
Topological Analysis of Biological Pathways: 

Genes, MicroRNAs and Pathways Involved in Hepatocellular Carcinoma 

by 

Chaoxing Li 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy 
  

 

 

 

 

 

Approved October 2017 by the  
Graduate Supervisory Committee: 

Valentin Dinu, Co-chair 
Yang Kuang, Co-chair 

Li Liu 
Xiao Wang 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

December 2017 



i 
 

ABSTRACT 

Rewired biological pathways and/or rewired microRNA (miRNA)-mRNA interactions 

might also influence the activity of biological pathways. Here, rewired biological 

pathways is defined as differential (rewiring) effect of genes on the topology of biological 

pathways between controls and cases. Similarly, rewired miRNA-mRNA interactions are 

defined as the differential (rewiring) effects of miRNAs on the topology of biological 

pathways between controls and cases. In the dissertation, it is discussed that how 

rewired biological pathways (Chapter 1) and/or rewired miRNA-mRNA interactions 

(Chapter 2) aberrantly influence the activity of biological pathways and their association 

with disease. 

This dissertation proposes two PageRank-based analytical methods, Pathways of 

Topological Rank Analysis (PoTRA) and miR2Pathway, discussed in Chapter 1 and 

Chapter 2, respectively. PoTRA focuses on detecting pathways with an altered number of 

hub genes in corresponding pathways between two phenotypes. The basis for PoTRA is 

that the loss of connectivity is a common topological trait of cancer networks, as well as 

the prior knowledge that a normal biological network is a scale-free network whose 

degree distribution follows a power law where a small number of nodes are hubs and a 

large number of nodes are non-hubs. However, from normal to cancer, the process of the 

network losing connectivity might be the process of disrupting the scale-free structure of 

the network, namely, the number of hub genes might be altered in cancer compared to 

that in normal samples. Hence, it is hypothesized that if the number of hub genes is 

different in a pathway between normal and cancer, this pathway might be involved in 

cancer. MiR2Pathway focuses on quantifying the differential effects of miRNAs on the 

activity of a biological pathway when miRNA-mRNA connections are altered from 
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normal to disease and rank disease risk of rewired miRNA-mediated biological 

pathways. This dissertation explores how rewired gene-gene interactions and rewired 

miRNA-mRNA interactions lead to aberrant activity of biological pathways, and rank 

pathways for their disease risk. The two methods proposed here can be used to 

complement existing genomics analysis methods to facilitate the study of biological 

mechanisms behind disease at the systems-level.  
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Chapter 1: INTRODUCTION 

1.1. Alteration in expression is associated with diseases 

It is well known that genomic alterations might lead to diseases. There have been many 

studies demonstrating it. For example, Hemophilia A and Huntington disease (HD) are 

monogenic diseases, which suggests that they might be caused by alteration of one gene. 

In addition to monogenic diseases, many other diseases might be caused by a 

combination of genomic alterations, epigenetic, miRNA-mediated, environmental and 

lifestyle factors, which are called complex diseases, such as diabetes, schizophrenia, or 

cancer. 

Several methods have been developed to identify active subnetworks from expression 

changes between two phenotypes. For example, Gene Set Enrichment Analysis (GSEA) is 

a well-known analytical method that determines whether a pre-defined set of genes 

shows statistically significant, concordant differences between two different phenotypes, 

which is also based on differential expression of a set of genes between two different 

phenotypes (Subramanian et al., 2005). 

Besides, there is another factor, miRNA, able to cause aberrant activity of genes, thereby 

be associated with diseases. MiRNAs are short non-coding RNAs of about 22 nucleotides 

in length, involved in the post-transcriptional regulation of gene expression. MiRNAs 

can induce the degradation of mRNA or translational repression of mRNA depending on 

the degree of homology to specific sequences, typically in the untranslated regions 

(UTRs) of their targets (Pasquinelli, 2012). MiRNAs can influence the expression of one 

or many genes at a time. It is reported that more than 60% of human genes are regulated 

by miRNAs (Friedman et al., 2009). Thus, miRNAs are regarded as key regulators of 

biological processes. That is to say, a single miRNA can control a biological process by 
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simultaneously targeting multiple genes of this specific biological process, and those 

targeted genes might be members of a cascade functioning towards a functional endpoint 

in the same biological pathways or in the crosstalk between biological processes (Lima et 

al., 2011). Over recent years, there are many studies demonstrating the role of miRNAs 

on controlling a wide variety of fundamental biological processes involved in 

proliferation, apoptosis, cell growth, differentiation, invasiveness, motility, and other 

oncogenic processes. For example, miRNA-21 can down-regulate the activity of the IL-

12/IFN-γ pathway in lung cancer (Lu et al., 2011). MiRNA-7 can influence activity of the 

PI3-kinase/Akt pathway in hepatocellular carcinoma and glioblastoma (Kefas et al., 

2008; Fang et al., 2012). MiRNA-200 is able to influence activity of E-cadherin and 

Wnt/β-catenin signaling pathways (Saydam et al., 2009). Based on those, several tools 

have been developed to detect miRNA-pathway associations (Nam et al., 2009; 

Maragkakis et al., 2011; Hsu et al., 2011a; Lu et al., 2012; Ben-Hamo & Efroni, 2015; 

Godard & van Eyll, 2015; Preusse, Theis & Mueller, 2016; Backes et al., 2016; Han et al., 

2016; Backes et al., 2017). 

Indeed, differential gene expression level in biological network might influence 

phenotypes. However, only investigating the differential expression levels of gene may be 

not sufficient since the topology of biological pathway is also an important characteristic 

of biological pathways and the role they play in both normal and pathological processes, 

as described below. 

 

1.2. Alteration in topology is associated with diseases 

Each biological pathway exerts its function by delivering signaling through the gene 

network. Theoretically, a pathway is supposed to have a robust topological structure 
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under normal physiological conditions. However, the pathway’s topological structure 

could be altered under some pathological condition. It is well known that a normal 

biological network is a scale-free network whose degree distribution follows a power law 

where a small number of nodes are hubs and a large number of nodes are non-hubs. In 

addition, it is reported that the loss of connectivity is a common topological trait of 

cancer networks. Hence, from normal to cancer, the process of the network losing 

connectivity might be the process of disrupting the scale-free structure of the network, 

namely, the number of hub genes might be altered in cancer compared to that in normal. 

Based on this, we propose a new PageRank-based method called Pathways of Topological 

Rank Analysis (PoTRA) to detect pathways involved in cancer.  

Recent studies have shown miRNAs as key regulators of a wide variety of biological 

processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Rewired 

miRNA-mRNA connections can influence the activity of biological pathways, because 

miRNA-mRNA connections tend to be dynamic or condition-specific, or differential 

between disease and non-disease. Here, we define rewired miRNA-mRNA connections 

as the differential (rewiring) effects on the activity of biological pathways between 

diseased and normal phenotypes. Chapter 3 proposes a PageRank-based method to 

measure the degree of miRNA-mediated dysregulation of biological pathways between 

HCC and normal samples based on rewired miRNA-mRNA connections. The degree of 

miRNA-mediated dysregulation of biological pathways is regarded as disease risk of 

biological pathways by measuring total differential influence of all miRNAs on the 

activity of a pathways between diseased and normal conditions, thereby I can rank 

biological pathways for disease risk. 

 

1.3. Google search algorithm: PageRank 
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Chapter 2 and Chapter 3 propose two methods, PoTRA and miR2Pathway, which are 

based on PageRank. The PageRank algorithm is used by the Google search engine to 

rank the importance of web pages, which is based on the assumption that the importance 

of a web page is high in a network if this web page has connections with other nodes of 

high importance. This idea is naturally applied to analyzing biological networks, where 

the importance of a gene is high if this gene is connected to other genes of high 

importance. In our study, the gene-gene network is an undirected graph where a node 

represents a gene and the edges can be defined by prior knowledge (e.g., KEGG 

database). 

The output from the PageRank algorithm is a probability distribution representing the 

likelihood that a person randomly clicking on links will arrive at any particular web page. 

A probability is a numeric value between 0 and 1. The sum of probabilities for all web 

pages is equal to 1. The probability of a web page is proportional with the time spent at 

the web page when a person surfs the web. This idea can also be intuitively extended to 

ranking genes in gene networks where the probability of a gene is proportional with the 

time a research scientist spends looking and returning at the same gene when analyzing 

research results. For additional details of PageRank, please refer to (Page et al., 1999). 

 

1.4. Summary 

In summary, rewired gene-gene interactions and miRNA-mRNA interactions might 

cause aberrant activity of biological pathways. Chapter 2 focuses on how rewired gene-

gene interactions lead to aberrant activity of biological pathways, and Chapter 3 focuses 

on how rewired miRNA-mRNA interactions lead to aberrant activity of biological 

pathways. In Chapter 2, each biological pathway exerts its function by delivering 



5 
 

signaling through the gene network. Theoretically, a pathway is supposed to have a 

robust topological structure under normal physiological conditions. However, the 

pathway’s topological structure could be altered under some pathological condition. It is 

well known that a normal biological network is a scale-free network whose degree 

distribution follows a power law where a small number of nodes are hubs and a large 

number of nodes are non-hubs. In addition, it is reported that the loss of connectivity is a 

common topological trait of cancer networks. Hence, from normal to cancer, the process 

of the network losing connectivity might be the process of disrupting the scale-free 

structure of the network, namely, the number of hub genes might be altered in cancer 

compared to that in normal. Based on this, we propose a new PageRank-based method 

called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in 

cancer. We use PageRank to measure the relative topological ranks of genes in each 

biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to 

test if the number of hub genes in each pathway is altered from normal to cancer. We 

apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. In 

Chapter 3, I present a PageRank-based method, called miR2Pathway, to measure the 

degree of miRNA-mediated dysregulation of biological pathways between HCC and 

normal sample based on rewired miRNA-mRNA connections. miR2Pathway proposed 

here systematically shows the first evidence for a mechanism of biological pathways 

dysregulated by rewired miRNA-mRNA connections,  
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Chapter 2: Pathways of Topological Rank Analysis (PoTRA): A Novel Method 

to Detect Pathways Involved in Cancer 

 

2.1. Introduction 

High throughput technologies, such as genomic sequencing and microarrays, allow the 

genome-wide analysis of molecular factors associated with disease. While the 

technologies have advanced and have been refined to generate an increasing amount of 

high quality data, challenges remain in understanding the biological processes involved 

in disease etiology, particularly for complex disorders.   

As we know, individual genomic alterations may result in diseases. For example, 

Hemophilia A is an X-linked recessive bleeding disorder caused by a deficiency in the 

activity of coagulation factor VIII (Franchini & Mannucci, 2012). Huntington disease 

(HD) is an autosomal dominant progressive neurodegenerative disorder with a distinct 

phenotype characterized by chorea, dystonia, incoordination, cognitive decline, and 

behavioral difficulties, which is caused by a heterozygous expanded trinucleotide repeat 

(CAG)n, encoding glutamine, in the gene encoding huntingtin (HTT) on chromosome 

4p16 (Walker, 2007; Dayalu & Albin, 2015). 

In addition to  monogenic diseases, many diseases are complex, such as diabetes, 

schizophrenia, or cancer, and are believed to be caused by a combination of genomic 

alterations, epigenetic, environmental and lifestyle factors (Schork, 1997; Hindorff, 

Gillanders & Manolio, 2011). Genomic disease association analysis suggests that complex 

diseases are not caused by individual genomic alterations. First, the complex disease 

phenotype is associated with many genes. Second, it may be associated with interactions 

among many genes. Therefore, more and more literature has been focusing on analyzing 
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sets of genes associated with some phenotype. Gene expression profiles have been used 

to assess the activity of biological networks. Several approaches have been developed to 

identify active subnetworks across different phenotypes from changes in gene 

expression. One of the first such studies is a general approach to searching for “active 

sub-networks” associated with high levels of differential expression (Ideker et al., 2002). 

This approach identifies a set of genes that form a subnetwork whose expression is 

altered across two different phenotypes. Another very well-known method, Gene Set 

Enrichment Analysis (GSEA) (Subramanian et al., 2005), is a computational method 

that determines whether a pre-defined set of genes shows statistically significant, 

concordant differences between two phenotypes, which is also based on differential 

expression of a set of genes between two phenotypes. These approaches, while powerful 

and popular, are limited by the fact that they ignore the topology of the gene networks 

and sets that they investigate. Indeed, differential gene expression level in biological 

network might influence phenotypes. However, only investigating the differential 

expression levels of gene may be not sufficient since the topology of biological pathway is 

also an important characteristic of biological pathways and the role they play in both 

normal and pathological processes, as described below.  

It is well known that the topological structure is very important for biological networks 

and it determines how genes interact with each other, governing how specific genes and 

biological pathways operate in the promotion or inhibition of human diseases (Tavazoie 

et al., 1999; Goeman & Bühlmann, 2007; Tarca et al., 2009; Taylor et al., 2009; Khatri, 

Sirota & Butte, 2012; Rhinn et al., 2013; Mitrea et al., 2013). Related to this, a hub gene 

within a biological network is an important gene which acts to influence the activity of a 

number of genes (Flintoft, 2004), even influence the activity and function of the entire 

biological network. Hence, there has been an increased interest to analyze the co-
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regulation and co-expression of genes in the biological network, and many approaches 

have been developed to identify differential co-regulation and co-expression of genes in 

the subnetwork (Kostka & Spang, 2004; Lai et al., 2004; Reverter et al., 2006; Watson, 

2006; Choi & Kendziorski, 2009; Leonardson et al., 2010; Langfelder et al., 2011; Odibat 

& Reddy, 2012).  It has been a trend to extend differential expression analysis to 

differential network analysis (de la Fuente, 2010).  

Most of the approaches for differential network analysis are based on different 

correlation-based metrics to measure the strength of association between any pairs of 

nodes in a biological network. Generally, there are three main ways to compare networks 

for differential network analysis. The first approach handles weighted networks and uses 

some functions of the edge-specific weight differences as edge weights to construct 

differential networks (Hudson, Reverter & Dalrymple, 2009; Tesson, Breitling & Jansen, 

2010; Liu et al., 2010; Rhinn et al., 2013). The second approach tries to find co-

expressed gene sets and identify which correlation patterns are different between sets 

across conditions (Watson, 2006; Rahmatallah, Emmert-Streib & Glazko, 2014). This 

approach formulates summary measures that represent co-expression in a biological 

network and compares the metric between sets. The third approach compares the 

topology of biological networks across different phenotypes by using measures such as 

degree of nodes or modularity (Reverter et al., 2006; Zhang et al., 2009).  

Although the above methods for differential network analysis can deal with some 

important biological questions, they are still limited. In general, they are based on a basic 

hypothesis that some connections between genes across the groups could be thought of 

as “passenger” events and other connections are unique to either one of groups and thus 

could be “driver” events that contribute to disease progression and development. Hence, 

they focus on the contribution of individual differential connections to disease. This 
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results in several limitations. First, each differential connection is regarded by these 

methods to have an equal contribution to disease. However, it is well understood that 

loss of a connection between two hub genes from normal to disease is more deleterious 

than loss of a connection between two non-hub genes. Second, how differential 

connections (“driver” connections mentioned above) between pairs of genes are 

associated with diseases is still not very biologically intuitive, because how the 

dependency between genes contributes to diseases is usually little understood. 

To address these problems, we propose a new PageRank-based method called Pathways 

of Topological Rank Analysis (PoTRA) to detect pathways associated with cancer. 

PageRank is an algorithm initially used by Google Search to rank websites in their search 

engine results (Page et al., 1999). It is a way of measuring the importance of nodes in a 

network. More generally, PageRank has been applied to other networks, e.g., social 

networks (Pedroche et al., 2013; Wang et al., 2013). To date, there have been several 

studies using PageRank for gene expression and network analysis (Morrison et al., 2005; 

Winter et al., 2012; Kimmel & Visweswaran, 2013; Hou & Ma, 2014; Bourdakou, 

Athanasiadis & Spyrou, 2016; Zeng et al., 2016; Ramsahai et al., 2017). . These studies 

focus on ranking genes and discovering key driver genes in disease, and do not try to 

detect dysregulated pathways involved in disease. Other studies (Winter et al., 2012; 

Zeng et al., 2016) use PageRank to select topological important genes and simply see 

which pathways that these topological important genes are involved in. These PageRank-

related approaches are very different from our approach.  

Our approach embodied by PoTRA is motivated by the observation that the loss of 

connectivity is a common topological trait of cancer networks (Anglani et al., 2014), as 

well as the prior knowledge that a normal biological network is a scale-free network 

whose degree distribution follows a power law where a small number of nodes are hubs 
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and a large number of nodes are non-hubs (Albert, 2005; Khanin & Wit, 2006; Zhu, 

Gerstein & Snyder, 2007). However, from normal to cancer, the process of the network 

losing connectivity might be the process of disrupting the scale-free structure of the 

network, namely, the number of hub genes might be altered in cancer compared to that 

in normal samples. Thus, we hypothesize that if the number of hub genes is different in a 

pathway between normal and cancer, this pathway might be involved in cancer. Based on 

this hypothesis, we propose to detect pathways involved in cancer by testing if the 

number of hub genes for each pathway is different between normal and cancer samples. 

Therefore, the PoTRA approach computes topological ranks of genes in each pathway, 

and then detects pathways with significantly altered number of hub genes between 

normal and cancer. Namely, we first use the Google search PageRank algorithm to 

measure the relative topological ranks of genes in a biological pathway across different 

conditions. Then, we use Fisher’s exact test to estimate if the number of hub genes in 

each pathway is significantly different between normal and cancer. As an illustration, we 

apply PoTRA to study hepatocellular carcinoma (HCC) and its subtypes and identify 

disease-relevant pathways. In conclusion, PoTRA is a new approach to explore and 

discover cancer-associated pathways. PoTRA can be used as a complement to other 

existing methods to enrich our understanding of the biological mechanisms behind 

cancer at the systems-level. 

 

2.2. Materials and Methods 

Overview of the PoTRA method 
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Figure 2.1. Overview of the PoTRA method. 

Below we detail the steps of the PoTRA method, as illustrated in Figure 2.1. 

 

2.2.1. Data  

To illustrate the PoTRA method, we use publicly available gene expression datasets from 

The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) hepatocellular 

carcinoma (HCC) study. We analyze and contrast 50 HCC samples and 50 tumor-

adjacent normal samples (“normal samples” in future sections). In addition, the datasets 

also include gene expression profiles for several HCC subtypes. We further analyze and 

contrast 22 hepatitis B-induced HCC samples and 22 tumor-adjacent normal samples, 

34 hepatitis C-induced HCC samples and 34 tumor-adjacent normal samples, and 50 

alcohol-induced HCC samples and 50 tumor-adjacent normal samples. There are 20,531 

gene expression values for each sample. Pathway information from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa & Goto, 2000) is used. 

https://cancergenome.nih.gov/
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To date, there is much known about etiology of HCC (Beasley, 1988; Sanyal, Yoon & 

Lencioni, 2010; Wang et al., 2012; Goossens & Hoshida, 2015) and knowledge of 

pathways involved in HCC (Villanueva et al., 2008; Zhou et al., 2010; Wang et al., 2017), 

which makes it easier to illustrate and assess the PoTRA method. 

 

2.2.2. Construction of gene co-expression network for a pathway 

We apply the PoTRA method to gene expression profiles for several phenotypes, such as 

normal and cancer and cancer subtypes. First, we select genes for each pathway, using 

pathway information from KEGG. For each pathway, we determine the gene-gene 

interactions by using the Pearson’s correlation to test each co-expressed gene pair. The 

test calculates a P-value for the association between each pair of genes. A significance 

threshold of 0.05 is used. When the P-value of a pair of genes is below 0.05, we establish 

an edge between the corresponding two genes; otherwise, there is no edge between them. 

We implement it through a built-in function called “cor.test()” in the statistical software 

package R (https://www.r-project.org/). In this way, we can construct gene co-

expression networks (i.e., pathways) for normal and cancer, separately. Of note, all the 

gene co-expression networks (i.e., pathways) used by PoTRA are undirected graphs, 

because co-expression networks only focus on gene pairs with a similar expression 

pattern across samples, in other words, the transcript levels of two co-expressed genes 

rise and fall together across samples. 

 

2.2.3. PageRank analysis for genes within a pathway for normal and cancer 

Based on the above constructed interactions within a pathway, we can observe that some 

genes are hub genes whereas others are non-hub genes. We apply the PageRank 
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algorithm (Page et al., 1999) to obtain the corresponding topological importance for each 

gene within the pathway for normal and cancer, separately, see Figure 2.2.                  

                                   

 

Figure 2.2. The topological rank analysis for each gene within a pathway. For 
genes within a specified pathway, according to Step 2, we construct a corresponding 
gene co-expression network for normal and cancer, separately. Then we apply the 
PageRank method to obtain the topological importance of each gene for normal and 
cancer, separately. PR(gene i)normal represents the PageRank score of the gene i for 
normal samples, while PR(gene i)cancer represents the PageRank score of the gene i for 
cancer samples. 

We implement it by using the page.rank() function from the igraph (Csárdi & Nepusz, 

2006) R package. As mentioned in Step 2, all the networks that we construct are 

undirected graphs. Thus, the PageRank algorithm used in our approach is based on 

undirected graphs.  

 

2.2.4. Detect pathways with significantly altered number of hub genes 

between normal and cancer using Fisher’s exact test 

As mentioned above, PoTRA is motivated by the observation that the loss of connectivity 

is a common topological trait of cancer networks (Anglani et al., 2014) and the prior 
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knowledge that a normal biological network is a scale-free network whose degree 

distribution follows a power law where a small number of nodes are hubs and a large 

number of nodes are non-hubs (Albert, 2005; Khanin & Wit, 2006; Zhu, Gerstein & 

Snyder, 2007). From normal to cancer, the process of the network losing connectivity 

might be the process of disrupting the scale-free structure of the network, which can 

result in an altered number of hub genes between normal and cancer. Hence, a statistics 

that we compare between two phenotypes is the number of hub genes. The PageRank 

scores of all genes of a pathway form a distribution, and we use the 95th percentile of the 

distribution (one-tail) in normal samples as cutoff value for hub genes for both normal 

and cancer samples. The genes in this pathway with PageRank scores that are above the 

cutoff value are identified as hub genes for this pathway. Then we count the number of 

hub genes for normal and cancer, separately. Next, we use Fisher’s exact test to assess if 

the number of hub genes is significantly different between normal and cancer. For 

details, see Table 2.1. 

