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ABSTRACT

Predicting resistant prostate cancer is critical for lowering medical costs and improving

the quality of life of advanced prostate cancer patients. I formulate, compare, and

analyze two mathematical models that aim to forecast future levels of prostate-

specific antigen (PSA). I accomplish these tasks by employing clinical data of locally

advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I

demonstrate that the inverse problem of parameter estimation might be too complicated

and simply relying on data fitting can give incorrect conclusions, since there is a large

error in parameter values estimated and parameters might be unidentifiable. I provide

confidence intervals to give estimate forecasts using data assimilation via an ensemble

Kalman Filter. Using the ensemble Kalman Filter, I perform dual estimation of

parameters and state variables to test the prediction accuracy of the models. Finally,

I present a novel model with time delay and a delay-dependent parameter. I provide

a geometric stability result to study the behavior of this model and show that the

inclusion of time delay may improve the accuracy of predictions. Also, I demonstrate

with clinical data that the inclusion of the delay-dependent parameter facilitates the

identification and estimation of parameters.
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Chapter 1

INTRODUCTION

1.1 Biological Background

Prostate cancer is the most common non-skin cancer among men (Bard et al.

(2013)). A non-smoking man is more likely to develop prostate cancer than colon,

bladder, melanoma, lymphoma, and kidney cancer combined (Bard et al. (2013);

Heinlein and Chang (2004)). In most cases, the prostate tumor grows slowly, and takes

years to become large enough to be diagnosed, and even longer to spread to other

body locations (Folkman (1996)) However, a small percentage of men experience more

rapidly growing and aggressive forms of prostate cancer (Feldman and Feldman (2001)).

Hence, it is difficult to know for sure which prostate cancers will grow slowly and which

will grow aggressively. The design of cancer chemotherapy is becoming increasingly

sophisticated, however, the uncertainty of cancer growth can still complicate treatment

strategies (Khayat and Hortobagyi (2013)). Currently, there is no cancer treatment

that is 100% effective against metastatic cancer (Gottesman (2002)). Even though

there are targeted treatments after chemotherapy has failed, treatment resistance that

occurs as cancerous cells evolve is the main obstacle of targeted cancer treatments

today (Holohan et al. (2013)).

1.2 Pathways to Androgen Resistant Prostate Cancer

There are five identified pathways for cancerous prostate cells to develop androgen

resistance (Feldman and Feldman (2001)). The hypersensitive pathway happens

when more androgen receptors are produced or the androgen receptors become more
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sensitive to lower levels or androgen (Feldman and Feldman (2001)). In the promiscuous

pathway, the androgen receptors are not only activated by androgen molecules but

also other non-androgen molecules such as corticosteroids (Feldman and Feldman

(2001)). In the outlaw pathway, receptor tyrosine kinases are activated, and the AR

is activated by the protein kinase B (Feldman and Feldman (2001)). In the bypass

pathway, parallel survival pathways, such as that involving the anti-apoptotic protein

BCL2 (B-cell lymphoma 2), obviate the need for AR or its ligand. The first four

pathways are due to mutations in castration sensitive prostate cells that make the cells

resistant to lower levels of androgen. However, in the lurker cell pathway, androgen

resistant cancer cells that are present all the time in the prostate. The resistant

cells had been lurking as a sub-population of the tumor and androgen suppression

therapy selected for the lurking cells until they take over the majority of the tumor

and the patient no longer responds to ADT (Feldman and Feldman (2001)). The

above mentioned pathways are described in great detail in a great paper review paper

by Feldman and Feldman (2001). In order to asses a models ability to model androgen

resistant prostate cancer, we need to check whether a model can incorporate as many

of the possible pathways to resistance with the data that is available.

1.3 Androgen Suppression Therapy

Since the discovery of androgen dependency of prostate cells, androgen deprivation

therapy (ADT) has been the main treatment of metastatic and locally advanced

prostate cancer (Heinlein and Chang (2004); Shafi et al. (2013); Tsao et al. (2012)). In

ADT, the goal is to reduce the levels of male hormones, androgens, or to prevent them

from affecting prostate cells (Feldman and Feldman (2001)). The main androgens in the

body are testosterone and dihydrotestosterone (DHT) (Feldman and Feldman (2001)).

Most of the androgens are made by the testicles, but the adrenal glands produce
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about 5% (Tilley et al. (1996); Heinlein and Chang (2004)). Lowering androgen

levels to stop them from getting into prostate cancer cells often makes tumors shrink

and grow more slowly, but ADT alone can only extend a patient’s life and cannot

cure prostate cancer (Feldman and Feldman (2001)). The main drawback of ADT is

the development of resistance due to cancer cells proliferating at castration levels of

androgen (Feldman and Feldman (2001)). The development of resistance can take

from a few months to more than ten years (Tsao et al. (2012); Hussain et al. (2013)),

after which there is only less effective treatments and high death rate (Karantanos

et al. (2015)). Intermittent androgen suppression (IAS) was implemented in order

to delay the progression of androgen resistance and improve the quality of life of

patients (Bruchovsky et al. (2006b)). During off-treatment periods, patients can take

a vacation from the severe side effects of ADT (Klotz and Toren (2012)), and studies

have suggested that IAS may not negatively affect the time to androgen resistance or

survival in comparison to continuous ADT (Gleave (2014)).

1.4 Mathematical Modeling of Intermittent Androgen Suppression Therapy

The first to study the possible pathways to androgen tumor relapse during ADT

was Jackson (2004a). Jackson (2004a) used a system of partial differential equations to

model the mechanics of the progression to castrate resistant prostate cancer (CRPR).

The main finding of Jackson’s work was that ADT is prone to failure and the delay of

resistance can occur for only a restricted range of parameters values (Jackson (2004a)).

Then many researchers started modeling the dynamics of androgen suppression therapy.

Ideta et al. (2008) developed a system of ordinary differential equations to study the

mechanics of ADT. They considered castrate-resistant (CR) and castrate-sensitive

(CS) cell populations as well as androgen levels. Their model included mutations from

CS to CR cells, and their focus was on comparing continuous and intermittent therapy

3



and the development of resistance. Their results suggest that the mutation rates

between cancer types has an influence in the time to androgen relapse (Ideta et al.

(2008)). Hirata et al. (2010) considered a three cell populations using a piece-wise

linear model to fit clinical prostate-specific antigen (PSA) data. Their model included

CS cells that could mutate into CR cells, CR cells that could mutate into CS cells, and

CR cells that do not mutate back CS cells. Several investigators using Hirata’s model,

have studied estimation of parameters (Guo et al. (2013); Tao et al. (2013)), optimal

switching times and control in IAS (Guo et al. (2013); Suzuki et al. (2014); Hirata

et al. (2012a)), and forecasting cancer resistant prostate cancer progression (Hirata

et al. (2012b, 2014a)). Portz et al. (2012) developed a model of ADT by extending

the works of Jackson (2004a) and Ideta et al. (2008). Their model included two cell

populations as in Ideta et al. (2008) but also included a limited nutrient based cancer

growth model by the cell quota model Droop (1973).

