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ABSTRACT

Diabetes is a disease characterized by reduced insulin action and secretion, leading

to elevated blood glucose. In the 1990s, studies showed that intravenous injection of

fatty acids led to a sharp negative response in insulin action that subsided hours after

the injection. The molecule associated with diminished insulin signalling response

was a byproduct of fatty acids, diacylglycerol. This dissertation is focused on the

formulation of a model built around the known mechanisms of glucose and fatty acid

storage and metabolism within myocytes, as well as downstream effects of diacylglyc-

erol on insulin action. Data from euglycemic-hyperinsulinemic clamp with fatty acid

infusion studies are used to validate the qualitative behavior of the model and esti-

mate parameters. The model closely matches clinical data and suggests a new metric

to determine quantitative measurements of insulin action downregulation. Analy-

sis and numerical simulation of the long term, piecewise smooth system of ordinary

differential equations demonstrates a discontinuous bifurcation implicating nutrient

excess as a driver of muscular insulin resistance.
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Chapter 1

INTRODUCTION

The prevalence of diabetes has increased significantly in the last 50 years with

type 2 diabetes mellitus (T2DM) accounting for the majority of diabetes cases (CDC,

2013). The pathogenesis of T2DM is understood to be a result of an orchestra of bio-

chemical responses to environmental stimuli, shaped by genetic predisposition (Asso-

ciation et al., 2006). While genetic components have been discovered, the presence

or absence of said genetic components do not turn diabetes on or off, but rather

influence the result of lifestyle behavior. More concisely, diabetes is a disease of afflu-

ence and civilization – showing up wherever American-style diets exist while staying

relatively unseen in communities that eat a more “traditional” diet (Joe, 1994) The

symptoms of diabetes have been known for millenia, characterized by sweet urine

and unquenchable thirst (King and Rubin, 2003). However, the underlying biological

dynamics have only been studied over the last century, as a result of the discovery of

insulin (Banting et al., 1922).

The typical metrics of diabetes recorded include elevated blood sugar, elevated

insulin, and insulin resistance (Association et al., 2006). Adding to the confusion, it

isn’t obvious which of these maladies occurs first (Boden, 1997; Ceriello and Motz,

2004). Elevated blood glucose triggers the pancreas to secrete insulin, and the insulin

then affects the liver, muscles, and fat tissue to consume and utilize the glucose, re-

moving it from the blood. In a healthy human, this process occurs after each meal

and is well regulated in the body (Saltiel and Kahn, 2001). Things take a turn for

the worse, however, when insulin is unable to do its job - this is where the insulin
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resistance comes in. When insulin is ignored by the tissues it targets, the blood

glucose is not consumed and concentrations remain high (Shulman, 2000). The con-

sistently high blood glucose levels force the pancreas to generate and release ever

more insulin, eventually leading to β cell dysfunction. So insulin resistance is the

key that unlocks the path towards diabetes. Additionally, it seems that insulin resis-

tance may not be the direct effect of elevated insulin or glucose, but a response to

excess nutrient consumption and excess fat consumption (Muoio and Newgard, 2008).

Studies in the late 1990’s discovered that lipid content within muscle cells were

correlated with insulin resistance (Perseghin et al., 1999). Further studies showed

that intravenous injection of fatty acids led to a sharp negative response in insulin

action that subsided hours after the injection (Boden et al., 2004, 2001; Roden et al.,

1996). When patients were fed a high-fat diet for 1-week, a 50% increase in IMCL was

seen (Schrauwen-Hinderling et al., 2005). Finally, adipose tissue in the body elevates

plasma free fatty acid concentrations and is linked to elevated IMCL (Capurso and

Capurso, 2012). Taken together, this implicates dietary choices and visceral adipoc-

ity as strong contenders for the cause of insulin resistance. The insulin receptor

(IR) in the muscle cells shed light on the biological reason behind the result – the

insulin receptor substrate (IRS) was serine phosphorylated on a particular residue

which turned the molecule off. When fatty acids accumulate in muscles, a byproduct

called diacylglycerol (DAG) is produced and accumulates in the muscle cell mem-

brane which allows PKC-θ to become activated and serine phosphorylate the IRS

(Yu et al., 2002). The molecule, DAG, is required for many cellular operations, but

when fatty acid concentrations are elevated, the concentration of activated DAG in-

creases (Krebs and Roden, 2005). Additionally, there are other fatty acid byproducts

such as ceramides that result in a similar outcome in vitro, but not necessarily in vivo
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(Krebs and Roden, 2005).

Chronic insulin resistance is of more importance, however. The acute affect of

a high fat meal subsides 12 hours after ingestion (Weintraub et al., 1987), whereas

most people eat meals more frequently. There are multiple hypotheses regarding the

long term generation of IMCL induced insulin resistance. One hypothesis is that fat

in the blood stream is elevated in overweight and obese individuals due to elevated

visceral fat stores which increases the base fatty acid concentration in the blood by

releasing non-esterified fatty acids into the portal vein (Klein, 2004). However, other

studies have shown that subcutaneous fat and IMCL content independently predict

insulin resistance when visceral fat is controlled for, where IMCL concentration has

the strongest predictive power (Goodpaster et al., 1997). Hence there may be a com-

mon cause for both IMCL level and visceral fat stores.

Ingestion of sucrose is suggested to be a cause of visceral fat accumulation (Mat-

suzawa et al., 1995). Direct evidence of sucrose on IMCL accumulation hasn’t been

studied. However, sucrose significantly elevates plasma lipids when compared to an

equi-caloric diet with starch in place of sucrose(Reiser et al., 1979) and elevated

plasma fatty acid availability is the suggested mechanism behind IMCL accumula-

tion. Overconsumption of fructose (a subunit of sucrose) is additionally correlated to

elevated plasma lipids and hepatic insulin resistance (Lê et al., 2009). Additionally,

mouse studies suggest that visceral fat and insulin resistance are indissociable under

high-fat feeding trials (Kim et al., 2000). However, it was noted that neither visceral

fat nor insulin resistance increased when the calories from the high-fat diets were

restricted. Hence, excessive calorie consumption may be a necessary condition for

insulin resistance. Additionally, insulin sensitive patients with elevated IMCL levels
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exhibit elevated lipid oxidation (Perseghin et al., 2002). This is also substantiated

by athlete studies that indicate endurance trained athletes have high IMCL levels

with accompanying high oxidation (Goodpaster et al., 2001). Finally, some propose

that mitochondrial dysfunction is a root cause of IMCL accumulation (Kelley et al.,

2002) due to post-hoc measurements, but this view is contested in rat studies that

concurrently show insulin resistance and an increase in mitochondrial quantity and

activity during high fat feeding (Hancock et al., 2008).

Taken together, it seems that elevated fat or fructose (or sucrose) intake at an

excess of daily caloric requirements is sufficient for IMCL accumulation. Since fatty

acids take hours (∼12) to be utilized and cleared from the blood stream after a meal,

it is not unreasonable to assume that the compounding effect of eating three or more

higher fat and calorie meals per day disallows the body to ever reach basal levels of

plasma lipid concentrations. So the muscles are constantly encountering higher FFA

levels, inflating IMCL concentrations and keeping the IRS turned off. Additionally,

inflammatory pathways have been shown to incite insulin resistance (De Luca and

Olefsky, 2008)

Glucose is shuttled into muscle cells primarily by glucose transporters (GluT4)

that are mobilized and activated when insulin binds to insulin receptors on the mem-

brane of muscle cells. So if the IRS is shut off or insufficiently expressed, GluT4

is not sent to the cell membrane to take in glucose. Increases in IMCL have a di-

rect pathway to disabling the IRS, but inflammatory markers are causally related to

decreased IRS activity or expression (De Luca and Olefsky, 2008; Saghizadeh et al.,

1996). A particularly common inflammatory marker, TNF-α, is expressed at elevated

levels in muscles of patients with insulin resistance (Saghizadeh et al., 1996). The
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elevated TNF-α appears to induce serine phosphorylation of the IRS (Hotamisligil

et al., 1996). Additionally, a mouse model attenuated the affect of high-fat feeding

by replacing 6% of fat intake by omega-3 rich fish oil (Storlien et al., 1987). This

is relevant because omega-3 fatty acids are anti-inflammatory in both human and

animal trials (Simopoulos, 2002), whereas other fatty acids may be pro-inflammatory

(Simopoulos, 2002).

The current biological understanding of these cellular dynamics is at the point

that models can be formulated to study caricatures of the cellular environment. The

molecular kinetics and pathways are complete enough to generate mathematical mod-

els based on observed mechanisms. With such models, in silico experiments can be

conducted to validate the model and ultimately elucidate potential emergent dynam-

ics. The confusion surrounding what people believe to be the “optimal human diet”

and the observed increase in diabetes rates across the world is enough to motivate

such studies.

1.1 Biological Background

1.1.1 Cellular Metabolism of Glucose and Fatty Acids

Mitochondria in muscles oxidize glucose and fatty acids to produce adenosine

triphosphate (ATP) (Alberts et al., 2008). Glucose is derived from dietary carbo-

hydrate sources directly, or by hepatic gluconeogenesis. The body stores glucose

in muscles and in the liver as glycogen which can be quickly converted back into

glucose-6-phosphate when necessary for ATP production. Glycogen in the liver can

be converted back into glucose and released into the bloodstream in response to in-

sulin levels (Sindelar et al., 1998). Glycogen in the muscles, however, is converted to
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glucose-6-phosphate to be metabolized when extracellular sources of glucose are low

or during exercise; glycogen in muscles cannot be reconverted to glucose or released

back into the bloodstream (Van Schaftingen and Gerin, 2002). The liver also con-

verts proteins into glucose through the gluconeogenesis pathway, which becomes the

dominant source of hepatic glucose secretion when liver glycogen is depleted (Tirone

and Brunicardi, 2001).

Figure 1.1: Overview of Intramuscular Metabolic and Regulatory Pathways
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Glucose in the blood needs pores through which to enter muscle and liver cells

(among many others) which are opened through a signal cascade in the cell triggered

by insulin binding to receptor on the cell membrane. Insulin is a peptide hormone

that binds to receptors on many cells to generate behavioral changes. In most situa-

tions, insulin’s main role is to stimulate the process of glucose uptake and utilization.

However, when insulin binds to hepatocytes in the liver, the result is a reduction

in liver mediated glucose generation and release in conjunction with an increase in
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glucose storage as glycogen. Adipose tissue responds to insulin by slowing down fatty

acid release and elevating fat storage as triglycerides. Muscles respond to insulin by

storing glucose as glycogen and oxidizing glucose to create energy.

Throughout the pancreas, there are clusters of cells called Islets of Langerhans that

contain a variety of cells. The most important are the α and β cells that produce

glucagon and insulin, respectively. The β cells constantly release slow, oscillatory

bursts of insulin (Simon and Brandenberger, 2002). But when glucose concentrations

in the blood rise, the cells secrete large quantities of insulin (Rorsman and Renström,

2003).

Muscles have insulin receptors to which insulin binds that aggregate on the cell

membrane, leading to downstream pathways that enable glucose transport into the

cells. The insulin receptors activate themselves when insulin binds by auto-phosphory-

lating their tyrosine residues. Then the insulin receptor substrate (IRS) binds and be-

comes active, attracting a multitude of other molecules to begin various downstream

signals. One of these pathways tells the cell to shuttle glucose transporters (GluT4)

to the cell membrane so glucose can be taken up from the bloodstream.

Glucose inside the cell is modified and converted into glucose-6-phosphate (G6P)

which either gets converted and stored as glycogen or is sent down the metabolic path-

way. The G6P molecules destined to be oxidized in the mitochondria are converted

to pyruvate. Pyruvate is either converted to lactic acid for rapid energy production

during high intensity exercise, or shuttled into the mitochondria where it is converted

into Acetyl-Coenzyme A (A-CoA). The A-CoA enters the krebs cycle which iteratively

generates Adenosine triphosphate (ATP) that the muscle uses for energy dependent
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activities. Acetyl CoA also can be converted by A-CoA Carboxylase (ACC) to be-

come Malonyl CoA, an important molecule in regulating fatty acid metabolism.

Fatty acids, on the other hand, do not require insulin action to enter muscle cells.

As fatty acids are hydrophobic molecules, they can passively diffuse across cellular

membranes. There are fatty acid transporters, but mice studies that knock out the

gene that codes for these transporters demonstrates that they contribute little to fatty

acid infusion under normal conditions. The intracellular fatty acids are lengthened

to long chain fatty acids (LCFA) and either stored or converted for other use. When

fatty acids are stored, they are converted to triglycerides which consist of three fatty

acid tails combined with a glycerol head. Triglycerides in the muscle are called in-

tramyocellular triglycerides (ImcTG) and other intramuscular fatty acids are called

intramyocellular lipids (ImcL).

Some of the LCFAs interact with a catalyst on the mitochondrial membrane called

the carnitine palmitoyltransferase (CPT), which adds a carnitine molecule to the

LCFA allowing it to pass through the mitochondrial membranes. Inside the mito-

chondria, the carnitine is cleaved off and shuttled back out of the mitochondria while

the LCFA is converted to A-CoA. From this point, the A-CoA undergoes the same

process as in glucose metabolism.

The fatty acid transfer process into the mitochondria is regulated by M-CoA. Mal-

onyl CoA deactivates CPT, so LCFAs cannot acquire the carnitine “ticket” into the

mitochondria. This effectively forces the LCFAs to be stored or converted into other

cellular molecules. One of the more important molecules in the context of ImcTG dy-

namics and insulin resistance is Diacylglycerol (DAG), a fatty acid derived molecule

8



that resides in the cell membrane.

1.1.2 Intramyocellular Triglyceride and Insulin Resistance

Fatty acids take on multiple forms, namely they can be coarsely divided into sat-

urated and unsaturated categories. While there is nuance in how different kinds of

saturated and unsaturated fatty acids interact, the general distinction is adequate for

this discussion. Fats are utilized in the body in a number of meaningful and necessary

ways, including the production and maintenance of cellular membranes. Every cell

has a phospholipid bilayer that protects the cell and allows for an intracellular envi-

ronment specific to the various molecular interactions cells need to perform. This cell

membrane is a fluid mosaic of phospholipids of various kinds along with cholesterol

and a host of membrane bound proteins. Fatty acids in the cell are converted into

phospholipids through a variety of pathways depending on the resultant phospholipid.

One particular variety of phospholipid is a phosphoinositide, which is a structure

with a two strand fatty acid tail with an inositol sugar head. The phosphatidylinosi-

tol 4,5-bisphosphate (PI(4,5)P2) is a chemically active phospholipid involved in many

signalling pathways, usually involving G-protein coupled receptors. When PI(4,5)P2

is activated, the inositol sugar head is cleaved off releasing inositol 1,4,5 trisphos-

phate (IP3), which goes on through the cytoplasm to affect downstream pathways

(Alberts et al., 2008). However, the key point is that the fatty acid tail is left in the

cell membrane which is now called diacylglycerol (DAG). Additionally, when fatty

acids are labeled upon ingestion and tracked, unsaturated FA are readily converted

into triglyceride whereas saturated FA are converted to phospholipids, some of which

allow DAG accumulation (Montell et al., 2001).
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The membrane bound DAG is physiologically active, and binds to various forms

of protein kinase C (PKC). When PKC binds to DAG, the PKC molecule can be

activated by calcium ions. The activated PKC molecule is a serine/threonine ac-

tivating molecule, and is namely responsible for serine phosphorylating the insulin

receptor substrate (IRS), effectively shutting off the downstream insulin signal (Yu

et al., 2002). Hence, an accumulation of DAG in the cell membrane allows rapid

and constant PKC activation, which in turn regulates IRS activation and mutes the

insulin signals pathway.