 

The number of non-
hub genes 

The number of hub 
genes Row total 

Normal a b a+b 

Cancer c d c+d 

Column total a+c b+d a+b+c+d 

Table 2.1. The contingency table for Fisher’s exact test. We use the 95th 
percentile of the distribution (one-tail) in normal samples as cutoff value for hub genes 
for both normal and cancer samples. The value “a” represents the number of genes whose 
PageRank scores are below the cutoff value for normal samples. The value “b” represents 
the number of genes whose PageRank scores are above the cutoff value for normal 
samples. The values “c” and “d” are the corresponding values for cancer. We use Fisher’s 
exact test to assess if the number of hub genes is significantly different between normal 
and cancer. 
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Fisher’s exact test estimates the probability of obtaining any such set of values, given by 

the hypergeometric distribution:                                                              

                                P= 
(
𝒂+𝒃

𝒂
)(

𝒄+𝒅
𝒄

)

(
𝒏

𝒂+𝒄
)

 = 
(𝒂+𝒃)!(𝒄+𝒅)!(𝒂+𝒄)!(𝒃+𝒅)!

𝒂!𝒃!𝒄!𝒏!
                           (1) 

Where n=a+b+c+d, and (𝑖
𝑗
) is the binomial coefficient and the symbol “!” indicates the 

factorial operator.  

Formula 1 gives the exact hypergeometric probability of observing this particular 

arrangement of the data, assuming the given marginal totals, on the null hypothesis that 

the number of hub genes is the same for a specified pathway between normal and cancer. 

If this test statistic is significant, it indicates that there is a significantly different number 

of hub genes between normal and cancer, thereby this pathway might be involved in 

cancer. By studying many pathways from the KEGG database we generate a multiple 

hypothesis testing problem. We address this issue by correcting the P-values calculated 

for each pathway using the False Discovery Rate (FDR) approach, using the Benjamini 

and Hochberg procedure (Benjamini & Hochberg, 1995) 

 

2.2.5.  Software tools 

All the analysis is conducted using the R statistical programming language, using the 

following R Biocoductor packages: graphite for pathway databases, igraph for PageRank 

function and graph for visualization.  

 

2.3.  Results 
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We apply PoTRA to analyze and contrast 50 HCC samples and 50 tumor-adjacent 

normal samples. All data come from The Cancer Genome Atlas (TCGA) hepatocellular 

carcinoma (HCC) study. 

 

2.3.1. PoTRA for HCC vs. normal samples 

To illustrate the PoTRA method, we use a cancer-associated pathway, “Pathways in 

cancer”, as an example in the following section.  

 

2.3.2. Construction of a gene co-expression network for a pathway 

As suggested before, “Pathways in cancer” might be comprised of different interactions 

between genes under different conditions, such as normal versus cancer conditions. 

First, we need to find the genes that this pathway consists of by using the KEGG 

database. In practice, we implement it by using an R package called graphite. Second, for 

the genes of this pathway, we identify the interactions between genes for normal and 

cancer samples, separately, see Figure 2.3.   

 

a. b.  
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Figure 2.3. Construction of “Pathways in cancer” co-expression network for 
normal and cancer samples, separately. There are 310 genes in this pathway, 
labeled 1-310.  For the gene names, see Table 2.7. Graph (a) represents the network for 
normal samples and graph (b) represents that for cancer samples. There are 24,924 
edges in graph (a) and 9,136 edges in graph (b). The red nodes represent hub genes. 
There are 16 hub genes in graph (a) and 48 hub genes in graph (b). 

 

Very interestingly, we find a large loss of connectivity in the cancer gene co-expression 

network with respect to normal ones, from 24,924 to 9,136 edges, which is also noticed 

by prior literature that has found that the loss of connectivity is a common topological 

trait of cancer networks (Anglani et al., 2014).   

 

2.3.3. PageRank analysis for genes within a pathway for normal and cancer 

Based on the interactions identified in the previous section, and illustrated in Figure 

2.3 (a) and (b), we can obtain a PageRank score for each gene in “Pathways in cancer” 

for normal and cancer, separately, which quantifies the influence of a gene on the activity 

of other genes in this pathway. For the results for this step, 2 vectors with 310 PageRank 

values, one for normal and one for cancer, separately, see Table 2.7.  As previously 

mentioned, the PageRank values in each vector add up to 1.  

As an interesting note, in Figure 2.3, gene 47 (top of Figure 2.3(a)) is an isolated gene 

in the pathway for normal, but the PageRank score of this gene is not zero, because zero 

is not allowed for PageRank calculation. Considering this situation, PageRank designs a 

damping factor p (typically p=0.85) and assigns a small number to this isolated node to 

solve this issue, for details see (Page et al., 1999).  

Figure 2.4 illustrates the distributions of PageRank scores for genes in “Pathways in 

cancer” for normal and cancer, separately.  
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Figure 2.4. The kernel density distribution of PageRank scores of genes in 
“Pathways in cancer”. The red line shows the kernel density distribution of PageRank 
scores for cancer and the black one is for normal samples. Note that the mean for the two 
distributions is the same, i.e., mean = 1/N=0.0032258, where N = 310 is the number of 
genes in the “Pathways in cancer” pathway. We use the 95th-percentile cutoff (= 
0.00482) of the kernel distribution in normal samples as cutoff for hub genes for both 
normal and cancer samples.   

 

Very interestingly, as connectivity is lost in cancer samples, the number of hub genes 

changes. While there are only 16, strongly-connected (with more edges, an average of 

148 edges) hub genes in the normal samples, there are 48 hub genes in the cancer 

samples, more loosely-connected (with fewer edges, an average of 104 edges).  

As mentioned before, the process of the network losing connectivity might be the process 

of disrupting the scale-free structure of the network whose degree distribution follows a 

power law where a small number of nodes are hubs and a large number of nodes are 

non-hubs, namely, the number of hub genes might be altered in cancer compared to that 

in normal. The altered number of hub genes might be a trait of a pathway in cancer, 
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which suggests the pathway is involved in cancer if the change in hub gene number is 

statistically significant.  

 

2.3.4. Fisher’s exact test for comparing the number of hub genes in the 

pathway 

We next use Fisher’s exact test to test if the number of hub genes for “Pathways in 

cancer” is significantly different between normal and cancer. The result for the 

“Pathways in cancer” pathway is included in Table 2.2. 

 

Gene 
Count(L) 

# of 
edges_norm
al 

# of 
edges_cance
r 

# of hub 
genes_norma
l 

# of hub 
genes_cancer 

Adjusted 
P-value 

Pathways 
in cancer 310 24924 9136 16 48 0.008 

Table 2.2. The “Pathways in cancer” pathway identified by PoTRA for HCC 
using Fisher’s exact test. The P value is adjusted by False Discovery Rate (FDR).  

 

The low P-value in Table 2.2 indicates that the number of hub genes in cancer samples 

is significantly different from that in normal samples, suggesting that the “Pathways in 

cancer” pathway is involved in HCC. This example suggests that a normal biological 

network is a scale-free network whose degree distribution follows a power law where a 

small number of nodes are hubs and a large number of nodes are non-hubs. Moreover, 

the loss of connectivity from normal to cancer might lead to disrupting the scale-free 

structure of the network in cancer, thereby resulting in the fact that the number of hub 

genes is altered in cancer compared to that in normal. 

Then we apply the same approach to other pathways from KEGG to compare HCC vs. 

normal samples. The significant pathways are shown in Table 2.3.  
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Gene  

Count(L) 

# of  

edges
_ 

norma
l 

# of  

edges
_ 

cancer 

# of 
hub  

genes_ 

normal 

# of 
hub  

genes_ 

cancer 

Adjusted  

P-value 

1 Pathways in cancer 310 24924 9136 16 48 0.0081 

2 MAPK signaling pathway 252 14005 5170 13 40 0.0158 

3 Breast cancer 143 3589 1175 8 29 0.0278 

Table 2.3. The significant KEGG pathways identified by PoTRA for HCC 
using Fisher’s exact test. FDR adjusted P-values are below 0.05. 

 

We find three significant pathways with altered number of hub genes between normal 

and cancer. It is well known that these three pathways are strongly associated with 

cancer in general. MAPK signaling pathway plays a role in the regulation of gene 

expression, cellular growth, and survival (Knight & Irving, 2014). Abnormal MAPK 

signaling might lead to uncontrolled or increased cell proliferation and resistance to 

apoptosis (Santarpia, Lippman & El-Naggar, 2012; Burotto et al., 2014). Interestingly, 

we also find that loss of connectivity and the larger number of hub genes for cancer are 

characteristics of the other two pathways as well.  

 

2.3.5. PoTRA for cancer subtype analysis 

Many complex diseases have subtypes and/or can be classified into different categories 

based on diagnosis, pathology, phenotype characteristics, etc. To further assess the 

PoTRA method, we apply it to several subtypes of the HCC TCGA data. There are several 

risk factors associated with HCC, such as hepatitis B, hepatitis C and alcohol (Beasley, 

1988; Sanyal, Yoon & Lencioni, 2010; Hoshida et al., 2014; Goossens & Hoshida, 2015). 
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Here, we apply PoTRA to compare these three subtypes of HCC samples with normal 

samples.  

Table 2.4 illustrates the Fisher’s exact test results for comparing normal with hepatitis 

B-induced HCC samples.  

  

Gene 
Count(L) 

# of 
edges_ 

normal 

# of 
edges_ 

cancer 

# of hub 
genes_ 

normal 

# of hub 
genes_ 

cancer 

Adjusted  

P-value 

1 
Insulin signaling 
pathway 139 2692 958 7 34 0.0007 

2 Pathways in cancer 310 11194 3792 16 52 0.0007 

3 
Hippo signaling 
pathway 151 2836 970 8 31 0.0072 

4 HTLV-I infection 194 5518 2080 10 35 0.0072 

5 
Neurotrophin 
signaling pathway 117 2441 895 6 25 0.0195 

6 
mTOR signaling 
pathway 144 3410 832 8 28 0.0240 

7 
Epstein-Barr virus 
infection 85 1524 435 5 21 0.0353 

8 Hepatitis B 134 2708 828 7 25 0.0353 

Table 2.4. The significant KEGG pathways identified by PoTRA for hepatitis 
B-induced HCC using Fisher’s exact test. FDR adjusted P-values are below 0.05. 

 

There is one common pathway, Pathways in cancer, between Table 2.4 and Table 2.3. 

There are seven other new pathways, which are very interesting and associated with the 

hepatitis B-induced HCC. First, the “Hepatitis B” pathway is detected by our method. 

Hepatitis B is the most important and direct factor causing hepatitis B-induced HCC. In 

addition, we find two other pathways, HTLV-I (Human T-cell leukemia virus type I) 

infection and Epstein-Barr virus infection, which are strongly associated with virus 
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infection and cancer. This is consistent with the viral pathology of hepatitis B-induced 

HCC. Besides, some studies show that hepatitis B virus infection can contribute to the 

impairment of insulin signaling, which is another pathway identified by PoTRA (Kim, 

Kim & Cheong, 2010; Barthel et al., 2016). Finally, the other three pathways, Hippo 

signaling pathway, Neurotrophin signaling pathway and mTOR signaling pathway are 

associated with cancer in general. Hippo signaling pathway is reported to be able to 

control organ size through regulating cell proliferation and apoptosis (Saucedo & Edgar, 

2007; Pan, 2010). It is reported that neurotrophins can regulate cancer stem cells 

(Chopin et al., 2016), and neurotrophins contribute to pro-survival signaling in many 

different types of cancer (Molloy, Read & Gorman, 2011). mTOR signaling pathway is a 

well-known cancer-associated pathway. Alterations of mTOR signaling pathway have 

significant effects on cancer progression. The major components of mTOR signaling 

pathway are critical effectors in cell signaling pathways commonly deregulated in 

cancers (Guertin & Sabatini, 2007; Villanueva et al., 2008; Pópulo, Lopes & Soares, 

2012).  

These results suggest that PoTRA can be used to identify not only the pathways 

associated with cancer in general, but also those pathways associated with cancer 

subtypes, such as hepatitis B-induced HCC specifically.  

Results of the PoTRA analysis from two other HCC subtypes, hepatitis C-induced HCC 

and alcohol-induced HCC, are included in Table 2.5 and Table 2.6, respectively. 

  

Gene 
Count(L) 

# of 
edges_ 

normal 

# of 
edges_ 

cancer 

# of hub 
genes_ 

normal 

# of hub 
genes_ 

cancer 

Adjusted  

P-value 

1 Pathways in cancer 310 22253 7791 16 62 
2.89E-

06 
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2 
PI3K-Akt signaling 
pathway 340 19901 6594 17 65 

2.89E-
06 

3 
MAPK signaling 
pathway 252 11986 4168 13 47 0.0003 

4 Proteoglycans in cancer 204 9815 3642 11 38 0.0033 

5 Rap1 signaling pathway 208 8294 3587 11 34 0.0215 

6 
Adrenergic signaling in 
cardiomyocytes 149 3594 1355 8 27 0.0372 

7 cAMP signaling pathway 196 5106 2493 10 30 0.0372 

8 Focal adhesion 203 10225 4656 11 32 0.0372 

9 HTLV-I infection 194 9843 4030 10 30 0.0372 

10 Ras signaling pathway 226 10098 3931 12 33 0.0376 

11 FoxO signaling pathway 126 3391 1222 7 24 0.0380 

12 
Osteoclast 
differentiation 123 4418 1452 7 24 0.0380 

13 ErbB signaling pathway 88 2128 814 5 20 0.0400 

14 Axon guidance 167 6203 2705 9 27 0.0433 

Table 2.5. The significant KEGG pathways identified by PoTRA for hepatitis 
C-induced HCC using Fisher’s exact test. FDR adjusted P-values are below 0.05. 

 

In Table 2.5, we find two common pathways, Pathways in cancer and MAPK signaling 

pathway, between Table 2.5 and Table 2.3. Among the other pathways, we find several 

pathways related to cancer generally and hepatitis C-induced HCC specifically. First, 

HTLV-I infection is also listed in this table, and, as mentioned above, is associated with 

virus infection and cancer.  Almost all other pathways are associated with cancer in 

general. PI3K-Akt signaling pathway is a key regulator of normal cellular processes 

involved in cell growth, proliferation, motility, survival, and apoptosis (Porta, Paglino & 

Mosca, 2014). The Proteoglycans in cancer pathway is involved in regulation of 
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proteoglycans, heavily glycosylated proteins present especially in connective tissue in 

cancer. Rap1 signaling pathway is reported to be involved in cancer cell migration, 

invasion and metastasis (Bailey, 2009; Zhang et al., 2017). The cAMP signaling pathway 

regulates a number of biological processes, such as cell growth and adhesion, neuronal 

signaling, energy homeostasis and muscle relaxation (Fajardo, Piazza & Tinsley, 2014). 

The key component of Focal adhesion pathway, Focal adhesion kinase (FAK), is reported 

to enable activation by growth factor receptors or integrins in different types of cancers. 

FAK is an important mediator of cell proliferation, cell migration, cell growth 

(Golubovskaya, Kweh & Cance, 2009; Tai, Chen & Shen, 2015). A large volume of 

literature shows Ras signaling pathway is involved in several aspects of normal cell 

growth and malignant transformation, and plays an important role in cancer 

development and progression (Vojtek & Der, 1998; Downward, 2003; Santarpia, 

Lippman & El-Naggar, 2012; Knight & Irving, 2014). FoxO signaling pathway is involved 

in the regulation of the cell cycle, apoptosis and metabolism (Schmidt et al., 2002; Fu & 

Tindall, 2008; Gross, van den Heuvel & Birnbaum, 2008). Besides, activity of FoxO 

signaling pathway also affects stem cell maintenance and lifespan (Eijkelenboom & 

Burgering, 2013). ErbB signaling pathway plays roles in cancer development and 

progression (Hynes & Lane, 2005; Seshacharyulu et al., 2012), as well as in cancer cell 

migration and invasion (Appert-Collin et al., 2015). ErbB signaling pathway is associated 

with the development of a wide variety of types of solid tumor if ErbB signaling is 

excessive (Cho & Leahy, 2002). The Axon guidance pathway is also reported to regulate 

cell migration and apoptosis, and be associated with tumorigenesis (Chédotal, Kerjan & 

Moreau-Fauvarque, 2005).  
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Gene 

Count(L) 

# of 

edges_ 

normal 

# of 

edges_ 

cancer 

# of hub 

genes_ 

normal 

# of hub 

genes_ 

cancer 

Adjusted  

P-value 

1 

PI3K-Akt signaling 

pathway 340 23928 8733 17 55 0.0006 

2 

MAPK signaling 

pathway 252 14005 5767 13 46 0.0007 

3 Pathways in cancer 310 24924 10191 16 47 0.0043 

Table 2.6. The significant KEGG pathways identified by PoTRA for alcohol-

induced HCC using Fisher’s exact test. FDR adjusted P-values are below 0.05. 

 

We find two common pathways between Table 2.6 and Table 2.3, MAPK signaling 

pathway and Pathways in cancer. As mentioned above, PI3K-Akt signaling pathway also 

plays an important role in cancer (Porta, Paglino & Mosca, 2014). 

 

2.4.  Discussion 

We propose a PageRank-based method, Pathway of Topological Rank Analysis (PoTRA), 

for identifying pathways involved in cancer. PoTRA is motivated by the observation that 

the loss of connectivity is a common topological trait of cancer networks (Anglani et al., 

2014) and the prior knowledge that a normal biological network is a scale-free network 

whose degree distribution follows a power law where a small number of nodes are hubs 
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and a large number of nodes are non-hubs (Albert, 2005; Khanin & Wit, 2006; Zhu, 

Gerstein & Snyder, 2007). From normal to cancer, the process of the network losing 

connectivity might be the process of disrupting the scale-free structure of the network, 

which can result in an altered number of hub genes between normal and cancer. The 

PoTRA analysis is based on topological ranks of genes in biological pathways, and 

PoTRA detects pathways involved in cancer by testing if the number of hub genes in 

pathways is altered between normal and cancer.  

To illustrate the method, PoTRA is applied to several TCGA hepatocellular carcinoma 

datasets. The results in our study are in agreement with prior knowledge of HCC from 

literature. We find that a high proportion of statistically significant pathways play 

important roles in cancer, indicating that the altered number of hub genes for these 

pathways might indeed be a reflection of the underlying biological causes that lead to 

cancer. Moreover, in the comparison between normal and each subtype of HCC, most 

importantly, the “Hepatitis B” pathway and several pathways associated with virus 

infection dramatically become significant pathways in hepatitis B-induced HCC, 

suggesting that PoTRA is capable of detecting pathways associated with disease 

subtypes. We also find several pathways associated with HCC generally and subtype 

specifically in hepatitis C-induced HCC and in alcohol-induced HCC. 

In our approach, the correlation method is used to construct gene co-expression 

networks for normal and cancer, respectively. A gene co-expression network is an 

undirected graph, where each node represents a gene, and each edge is established if 

there is a significant co-expression relationship between two genes (Stuart et al., 2003). 

Stuart JM, et al. (Stuart et al., 2003) found 22,163 co-expression relationships, each of 

which has been conserved across evolution, suggesting that the co-expressions between 

genes confers a selective advantage and thus these genes are functionally related. Gene 
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co-expression networks are biologically interesting since co-expressed genes might be 

controlled by members of the same pathway,  or the same transcriptional regulatory 

program or protein complex (Weirauch, 2011), and could be functionally related, 

suggesting that co-expression is common in the human genome. A gene co-expression 

network can be constructed by looking for pairs of genes with a similar expression 

pattern across samples, i.e., the transcript levels of two co-expressed genes rise and fall 

together across samples. Therefore, the correlation method used by PoTRA is capable to 

identify co-expressed gene pairs.  

 
2.5. Future Directions 

The hypothesis of our study is based on the fact that the loss of connectivity is a common 

topological trait of cancer networks (Anglani et al., 2014). It is not yet well understood if 

this trait is a characteristic of other complex diseases. Thus, we need to be cautious about 

the applicability of this method to other diseases. However, this trait could be applicable 

to other complex diseases. Thus, although PoTRA is motivated by work on cancer, it 

could apply to other complex diseases as well. This area needs to be further investigated. 

In this study, we apply PoTRA to pre-defined biological pathways, from the well-curated 

KEGG pathway database. However, the PoTRA method can also be applied to any set of 

genes of interest, such as functional gene subnetworks. This could be an interesting area 

to further explore.  

In addition to hub genes, bottleneck genes which have a high betweenness centrality 

(i.e., network nodes that have many “shortest paths” going through them, analogous to 

major bridges and tunnels on a highway map) are also fairly important for a biological 

network. Bottleneck gene are key connectors in gene network, bottlenecks are shown to 
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tend to be essential in gene network. Therefore, bottlenecks might be a good direction to 

further investigate.  

We can further validate the PoTRA method using simulated data. We might simulate a 

network (i.e., biological pathways) composed of 100 nodes (i.e., genes) using Barabasi-

Albert model (Albert & Barabási, 2002).  Also, we simulate an Erdos-Renyi random 

network (Erdős, 1959) composed of 100 nodes using an Erdos-Renyi random graph 

generator embedded in the R package “igraph” (Csárdi & Nepusz, 2006). The former 

network is a scale-free network, while the latter network is a random graph. Hence, the 

expected result is that those two networks are significantly different. Then PoTRA is 

applied to test if those two networks are different. 

For the PageRank algorithm, we use the default value of damping factor 0.85 in this 

study. However, the damping factor is not necessarily a fixed value in different cases. 

Hence, we might further use simulation to decide the best value of damping factor in 

different cases. This is a very interesting and valuable direction to explore. 

For those significant pathways that we identify, we might further hypothesize that there 

are some common genes in those significant pathways. These common genes could be 

driver genes to drive tumorigenesis. We might further find those common genes and 

investigate the biology behind some of results. 

 

2.6.  Conclusion 

In summary, PoTRA provides a new method for detecting cancer-associated pathways. 

PoTRA may be used to augment existing methods and provide a richer, more systematic 

understanding of cancer mechanisms. 
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2.7. Availability 

R software to carry out the PoTRA computation is available via 

http://www.dinulab.org/tools. 