1.5 Thesis Overview

All the novel contributions presented in this dissertation involve the Cell Quota

model (Droop (1973)) and follow from the works of Portz et al. (2012). The cell

quota model is a two-parameter curve which maps specific growth rate to intracellular

nutrient of a cell,

µ

(
1− q

Q

)
where the cell quota Q is often expressed as units per cell, or the relative mass of

some nutrient per unit of biomass (Everett et al. (2014)). The subsistence quota q

can be interpreted as the minimum Q required for life. Similarly, it can be interpreted

as the conversion ratio for biomass, whereby Q > q implies there is a nutrient pool

available for reproduction. In this work, we shall use serum androgen concentration to

approximate intracellular androgen in cancer cells. Androgen passively diffuses through
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the prostate membrane via concentration gradient (Roy and Chatterjee (1995)). By

assuming an equilibrium concentration of intracellular and serum levels, we use serum

levels effectively as the limiting nutrient of the cell growth (Baez and Kuang (2016)).

In Chapter 2, we introduce the details of the clinical trial that is the source of

data for all our predictions. We use data from Bruchovsky et al. (2006b), in our

analysis and data fitting. Chapter 2 of this dissertation also focuses on a comparison

of mathematical models of prostate cancer that are prominent in literature. A pair of

novel models are presented in this chapter that aim to enhance Portz et al. (2012)

model. We present the one population model,

dx

dt
= µ(1− q

Q
)x︸ ︷︷ ︸

growth

− (ν
R

Q+R
+ δx)x︸ ︷︷ ︸

death

dν

dt
= −dν

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸ ︷︷ ︸
diffusion

−µ(Q− q)︸ ︷︷ ︸
uptake

dP

dt
= bQ︸︷︷︸

baseline

+ σxQ︸︷︷︸
tumor production

− εP︸︷︷︸
clearance

,

and the two population model,

dx1

dt
= µ(1− q1

Q
)x1︸ ︷︷ ︸

growth

− (D1(Q) + δ1x1)x1︸ ︷︷ ︸
death

−λ(Q)x1︸ ︷︷ ︸
CS to CR

dx2

dt
= µ(1− q2

Q
)x2︸ ︷︷ ︸

growth

− (D2(Q) + δ2x2)x2︸ ︷︷ ︸
death

+λ(Q)x1︸ ︷︷ ︸
CS to CR

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸ ︷︷ ︸
diffusion

− µ(Q− q1)x1 + µ(Q− q2)x2

x1 + x2︸ ︷︷ ︸
uptake

dP

dt
= bQ︸︷︷︸

baseline

+σ(Qx1 +Qx2)︸ ︷︷ ︸
tumor production

− εP.︸︷︷︸
clearence

.
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These models aim to keep the strength of Portz et al. (2012) model, its biological

realism, but making simplifying assumptions to facilitate mathematical analysis and

parameter estimation. In this chapter, we compare our results to Hirata et al. (2010)

since it has been used extensively in the study of intermittent androgen suppression

therapy.

In Chapter 3 of this dissertation, we explore the problem of estimating parameters

correctly as well as how to make predictions of androgen resistance in a quantifiable

manner. First, we study the parameter identifiability of the models presented in

Chapter 2. Parameter identifiability deals with the problem of uniquely inferring

parameters from data (Eisenberg et al. (2013)). Hence, a model that has unidentifiable

parameters can yield the predictions under different sets of parameters. For example,

a unidentifiable model can predict that, in a patient with androgen resistant prostate

cancer, the cancer cell growth parameter can have multiple values. Therefore, it is

impossible to map back to the specific parameter values and learn something about

individual patients. We demonstrate how the Hirata et al. (2010) model, a commonly

used model of IAS, fails to be identifiable. Thus, multiple parameter combinations

can yield the same conclusions and individual patient insights are not reliable. The

figure below depicts the issues when a model is not identifiable. In addition, we use

the ensemble Kalman filter for uncertainty quantification. Here we briefly present a

overview of the derivation. If error is assumed to be normally distributed with mean

0 and covariance matrix R, we can express the error as a Gaussian random variable.

1

(2π)
n
2 (R)

1
2

exp

{
−1

2
[yj −Hj(x(tj))]

T R−1 [yj −Hj(x(tj))]

}
(1.1)

Then, the Maximum Likelihood Estimate is given by

L(x(t)) =
n∏
j=1

1

(2π)
n
2 (Rj)

1
2

exp

{
−1

2
[yj −Hj(x(tj))]

T R−1 [yj −Hj(x(tj))]

}
(1.2)
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Figure 1.1: Schematic Representation of Kalman Filter Algorithm. First, We Start
with an Initial Ensemble of Initial Conditions at Reasonable Time Points. Then
Integrate the Model Forward to the First Forecast Time at yt−1. At t−1 Observe PSA
Levels, and Update the Forecast Ensemble with the Kalman Cost Function Jtn(x).

Then, we can take the log of the likelihood function

log (L(x(t))) = −
n∑
j=1

1

2
[yj −Hj(x(tj))]

T R−1 [yj −Hj(x(tj))] + C

Thus, the most likely trajectory minimizes the cost function

J({x(t)}) =
n∑
j=1

1

2
[yj −Hj(x(tj))]

T R−1 [yj −Hj(x(tj))]

Jtn(x) =
n∑
j=1

1

2

[
yj −Hj(Mt,tj(x))

]T
R−1

[
yj −Hj(Mt,tj(x))

]
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We can express J(x) as

Jtn(x) =
n−1∑
j=1

1

2

[
yj −Hj(Mt,tj(x))

]T
R−1

[
yj −Hj(Mt,tj(x))

]
+

1

2
[yn −Hn(Mt,tn(x))]T R−1 [yn −Hn(Mt,tn(x))]

=
[
xn − x̄bn

]T (
Pb
n

)−1 [
xn − x̄bn

]
+ [yn −Hn(Mt,tn(x))]T R−1 [yn −Hn(Mt,tn(x))]

= [xn − x̄an]T (Pa
n)−1 [xn − x̄an] + c

Formally, we want the analysis mean x̄a to minimize the Kalman filter cost function

J(x) (Hunt et al. (2007)):

[
xn − x̄bn

]T (
Pb
n

)−1 [
xn − x̄bn

]
+ [yn −Hn(Mt,tn(x))]T R−1 [yn −Hn(Mt,tn(x))]

In Chapter 4, we present a novel model that introduces a time delay in order to

fit patient data with greater accuracy and improve its predictive power. We also

work with the challenges of a time dependent delay in our system. Here we present a

preview of our one population delay mode:

x′ = µ

(
1− q

Q(t− τ)

)
x(t− τ)e−dmτ − dR

R +Q(t)
x(t)− δx2(t)

Q′ = γ (Qm −Q(t))− µ
(

1− q

Q(t− τ)

)
e−dmτQ(t)

x(t− τ)

x(t)

P ′ = bQ(t) + σX(t)Q(t)− εP (t)

In this chapter we demonstrate that the biological accuracy can produce more reliable

parameter estimations that yield a Mean Square Error that is superior to the non-

delay models presented in Chapter 2. With the inclusion of time delay, we finish our

systematic approach to modeling prostate cancer.
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Chapter 2

MATHEMATICAL MODELS OF ANDROGEN RESISTANCE IN PROSTATE

CANCER PATIENTS UNDER INTERMITTENT ANDROGEN SUPPRESSION

THERAPY

2.1 Introduction

Ever since the discovery of androgen dependency of prostate cells, androgen

deprivation therapy (ADT) has played a vital role in the treatment of metastatic

and locally advanced prostate cancer (Heinlein and Chang (2004); Shafi et al. (2013);

Tsao et al. (2012)). However, controversy remains regarding its best application.