Another phospholipid of note is sphingomyelin. This molecule begins production

in the endoplasmic reticulum (ER) where ceramide is constructed by combining fatty

acids with serine. The ER then exports the ceramide into the golgi apparatus where

it is given a phosphocholine head to form the final sphingomyelin (Alberts et al.,

2008). Again, availability of long chain saturated fatty acids that allow for the start

of ceramide synthesis (Summers, 2006), whereas fatty acids incorporated later in the

production of ceramide can be either saturated or unsaturated. The mechanism by

which ceramide accumulation affects insulin signalling is not clearly understood and

could be due to one of multiple potential interruptions in the insulin signalling path-

way (Summers, 2006). Some argue that ceramide is independently sufficient for IMCL

mediated insulin resistance (Chavez et al., 2003), but since the main mechanism is

still under debate, this research will focus on modeling DAG mediated IRS disruption.
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1.2 Previous Mathematical Work

Mathematical models have been used to understand biological dynamics since at

least the late 18th century, with population growth described by Malthus (Malthus,

1798), resource constrained population growth by Verhulst (Verhulst, 1838) (and

subsequently Pearl and Reed (Pearl and Reed, 1920)), and multi-species competi-

tion models by Lotka and Volterra (Lotka, 1925; Volterra, 1928). The universe of

mathematical biology extends into many subdivisions including epidemiology (Ross,

1911; Kermack and McKendrick, 1927; Brauer et al., 2001), oncology (Wheldon,

1988; Kuang et al., 2016), ecology (Pielou et al., 1969; Levin et al., 2012), bacte-

rial growth and competition (Smith and Waltman, 1995), diabetes (Makroglou et al.,

2006; Bergman et al., 1979), and chemical kinetics (Michaelis and Menten, 1913;

Hill, 1910) to name only a handful. In the field of cell biology and cell signaling,

mathematical models are used to extend what is already known about the cellular

dynamics, and simulate details not easily attainable via experiment (Aldridge et al.,

2006). Moreover, the theory of metabolic control analysis applies models to describe

elasticity of metabolite flux to enzyme activity in metabolic networks (Heinrich and

Rapoport, 1974; Fell, 1992), i.e. what the fractional change in a metabolic variable

is in response to a fractional change in a parameter (Fell, 1992). The mathematical

tools used in metabolic control analysis are important to test the assumed underlying

metabolic pathways, but they do not explore the time dependent changes in chemical

concentrations as do the tools used in chemical kinetics.

The intracellular kinetics of can be modelled with ordinary differential equations

of the general form

dC

dt
= (generation)− (consumption)
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where the generation and consumption terms can be constant, linear, or non-linear

terms such as Michaelis-Menten interactions (Eungdamrong and Iyengar, 2004). Con-

stant terms represent a concentration independent interaction, such as a continual

drip of bacteria into a chemostat (Smith and Thieme, 2013). An example of such an

interaction in a cell might be diffusion of molecule through a semi-porous membrane,

such as glucose through a fixed number of transporters on a cell membrane. Linear

terms often represent concentration dependent birth or death rates, assuming that

these events occur with exponentially distributed waiting times. However, it’s the

nonlinear dynamics that make these intracellular kinetics interesting.

A common class of cellular kinetics are enzyme dynamics which are commonly

modeled with Michaelis-Menten equations (Cornish-Bowden and Cornish-Bowden,

2012). A simple unidirectional enzymatic interaction might be written as

A+ E
k
⇀ E +B

where substrate A binds to enzyme E and becomes substrate B at rate k. However,

this skips an intermediate step where the substrate A is bound to the enzyme for a

period of time

A+ E
k1⇀ AE

k2⇀ B + E

where E is the free enzyme and AE is the bound substrate and enzyme pair. Then

a system of equations can be constructed to model the interaction

d[A]

dt
= −k1[A][E]

d[E]

dt
= −k1[A][E] + k2[AE]

d[AE]

dt
= k1[A][E]− k2[AE]

d[B]

dt
= k2[AE]
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where [·] indicates the concentration. If we call [Et] = [E] + [AE] the fixed total

bound and unbound enzyme, then we can reduce the system to

d[A]

dt
= −k1[A][Et] + k1[AE]

d[AE]

dt
= k1[A][Et]− (k2 + k1[A])[AE]

d[B]

dt
= k2[AE]

If we assume that [A] >> [Et], then we can assume a quasi-steady state for [AE].

Then [AE]′ = 0, so we can solve for [AE]

[AE] =
[Et][A]
k2
k1

+ [A]
.

If we set vmax = k2[Et] and KM = k2
k1

then

d[B]

dt
=

vmax[A]

KM + [A]

where KM is called the Michaelis-Menten constant. As many intracellular interactions

are dependent on enzymes, these functional forms are commonly used to model such

dynamics. However, there are shortcomings to this quasi-steady state approximation

when the low enzyme concentration assumption is not met (Pedersen et al., 2008)

and a more robust approximation may be appropriate (i.e. tQSSA (Borghans et al.,

1996)). Additionally, in the case of competition between multiple substrates (say A

and I) and an enzyme, a modified form of the Michaelis-Menten approximation is

used (Yung-Chi and Prusoff, 1973)

vmax[A]

KM

(
1 + [I]

KI

)
+ [A]

where I inhibits the binding of A to E. Depending on the complexity of enzyme and

inhibitor interactions, various forms of Michaelis-Menten approximations are appro-
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priate.

Exact modeling of intracellular dynamics is weighty and the number of equations

required to capture each interaction between each important molecule makes for very

complicated systems of equations. For example, a mathematical model for sphin-

golipid metabolism in yeast cells required a 63 variable system of equations with even

more parameters (Alvarez-Vasquez et al., 2005). The numerical results validated the

model and in silico experiments allowed testable predictions about the cellular re-

sponse in circumstances that could not be tested experimentally. However, due to

the unwieldy nature of this “kitchen sink” approach to modeling, it is unlikely to

be as useful for cellular dynamics we are less certain about. With this in mind, a

simplistic model that is built on the more important verified cellular dynamics is the

focus of this research.

Furthermore, the biochemical switching that occurs in regulated cellular path-

ways brings about a need to consider piecewise smooth differential equations (PWS).

A PWS system is defined as a system with disjoint domains on which distinct smooth

functions define the dynamics of the system, note that the vector field need not be con-

tinuous on the boundaries between domains (such as in Filippov systems (Di Bernardo

et al., 2008)). Various aspects of PWS systems have been studied, mainly with re-

spect to their applications in mechanical or electrical systems (Bernardo et al., 2008;

Leine and Nijmeijer, 2013). However, the method has been implemented to indi-

cate enzymatic switching in yeast (Simpson et al., 2009), and the basic framework

on which molecular interactions can be modeled by PWS smooth systems have been

discussed (Noel et al., 2010). However, difficulty in such systems arise when cate-

gorizing bifurcations, as PWS systems exhibit bifurcation types that are unseen in
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smooth dynamical systems.

Piecewise smooth differential equations are typically described by

ẋ = Fi(x, ρ;h(x, ρ)), i = 1, 2, . . . ,m

where x = (x1, x2, . . . , xn) is the n-dimensional state variable, ρ is the parameter set,

Fi is the function definition of the system on the interior of each of m domains Ri

(i = 1, 2, . . . ,m), and h(x, ρ) is the switching condition. The boundary that separates

the domains, Ri, is the set Σ = {x|h(x, ρ) = 0}, called the switching manifold. For

example, a simple example in R is

ẋ = −sign(x)

where h(x) = x, F1 = −1 (x > 0), F2 ∈ [−1, 1] (x = 0), and F3 = 1 (x < 0). The

dynamics on the interior of R1 (x > 0) and R2 (x < 0) are simple and easily un-

derstood. However, complications arise when attempting to understand dynamics on

the switching manifold. Systems of this type exhibit border-collision, grazing, sliding,

discontinuous, and discontinuity-induced bifurcations (Bernardo et al., 2008) among

others. Often, these bifurcations occur when interior bifurcations pass through or

touch the switching manifold. However, research in this field has a lot of open prob-

lems concerning specific classes of bifurcations (Colombo et al., 2012).

Full body compartment modelling of glucose-insulin interactions have been stud-

ied and used in clinical settings since at least the 1960s (Bolie, 1961). However, the

nonlinear model introduced by Bergman et al. (1979) which became known as the

“minimal model” was used to define an insulin sensitivity index for frequently sam-

pled intravenous glucose tolerance tests that was vetted against other clinical methods
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of insulin sensitivity determination (Bergman et al., 1987; Welch et al., 1990). The

minimal model was used to create a computational program, MINMOD (Pacini and

Bergman, 1986), that determines an insulin sensitivity index from patient data. This

began a common trend of using models to determine and compare insulin sensitivity,

but others have developed and tested alternative measures of insulin sensitivity to

the gold standard, the euglycemic hyperinsulinemic clamp (Gutt et al., 2000). For

example, the homeostasis model assessment (HOMA) was developed from work by

Turner et al. (1979), which became a standard for measuring insulin resistance and

β-cell function (Matthews et al., 1985). However, the HOMA estimates are insuf-

ficiently precise, and more complicated mathematical models with one or multiple

delays provided improvements over the minimal model (Makroglou et al., 2006). For

instance, Shi et al. (2017), used a system of delayed differential equations to deter-

mine an insulin sensitivity index that improved the results over those obtained by the

minimal model.

The system of delay, integro-differential equations in De Gaetano and Arino (2000)

provided means to improve the insulin release model by requiring insulin release to

depend on the concentration of glucose present in the blood over a past interval of

time. This system was further improved by Li et al. (2001), in which the distributed

delay was weighted over the past time interval. This modification resulted in the

presence of oscillatory solutions, a characteristic of in vivo insulin release that was

not captured in (De Gaetano and Arino, 2000). Additionally, multiple delay models

(Li et al., 2006, 2012) simulating ultradian oscillations were developed and analyzed

the further the mathematical understanding of the glucose-insulin dynamics. These,

coupled with partial differential equations Wach et al. (1995); Mosekilde et al. (1989);

Søeborg et al. (2009) modeling subcutaneous insulin injection site diffusion (simplified
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as ODEs in (Li and Kuang, 2009)) allow for a path toward developing model-based

closed-loop control algorithms for the implementation of an artificial pancreas (Huang

et al., 2012).

The cellular level dynamics of insulin granule release have been studied by Bertuzzi

et al. (2007) with a piecewise smooth continuous system of ordinary differential equa-

tions. Additionally, a cell population model of insulin release were studied by Palumbo

and De Gaetano (2010). It is in these types of mathematical models that we draw

inspiration in developing a mathematical tool for understanding the relation between

intramyocellular lipids and insulin resistance in muscles. As mathematical tools have

proven to be useful in other ways within diabetes research (Nyman et al., 2012), we

seek to advance the understanding of skeletal muscle insulin resistance.
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Chapter 2

MODEL FORMULATION

The key component of this research would be the construction and vetting of a

basic model of IMCL dynamics. Thus the main concern discussed in this proposal

will be on the conversion of biological dynamics to ordinary differential equations.

Moreover, the inherent complexity of biological dynamics requires a strong set of as-

sumptions to move the model formation forward.

2.0.1 Assumptions

The environment of in the models will be considered the “average” muscle cell

across all muscles in the body. This includes smooth and striated muscles, those that

are voluntary and involuntary, but other tissues such as fat tissue or organ tissue will

not be considered in this average. It is known muscles in various parts of the body

metabolize nutrients at different rates and quantities, so this assumption allows for

general picture without concern about how a specific muscle in a specific person is

known to perform. Thus, model variables such as those for glucose or fatty acids only

count the average concentration of said molecule over all the muscles and ignore the

blood concentration levels.

Molecules in muscle cells interact as if we are considering homogeneous ideal gas

dynamics. The viscosity of cellular cytoplasm and the inevitable interference of or-

ganelles and other cellular obstructions are ignored. This assumption is only consid-

ered since the muscle cell studied is the abstract “average” and variations in cell size,
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shape, and configuration are wide enough to ignore specific cellular configurations

and their affect on molecule mobility.

Fatty acids diffuse into muscle cells at a rate proportional to some plasma con-

centration. There is evidence that fatty acids diffuse passively as well as actively into

muscles. However, when the active FFA transport is knocked out in mice studies,

fat still enters the muscle cells at nearly the same rate. Thus for simplification, we

assume that the transport is passive.

The mitochondrial metabolism of fatty acids and glucose occur at rates propor-

tional to intracellular concentrations. Models of mitochondrial activity become com-

plicated fast due to the complicated nature of the ATP (energy) production cycle

(Krebs Cycle) and intricate shuttling of molecules into and out of the dual mitochon-

drial membrane. We keep track of the concentration of unmetabilized A-CoA that is

released and converted into malonyl-CoA.

2.1 Model Construction

We consider a five compartment system of ODEs to model the dynamics between

intramyocellular glucose (G), fatty acid (F ), glycogen (Y ), DAG (D), and M-CoA

(M) concentrations. We consider blood concentrations of glucose and fatty acids

constant and then assume that both diffuse into the muscle cell at a constant rate

(Gin and Fin, respectively). This is a reasonable assumption during euglycemic-

hyperinsulinemic clamp with fatty acid infusion.

The intramyocellular fatty acids and glucose are consumed by the mitochondria
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Figure 2.1: Reduced Pathway to Guide Model Formation
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subject to a pair saturable concentration dependent functions. The rate of fatty

acid metabolism is negatively affected by both glucose and mitochondria byproduct

concentrations. Glucose and fatty acids compete as substrate for the Krebs Cy-

cle, so there is an inherent maximum capacity that the mitochondria can handle.

Finally, malonyl-CoA shuts off CPT-1 (Carnitine palmitoyltransferase I) which in

turn down regulates a necessary pathway to shuttle fatty acids into the mitochon-

dria for catabolism. Glucose is metabolized at a rate governed by saturable function

f1(F,G,M) which is negatively affected by substrate competition with fatty acids.

Fatty acids are metabolized at a rate governed by saturable function f2(F,G,M).

The availability of IMCL to be metabolized is reduced by elevated M-CoA concen-

tration.

Glucose concentration is regulated by conversion to glycogen with general function

f3(G,M). Glycogen can absorb a substantial amount of glucose, and is necessary to
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consider since the glucose infusion is high and constant in euglycemic clamp condi-

tions. In the case of low glucose concentrations, glycogen is broken down to be used

for energy production. Glycogenolysis converts glycogen to glucose-6-phosphate, but

for simplicity we consider this molecule as part of the glucose compartment, G. In

the case of clamped fatty acid infusions, glucose is constantly supplied, so little or no

glycogen is likely to be converted back into G6P for metabolism.

The fatty acid pool is converted to DAG according to the function f4(F,D). Then

DAG is removed from the system by deactivation or conversion to a downstream

molecule at rate µ. Diacylglycerol activates PKC-Θ which leads to inactivation of the

IRS by serine phosphorylating a particular residue, so we reduce the glucose inflow

of glucose by 0 < f5(D) ≤ 1 to simulate insulin resistance.

Figure 2.2: Model Flow Chart
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Finally, M-CoA is created at a rate directly proportional to the metabolism of
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glucose and fatty acids. The concentration of M decays at rate r.

Ġ = Ginf5(D)−Gf1(G,F,M)− f3(G, Y )

Ẏ = f3(G, Y )

Ḟ = Fin − Ff2(G,F,M)− f4(F,D) (2.1)

Ḋ = cf4(F,D)− µD

Ṁ = aGf1(G,F,M) + bFf2(G,F,M)− rM

2.1.1 Short-term Model: Function Selection

The functions that describe interactions within the model could take many forms.

However, certain key considerations are required by biology. The sub-functions drive

the dynamics within the muscle cells, and a “correct” choice of function cannot be

known until more biological work is conducted. However, validation that certain

functional forms replicate the dynamics that we see in clinical trials numerically can

give a sense of accuracy. Thus, functional forms will be suggested here and tested

numerically against data.

Glucose and Fatty Acid Metabolism, (f1 and f2)

Both glucose and fatty acids are metabolized in the mitochondria after being con-

verted to Acetyl-CoA. Glucose undergoes a conversion to Glucose-6-phosphate and

then into pyruvate before being shuttled into the mitochondria. Therefore, we only

wish to consider the proportion of glucose in a muscle cell that has been converted

in pyruvate for metabolism. Similarly, fatty acids need to be tagged with a carnitine
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molecule in order to be shuttled into the mitochondria. The CPT1 complex attaches

the carnitine to the FA which is removed once the complex is in the mitochondria,

and the carnitine then diffuses back out into the cytoplasm. However, CPT1 is shut

off by Malonyl-CoA which is a byproduct of metabolism. This works as a regulatory

factor to keep FA from being metabolized if the cell has enough energy. Finally, the

mitochondria can only process so much A-CoA at a given time and both glucose and

fatty acids are converted to the same molecule for processing, so there is competition

for substrate.