 

2.8.  Supplementary Materials 

 

Gene 
Symbol PR_normal PR_cancer 

 

Gene 
Symbol PR_normal PR_cancer 

1 AKT3 0.003093905 0.00300372 156 MAP2K2 0.004305054 0.001979433 

2 CDK2 0.003040914 0.003949561 157 BAD 0.002098977 0.001537706 

3 CDK4 0.003391899 0.003442728 158 PTCH1 0.004896564 0.005416168 

4 CDK6 0.002710498 0.002632461 159 PTEN 0.003402329 0.004924039 

5 CDKN1A 0.003458217 0.001332768 160 PTK2 0.002923717 0.004069311 

6 CDKN1B 0.003636721 0.004189972 161 BAX 0.002922207 0.002322378 

7 CDKN2A 0.003618423 0.00271539 162 RAC1 0.002793632 0.004790566 

8 CDKN2B 0.004020755 0.007139137 163 RAC2 0.003750833 0.003195001 

9 LAMC3 0.003079645 0.002038664 164 RAC3 0.00343216 0.002457697 

10 TFG 0.003411381 0.003289014 165 RAF1 0.003089542 0.005300568 

11 CEBPA 0.002461461 0.003044095 166 RALA 0.002535952 0.005790368 

12 RALBP1 0.002763423 0.005092257 167 RALB 0.003030614 0.006514099 

13 RASSF1 0.002415298 0.003832637 168 RALGDS 0.002249478 0.00546576 

14 FZD10 0.005169905 0.001816191 169 RARA 0.005698338 0.004808868 

15 EGLN2 0.00353983 0.001187428 170 RARB 0.002455165 0.002768134 

16 EGLN3 0.003632638 0.002688535 171 RB1 0.002302646 0.005971465 

17 CHUK 0.003863949 0.004152228 172 CCND1 0.004082443 0.001725468 

18 CKS1B 0.004536644 0.002561939 173 BCL2 0.002264799 0.003741892 

http://www.dinulab.org/tools
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19 CKS2 0.00403055 0.00214326 174 RELA 0.00362278 0.003817114 

20 COL4A1 0.002642866 0.00282523 175 RET 0.001689008 0.000489237 

21 COL4A2 0.003103248 0.002153239 176 BCR 0.004432436 0.004640876 

22 COL4A3 0.003271212 0.001209817 177 RXRA 0.002619723 0.001323734 

23 COL4A4 0.002970752 0.003097248 178 RXRB 0.002878814 0.001746663 

24 COL4A5 0.006294353 0.001287653 179 BID 0.003641528 0.002462616 

25 COL4A6 0.001253758 0.000767639 180 SHH 0.004395602 0.004216858 

26 CRK 0.003741232 0.005513751 181 SKP2 0.003184264 0.002789141 

27 CRKL 0.00325282 0.004265987 182 SMO 0.002328005 0.00409342 

28 CTBP1 0.003456445 0.006251871 183 SOS1 0.003116838 0.003698003 

29 CTBP2 0.002354344 0.003178328 184 SOS2 0.003323926 0.005023092 

30 CTNNB1 0.002542315 0.003788528 185 SPI1 0.00434689 0.003165557 

31 DAPK1 0.003198525 0.005002724 186 BRAF 0.003482398 0.004239558 

32 DAPK3 0.004720648 0.004015498 187 STAT1 0.003735686 0.003035884 

33 DCC 0.001960459 0.001561484 188 STAT3 0.004346367 0.00316925 

34 DVL1 0.004021144 0.003689196 189 STAT5A 0.003173093 0.005400298 

35 DVL2 0.002631472 0.003972589 190 STAT5B 0.003293719 0.003781533 

36 DVL3 0.002227315 0.003796052 191 TCEB1 0.004751576 0.003317497 

37 EGF 0.00151036 0.002656015 192 TCEB2 0.001395063 0.003835255 

38 EGFR 0.003054758 0.005109083 193 TCF7 0.002361603 0.003532294 

39 EPAS1 0.003394586 0.004924966 194 TCF7L2 0.003775016 0.003724009 

40 ERBB2 0.004808457 0.001814885 195 TGFA 0.003914048 0.003407188 

41 AKT1 0.004401951 0.001514189 196 TGFB1 0.003614268 0.003182874 

42 AKT2 0.003416283 0.004092489 197 TGFB2 0.005255924 0.004529128 

43 ETS1 0.002538532 0.002663598 198 TGFB3 0.003103419 0.003000592 

44 MECOM 0.003437083 0.004944226 199 TGFBR1 0.00225014 0.003598152 

45 FGF1 0.003430158 0.001526164 200 TGFBR2 0.003613977 0.006812136 

46 FGF2 0.004045796 0.001289223 201 TP53 0.00252106 0.002459 
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47 FGF3 0.000491965 0.001395881 202 TPM3 0.002578494 0.004063351 

48 FGF4 0.000491965 0.001067975 203 TPR 0.002005053 0.003321939 

49 FGF5 0.002047965 0.001584524 204 HSP90B1 0.004129877 0.003999821 

50 FGF6 0.000491965 0.000489237 205 VHL 0.003158384 0.004027472 

51 FGF7 0.002577353 0.003851117 206 WNT1 0.003694857 0.00230586 

52 FGF8 0.000606536 0.001337488 207 WNT2 0.003875735 0.001715735 

53 FGF9 0.004940821 0.005184195 208 WNT3 0.004378124 0.002437254 

54 FGF10 0.002788004 0.002202358 209 WNT5A 0.003303738 0.002342169 

55 FGF11 0.003096608 0.004479963 210 WNT6 0.001516543 0.001345974 

56 FGF12 0.002897905 0.001349453 211 WNT7A 0.001472326 0.001254448 

57 FGF13 0.004025308 0.001043084 212 WNT7B 0.002526824 0.00251065 

58 FGF14 0.000491965 0.001825604 213 WNT8A 0.000861505 0.000595714 

59 FGFR1 0.003588912 0.00272812 214 WNT8B 0.000732661 0.000732088 

60 FGFR3 0.004824156 0.002028192 215 WNT10B 0.003746589 0.001971191 

61 FGFR2 0.002679216 0.002991078 216 WNT11 0.001458332 0.001480431 

62 LAMB4 0.003877415 0.001990161 217 WNT2B 0.004452958 0.002412174 

63 FLT3 0.0045477 0.00406583 218 WNT9A 0.004818818 0.002510426 

64 FLT3LG 0.004221203 0.002718439 219 WNT9B 0.000764811 0.00141332 

65 FN1 0.002612425 0.004331963 220 ZBTB16 0.001507095 0.00151374 

66 FOS 0.002060237 0.002313126 221 PAX8 0.004644468 0.001018703 

67 PIK3R5 0.003821391 0.003815514 222 FZD5 0.00309711 0.002893059 

68 DAPK2 0.003393029 0.000754584 223 FZD3 0.00419619 0.002834875 

69 CBLC 0.00419537 0.001124637 224 CCDC6 0.003320029 0.00622032 

70 ABL1 0.002828823 0.0054705 225 NCOA4 0.002797625 0.004216662 

71 FZD2 0.002945035 0.003247979 226 WNT10A 0.004112892 0.003183438 

72 APPL1 0.003033474 0.004534701 227 FGF23 0.001459143 0.001574117 

73 FGF20 0.001614757 0.001404174 228 WNT5B 0.002563388 0.000961552 

74 FGF21 0.003062587 0.003391477 229 FZD1 0.002984098 0.003891502 
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75 FGF22 0.001146482 0.000975682 230 FZD4 0.003876819 0.002179775 

76 STK36 0.002642641 0.003945146 231 FZD6 0.003020781 0.004240562 

77 GLI1 0.003813176 0.002437481 232 FZD7 0.003278225 0.002572302 

78 GLI2 0.003033217 0.002735696 233 FZD8 0.004655819 0.00337092 

79 GLI3 0.002741522 0.002361796 234 FZD9 0.002771345 0.000786142 

80 LAMA1 0.005807073 0.001932564 235 TCF7L1 0.004644479 0.00349625 

81 GRB2 0.002216502 0.005585664 236 RASSF5 0.002955222 0.002820201 

82 GSK3B 0.002274372 0.00450013 237 CASP3 0.003064809 0.003100381 

83 HDAC1 0.002668862 0.004121253 238 CASP8 0.003093951 0.005910365 

84 HGF 0.003404592 0.002564872 239 CASP9 0.005074869 0.001516088 

85 HIF1A 0.003504699 0.005674787 240 CUL2 0.002964537 0.004349557 

86 HRAS 0.005395857 0.002094702 241 PIK3R3 0.003215646 0.006488887 

87 HSP90AA1 0.00370572 0.005317323 242 IKBKG 0.004975669 0.001201659 

88 HSP90AB1 0.0026485 0.003443134 243 RUNX1 0.004289037 0.004484772 

89 IGF1 0.00189462 0.001526586 244 RUNX1T1 0.003926335 0.001790019 

90 IGF1R 0.003374734 0.000692951 245 CBL 0.003308481 0.005999363 

91 FAS 0.002947965 0.002274438 246 CBLB 0.00236811 0.008074871 

92 IKBKB 0.002621242 0.005865599 247 FADD 0.004632577 0.004130511 

93 FASLG 0.003489903 0.003679946 248 FGF18 0.005343563 0.002291649 

94 ITGA6 0.002667856 0.003401315 249 FGF17 0.001685853 0.001240543 

95 AR 0.001843612 0.003851707 250 FGF16 0.000491965 0.001716323 

96 ITGA2 0.004255997 0.003790406 251 WNT3A 0.000670711 0.001163439 

97 ITGA2B 0.001779879 0.001293375 252 CCNE1 0.003777607 0.004063126 

98 ITGA3 0.004571272 0.002333706 253 PIAS2 0.003294104 0.003706514 

99 ITGAV 0.002577937 0.004511556 254 CCNE2 0.003829759 0.003024707 

100 ITGB1 0.002722552 0.005512016 255 FGF19 0.002041663 0.001547215 

101 ARAF 0.003770923 0.001648577 256 RBX1 0.003486231 0.00197113 

102 JAK1 0.00215008 0.006380458 257 FOXO1 0.001463804 0.001110548 
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103 JUN 0.004604203 0.001826207 258 MTOR 0.002418695 0.002870981 

104 JUP 0.004523251 0.003669617 259 CSF3R 0.004223332 0.003860835 

105 KIT 0.004796668 0.000915436 260 E2F1 0.003990438 0.003854594 

106 KRAS 0.003798401 0.005525741 261 E2F2 0.004058837 0.0054384 

107 RHOA 0.002574591 0.004360737 262 E2F3 0.004336313 0.005194975 

108 LAMA2 0.003538299 0.001851764 263 IL6 0.002959906 0.003059989 

109 LAMA3 0.004591861 0.000850307 264 CDC42 0.002459057 0.00483741 

110 LAMA4 0.002821443 0.003242991 265 STK4 0.002657375 0.005353271 

111 LAMA5 0.005952102 0.005213777 266 HDAC2 0.003097869 0.004292515 

112 LAMB1 0.002557073 0.004371683 267 CREBBP 0.002935804 0.003175403 

113 LAMB2 0.003725664 0.003748125 268 EP300 0.00263447 0.005360202 

114 LAMB3 0.004672454 0.000787888 269 VEGFD 0.001163632 0.000784671 

115 LAMC1 0.002311235 0.00289013 270 ARNT 0.002580086 0.004391662 

116 LAMC2 0.002608833 0.00198952 271 PGF 0.004505714 0.002935848 

117 SMAD2 0.002249808 0.004860795 272 SLC2A1 0.005452944 0.003071782 

118 SMAD3 0.002707199 0.004199273 273 VEGFA 0.0039616 0.004470881 

119 MAX 0.002868878 0.005076557 274 VEGFB 0.002820038 0.003698483 

120 MDM2 0.003558278 0.00347452 275 VEGFC 0.003742468 0.003304904 

121 MET 0.003552921 0.004114956 276 ARNT2 0.003321398 0.002836696 

122 KITLG 0.004774841 0.002835445 277 CXCL8 0.004633571 0.003557386 

123 MYC 0.004252456 0.002505314 278 MMP1 0.002590167 0.002904235 

124 NFKB1 0.004045736 0.00458389 279 MMP2 0.003286815 0.002153179 

125 NFKB2 0.003607195 0.004612478 280 MMP9 0.002602466 0.001893486 

126 NFKBIA 0.004361484 0.001949027 281 HHIP 0.003682677 0.002921235 

127 NKX3-1 0.004297668 0.002708324 282 BMP2 0.003422092 0.002578134 

128 NRAS 0.002567488 0.00432757 283 BMP4 0.003690261 0.002081375 

129 NTRK1 0.004454522 0.001981356 284 PTCH2 0.002954986 0.003976521 

130 LEF1 0.003495041 0.002350695 285 KLK3 0.000509865 0.000737893 
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131 WNT16 0.001098482 0.001409997 286 PPARD 0.00302206 0.005249179 

132 PDGFA 0.003389003 0.002862777 287 MAPK8 0.003270075 0.003491051 

133 PDGFB 0.004505859 0.004401392 288 MAPK9 0.002383262 0.003928425 

134 PDGFRA 0.002673138 0.003186629 289 MAPK10 0.002947271 0.002123566 

135 PDGFRB 0.00297555 0.003415683 290 SMAD4 0.003325315 0.004625337 

136 SUFU 0.002317984 0.00358168 291 BIRC8 0.000491965 0.000489237 

137 PIK3CA 0.003414598 0.004320752 292 BIRC2 0.002887534 0.003677406 

138 PIK3CB 0.002565891 0.004433264 293 BIRC3 0.004145515 0.002910634 

139 PIK3CD 0.00347652 0.002307271 294 XIAP 0.003063954 0.005127472 

140 PIK3CG 0.003017476 0.003016939 295 NOS2 0.0020443 0.000828748 

141 PIK3R1 0.00334452 0.003301249 296 PTGS2 0.005697117 0.002183857 

142 PIK3R2 0.004332678 0.002937172 297 BCL2L1 0.004366514 0.003791546 

143 PLCG1 0.002311099 0.00631182 298 TRAF1 0.003487191 0.003371306 

144 PLCG2 0.003709433 0.002335372 299 TRAF2 0.003406522 0.003587955 

145 PML 0.003385369 0.00523318 300 TRAF3 0.002531222 0.004840198 

146 CYCS 0.004858868 0.003588693 301 TRAF5 0.003799039 0.004325504 

147 WNT4 0.004326655 0.001893445 302 TRAF6 0.003200779 0.006150486 

148 EGLN1 0.004057612 0.004247422 303 BIRC7 0.003638758 0.001685454 

149 PPARG 0.004018764 0.003434064 304 TRAF4 0.003163841 0.002732923 

150 PRKCA 0.003893901 0.00340499 305 BIRC5 0.004552145 0.002196816 

151 PRKCB 0.00300293 0.002937265 306 CCNA1 0.003085372 0.001829558 

152 PRKCG 0.0019237 0.000489237 307 RXRG 0.00263539 0.002051522 

153 MAPK1 0.002567474 0.003750868 308 PLD1 0.003675508 0.002758496 

154 MAPK3 0.002835883 0.00451274 309 CSF1R 0.004301397 0.003872604 

155 MAP2K1 0.001598758 0.005993616 310 CSF2RA 0.004469274 0.005738579 

Table 2.7. The PageRank scores of genes in “Pathways in cancer” for normal and 
cancer. We consolidate the information from Section 1.1 – Section 1.2 into one table 
with four columns, namely: (1) Gene index (1-310) (2) Gene symbol (3) The PageRank 
score of each gene in this pathway for normal (4) The PageRank score of each gene in 
this pathway for cancer. 
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Chapter 3: miR2Pathway: A Novel Analytical Method to Discover MicroRNA-

mediated Dysregulated Pathways Involved in Disease 

 

3.1. Introduction 

MicroRNAs (miRNAs) are short non-coding RNAs of about 22 nucleotides in length, 

involved in the post-transcriptional regulation of gene expression. MiRNAs induce the 

degradation of mRNA or translational repression of mRNA depending on the degree of 

homology to specific sequences, typically in the untranslated regions (UTRs) of their 

targets (Pasquinelli, 2012). MiRNAs are able to impact the expression of one or many 

genes at a time. It is believed that more than 60% of human genes are regulated by 

miRNAs (Friedman et al., 2009). Hence, miRNAs can be important regulators of 

biological processes. For example, a single miRNA can control a complex biological 

pathway by simultaneously targeting multiple mRNAs of this specific biological pathway, 

and these targeted mRNAs might be members of a cascade functioning towards a 

functional endpoint in the same biological pathways or in the crosstalk between 

biological pathways (Lima et al., 2011). Over the past years, the role of miRNAs as key 

regulators that control a wide variety of fundamental biological processes involved in 

proliferation, apoptosis, cell growth, differentiation, invasiveness, motility, other 

oncogenic related processes, etc., has been demonstrated (Calin & Croce, 2006; Kefas et 

al., 2008; Saydam et al., 2009; Ponomarev et al., 2011; van Kouwenhove, Kedde & 

Agami, 2011; Lu et al., 2011; Glass & Singla, 2011; Fu et al., 2012; Fang et al., 2012). For 

example, Lu and colleagues show that miRNA-21 is able to down-regulate the activity of 

the IL-12/IFN-γ pathway in lung cancer (Lu et al., 2011, p.). Other research teams have 

found that miRNA-7 can simultaneously target multiple genes of the PI3-kinase/Akt 

pathway in hepatocellular carcinoma and glioblastoma (Kefas et al., 2008; Fang et al., 
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2012). MiRNA-200 functions as a multifunctional tumor suppressor in meningiomas 

through multiple and simultaneous influences on the E-cadherin and Wnt/β-catenin 

signaling pathways (Saydam et al., 2009). MiRNA-106a has been shown to directly 

inhibit ULK1 mRNA expression levels in acute myeloid leukemia (AML) cells, and also 

can target other members of the ULK1 complex, such FIP200 and mAtg13 (Fu et al., 

2012). The C/EBP-α-PU.1 pathway is found to be regulated by miRNA-124 (Ponomarev 

et al., 2011), and miRNA-1 has been suggested to inhibit Pten/Akt pathway (Glass & 

Singla, 2011). MiRNAs are often aberrantly expressed in tumor tissue even in early stages 

of tumor and other conditions (Negrini et al., 2007; Croce, 2009), which can make them 

valuable biomarker candidates, such as for Alzheimer’s disease (AD) (Leidinger et al., 

2013). Furthermore, several studies have demonstrated a potential value of miRNA-

based therapy in cancer (Takamizawa et al., 2004; Cimmino et al., 2005; Scott et al., 

2007; Kasinski & Slack, 2011). A good example is the utility of anti-miRNA-21 in breast 

cancer, resulting in suppression of tumor growth in vivo and cell growth in vitro (Si et al., 

2007). Therefore, miRNAs’ potential as disease biomarkers and therapeutic agents 

places this group of small non-coding RNAs at the cutting-edge position of biomedical 

interest. Therefore, an important question is raised based on the generality of the above 

phenomena: What degree of miRNA-mediated dysregulation of biological pathways is 

present in disease?  

Over the past decade, there has been a large volume of literature demonstrating that 

miRNAs dysregulate mRNA expression levels by their aberrant expression in diseases 

(Takamizawa et al., 2004; Cimmino et al., 2005; Scott et al., 2007; Si et al., 2007; Kefas 

et al., 2008; Saydam et al., 2009; Ponomarev et al., 2011; Lu et al., 2011; Glass & Singla, 

2011; Fang et al., 2012; Leidinger et al., 2013; Ding et al., 2015). That is to say, the 

targeted mRNAs’ expression might be aberrantly altered because they are incorrectly 
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regulated by aberrantly expressed miRNAs. Based on this, several tools have been 

developed to detect miRNA-pathway associations (Nam et al., 2009; Maragkakis et al., 

2011; Hsu et al., 2011a; Lu et al., 2012; Ben-Hamo & Efroni, 2015; Godard & van Eyll, 

2015; Preusse, Theis & Mueller, 2016; Backes et al., 2016; Han et al., 2016; Backes et al., 

2017). These tools typically propose enrichment-based methods to study associations 

between miRNAs and pathways. These enrichment-based methods, however, have two 

common limitations. First, they study the association between miRNA and pathway 

based on enrichment analysis of targeted genes in a pathway. Hence, they ignore the 

topological importance of targeted genes in a pathway. For example, if a miRNA targets 

genes of topological importance in a pathway, such as hub genes, this miRNA might have 

higher association with the activity of this pathway than another miRNA that targets less 

topologically important genes. Second, these methods do not aim to identify changes in 

pathways between disease and non-disease. Instead, they focus on how miRNAs’ 

aberrant expression affect the targeted genes in a pathway, and do not assess how 

rewired miRNA-mRNA connections influence a pathway. 

It is well known that genes interact in complex networks that govern cellular processes. 

Researchers have discovered how rewired miRNA-mRNA connections influence 

biological processes in cancer. An important reason why the rewired miRNA-mRNA 

connections influence biological processes in cancer is that miRNA-mRNA connections 

tend to be dynamic or condition-specific, or differential between disease and non-

disease. For example, Volinia and colleagues (Volinia et al., 2010) have analyzed the 

genetic networks of miRNAs in cancer, and suggested that in normal tissues, miRNAs 

are connected in networks and different cell types have different network connections. In 

cancer, they suggest that it is likely that normal network connections become disrupted 

or rewired, which might contribute to disease. In addition, Chen-Ching Lin, et al. (Lin et 
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al., 2015) have identified a regulatory feedback loop between STAT1 and miRNA-155-5p 

that is consistently activated in cancer, and found that the rewired regulatory networks 

are highly associated with cancer. Sivan Elhanati, et al. (Elhanati et al., 2016) have found 

that miRNA-122 and SIRT6 negatively regulate each other’s expression, and the 

connection between them is manifested in two physiologically relevant ways in the liver. 

First, they negatively regulate a similar set of metabolic genes and fatty acid β-oxidation. 

Second, they found that the loss of a negative correlation between SIRT6 and miRNA-

122 expression is significantly associated with better prognosis in hepatocellular 

carcinoma patients. There are also analytical approaches for exosomal miRNA 

expression analysis (Aqil et al., 2014, 2015). Thus, there is an increasing number of 

relevant studies suggesting that rewired connections between miRNAs and genes are 

associated with diseases. However, these studies mainly focus on rewired connections 

between miRNAs and genes, but do not discuss how those rewired miRNA-mRNA 

connections are associated with dysregulation of biological pathways at the pathway-

level.  