Although this treatment will regress tumors in over 90% of patients Bruchovsky

et al. (2008), after prolonged androgen depletion, patients will eventually develop

castration-resistant prostate cancer (CRPC) (Feldman and Feldman (2001)). The

development of CRPC can take from a few months to more than ten years (Tsao

et al. (2012); Hussain et al. (2013)), after which there is a very limited number of

less effective treatments and patients suffer high mortality (Karantanos et al. (2015)).

ADT is expensive and side effects include sexual dysfunction, hot flashes, and fatigue

(Klotz and Toren (2012)). For these reasons, intermittent androgen suppression (IAS)

is implemented to hopefully delay the progression of CRPC and improve quality

of life (Bruchovsky et al. (2006b)). During off-treatment periods, patients enjoy a

”vacation” from the severe side effects of ADT (Klotz and Toren (2012)), and studies

have suggested that IAS may not negatively affect the time to progression or survival

in comparison to continuous ADT (Gleave (2014)).

Many mathematical models have studied the dynamics of prostate cancer during

9



ADT (Jackson (2004a); Ideta et al. (2008); Portz et al. (2012); Hirata et al. (2010);

Swanson et al. (2001); Jain et al. (2011); Jain and Friedman (2013a,b)). A detailed

review of some of these models are presented in the recent book of Kuang et al. (2016).

Ideta et al. (2008) are pioneers of mathematically describing the dynamics of IAS .

Ideta et al. (2008) developed a system of ordinary differential equations to study the

mechanics of ADT. They considered castrate-resistant (CR) and castrate-sensitive

(CS) cell populations as well as androgen levels. Their model included mutations

from CS to CR cells, and their focus was on comparing continuous and intermittent

therapy and the development of resistance. Hirata et al. (2010) considered a three

cell populations using a piece-wise linear model to fit clinical prostate-specific antigen

(PSA) data. Their model included CS cells that could mutate into CR cells, CR

cells that could mutate into CS cells, and CR cells that do not mutate back CS cells.

Several investigators using Hirata et al. (2010)’s model, have studied estimation of

parameters (Guo et al. (2013); Tao et al. (2013)), optimal switching times and control

in IAS (Guo et al. (2013); Suzuki et al. (2014); Hirata et al. (2012a)), and forecasting

CRPC progression (Hirata et al. (2012b, 2014a)).

Built on the works of Ideta et al. (2008) and Jackson (2004b), Portz et al. (2012)

developed a novel mathematical model to study the dynamics of IAS by using the cell

quota model, Droop (1973), from mathematical ecology, which relates growth to an

intracellular nutrient, to model the growth of both the CS and CR cell populations.

The cell quota was formed as the intracellular androgen concentrations for each cell

population. This model fitted clinical PSA data, and androgen data was used implicitly

through the cell quota. Everett et al. (2014) compared Hirata et al. (2010), Ideta

et al. (2008), and Portz et al. (2012) to asses their accuracy of fitting clinical data

and predicting future PSA levels. They concluded that while a biologically-based

model is important to reveal the underlying processes, a simpler model such as Hirata
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et al. (2010) might be practical and useful for predicting future outcomes of individual

patients.

In this work, we propose a simplification to PKN Portz et al. (2012), a model that is

mechanistically driven but simple enough for us to perform systematical mathematical

analysis of its dynamics. For simplicity, we shall use serum androgen concentration

to approximate intracellular androgen. This is reasonable since androgen passively

diffuses through the prostate membrane via concentration gradient Roy and Chatterjee

(1995). By assuming an equilibrium concentration of intracellular and serum levels, we

use serum levels effectively as the limiting nutrient of the cell growth. This approach

is practical for a clinical setting, in which the data collected is applied directly to

the model. The mathematical models presented shall fit PSA and androgen levels

simultaneously, a novel and very desirable model feature.

2.2 Clinical Trial Data

We use data from Bruchovsky et al. (2006a), in our analysis and model calibration.

This clinical trial admitted patients who demonstrated a rising serum PSA level after

they received radiotherapy and had no evidence of metastasis (Bruchovsky et al.

(2006a)). Treatment in each cycle consisted of cyproterone acetate for four weeks,

followed by a combination of leuprolide acetate and cyproterone acetate, for an average

of 36 weeks. If serum PSA is less than 4µg
L

by the end of this period, the androgen

suppression therapy is stopped. If patient’s serum PSA stays above the threshold,

the patient will be taken off the study. After treatment is interrupted, PSA and

androgen are monitored every 4 weeks. The therapy is restarted when patient’s serum

PSA increases to ≥ 10µg/L (Bruchovsky et al. (2006a)). The data set is available

at http://www.nicholasbruchovsky.com/clinicalResearch.html. Figure 2.1 shows a

typical patient that undergoes IAS.
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Figure 2.1: Sample Data for PSA and Androgen Data for a Patient in the Clinical
Trial.

2.3 Formulation of Mathematical Models

We develop two plausible mathematical models to study the temporal dynamics of

prostate cancer progression to CRPR. In Model 1, we use an average tumor model

in which cancerous prostate cells are a combination of CS and CR cells. In this

model, tumor cells’ death rate is a monotonically decreasing exponential function,

which we use to model the development of resistance. Then, we propose a two cell

population model where we distinguish between CS and CR cells explicitly. To be

more biologically relevant, the development of resistance is assumed to be a function

of androgen levels in Model 2.

In both models, the cell growth rate is determined by the androgen cell quota.

Specifically, we model the growth rate by a two parameter function of androgen cell

quota,

G(Q) = µ(1− q

Q
), (2.1)

where Q is the androgen cell quota. The equation 2.1 is known as Droop equation

or growth rate model. It assumes that Q is the concentration of the most limiting

resource or nutrient, and q is the minimum level of Q required to prevent cell death
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(Droop (1973)).

To be biologically relevant, for both models, we assume that the initial values

for all variables are positive. This shall ensure all components of their solutions are

positive. Accordingly, we are only interested in studying the stabilities of non-negative

steady states.

2.3.1 Model 1: Single Population Model

In the following model, tumor cell volume is denoted by x (mm3), and we assume

that the total volume is a combination of CS and CR cells. Intracellular androgen cell

levels are denoted by Q (nM), and PSA levels by P (µg
L

). Droop’s equations govern

the growth rate of cancer cells (Droop (1973)), where µ represents the maximum

cell growth rate and q the minimum concentration of androgen to sustain the tumor.

Similar to Everett et al. (2014), we assume an androgen-dependent death rate, where

R denotes the half saturation level. However, we also assume a time dependent

maximum baseline death rate ν, which decreases exponentially at rate d to reflect

the cell castration-resistance development due to the decreasing death rate. We also

include a density-independent death rate δ that constrains the total volume of cancer

cells to be within realistic ranges (Vollmer (2008)).

dx

dt
= µ(1− q

Q
)x︸ ︷︷ ︸

growth

− (ν
R

Q+R
+ δx)x︸ ︷︷ ︸

death

(2.2)

dν

dt
= −dν (2.3)

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸ ︷︷ ︸
diffusion

−µ(Q− q)︸ ︷︷ ︸
uptake

(2.4)

dP

dt
= bQ︸︷︷︸

baseline

+ σxQ︸︷︷︸
tumor production

− εP︸︷︷︸
clearance

(2.5)
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where

γ = γ1u(t) + γ2 u(t) =

 1, on treatment,

0, off treatment.