The biological understanding of mitochondrial metabolism then allows a few

rules about the functional forms of f1 and f2 to be constructed. Only a propor-

tion of the total concentration of glucose (pg) and fatty acids (pf ) are available

for metabolism. There is a saturable rate of oxidation for glucose and fatty acids:

f1 ≤ mg, f2 ≤ mf . Metabolism of one molecule inhibits metabolism of the other

by substrate competition: ∂
∂F

(f1) < 0, ∂
∂G

(f2) < 0. Malonyl-CoA concentration re-

duces the availability of fatty acids to be metabolized, and thus increases glucose

metabolism: ∂
∂M

(f1) > 0, ∂
∂M

(f2) < 0. As glucose or fatty acids increase in con-

centration, the metabolism rates increase monotonically: f1(G + ε, ·) − f1(G, ·) > 0,

f2(F + ε, ·)− f2(F, ·) > 0. The metabolism functions are non-negative: f1, f2 ≥ 0.

For our initial numerical simulations, we use a simple functional form that satisfies

the above requirements:

f1 =
mgpgG

k + pgG+ e−qMpfF

f2 =
mfpfF

k + pgG+ e−qMpfF
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where e−qM is the reduction of available fatty acids for metabolism.

Glycogen regulation, f3

Glycogen is produced in an alternate pathway to glucose oxidation from glucose-6-

phosphate. When glycogenesis is enabled, such as during times of elevated plasma

insulin, G-6-P is converted into glycogen for quick energy storage. When glucose

concentration in the muscle cells are lower, glycogen is converted via glycogenolysis

back into G-6-P, then into pyruvate and metabolism begins. To avoid a futile cycle,

insulin action down regulates glycogenolysis so glycogen remains stored for later use.

Then ∂
∂G

(f3) ≥ 0 and ∂
∂Y

(f3) = 0 is assumed to avoid a futile cycle. Thus we assume

that there is a rate of glucose conversion to glycogen that is saturable with rate p.

Additionally, once glycogen is stored, it doesn’t leave the compartment since insulin

levels remain high.

Then we choose the functional form

f3 =
pG

C +G
.

The concentration of glucose that where glycogen is produced at half its maximal

rate is C.

Diacylglycerol Production, f4

The myocellular lipid stores are converted to DAG when concentrations are high.

However the conversion rates leading from myocellular lipids to DAG aren’t known,

and the functional form ought to be as simple as possible. We assume that ∂
∂F

(f4) > 0

and likely that ∂
∂D

(f4) ≤ 0. Thus I chose a production rate, d, that is linearly

proportional to the concentration of IMCL, with conversion ratio c:
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f4 = dF.

Diacylglycerol Inhibition of Glucose Transport, f5

The elevated concentration of DAG in the cell leads to activation of protein kinase

C θ (PKCθ) which phosphorylates a particular residue on the insulin receptor sub-

strate. This phosphorylation shuts off the downstream insulin action pathway, which

in turn does not allow intracellular GluT4 to be shuttled to the cell surface. Thus

the membrane bound GluT4 is not replaced when they are inactivated, leading to a

diminished glucose transport into the myocyte. Therefore, we can deduce that f5 is

a monotonically decreasing function of D, but the shape is unknown. For simplicity,

we model this interaction by

f5 =
n

n+D
,

where n is the concentration of DAG that ends up reducing glucose infusion by one

half.

2.1.2 Long-term Model: Function Selection

The key differences between the short-term and long-term model are in the selec-

tion of functional forms for the malonyl-CoA induced reduction of fatty acid transport

across the mitochondrial membranes and the addition of glycogen returning to the

available glucose compartment. Since long term dynamics see intermittent intervals

of feeding and fasting, we must account for the reversion of glycogen into readily

metabolized byproducts.
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Glucose and Fatty Acid Metabolism, (f1 and f2)

For algebraic simplicity and to enable simplified analysis, we exchange the M-CoA

regulating term with an easier form. In this modification, we substitute exp(−qM)

with 1
1+qM

to get

f1(G,F,M) =
mgpgG

k + pgG+
pf

1+qM
F

and

f2(G,F,M) =
mf

pf
1+qM

F

k + pgG+
pf

1+qM
F
.

Glycogen regulation, f3

Glycogen in myocytes supplements the available glucose in times when blood glucose

concentration is low, or in times of exercise. Then it is important that lower con-

centrations of glucose in the cell elicits a glycolysis response to maintain favorable

cellular levels of glucose. Additionally, care is taken to prevent a futile cycle in which

glucose is being converted to glycogen at the same time that glycogen is converted to

glucose. Hence f3 < 0 when glucose is below a threshold gy and f3 > 0 when glucose

is above this threshold. Additionally, glycogen can only be stored and not reverted

when no glycogen is present, f3|Y=0 ≥ 0, and glycogen can only be reverted and not

stored when glucose is depleted, f3|G=0 ≤ 0.

In the cell, glycogen metabolism is regulated by insulin, glucagon, and metabo-

lite concentrations (i.e. AMP and ATP). After a meal, insulin turns off glycogen

phosphorylase, a necessary molecule in the metabolism of glycogen, and during times

of fasting, glucagon turns it on. Additionally, high concentrations of AMP turn on

glycogen phosphorylase in order to produce ATP, and as ATP levels rise, glycogen
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phosphorylase is turned off. Hence we construct a piecewise function using glucose

concentration in the muscle cell as a rough proxy for the presence of insulin, glucagon,

or metabolites.

f3(G, Y ) =





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

Then f3 is continuous, and bounded above by Pf , the maximal forward rate of

glycogen storage, and below by −Pr, the maximal reversion rate of glycogen to glu-

cose. Both Cu and Cl are shape parameters indicating a half maximal conversion rate.

Finally, we will assume the glycogen compartment has no secondary means of

offloading stored glycogen. In reality, consuming so many excess carbohydrates that

glycogen stores are continually saturated leads to de novo lipid synthesis. Considering

this extreme case in future models may lead to interesting results.
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Chapter 3

EUGLYCEMIC-HYPERINSULINEMIC CLAMP MODEL

The short term model is a functionally simple model designed for parameter esti-

mation against biological data. The full model with function substitutions is displayed

in (3.1).

Ġ = Gin
n

n+D
− mgpgG

k + pgG+ pfe−qMF
− pG

C +G

Ẏ =
pG

C +G

Ḟ = Fin −
mfpfe

−qMG

k + pgG+ pfe−qMF
− dF (3.1)

Ḋ = cdF − µD

Ṁ =
amgpgG+ bmfpfe

−qMF

k + pgG+ pfe−qMF
− rM

3.0.1 Analysis

Theorem 1 All solutions of system (3.1) with positive initial conditions remain pos-

itive.

Proof: Consider a trajectory Φ(t,X0) with Φ(0, X0) = X0 ∈ R5+
0 , then this tra-

jectory stays positive unless any one of the variables cross to negative. Since the

functions are at least C1(R+), the Picard-Lindelöf theorem gives us that solutions ex-

ist for some maximal interval and are unique. Suppose there is a time T > 0 such that

Φ(T,X0) 6∈ R5+
0 , then by continuity of the flow and intermediate value theorem, there

is a first time 0 < t∗ < T the trajectory crosses the boundary. Additionally, the vari-

able must cross 0 with negative velocity, and not simply approach 0 asymptotically.
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Then we simply need to show that each of the 5 variables cannot be the first to cross

this boundary with negative velocity. Suppose then that G is the first to go negative,

but Ġ|G=0 = Ginf5(D) > 0 which contradicts our assumptions, then G cannot be the

first direction of crossing. Since f3 ≥ 0 always holds, Y cannot be the first variable

to cross. Suppose F as the first variable to become negative, but Ḟ |F=0 = Fin > 0

contradicts our assumptions. Then we check D: Ḋ|D=0 = cf4(F, 0) ≥ 0 also has

non-negative velocity. Finally, we assume that M is the first variable to become neg-

ative, but again Ṁ |M=0 = aGf1(F,G, 0)+bFf2(F,G, 0) ≥ 0 gives us our final required

contradiction. Therefore, by contradiction, all positive trajectories remain positive. �

Solutions to the system are not guaranteed to be bounded, but glycogen (Y ) is a

sink. Consider the 4 dimensional system without glycogen,

Ġ = Gin
n

n+D
− mgpgG

k + pgG+ pfe−qMF
− pG

C +G

Ḟ = Fin −
mfpfe

−qMG

k + pgG+ pfe−qMF
− dF

Ḋ = cdF − µD (3.2)

Ṁ =
amgpgG+ bmfpfe

−qMF

k + pgG+ pfe−qMF
− rM

Theorem 2 Define

Ĝ =
−B +

√
B2 + 4pgCGin(mg + p−Gin)(k +

pfFin
d

)

2pg(mg + p−Gin)
,

B = pgC(mg −Gin) + (k +
pfFin
d

)(p−Gin).

Let S be a cube in R4+
0 with corners at the origin and (Ĝ, Fin

d
, cdFin

dµ
,
amg+bmf

r
). The

subsystem (3.2) is invariant in S if mg + p > Gin.

Proof: The system is bounded below by 0, so we need to show it is also bounded

above. Let Φ(t,X0) be the flow of the system with Φ(0, X0) ∈ S. Suppose there is a
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time T > 0 such that Φ(T,X0) 6∈ S, then there must be a first time 0 < t∗ < T the

flow crosses the boundary ∂S. Then we consider each variable as the first direction

in which the boundary is crossed, at which time all other variables are assumed to

be in the interior of S. If the variable crosses, then it must do so with positive time

derivative. Suppose F is the first to cross the upper boundary. Let F ∗ ≥ Fin
d

. Then

Ḟ |F ∗ = Fin −
pfe
−qMF ∗

k + pgG+ pfe−qMF ∗
− dF ∗ ≤ − pfe

−qMF ∗

k + pgG+ pfe−qMF ∗
< 0.

So F must be bounded above by Fin
d

. Suppose D∗ ≥ cdF ∗

µ
. Then

Ḋ|D∗ = cdF − µD∗ ≤ cd
Fin
d
− cdFin

dµ
µ = 0.

So D is bounded above by cdFin
dµ

. Suppose M is the first to cross. Let M∗ ≥ amg+bmf
r

.

Then

Ṁ |M∗ =
amgpgG+ bmfpfe

−qM∗
F

k + pgG+ pfe−qM
∗F

− rM∗ < amg + bmf − r
amg + bmf

r
= 0.

So M is bounded above by
amg+bmf

r
. Lastly, suppose G is the first to cross. Let

G∗ ≥ Ĝ. Then

Ġ|G=G∗ = Gin
n

n+D
− mgpgG

∗

k + pgG∗ + pfe−qMF
− pG∗

C +G∗
,

and substitute values of other variables, restricted by their upper bound to get

≤ Gin −
mgpgG

∗

k + pgG∗ + pf
Fin
d

− pG∗

C +G∗
.

Combine terms,

=
Gin(C +G∗)(k + pgG

∗ + pf
Fin
d

)−mgpgG
∗(C +G∗)− pG∗(k + pgG

∗ + pf
Fin
d

)

(C +G∗)(k + pgG∗ + pf
Fin
d

)
,

and collect coefficients on powers of G∗,

=
−pg(mg + p−Gin)G∗2 +

(
pgC(mg −Gin) + (k +

pfFin

d )(p−Gin)
)
G∗ + CGin(k +

pfFin

k )

(C +G∗)(k + pgG∗ + pf
Fin

d )
.
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Then the numerator is a quadratic with respect to G∗, with a positive constant

term and negative leading coefficient (under the presumption that mg + p > Gin),

hence there is a positive real zero above which the numerator is negative. Let B =

pgC(mg−Gin)+(k+
pfFin
d

)(p−Gin) and call Ĝ the positive solution to the quadratic,

then

Ĝ =
−B +

√
B2 + 4pgCGin(mg + p−Gin)(k +

pfFin
d

)

2pg(mg + p−Gin)

hence G∗ ≥ Ĝ gives

=
−pg(mg + p−Gin)G∗2 +

(
pgC(mg −Gin) + (k +

pfFin

d )(p−Gin)
)
G∗ + CGin(k +

pfFin

k )

(C +G∗)(k + pgG∗ + pf
Fin

d )
≤ 0

Thus G∗ is bounded above by Ĝ. Therefore, by contradiction, system (3.2) is invari-

ant in S. �

3.0.2 Parameter Estimation

The initial focus of the research is to determine biologically relevant parameters

for the model. Data from previous research (Roden et al., 1996) was extracted using

DataThief and used for estimation (Fig. 3.1). The research employed euglycemic-

hyperinsulinemic clamp methods with fatty acid infusion, and they recorded blood

metrics for 6 hours. The glucose infusion rate is adjusted to keep plasma concentra-

tions constant, and the “stable” infusion rate multiplied by .7 to account for muscle

uptake is used for Gin since about 70% of blood sugar is taken up by muscle. The

fatty acid infusion is constant at 1.5ml/min, however the proportion that is taken

up by muscles is not given, so we have to estimate this under a constraint that the

maximum infusion must be less than 15ml/min. All other parameters are varied and

estimated using 6 datasets.

A total of 4 data sets are used to fit the parameters: glucose oxidation rate for
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Figure 3.1: Glucose Oxidation Rate and ∆ Glycogen for High Fat (Open) and Low
Fat (Closed) Infusion. Data Extracted From (Roden et al., 1996).
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both the high fat and low fat infusion rates and change in glycogen for both high

and low fat infusion. We estimated parameters comparing the model simulation to

all four datasets simultaneously.

Iterative Latin Hypercube Shrinking Method

A hypercube is constructed of feasible parameter values by selecting a maximum

and minimum for each parameter. Thousands of points in the parameter space were

selected from an ordered uniform distribution of parameters using Latin Hypercube

Sampling. Each set of parameters were used to simulate the system for 360 minutes,

and the output was used to calculate the glucose oxidation rate and absolute change

in glycogen to compare with the data. The data was normalized to span a range from

0 to 1 by scaling the data with

vi − vmin
vmax − vmin
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where vmax and vmin are the largest and smallest data values for dataset v, and vi is

the value of point i. This scaling avoids an issue when fitting the model to multiple

datasets with different orders of magnitude. Instead of an absolute squared difference,

it is a relative squared difference. The simulation data was similarly scaled with

xi − vmin
vmax − vmin

where xi is the simulated model at the point corresponding to time vi. The mean

squared error for each dataset is then calculated by

∑n
1 (xi − vi)2

n(vmax − vmin)2

and the 4 data sets are summed with weights ωi, i = 1, 2, 3, 4, to control subjective

importance of the fit ,i.e. which data set we want to prioritize fit. This avoids falling

into local minima that strongly fits more simply “shaped” data but does not match

the important dynamics of another dataset.

The point in the parameter space that yielded the lowest mean squared error was

selected as a new center value for the hypercube, the max and min bounds for each

parameter was shrunk around this new center, and LHS was again used to sample

another few thousand points. This continued until the process stabilizes around a

local minima. By this, we mean that either the difference between the best fit of

multiple subsequent fit attempts is within a predetermined tolerance, or the size of

the hypercube is smaller than some tolerance. Since the hypercube is shrunk after

each attempt, this yields a predetermined maximum number of possible runs before

the size of the hypercube is sufficiently small to consider estimation procedure over.

This method allows for exploration over a hypothesized feasible region, and resolu-

tion effectively increases as the same number of points are iteratively selected from
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smaller regions. Hence, this method balances exploration and fine tuning. The major

downfall of this method is the tendency for the system to settle on a local minima

and stop exploring the entire feasible region. If exploration is emphasized, then the

hypercube is shrunk slowly, and convergence may take a very long time. However, if

the hypercube is shrunk too quickly, then the algorithm becomes stuck in an early

region of best fit. For this reason, a more robust system was implemented, where

each iteration acts as feedback for the next.