A recent methodology developed by Kang et al  can analyze topological features of 

miRNA-target gene differential regulatory network (Kang et al., 2017). However, they 

use “degree” as the topological measurement in their study. “Degree” does not consider 

the topological weight of each gene in gene regulatory networks. Hence, we need to 

consider this in our study. Our analysis uses PageRank, an algorithm initially used by 

Google Search to rank websites in search engine results (Page et al., 1999). It is a way of 

measuring the importance of nodes in a network. More generally, PageRank has been 

applied to other networks, e.g., social networks (Pedroche et al., 2013; Wang et al., 

2013). To date, there have been several studies that also use PageRank to analyze miRNA 

(Noh et al., 2014; Xu et al., 2016; Wang & Cai, 2016). Xu, et al. (Xu et al., 2016) focuses 
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on miRNA-transcription factor (TF)-mRNA regulatory networks, and they use their 

method to identify the miRNA-TF-mRNA regulatory network for clustering samples with 

different cancer subtypes and achieve the goal of cancer subtype classification. Noh, et al. 

(Noh et al., 2014) focuses on identifying a set of miRNA-mRNA connections that are 

changed in Alzheimer’s disease. Wang, et al. (Wang & Cai, 2016) uses PageRank to rank 

miRNAs and mRNAs, separately, and to select the top ranked ones as biomarkers for 

ischemic stroke. Although these studies make use of PageRank, their focus is totally 

different from our approach. 

Here, we propose a new PageRank-based method, called miR2Pathway, to rank disease 

risk of rewired miRNA-mediated biological pathways and we apply it to study HCC. For 

example, in a hypothetical case 1, a miRNA regulates several hub genes in a pathway in 

normal tissue, while it loses the regulatory connections in tumor tissue; in case 2, this 

miRNA regulates the same number of non-hub genes in this pathway in normal tissue, 

while it loses the regulatory connections in tumor tissue. In this scenario, our hypothesis 

is that this miRNA has a larger differential influence on the activity of the pathway in 

case 1 than case 2. This is also related to the basic idea of PageRank (Page et al., 1999) 

that the topology of a node is high in a network if this node has connections to other 

nodes with high topology. Using a PageRank-based approach, miR2Pathway focuses on 

quantifying the differential effects of miRNAs on the activity of a biological pathway 

when miRNA-mRNA connections are altered from normal to HCC. miR2Pathway 

provides a new insight to explore HCC mechanism. Thus, miR2Pathway is a novel 

method that can identify miRNA-dysregulated pathways in cancer and has several 

characteristics which are different from previous methods (Nam et al., 2009; Maragkakis 

et al., 2011; Hsu et al., 2011a; Lu et al., 2012; Ben-Hamo & Efroni, 2015; Godard & 

van Eyll, 2015; Preusse, Theis & Mueller, 2016; Backes et al., 2016; Han et al., 2016; 
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Backes et al., 2017): (1) It can identify the relationship between a set of miRNAs and a set 

of pathways. (2) It focuses on identifying changes in miRNA-mediated pathways 

between control and case, while the other methods focus on finding pathways enriched 

in genes targeted by miRNAs. (3) It focuses on identifying the topological changes in 

miRNA-mediated pathways between control and case, while the other methods do not 

assess or use topological changes. These characteristics, particularly (2) and (3), make it 

difficult to compare miR2Pathway with other methods because miR2Pathway addresses 

a different question from the other methods.  

 

3.2. Materials and Methods 

An overview of the miR2Pathway method is illustrated in Figure 3.1. Briefly, gene and 

microRNA expression profiles are used to construct connections between each miRNA 

and genes of each pathway for control and case, respectively. Subsequently, we obtain 

the corresponding differential network between control and case for each miRNA-

Pathway pair. We can find the genes targeted by the miRNA in this differential network. 

Then, PageRank can be applied to measure the topological influence (PageRank scores) 

of the targeted genes in this differential network, which quantifies the topological 

influence of the genes that are differentially targeted by a miRNA on the activity of this 

pathway. Next, we can calculate the sum of PageRank scores of genes targeted by the 

miRNA in the differential network, which estimates the total differential influence of a 

miRNA on the activity of this pathway. Then, the same procedure is repeated for all 

miRNAs. We obtain a corresponding sum of PageRank scores for each miRNA. For a 

specific pathway, we then assess the total differential influence of all the miRNAs on this 

pathway through summing up all the sums corresponding to all the miRNAs. The total 

differential influence of all the miRNAs on this pathway reflects the degree of miRNA-
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mediated dysregulation of this pathway. We do this for all the pathways. Finally, we rank 

all pathways by the degree of miRNA-mediated dysregulation scores. 

 

 

Figure 3.1. An overview of miR2Pathway. 

 

3.2.1. Data  

For illustration, we use RNA-seq data of matched miRNA and mRNA from The Cancer 

Genome Atlas (TCGA) hepatocellular carcinoma (HCC) study 

(https://cancergenome.nih.gov/). The dataset contains expression levels for 1,046 

miRNAs and 20,531 mRNAs. We apply miR2Pathway to analyzing four datasets, 

containing 50 HCC samples and 50 tumor-adjacent normal samples, 34 hepatitis C-

induced HCC samples and 34 tumor-adjacent normal samples, 22 hepatitis B-induced 

HCC samples and 22 tumor-adjacent normal samples and 50 alcohol-induced HCC 

samples and 50 tumor-adjacent normal samples. Tumor-adjacent normal samples in 

https://cancergenome.nih.gov/


42 
 

following sections will be referred to as normal samples. Pathway information from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa & Goto, 2000) 

is used. 

 

3.2.2.  Construct connections between each miRNA and genes of each 

pathway 

3.2.2.1. Predicted and validated MiRNA targets 

Five miRNA target site prediction programs (DIANA (Maragkakis et al., 2011), 

Targetscan (Friedman et al., 2009), PicTar (Lall et al., 2006), Miranda (Enright et al., 

2003) and miRDB (Wong & Wang, 2015)) are employed to obtain putative miRNA target 

genes for all 1,046 miRNAs. These five programs are included in the “miRNAtap” R 

package. Therefore, in practice, we implement the miRNA target site prediction by using 

miRNAtap. We select potential target genes when they are identified by at least two of 

five programs. Three validated miRNA target site databases (miRecords (Xiao et al., 

2009), miRTarBase (Hsu et al., 2011b) and TarBase (Vergoulis et al., 2012)) are used to 

obtain validated miRNA target genes for all 1,046 miRNAs. These three databases are 

included in the “multiMiR” R package and database. We select validated target genes 

when they are present in at least one of these three databases.  

 

3.2.2.2. Statistical analysis of miRNAs and target genes 

As we know, miRNA expression is negatively correlated with mRNA expression. To 

statistically identify the miRNA-mRNA connections in the regulatory network, we define 

a statistical connection between a miRNA and its target genes if the Pearson’s correlation 

between them is less than a series of cutoffs (-0.4, -0.3, -0.2, -0.1) and the corresponding 
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p-value of the Pearson’s correlation is < 0.05. We implement it through a built-in 

function called “cor.test()” in the statistical software package R (https://www.r-

project.org/). This is done separately for case and control samples. 

 

3.2.2.3. Identification of connections between miRNAs and mRNAs 

Based on the results above, we use the intersection of the sets from Step 2.1 and Step 

2.2 as the identified miRNA-mRNA connections, which are used for the following 

analysis. 

Note, for Steps 2.1-2.3, we only determine the connections between miRNAs and target 

genes. For the construction of pathways, we directly obtain gene-gene connections 

within pathways from KEGG (Kanehisa & Goto, 2000). We pre-define the topology of 

pathways from KEGG and observe alterations of miRNA-mRNA connections in our 

study, thereby we can better quantify the degree by which miRNAs differentially 

influence the activity of each pathway between control and case. 

 

3.2.2.4. Construct a miRNA-Pathway regulatory network 

Next, we construct the miRNA-Pathway networks, i.e., construct each network consisting 

of a single miRNA and a single pathway. First, we obtain the gene list of a specified 

pathway from KEGG. Second, for each miRNA, we select the identified miRNA-mRNA 

connections specific for this pathway. Finally, we merge these identified miRNA-mRNA 

connections into the topology of this pathway derived from KEGG. The result is a 

miRNA-Pathway network. This is done separately for case and control samples. 
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3.2.3. Differential networks for miRNA-Pathway pairs  

Based on the constructed miRNA-Pathway regulatory networks for control and case, 

separately, we can easily find the corresponding differential networks between control 

and case, see Figure 3.2. 

a.    b.     c.  

Figure 3.2. Construction of differential networks. (a) is a miRNA-Pathway 
regulatory network for control. (b) is the miRNA-Pathway regulatory network for case. 
(c) is the differential miRNA-Pathway regulatory network between control and case. A 
differential connection is constructed if it appears in either one of (a) and (b) while it 
does not appear in the other one. The green nodes represent genes and the blue node 
represents a miRNA.  

 

Notably, all the networks in our study are based on correlation, thus, all of them are 

undirected graphs.  

 

3.2.4. Measure the differential influence of miRNAs on the activity of 

pathways 

3.2.4.1. Measure the differential influence of a single miRNA on a 

single pathway 

To summarize, up to this point the algorithm finds the differential miRNA-Pathway 

network, which provides information about the differential influence of a miRNA on the 

activity of a pathway between control and case. The null hypothesis is that there is no 

difference in the miRNA-Pathway network between control and case, indicating that the 
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differential miRNA-Pathway network has an isolated miRNA. In other words, the single 

miRNA has no differential influence on the activity of this pathway. Conversely, if this 

miRNA has many differential connections in the miRNA-Pathway network between 

control and case, and, even more importantly, has differential connections with hub 

genes in this pathway, it suggests that this miRNA has a large differential influence on 

the activity of this pathway between control and case samples.  

In this step, we measure the differential influence of a miRNA on the activity of this 

pathway between control and case using PageRank (Page et al., 1999), see Eq. (1). 

 𝑆𝑖,𝑗 =  𝑃𝑅(𝑇𝐺)𝑖,𝑗,1 +  𝑃𝑅(𝑇𝐺)𝑖,𝑗,2 + ⋯ +  𝑃𝑅(𝑇𝐺)𝑖,𝑗,𝑘                                     (1) 

In Eq.  (1), Si,j is the sum of PageRank (PR) score of targeted genes (TG) of the miRNA i 

for the pathway j in the differential miRNA-Pathway network. The letter i denotes the 

index of a miRNA, the letter j denotes the index of a pathway and letter k denotes the 

number of targeted genes of the miRNA i in the corresponding differential miRNA-

Pathway network. Si,j quantifies the differential influence of the miRNA i on the activity 

of the pathway j between control and case. Since PageRank considers the sum of 

PageRank scores of all the nodes in a network equal to 1, Si,j ranges from 0 to 1. When Si,j 

= 0, it indicates that the miRNA i does not differentially regulate genes of the pathway j 

between control and case. When Si,j = 1, it indicates that the miRNA i differentially 

regulates all genes of the pathway j between control and case.  

 

3.2.4.2. Measure the total differential influence of a set of miRNAs on a 

single pathway 
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For this same pathway, we repeat the same procedure from Step 4.1 for all miRNAs of 

interest.  We obtain different Si,j (i=1,2,…,M, where M is the number of miRNAs and j is 

the index of the pathway) for each miRNA. Then, we assess the total differential 

influence of all the miRNAs on this pathway through summing up all the Si,j scores, see 

Eq. (2).  

 𝑇𝑗 =  𝑆1,𝑗 +  𝑆2,𝑗 + ⋯ +  𝑆𝑀,𝑗                                                                                (2) 

In Eq. (2), Tj is the sum of all the S scores corresponding to all the miRNAs for pathway j. 

The letter M represents the number of miRNAs, and the letter j represents the index of a 

pathway. The T score quantifies the total differential influence of all the miRNAs on the 

activity of a single pathway between control and case. If Tj is larger, it suggests that 

miRNAs differentially regulate a larger number of genes and/or differentially regulate 

hub genes in pathway j between control and case. Hence, the T score can reflect the 

degree of miRNAs dysregulating a single pathway. 

 

3.2.5. Rank pathways based on disease risk of miRNA-mediated 

dysregulation of biological pathways 

We repeat Step 4 to obtain a corresponding T score for each pathway. Finally, we rank all 

pathways by their T scores, which are measures of the degree of miRNA-mediated 

dysregulation.  

 

3.2.6. Software tools 

All the analysis is conducted using the R programming language. We use the following R 

Biocoductor packages: parallel for parallel computing, graphite for pathway databases, 
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igraph for PageRank function, graph for visualization, miRNAtap for miRNA target site 

prediction.   

  

3.3. Results 

First, we apply miR2Pathway to analyze HCC samples and normal samples. We use as 

example the interaction between miRNA-122 and the “MicroRNAs in cancer” pathway. 

MiRNA-122 is reported to be specific for liver cancer in several studies (Coulouarn et al., 

2009; Li et al., 2012; Tsai et al., 2012; Bandiera et al., 2015), and “MicroRNAs in cancer” 

is a miRNA-related pathway. We are interested in seeing how miRNA-122 differentially 

influences the activity of this pathway. Figure 3.3 shows the topological structure of the 

pathway “MicroRNAs in cancer”. 

                                                           

Figure 3.3. The pathway “MicroRNAs in cancer”. We directly obtain the 
topological structure of this pathway from the KEGG database. There are 262 genes in 
this pathway, and there are 518 connections between genes in this pathway. The number 
inside each node is the corresponding gene ID. For gene names, see Table 3.3. 
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3.3.1. Construct connections between miRNA-122 and genes of the 

pathway “MicroRNAs in cancer” for normal and HCC 

Based on the topological structure of this pathway, we need to know which gene(s) is/are 

targeted by miRNA-122 in this pathway for normal and cancer, separately. After we 

complete Step 2.3, we identify connections between miRNA-122 and genes of this 

pathway “MicroRNAs in cancer”. In Figure 3.4, as an example, we only show the 

identified connections between miRNA-122 and genes based on predicted targets using a 

correlation cutoff of -0.4.  

 

a.        b.     

Figure 3.4. The interaction between miRNA-122 and the “MicroRNAs in 
Cancer” pathway for normal (a) and cancer (b), separately.  

 

Figure 3.4 shows that miRNA-122 targets one gene (geneID is 6541 and gene symbol is 

CAT-1 or SLC7A1) in normal, while it does not target this gene in HCC. Very 

interestingly, several studies show that CAT-1/SLC7A1 is a well-known target gene of 

miRNA-122 (Chang et al., 2004; Yang & Kaye, 2009; Gatfield et al., 2009; Cirera et al., 

2010; Li et al., 2012). CAT-1/SLC7A1 is an important protein for liver tissue. It is a 

carrier protein required in the regenerating liver for the transport of cationic amino acids 
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and polyamines in the late G1 phase, a process that is essential for liver cells to enter 

mitosis, and CAT-1/SLC7A1 is involved in amino acid metabolism (Chang et al., 2004). 

Besides, several studies show that miRNA-122’s loss of function has been observed in 

liver cancer (Coulouarn et al., 2009; Hsu et al., 2012; Tsai et al., 2012; Thakral & 

Ghoshal, 2015). Thus, this result suggests that miRNA-122’s loss of function probably 

leads to loss of a connection between miRNA-122 and CAT-1/SLC7A1 in the HCC 

samples. Therefore, this result is well consistent with the evidence from prior literature. 

 

3.3.2.  A differential network between normal and cancer 

Based on the result illustrated in Figure 3.4, we can easily obtain the differential 

network between normal and cancer, whose topological structure is the same as Figure 

3.4(a).  

 

3.3.3.  Measure the differential influence of miRNAs on activities of this 

specified pathway between normal and cancer 

Based on the differential network above, we assess the topological influence of genes 

dysregulated by miRNA-122 in this pathway through calculating PageRank scores of 

targeted genes in the differential network. Namely, the PageRank score of the gene CAT-

1/SLC7A1 in the pathway is 0.002647686, which is also shown in Table 3.3. In Table 

3.3, we also compute and include eigenvector centrality, which is another topological 

measure of the “MicroRNAs in cancer” pathway, which was discussed previously in 

literature (Mallik & Maulik, 2015). However, we only discuss and use PageRank scores 

for genes of each pathway in our study. 
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In this way, we measure the differential influence of all other miRNAs on the activity of 

the pathway “MicroRNAs in cancer”, then we sum up the differential influence of all the 

miRNAs as a total one (i.e., T score). This total score, T = 0.139, is the degree of miRNA-

mediated dysregulation of the pathway of “MicroRNAs in cancer”.  

 

3.3.4. Rank miRNA-mediated dysregulation of all pathways 

Similarly, we obtain a corresponding total score T for each pathway. Then, we rank 

pathways using the T scores and show the top 50 pathways of miRNA-mediated 

dysregulation in Table 3.1, using a Pearson correlation cutoff value of -0.4 . As 

mentioned in Materials and Methods, we also tested several other correlation cutoffs:  

-0.3, -0.2, -0.1. The results are very similar to those from Table 3.1 and are included in 

Table 3.6, Table 3.7 and Table 3.8, respectively. 

 
 

Gene Count(L) T score 

1 FoxO signaling pathway 126 0.652 

2 Circadian rhythm 31 0.418 

3 Hedgehog signaling pathway 47 0.375 

4 Notch signaling pathway 48 0.354 

5 Hippo signaling pathway -multiple species 29 0.333 

6 Dorso-ventral axis formation 13 0.315 

7 Cytosolic DNA-sensing pathway 21 0.265 

8 Thyroid cancer 28 0.257 

9 Shigellosis 51 0.253 

10 Inflammatory bowel disease (IBD) 48 0.242 

11 RNA degradation 18 0.217 

12 Toll-like receptor signaling pathway 104 0.207 
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13 
AGE-RAGE signaling pathway in diabetic 
complications 91 

0.203 

14 Wnt signaling pathway 137 0.177 

15 MAPK signaling pathway 252 0.175 

16 Cocaine addiction 42 0.168 

17 mTOR signaling pathway 144 0.159 

18 Oocyte meiosis 120 0.155 

19 
Arrhythmogenic right ventricular cardiomyopathy 
(ARVC) 10 

0.154 

20 
Epithelial cell signaling in Helicobacter pylori 
infection 37 

0.153 

21 Insulin resistance 94 0.151 

22 Pancreatic cancer 65 0.142 

23 Steroid biosynthesis 20 0.142 

24 MicroRNAs in cancer 262 0.139 

25 HTLV-I infection 194 0.137 

26 Progesterone-mediated oocyte maturation 89 0.129 

27 Adipocytokine signaling pathway 63 0.128 

28 Rap1 signaling pathway 208 0.127 

29 Acute myeloid leukemia 57 0.115 

30 Hepatitis C 97 0.114 

31 Ether lipid metabolism 44 0.110 

32 Hepatitis B 134 0.107 

33 Leishmaniasis 50 0.101 

34 Glyoxylate and dicarboxylate metabolism 26 0.097 

35 Herpes simplex infection 104 0.095 

36 Pantothenate and CoA biosynthesis 16 0.094 

37 Huntington's disease 27 0.092 

38 Vascular smooth muscle contraction 114 0.091 
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39 Antigen processing and presentation 62 0.091 

40 Breast cancer 143 0.088 

41 Calcium signaling pathway 179 0.085 

42 Long-term potentiation 67 0.085 

43 Chagas disease (American trypanosomiasis) 89 0.084 

44 Estrogen signaling pathway 89 0.082 

45 RIG-I-like receptor signaling pathway 48 0.082 

46 p53 signaling pathway 68 0.080 

47 Osteoclast differentiation 123 0.079 

48 Toxoplasmosis 93 0.077 

49 Gap junction 88 0.076 

50 Vasopressin-regulated water reabsorption 22 0.075 

Table 3.1. Top 50 pathways ranked by T score comparing normal with HCC samples 
based on the Pearson’s correlation cutoff (-0.4).  

Interestingly, we find in Table 3.1 a large number of pathways associated with cancer in 

general and liver cancer specifically. First, the “microRNAs in cancer” pathway is listed 

in the top 50 pathways, which suggests that miRNA-mediated dysregulation is able to 

contribute to cancer (Garzon, Calin & Croce, 2009; Kwak, Iwasaki & Tomari, 2010; 

Jansson & Lund, 2012). FoxO signaling pathway is top-ranked and known to be involved 

in the regulation of the cell cycle, apoptosis, and metabolism. The second ranked 

pathway, circadian rhythm, is well known to be implicated in cancer (Fu & Kettner, 2013; 

Blakeman et al., 2016). Hedgehog signaling pathway is a major regulator of many 

fundamental processes in vertebrate embryonic development including stem cell 

maintenance, cell differentiation, tissue polarity and cell proliferation (Evangelista, Tian 

& de Sauvage, 2006; Rubin & de Sauvage, 2006; Gupta, Takebe & LoRusso, 2010; 

Gonnissen, Isebaert & Haustermans, 2015). Notch signaling pathway is one of the most 

commonly activated signaling pathways in cancer, and plays a key role in cell 
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proliferation, differentiation and survival (Capaccione & Pine, 2013; Guo et al., 2014; 

Yuan et al., 2015). Hippo signaling pathway is reported to be able to control organ size 

through regulating cell proliferation and apoptosis (Saucedo & Edgar, 2007; Pan, 2010). 

Wnt signaling pathway is a well-known pathway specific for liver cancer.  The 

deregulation of the Wnt signaling pathway is early event in hepatocarcinogenesis and 

Wnt signaling pathway plays a critical role in liver development, regeneration, and 

promoting tumor formation in this organ (Takigawa & Brown, 2008; Waisberg & Saba, 

2015; Wang et al., 2017). MAPK signaling pathway is involved in the regulation of 

survival, cellular growth, gene expression (Knight & Irving, 2014). Deregulation of 

MAPK signaling pathway can lead to uncontrolled or increased cell proliferation and 

resistance to apoptosis (Santarpia, Lippman & El-Naggar, 2012; Burotto et al., 2014). 

mTOR signaling pathway is a well-known cancer-associated pathway. Alterations of 

mTOR signaling pathway have significant effects on cancer progression. The major 

components of mTOR signaling pathway are critical effectors in cell signaling pathways 

commonly deregulated in cancers (Guertin & Sabatini, 2007; Villanueva et al., 2008; 

Pópulo, Lopes & Soares, 2012). Rap1 signaling is very important in basic cellular 

functions (e.g., formation, junctions and control of cell adhesions), cellular migration, 

and polarization (Bos, de Rooij & Reedquist, 2001). Rap1 plays key roles during cell 

invasion and metastasis in various cancers (Bos, de Rooij & Reedquist, 2001, p. 1; Zhang 

et al., 2017). p53 signaling pathway is a very important oncogenic pathway, and it can 

regulate apoptosis, the cell cycle and help prevent cancer. P53 protein, a major 

component of p53 signaling pathway, is most frequently altered in cancer (May & May, 

1999).  