In this model, androgen is assumed to be the most limiting nutrient. We assume

that the androgen concentration in cancer cells is approximately the same as the

androgen concentration in serum (Roy and Chatterjee (1995)). Parameter γ1 denotes

the constant production of androgen by the testes, and γ2 denotes the production of

androgen by the adrenal gland and kidneys. As over 95% of androgen is produced

in the testes we have that γ1 >> γ2. Parameter u(t) is a switch between on and off

treatment cycles. Since LHRH agonists only stop testes production of androgen during

treatment. During treatment, γ2 will be the only production of androgen. Qm > q

denotes the maximum androgen level in serum. The androgen uptake by prostate

cells for growth is denoted by µm(Q− q). PSA is produced by both the regular cells

in the prostate at the rate bQ and by the cancer cells at the rate σxQ. Notice that we

have assumed that cell production of PSA is assumed to be dependent on levels of

androgen. Finally, PSA is cleared from serum at rate ε.

2.3.2 Model 2: Two Population Model

Now we present a two cell population model. In this model, we explicitly differen-

tiate between CS and CR cells. x1 (mm3) and x2 (mm3) denote the CS and CR cell

populations respectively. The proliferation of each cancer cell population is denoted

by

Gi(Q) = µ(1− qi
Q

), i = 1, 2

for x1 and x2 respectively. For each respective population at androgen levels below

qi prostate cells do not proliferate. Since CR cell populations proliferate at lower levels
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of androgen, we assume that q2 < q1. Death rates are denoted by:

Di(Q) = di
Ri

Q+Ri

, i = 1, 2,

for their respective cell populations. We shall assume that d1 > d2, as CR cells are less

susceptible to apoptosis by androgen deprivation than CS cells. Parameters δi, i = 1, 2

denote the density dependent death rates and we use these parameters to keep the

maximum tumor volume to biological ranges.

Mutation between cell populations takes the form of a hill equation given by:

λ(Q) = c
K

Q+K︸ ︷︷ ︸
CS to CR

.

The CS to CR rate, λ(Q), is small for normal androgen levels and high for low

concentrations. We assume that when cells are experiencing androgen depletion,

they have higher selective pressure to develop resistance. Likewise, in androgen

rich environment CS cells are more likely to stay sensitive. IAS started under this

assumption, with the intention to delay resistance (Gleave (2014)). c is the maximum

rate of mutation between cells and K is the cell concentration for achieving half of

the maximum rate of mutation. In this model, dis are held constant and are not time

dependent as the mechanism of the development of resistance is due to mutations

from x1 to x2 via λ(Q) and not by a decreasing androgen dependent death rate.

The increase of intracellular androgen levels by diffusion from the serum level is

modeled by γ(Qm−Q). Also, the production of PSA now comes from both x1 and x2

cells at rate σ. For simplicity and in contrast to the Portz et al. (2012) model and the

model in Morken et al. (2014) we assume the same PSA production rate for both cell

populations.
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dx1

dt
= µ(1− q1

Q
)x1︸ ︷︷ ︸

growth

− (D1(Q) + δ1x1)x1︸ ︷︷ ︸
death

−λ(Q)x1︸ ︷︷ ︸
CS to CR

(2.6)

dx2

dt
= µ(1− q2

Q
)x2︸ ︷︷ ︸

growth

− (D2(Q) + δ2x2)x2︸ ︷︷ ︸
death

+λ(Q)x1︸ ︷︷ ︸
CS to CR

(2.7)

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸ ︷︷ ︸
diffusion

− µ(Q− q1)x1 + µ(Q− q2)x2

x1 + x2︸ ︷︷ ︸
uptake

(2.8)

dP

dt
= bQ︸︷︷︸

baseline

+σ(Qx1 +Qx2)︸ ︷︷ ︸
tumor production

− εP.︸︷︷︸
clearence

(2.9)

In a biologically realistic situation, one expects that Qm > max{q1, q2}.

2.3.3 Derivation of dQ/dt

Now we provide a conservation law based derivation for the cell quota Q equations

(2.4), and (2.8). Specifically, we derive (2.4) in details and leave to the readers

the straightforward task of its extension to (2.8). Our formulation comes from the

conservation of androgen as it moves in and out of the tumor. Let Qx be the total

androgen inside tumor x (mm3). We assume that Q (nM)is uniformly distributed in

x, and

Qx = Q(t)x(t) nmol.

The inflow of androgen to the tumor comes from the serum which can be approximated

by

γ(Qm −Q(t))x(t).

The outflow of androgen from the tumor is due to death which is

(ν
R

Q+R
+ δx(t))Q(t)x(t).
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Then, the rate of change of androgen inside the tumor is:

(Q(t)x(t))′ = γ(Qm −Q(t))x(t)− (ν
R

Q(t) +R
+ δx(t))Q(t)x(t).

However,

(Q(t)x(t))′ = Q′(t)x(t) +Q(t)x′(t)

= Q′(t)x(t) + µ(Q(t)− q)x(t)− (ν
R

Q(t) +R
+ δx(t))Q(t)x(t),

which implies that

Q′(t) = γ(Qm −Q(t))− µ(Q(t)− q).

A similar approach can be applied to derive Q′(t) for model 2.

2.3.4 Portz, Kuang, and Nagy (PKN) Model

In this section, we briefly review PKN model. For a more detailed explanation of

this model the reader is refereed to Portz et al. (2012). PKN model assumes constant

death rates for cancer cells (d1, d2). CS and CR cells have androgen cell quota Q1, Q2

respectively. A denotes the serum androgen concentration which is interpolated and

is used in the model.
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dx1

dt
= µm(1− q1

Q1

)x1︸ ︷︷ ︸
growth

− d1x1︸︷︷︸
death

−λ1(Q1)x1︸ ︷︷ ︸
CS to CR

+λ2(Q2)x2︸ ︷︷ ︸
CR to CS

(2.10)

dx2

dt
= µm(1− q2

Q2

)x2︸ ︷︷ ︸
growth

− d2x2︸︷︷︸
death

−λ2(Q2)x2︸ ︷︷ ︸
CR to CS

+λ1(Q1)x1︸ ︷︷ ︸
CS to CR

(2.11)

dQ1

dt
= vm

qm −Q1

qm − q1

A

A+ vh︸ ︷︷ ︸
Androgen influx to CS cells

−µ(Q1 − q1)︸ ︷︷ ︸
uptake

− bQ1︸︷︷︸
degradation

(2.12)

dQ2

dt
= vm

qm −Q2

qm − q2

A

A+ vh︸ ︷︷ ︸
Androgen influx to CR cells

−µ(Q2 − q2)︸ ︷︷ ︸
uptake

− bQ2︸︷︷︸
degradation

(2.13)

dP

dt
= σ0(x1 + x2)︸ ︷︷ ︸

baseline production

+σ1x1
Qm

1

Qm
1 + ρm1︸ ︷︷ ︸

tumor production

+σ2x2
Qm

2

Qm
2 + ρm2︸ ︷︷ ︸

tumor production

− δP.︸︷︷︸
clearence

(2.14)

2.4 Model Dynamics

Now, we study the mathematical properties and dynamics of our two models.

For model 1, we shall state the results without providing proofs as they are routine.

The detailed mathematical analysis for model 2 will be presented. Proposition 1

summarizes the mathematical dynamics of model 1. Since P is decoupled from the

system, we shall refer only to the dynamics of (2.2)-(2.4). This proposition reveals that

there is no cure for cancer. Since ADT is non-curative, this property is biologically

reasonable.