Particle Swarm Optimization

The iterative LHS shrinking method is designed to shrink toward a local minima.

This unfortunately results in a lack of exploration of the parameter space. For exam-

ple, if the global minimum exists in a small subset of the parameter space, but the

region around the global minimum yields a relatively higher average squared error

then another local minimum in the searching region, then there is a chance that the

search region will shrink and center around the local minimum, excluding the global

minimum from the search region. This scenario is especially prevalent when param-

eter ranges are chosen to include 0, since parameters that should be on the order of,

for example 10−3, could have their global minima excluded from the search region if it

shrinks around a local minima sufficiently far from 0. Therefore, a method of param-

eter estimation that allows for exploration of the parameter space is ideal, especially

when information about the order of magnitude of some parameters is unknown. Par-

ticle swarm optimization (PSO) evolves a set of mobile points in the parameter space

to seek a global minima while still exploring local minima.

The method of PSO defines an initial collection of points in the search region of
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the parameter space,

pi(t) = (ρ1, ρ2, . . . , ρm), i = 1, 2, . . . , n,

where t ∈ N is the iteration step, n is the size of the swarm (number of points),

ρk, k = 1, . . . ,m are values of the parameters being estimated, and m is the number

of estimated parameters. There are various methods of assigning these points, but

we uniformly randomly select points in a designated search region for our algorithm,

i.e.

ρk ∈ ((ρk)min, (ρk)max).

Each point initializes a random velocity in the direction of every parameter being

estimated and it’s starting location is recorded as that point’s best minimizing location

(gi),

vi(t) = (δ1, δ2, . . . , δm), i = 1, . . . , n,

where δk is a real number, bounded in magnitude such that |δk| < ((ρk)max −

(ρk)min)/2, e.g. the particle cannot traverse more than half the initial search region in

one step. The velocities in each direction are randomly determined on initialization.

Additionally, the swarm of points all know the best minimizing location of the whole

swarm,

s = min{gi, i = 1, . . . , n}.

The algorithm then iteratively updates the particles’ locations by

pi(t+ 1) = pi(t) + vi(t),

and then updates the new velocity,

vi(t+ 1) = ω1vi(t) + ω2(gi − pi(t+ 1)) + ω3(s− pi(t+ 1)),
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where ω1 is a weight on inertia, ω2 is a weight on a particles “desire” to move toward

its own recorded local minima, and ω3 is a weight on a particles “desire” to move

toward the globally known minima.

A key decision is how to assign the weights ω1, ω2, ω3 since these drastically af-

fect the system. First, ω1 determines the particles’ exploration of the parameter

space. Values greater than one promote a stubbornness to continue on their current

path and look for new minima, whereas values less than one place more emphasis

on drifting toward known minima and only searching the local area. Hence ω1 has

an effect on precision, where small values give small but thorough search areas. The

weights on moving toward locally known and the globally known minima affect clus-

tering. A strong weight toward the global minima provides a single large cluster

and thoroughly searched area around s. On the other hand, a strong weight toward

individually known minima potentially leads to multiple clusters or pools of parti-

cles searching their own areas. Different landscapes may require different choices of

weights, and debate continues on which to use.

Furthermore, weights need not be static. A common modification is to provide

a decreasing inertial weight, ω1(t), that promotes exploration early in the algorithm,

then tends toward a more thorough local exploration. Then the initial weight, func-

tion choice, and rate of weight reduction become relevant topics of consideration. For

initial results in this project, constant weights are used.
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Parameter Estimation Results

The high versus low fatty acid influx to the muscle cells was estimated to be a ratio of

9.5:1 (i.e. F high
in = 9.5F low

in ) since this was the ratio of high infusion to low infusion in

the study. Thus the model is a fit to both high and low triglyceride infusion scenarios

with all other parameters fixed.

Table 3.1: Variable and Parameter Descriptions

Variable Initial Condition Description Units

G F (0) = 4.9 Intramuscular Glucose mg/kg

Y Y (0) = 24.1 Muscle Glycogen mg/kg

F F (0) = 1.2 10−2 Intramuscular fatty acids mg/kg

D D(0) = 4.7 10−2 Diacylglycerol mg/kg

M M(0) = 1.1 10−1 Intramuscular Malonyl-CoA mg/kg

Parameter Value Description Units

Gin 1.4 Glucose infusion rate (Roden et al., 1996) mg/kg-min

Fin 1.7 10−3 Fatty acid infusion rate mg/kg-min

a 8.6 10−1 Glucose to M-CoA Conversion unitless

b 1.1 10−3 Fatty acid to M-CoA Conversion unitless

k 50* Metabolism Half-Saturation Constant mg/kg

pg 1.1 10−1 Proportion of G Available For Metabolism unitless

pf 8.3 10−1 Proportion of F Available For Metabolism unitless

mg 4.6 Maximum Glucose Metabolism Rate mg/kg-min

mf 1.2 10−1 10−1 Maximum Fatty Acid Metabolism Rate mg/kg-min

q 1 M-CoA Induced Fatty Acid Transfer Reduction kg/mg

r 4.1 10−1 Decay Rate of M-CoA 1/min

p 1.7 Conversion Rate of Glucose to Glycogen 1/min

C 16.4 Half Saturation for G→ Y Conversion mg/kg

d 2.3 10−3 Production Rate of DAG by FFA unitless

µ 1.5 10−2 Decay Rate of DAG 1/min

n 3.2 10−1 Half Max Reduction of Insulin Action by DAG mg/kg

*: k is absorbed into pf and pg during estimation to reduce redundancy

When comparing results from the table to clinical measurements and approxima-
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Figure 3.2: Model Fit to Data
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tions, certain conversions need to be taken into account. For example, the maximal

fat oxidation rate has been measured to be between 0.27-0.52 g/min (Dandanell et al.,

2017) with a resting rate of about 0.15 g/min for patients with a mean fat free mass

was between 62 and 70 kg. The estimated skeletal muscle mass is at least half the

free fat mass (Kimyagarov et al., 2010), or 31-35kg (this ratio is calculated for elderly

individuals). Hence the expected upper limit for mf is 7.714 − 16.774 mg/kg-min,

while the resting rate should be less than 4.286 mg/kg-min. Both the fit for mg and

mf match these requirements.

Furthermore, the model fits the dynamics very well for both the high and low fatty

acid infusion scenarios (Fig. 3.2). The simulation fits the transient dynamics seen in

(Roden et al., 1996), and can be used then to predict the effects of the euglycemic-

hyperinsulinemic clamp on other intracellular behaviors (Fig. 3.3). The percent of

maximal glucose infusion can be calculated by the predicted DAG concentration as
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Figure 3.3: Intracellular Concentrations Predicted for Duration of Clamp Study
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well, which could give insight into how much glucose is being utilized by non-muscle

tissues. Additionally, the simulation in Fig. 3.4 demonstrates that under these par-

ticular parameters, the longer term dynamics reach equilibria for the subsystem (3.2)

while glycogen stores are still submaximal. However, it is likely that once glycogen

stores in muscles reach maximum capacity, the patients will become increasingly ill

under hyperglycemia. Notably, our short term model does not apply in cases when

glycogen is at maximum capacity.

The DAG-induced insulin resistance function, f5(D) = n
n+D

, is less than one so

long as there is active DAG in the lipid membrane. This condition is biologically

feasible, as there is always some concentration of DAG available to activate PKC.

Hence the parameter choice for Gin is allowed to be greater than our expected glu-

cose infusion rate since the parameter’s function in our model is to act as a maximal

infusion rate under ideal, non-regulated conditions. In this interpretation, it makes
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Figure 3.4: Intracellular Concentrations Predicted Beyond Duration of Clamp Study
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sense that in the low-fat case, Figs. 3.3 and 3.4 show that “insulin resistance” exists

but at a lower level than in the high fat case.

3.0.3 Uncertainty Quantification

The parameter estimation algorithm compares outputs for low and high fatty

acid inflow simultaneously for glucose oxidation and change in glycogen. Not only

is the system highly nonlinear, but it might be unknown what range of values some

parameters might take on. Some parameters have a stronger effect on the quality of fit

than others, so sensitivity analysis is performed on the sum of squared errors (SSE) for

each of the 4 data sets in order to determine how elastic the mean squared error is to

parameter perturbations. The elasticity is calculated numerically for the parameter

set determined by estimation using a difference quotient. For each parameter (or

initial condition), ρ, the elasticity Eρ of SSE(·; ρ) is calculated as
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Eρ =

∣∣∣∣
dSSE

dρ

∣∣∣∣
ρ

SSE
=
|SSE(·; ρ+ ε)− SSE(·; ρ)|

ε

ρ

SSE(·; ρ)

for some ε > 0.

The parameter that had the highest effect on the fit of all the models is Gin, which

is unsurprising since both glucose oxidation and glycogen storage are directly related

to glucose availability. It is also obvious that glycogen has no effect on glucose oxida-

tion since the concentration of muscle glucose does not directly affect the dynamics

of any other state variable. Besides Gin, Fin comes in as a parameter for which the

fit is rather elastic, which indicates that the concentration of blood fatty acids and

their infusion into the cell is an important factor in the dynamics of the system.

Figure 3.5: Uncertainty Quantification for the Squared Error Glucose Oxidation Fit
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The main difference in elasticity between the fit for the oxidation and ∆ glyco-

gen data sets is that oxidation is more elastic to changes in the glucose metabolism
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parameters (k, pg, pf , and mg) whereas the glycogen storage is more sensitive to pa-

rameters modifying Gin (n, d, and C) as well as the glycogen storage rate (p and

C). Finally, the parameters controlling concentrations of M-CoA seem to be rather

inelastic (a, b, and q), whereas the degradation rate of M-CoA (r) seems to have an

unexpectedly high effect on the fit of both datasets. This elasticity of the system

to M-CoA degradation may be due to the regulatory effects that it has on keeping

the concentration, M , relatively constant. In that way, it’s possible that the fit is

sensitive to r in the same way it is sensitive to pf .

Figure 3.6: Uncertainty Quantification for the Squared Error of ∆ Glycogen Fit
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The lack of elasticity on M suggests that the fatty acid regulation dynamics may

not play an important role in the system at the concentrations that our parameter

estimation results suggest. It is possible that the effect of M on the system would

be more poignant if we found another local minima in the parameter space with a

similar fit. A more global understanding of the system’s feasible parameter regions is

needed to make more specific claims.
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Chapter 4

LONG TERM CHRONIC INSULIN RESISTANCE MODEL

In chapter 3, the model was designed to fit clinical data over a short period of

time during a euglycemic Hyperinsulinemic clamp with fatty acid infusion. As such,

the model only admitted flow of glucose into the glycogen compartment, but no flow

in the reverse direction. In day to day life, however, glycogen is stored or utilized

depending on the cellular environment and energy needs. Hence, it is necessary to

consider the conversion of glycogen back to glucose when necessary – namely when

available glucose concentrations fall below a threshold.

This additional reversion of glycogen back into glucose allows the system to remain

bounded, and long term dynamics to be studied. Additionally, the goal of the long

term model is not for parameter estimation or data fitting, but mathematical analy-

sis. To this end, we simplify the functional form by which mitochondrial metabolites

(namely malonyl-CoA) affect fatty acid transfer into the mitochondria. The system

of equations in (4.1) is the complete long term model with functions as described in

chapter 2.
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Ġ =
nGin

n+D
− mgpgG

k + pgG+
pf

1+qM
F
−





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

Ẏ =





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

(4.1)

Ḟ = Fin −
mf

pf
1+qM

F

k + pgG+
pf

1+qM
F
− dF

Ḋ = cdF − µD

Ṁ =
amgpgG+ bmf

pf
1+qM

F

k + pgG+
pf

1+qM
F
− rM

Definition 1 A finite system of ordinary differentiable equations defined on domain

D ∈ Rn with parameter vector ρ

Ẋ = Fi(t,X; ρ), X ∈ Ri

is said to be Piecewise Smooth if it is smooth on countably many regions, Ri ∈ Rn,

with nonempty interior and
⋃
Ri = D ∈ Rn. (Bernardo et al., 2008)

Definition 2 Put Σij = Ri ∩Rj, i 6= j, then Σ =
⋃
i 6=j Σij is the switching mani-

fold. (Bernardo et al., 2008)

Since the function, f3 is piecewise continuous, with domains depending on state

variables, this system is a piecewise smooth dynamical system. The system can be

alternatively represented in PWS notation by

Ẋ = (Ġ, Ẏ , Ḟ , Ḋ, Ṁ)> = Fi(X, h(X, ρ); ρ), i = 1, 2, 3
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where h(X, ρ) is the switching condition, Fi is determined by which state the switch-

ing condition is in, and ρ is the set of parameters.

We have F1 defined for G > gy, Y < my, F2 for G > gy, Y > my, and F3 for

G < gy. We call the boundary Σ = {G, Y |G > gy and Y = my, or G = gy} the

switching manifold. The switching condition takes the value h(X, ρ) = 0 for X ∈ Σ

and h(X, ρ) 6= 0 for X 6∈ Σ. Then Fi is simply the right hand side of system (4.1) for

each of the relevant domains in the piecewise function. Hence

F1 =




nGin
n+D
− mgpgG

k+pgG+
pf

1+qM
F
− Pf (G−gy)(1− Y

my
)

Cu+(G−gy)

Pf (G−gy)(1− Y
my

)

Cu+(G−gy)

Fin −
mf

pf
1+qM

F

k+pgG+
pf

1+qM
F
− dF

cdF − µD
amgpgG+bmf

pf
1+qM

F

k+pgG+
pf

1+qM
F
− rM




,

F2 =




nGin
n+D
− mgpgG

k+pgG+
pf

1+qM
F

0

Fin −
mf

pf
1+qM

F

k+pgG+
pf

1+qM
F
− dF

cdF − µD
amgpgG+bmf

pf
1+qM

F

k+pgG+
pf

1+qM
F
− rM




, F3 =




nGin
n+D
− mgpgG

k+pgG+
pf

1+qM
F
− PrY (G−gy)

Cl+gyY

PrY (G−gy)

Cl+gyY

Fin −
mf

pf
1+qM

F

k+pgG+
pf

1+qM
F
− dF

cdF − µD
amgpgG+bmf

pf
1+qM

F

k+pgG+
pf

1+qM
F
− rM




.

The dynamics of the PWS system act as if we glued together each of the three

functions. The boundaries along the switching manifold introduce more interesting

dynamics.