Interestingly, Hepatitis C and Hepatitis B pathways are found within the top 50 

pathways in Table 3.1. It is well known that Hepatitis C and Hepatitis B are major risk 
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factors for liver cancer (Beasley, 1988; Chen et al., 2008; Hoshida et al., 2014; Goossens 

& Hoshida, 2015). 

Table 3.1 also includes several pathways that are immune- and inflammatory- related, 

such as Toll-like receptor signaling pathway, HTLV-I infection, Antigen processing and 

presentation and RIG-I-like receptor signaling pathway. It is well documented 

(Grivennikov, Greten & Karin, 2010; Greten, Duffy & Korangy, 2013; Bishayee, 2014; 

Sachdeva, Chawla & Arora, 2015) the fact that the immune system plays a key role in the 

development and progression of cancer, and inflammatory responses play critical roles 

at different stages of cancer development, including initiation, promotion, malignant 

conversion, invasion, and metastasis. In addition, inflammation affects immune 

surveillance and responses to therapy. 

Table 3.1 also includes several other tumor-associated pathways, such as Thyroid 

cancer, Pancreatic cancer, Acute myeloid leukemia and Breast cancer. 

 

3.3.5.  miR2Pathway for cancer subtype analysis 

We then apply miR2Pathway to all the pathways from KEGG comparing normal and 

hepatitis B-induced HCC samples. Table 3.2 lists the top 50 pathways of miRNA-

mediated dysregulation for this analysis. As before, here we only show and analyze the 

results for hepatitis B-induced HCC based on the Pearson’s correlation cutoff of -0.4. 

The other results, based on different Pearson’s correlation cutoff (-0.3, -0.2, -0.1), are 

shown in Table 3.9, Table 3.10 and Table 3.11, respectively.  

 
 

Gene Count(L) T score 

1 Circadian rhythm 31 4.603 
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2 FoxO signaling pathway 126 4.547 

3 Hedgehog signaling pathway 47 4.281 

4 Dorso-ventral axis formation 13 3.619 

5 GnRH signaling pathway 85 3.516 

6 Toll-like receptor signaling pathway 104 2.513 

7 Wnt signaling pathway 137 2.398 

8 MAPK signaling pathway 252 2.388 

9 Rap1 signaling pathway 208 2.379 

10 
Epithelial cell signaling in Helicobacter pylori 
infection 37 

2.083 

11 Shigellosis 51 2.058 

12 Renal cell carcinoma 57 2.043 

13 Notch signaling pathway 48 1.948 

14 Estrogen signaling pathway 89 1.896 

15 Calcium signaling pathway 179 1.796 

16 Hippo signaling pathway -multiple species 29 1.733 

17 Gap junction 88 1.694 

18 Thyroid cancer 28 1.671 

19 
AGE-RAGE signaling pathway in diabetic 
complications 91 

1.629 

20 HTLV-I infection 194 1.612 

21 Bladder cancer 29 1.394 

22 Vascular smooth muscle contraction 114 1.343 

23 TNF signaling pathway 72 1.282 

24 Amyotrophic lateral sclerosis (ALS) 36 1.230 

25 D-Glutamine and D-glutamate metabolism 4 1.181 

26 Cocaine addiction 42 1.179 

27 Sulfur metabolism 9 1.171 

28 MicroRNAs in cancer 262 1.157 
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29 Fc epsilon RI signaling pathway 61 1.143 

30 Long-term depression 59 1.125 

31 Chagas disease (American trypanosomiasis) 89 1.108 

32 Salmonella infection 72 1.098 

33 RNA degradation 18 1.083 

34 Tight junction 125 1.077 

35 Insulin signaling pathway 139 1.010 

36 Leishmaniasis 50 0.986 

37 Viral carcinogenesis 6 0.959 

38 mTOR signaling pathway 144 0.944 

39 Adherens junction 71 0.924 

40 Oocyte meiosis 120 0.916 

41 Bacterial invasion of epithelial cells 57 0.913 

42 Tuberculosis 173 0.912 

43 Vasopressin-regulated water reabsorption 22 0.897 

44 RIG-I-like receptor signaling pathway 48 0.893 

45 
Inflammatory mediator regulation of TRP 
channels 91 

0.879 

46 Retrograde endocannabinoid signaling 59 0.853 

47 Type II diabetes mellitus 47 0.843 

48 Progesterone-mediated oocyte maturation 89 0.826 

49 Thyroid hormone synthesis 46 0.823 

50 Glutamatergic synapse 89 0.815 

Table 3.2. Top 50 pathways ranked by T score comparing normal with hepatitis B-
induced HCC samples based on the Pearson’s correlation cutoff (-0.4). The bold-font 
pathways are non-overlapped with top 50 pathways in Table 3.1. 

 

We find that most of the top 50 pathways from Table 3.2 overlap with the results from 

Table 3.1. The non-common pathways are marked by bold font. A number of these non-

common pathways are theoretically specific for hepatitis B-induced HCC. As we know, 
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hepatitis B-induced HCC is mainly caused by hepatitis B virus, hence, those non-

common pathways might be involved in inflammatory response and immune-system 

related. Interestingly, we find many of the non-common pathways are, indeed, 

inflammation- and immune-system related, such as TNF signaling pathway, Fc epsilon 

RI signaling pathway, Salmonella infection, Viral carcinogenesis, Bacterial invasion of 

epithelial cells, Inflammatory mediator regulation of TRP channels. The selective 

presence of inflammation-related pathways in Table 3.2 suggests that miR2Pathway 

can identify pathways specific for subtypes of HCC. 

We also identify in Table 3.2 several other pathways that are involved in metabolism, 

such as D-Glutamine and D-glutamate metabolism, Sulfur metabolism, Insulin signaling 

pathway and Type II diabetes mellitus. Three of these four pathways are related to 

hepatitis B virus infection. Several studies show that glutamine synthesis and 

metabolism are potential markers of HCC patients infected by hepatitis B (Long et al., 

2010; Li et al., 2015). Very interestingly, some studies show that hepatitis B virus 

infection can contribute to the impairment of insulin signaling (Kim, Kim & Cheong, 

2010; Barthel et al., 2016). It is reported that hepatitis B virus infection rate is higher in 

type II diabetes mellitus patients compared with healthy controls, suggesting that 

hepatitis B virus infection is associated with type II diabetes (Demir et al., 2008).  

We then apply miR2Pathway to analyze other subtypes of HCC, such as hepatitis C-

induced and alcohol-induced HCC. The top 50 pathways are listed in Table 3.4 and 

Table 3.5, respectively. 

In Table 3.4, we include the top 50 pathways from the miR2Pathway analysis of 

hepatitis C-induced HCC based on the Pearson’s correlation cutoff of -0.4. We again find 

that most of the pathways overlap with those from Table 3.1. The non-common 

pathways are theoretically specifically associated with hepatitis C virus (HCV) infection. 
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Interestingly, we discover several non-common pathways also listed in non-common 

pathways of Table 3.2 (hepatitis B-induced HCC), such as D-Glutamine and D-

glutamate metabolism, Bacterial invasion of epithelial cells and Insulin signaling 

pathway. HCV infection might increase glutamine use and dependence, and inhibiting 

glutamine metabolism attenuates HCV infection and the oxidative stress associated with 

HCV infection (Lévy et al., 2017). Some studies show that hepatitis C virus can induce 

insulin resistance (IR), thereby contributing to steatosis, progression of fibrosis and HCC 

(Sheikh et al., 2008; Bose, 2014). Additionally, Bacterial invasion of epithelial cells is an 

inflammation-related pathway, which is specifically associated with this subtype of liver 

cancer. The results for hepatitis C-induced HCC based on different Pearson’s correlation 

cutoffs (-0.3, -0.2, -0.1) can be found in Supplementary Table 3.12, Table 3.13 and 

Table 3.14, respectively. In Table 3.5, we include the top 50 pathways from the 

miR2Pathway analysis of alcohol-induced HCC based on the Pearson’s correlation cutoff 

of -0.4. Again, we find that most of the pathways overlap with Table 3.1. Among the 

non-common pathways between Table 3.5 and Table 3.1, we find many pathways 

associated with inflammation and immune system, such as Pathogenic Escherichia coli 

infection, TNF signaling pathway, B cell receptor signaling pathway and GnRH signaling 

pathway. Some studies have shown that the major mechanisms of alcohol-induced HCC 

include pathways of the immune system and inflammation, reviewed in (Sidharthan & 

Kottilil, 2014). Additionally, very interestingly, Glutamatergic synapse and GABAergic 

synapse are two of non-common pathways for this subtype of HCC. Several studies show 

that alcohol induces many neuroadaptative changes in the CNS involving both 

glutamatergic and GABAergic synaptic transmission (Dildy-Mayfield et al., 1996; 

Lovinger & Roberto, 2013). The results for alcohol-induced HCC based on different 
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Pearson’s correlation cutoff (-0.3, -0.2, -0.1) are shown in Table 3.15, Table 3.16 and 

Table 3.17, respectively. 

 

3.4. Discussion  

We propose a PageRank-based method, called miR2Pathway, to rank disease risk of 

miRNA-mediated biological pathways in HCC. miR2Pathway can help explore how much 

miRNAs differentially influence the activity of biological pathways between two classes 

of phenotypes. The basic idea of PageRank is that the topological importance of a node is 

high in a network if this node has connections with other nodes with high topological 

importance (Page et al., 1999). This can be well applied to miRNA-mediated biological 

pathways. For example, a miRNA has a larger differential influence on a pathway if it 

regulates more genes, particularly hub genes, in the differential network between cases 

and control. Based on this observation, we assess the differential influence of a miRNA 

on the activity of a pathway between normal and HCC through summing up the 

PageRank scores of targeted genes of this miRNA in the corresponding differential 

network, which we call S score. Then, we assess the differential influence of all other 

miRNAs on the activity of this same pathway between normal and HCC. We sum up the 

S scores for all miRNAs to obtain the T score, which measures the total differential 

influence of all the miRNAs on the activity of this pathway. In the same way, we calculate 

corresponding T scores for the total differential influence of all the miRNAs on the 

activity of each pathway. Finally, we rank all pathways by -the T scores, which are 

measures of the degree of miRNA-mediated dysregulation. The miR2Pathway method 

focuses on quantifying the differential effects of a set of miRNA on the activity of 

biological pathways when miRNA-mRNA connections are altered from normal to HCC.   
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Our use of PageRank to study the effect of miRNA-mRNA connections at the pathway 

level is novel. Previous uses of PageRank to study miRNA have been focused on 

clustering analysis for disease subtype classification in cancer (Xu et al., 2016) or 

identification of hub genes in Alzheimer’s Disease (Noh et al., 2014) or ischemic stroke 

(Wang & Cai, 2016). 

In our application of miR2Pathway to study HCC and its subtypes, we find that many 

highly ranked pathways are tumor-associated, such as FoxO signaling pathway, circadian 

rhythm, Wnt signaling pathway, MAPK signaling pathway, mTOR signaling pathway, 

p53 signaling pathway, etc., as well as HCC-specific pathways, such as Hepatitis B, 

Hepatitis C, etc. These results suggest that these important pathways are dysregulated by 

rewired miRNA-mRNA connections in cancer. Besides, many other pathways are 

associated with inflammation, immune system and metabolism, etc., which directly link 

to the occurrence and progression of HCC. In addition, we also find that the “MicroRNAs 

in cancer” pathway is listed in top 50 pathways, which is consistent with the fact that 

miRNAs dysregulate in cancer. Therefore, miR2Pathway can quantify and rank the 

dysregulation of these biological pathways. 

Further, we apply miR2Pathway to analyze three subtypes of HCC: hepatitis B-induced 

HCC, hepatitis C-induced HCC and alcohol-induced HCC. By comparing each subtype of 

HCC with HCC, we check whether the non-common pathways from each subtype of HCC 

are indeed related to each specific subtype of HCC. For hepatitis B-induced HCC and 

hepatitis C-induced HCC, both hepatitis B and hepatitis C viruses are strongly linked to 

inflammation response and immune system. Related to this, among the non-common 

pathways for hepatitis B-induced HCC and hepatitis C-induced HCC, we indeed find 

several inflammation- and immune-related pathways, such as TNF signaling pathway, Fc 

epsilon RI signaling pathway, Salmonella infection, Viral carcinogenesis, Bacterial 



61 
 

invasion of epithelial cells, and Inflammatory mediator regulation of TRP channels. 

Notably, Viral carcinogenesis is strongly associated with virus-induced HCC. Similarly, 

for alcohol-induced HCC, we find several pathways related to immune system and 

inflammation, such as Pathogenic Escherichia coli infection, TNF signaling pathway, B 

cell receptor signaling pathway and GnRH signaling pathway. Previous studies have 

shown that these pathways of immune system and inflammation are related to the major 

mechanisms of alcohol-induced HCC (Sidharthan & Kottilil, 2014).  

 

3.5. Future Directions 

In this study, while we apply miR2pathway to HCC as a proof of concept, we intend to 

study other cancers and diseases to assess the generalizability of our method. We apply 

miR2Pathway to pre-defined biological pathways, from the well-curated KEGG pathway 

database. In addition to this application, miR2Pathway can also be applied to any set of 

genes of interest, such as functional gene networks. Moreover, miR2Pathway could also 

be used to assess differential influence of other regulatory factors, e.g., Transcriptional 

factors (TFs) or circular RNAs, on biological pathways. These could be interesting areas 

to further explore. 

We can further validate the miR2Pathway method using simulated data. First, we select 

a specified pathway (e.g., “MicroRNAs in cancer”). Then, we can simulate miRNA-mRNA 

connections for two networks (e.g., network A and B). To start the simulation, we only 

consider one miRNA and only one miRNA-gene connection is rewired for both the 

network A and B, but it is one rewired miRNA-hub gene connection for the network A, 

while one rewired miRNA-non hub gene connection for the network B. Hence, the 

expected result is that T score of the network A is greater than that of the network B. 
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Then, we apply miR2Pathway to the simulated data to test if the expected result is 

obtained. 

For the PageRank algorithm, we use the default value of damping factor 0.85 in this 

study. However, the value of damping factor might be varying in different cases. Hence, 

we might further use simulation to decide the value of damping factor in different cases. 

This is a very interesting and valuable direction to investigate. 

We obtain ranks of pathways in this study, and we also can further investigate some 

common miRNAs that differentially influence on highly ranked pathway. Those common 

miRNAs also could be drive miRNAs to drive cancer. Extensively, we might further 

quantify each miRNA’s differential influence on each pathway, then sum up total 

differential influence of each miRNA on all pathways, finally, we can rank all miRNAs. 

Those highly ranked miRNAs could be driver miRNAs to drive tumorigenesis. We might 

further investigate those key miRNAs and explore the biology behind those results. 

 

3.6. Conclusion 

In summary, miR2Pathway is a novel method that can be used to assess the total 

differential influence of all miRNAs on the activity of a single pathway between control 

and case. The total differential influence can reflect the degree of miRNA-mediated 

dysregulation of pathways, thereby assessing disease risk of miRNA-mediated biological 

pathways. We apply this method to study HCC and its subtypes and find that a number 

of highly ranked biological pathways are involved in cancer generally and HCC 

specifically. Also, we find many highly ranked pathways are related to inflammation, 

immune system and metabolism, etc., which are directly associated with pathogenesis of 

cancer. miR2Pathway is also able to identify pathways specific to HCC subtypes. 
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Therefore, miR2Pathway is a new method to explore dysregulated pathways by analyzing 

rewired miRNA-mRNA connections.  

 

3.7. Availability 

R software to carry out the miR2Pathway computation is available via 

http://www.dinulab.org/tools. 

 

3.8. Supplementary Materials 

Index Gene ID Gene Symbol PageRank Score Eigenvector Centrality 

1 100302238 MIR103B1 0.003760521 0.041230011 

2 100302282 MIR103B2 0.003760521 0.041230011 

3 406881 MIRLET7A1 0.004941166 0.965748397 

4 406882 MIRLET7A2 0.004941166 0.965748397 

5 406883 MIRLET7A3 0.004941166 0.965748397 

6 406884 MIRLET7B 0.004941166 0.965748397 

7 406885 MIRLET7C 0.005280395 0.370605112 

8 406886 MIRLET7D 0.004941166 0.965748397 

9 406887 MIRLET7E 0.004941166 0.965748397 

10 406888 MIRLET7F1 0.004941166 0.965748397 

11 406889 MIRLET7F2 0.004941166 0.965748397 

12 406890 MIRLET7G 0.004941166 0.965748397 

13 406891 MIRLET7I 0.004941166 0.965748397 

14 406892 MIR100 0.00116434 0.00674992 

15 406893 MIR101-1 0.00300433 0.012099974 

16 406894 MIR101-2 0.00300433 0.012099974 

17 406895 MIR103A1 0.003760521 0.041230011 

18 406896 MIR103A2 0.003760521 0.041230011 

19 406900 MIR106B 0.003280572 2.03E-05 

20 406901 MIR107 0.004914847 0.918751999 

21 406902 MIR10A 0.006916144 0.041096829 

22 406903 MIR10B 0.007923195 0.041464294 

23 406904 MIR1-1 0.004754269 0.001911378 

24 406905 MIR1-2 0.004754269 0.001911378 

http://www.dinulab.org/tools
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25 406906 MIR122 0.007324118 0 

26 406907 MIR124-1 0.001082422 0.09057311 

27 406908 MIR124-2 0.001082422 0.09057311 

28 406909 MIR124-3 0.001082422 0.09057311 

29 406910 MIR125A 0.004168031 0.118425226 

30 406911 MIR125B1 0.00491907 0.120562116 

31 406912 MIR125B2 0.00491907 0.120562116 

32 406913 MIR126 0.012585104 0 

33 406915 MIR128-1 0.003364869 1.06E-05 

34 406916 MIR128-2 0.003364869 1.06E-05 

35 406917 MIR129-1 0.00471112 0.032238736 

36 406918 MIR129-2 0.00471112 0.032238736 

37 406922 MIR133A1 0.00323224 8.93E-18 

38 406923 MIR133A2 0.00323224 3.06E-17 

39 406925 MIR135A1 0.00323224 4.15E-17 

40 406926 MIR135A2 0.00323224 1.86E-17 

41 406928 MIR137 0.001082422 0.09057311 

42 406933 MIR141 0.003816794 0 

43 406935 MIR143 0.009949437 0.139702723 

44 406937 MIR145 0.004220106 0.034768161 

45 406938 MIR146A 0.007324118 0 

46 406943 MIR152 0.003816794 0 

47 406947 MIR155 0.003816794 0 

48 406948 MIR15A 0.008110503 1.27E-16 

49 406949 MIR15B 0.00413922 1.76E-16 

50 406950 MIR16-1 0.00413922 1.61E-16 

51 406951 MIR16-2 0.00413922 1.93E-16 

52 406952 MIR17 0.003510622 0.001091129 

53 406953 MIR18A 0.002202202 0.095220707 

54 406954 MIR181A2 0.001257143 0.005306336 

55 406955 MIR181B1 0.001257143 0.005306336 

56 406956 MIR181B2 0.001257143 0.005306336 

57 406957 MIR181C 0.001257143 0.005306336 

58 406959 MIR183 0.003816794 4.27E-19 

59 406971 MIR195 0.00846517 0.03836491 

60 406976 MIR199A1 0.003816794 7.95E-18 

61 406977 MIR199A2 0.003816794 0 

62 406979 MIR19A 0.003510622 0.001091129 

63 406980 MIR19B1 0.001755769 0.001081459 

64 406981 MIR19B2 0.001755769 0.001081459 

65 406982 MIR20A 0.007049021 0.001121961 

66 406983 MIR200A 0.005013964 4.34E-07 
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67 406984 MIR200B 0.005013964 4.34E-07 

68 406985 MIR200C 0.005013964 4.34E-07 

69 406988 MIR205 0.004825867 1.19E-08 

70 406991 MIR21 0.017313782 0.007094906 

71 406992 MIR210 0.001652493 1.02E-05 

72 406995 MIR181A1 0.001257143 0.005306336 

73 406996 MIR214 0.001755769 0.001081459 

74 407006 MIR221 0.008132586 0.007539487 

75 407007 MIR222 0.004013834 0.001301028 

76 407008 MIR223 0.002528401 0.006900102 

77 407009 MIR224 0.005570456 6.98E-18 

78 407010 MIR23A 0.004469908 0.008035219 

79 407015 MIR26A1 0.001755769 0.001081459 

80 407016 MIR26A2 0.001755769 0.001081459 

81 407021 MIR29A 0.003268751 0.008938579 

82 407024 MIR29B1 0.003268751 0.008938579 

83 407025 MIR29B2 0.003268751 0.008938579 

84 407026 MIR29C 0.003268751 0.008938579 

85 407029 MIR30A 0.0060909 0.045466633 

86 407030 MIR30B 0.004886337 0.043049027 

87 407031 MIR30C1 0.004886337 0.043049027 

88 407032 MIR30C2 0.004886337 0.043049027 

89 407033 MIR30D 0.0060909 0.045466633 

90 407034 MIR30E 0.0060909 0.045466633 

91 407035 MIR31 0.00907778 0 

92 407036 MIR32 0.003816794 0 

93 407040 MIR34A 0.006423954 0.100639267 

94 407041 MIR34B 0.005274269 0.099747382 

95 407043 MIR7-1 0.004623953 0.030119613 

96 407044 MIR7-2 0.004623953 0.030119613 

97 407045 MIR7-3 0.004623953 0.030119613 

98 407046 MIR9-1 0.002647686 6.42E-18 

99 407047 MIR9-2 0.002647686 1.30E-17 

100 407048 MIR92A1 0.001755769 0.001081459 

101 407049 MIR92A2 0.001755769 0.001081459 

102 407051 MIR9-3 0.002647686 1.68E-17 

103 407055 MIR99A 0.00116434 0.00674992 

104 442890 MIR133B 0.00323224 3.77E-18 

105 442891 MIR135B 0.00323224 2.68E-17 

106 442900 MIR326 0.003888798 0.007364528 

107 442902 MIR330 0.001935407 1.02E-05 

108 442903 MIR331 0.004467768 0.003273428 
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109 442904 MIR335 0.010831442 0 