Proposition 1. Solutions of the system (2.2)-(2.4) are positive and bounded. The

system (2.2)-(2.4) has a cancer free steady state E0 = (0, 0, γQm+µq
µ+γ

) that is unstable,

a steady state E1 = (µγ
δ

Qm−q
γQm+µq

, 0, γQm+µq
µ+γ

) that is globally stable.

Next, we do a thorough mathematical analysis of model 2. First, we study

boundedness and positivity of the system. Followed by the number and existence of
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steady states. Finally, we analyze the local stability of the steady states. Observe

that P is also decoupled from equations (2.2)− (2.4) and we do not include it in the

analysis.

Proposition 2. Assume q2 ≤ q1 < Qm and δ1 ≥ δ2, then solutions of (2.6)-(2.8)

with initial conditions x1(0) > 0, x2(0) > 0, and q2 ≤ Q(0) ≤ Qm stay in the

region {(x1, x2, Q) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ G2(Qm)−Dm(q2)
δ2

, q2 ≤ Q ≤ Qm}. Where

Dm = min{D1(q2), D2(q2)}.

Proof. We note that on (2.6), x1 appears on every term ensuring its positivity. Since

x2 appears on the first two terms of (2.7) and x1 appears on the last term the positivity

of x2 is also guaranteed.

Since q2 ≤ q1 < Qm, and

Q′ = γ(Qm −Q)− µ(Q− q1)x1 + µ(Q− q2)x2

x1 + x2

We see that Q′(q2) > 0 and Q′(Qm) < 0. It is thus easy to see that q2 ≤ Q(t) ≤ Qm

for t > 0 with initial conditions q2 ≤ Q(0) ≤ Qm.

For boundedness of x1 and x2, we let N = x1 + x2. Since we have that δ1 ≥ δ2,

and the growth rate Gi(Q), i = 1, 2 are increasing functions of Q, we have

N ′ ≤ (G2(Q)−Dm)N − δ2N
2 (2.15)

≤ (G2(Qm)−Dm)N − δ2N
2 (2.16)

which implies that lim sup
t→∞

N(t) ≤ G2(Qm)−Dm

δ2

.

Now we study the steady states of model 2. We seek to understand the conditions

under which one population will overtake the other, and the circumstances under

which they may coexist.
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Proposition 3. Assume q2 ≤ q1 < Qm and δ1 ≥ δ2. The system (2.6)-(2.8) has a

CR cell only steady state E1 = (0, G2(Q1)−D2(Q1)
δ2

, Q1), and a coexistence steady state

E2 = (G1(Q∗)−D1(Q∗)−λ1(Q∗)
δ1

, x∗2, Q
∗), where Q1 = γQm+µq2

γ+µ
and Q∗ > Q1.

Proof. Let E = (x∗1, x
∗
2, Q

∗) be a steady state of the system (2.6)-(2.8). We have two

mutually exclusive cases: x∗1 = 0 and x∗1 > 0.

If x∗1 = 0, then we have two possibilities: i) x∗2 = 0 or ii) x∗2 > 0. In the case of i),

we see that E = E0. In the case of ii), we see that E = E1.

If x∗1 > 0, we see that x∗2 > 0 from the equation of dx2/dt. In this case E = E2. In

addition, we have the following

0 = γ(Qm −Q∗)−
µ(Q∗ − q1)x∗1 + µ(Q∗ − q2)x∗2

x∗1 + x∗2
(2.17)

≥ γ(Qm −Q∗)− µ(Q∗ − q2)

Q∗ ≥ γQm + µq2

γ + µ
= Q1.

This proves the proposition.

Proposition 3 demonstrates that if the CS cell population survives, then the CR

must also survive. Biologically, this makes sense, as the CR will always receive new

mutated CR cells as ADT continues.

Next, we study the extinction of cancer cell populations and stability conditions

for each of these steady states when feasible. Observe that we can not linearize at the

steady state E0 since the last term of dQ/dt is not differentiable at E0. This prevents

us from carrying out a routine local stability analysis of E0.

Proposition 4 below simply confirms the intuition that if both cancer cell popula-

tions growth rates are too low, they will die out eventually. For ease of computations

in the following propositions, we shall define S1(Q) = G1(Q) − D1(Q) − λ(Q) and

S2(Q) = G2(Q)−D2(Q) .
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Proposition 4. Assume that S1(Qm) < 0, then CS population will die out. If in

addition, S2(Qm) < 0, then both cancer populations will die out.

Proof. Observe that both S1(Q) and S2(Q) are strictly increasing with respect to

positive values of Q. Since,

x′1(t)

x1(t)
= G1(Q)−D1(Q)− λ(Q)− δ2x1.

and S1(Qm) < 0, we know that G1(Q)−D1(Q)− λ(Q) ≤ S1(Qm) < 0 for any Q. Let

m = −S1(Qm), and since x1(t) > 0 we have that

x′1(t)

x1(t)
≤ −m

x1(t) ≤ ce−mt.

Therefore limt→∞ x1(t) = 0. Applying a similar but slightly more delicate comparison

argument to x2(t) with limt→∞ x1(t) = 0 yields that limt→∞ x2(t) = 0. This completes

the proof of this proposition.

The following proposition provides a simple set of conditions that yields the

biologically realistic final outcome when sensitive cells are overtaken by resistant cells.

Proposition 5. The CR only steady state E1 is locally asymptotically stable when

S1(Q1) < 0 and S2(Q1) > 0.

Proof. The Jacobian matrix evaluated at E1 is given by:

J(E1) =


S1(Q1) 0 0

λ(Q1) −S2(Q1) (µq2
Q2 + d2

(R2+Q)2
)G2(Q1)−D2(Q1)

δ2

µδ2(q1−q2)
G2(Q1)−D2(Q1)

0 −γ − µ

 .

The eigenvalues are the diagonal elements. We see that when G1(Q
1) − D1(Q

1) −

λ1(Q1) < 0 and G2(Q1)−D2(Q1) > 0, all diagonal elements are negative. Hence E1

is locally asymptotically stable.
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If both CS and CI cells can proliferate under treatment, then the coexistence

equilibrium maybe stable. Figure 2.2, displays the regions when this could happen. If

CS cells have a high growth rate µ, they may survive under relatively low levels of

androgen. Alternatively, if these cells have a very low death rate d1, they may persist

as well.

Theorem 2.4.1. Assume that Aα < min{ca+cb+ab, ca+cb+Bβ, ac+ aBβ+Aλ(Q∗)β
b

},

S1(Q1) > 0 and S2(Q1) > 0, then coexistence steady state E2 is locally asymptotically

stable.

Proof. The Jacobian matrix evaluated at E2 is given by

J(E2) =


S1(Q∗)− 2δ1(x∗1) 0 S ′1(Q∗)x∗1

λ(Q∗) S2(Q∗)− 2δ2x
∗
2 S ′2(Q∗) + λ′(Q∗)x∗1

Q∗x∗1(G2(Q∗)−G1(Q∗))

(x∗1+x∗2)2
−Q∗x∗2(G1(Q∗)−G2(Q∗))

(x∗1+x∗2)2
−(γ + µ)

 .

From (2.7) we see that x∗2 is the solution of

−δ2(x∗2)2 + S2(Q∗)x∗2 + λ(Q∗)x∗1 = 0.