4.0.1 Preliminary Analysis

Theorem 3 Solutions to system (4.1) exist and are unique
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Proof : By the Picard-Lindelöf theorem, if Fi is continuous and Lipschitz then so-

lutions to system (4.1) exist and are unique. Since continuously differentiable and

bounded implies Lipschitz, We tackle both by showing the system is C1(R,R5) on

the interior of the regions separated by the switching manifold. The Jacobian of the

system is

G ≥ gy, Y < my:




− mgpg(k+
pf

1+qM F )

(k+pgG+
pf

1+qM F )2
− CuPf (1− Y

my
)

(Cu+G−gy)2
Pf (G−gy)

my(Cu+G−gy)

mgpg
pf

1+qM G

(k+pgG+
pf

1+qM F )2
− nGin

(n+D)2 − qmgpg
pf

1+qM GF

(1+qM)(k+pgG+
pf

1+qM F )2

CuPf (1− Y
my

)

(Cu+G−gy)2
− Pf (G−gy)

my(Cu+G−gy)
0 0 0

pgmf
pf

1+qM F

(k+pgG+
pf

1+qM F )2
0 − mf

pf
1+qM (k+pgG)

(k+pgG+
pf

1+qM F )2
− d 0

qmf
pf

1+qM F (k+pgG)

(1+qM)(k+pgG+
pf

1+qM F )2

0 0 cd −µ 0
pg(akmg+(amg−bmf )

pf
1+qM F )

(1+qM)(k+pgG+
pf

1+qM F )2
0

pf
1+qM (bkmf−pg(amg−bmf )G)

(1+qM)(k+pgG+
pf

1+qM F )2
0 − q

pf
1+qM F (bmfk−pg(amg−bmf )G)

(1+qM)(k+pgG+
pf

1+qM F )2




1

G ≥ gy, Y ≥ my:




− mgpg(k+
pf

1+qM F )

(k+pgG+
pf

1+qM F )2
0

mgpg
pf

1+qM G

(k+pgG+
pf

1+qM F )2
− nGin

(n+D)2 − qmgpg
pf

1+qM GF

(1+qM)(k+pgG+
pf

1+qM F )2

0 0 0 0 0
pgmf

pf
1+qM F

(k+pgG+
pf

1+qM F )2
0 − mf

pf
1+qM (k+pgG)

(k+pgG+
pf

1+qM F )2
− d 0

qmf
pf

1+qM F (k+pgG)

(1+qM)(k+pgG+
pf

1+qM F )2

0 0 cd −µ 0
pg(akmg+(amg−bmf )

pf
1+qM F )

(1+qM)(k+pgG+
pf

1+qM F )2
0

pf
1+qM (bkmf−pg(amg−bmf )G)

(1+qM)(k+pgG+
pf

1+qM F )2
0 − q

pf
1+qM F (bmfk−pg(amg−bmf )G)

(1+qM)(k+pgG+
pf

1+qM F )2




1

G < gy:




− mgpg(k+
pf

1+qM F )

(k+pgG+
pf

1+qM F )2
− PrY

Cl+gyY
−ClPr(G−gy)

(Cl+gyY )2
mgpg

pf
1+qM G

(k+pgG+
pf

1+qM F )2
− nGin

(n+D)2 − qmgpg
pf

1+qM GF

(1+qM)(k+pgG+
pf

1+qM F )2

PrY
Cl+gyY

ClPr(G−gy)
(Cl+gyY )2 0 0 0

pgmf
pf

1+qM F

(k+pgG+
pf

1+qM F )2
0 − mf

pf
1+qM (k+pgG)

(k+pgG+
pf

1+qM F )2
− d 0

qmf
pf

1+qM F (k+pgG)

(1+qM)(k+pgG+
pf

1+qM F )2

0 0 cd −µ 0
pg(akmg+(amg−bmf )

pf
1+qM F )

(1+qM)(k+pgG+
pf

1+qM F )2
0

pf
1+qM (bkmf−pg(amg−bmf )G)

(1+qM)(k+pgG+
pf

1+qM F )2
0 − q

pf
1+qM F (bmfk−pg(amg−bmf )G)

(1+qM)(k+pgG+
pf

1+qM F )2




1

Each element of the Jacobian matrices is continuous, bounded on their respec-
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tive domain, and defined for all positive G, Y, F,D,M . Hence the RHS of system

(4.1) is Lipschitz on the interior of each region separated by the switching manifold.

Therefore unique solutions to (4.1) are guaranteed to exist for any initial condition

that is an interior point of a region separated by the switching manifold, at least on

some finite time interval. For initial conditions on the switching manifold, we show

that the functions are locally Lipschitz. We test the conditions on the three distinct

sections of the switching manifold: G0 ≥ gy and Y0 = my, G0 = gy and Y0 ≥ my,

and G0 = gy and Y0 < my. Since the equations only differ by the value of f3, we

show that f3 is Lipschitz on the switching manifold, since the sum of finitely many

Lipschitz functions is Lipschitz. Put K = max
{
Pf
my
, Pr
gy
,
Pf
Cu

}
.

Case 1: G0 ≥ gy and Y0 = my.

Pick G0 ≥ gy and set Y0 = my. Then let α, β > 0 and consider

|f3(G0, Y0 − α)− f3(G0, Y0 + β)|.

Since Y0 − α < my and Y0 + β > my, we have

f3(G0, Y0 − α) =
Pf (G− gy)

(
1− my−α

my

)

Cu +G− gy
and f3(G0, Y0 + β) = 0 Hence

|f3(G0, Y0 − α)− f3(G0, Y0 + β)| =

∣∣∣∣∣∣

Pf (G0 − gy)
(

1− my−α
my

)

Cu +G0 − gy

∣∣∣∣∣∣

≤ Pf

(
1− my − α

my

)
=
Pf
my

α <
Pf
my

|α + β|

=
Pf
my

|(Y0 − α)− (Y0 + β)| ≤ K|(Y0 − α)− (Y0 + β)|

Since G0 ≥ gy, α, β were chosen arbitrarily, f3 is Lipschitz on this section of the

switching manifold.
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Case 2: G0 = gy and Y0 ≥ my.

Pick Y0 ≥ my and set G0 = gy. Then let α, β > 0 and consider

|f3(G0 − α, Y0)− f3(G0 + β, Y0)|.

Since G0 − α < gy and G0 + β > gy, we have

f3(G0 − α, Y0) = − PrY0α

Cl + gyY0

and f3(G0 + β, Y0) = 0. Hence

|f3(G0 − α, Y0)− f3(G0 + β, Y0)| =
∣∣∣∣
PrY0α

Cl + gyY0

∣∣∣∣ ≤
Pr
gy
|α + β|

≤ Pr
gy
|(G0 − α)− (G0 + β)| ≤ K|(G0 − α)− (G0 + β)|..

Therefore f3 is Lipschitz on this section of the switching manifold.

Case 3: G0 = gy and Y0 < my.

Pick Y0 < my and set G0 = gy. Then let α, β > 0 and consider

|f3(G0 − α, Y0)− f3(G0 + β, Y0)|.

Since G0 − α < gy and G0 + β > gy, we have

f3(G0 − α, Y0) = − PrY0α

Cl + gyY0

and

f3(G0 + β, Y0) =
βPf (1− Y0

my
)

Cu + β
.

Hence

|f3(G0 − α, Y0)− f3(G0 + β, Y0)| =
∣∣∣∣∣
PrY0α

Cl + gyY0

+
βPf (1− Y0

my
)

Cu + β

∣∣∣∣∣

≤ Pr
gy
α +

Pf
Cu
β ≤ max

{
Pr
gy
,
Pf
Cu

}
|α + β|
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≤ K|(G0 − α)− (G0 + β)|

Then f3 is Lipschitz on this last section of the switching manifold. Therefore, for any

X0 ∈ R5+
0 , solutions to (4.1) exist and are unique. �

Theorem 4 Let ΦX0 ≡ Φ(t,X0), t ≥ 0 be a forward flow of system (4.1) with initial

conditions

Φ(0, X0) = X0 = (G(0), Y (0), F (0), D(0),M(0)) = (G0, Y0, F0, D0,M0) ∈ R5+
0

Then Φ(t,X0) ∈ R5+
0 for all t > 0 on which ΦX0 is defined. Additionally, ΦX0 is

bounded above.

Proof: Let X0 = (G0, Y0, F0, D0,M0) ∈ R5+
0 , and let Φ(t,X0) be the flow of system

(4.1).

Claim 1 (positivity): Φ(t,X0) ∈ R5+
0 ∪ {∞} for all t > 0 on which ΦX0 is defined.

Since the RHS of (4.1) is continuous, the integral solutions are continuous in

time. Then by the intermediate value theorem, if there exists T > 0 such that

Φ(T,X0) 6∈ R5+
0 , then there is a first time 0 < t∗ < T such that Φ(t∗, X + 0)ei = 0,

where ei = (0, 0, . . . , 1, . . . , 0, 0) with 1 in the ith position, i = 1, . . . , 5. Furthermore,

in order for the flow to escape R5+
0 , we need

d

dt
Φ(t,X0)ei|t=t∗ < 0,

i.e. it must cross that boundary with nonzero velocity. Then we simply check each

time derivative evaluated on the boundary. Suppose for the sake of contradiction that

there exists T > 0 such that Φ(T,X0) 6∈ R5+
0 ∪ {∞}, then there is a first crossing

time t∗ > 0. Moreover, suppose that for t = t∗ we have G(t∗) = 0. Then the time

derivative on the boundary is

Ġ|G=0 =
nGin

n+D
+

PrY gy
Cl + gyY

> 0
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assuming Y,D ≥ 0, which must be true since t∗ is the first time Φ(t,X0) leaves the

positive sector. Continue this for each of the other state variables

Ẏ |Y=0 =





Pf (G−gy)

Cu+(G−gy)
, G ≥ gy

0, G < gy

≥ 0,

Ḟ |F=0 = Fin > 0,

Ḋ|D=0 = cdF ≥ 0,

Ṁ |M=0 =
amgpgG+ bmfpfF

k + pgG+ pfF
> 0.

But none of the time derivatives have negative velocity on the boundary, this con-

tradicts the assertion that there is some time T > 0 where Φ(T,X0) 6∈ R5+
0 . Therefore,

Φ(t,X0) ∈ R5+
0 for all t > 0 for which ΦX0 is defined.

Claim 2 (boundedness from above):

Let the origin and

(
Gin(k+

pfFin
d

)

pg(mg−Gin)
,max{my, Y0}, Find , cFinµ ,

amg+bmf
r

)
define a hyper-

cube C ∈ R5. We will show that if X0 ∈ C then Φ(t,X0) ∈ C for all t ≥ 0 for which

ΦX0 is defined. Let X0 ∈ C. To show this, it is sufficient to demonstrate that the

time derivative is negative for any state variable outside of C. As with positivity,

assume there is a first time t∗ and first variable to exit C. Hence, we assume that all

other variables not being inspected on the boundary ∂C are on the interior of C.

If F ≥ Fin
d

, then

Ḟ = Fin −
mf

pf
1+qM

F

k + pgG+
pf

1+qM
F
− dF ≤ −

mf
pf

1+qM
F

k + pgG+
pf

1+qM
F
< 0,

hence F is bounded above.
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If D ≥ cFin
µ

, then

Ḋ = cdF − µD < cFin − µD ≤ 0,

hence D is bounded above.

If M ≥ amg+bmf
r

, then

Ṁ =
amgpgG+ bmf

pf
1+qM

F

k + pgG+
pf

1+qM
F
− rM < amg + bmf − rM ≤ 0,

hence M is bounded above.

If Y > my, then

Ẏ =





0, G ≥ gy

PrY (G−gy)

Cl+gyY
, G < gy

≤ 0,

hence Y is bounded above by my if Y0 < my or by Y0 if Y0 ≥ my.

Finally, the nature of Y ’s boundedness requires us to consider 2 cases for G:

G ≥ gy, Y ≥ my, and G ≥ gy, Y < my. Note that if G is bounded in both of these

cases, then G is bounded.

Case 1: Begin with

Ġ|G≥gy ,Y≥my =
nGin

n+D
− mgpgG

k + pgG+
pf

1+qM
F
≤ Gin −

mgpgG

k + pgG+
pf

1+qM
F

replacing M with 0 and F with its upper bound

≤ Gin −
mgpgG

k + pgG+
pfFin
d

=
Gin(k + pgG+

pfFin
d

)−mgpgG

k + pgG+
pfFin
d

and rearrange

Gin(k +
pfFin
d

)− pg(mg −Gin)G

k + pgG+
pfFin
d

≤ Gin(k +
pfFin
d

)−Gin(k +
pfFin
d

)

k + pgG+
pfFin
d

= 0
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Hence Ġ|G≥gy ,Y≥my ≤ 0.

Case 2:

Ġ|G≥gy ,Y <my =
nGin

n+D
− mgpgG

k + pgG+
pf

1+qM
F
−
Pf (G− gy)(1− Y

my
)

Cu + (G− gy)
But it’s clear by the additional negative term that

Ġ|G≥gy ,Y <my ≤ Ġ|G≥gy ,Y≥my ≤ 0,

so boundedness is automatic. Thence G is bounded.

Therefore, by contradiction, if X0 ∈ C then Φ(t,X0) ∈ C for all t > 0 for which

ΦX0 is defined. �

Beyond the uniqueness, existence, and invariance of solutions of (4.1), we explore

how the dynamics of the system changes as we progress from a model of a healthy

person, to one with insulin resistance without fatty acid metabolism regulation, and

finally to the full model with insulin resistance and fatty acid metabolism regulation.

4.0.2 Sub-models: Ignoring Mitochondrial Metabolites

We analyze sub-models of (4.1) in order to understand how the dynamics evolve

from a healthy case without DAG, and with DAG. For these cases, the effect of

Malonyl-CoA (M) is ignored due to the highly nonlinear terms that the interaction

introduces. Additionally, sensitivity analysis of the parameters involved in the pro-

duction and function of M-CoA demonstrated that the system is inelastic to their
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perturbations. For these reasons, the M compartment is ignored for further study.

Hence, we seek mathematically tractable equations to clearly understand the system

behavior from the ground up before getting lost in the details analyzing (4.1).

4.0.3 Sub-model: Healthy Individual - No effect of DAG

Suppose that in a healthy individual, the levels of DAG present are too insignif-

icant to influence insulin resistance, then we ignore the compartment and get the

system

Ġ = Gin −
mgpgG

k + pgG+ pfF
−





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

Ẏ =





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

(4.2)

Ḟ = Fin −
mfpfF

k + pgG+ pfF
− dF

Then we have fatty acids still converted to other byproducts, but we don’t keep

track of DAG if we assume that its concentration is low enough to cause no effect.

Definition 3 A discontinuous bifurcation (or dicontinuity induced bifurcation)

occurs when a fixed point of a system passes through the switching manifold. (Bernardo

et al., 2008; Simpson et al., 2009)

Note that stability of an equilibrium lying on a swithcing manifold is an open

problem (Bernardo et al., 2008).
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Theorem 5 System (4.2) has a unique equilibrium, (G∗, Y ∗, F ∗), if mg > Gin for

each region. The equilibrium is stable where it exists. The equilibrium is given by

G∗ =
A

pg
(k + pfF

∗),

F ∗ =
(1 +A)(pfFin − dk)−mfpf +

√
((1 +A)(pfFin − dk)−mfpf )2 + 4dkpfFin(1 +A)2

2dpf (1 +A)
,

A =
Gin

mg −Gin
.

Furthermore, the system presents a discontinuous bifurcation, that is for

G∗ < gy, Y
∗ = 0,

G∗ > gy, Y
∗ = my,

G∗ = gy, Y
∗ ∈ [0,∞)

The case where G∗ = gy is degenerate and creates a critical line of equilibria.

Proof:

We start by requiring f3(G, Y ) = 0, hence we consider 3 cases:

Case 1: G∗ < gy, Y ∗ = 0

Case 2: G∗ > gy, Y ∗ = my

Case 3: G∗ = gy, Y ∗ = Y ∗ ≥ 0

The dynamics of the full piecewise-continuous system can be understood by “gluing

together” the results of these three cases.

Case 1: G∗ < gy

Substituting Y ∗ = 0 and solving Ġ = 0 for G∗ we get

0 = Gin −
mgpgG

∗

k + pgG∗ + pfF ∗
,
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mgpgG
∗ = Gin(k + pgG

∗ + pfF
∗),

mgpgG
∗ − pgGinG

∗ = Gin(k + pfF
∗),

G∗ =
Gin(k + pfF

∗)

pg(mg −Gin)
.

Then we simplify by substituting

A =
Gin

mg −Gin

to get

G∗ =
A

pg
(k + pfF

∗).

necessitating mg > Gin for biologically feasible values of G∗.

Similarly, we solve for F ∗ by setting Ḟ = 0 to get

0 = Fin −
mfpfF

∗

k + pgG∗ + pfF ∗
− dF ∗,

into which we substitute G∗

0 = Fin −
mfpfF

∗

k + A(k + pfF ∗) + pfF ∗
− dF ∗,

rearrange

mfpfF
∗ + d(k + A(k + pfF

∗) + pfF
∗)F ∗ = Fin(k + A(k + pfF

∗) + pfF
∗),

and collect terms on each power of F ∗, moving everything to the LHS

dpf (1 + A)F ∗2 + [mfpf + (dk − pfFin)(1 + A)]F ∗ − kFin(1 + A) = 0.