110 442910 MIR345 0.001284055 0.000807938 

111 442918 MIR373 0.002313655 4.83E-17 

112 554213 MIR449A 0.003816794 0 

113 574411 MIR451A 0.003816794 0 

114 574455 MIR193B 0.003816794 0 

115 574457 MIR181D 0.001257143 0.005306336 

116 574461 MIR520E 0.002313655 6.19E-17 

117 574467 MIR520A 0.002313655 5.67E-17 

118 574473 MIR520B 0.002313655 4.58E-17 

119 574476 MIR520C 0.002313655 5.93E-17 

120 574484 MIR520G 0.002313655 5.54E-17 

121 574493 MIR520H 0.002313655 5.81E-17 

122 693187 MIR602 0.001415719 0.000738215 

123 2261 FGFR3 0.013925189 0.071701442 

124 23405 DICER1 0.003083264 0.102016071 

125 5578 PRKCA 0.011745384 0.08290846 

126 5579 PRKCB 0.011745384 0.08290846 

127 5582 PRKCG 0.011745384 0.08290846 

128 9252 RPS6KA5 0.002703481 0.015525449 

129 1021 CDK6 0.009598166 0.962118469 

130 10642 IGF2BP1 0.004390693 0.909148282 

131 131405 TRIM71 0.004390693 0.909148282 

132 3265 HRAS 0.005031883 0.944036769 

133 3845 KRAS 0.008403462 1 

134 4893 NRAS 0.005031883 0.944036769 

135 8091 HMGA2 0.005031883 0.944036769 

136 993 CDC25A 0.004390693 0.909148282 

137 994 CDC25B 0.004390693 0.909148282 

138 995 CDC25C 0.004390693 0.909148282 

139 4609 MYC 0.00121371 0.034888487 

140 6774 STAT3 0.00121371 0.034888487 

141 836 CASP3 0.00121371 0.034888487 

142 2146 EZH2 0.001849359 0.002278165 

143 5335 PLCG1 0.004960059 0.027276558 

144 5336 PLCG2 0.004960059 0.027276558 

145 1026 CDKN1A 0.003165096 0.000107535 

146 1869 E2F1 0.004810192 0.000108497 

147 11186 RASSF1 0.002975999 0.007841737 

148 2885 GRB2 0.003570894 0.017453747 

149 4193 MDM2 0.002760166 0.008482004 

150 4194 MDM4 0.002916767 0.013842103 
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151 472 ATM 0.015303357 0.056366883 

152 5594 MAPK1 0.00337662 0.012140315 

153 3236 HOXD10 0.001184766 0.003903417 

154 27086 FOXP1 0.002593084 0.000359871 

155 4233 MET 0.004120323 0.01922412 

156 5292 PIM1 0.002593084 0.000359871 

157 9759 HDAC4 0.002593084 0.000359871 

158 3162 HMOX1 0.002647686 1.37E-17 

159 6541 SLC7A1 0.002647686 1.74E-17 

160 900 CCNG1 0.002647686 1.00E-17 

161 1029 CDKN2A 0.002357622 0.033847716 

162 1956 EGFR 0.00463991 0.045627078 

163 2064 ERBB2 0.003623489 0.034155874 

164 7157 TP53 0.007193432 0.072647189 

165 578 BAK1 0.00176715 0.022699254 

166 1398 CRK 0.002355409 5.34E-17 

167 1399 CRKL 0.002355409 3.51E-17 

168 5290 PIK3CA 0.002355409 6.05E-17 

169 5296 PIK3R2 0.002355409 4.82E-17 

170 7422 VEGFA 0.002355409 5.79E-17 

171 85414 SLC45A3 0.002355409 4.76E-17 

172 100532731 
COMMD3-
BMI1 0.0050364 2.12E-06 

173 1871 E2F3 0.005082231 0.000108583 

174 648 BMI1 0.0050364 2.12E-06 

175 399694 SHC4 0.001716648 0.006069861 

176 4170 MCL1 0.004693625 0 

177 599 BCL2L2 0.004693625 1.61E-17 

178 10297 APC2 0.004693625 2.37E-17 

179 324 APC 0.004693625 0 

180 7042 TGFB2 0.003816794 0 

181 1788 DNMT3A 0.004001498 0.016517394 

182 5155 PDGFB 0.001223059 0.013151509 

183 5159 PDGFRB 0.001223059 0.013151509 

184 5598 MAPK7 0.001223059 0.013151509 

185 5894 RAF1 0.001877186 0.016763153 

186 6654 SOS1 0.001877186 0.016763153 

187 6655 SOS2 0.001877186 0.016763153 

188 3667 IRS1 0.001170367 0.003273049 

189 4325 MMP16 0.002647686 8.78E-18 

190 6093 ROCK1 0.002647686 1.70E-17 

191 672 BRCA1 0.002647686 1.28E-17 
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192 1786 DNMT1 0.003816794 0 

193 8651 SOCS1 0.003816794 0 

194 595 CCND1 0.004196118 1.16E-16 

195 596 BCL2 0.001557366 6.87E-17 

196 7473 WNT3 0.001557366 6.90E-17 

197 894 CCND2 0.004196118 1.97E-16 

198 89780 WNT3A 0.001557366 7.51E-17 

199 898 CCNE1 0.004196118 1.64E-16 

200 9134 CCNE2 0.004196118 1.56E-16 

201 5728 PTEN 0.019488814 0.011487865 

202 7431 VIM 0.002064533 0.000102718 

203 7430 EZR 0.003816794 0 

204 5604 MAP2K1 0.001226646 0.003611644 

205 5605 MAP2K2 0.001226646 0.003611644 

206 3551 IKBKB 0.003816794 1.36E-17 

207 5743 PTGS2 0.003816794 7.34E-18 

208 7057 THBS1 0.002064533 0.000102718 

209 1870 E2F2 0.001770853 0.000105621 

210 23414 ZFPM2 0.003129641 1.23E-07 

211 6935 ZEB1 0.003129641 1.23E-07 

212 9839 ZEB2 0.00449697 1.24E-07 

213 2065 ERBB3 0.001939848 1.12E-09 

214 5581 PRKCE 0.001939848 1.12E-09 

215 10253 SPRY2 0.001798912 0.000667909 

216 27250 PDCD4 0.001798912 0.000667909 

217 3190 HNRNPK 0.001798912 0.000667909 

218 4082 MARCKS 0.001798912 0.000667909 

219 5268 SERPINB5 0.001798912 0.000667909 

220 659 BMPR2 0.001798912 0.000667909 

221 7078 TIMP3 0.003923693 0.001500149 

222 7168 TPM1 0.001798912 0.000667909 

223 8434 RECK 0.001798912 0.000667909 

224 8626 TP63 0.001798912 0.000667909 

225 1027 CDKN1B 0.0026973 0.000832239 

226 54541 DDIT4 0.001560047 0.000709762 

227 90427 BMF 0.001560047 0.000709762 

228 3925 STMN1 0.00164709 0.00064957 

229 10298 PAK4 0.002939963 1.98E-17 

230 4318 MMP9 0.002939963 1.40E-17 

231 27165 GLS2 0.001522375 0.00075643 

232 2744 GLS 0.001522375 0.00075643 

233 1789 DNMT3B 0.003350958 0.003365884 
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234 5156 PDGFRA 0.003350958 0.003365884 

235 3690 ITGB3 0.002125698 0.012840584 

236 5154 PDGFA 0.003683218 0.024998393 

237 7329 UBE2I 0.002125698 0.012840584 

238 3678 ITGA5 0.002501547 3.23E-17 

239 387 RHOA 0.002501547 3.96E-17 

240 5962 RDX 0.002501547 3.55E-17 

241 7976 FZD3 0.002501547 2.79E-17 

242 10018 BCL2L11 0.003816794 0 

243 23411 SIRT1 0.001352571 0.009474105 

244 4851 NOTCH1 0.002926128 0.01955754 

245 4853 NOTCH2 0.002926128 0.01955754 

246 4854 NOTCH3 0.002926128 0.01955754 

247 4855 NOTCH4 0.002926128 0.01955754 

248 4363 ABCC1 0.003348406 0.008582372 

249 6464 SHC1 0.002256959 0.008506313 

250 8660 IRS2 0.002256959 0.008506313 

251 4790 NFKB1 0.007324118 0 

252 113130 CDCA5 0.001838387 0.000308158 

253 9493 KIF23 0.001838387 0.000308158 

254 3371 TNC 0.002413864 6.88E-17 

255 63923 TNN 0.002413864 5.51E-17 

256 6659 SOX4 0.002413864 5.43E-17 

257 7143 TNR 0.002413864 5.69E-17 

258 7148 TNXB 0.002413864 3.99E-17 

259 960 CD44 0.014338766 0 

260 3065 HDAC1 0.003816794 0 

261 5243 ABCB1 0.003816794 0 

262 5328 PLAU 0.003816794 0 
Table 3.3. The information of the 262 genes in the “MicroRNAs in cancer” pathway. We 
consolidate the information as shown in this table: (1) Index (1-262) (2) Gene ID (3) 
Gene Symbol (4) The corresponding PageRank scores of each gene (5) The 
corresponding Eigenvector centrality of genes in this pathway, which is computed by a 
built-in function in the igraph R package called eigen_centrality(). 

 

 
 

Gene Count(L) T score 

1 FoxO signaling pathway 126 2.519 

2 Rap1 signaling pathway 208 1.523 

3 Hedgehog signaling pathway 47 1.248 
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4 MicroRNAs in cancer 262 0.797 

5 Vascular smooth muscle contraction 114 0.790 

6 Hippo signaling pathway -multiple species 29 0.776 

7 Circadian rhythm 31 0.753 

8 Renal cell carcinoma 57 0.725 

9 Wnt signaling pathway 137 0.707 

10 mTOR signaling pathway 144 0.607 

11 Progesterone-mediated oocyte maturation 89 0.604 

12 Shigellosis 51 0.602 

13 D-Glutamine and D-glutamate metabolism 4 0.590 

14 Inflammatory bowel disease (IBD) 48 0.582 

15 MAPK signaling pathway 252 0.574 

16 AGE-RAGE signaling pathway in diabetic complications 91 0.527 

17 Insulin resistance 94 0.511 

18 Adipocytokine signaling pathway 63 0.510 

19 RNA degradation 18 0.488 

20 Estrogen signaling pathway 89 0.451 

21 Pancreatic cancer 65 0.439 

22 Bacterial invasion of epithelial cells 57 0.438 

23 Nitrogen metabolism 4 0.435 

24 Steroid biosynthesis 20 0.426 

25 Cocaine addiction 42 0.421 

26 HTLV-I infection 194 0.415 

27 Notch signaling pathway 48 0.413 

28 alpha-Linolenic acid metabolism 25 0.408 

29 Bladder cancer 29 0.401 

30 Cytosolic DNA-sensing pathway 21 0.398 

31 Oocyte meiosis 120 0.392 
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32 Thyroid cancer 28 0.386 

33 Insulin signaling pathway 139 0.377 

34 Vasopressin-regulated water reabsorption 22 0.374 

35 Toll-like receptor signaling pathway 104 0.355 

36 Leukocyte transendothelial migration 85 0.348 

37 Parkinson's disease 29 0.345 

38 Epithelial cell signaling in Helicobacter pylori infection 37 0.344 

39 Calcium signaling pathway 179 0.341 

40 Amyotrophic lateral sclerosis (ALS) 36 0.328 

41 Breast cancer 143 0.315 

42 Long-term potentiation 67 0.314 

43 
Signaling pathways regulating pluripotency of 
stem cells 112 

0.297 

44 Axon guidance 167 0.294 

45 Long-term depression 59 0.290 

46 GnRH signaling pathway 85 0.288 

47 Proximal tubule bicarbonate reclamation 7 0.286 

48 Hepatitis C 97 0.282 

49 Cell cycle 124 0.279 

50 Tuberculosis 173 0.276 

Table 3.4. Top 50 pathways ranked by T score comparing normal with hepatitis C-
induced HCC samples based on the Pearson’s correlation cutoff (-0.4). The bold-font 
pathways are non-overlapped with top 50 pathways in Table 3.1. 

 

 

 
 

Gene Count(L) T score 

1 FoxO signaling pathway 126 0.723 

2 alpha-Linolenic acid metabolism 25 0.408 

3 Notch signaling pathway 48 0.354 
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4 Hippo signaling pathway -multiple species 29 0.333 

5 Hedgehog signaling pathway 47 0.322 

6 Cytosolic DNA-sensing pathway 21 0.265 

7 Circadian rhythm 31 0.251 

8 Inflammatory bowel disease (IBD) 48 0.242 

9 Toll-like receptor signaling pathway 104 0.237 

10 Shigellosis 51 0.222 

11 RNA degradation 18 0.217 

12 Epithelial cell signaling in Helicobacter pylori infection 37 0.191 

13 MAPK signaling pathway 252 0.167 

14 AGE-RAGE signaling pathway in diabetic complications 91 0.162 

15 mTOR signaling pathway 144 0.159 

16 Progesterone-mediated oocyte maturation 89 0.151 

17 HTLV-I infection 194 0.150 

18 Oocyte meiosis 120 0.143 

19 Insulin resistance 94 0.132 

20 Adipocytokine signaling pathway 63 0.128 

21 Rap1 signaling pathway 208 0.127 

22 Wnt signaling pathway 137 0.126 

23 Chagas disease (American trypanosomiasis) 89 0.117 

24 Hepatitis C 97 0.114 

25 MicroRNAs in cancer 262 0.111 

26 Long-term depression 59 0.109 

27 Pancreatic cancer 65 0.107 

28 Leishmaniasis 50 0.101 

29 Acute myeloid leukemia 57 0.100 

30 Glyoxylate and dicarboxylate metabolism 26 0.097 

31 Pantothenate and CoA biosynthesis 16 0.094 
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32 Morphine addiction 54 0.091 

33 Retrograde endocannabinoid signaling 59 0.091 

34 Hepatitis B 134 0.087 

35 Toxoplasmosis 93 0.086 

36 Herpes simplex infection 104 0.086 

37 Long-term potentiation 67 0.085 

38 Estrogen signaling pathway 89 0.082 

39 RIG-I-like receptor signaling pathway 48 0.082 

40 Glutamatergic synapse 89 0.080 

41 
Arrhythmogenic right ventricular cardiomyopathy 
(ARVC) 10 

0.077 

42 GABAergic synapse 66 0.075 

43 Osteoclast differentiation 123 0.069 

44 Pathogenic Escherichia coli infection 40 0.068 

45 Bladder cancer 29 0.067 

46 Thyroid cancer 28 0.064 

47 TNF signaling pathway 72 0.064 

48 B cell receptor signaling pathway 70 0.062 

49 GnRH signaling pathway 85 0.062 

50 Vascular smooth muscle contraction 114 0.061 

Table 3.5. Top 50 pathways ranked by T score comparing normal with alcohol-induced 
HCC samples based on the Pearson’s correlation cutoff (-0.4). The bold-font pathways 
are non-overlapped with top 50 pathways in Table 3.1. 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 4.769631872 

2 Cocaine addiction 42 3.790618613 

3 Circadian rhythm 31 3.59848471 

4 Hedgehog signaling pathway 47 3.247139618 

5 Dorso-ventral axis formation 13 2.832281658 

6 Notch signaling pathway 48 2.715229884 

7 Rap1 signaling pathway 208 2.696510591 
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8 Hippo signaling pathway -multiple species 29 2.494673335 

9 RNA degradation 18 2.383674555 

10 Estrogen signaling pathway 89 2.166927109 

11 Shigellosis 51 1.868168859 

12 Calcium signaling pathway 179 1.84637558 

13 Wnt signaling pathway 137 1.792202489 

14 Vascular smooth muscle contraction 114 1.738601876 

15 Vasopressin-regulated water reabsorption 22 1.719795843 

16 MAPK signaling pathway 252 1.5537004 

17 HTLV-I infection 194 1.531839998 

18 Insulin resistance 94 1.419444038 

19 Glutamatergic synapse 89 1.405421018 

20 mTOR signaling pathway 144 1.403923184 

21 Bacterial invasion of epithelial cells 57 1.388448828 

22 Renal cell carcinoma 57 1.384068279 

23 Thyroid hormone synthesis 46 1.283676831 

24 Thyroid cancer 28 1.221223406 

25 MicroRNAs in cancer 262 1.206816051 

26 Long-term depression 59 1.19784699 

27 Huntington's disease 27 1.149259079 

28 GnRH signaling pathway 85 1.13073527 

29 Gap junction 88 1.123257389 

30 
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 10 1.078378378 

31 Progesterone-mediated oocyte maturation 89 1.055398393 

32 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.054079381 

33 Retrograde endocannabinoid signaling 59 1.034413371 

34 Fatty acid biosynthesis 13 1.022351755 

35 Pancreatic secretion 30 0.987496865 

36 Oocyte meiosis 120 0.986979296 

37 Amyotrophic lateral sclerosis (ALS) 36 0.983800494 

38 Aldosterone synthesis and secretion 65 0.976533251 

39 Maturity onset diabetes of the young 24 0.963574619 

40 Viral carcinogenesis 6 0.959459459 

41 
Signaling pathways regulating pluripotency 
of stem cells 112 0.954367248 

42 Long-term potentiation 67 0.942978837 

43 Toll-like receptor signaling pathway 104 0.933864231 

44 Melanogenesis 101 0.924727007 

45 Insulin secretion 54 0.900427584 

46 Morphine addiction 54 0.889599249 



75 
 

47 
Epithelial cell signaling in Helicobacter 
pylori infection 37 0.880104219 

48 Cytosolic DNA-sensing pathway 21 0.862616564 

49 Inflammatory bowel disease (IBD) 48 0.858072477 

50 Alzheimer's disease 48 0.843041679 
Table 3.6. Top 50 pathways ranked by T score comparing normal with HCC samples 
based on the Pearson’s correlation cutoff (-0.3). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 7.511864547 

2 Cocaine addiction 42 6.038087082 

3 Dorso-ventral axis formation 13 5.664563315 

4 Circadian rhythm 31 5.439569911 

5 Hedgehog signaling pathway 47 4.77862805 

6 Rap1 signaling pathway 208 4.307901326 

7 Hippo signaling pathway -multiple species 29 3.82516578 

8 Estrogen signaling pathway 89 3.581660156 

9 Notch signaling pathway 48 3.423550724 

10 RNA degradation 18 3.19629088 

11 Calcium signaling pathway 179 3.112523145 

12 Wnt signaling pathway 137 2.85237861 

13 Vasopressin-regulated water reabsorption 22 2.727502482 

14 Shigellosis 51 2.659765832 

15 Vascular smooth muscle contraction 114 2.65643198 

16 Renal cell carcinoma 57 2.636320531 

17 Thyroid cancer 28 2.442446812 

18 MAPK signaling pathway 252 2.386014506 

19 HTLV-I infection 194 2.26229856 

20 Glutamatergic synapse 89 2.203955688 

21 Thyroid hormone synthesis 46 2.166772169 

22 mTOR signaling pathway 144 2.153472537 

23 
AGE-RAGE signaling pathway in diabetic 
complications 91 2.108158762 

24 Insulin resistance 94 2.055957205 

25 Long-term depression 59 2.032710043 

26 GnRH signaling pathway 85 2.014764663 

27 Huntington's disease 27 1.838814526 

28 Gap junction 88 1.82767304 

29 Bacterial invasion of epithelial cells 57 1.826906352 

30 Pancreatic secretion 30 1.777494357 

31 MicroRNAs in cancer 262 1.724442638 

32 Amyotrophic lateral sclerosis (ALS) 36 1.680659178 
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33 Maturity onset diabetes of the young 24 1.651842204 

34 Aldosterone synthesis and secretion 65 1.647899861 

35 Progesterone-mediated oocyte maturation 89 1.622806724 

36 Retrograde endocannabinoid signaling 59 1.578841462 

37 Tight junction 125 1.577960616 

38 Insulin secretion 54 1.560946654 

39 
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 10 1.540540541 

40 Melanogenesis 101 1.491495172 

41 mRNA surveillance pathway 70 1.486293436 

42 
Signaling pathways regulating pluripotency 
of stem cells 112 1.476804152 

43 Bladder cancer 29 1.470584223 

44 Long-term potentiation 67 1.450736673 

45 Insulin signaling pathway 139 1.44934286 

46 Salivary secretion 48 1.401201983 

47 Morphine addiction 54 1.391424466 

48 Oocyte meiosis 120 1.379392752 

49 Toll-like receptor signaling pathway 104 1.377522425 

50 Transcriptional misregulation in cancer 19 1.315789474 
Table 3.7. Top 50 pathways ranked by T score comparing normal with HCC samples 
based on the Pearson’s correlation cutoff (-0.2). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 7.511864547 

2 Cocaine addiction 42 6.038087082 

3 Dorso-ventral axis formation 13 5.664563315 

4 Circadian rhythm 31 5.439569911 

5 Hedgehog signaling pathway 47 4.77862805 

6 Rap1 signaling pathway 208 4.307901326 

7 Hippo signaling pathway -multiple species 29 3.82516578 

8 Estrogen signaling pathway 89 3.581660156 

9 Notch signaling pathway 48 3.423550724 

10 RNA degradation 18 3.19629088 

11 Calcium signaling pathway 179 3.112523145 

12 Wnt signaling pathway 137 2.85237861 

13 Vasopressin-regulated water reabsorption 22 2.727502482 

14 Shigellosis 51 2.659765832 

15 Vascular smooth muscle contraction 114 2.65643198 

16 Renal cell carcinoma 57 2.636320531 

17 Thyroid cancer 28 2.442446812 

18 MAPK signaling pathway 252 2.386014506 
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19 HTLV-I infection 194 2.26229856 

20 Glutamatergic synapse 89 2.203955688 

21 Thyroid hormone synthesis 46 2.166772169 

22 mTOR signaling pathway 144 2.153472537 

23 
AGE-RAGE signaling pathway in diabetic 
complications 91 2.108158762 

24 Insulin resistance 94 2.055957205 

25 Long-term depression 59 2.032710043 

26 GnRH signaling pathway 85 2.014764663 

27 Huntington's disease 27 1.838814526 

28 Gap junction 88 1.82767304 

29 Bacterial invasion of epithelial cells 57 1.826906352 

30 Pancreatic secretion 30 1.777494357 

31 MicroRNAs in cancer 262 1.724442638 

32 Amyotrophic lateral sclerosis (ALS) 36 1.680659178 

33 Maturity onset diabetes of the young 24 1.651842204 

34 Aldosterone synthesis and secretion 65 1.647899861 

35 Progesterone-mediated oocyte maturation 89 1.622806724 

36 Retrograde endocannabinoid signaling 59 1.578841462 

37 Tight junction 125 1.577960616 

38 Insulin secretion 54 1.560946654 

39 
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 10 1.540540541 

40 Melanogenesis 101 1.491495172 

41 mRNA surveillance pathway 70 1.486293436 

42 
Signaling pathways regulating pluripotency 
of stem cells 112 1.476804152 

43 Bladder cancer 29 1.470584223 

44 Long-term potentiation 67 1.450736673 

45 Insulin signaling pathway 139 1.44934286 

46 Salivary secretion 48 1.401201983 

47 Morphine addiction 54 1.391424466 

48 Oocyte meiosis 120 1.379392752 

49 Toll-like receptor signaling pathway 104 1.377522425 

50 Transcriptional misregulation in cancer 19 1.315789474 
Table 3.8. Top 50 pathways ranked by T score comparing normal with HCC samples 
based on the Pearson’s correlation cutoff (-0.1). 