Thus x∗2 =
S2(Q∗)+

√
S2(Q∗)2+4δ2λ(Q∗)x∗1

2δ2
. Evaluate J(E2) at x∗1 and x∗2, we obtain

J(E2) =


−S1(Q∗) 0 S ′1(Q∗)x∗1

λ1(Q∗) −
√
S2(Q∗)2 + 4δ2λ1(Q∗)x∗1 S ′2(Q∗) + λ′(Q∗)x∗1

Q∗x∗1(G2(Q∗)−G1(Q∗))

(x∗1+x∗2)2
−Q∗x∗2(G1(Q∗)−G2(Q∗))

(x∗1+x∗2)2
−(γ + µ)

 .

We write it as

J(E2) =


−a 0 A

λ(Q∗) −b B

α −β −C

 ,
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where a = S1(Q
∗), b =

√
S2(Q∗)2 + 4δ2λ(Q∗)x∗1, C = γ + µ, α =

Q∗x∗1(G2(Q∗)−G1(Q∗))

(x∗1+x∗2)2
,

β = −Q∗x∗2(G1(Q∗)−G2(Q∗))

(x∗1+x∗2)2
, A = S ′1(Q∗)x∗1, B = S ′2(Q∗)x∗2 + λ′(Q∗)x∗1. Then, the charac-

teristic polynomial is given by

ρ(φ) = φ3 +(a+b+C)φ2 +(Ca+Cb+ab−Aα+Bβ)φ+abC+Aλ(Q∗)β−Abα+aBβ.

Since Q∗ > Q1 and a is strictly monotone increasing with respect to Q. Then,

S1(Q1) > 0 which implies a > 0. With the same argument we have that b > 0. Our

biological assumption that q1 > q2 ensures that G1(Q)−G2(Q) < 0 for any Q making

α, β > 0. Since S1(Q) and S2(Q) are monotonically increasing we also have that

A,B > 0.

Then,

ρ(φ) = γ3φ
3 + γ2φ

2 + γ1φ+ γ0.

where γ3 = 1,γ2 = c+a+b, γ1 = ca+cb+ab−Aα+Bβ, γ0 = abc−Abα+aBβ+Aλ(Q∗)β.

Now, we have shown that the individual components of γ2 are positive.

The condition

Aα < min{ca+ cb+ ab, ca+ cb+Bβ, ac+
aBβ + Aλ(Q∗)β

b
} (2.18)

guarantees that γ1 > 0 and γ0 > 0.

With a few routine algebraic steps, we see that

γ2γ1 − γ3γ0 > 0

c(ca+ cb− Aα +Bβ) + a(ca+ cb+ ab− Aα) + b(ca+ cb+ ab+Bβ) > 0

owing to (2.18). Therefore E2 is locally asymptotically stable according to the Routh-

Hurwitz criterion.
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Figure 2.2: Bifurcation Diagram Displaying x1 Cell Population Vs Parameters µ
and γ (Left) and γ and d1 (Right). This Figure Depicts the Regions in Which x1 Can
Go Extinct. This Happens When Androgen Levels γ Are Very Low, or Cancer Cells’
Proliferation Rate µ Is Very Low, or Cancer Cells’ Death Rate d1 Is Very High.

2.5 Parameter Estimation

In order to perform realistic model simulations, we need to obtain reasonable

parameter values and their ranges. We start by estimating the realistic ranges for each

of them. Parameters µ, d1, d2 are taken from Berges et al. (1995), where they assess

the growth and death rates of prostate cells under different concentrations of androgen.

In Ideta et al. (2008), it was shown that under continuous treatment the fastest

resistance rate is c ≈ .0001. The approximate levels at which sensitive and resistant

cells proliferate was studied in Nishiyama (2013), from which we approximated q, q1,
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and q2.

In patients with no prostate cancer, PSA levels are usually less than 5µg
L
, accounting

for benign tumor hyperplasia (Klotz and Toren (2012)). This implies that when tumor

volume is near zero, the steady state of PSA given by: bQ
ε

shall be approximately 5µg
L

.

Prostate tumor volumes are normally bounded by 80 mm in length and on average

they are about 13.4 mm (Vollmer (2008)). Since all our patients have advanced

prostate cancer we assumed a maximum length of 40 mm, and we compute the

corresponding tumor volume assuming that tumors are spherical. Under complete

androgen independence, tumor volume should not exceed 700 (mm3). Thus, µ
δ
≈

µ
δ2

+ µ
δ2
≈ 700 (mm3). Parameter Qm is patient specific, and is taken from the

maximum androgen serum concentration of each patient during the first 1.5 cycles

of treatment. Parameter γ1 is held constant among every patient and γ2 has a range

of 0 − .01nmol
Lday

. The half-saturation variables K,R,R1, and R2 are estimated from

Everett et al. (2014). Table 4.1 shows definitions, ranges, units, and sources for each

of the parameters in our models.

2.6 Comparison of Models

We use data from the Vancouver Prostate Center to validate and compare the

accuracy of each model. From the 109 patients registered, 103 were eligible for

interruption of treatment, with a PSA response rate of 95% (Bruchovsky et al.

(2006b)). Using the criteria of having at least 20 data points for both androgen and

PSA in the initial 1.5 cycles, we select 62 from those 109 patients. The individual

PSA and androgen mean square error (MSE) are provided in Table 4.2 from these 62

selected patients. Notice that PKN model did not include an androgen equation and

thus we cannot compare the fittings of androgen with PKN model.

For PKN model, we interpolated androgen serum data using a cubic spline inter-
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Table 2.1: Parameter Definitions, Units, and Ranges.

Par. Definition Range Units Source

µ Max prolif. rate .001-.09 day−1 Berges et al. (1995)

q Min cell quota .1 - .5 nM Nishiyama (2013)

q1 Min CS cell quota .1 - .5 nM Nishiyama (2013)

q2 Min CR cell quota .1 - .3 nM Nishiyama (2013)

b Prostate baseline PSA 0.1-2.5 10−3 µg
LnMday

Berges et al. (1995)

σ Tumor PSA prod. rate .001-.9 µg
LnMmm3day

Everett et al. (2014)

ε PSA clearance rate .001-.01 day−1 Everett et al. (2014)

d Max cell death rate .0001-.09 day−1 Berges et al. (1995)

d1 Max CS CDR .001-.09 day−1 Berges et al. (1995)

d2 Max CR CDR .0001-.001 day−1 Berges et al. (1995)

δ1 Density death rate .1-9 10−5 1/day/mm3 Vollmer (2008)

δ2 Density death rate .01-4.5 10−4 1/day/mm3 Vollmer (2008)

R CDR half-satur. level 0-3 nM Everett et al. (2014)

R1 CS CDR half-satur. 0-3 nM Everett et al. (2014)

R2 CR CDR half-satur. 0-3 nM Everett et al. (2014)

c1 Max CS to CR rate 10−5 − 10−4 day−1 Ideta et al. (2008)

K CS to CR half-satur. 0-1 nM Everett et al. (2014)

γ1 Testes androgen prod. 20 day−1 ad hoc

γ2 Androgen production 0.001-.01 day−1 ad hoc

Q Max androgen 15-30 nM Berges et al. (1995)

ν death rate decay rate .01 unitless ad hoc
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polation between every androgen data point. That created a function in terms of time

that was utilized as A in (2.12) and (2.13). We implemented the method used by Portz

et al. (2012) for generating future androgen levels, by generating a rectangular function

based on the average off and on-treatment serum androgen values. Parameter ranges

were taken from Portz et al. (2012) and Everett et al. (2014), the reader is referred to

these papers for more details on forecasting serum PSA levels and parameter values of

PKN model. For every patient selected we fitted 1.5 cycles of treatment and performed

parameter estimation. Then, to measure the forecasting ability of every model we ran

the models for one more cycle of data using the parameters estimated from the initial

1.5 cycles.