Then we find F ∗ as a solution to αF ∗2 + βF ∗ + γ with

α = dpf (1 + A)

β = mfpf + (dk − pfFin)(1 + A)
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γ = −kFin(1 + A)

and since A > 0 we know there is always exactly one positive real root for F ∗ by

Descartes’ rule of signs, since either α, β > 0, γ < 0 or α > 0,β, γ < 0 yields only one

sign change. Solving for F ∗ we get

F ∗ =
−β ±

√
β2 − 4αγ

2α

which we can ignore the negative, non-biological equilibrium to get

F ∗ =
(1 +A)(pfFin − dk)−mfpf +

√
((1 +A)(pfFin − dk)−mfpf )2 + 4dkpfFin(1 +A)2

2dpf (1 +A)

where the radicand is clearly always positive when A > 0.

The Jacobian of the system evaluated at the equilibria takes the form

J1|G=G∗,Y=0,F=F ∗ =




− mg(k+F ∗pf )pg
(k+F ∗pf+G∗pg)2

Pr
Cl

(gy −G∗) G∗mgpfpg
(k+F ∗pf+G∗pg)2

0 −Pr
Cl

(gy −G∗) 0

F ∗mfpfpg
(k+F ∗pf+G∗pg)2

0 −mfpf (k+G∗pg)+d(k+F ∗pf+G∗pg)2

(k+F ∗pf+G∗pg)2



.

The full expressions for G∗ and F ∗ are not substituted so as to ease the digestibility

of the analysis. We use the Routh-Hurwitz Criterion to determine stability (Brauer

et al., 2001). The Jacobian has a characteristic polynomial determined by setting

det[λI− J1] = 0 described by λ3 + a1,1λ
2 + a1,2λ+ a1,3 = 0 with coefficients

a1,1 =
Pr
Cl

(gy −G∗) +
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2
+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

a1,2 =

(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2

)(
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

+

(
G∗mgpfpg

(k + F ∗pf +G∗pg)2

)(
F ∗mfpfpg

(k + F ∗pf +G∗pg)2

)

+

(
Pr
Cl

(gy −G∗)

)(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2
+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

(4.3)

a1,3 =

(
Pr
Cl

(gy −G∗)

)[(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2

)(
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

+

(
Pr
Cl

(gy −G∗)

)(
F ∗mfpfpg

(k + F ∗pf +G∗pg)2

)]
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The constants, a1,1 and a1,3 are clearly both positive when G∗ < gy since each term

is independently positive. Then we only need to check

a1,1a1,2−a1,3 =
(

mg(k + F ∗pf )pg
(k + F ∗pf +G∗pg)2

+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

×
[(

mg(k + F ∗pf )pg
(k + F ∗pf +G∗pg)2

)(
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

+

(
G∗mgpfpg

(k + F ∗pf +G∗pg)2

)(
F ∗mfpfpg

(k + F ∗pf +G∗pg)2

)

+

(
Pr
Cl

(gy −G∗)

)2(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2
+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)]

Hence a1a2 − a3 > 0. Therefore by the Routh-Hurwitz Criterion, this equilibria is

stable when mg > Gin and G∗ < gy.

Case 2: G∗ > gy

Setting Y ∗ = my and solving for G∗ and F ∗ returns exactly the same results as in

case 1,

G∗ =
A

pg
(k + pfF

∗),

F ∗ =
(1 +A)(pfFin − dk)−mfpf +

√
((1 +A)(pfFin − dk)−mfpf )2 + 4dkpfFin(1 +A)2

2dpf (1 +A)

A =
Gin

mg −Gin
.

and the Jacobian of the system is

J2|G=G∗,Y=my,F=F∗ =




− mg(k+F
∗pf )pg

(k+F∗pf+G∗pg)2
(G∗−gy)Pf

(Cu+G∗−gy)my

G∗mgpfpg
(k+F∗pf+G∗pg)2

0 − (G∗−gy)Pf

(Cu+G∗−gy)my
0

F∗mfpfpg
(k+F∗pf+G∗pg)2

0 −mfpf (k+G
∗pg)+d(k+F

∗pf+G
∗pg)

2

(k+F∗pf+G∗pg)2



.
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The characteristic polynomial of J2 takes the form λ3 + a2,1λ
2 + a2,2λ + a2,3 = 0

with coefficients

a2,1 =
(G∗ − gy)Pf

(Cu +G∗ − gy)my
+

mg(k + F ∗pf )pg
(k + F ∗pf +G∗pg)2

+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

a2,2 =

(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2

)(
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

+

(
G∗mgpfpg

(k + F ∗pf +G∗pg)2

)(
F ∗mfpfpg

(k + F ∗pf +G∗pg)2

)

+

(
(G∗ − gy)Pf

(Cu +G∗ − gy)my

)(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2
+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

(4.4)

a2,3 =

(
(G∗ − gy)Pf

(Cu +G∗ − gy)my

)[(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2

)(
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

+

(
(G∗ − gy)Pf

(Cu +G∗ − gy)my

)(
F ∗mfpfpg

(k + F ∗pf +G∗pg)2

)]

Since G∗ > gy, it’s clear that a2,1 > 0 and a2,3 > 0. Then the final condition

a2,1a2,2 − a2,3 =
(

mg(k + F ∗pf )pg
(k + F ∗pf +G∗pg)2

+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

×
[(

mg(k + F ∗pf )pg
(k + F ∗pf +G∗pg)2

)(
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)

+

(
G∗mgpfpg

(k + F ∗pf +G∗pg)2

)(
F ∗mfpfpg

(k + F ∗pf +G∗pg)2

)

+

(
(G∗ − gy)Pf

(Cu +G∗ − gy)my

)2(
mg(k + F ∗pf )pg

(k + F ∗pf +G∗pg)2
+
mfpf (k +G∗pg) + d(k + F ∗pf +G∗pg)2

(k + F ∗pf +G∗pg)2

)]

is also positive. Hence, by the Routh-Hurwitz criterion, the equilibrium is stable.

Case 3: G∗ = gy

When G∗ = gy, the implication is that sugar is passing into the muscles at exactly

the rate required for the muscles glucose concentration to be exactly ideal. Hence,

this equilibrium only exists for a specific subset of parameters. Notice above in both

of the two cases that G∗ = A(k + pfF
∗)/pg. Then, by solving G∗ = gy for F ∗, we see
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that

A(k + pfF
∗)/pg = gy

gives us

F ∗ =
pggy − Ak

pfA
.

If we have pggy − Ak > 0 then it is possible for the conditions to exist such that

G∗ = gy. Assume pggy −Ak > 0 holds. Then, we can substitute G∗ = gy and pggy−Ak
pfA

into Ḟ = 0

Ḟ ∗ = Fin −
mf

pggy−Ak
A

k + pggy + pggy−Ak
A

− dpggy − Ak
pfA

= 0

rearrange to isolate Fin, which we rename to F̂in to denote a special case

F̂in =
mf (pggy − Ak)

pggyA+ pggy
+
d(pggy − Ak)

pfA

and substitute A = Gin
mg−Gin and simplify the compound fractions

F̂in =
mf (pggy(mg −Gin)−Gink)

pggyGin + (mg −Gin)pggy
+
d(pggy(mg −Gin)− kGin)

pfGin

,

=
mfpfGin(pggy(mg −Gin)−Gink) + dmgpggy(pggy(mg −Gin)− kGin)

mgpggypfGin

,

=
(pggy(mg −Gin)−Gink)(mfpfGin + dmgpggy)

mgpggypfGin

,

=
(mg −Gin)(pggy − Ak)(mfpfA+ dmgpggy

mg−Gin )

mgpggypfA
.

This clearly requires the two previous conditions mg > Gin and pggy > Ak in order

for a biologically relevant value of F̂in.

Moreover, we wish to determine a relationship between Fin and Gin, so we can

expand and combine terms to find

F̂in(Gin) = −
(
mf

mg

+
kmf

gymgpg

)
Gin +

dgymgpg
pfGin

+

(
mf −

d

pf
(gypg + k)

)
,
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which is continuous for all Gin > 0,

dF̂in
dGin

(Gin) = −
(
mf

mg

+
kmf

gymgpg

)
− dgymgpg

pfG2
in

< 0,

and

lim
Gin→0

=∞, lim
Gin→∞

= −∞.

Thus there can only be a single possible value F̂in for any Gin. Then this unique value

of F̂in(Gin) is positive when

pggy − Ak > 0

pggy(mg −Gin)− kGin > 0

Gin <
pggy

pggy + k
mg < mg.

Hence the conditions for G∗ = gy depend on the parameters, and are not always

present.

The expression gives us a single parameter on which we define our bifurcation. In

other words, if Fin < F̂in then we are in case 1, if Fin > F̂in then we are in case 2. The

result then when Fin = F̂in, is that G∗ = gy and f3(gy, Y
∗) = 0 for all values of Y ∗,

hence Ẏ |G∗=gy = 0 implies the equilibrium can exist for any Y ∗ ≥ 0. The Jacobian

matrix for this set of equilibrium is

J3,1 =




− mg(k+F ∗pf )pg
(k+F ∗pf+gypg)2

− Pf
Cu

(
1− Y ∗

my

)
0

gymgpfpg
(k+F ∗pf+gypg)2

Pf
Cu

(
1− Y ∗

my

)
0 0

F ∗mfpfpg
(k+F ∗pf+gypg)2

0 −mfpf (k+gypg)+d(k+F ∗pf+gypg)2

(k+F ∗pf+gypg)2



,

J3,2 =




− mg(k+F ∗pf )pg
(k+F ∗pf+gypg)2

0
gymgpfpg

(k+F ∗pf+gypg)2

0 0 0

F ∗mfpfpg
(k+F ∗pf+gypg)2

0 −mfpf (k+gypg)+d(k+F ∗pf+gypg)2

(k+F ∗pf+gypg)2



,
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or

J3,3 =




− mg(k+F ∗pf )pg
(k+F ∗pf+gypg)2

− PrY ∗

Cl+gyY ∗ 0
gymgpfpg

(k+F ∗pf+gypg)2

PrY ∗

Cl+gyY ∗ 0 0

F ∗mfpfpg
(k+F ∗pf+gypg)2

0 −mfpf (k+gypg)+d(k+F ∗pf+gypg)2

(k+F ∗pf+gypg)2



,

depending on if we consider the linearization of the system above G∗ = gy when

Y ∗ < my (3,1), when Y ∗ ≥ my (3,2), or the linearization of the system below G∗ = gy

(3,3). For simplicity of notation, we will replace the elements in the Jacobian matrices

with ji, i = 1, 2, . . . , 9 where the ith element is counted across from left to right, top

to bottom. Specifically we will use

J3,{1,2} =




j1 0 j3

j4 0 0

j7 0 j9



.

Then the characteristic equation is λ(λ2 − (j1 + j9)λ + j1j9 − j3j7) = 0. So we

have a trivial eigenvalue λ2 = 0, and the other two eigenvalues (λ1, λ3) are solu-

tions to a quadratic expression. Hence, we can expect λ1, λ3 < 0 if j1 + j9 < 0 and

j1j9 − j3j7 > 0. Note that the biologically feasible solution space limits Y ∈ [0,my],

where my is the maximum glycogen storage concentration. Additionally, the forward

semi-flow for Y is bounded above by my for any 0 ≤ Y (t0) ≤ my, so any scenario in

which Y ∗ > my will be henceforth neglected.

Immediately, we see j1+j9 < 0 when Y ∗ < my for Jacobian (3,1), and it is trivially

negative for (3,2) and (3,3). The second necessary condition after some simplification

is

(J3,1) : j1j9 − j3j7 =

(
mg(k + F ∗pf )pg +mfpfgypg

Pf

Cu

(
1− Y ∗

my

))
(mfpfk + d(k + F ∗pf + gypg)2)

(k + F ∗pf + gypg)4
> 0,

(J3,2) : j1j9 − j3j7 =
mgpg(k + F ∗pf )(mfpfk + d(k + F ∗pf + gypg)

2)

(k + F ∗pf + gypg)4
> 0,
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or

(J3,3) : j1j9 − j3j7 =

(
mg(k + F ∗pf )pg +mfpfgypg

PrY
∗

Cl+gyY
∗

)
(mfpfk + d(k + F ∗pf + gypg)2)

(k + F ∗pf + gypg)4
> 0,

which holds in all three cases.

Hence, we have λ1 < 0, λ2 = 0, and λ3 < 0. The following analysis is conducted

to determine what happens near the critical line (gy, Y,
pggy−Ak
pfA

)

For ease of handling, the system is non-dimensionalized so we can reduce the

number of parameters from 14 to 10. Additionally, we will redefine the system as

Ẋ = Fi(X;P ;h(X)) where X = (g, y, f)>, i = 1 when h(X) ≥ 0, i = 2 when

h(X) < 0, and P is our set of parameters as defined in table (4.1).

Table 4.1: Non-dimensionalized Variable and Parameter Substitutions

Parameter a b ρ m δ γ ξ1 ξ2 ζ1 ζ2

Substitution Gink
mgpggy

Finpf
mgpg

pggy
k

mfpf
mgpg

kd
mgpg

gy
my

Pfk
mgpggy

Prk
mgpggy

Cu
gy

Cl
gymy

g = G
gy

y = Y
my

f =
Fpf
k τ =

tmgpg
k

Define

h(X) = g − 1

Then we have the system
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


ġ

ẏ

ḟ




=





F1 =




a− g
1+ρg+f

− ξ1
(g−1)(1−y)
ζ1+g−1

γξ1
(g−1)(1−y)
ζ1+g−1

b− mf
1+ρg+f

− δf



, g ≥ 1

F2 =




a− g
1+ρg+f

− ξ2
y(g−1)
ζ2+y

γξ2
y(g−1)
ζ2+y

b− mf
1+ρg+f

− δf



, g < 1

Hence, the switching manifold is the plane on which g = 1.

Notice that ẏ = γf3, where γ = gy/mg. This indicates biologically that γ << 1

since the maximum storage capacity of glycogen in a cell is of much higher magnitude

compared to the ideal concentration of active glucose. Hence y changes at a slower

pace than g or f . Let the subsystem (g, f)> be the fast dynamics, and y the slow

dynamics. Then we consider the dynamics of the fast system and slow system sepa-

rately. Then the linearization for (g, f)> gives two negative eigenvalues when g∗ = 1.

Hence the fast system has an asymptotically stable equilibrium. Let X∗ = (g∗, f ∗)>

be the equilibrium for the fast system. By the stable manifold theorem (theorem

9.4 in (Teschl, 2012)) there is a neighborhood of X∗ such that the flow described by

g(t) can be described with |g(t) − 1| ≤ Ce−αt, where α < min{|<(λ)||λ is an eigen-

value of J,<(λ) 6= 0}, where J is the Jacobian, and C > 0 depends on the choice of α.

Suppose g0 > 1. Then we can approximate the flow g(t) = 1 + (g0 − 1)e−αt,

where α is chosen as above, and assume that this approximation chooses α such that

C > g0 − 1 > 0. Let y(0) = y0 ∈ (0, 1). Then we substitute

ẏ = γξ1
(g0 − 1)e−αt(1− y)

ζ1 + (g0 − 1)e−αt
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and integrate, ∫
dy

1− y = −γξ1

∫
(g0 − 1)e−αtdt

ζ1 + (g0 − 1)e−αt

letting q = γξ1
α

, we get

− ln |1− y| = −q ln
∣∣ζ1 + (g0 − 1)e−αt

∣∣− C1

rearrange to find

C1 = ln

∣∣∣∣
1− y

(ζ1 + (g0 − 1)e−αt)q

∣∣∣∣

and letting C = eC1 , we find by setting y(0) = y0

C =
1− y0

(ζ1 + g0 − 1)q
.

Hence we have

y(t) = 1− (1− y0)

(
ζ1 + (g0 − 1)e−αt

ζ1 + g0 − 1

)q
. (4.5)

Then the final long term behavior of y(t) as t→∞ indicates that

y∗ = lim
t→∞

y(t) = 1− (1− y0)

(
ζ1

ζ1 + g0 − 1

)q
.

Hence y increases monotonically near the critical line, and the equilibrium value gets

closer to 1 the closer y0 is to 1 or the farther g0 is from 1. If y0 = 1 then y(t) = 1 and

y∗ = 1. If g0 = 1, then y(t) = y0 and y∗ = y0, hence if y0 = 0, then we have y∗ = 0.