 

  

Gene 
Count(L) T score 

1 Circadian rhythm 31 4.602713001 

2 FoxO signaling pathway 126 4.546560009 

3 Hedgehog signaling pathway 47 4.280954331 
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4 Dorso-ventral axis formation 13 3.619026562 

5 GnRH signaling pathway 85 3.515558749 

6 Toll-like receptor signaling pathway 104 2.51299444 

7 Wnt signaling pathway 137 2.398017415 

8 MAPK signaling pathway 252 2.387515249 

9 Rap1 signaling pathway 208 2.379274051 

10 
Epithelial cell signaling in Helicobacter 
pylori infection 37 2.082740987 

11 Shigellosis 51 2.058152132 

12 Renal cell carcinoma 57 2.043148412 

13 Notch signaling pathway 48 1.947882308 

14 Estrogen signaling pathway 89 1.895632946 

15 Calcium signaling pathway 179 1.795913644 

16 Hippo signaling pathway -multiple species 29 1.732928622 

17 Gap junction 88 1.694405214 

18 Thyroid cancer 28 1.671147819 

19 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.628931462 

20 HTLV-I infection 194 1.612144396 

21 Bladder cancer 29 1.394263792 

22 Vascular smooth muscle contraction 114 1.343415467 

23 TNF signaling pathway 72 1.282307963 

24 Amyotrophic lateral sclerosis (ALS) 36 1.229750618 

25 D-Glutamine and D-glutamate metabolism 4 1.180851064 

26 Cocaine addiction 42 1.179303568 

27 Sulfur metabolism 9 1.171049088 

28 MicroRNAs in cancer 262 1.157281824 

29 Fc epsilon RI signaling pathway 61 1.142588348 

30 Long-term depression 59 1.125250203 

31 Chagas disease (American trypanosomiasis) 89 1.10760282 

32 Salmonella infection 72 1.098184761 

33 RNA degradation 18 1.083488434 

34 Tight junction 125 1.077236311 

35 Insulin signaling pathway 139 1.009797097 

36 Leishmaniasis 50 0.985719996 

37 Viral carcinogenesis 6 0.959459459 

38 mTOR signaling pathway 144 0.94384078 

39 Adherens junction 71 0.924425552 

40 Oocyte meiosis 120 0.915631395 

41 Bacterial invasion of epithelial cells 57 0.913453176 

42 Tuberculosis 173 0.91194481 

43 Vasopressin-regulated water reabsorption 22 0.897284788 

44 RIG-I-like receptor signaling pathway 48 0.892891945 
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45 
Inflammatory mediator regulation of TRP 
channels 91 0.878612581 

46 Retrograde endocannabinoid signaling 59 0.852937341 

47 Type II diabetes mellitus 47 0.843394635 

48 Progesterone-mediated oocyte maturation 89 0.826138972 

49 Thyroid hormone synthesis 46 0.822674589 

50 Glutamatergic synapse 89 0.814505363 
Table 3.9. Top 50 pathways ranked by T score comparing normal with hepatitis B-
induced HCC samples based on the Pearson’s correlation cutoff (-0.3). 

 

  

Gene 
Count(L) T score 

1 Circadian rhythm 31 4.602713001 

2 FoxO signaling pathway 126 4.546560009 

3 Hedgehog signaling pathway 47 4.280954331 

4 Dorso-ventral axis formation 13 3.619026562 

5 GnRH signaling pathway 85 3.515558749 

6 Toll-like receptor signaling pathway 104 2.51299444 

7 Wnt signaling pathway 137 2.398017415 

8 MAPK signaling pathway 252 2.387515249 

9 Rap1 signaling pathway 208 2.379274051 

10 
Epithelial cell signaling in Helicobacter 
pylori infection 37 2.082740987 

11 Shigellosis 51 2.058152132 

12 Renal cell carcinoma 57 2.043148412 

13 Notch signaling pathway 48 1.947882308 

14 Estrogen signaling pathway 89 1.895632946 

15 Calcium signaling pathway 179 1.795913644 

16 Hippo signaling pathway -multiple species 29 1.732928622 

17 Gap junction 88 1.694405214 

18 Thyroid cancer 28 1.671147819 

19 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.628931462 

20 HTLV-I infection 194 1.612144396 

21 Bladder cancer 29 1.394263792 

22 Vascular smooth muscle contraction 114 1.343415467 

23 TNF signaling pathway 72 1.282307963 

24 Amyotrophic lateral sclerosis (ALS) 36 1.229750618 

25 D-Glutamine and D-glutamate metabolism 4 1.180851064 

26 Cocaine addiction 42 1.179303568 

27 Sulfur metabolism 9 1.171049088 

28 MicroRNAs in cancer 262 1.157281824 

29 Fc epsilon RI signaling pathway 61 1.142588348 
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30 Long-term depression 59 1.125250203 

31 Chagas disease (American trypanosomiasis) 89 1.10760282 

32 Salmonella infection 72 1.098184761 

33 RNA degradation 18 1.083488434 

34 Tight junction 125 1.077236311 

35 Insulin signaling pathway 139 1.009797097 

36 Leishmaniasis 50 0.985719996 

37 Viral carcinogenesis 6 0.959459459 

38 mTOR signaling pathway 144 0.94384078 

39 Adherens junction 71 0.924425552 

40 Oocyte meiosis 120 0.915631395 

41 Bacterial invasion of epithelial cells 57 0.913453176 

42 Tuberculosis 173 0.91194481 

43 Vasopressin-regulated water reabsorption 22 0.897284788 

44 RIG-I-like receptor signaling pathway 48 0.892891945 

45 
Inflammatory mediator regulation of TRP 
channels 91 0.878612581 

46 Retrograde endocannabinoid signaling 59 0.852937341 

47 Type II diabetes mellitus 47 0.843394635 

48 Progesterone-mediated oocyte maturation 89 0.826138972 

49 Thyroid hormone synthesis 46 0.822674589 

50 Glutamatergic synapse 89 0.814505363 
Table 3.10. Top 50 pathways ranked by T score comparing normal with hepatitis B-
induced HCC samples based on the Pearson’s correlation cutoff (-0.2). 

 

  

Gene 
Count(L) T score 

1 Circadian rhythm 31 4.602713001 

2 FoxO signaling pathway 126 4.546560009 

3 Hedgehog signaling pathway 47 4.280954331 

4 Dorso-ventral axis formation 13 3.619026562 

5 GnRH signaling pathway 85 3.515558749 

6 Toll-like receptor signaling pathway 104 2.51299444 

7 Wnt signaling pathway 137 2.398017415 

8 MAPK signaling pathway 252 2.387515249 

9 Rap1 signaling pathway 208 2.379274051 

10 
Epithelial cell signaling in Helicobacter 
pylori infection 37 2.082740987 

11 Shigellosis 51 2.058152132 

12 Renal cell carcinoma 57 2.043148412 

13 Notch signaling pathway 48 1.947882308 

14 Estrogen signaling pathway 89 1.895632946 

15 Calcium signaling pathway 179 1.795913644 
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16 Hippo signaling pathway -multiple species 29 1.732928622 

17 Gap junction 88 1.694405214 

18 Thyroid cancer 28 1.671147819 

19 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.628931462 

20 HTLV-I infection 194 1.612144396 

21 Bladder cancer 29 1.394263792 

22 Vascular smooth muscle contraction 114 1.343415467 

23 TNF signaling pathway 72 1.282307963 

24 Amyotrophic lateral sclerosis (ALS) 36 1.229750618 

25 D-Glutamine and D-glutamate metabolism 4 1.180851064 

26 Cocaine addiction 42 1.179303568 

27 Sulfur metabolism 9 1.171049088 

28 MicroRNAs in cancer 262 1.157281824 

29 Fc epsilon RI signaling pathway 61 1.142588348 

30 Long-term depression 59 1.125250203 

31 Chagas disease (American trypanosomiasis) 89 1.10760282 

32 Salmonella infection 72 1.098184761 

33 RNA degradation 18 1.083488434 

34 Tight junction 125 1.077236311 

35 Insulin signaling pathway 139 1.009797097 

36 Leishmaniasis 50 0.985719996 

37 Viral carcinogenesis 6 0.959459459 

38 mTOR signaling pathway 144 0.94384078 

39 Adherens junction 71 0.924425552 

40 Oocyte meiosis 120 0.915631395 

41 Bacterial invasion of epithelial cells 57 0.913453176 

42 Tuberculosis 173 0.91194481 

43 Vasopressin-regulated water reabsorption 22 0.897284788 

44 RIG-I-like receptor signaling pathway 48 0.892891945 

45 
Inflammatory mediator regulation of TRP 
channels 91 0.878612581 

46 Retrograde endocannabinoid signaling 59 0.852937341 

47 Type II diabetes mellitus 47 0.843394635 

48 Progesterone-mediated oocyte maturation 89 0.826138972 

49 Thyroid hormone synthesis 46 0.822674589 

50 Glutamatergic synapse 89 0.814505363 
Table 3.11. Top 50 pathways ranked by T score comparing normal with hepatitis B-
induced HCC samples based on the Pearson’s correlation cutoff (-0.1). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 5.046943443 
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2 Rap1 signaling pathway 208 4.065776968 

3 Hedgehog signaling pathway 47 3.836894713 

4 Cocaine addiction 42 2.779786983 

5 Circadian rhythm 31 2.594256419 

6 Wnt signaling pathway 137 2.398017415 

7 Hippo signaling pathway -multiple species 29 2.342737659 

8 RNA degradation 18 1.950279181 

9 Renal cell carcinoma 57 1.911332385 

10 Notch signaling pathway 48 1.888855572 

11 Vascular smooth muscle contraction 114 1.796469051 

12 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.74328513 

13 Shigellosis 51 1.741513343 

14 MAPK signaling pathway 252 1.720852339 

15 Bacterial invasion of epithelial cells 57 1.717291971 

16 Steroid biosynthesis 20 1.622392948 

17 mTOR signaling pathway 144 1.618051267 

18 Estrogen signaling pathway 89 1.608441789 

19 Thyroid cancer 28 1.606872903 

20 Dorso-ventral axis formation 13 1.57348981 

21 Calcium signaling pathway 179 1.532591743 

22 MicroRNAs in cancer 262 1.506902683 

23 Parkinson's disease 29 1.381536755 

24 Progesterone-mediated oocyte maturation 89 1.343600254 

25 Insulin resistance 94 1.285414079 

26 Vasopressin-regulated water reabsorption 22 1.271153449 

27 HTLV-I infection 194 1.217230571 

28 Tight junction 125 1.212432605 

29 Bladder cancer 29 1.203205273 

30 Inflammatory bowel disease (IBD) 48 1.148826083 

31 Leukocyte transendothelial migration 85 1.128676988 

32 
Epithelial cell signaling in Helicobacter 
pylori infection 37 1.109696624 

33 Insulin signaling pathway 139 1.055000849 

34 Adipocytokine signaling pathway 63 1.046300074 

35 Amyotrophic lateral sclerosis (ALS) 36 0.983800494 

36 GnRH signaling pathway 85 0.966264685 

37 Breast cancer 143 0.943208322 

38 Oocyte meiosis 120 0.927522712 

39 Adherens junction 71 0.904756923 

40 Long-term potentiation 67 0.873254968 

41 Axon guidance 167 0.867502498 

42 Cytosolic DNA-sensing pathway 21 0.862616564 
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43 ECM-receptor interaction 81 0.858243412 

44 Toll-like receptor signaling pathway 104 0.851435884 

45 Long-term depression 59 0.834863053 

46 alpha-Linolenic acid metabolism 25 0.815135135 

47 Pancreatic cancer 65 0.80634025 

48 Gap junction 88 0.799606955 

49 
Signaling pathways regulating pluripotency 
of stem cells 112 0.783109171 

50 Alzheimer's disease 48 0.771233168 
Table 3.12. Top 50 pathways ranked by T score comparing normal with hepatitis C-
induced HCC samples based on the Pearson’s correlation cutoff (-0.3). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 5.046943443 

2 Rap1 signaling pathway 208 4.065776968 

3 Hedgehog signaling pathway 47 3.836894713 

4 Cocaine addiction 42 2.779786983 

5 Circadian rhythm 31 2.594256419 

6 Wnt signaling pathway 137 2.398017415 

7 Hippo signaling pathway -multiple species 29 2.342737659 

8 RNA degradation 18 1.950279181 

9 Renal cell carcinoma 57 1.911332385 

10 Notch signaling pathway 48 1.888855572 

11 Vascular smooth muscle contraction 114 1.796469051 

12 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.74328513 

13 Shigellosis 51 1.741513343 

14 MAPK signaling pathway 252 1.720852339 

15 Bacterial invasion of epithelial cells 57 1.717291971 

16 Steroid biosynthesis 20 1.622392948 

17 mTOR signaling pathway 144 1.618051267 

18 Estrogen signaling pathway 89 1.608441789 

19 Thyroid cancer 28 1.606872903 

20 Dorso-ventral axis formation 13 1.57348981 

21 Calcium signaling pathway 179 1.532591743 

22 MicroRNAs in cancer 262 1.506902683 

23 Parkinson's disease 29 1.381536755 

24 Progesterone-mediated oocyte maturation 89 1.343600254 

25 Insulin resistance 94 1.285414079 

26 Vasopressin-regulated water reabsorption 22 1.271153449 

27 HTLV-I infection 194 1.217230571 

28 Tight junction 125 1.212432605 
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29 Bladder cancer 29 1.203205273 

30 Inflammatory bowel disease (IBD) 48 1.148826083 

31 Leukocyte transendothelial migration 85 1.128676988 

32 
Epithelial cell signaling in Helicobacter 
pylori infection 37 1.109696624 

33 Insulin signaling pathway 139 1.055000849 

34 Adipocytokine signaling pathway 63 1.046300074 

35 Amyotrophic lateral sclerosis (ALS) 36 0.983800494 

36 GnRH signaling pathway 85 0.966264685 

37 Breast cancer 143 0.943208322 

38 Oocyte meiosis 120 0.927522712 

39 Adherens junction 71 0.904756923 

40 Long-term potentiation 67 0.873254968 

41 Axon guidance 167 0.867502498 

42 Cytosolic DNA-sensing pathway 21 0.862616564 

43 ECM-receptor interaction 81 0.858243412 

44 Toll-like receptor signaling pathway 104 0.851435884 

45 Long-term depression 59 0.834863053 

46 alpha-Linolenic acid metabolism 25 0.815135135 

47 Pancreatic cancer 65 0.80634025 

48 Gap junction 88 0.799606955 

49 
Signaling pathways regulating pluripotency 
of stem cells 112 0.783109171 

50 Alzheimer's disease 48 0.771233168 
Table 3.13. Top 50 pathways ranked by T score comparing normal with hepatitis C-
induced HCC samples based on the Pearson’s correlation cutoff (-0.2). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 5.046943443 

2 Rap1 signaling pathway 208 4.065776968 

3 Hedgehog signaling pathway 47 3.836894713 

4 Cocaine addiction 42 2.779786983 

5 Circadian rhythm 31 2.594256419 

6 Wnt signaling pathway 137 2.398017415 

7 Hippo signaling pathway -multiple species 29 2.342737659 

8 RNA degradation 18 1.950279181 

9 Renal cell carcinoma 57 1.911332385 

10 Notch signaling pathway 48 1.888855572 

11 Vascular smooth muscle contraction 114 1.796469051 

12 
AGE-RAGE signaling pathway in diabetic 
complications 91 1.74328513 

13 Shigellosis 51 1.741513343 
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14 MAPK signaling pathway 252 1.720852339 

15 Bacterial invasion of epithelial cells 57 1.717291971 

16 Steroid biosynthesis 20 1.622392948 

17 mTOR signaling pathway 144 1.618051267 

18 Estrogen signaling pathway 89 1.608441789 

19 Thyroid cancer 28 1.606872903 

20 Dorso-ventral axis formation 13 1.57348981 

21 Calcium signaling pathway 179 1.532591743 

22 MicroRNAs in cancer 262 1.506902683 

23 Parkinson's disease 29 1.381536755 

24 Progesterone-mediated oocyte maturation 89 1.343600254 

25 Insulin resistance 94 1.285414079 

26 Vasopressin-regulated water reabsorption 22 1.271153449 

27 HTLV-I infection 194 1.217230571 

28 Tight junction 125 1.212432605 

29 Bladder cancer 29 1.203205273 

30 Inflammatory bowel disease (IBD) 48 1.148826083 

31 Leukocyte transendothelial migration 85 1.128676988 

32 
Epithelial cell signaling in Helicobacter pylori 
infection 37 1.109696624 

33 Insulin signaling pathway 139 1.055000849 

34 Adipocytokine signaling pathway 63 1.046300074 

35 Amyotrophic lateral sclerosis (ALS) 36 0.983800494 

36 GnRH signaling pathway 85 0.966264685 

37 Breast cancer 143 0.943208322 

38 Oocyte meiosis 120 0.927522712 

39 Adherens junction 71 0.904756923 

40 Long-term potentiation 67 0.873254968 

41 Axon guidance 167 0.867502498 

42 Cytosolic DNA-sensing pathway 21 0.862616564 

43 ECM-receptor interaction 81 0.858243412 

44 Toll-like receptor signaling pathway 104 0.851435884 

45 Long-term depression 59 0.834863053 

46 alpha-Linolenic acid metabolism 25 0.815135135 

47 Pancreatic cancer 65 0.80634025 

48 Gap junction 88 0.799606955 

49 
Signaling pathways regulating pluripotency of 
stem cells 112 0.783109171 

50 Alzheimer's disease 48 0.771233168 
Table 3.14. Top 50 pathways ranked by T score comparing normal with hepatitis C-
induced HCC samples based on the Pearson’s correlation cutoff (-0.1). 
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Gene 
Count(L) T score 

1 FoxO signaling pathway 126 3.81448289 

2 Cocaine addiction 42 3.622146675 

3 Hedgehog signaling pathway 47 3.071150497 

4 Rap1 signaling pathway 208 2.442721359 

5 Circadian rhythm 31 2.426885037 

6 Fatty acid biosynthesis 13 2.385487428 

7 Estrogen signaling pathway 89 2.363686878 

8 RNA degradation 18 2.22115129 

9 Calcium signaling pathway 179 2.059235544 

10 Hippo signaling pathway -multiple species 29 2.051175853 

11 Notch signaling pathway 48 1.829828835 

12 Glutamatergic synapse 89 1.820659046 

13 Morphine addiction 54 1.665147311 

14 alpha-Linolenic acid metabolism 25 1.63027027 

15 Vascular smooth muscle contraction 114 1.617006058 

16 Retrograde endocannabinoid signaling 59 1.578841462 

17 Shigellosis 51 1.551530069 

18 Wnt signaling pathway 137 1.539779604 

19 MAPK signaling pathway 252 1.457294704 

20 Pancreatic secretion 30 1.382495611 

21 Long-term depression 59 1.379338958 

22 Vasopressin-regulated water reabsorption 22 1.345927182 

23 HTLV-I infection 194 1.327880745 

24 Insulin resistance 94 1.325244579 

25 GABAergic synapse 66 1.285849245 

26 mTOR signaling pathway 144 1.245297312 

27 Thyroid hormone synthesis 46 1.22254989 

28 Huntington's disease 27 1.195229442 

29 Bacterial invasion of epithelial cells 57 1.132681938 

30 Maturity onset diabetes of the young 24 1.101228136 

31 Circadian entrainment 96 1.053790085 

32 MicroRNAs in cancer 262 1.053638972 

33 Gap junction 88 1.028066085 

34 Inflammatory bowel disease (IBD) 48 1.00344928 

35 Progesterone-mediated oocyte maturation 89 0.983890456 

36 
AGE-RAGE signaling pathway in diabetic 
complications 91 0.972996351 

37 GnRH signaling pathway 85 0.925147039 

38 Long-term potentiation 67 0.894620948 

39 Dopaminergic synapse 124 0.893777542 
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40 
Epithelial cell signaling in Helicobacter 
pylori infection 37 0.880104219 

41 Oocyte meiosis 120 0.879957445 

42 Chagas disease (American trypanosomiasis) 89 0.836077118 

43 Aldosterone synthesis and secretion 65 0.82394993 

44 Toll-like receptor signaling pathway 104 0.821858671 

45 Melanogenesis 101 0.820322345 

46 Alzheimer's disease 48 0.807137423 

47 Insulin secretion 54 0.792002705 

48 Renal cell carcinoma 57 0.790896159 

49 Transcriptional misregulation in cancer 19 0.789473684 

50 Valine, leucine and isoleucine degradation 48 0.783476417 
Table 3.15. Top 50 pathways ranked by T score comparing normal with alcohol-
induced HCC samples based on the Pearson’s correlation cutoff (-0.3). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 6.253538533 

