, high-volume

servers. The environments in which those servers are used include data centers, cloud

service providers, and high performance computing setups. Therefore, different HAS

technologies designed for other platforms, such as TPM used in embedded systems,

are not in the scope of this thesis.

45



Chapter 10

CONCLUSION

In this thesis, we proposed a design of a generic testbed framework for HAS devices.

We name this HAS performance evaluation framework as HEF. HEF is devised in an

attempts to address the lack of universal test environment that can evaluate the per-

formance of a HAS device. By designing and implementing HEF, we demonstrated

functionalities of it as a generic framework. Also, efficacy of HEF as a tool for in-

depth comparative performance analysis is proved.

Finally, the contributions of this thesis are summarized as follows:

1. A generic performance analysis framework for HAS devices is designed in this

thesis. This HAS performance evaluation framework (HEF ) minimizes the user

intervention by automating the performance benchmark. Thus, HEF reduces

the time and effort required to prepare a testbed for any HAS device.

2. HEF is designed to be universal. In other words, the framework is not device-

specific and is applicable to any HAS device for standard high-volume servers.

To this end, HEF is designed to take user-defined inputs for different test met-

rics, test-cases, and software tools required.

3. An instance of HEF is implemented and evaluated for its efficacy, using In-

tel QAT device. HEF generates comparative performance analysis by running

benchmark in the same testbed with- and without-QAT. The results generated

by HEF provides an in-depth analysis that helps network vendors/administrators

identify hidden bottlenecks in the target device.
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4. By conducing the case study using HEF, we identified unknown bottlenecks in

certain cipher functions provided by QAT device. The issues are reported to

Intel and it acknowledged the issue submitted by us.
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