Choose y∗ ∈ (0, 1) and y0 ∈ (0, 1) Then we can choose g0 such that

g0 = ζ1

[(
1− y0

1− y∗
)1/q

− 1

]
+ 1 ≥ 1.

Since y∗ was chosen arbitrarily, any point on the critical line is a potential equilibrium

for y when g0 ≥ 1.
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Similarly, suppose that g0 < 1, then we have the approximation g(t) = 1 − (1 −

g0)e−αt. Substituting gives us

ẏ = −γξ2
y(1− go)e−αt

ζ2 + y

and dividing both sides by the terms with y separates the equation to become

ẏ
ζ2 + y

y
= −γξ2(1− g0)e−αt

which we can integrate with respect to time to give

ζ2 ln |y|+ y =
γξ2

α
(1− g0)e−αt + C1.

Combine and exponentiate each side letting C2 = eC1

yζ2ey = C2e
γξ2(1−g0)

α
e−αt .

Then, we can take the ζ2 root of both sides and divide both sides by the same to

obtain

y

ζ2

ey/ζ2 = Ce
γξ2(1−g0)

ζ2α
e−αt

where C = C
1/ζ2
2 /ζ2. Here we set t = 0 to find

C =
y0

ζ2

e
y0/ζ2− γξ2(1−g0)ζ2α

Finally, we can invoke the Lambert-W function to simplify this to

y(t) = ζ2W

(
y0

ζ2

exp

[
y0

ζ2

+
γξ2(1− g0)

ζ2α
(e−αt − 1)

])
. (4.6)

This approximation has time derivative

y′(t) = −γξ2(1− g0)e−αtW (·)
1 +W (·) < 0

Hence y(t) is decreasing monotonically. Taking t→∞ we find

y∗ = lim
t→∞

y(t) = ζ2W

(
y0

ζ2

exp

[
y0

ζ2

− γξ2(1− g0)

ζ2α

])
= ζ2W (C).
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Since C ≥ 0 for all y0 ∈ [0, 1], g0 ∈ [0, 1) and W (C) is monotone increasing with

C ≥ 0, the dynamics of y∗ can be determined by the dynamics of C. Then we need

to know how C varies for different values of y0 and g0.

∂C

∂y0

=
e
y0/ζ2− γξ2(1−g0)ζ2α

ζ2

+
y0

ζ2
2

e
y0/ζ2− γξ2(1−g0)ζ2α > 0

∂C

∂g0

=
y0γξ2

αζ2
2

e
y0/ζ2− γξ2(1−g0)ζ2α > 0

Hence larger values of y0 give larger values of y∗ and the further g0 is to the equilibrium

g∗ = 1, the smaller y∗ is. Additionally, W (0) = 0, so y∗ = 0 if C = 0, which happens

precisely when y0 = 0 To check consistency, we determine when y∗ = 1, or more

concisely when

W (C) =
1

ζ2

.

This, of course, occurs when

1

ζ2

e1/ζ2 = C =
y0

ζ2

e
y0/ζ2− γξ2(1−g0)ζ2α

hence when y0 = 1 and g0 = 1, as expected.

Finally, suppose that g0 ≥ 1 and y0 ≥ 1. Then ẏ = 0 and y(t) = y0. Therefore,

depending on the initial conditions, we can obtain any y∗ > 0 when g∗ = 1, so the

entire critical line is a set of equilibria. �

Numerical Results for the No-DAG System

Since the approximations determined for the degenerate case above are based on

theoretical results, it is important to determine how well they match the calculated

trajectories for the full system. Parameters in this section are not based on the nu-

merical results determined in the short term model as the focus is on representing a
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Figure 4.1: Normal Case: Time Series Plots for System (4.2)
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clear picture of the model dynamics and not on demonstrating an ability to match

data.
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In the cases where the equilibria does not lie on the switching manifold, the

system dynamics evolve as expected (Fig. 4.1). Notice that when glucose infusion

(Gin) is excessive, the glucose is stored as glycogen and cellular levels of glucose

remain around the ideal concentration (gy, 4 in this case). Additionally, in Fig.

4.1 (b), when the glucose infusion is insufficient, glycogen in depleted in order to

maintain cellular glucose at ideal concentrations. Only after glycogen has been filled

or depleted do cellular levels of glucose rise or decline and approach equilibrium.

Hence this system exhibits the expected response in which glycogen storage buffers

the glucose concentration and acts to maintain ideal concentrations of glucose in the

cell.
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Figure 4.2: 3D Phase Portraits
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Trajectories for G*>gy

15

1

2

3

1050

G

4

F

5

40

Y

6

30 5

7

8

20
10 0

(b)

70



0

2

4

6

8

10

F
12

50

Trajectories for G*=gy

Y

8
6

G

4
20 0

(c)

For each simulation in Fig. 4.2, random initial conditions are selected and the

simulations are run until equilibrium. The dynamics of the system when G∗ < gy

or G∗ > gy seem to converge onto a stable manifold and move along it toward the

equilibrium point (Fig. 4.2 (a),(b)). However, the degenerate case simulations in

Fig. 4.2 (c) shows the point at which this stable manifold lies wholly in the switching

manifold, and trajectories approach and stick to it tangentially.

The system bifurcates when the levels of glucose infusion and fatty acid infusion
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Figure 4.3: Bifurcation Conditions
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cross a threshold (Fig. 4.3 (a)). When the level of glucose infusion rises, the bifur-

cation point for fatty acid infusion becomes closer to 0. This indicates that higher
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carbohydrate consumption or endogenous glucose production will induce a high glyco-

gen equilibrium. Since fatty acids compete with glucose for metabolism, if fatty acid

infusion is high enough then the system can equilibrate at the high glycogen equilib-

rium even for a lower rate of glucose infusion. The bifurcation point (Fig. 4.3 (b))

as fatty acid infusion increases for some fixed glucose infusion produces a critical line

of equilibria for glycogen. As stated in the previous section, this condition is exactly

when Fin = F̂in. Only along this critical line can we achieve values for Y ∗ that are

not either empty (Y ∗ = 0) or full (Y ∗ = my).

This critical line is the degenerate case where G∗ = gy. Notably, in the degenerate

case, Fig. 4.2 (c) demonstrates that solutions stick to the critical line and do not drift

toward either Y = 0 or Y = my. Additionally, trajectories that begin with G > gy

close below the plane Y = my approach but never reach my. This behavior is pre-

dicted by (4.5), which further suggests that only trajectories that begin on Y = my

ever reach the equilibrium value Y ∗ = my in the degenerate case.

The time evolution of the trajectories can be seen in Fig. 4.5 with initial glucose

concentrations below (a) and above (b) the critical line. Notice that the fast-slow

estimates for G and Y match closely with the simulated trajectories, but the approx-

imation above (Eqn. 4.5) is more sensitive to deviations of G0 from the critical line.

Figure 4.4 gives a closer inspection of the error induced by the distance between G0

and gy, where it can be seen that a small deviation above gy (a) causes as much error

as larger deviations below gy (b). However, the main result that various initial val-

ues for G0 yield to different equilibria (Y ∗) is supported, and the estimations match

closely to the numerical simulations.
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Figure 4.4: Degenerate Case: Fast-Slow Estimation Error
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Figure 4.5: Degenerate Case: Time Series with Fast-Slow Estimation
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4.0.4 Insulin Resistant Patient - Including DAG

The case we really wish to study is the one with insulin resistance mediated by

DAG accumulation. The previous simple case considered only a healthy individual

without excessive myocellular DAG concentration, on this we reintroduce the dimin-

ished Gin flux via the equation f5(D). The system we examine (4.7) is 4-dimensional

and retains many of the features of the healthy case.

Ġ =
nGin

n+D
− mgpgG

k + pgG+ pfF
−





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

Ẏ =





Pf (G−gy)
(

1− Y
my

)
Cu+(G−gy)

, G ≥ gy, Y < my

0, G ≥ gy, Y ≥ my

PrY (G−gy)

Cl+gyY
, G < gy

(4.7)

Ḟ = Fin −
mfpfF

k + pgG+ pfF
− dF

Ḋ = cdF − µD

Theorem 6 If mg > Gin then system (4.7) has a unique equilibrium, (G∗, Y ∗, F ∗),

given by

G∗ =
Ā

pg
(k + pfF

∗),

D∗ =
cd

µ
F ∗,

Ā =
Gin

mg −Gin + mgcd

nµ
F ∗
.

for a unique F ∗ > 0.
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Case 1: G∗ < gy, Y ∗ = 0

Case 2: G∗ > gy, Y ∗ = my

Case 3: G∗ = gy, Y ∗ ∈ [0,∞)

This system has a discontinuous bifurcation at G∗ = gy.

Proof:

Case 1: G∗ < gy

To begin, we set f3 = 0 and find that

Y ∗ = 0.

Then we look to solve for G∗ in Ġ|Y=0 = 0,

Ġ|Y=0 =
nGin

n+D∗
− mgpgG

∗

k + pgG∗ + pfF ∗
= 0.

Multiply both sides by the denominator on the second term, which can never be 0,

nGin

n+D∗
(k + pgG

∗ + pfF
∗)−mgpgG

∗ = 0,

then collect terms on G∗ and move to the RHS

nGin(k + pfF
∗)

n+D∗
= pg

(
mg −

nGin

n+D∗

)
G∗

and divide by the coefficient of G∗ to isolate

G∗ =
Ā

pg
(k + pfF

∗)

Ā =
nGin
n+D∗

mg − nGin
n+D∗

=
Gin

mg −Gin + mg
n
D∗

.
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In order to solve for F ∗, we must first determine D∗, which is simply

D∗ =
cd

µ
F ∗.

Then we plug in G∗ and D∗ to Ḟ ∗ = 0

Ḟ = Fin −
mfpfF

∗

k + Gin

mg−Gin+
mgcd

nµ
F ∗

(k + pfF ∗) + pfF ∗
− dF ∗ = 0.

Simplify the compound fraction

Fin−
mfpf (mg −Gin + mgcd

nµ
F ∗)F ∗

k(mg −Gin + mgcd

nµ
F ∗) +Gin(k + pfF ∗) + pfF ∗(mg −Gin + mgcd

nµ
F ∗)
−dF ∗ = 0,

and collect common terms on the denominator

Fin −
mfpf (mg −Gin + mgcd

nµ
F ∗)F ∗

mg(k + pfF ∗)(1 + cd
nµ
F ∗)

− dF ∗ = 0.

Next we multiply both sides by the denominator on the second term, which is never

0 valued,

mgFin(k+pfF
∗)(1+

cd

nµ
F ∗)−mfpf (mg−Gin+

mgcd

nµ
F ∗)F ∗−dmg(k+pfF

∗)(1+
cd

nµ
F ∗)F ∗ = 0

and expand, collecting common terms on powers of F ∗, and for sake of clarity, multiply the

equation by -1 to obtain,

cd2mgpf
nµ

F ∗3 +mg

(
cd

nµ
Θ + dpf

)
F ∗2 +

(
mgΘ−

cdkmgFin
nµ

−mfpfGin

)
F ∗ − kmgFin,

(4.8)

Θ = pf (mf − Fin) + dk.

This cubic polynomial guarantees us at least one positive equilibria because the leading

coefficient is positive and the constant is negative, so it must cross the positive axis. We

consider two cases: Θ > 0 and Θ < 0 in search for additional possible equilibria.
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If we assume Θ > 0, then

Fin < mf +
dk

mf

and the second order coefficient is positive. Then the first order coefficient

mgΘ−
cdkmgFin

nµ
−mfpfGin

could be positive or negative depending on parameter choices, however either case provides

a single change in sign. Then Descartes’ rule of sign still suggests a single real positive

equilibrium.

Suppose then that Θ < 0. Then the first order coefficient is negative and the sign of

the second order coefficient does not affect the number of sign changes. Hence, this situa-

tion still yields a single real positive equilibrium. Therefore this cubic polynomial always

presents a single positive equilibrium, which we will call F ∗. The solution of the polynomial

is excluded as it too cumbersome to be useful.

Case 2: G∗ > gy

In this case, we first solve for f3 = 0 and find that Y ∗ = my. Upon substitution into

the other equations, the system is identical to that of case 1. Hence we again have

G∗ =
Ā

pg
(k + pfF

∗)

D∗ =
cdF ∗

µ

Ā =
Gin

mg −Gin +
mg
n D

∗

where F ∗ is the positive solution to the cubic expression in equation (4.8).

Case 3: G∗ = gy
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Given G∗ = gy, then Ẏ = 0 is automatic and independent of the value of Y ∗. Hence,

when this equilibrium exists, Y ∗ can be any non-negative value. We have D∗ = cdF ∗

µ and

substituting G∗ = gy we get

G∗ =
Gin

pg(mg −Gin +
cdmg
nµ F ∗)

(k + pfF
∗) = gy,

then

Gin(k + pfF
∗) = gypg(mg −Gin +

cdmg

nµ
F ∗),

and solving for F ∗ yields

F ∗(pfGin −
cdgymgpg

nµ
) = gypg(mg −Gin)− kGin,

then divide

F ∗ =
gypg − k Gin

mg−Gin

pf
Gin

mg−Gin −
cdgymgpg

nµ(mg−Gin)

,

and substituting A = Gin
mg−Gin ,

F ∗ =
gypg −Ak

pfA− cdgymgpg
nµ(mg−Gin)

.

Notice that this degenerate case has an additional restriction in addition to those imposed

for system (4.2),

pfA >
cdgymgpg

nµ(mg −Gin)

or

Gin >
cd

nµ
· gypg
pf

mg

and combined with the necessary condition for the positivity of the numerator

pggy
pggy + k

mg > Gin >
cd

nµ
· gypg
pf

mg,

implies that the degenerate case can only exist if

1

pggy + k
>
cd

nµ

1

pf
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which can be interpreted as

pf >
cd

nµ
(k + pggy)

implying that the proportion of fatty acids available for metabolism has to be sufficiently

large. Biologically, the implication is that cellular glucose levels can remain at ideal levels

only if the proportion of fatty acids available for oxidations is greater than the average

production and lifespan of DAG times the half-maximal metabolism rate of fatty acids at

glucose equilibrium, reduced by the half saturation constant for DAG mediated insulin re-

sistance. In other words, the proportion of fatty acids available for metabolism must be

greater than the magnitude of effect DAG has on reducing glucose infusion times the con-

centration of fatty acids necessary for half maximal oxidation.

If fatty acid metabolism saturates quickly (i.e. k + pggy is small), if the half saturation

of DAG-induced IR is large (i.e. n is large), or if the production and lifespan of DAG is

small (i.e. cd
µ small) then the glucose equilibrium can remain at ideal levels. This indicates

that individuals with efficient fatty acid metabolism or low rates of DAG production can

easily find conditions to maintain glucose at ideal cellular concentrations.

Suppose that these conditions are met, we can substitute the conditions into Ḟ and

determine the rate of fatty acid infusion (Fin) required to achieve this equilibrium. Call

this particular critical value F̄in.

Ḟ = F̄in −
mfpf

gypg−Ak
pfA−

cdgymgpg
nµ(mg−Gin)

k + pggy + pf
gypg−Ak

pfA−
cdgymgpg

nµ(mg−Gin)

− d gypg −Ak
pfA− cdgymgpg

nµ(mg−Gin)

= 0

which can be rearranged to

F̄in =
(mg −Gin)(pggy −Ak)

(
mfpf

(
pfA− cdgymgpg

nµ(mg−Gin)

)
+

dgymgpg
mg−Gin

(
pf − cd

nµ (k + gypg)
))

mgpggy(pfA− cdgymgpg
nµ(mg−Gin)

)(pf − cd
nµ (k + gypg))

.

Notice that F̄in is positive if the conditions for F ∗ > 0 are met for G∗ = gy. Then G∗ = gy

when Fin = F̄in. �
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Suppose we take c = 0, then

F̄in =
(mg −Gin)(pggy −Ak)

(
mfpf (pfA) +

dgymgpg
mg−Gin (pf )

)

mgpggy(pfA)(pf )
.