Table 2.2: Comparison of MSE for Androgen and PSA for the First 1.5 Cycles.

PSA Androgen

Min Mean Max Min Mean Max

PKN Model 0.5119 9.4463 93.1587 N/A N/A N/A

Model 1 0.9735 8.6763 71.8471 5.0351 100.1071 710.2604

Model 2 0.2461 10.3993 137.4345 5.1283 101.4763 710.4412

To compare models, we conduct simulations with MATLAB’s built in function

fmincon, which uses the Interior Point Algorithm, to find the optimum parameters for

each patient. The algorithm searches for a minimum value in a range of pre-specified

Table 2.3: Comparison of Forecast MSE for PSA.

Min Mean Max

PKN Model 12.234 162.5494 1868.6394

Model 1 11.3935 141.9280 1663.0218

Model 2 2.2727 56.3478 278.4050
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parameter ranges, which we estimated from various literature sources. We use this

algorithm to minimize the MSE for PSA and androgen data. The MSE is calculated

with the following equations

Perror =

∑N
i=1(Pi − P̂i)2

NPi
,

Qerror =

∑N
i=1(Qi − Q̂i)

2

NQi

,

where N represents the total number of data points, Pi represents the PSA data value,

and P̂i the value from the model. Likewise, Qi represents the androgen data value,

and Q̂i the value from the model. We then use an equally weighted combination of

both errors

error = Perror +Qerror,

as our objective function which is then minimized with fmincon.

Figure 2.3 shows PSA fitting and forecasting simulations for patients 1, 15, 17,

and 63. We selected these patients to display the typical behavior shown in all 62

patients. Patient 1 shows that models 1, 2, and PKN fit data with about the same

accuracy. However, PKN overshoots in forecasting and model 2 outperforms model

1 in forecasting. Patient 17 shows that PKN underestimates future PSA levels but

model 1 and 2 both perform well. Patients 15 and 63 provide the cases where PKN

does a better forecast while models 1 and 2 still do better. The rest of the patients

can be classified similarly.

Table 4.2 documents the error of fitting 1.5 cycles of treatment and Table 2.3

displays the errors in forecasting one more cycle of treatment. On average, PKN and

model 1 perform prediction at the same level of accuracy. However, model 2 performs

prediction on average about three times better than PKN model and model 1.
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Figure 2.3: Simulations of Fittings for Every Model for 1.5 Cycles of Treatment
(Left of Gray Line), and One Cycle of Forecast (Right of Gray Line). For These Four
Patients We Can See That Models Fit Data at Comparable Accuracy but Model 2
Perform Much Better in PSA Forecasting.
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Figure 2.4: Simulations of Fittings of Androgen Levels for Models 1 and 2. These Two
Models Have Comparable Goodness in Fitting Androgen Data as Their Derivations
Are Very Similar.
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2.7 Discussion

The main goal of this research is to produce a model that is simple enough to

be used by physicians as a treatment tool and has enough biological mechanisms to

capture the individual characteristics of each patient in order to provide personalized

accurate forecasts of PSA dynamics. To this end, we presented two models that can

accurately fit clinical PSA and androgen data simultaneously. Existing models can

only fit the PSA data. While these models are simplifications of PKN, they are just as

accurate in data fitting and even better at forecasting future PSA levels. Model 1 had

the lowest mean MSE for data fitting of all the models, followed by PKN, and Model

2. Not surprisingly, due to its more biologically realistic model assumptions, Model 2

had the lowest forecast MSE, with PKN doing the worst. The unreliability of PKN’s

forecasts stems from its dependence on androgen data and hence lacks the ability to

predict androgen dynamics. For this reason, the androgen cell quota values which are

not directly measurable from data and are a significant source of uncertainty for PKN

model. For Models 1 and 2, Q is directly computable from clinical data.

The dynamics of Model 1 is simple and its mathematical analysis is straightforward.

While the mathematical analysis of Model 2 is partially tractable, the stability and

global stability of the cancer cell coexistence steady state remain unsettled. However,

with our bifurcation analysis, we observe that under ADT, x2 cells may drive x1 cells

to extinction. In Figure 2.2, we see that with lower and realistic levels of androgen

production when the patient is under ADT, x1 cells will eventually become extinct even

at higher level of proliferation compares to x2 cells. Thus, we concluded that under

continuous treatment, almost all patient will eventually become androgen resistant.

However, it is still not clear if IAS delays the speed at which this occurs. With the

models presented in this work, we have moved closer to the ultimate goal of modeling
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the androgen resistance of prostate cancer.

Our work is limited by the small number of patients considered. We selected 62

patients that had at least 20 data points in the first 1.5 cycles of treatment. Using a

larger time interval and more patients to calibrate models might reveal more subtle

differences in the models’ ability to fit data. Also, identifiability analysis to determine

if our parameter values can be represented uniquely by clinical data is essential if

these models are to be used in a clinical setting to reliably and accurately predict PSA

dynamics. By allowing parameters to vary as treatment progresses and by studying

the changes in key parameter values such as proliferation and death rates as functions

of time might be useful to describe and predict resistance mechanisms as suggested in

the work of Morken et al. (2014).
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Chapter 3

ARE MATHEMATICAL MODELS RELIABLE TOOLS FOR PREDICTING

ANDROGEN RESISTANCE IN PROSTATE CANCER PATIENTS?

3.1 Introduction

In the 1930s and ’40s, Charles Huggins and his co-workers demonstrated that

surgical castration usually caused a dramatic regression of prostate cancer; he shared

the Nobel Prize in Medicine and Physiology in 1966 for this discovery (Denmeade

and Isaacs (2002)). Today, androgen suppression therapy accomplishes the same goal

without surgery. However, the therapy is expensive and has many adverse side effects

such as sexual dysfunction and dementia (Bruchovsky et al. (2006a)).

Continuous androgen suppression therapy is the standard of care of patients with

localized advanced prostate cancer after initial radiation treatment fails (Bruchovsky

et al. (2006a); Nishiyama (2013); Crook et al. (2012); Bryce and Antonarakis (2016)).

Androgen suppression therapy is expensive, and it has significant adverse side effects.

Most patients eventually develop resistance to the treatment, after which the disease

becomes more aggressive and prognosis is poor (Feldman and Feldman (2001); Deaths

(2011)). Therefore, predicting when resistance will occur in a patient is critical to

improving quality of life and avoid futile treatment. Intermittent androgen suppression

therapy aims to reduce the side effects and delay the development of resistance by

giving patients breaks from treatment, but the extent to which resistance is delayed is

the subject of debate; continuous androgen suppression therapy remains the standard

of care (Crook et al. (2012)).

Differential equation models of tumor dynamics usually contain many parameters
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whose values may be difficult to estimate and usually are not measurable directly.

Instead, they are estimated indirectly from clinical data. Identifiability analysis is a

necessary step in a parameter estimation procedure, because it addresses whether it is

possible to recover the model parameters uniquely from a given set of measurements

(Eisenberg et al. (2013)). Mathematical models that are not identifiable may yield the

same output for distinct parameter values (Audoly et al. (2001)). Furthermore, It is

not possible to quantify the uncertainty in parameters that are unidentifiable.