2 Cocaine addiction 42 5.222630089 

3 Hedgehog signaling pathway 47 4.694720306 

4 Rap1 signaling pathway 208 3.85374078 

5 Circadian rhythm 31 3.682170401 

6 Estrogen signaling pathway 89 3.520828277 

7 Calcium signaling pathway 179 3.367955103 

8 Hippo signaling pathway -multiple species 29 3.270793928 

9 RNA degradation 18 2.762895507 

10 Glutamatergic synapse 89 2.68307649 

11 Wnt signaling pathway 137 2.650440301 

12 alpha-Linolenic acid metabolism 25 2.445405405 

13 Notch signaling pathway 48 2.420096201 

14 Morphine addiction 54 2.417885137 

15 Shigellosis 51 2.406454801 

16 Retrograde endocannabinoid signaling 59 2.395483597 

17 Fatty acid biosynthesis 13 2.385487428 

18 Vascular smooth muscle contraction 114 2.382841389 

19 Dorso-ventral axis formation 13 2.202885734 

20 Pancreatic secretion 30 2.172493102 

21 Long-term depression 59 2.141605224 

22 MAPK signaling pathway 252 2.141135101 

23 Renal cell carcinoma 57 2.109056425 

24 Vasopressin-regulated water reabsorption 22 2.093664505 

25 
AGE-RAGE signaling pathway in diabetic 
complications 91 2.027075732 



88 
 

26 Insulin resistance 94 1.980597638 

27 HTLV-I infection 194 1.959119287 

28 mTOR signaling pathway 144 1.939310767 

29 Huntington's disease 27 1.930755252 

30 Thyroid hormone synthesis 46 1.828730001 

31 GABAergic synapse 66 1.807643141 

32 GnRH signaling pathway 85 1.685823494 

33 Bacterial invasion of epithelial cells 57 1.680753844 

34 Maturity onset diabetes of the young 24 1.651842204 

35 Circadian entrainment 96 1.580685128 

36 Gap junction 88 1.580175649 

37 Progesterone-mediated oocyte maturation 89 1.551298787 

38 
Epithelial cell signaling in Helicobacter 
pylori infection 37 1.492350632 

39 MicroRNAs in cancer 262 1.491486361 

40 Salmonella infection 72 1.453479831 

41 Long-term potentiation 67 1.426557728 

42 Toll-like receptor signaling pathway 104 1.41340293 

43 Insulin signaling pathway 139 1.360570584 

44 Tight junction 125 1.350305952 

45 Dopaminergic synapse 124 1.329235264 

46 Oocyte meiosis 120 1.308044851 

47 Inflammatory bowel disease (IBD) 48 1.294202886 

48 Melanogenesis 101 1.282685848 

49 
Inflammatory mediator regulation of TRP 
channels 91 1.258568268 

50 Insulin secretion 54 1.257426218 
Table 3.16. Top 50 pathways ranked by T score comparing normal with alcohol-
induced HCC samples based on the Pearson’s correlation cutoff (-0.2). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 6.253538533 

2 Cocaine addiction 42 
5.22263008

9 

3 Hedgehog signaling pathway 47 
4.69472030

6 

4 Rap1 signaling pathway 208 3.85374078 

5 Circadian rhythm 31 3.682170401 

6 Estrogen signaling pathway 89 3.520828277 

7 Calcium signaling pathway 179 3.367955103 

8 Hippo signaling pathway -multiple species 29 3.270793928 

9 RNA degradation 18 2.762895507 
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10 Glutamatergic synapse 89 2.68307649 

11 Wnt signaling pathway 137 2.650440301 

12 alpha-Linolenic acid metabolism 25 2.445405405 

13 Notch signaling pathway 48 2.420096201 

14 Morphine addiction 54 2.417885137 

15 Shigellosis 51 2.406454801 

16 Retrograde endocannabinoid signaling 59 2.395483597 

17 Fatty acid biosynthesis 13 2.385487428 

18 Vascular smooth muscle contraction 114 2.382841389 

19 Dorso-ventral axis formation 13 2.202885734 

20 Pancreatic secretion 30 2.172493102 

21 Long-term depression 59 2.141605224 

22 MAPK signaling pathway 252 2.141135101 

23 Renal cell carcinoma 57 2.109056425 

24 Vasopressin-regulated water reabsorption 22 
2.09366450

5 

25 
AGE-RAGE signaling pathway in diabetic 
complications 91 2.027075732 

26 Insulin resistance 94 1.980597638 

27 HTLV-I infection 194 1.959119287 

28 mTOR signaling pathway 144 1.939310767 

29 Huntington's disease 27 1.930755252 

30 Thyroid hormone synthesis 46 1.828730001 

31 GABAergic synapse 66 1.807643141 

32 GnRH signaling pathway 85 1.685823494 

33 Bacterial invasion of epithelial cells 57 1.680753844 

34 Maturity onset diabetes of the young 24 1.651842204 

35 Circadian entrainment 96 1.580685128 

36 Gap junction 88 1.580175649 

37 Progesterone-mediated oocyte maturation 89 1.551298787 

38 
Epithelial cell signaling in Helicobacter 
pylori infection 37 1.492350632 

39 MicroRNAs in cancer 262 1.491486361 

40 Salmonella infection 72 1.453479831 

41 Long-term potentiation 67 1.426557728 

42 Toll-like receptor signaling pathway 104 1.41340293 

43 Insulin signaling pathway 139 1.360570584 

44 Tight junction 125 1.350305952 

45 Dopaminergic synapse 124 1.329235264 

46 Oocyte meiosis 120 1.308044851 

47 Inflammatory bowel disease (IBD) 48 1.294202886 

48 Melanogenesis 101 1.282685848 

49 
Inflammatory mediator regulation of TRP 
channels 91 1.258568268 
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50 Insulin secretion 54 1.257426218 
Table 3.17. Top 50 pathways ranked by T score comparing normal with alcohol-induced 
HCC samples based on the Pearson’s correlation cutoff (-0.1). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 0.285933 

2 RNA degradation 18 0.270872 

3 Bladder cancer 29 0.133689 

4 MicroRNAs in cancer 262 0.111402 

5 Hedgehog signaling pathway 47 0.107228 

6 Circadian rhythm 31 0.083686 

7 Amyotrophic lateral sclerosis (ALS) 36 0.081983 

8 Platinum drug resistance 41 0.080392 

9 p53 signaling pathway 68 0.066399 

10 Shigellosis 51 0.063328 

11 Phototransduction 27 0.062432 

12 Cell cycle 124 0.057685 

13 Hippo signaling pathway -multiple species 29 0.055437 

14 Transcriptional misregulation in cancer 19 0.052632 

15 Pancreatic cancer 65 0.047432 

16 HTLV-I infection 194 0.041036 

17 
AGE-RAGE signaling pathway in diabetic 
complications 91 0.040542 

18 Bacterial invasion of epithelial cells 57 0.036538 

19 Small cell lung cancer 83 0.03451 

20 Pathogenic Escherichia coli infection 40 0.03419 

21 Hepatitis B 134 0.033589 

22 Phagosome 32 0.033142 

23 HIF-1 signaling pathway 102 0.032685 

24 Galactose metabolism 28 0.032464 

25 Salmonella infection 72 0.0323 

26 Chronic myeloid leukemia 73 0.032277 

27 Breast cancer 143 0.032064 

28 EGFR tyrosine kinase inhibitor resistance 81 0.029106 

29 Non-small cell lung cancer 54 0.02828 

30 Glioma 66 0.028163 

31 Melanoma 69 0.027454 

32 Starch and sucrose metabolism 36 0.026393 

33 PI3K-Akt signaling pathway 340 0.026082 

34 Adipocytokine signaling pathway 63 0.02552 

35 Wnt signaling pathway 137 0.025242 
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36 Sphingolipid metabolism 47 0.02522 

37 Oocyte meiosis 120 0.023783 

38 Insulin signaling pathway 139 0.022193 

39 Progesterone-mediated oocyte maturation 89 0.021561 

40 Apoptosis 133 0.020906 

41 Tuberculosis 173 0.019046 

42 Gap junction 88 0.019038 

43 Insulin resistance 94 0.01884 

44 Pathways in cancer 310 0.018686 

45 Protein processing in endoplasmic reticulum 51 0.018554 

46 MAPK signaling pathway 252 0.017528 

47 Glycerophospholipid metabolism 94 0.017197 

48 NF-kappa B signaling pathway 81 0.017163 

49 Central carbon metabolism in cancer 63 0.017052 

50 Leukocyte transendothelial migration 85 0.016573 
Table 3.18. Top 50 pathways ranked by T score comparing normal with HCC samples 
based on the Pearson’s correlation cutoff (-0.4). 

 

  

Gene 
Count(L) T score 

1 FoxO signaling pathway 126 1.366805 

2 Hedgehog signaling pathway 47 1.141043 

3 Circadian rhythm 31 1.087914 

4 Dorso-ventral axis formation 13 0.786745 

5 Rap1 signaling pathway 208 0.666197 

6 Wnt signaling pathway 137 0.6563 

7 RNA degradation 18 0.650093 

8 Oxidative phosphorylation 47 0.619513 

9 Renal cell carcinoma 57 0.593172 

10 Bladder cancer 29 0.534758 

11 Ribosome biogenesis in eukaryotes 3 
0.48648

6 

12 Shigellosis 51 0.474958 

13 Toll-like receptor signaling pathway 104 0.473235 

14 MAPK signaling pathway 252 0.472747 

15 HTLV-I infection 194 0.463854 

16 GnRH signaling pathway 85 0.411176 

17 Amyotrophic lateral sclerosis (ALS) 36 0.409917 

18 MicroRNAs in cancer 262 0.389905 

19 Hippo signaling pathway -multiple species 29 0.38806 

20 Vasopressin-regulated water reabsorption 22 0.373869 

21 Estrogen signaling pathway 89 0.369246 
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22 Parkinson's disease 29 0.345384 

23 Fatty acid biosynthesis 13 0.340784 

24 Sphingolipid metabolism 47 0.327862 

25 
AGE-RAGE signaling pathway in diabetic 
complications 91 0.324332 

26 Salmonella infection 72 0.322996 

27 Viral carcinogenesis 6 0.31982 

28 Legionellosis 40 0.316216 

29 
Epithelial cell signaling in Helicobacter pylori 
infection 37 0.306123 

30 Platinum drug resistance 41 0.294772 

31 Sulfur metabolism 9 0.292762 

32 Bacterial invasion of epithelial cells 57 0.292305 

33 Antigen processing and presentation 62 0.273428 

34 Thyroid cancer 28 0.2571 

35 Cocaine addiction 42 0.252708 

36 Notch signaling pathway 48 0.236107 

37 RIG-I-like receptor signaling pathway 48 0.22424 

38 Insulin signaling pathway 139 0.221931 

39 Regulation of autophagy 19 0.217501 

40 Nitrogen metabolism 4 0.2173 

41 TNF signaling pathway 72 
0.20428

4 

42 Inflammatory mediator regulation of TRP channels 91 0.202757 

43 Adherens junction 71 0.196686 

44 Fc epsilon RI signaling pathway 61 0.195855 

45 Thyroid hormone synthesis 46 0.19357 

46 Pyrimidine metabolism 105 0.188895 

47 p53 signaling pathway 68 0.185916 

48 Vascular smooth muscle contraction 114 0.182394 

49 Tuberculosis 173 0.180941 

50 HIF-1 signaling pathway 102 0.179767 
Table 3.19. Top 50 pathways ranked by T score comparing normal with hepatitis B-
induced HCC samples based on the Pearson’s correlation cutoff (-0.4). 

 

  

Gene 
Count(L) T score 

1 Hedgehog signaling pathway 47 0.589755 

2 RNA degradation 18 0.433395 

3 Bladder cancer 29 0.401068 

4 FoxO signaling pathway 126 0.366039 

5 Fatty acid biosynthesis 13 0.340784 

6 Circadian rhythm 31 0.334743 
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7 Lipoic acid metabolism 3 0.303191 

8 Steroid biosynthesis 20 
0.28402

6 

9 Porphyrin and chlorophyll metabolism 39 0.26793 

10 Homologous recombination 18 0.241308 

11 Nitrogen metabolism 4 0.2173 

12 Shigellosis 51 0.189983 

13 Parkinson's disease 29 0.172692 

14 Amyotrophic lateral sclerosis (ALS) 36 0.163967 

15 Rap1 signaling pathway 208 0.158618 

16 MicroRNAs in cancer 262 0.153177 

17 Wnt signaling pathway 137 0.151454 

18 Sulfur metabolism 9 0.146381 

19 Platinum drug resistance 41 0.133987 

20 Drug metabolism - cytochrome P450 70 0.13375 

21 Fanconi anemia pathway 40 0.133169 

22 Butanoate metabolism 27 0.114959 

23 Viral myocarditis 26 0.113768 

24 Hippo signaling pathway -multiple species 29 0.110874 

25 Valine, leucine and isoleucine degradation 48 0.109783 

26 Bacterial invasion of epithelial cells 57 0.109614 

27 Legionellosis 40 0.105405 

28 Pathogenic Escherichia coli infection 40 0.10257 

29 Sphingolipid metabolism 47 0.100881 

30 Cell cycle 124 0.096141 

31 Fatty acid degradation 42 0.092897 

32 Vascular smooth muscle contraction 114 0.091197 

33 MAPK signaling pathway 252 0.087642 

34 Ascorbate and aldarate metabolism 21 0.084129 

35 Lysine degradation 55 0.082721 

36 
AGE-RAGE signaling pathway in diabetic 
complications 91 0.081083 

37 TGF-beta signaling pathway 73 
0.08069

2 

38 p53 signaling pathway 68 0.079678 

39 
Arrhythmogenic right ventricular cardiomyopathy 
(ARVC) 10 0.077027 

40 Tuberculosis 173 0.076186 

41 Folate biosynthesis 14 0.071429 

42 Pancreatic cancer 65 0.071148 

43 HTLV-I infection 194 0.068393 

44 Phagosome 32 
0.06628

4 
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45 Renal cell carcinoma 57 
0.06590

8 

46 Natural killer cell mediated cytotoxicity 134 0.064933 

47 Salmonella infection 72 0.064599 

48 Colorectal cancer 49 0.064341 

49 Thyroid cancer 28 0.064275 

50 Breast cancer 143 0.064129 
Table 3.20. Top 50 pathways ranked by T score comparing normal with hepatitis C-
induced HCC samples based on the Pearson’s correlation cutoff (-0.4). 

 

  

Gene 
Count(L) T score 

1 Fatty acid biosynthesis 13 0.340784 

2 RNA degradation 18 0.270872 

3 FoxO signaling pathway 126 0.21445 

4 Bladder cancer 29 0.133689 

5 Phototransduction 27 0.124864 

6 Hedgehog signaling pathway 47 0.107228 

7 Circadian rhythm 31 0.083686 

8 Amyotrophic lateral sclerosis (ALS) 36 0.081983 

9 Platinum drug resistance 41 0.080392 

10 Shigellosis 51 0.063328 

11 MicroRNAs in cancer 262 0.055701 

12 Hippo signaling pathway -multiple species 29 0.055437 

13 Propanoate metabolism 32 0.053321 

14 
AGE-RAGE signaling pathway in diabetic 
complications 91 0.040542 

15 Bacterial invasion of epithelial cells 57 0.036538 

16 Pathogenic Escherichia coli infection 40 0.03419 

17 Phagosome 32 0.033142 

18 HIF-1 signaling pathway 102 0.032685 

19 Salmonella infection 72 0.0323 

20 EGFR tyrosine kinase inhibitor resistance 81 0.029106 

21 HTLV-I infection 194 0.027357 

22 Wnt signaling pathway 137 0.025242 

23 Sphingolipid metabolism 47 0.02522 

24 Pyruvate metabolism 39 0.023651 

25 Insulin signaling pathway 139 0.022193 

26 Apoptosis 133 
0.02090

6 

27 Cell cycle 124 0.019228 

28 Tuberculosis 173 0.019046 

29 Protein processing in endoplasmic reticulum 51 0.018554 
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30 MAPK signaling pathway 252 0.017528 

31 NF-kappa B signaling pathway 81 0.017163 

32 Central carbon metabolism in cancer 63 0.017052 

33 Natural killer cell mediated cytotoxicity 134 0.016233 

34 Colorectal cancer 49 0.016085 

35 RNA transport 133 0.015116 

36 AMPK signaling pathway 97 0.014694 

37 PI3K-Akt signaling pathway 340 0.01449 

38 Hepatitis C 97 0.014287 

39 Endocrine resistance 95 0.013688 

40 Hepatitis B 134 0.013436 

41 p53 signaling pathway 68 0.01328 

42 Glucagon signaling pathway 86 0.013129 

43 Chronic myeloid leukemia 73 0.012911 

44 TNF signaling pathway 72 0.012768 

45 Circadian entrainment 96 0.012545 

46 Oocyte meiosis 120 0.011891 

47 Pancreatic cancer 65 0.011858 

48 Prostate cancer 87 0.010359 

49 Pathways in cancer 310 0.009343 

50 Hippo signaling pathway 151 0.009231 
Table 3.21. Top 50 pathways ranked by T score comparing normal with alcohol-
induced HCC samples based on the Pearson’s correlation cutoff (-0.4). 
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Chapter 4: Conclusion, Discussion and Next Steps 

Complex diseases such as cancer are usually result from a combination of environmental 

factors and one or several biological pathways consisting of sets of genes. Each biological 

pathways exerts its own function by delivering signaling through the gene network. The 

interactions and reactions of genes and their products constitute a biological pathway. 

The activation and inhibition of biological pathways directly influence on the onset and 

development of complex diseases. Hence, it is fairly important to detect disease-related 

biological pathways. 

A biological pathway might be influenced by some aberrant genes in this pathway or 

some aberrant regulators, such as miRNAs, that regulate this pathway. In this 

dissertation, we investigate how these two layers of components, genes and miRNAs, 

cause the aberration of biological pathways. 

It is well known that aberrantly expressed genes in the pathway and/or aberrantly 

expressed miRNAs regulating the pathways can trigger dysregulation of the biological 

pathways. There are many studies on this area. The interplay of genes, miRNAs and 

biological pathways has been increasing active over the past decade. Some methods have 

been created to identify functional networks across different phenotypes from changes in 

gene expression, as well as some methods have been created to identify miRNA 

regulatory networks across different phenotypes from changes in miRNA expression. On 

the other hand, altered gene-gene connections in biological pathways and/or altered 

miRNA-mRNA connections might also impact the activity of biological pathways. In this 

dissertation, we discuss how these altered gene-gene connections (Chapter 1) and altered 

miRNA-mRNA connections (Chapter 2) aberrantly influence the activity of biological 

pathways and their association with disease. 
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In Chapter 1, we propose a method called PoTRA, Pathways of Topological Rank 

Analysis, to detect pathways involved in cancer. PoTRA is motivated by that the loss of 

connectivity is a common topological trait of cancer networks, and the prior knowledge 

that a normal biological network is a scale-free network whose degree distribution 

follows a power law where a small number of nodes are hubs and a large number of 

nodes are non-hubs. From normal to cancer state, the process of the network losing 

connectivity could be the process of disrupting the scale-free structure of the network, 

that is to say, the number of hub genes might be altered in cancer compared to that in 

normal samples. Hence, it is hypothesized that if the number of hub genes is different in 

a pathway between normal and cancer, this pathway might be involved in cancer. Based 

on this hypothesis, we propose to detect pathways involved in cancer by testing the 

pathways with altered number of hub genes between normal and cancer samples. 

Thus, the PoTRA method focuses on topological ranks of genes in each pathway, so we 

use the Google search PageRank algorithm to compute the relative topological ranks of 

genes in each pathway across different phenotypes, and then select the hub genes for 

each pathway, then detects pathways with significantly altered number of hub genes 

between normal and cancer samples. For the testing step, we use Fisher’s exact test to 

estimate if the number of hub genes in each pathway is altered between normal and 

cancer. We apply PoTRA to HCC and three subtypes of HCC (hepatitis B, hepatitis C, 

alcohol). We discover many HCC-relevant pathways generally and HCC subtype-relevant 

pathways specifically.  

In Chapter 2, we propose a new PageRank-based method, called miR2Pathway, to 

quantifying the differential effects of miRNAs on the activity of a biological pathway and 

rank disease risk of rewired miRNA-mediated biological pathways. It is motivated that a 

miRNA might differentially regulate genes between normal and cancer, and these 
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differential regulations could aberrantly influence activity of biological pathways. 

Namely, there are two cases. In case 1, a miRNA might regulate several genes in normal 

tissue, while this miRNA might lose these regulatory connections in cancer tissue; in case 

2, this miRNA regulates the same number of non-hub genes in this pathway in normal 

tissue, while it loses the regulatory connections in tumor tissue. Our hypothesis is that 

this miRNA has a larger differential influence on the activity of the pathway in case 1 

than case 2. We use PageRank to compute the topological influence (PageRank scores) of 

the targeted genes in this differential network, which quantifies the topological influence 

of the genes that are differentially targeted by a miRNA on the activity of this pathway. 

Then we can compute the sum of PageRank scores of genes targeted by the miRNA in the 

differential network, which estimates the total differential influence of a miRNA on the 

activity of this pathway. Then, the same procedure is repeated for all miRNAs, so that we 

can obtain a corresponding sum of PageRank scores for each miRNA. For a specific 

pathway, we estimate the total differential influence of all the miRNAs on this pathway 

through summing up all the sums corresponding to all the miRNAs. Namely, the total 

differential influence of all the miRNAs on this pathway reflects the degree of miRNA-

mediated dysregulation of this pathway. We do this for each pathway. Finally, we rank all 

the pathways by the degree of miRNA-mediated dysregulation scores. We apply 

miR2Pathway to HCC and the three subtypes of HCC. Very interestingly, we also 

discover many HCC-relevant pathways generally and HCC subtype-relevant pathways 

specifically.  

For PoTRA, the hypothesis of our study is based on the fact that the loss of connectivity 

is a common topological trait of cancer networks. However, we still cannot well 

understand if this trait is characteristic of other complex diseases. Hence, we have to be 

careful about the applicability of PoTRA to other diseases. Although PoTRA is motivated 
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by work on cancer, it could apply to other complex diseases as well. This direction needs 

to be further explored. For miR2Pathway, miR2Pathway is applied to pre-defined 

biological pathways, from the well-curated KEGG pathway database. To extend this 

application, we also can apply miR2Pathway to any set of genes of interest, such as 

functional gene networks. Additionally, miR2Pathway might also be used to estimate 

differential influence of other regulatory factors, e.g., transcriptional factors (TFs), on 

biological pathways. For another point, miR2Pathway is used to rank the degree of 

miRNA-mediated dysregulation in our study. It is seen that there is no cutoff in it. 

Therefore, how to set up the cutoff level will become an important and interesting 

direction to explore in the future. 
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