=
(mg −Gin)(pggy −Ak)(mfpfA+

dmgpggy
mg−Gin )

mgpggypfA
= F̂in

So the critical value F̄in agrees with F̂in when the production of DAG (c) is removed. Then

∂

∂c
F̄in =

(mg −Gin)(pggy −Ak)

gymgpg

(
pfA− cdgymgpg

nµ(mg−Gin)

)2 (
pf − cd

nµ(k + gypg)
)2

×
[
dmfpf
nµ

(
pfA−

cdgymgpg
nµ(mg −Gin)

)2

(k + gypg) +
(dgymgpg)

2

nµ(mg −Gin)2

(
pf −

cd

nµ
(k + gypg)

)2
]

is always positive when the conditions are met. So the production of DAG increases the

necessary influx of fatty acids to produce the ideal glucose concentration equilibrium for any

given glucose infusion. This result suggests that DAG mediated insulin resistance protects

muscles against elevated concentrations of glucose at the expense of other tissues in the body.

Additionally, if you take c = 0 in the polynomial (4.8) you get

dpfmgF
∗2 + (mgΘ−mfpfGin)F ∗ − kmgFin = 0, (4.9)

Θ = pf (mf − Fin) + dk.

which, if multiplied by (1+A)
mg

, yields

dpf (1 +A)F ∗2 +
(1 +A)

mg
[mfpf (mg −Gin)−mg(dk − pfFin)]F ∗ − kFin(1 +A) = 0.

and since 1 +A =
mg

mg−Gin , we have

dpf (1 +A)F ∗2 + [mfpf + (dk − pfFin)(1 +A)]F ∗ − kFin(1 +A) = 0,

which is the same quadratic that arises from the system (4.2). Then the addition of DAG

production in system (4.7) doesn’t result in more equilibria, but an altered equilibrium.
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Moreover, if you take the polynomial (4.8) and subtract the quadratic (4.9), then you are

only left with the terms containing c,

cdmg

nµ
F ∗
(
dpfF

∗2 + ΘF ∗ − kFin
)

which is positive for

F ∗ >
−Θ +

√
Θ2 + 4dkpfFin

2dpf
,

and negative for (F ∗ <).

Let f(F ) be the cubic polynomial (4.8), g(F ) be the quadratic (4.9), F ∗ be the positive

zero such that f(F ∗) = 0, and F̄ be the positive zero such that g(F̄ ) = 0. Put fc(F ) =

f(F )− g(F ), the terms of f(F ) that contain c. Then fc(F ) > 0 implies that f(F ) > g(F ),

hence 0 = f(F ∗) > g(F ∗) implies that the single positive zero of the concave up quadratic

g(F ) has not occurred yet, hence F ∗ < F̄ . On the other hand, if fc(F ) < 0 then F ∗ > F̄ .

Hence the addition of c decreases the equilibrium value for F ∗ if F ∗ >
−Θ+
√

Θ2+4dkpfFin
2dpf

,

but increases it if below that condition. It is not clear if the positive zero for (4.8) could

be greater or less than this threshold, as the expression for F ∗ is algebraically intractable.

Understanding the role that DAG production plays on the value of F ∗ is important since

our expressions for G∗ and D∗ both vary as F ∗ does. We will explore this numerically.

Numerical Results for the DAG system

The simulations for the 4-dimensional system mirror the dynamics that we see in the 3

dimensional system. The key feature of the simulations is how glycogen stores help to

maintain a preferable glucose concentration in the cell. However, once the glycogen is de-

pleted or filled to capacity, the cell cannot maintain ideal levels of glucose and the system

hits equilibrium.

Keeping glucose infusion constant, Fig. 4.6 demonstrates the dynamics of the system

when fatty acid infusion is high. The DAG concentration in this case lowers the glucose
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Figure 4.6: Simulations for System (4.7) with High Fin
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infusion via DAG-mediated insulin resistance, and the steady state concentration of DAG

is high enough that glucose levels can only be maintained at ideal levels until the glycogen

stores are depleted. After glycogen is depleted, glucose concentrations stabilize at a lower

equilibrium. On the other hand, for the same value of Gin, Fig. 4.7 shows that the lower

concentrations of fatty acids and DAG in the cell allows the cell to maintain constant glu-

cose levels until glycogen fills to capacity.

The relationship between F̄in and Gin in Fig. 4.8 demonstrates that as Gin increases,

the necessary influx of fatty acids necessary to maintain ideal concentrations of intramyocel-

lular glucose increases. Moreover, the vertical dashed grey line is the lower bound threshold

for the existence of the degenerate case (i.e. Gin = cd
nµ ·

gypg
pf

mg). Any glucose infusion below

the dashed grey line will result in a glucose equilibrium below the ideal concentration and

a depleted glycogen store for any fatty acid infusion. Notice that this is distinctly differ-

ent than in Fig. 4.3, where there is always some critical value of F̂inthat would yield the

degenerate case for any small Gin. Hence the addition of DAG mediated insulin resistance

84



Figure 4.7: Simulations for System (4.7) with Low Fin
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generates a cutoff for glucose infusion, below which you can never fill glycogen stores.

In order to better understand the relation between DAG production (c) and the value

of the fatty acid equilibrium (F ∗) we look at how F ∗ varies as c is increased away from

0. The plot in Fig. 4.9 demonstrates that the addition of DAG production in fact re-

duces the equilibrium value of F ∗. Furthermore, while we expect DAG to be fraction of

the total byproducts created from IMCL (hence c < 1), we can see that the equilibrium,

F ∗ approaches the value of the expression
−Θ+
√

Θ2+4dkpfFin
2dpf

(Fig. 4.9 (b)). This clearly

implies that the terms containing c take over the behavior of (4.8) if we let c get very large.

However, this is not biologically feasible, hence we only expect to see some minor decrease

in fatty acid concentration such as in Fig. 4.9 (b).
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Figure 4.8: Bifurcation Conditions on Fin and Gin
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Figure 4.9: Effect of DAG Production on F ∗
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Chapter 5

DISCUSSION AND FUTURE WORK

5.1 Discussion

Intramyocellular triglyceride, and more generally intramyocellular lipids, play an impor-

tant role in regulating muscular glucose uptake during a state of high fatty acid influx. This

leads to DAG accumulation and glucose transport reduction. The mathematical model pro-

posed is capable of fitting euglycemic-hyperinsulinemic clamp with fatty acid infusion data

with reasonable parameter values. Not only does the model replicate data dynamics, it fits

4 related data sets simultaneously with a single set of parameters. This fact indicates that

the major mechanisms driving the dynamics seen in (Roden et al., 1996) are represented in

this model.

The model’s highly nonlinear nature makes it likely that the parameter set found in our

estimation is not a global minimum, and uncertainty in our parameter choices could have

a large effect on the model’s predictive power. Most importantly, the parameters related

to glucose and fatty acid infusion into the myocytes change the fit quite dramatically, but

those parameters at least have a known feasible range if you have enough information from

the clinical procedure. The parameters that govern DAG production and DAG-mediated IR

are less well understood and not directly measurable, hence the uncertainty in those values

is high. More data is necessary in order to validate the predictive power of this model.

The long term model dynamics demonstrate simple behaviors. Most notably, the glyco-

gen store works as a buffer to maintain cellular levels of glucose at ideal levels, so long as

glycogen is available and not at maximal capacity, the muscle cells are able to maintain a

fairly constant glucose level. However, the relationship between glucose uptake and fatty
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acid infusion suggests certain dietary considerations.

There are four main long term behaviors that our model predicts which may be relevant

in understanding insulin resistance. The first is the condition when glucose uptake and

fatty acids infusion is low. In this case, the low glucose equilibrium is stable, and glycogen

is depleted. Additionally, DAG does not accumulate and insulin resistance is low. Hence

an increase in glucose availability will be utilized and stored as glycogen readily.

The second scenario is low fatty acid availability but high glucose. This situation fills

the glycogen reserve and intracellular glucose concentrations come to rest at a high equilib-

rium. In this case, insulin resistance is not present, however the intracellular environment

is still hostile due to glucotoxicity from the elevated glucose level. Furthermore, the body

responds to situations like these by storing excess glucose as triglycerides in a process called

de novo lipogenesis. This often occurs in the liver, but can be found in muscle cells as well.

This biological response would increase the pool of intracellular lipids, and would act as a

source in addition to passive diffusion from the blood.

The third scenario is interesting, low glucose utilization and high fatty acid availability

puts the system into the low glucose equilibrium and depletes glycogen stores. However,

without competition from glucose, the fatty acids can be readily metabolized for energy.

Additionally, studies on athlete have shown that a high intramyocellular store of triglyc-

erides is not associated with insulin resistance if there is high turn-over, or metabolism. In

the case of athletes, the fatty acid infusion is high, but the proportion and maximal rate

of β-oxidation lowers the proportion of lipids that are converted into secondary byproducts

like DAG. Additionally, this case assumes a low extracellular glucose concentration, so the

DAG-mediated IR actually spares glucose by allowing it to continue circulating until it is

utilized by other tissues such as nervous tissue. This is a rare case where the insulin resis-
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tance may not be detrimental to health.

The final situation is the most common, high glucose availability and high fat availabil-

ity. The elevated extracellular glucose would come from food consumed, and the elevated

fat could be from nutritive sources, or from circulating body fat spilling over from adipose

tissue. This case yields the high glucose equilibrium since the critical fatty acid infusion

value is actually negative, and biologically infeasible. Thus you have the trifecta, elevated

glucose equilibrium, insulin resistance, and a full glycogen store. This case is the most

stressful case as it provides glucotoxicity for the muscles, and the insulin resistant cells

don’t clear glucose from the body, which leads to glucotoxicity for other tissues as well.

The addition of DAG production to the healthy no-DAG model increases the critical

fatty acid infusion level required to see the ideal glucose concentration equilibrium. This re-

sult suggests that insulin resistance, while detrimental to the body as a whole, can actually

be protective for muscles. In other words, insulin resistance in muscles helps keep intramy-

ocellular glucose concentrations lower by reducing the effective influx from the bloodstream.

Now, our model says nothing of the effects of glucotoxicity on the body, but if muscles are

not utilizing the blood glucose then the glucose levels in plasma will remain higher for

longer. However, when fat is present and available for metabolism in the muscle and DAG

production is proportionally higher, then glucose is spared for other tissues by means of mus-

cular insulin resistance. Hence a low carbohydrate, high fat diet induces insulin resistance

and depletes glycogen stores, but energy production from fat oxidation becomes the main

source of energy. We see this exact result in patients on a ketogenic diet (Volek et al., 2015).

However, the other side of the coin implies that intramyocellular lipid availability reduces

the efficiency of the muscles’ glucose utilization. Hence a diet with higher carbohydrate con-

sumption will benefit from a low fatty acid influx into muscles. If the insulin pathway is not
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restricted, then the muscles can efficiently take up and metabolize glucose, clearing it from

the blood and alleviating hyperglycemia. Clinical trials implementing a high carbohydrate,

very low fat diet demonstrated a significant reduction in IMTG and fat oxidation rates

(Coyle et al., 2001), as well as improved insulin action (Barnard et al., 2005). Hence in

either extreme, with low-fat-high-sugar or low-sugar-high-fat, the muscles can operate in a

healthy way and generate adequate energy. It is only the case of excess sugar and fat, which

is likely associated with excess total caloric intake, where we see an insulin resistant and

glycogen replete individual. Moreover, the line (F̄in(Gin)) that separates the low and high

glycogen equilibria follows an inverse monotone relation with a single positive zero. Hence

a healthy balance of glucose and fat availability is only possible up until a maximum calorie

intake.

Mathematically, the switching manifold for the long term system brings up interesting

questions in a field that is not heavily studied. The discontinuous bifurcation that is in-

duced as the bifurcation crosses the switching manifold creates a dense line of equilibria.

However, more work needs to be done in order to prove that the trajectories which approach

the line get stuck and do not slide toward either extremum (the trivial or maximal glycogen

equilibria).

The 3 dimensional model (system (4.2)) demonstrates these mathematically interesting

dynamics, whereas the additional state variables change the conditions necessary for the

degenerate case, but do not significantly alter the qualitative behavior. This similarity is

demonstrated in numerical simulations, as the 4 and 5 dimensional long term systems were

too cumbersome to work with while exploring the bifurcation.

Ultimately, the results suggest that simple relationships between glucose and fatty acid

availability drive the long term system dynamics. More questions arise, however when con-
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sidering general model. As more information comes to light about how the intramyocellular

lipids are utilized and how their byproducts affect insulin resistance, this dissertation acts

as a base camp from which new model formulations can be constructed and studied.

5.2 Future Work

The model uses naive assumptions about the functional forms of molecular interac-

tions. Therefore this model can be improved by choosing more accurate interaction terms.

Specifically, the production of DAG is linearly proportional to IMCL concentration, and

nonlinear saturable functions would likely represent the biological mechanisms more realis-

tically. Another obvious improvement would be the reduction of glucose infusion by DAG

concentration. In the cell, DAG does not directly affect GluT4 nor does blocking the IRS

activity immediately down regulate glucose transport. Thus a distributed delay for insulin

action inhibition would be the most realistic. However, while the long term behaviors may

be similar, this addition would likely affect transient dynamics the most.

The main molecule responsible for down regulating insulin activity in euglycemic hyper-

insulinemic clamps with fatty acid infusion is DAG. This is due to the fatty acid infusion

being unsaturated, and some studies have shown that fatty acid induced insulin resistance

occurs without an increase in DAG, but an increase in ceramides. Ceramides can be in-

creased via infusion of saturated fatty acids, but fewer trials of this form have been per-

formed. A comparison between data from typical fatty acid infusions and saturated fatty

acid infusions would give insight into fundamental differences between the dynamics and

would motivate a more realistic long term dynamics analysis of the model. Additionally, it

is possible that DAG and ceramides work together or against each other in some ways that

may inspire attaching additional model variables.

92



This model needs to be tested against more data to determine how robust the chosen

parameters are. Given the already complex non-linear nature of the model, the found pa-

rameters likely account for one of many parameter sets that locally minimize the difference

between simulation and observation. Thus a more thorough vetting of the parameter es-

timation is needed before this model will be useful in a clinical setting. Additionally, this

model can be improved as more biological research elucidates the in vivo enzyme interaction

dynamics. Parameter estimation will shed light on which model choices make the biggest

difference in predictive accuracy. Hence it is important to try different model functions that

demonstrate the same qualitative behavior and test them against each other to determine

which assumptions best fit the clinical data.

Additionally, the measure of muscular insulin resistance determined by the concentra-

tion of DAG provides a novel measure of insulin sensitivity. With the multitude of other

insulin sensitivity indices, it would be interesting to determine the differences that this

model provides. Moreover, the muscular insulin resistance likely only accounts for a subset

of insulin resistance in a diabetic patient, and this new metric may help shed light on what

role muscular insulin resistance plays in whole body insulin resistance.

Furthermore, the long term model dynamics need to be studied in more detail. For

instance, if there is an enzyme dysfunction (or knockout) that disallows the normal cellular

switching from storing to utilizing glycogen, does the system exhibit other types of bifurca-

tions? Perhaps we can discover some other typical bifurcations in the system. Additionally,

the switching mechanisms are not, in reality, completely on or off. Hence, some delayed

switching time or transition could clarify the cellular dynamics. The results of stability

we have already discovered could be strengthened by demonstrating global stability with a

Lyaponov function or Dulac critereon tests.
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Lastly, this model describes a single clinical protocol that is not only expensive, but

short term in scale. The larger application of such a model would be in discovering if these

dynamics are a cause of, or result of, chronic insulin resistance. Since the model assumes

a constant inflow of glucose and fatty acids, it is currently not guaranteed to be bounded

depending on parameter and function choices. Therefore, we need to add self regulation to

the system in addition to non-autonomous nutrient infusion rates that depend on external

stimuli such as glucose and insulin concentration. Fortunately, glucose-insulin dynamics

have been well studied and models of this variety are being used for other predictive appli-

cation such as closed loop control insulin injection algorithms for type 1 diabetics.
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