Clinical trials of androgen suppression therapy typically include measurements

of prostate specific antigen (PSA), the bio-maker used by physicians to stop and

resume treatment cycles. Testosterone levels in the blood also can be obtained

clinically. Testosterone drives the growth of healthy prostate cells and of castration

sensitive cancer cells. Measurement of tumor volume such as by computer tomography

or magnetic resonance imaging usually are not available. Thus, to quantify the

uncertainty in estimates of model parameters, it is necessary to be able to associate

unique values of parameters with a limited set of clinical measurements.

Many authors have proposed mathematical models to study the dynamics of

prostate cancer during androgen suppression therapy (Jackson (2003); Ideta et al.

(2008); Portz et al. (2012)). A review of some of these models is presented in the recent

book of Kuang et al. (2016). Hirata et al. (2010) consider a three-cell population using

a piece-wise linear model to fit clinical PSA data. Several investigators using Hirata

et al. (2010)’s model have studied estimation of parameters (Guo et al. (2013); Tao

et al. (2013)), optimal switching times and control in intermittent androgen suppression

(Guo et al. (2013); Hirata et al. (2012a)), and forecasting castration resistant prostate

cancer progression (Hirata et al. (2014b)). Portz et al. (2012) included androgen as a

limiting nutrient for cancer growth. Many models have been developed based on the

frameworks of the PKN model (Morken et al. (2014); Everett et al. (2014); Baez and
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Kuang (2016)). More recently, Baez and Kuang (2016) proposed two simplifications to

PKN model in order to have a more tractable model for mathematical analysis. Both

models fit clinical PSA data with the same accuracy, and in addition can fit clinical

testosterone data simultaneously. Several of these models postulate the existence

of a population of castration-sensitive cells, that is, cells that respond to androgen

suppression therapy, and a population of castration-insensitive cells that does not.

Moreover, cells are assumed to be able to mutate from one type to the other.

In this paper, we review the Hirata et al. (2010) model, Portz et al. (2012) model,

and both models presented in Baez and Kuang (2016). We study the parameter

identifiability of each model. Since only predictions produced with an identifiable

model can be trusted, we focus only on the Baez-Kuang model by Baez and Kuang

(2016), the only model that has all of its parameters identifiable. For the Baez-Kuang

model we perform uncertainty quantification using an ensemble Kalman filter (Hunt

et al. (2007). Using an augmented state vector approach, we estimate both the states

of the system and parameter values of the model (Moradkhani et al. (2005)). Using

synthetic data, we compare our augmented state approach for parameter estimation

to the widely used Nelder-Mead algorithm implemented in MATLAB. Using clinical

data, we estimate parameters and confidence intervals to show that it is possible to

estimate correct parameter values and future levels of PSA for individual patients.

Then, we diagnose each patient for resistance in the next cycles of therapy.

3.2 Problem Definition

We consider the ordinary differential equation model of the form

dx

dt
= F (x(t),p) (3.1)

y(t) = H(x(t),p) + ε(t) (3.2)
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where x(t) is an m-dimensional state vector, p is a n-dimensional vector of parameters,

and H(x(t),p) is a mapping from the state space to the set of observables. (In

principle, the set of observables may change from one measurement time to another,

but in this paper, we assume that the set of available clinical measurements does not

change.) The measurement noise ε(t) is assumed to be normally distributed with

mean zero and a constant covariance matrix.

The degree of agreement to experimental measurements, y(ti), with those predicted

by the model, H(x(t),p) is described by an objective function. We use the mean-

squared error (MSE), defined as

E(x0; p) =
m∑
k=1

N∑
i=1

(H(xk(ti),p)− yk(ti))2

n
, (3.3)

which measures the difference between a model and the data.

Structural identifiability refers to the question of whether the components of p can

be inferred uniquely from a given set of measurements under the assumption that ε(t) =

0 (i.e., in the noise-free case). Structural identifiability is a necessary condition for

finding solutions to the real data problem that includes noisy measurements (Saccomani

and D’Angiò (2009); Audoly et al. (2001); Wu et al. (2008); Eisenberg et al. (2013)).

Structural identifiability can be approached globally or locally. Global identifiability

holds for all possible parameter values, i.e. independently of the actual parameter

values, and local identifiability holds around a specific point in the parameter space.

We follow the definition of Eisenberg et al. (2013) for global structural identifiability

of parameters.

Definition 3.2.1. For a given ODE model ẋ = H(x(t),p) and output y(t), an

individual parameter p is globally structurally identifiable if for almost every value p∗

and almost all initial conditions, the equation y(x(t), p∗) = y(x(t), p) implies p = p∗.
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Achieving global structural identifiability is possible only for simple models (Audoly

et al. (2001); Quaiser and Monnigmann (2009)). Global structural identifiability

becomes unfeasible for complex non-linear models. Thus, in this paper, we limit this

approach to the only linear model, the Hirata model (3.8-3.9). For more complex

models we perform local structural identifiability. We describe the details of the

method used on Appendix A.

Practical identifiability refers to the question of whether the components of p can

be estimated (with confidence bounds) from noisy measurements using a Kalman filter

or other scheme. Structural identifiability is necessary for practical identifiability. We

address the practical identifiability of the Baez-Kuang model as is the only model

with all structurally identifiable parameters. We use synthetic data in section 3.5.2 to

estimate confidence intervals for each parameter. Parameters with large confidence

intervals indicate practical identifiability problems to determine the correct parameter

values.

Fisher Information Matrix Method

For complex systems with many parameters, we can detect any unidentifiable parameter

combinations and unobservable parameters using the Fisher Information Matrix (FIM)

(Jacquez and Greif (1985); Raue et al. (2014)). The FIM has been used as part

of methods developed by many researchers to study identifiability (Quaiser and

Monnigmann (2009); Miao et al. (2011); Eisenberg and A.L. Hayashi (2014); Jacquez

and Greif (1985)). The FIM uses the sensitivity of the model outputs at discrete time

points ti, with respect to the parameters. The sensitivity information is stored in the

sensitivity matrix S, which is a block matrix that consists of m× n time dependent

36



blocks β(ti).

S =



β(t1)

β(t2)

...

β(ti)


The entries of β(ti) are called sensitivity coefficients. For a parameter pj ∈ p, and

fixed time tk, the sensitivity of a state variable xi(t) ∈ x(t) is given by

βij(tk) =
∂H(xi(t),p)

∂pj
. (3.4)

Using the sensitivity matrix, we compute FIM = STS, which represents the amount

of information contained in the model (Eisenberg and A.L. Hayashi (2014)). The rank

of the FIM corresponds to the number of observable parameters in p. Observability is

a measure for how well internal states of a system can be inferred by knowledge of its

external outputs (Wu et al. (2008)). A parameter that is not observable by definition

cannot be identifiable, but an observable parameter might not be identifiable either.

Thus, a rank deficient FIM indicates the presence of unobservable parameters, and

a full rank FIM indicates that all parameters are observable. After we determine

parameter observability we then look for parameter dependencies that might indicate

that a pair of parameters that are not distinguishable from each other.

According to the Cramr-Rao theorem, C = FIM−1 represents the error covari-

ance matrix of the minimum variance unbiased estimator Rodriguez-Fernandez et al.

(2006). The correlation matrix (CM) which elements are the approximate correlation

coefficients between the i-th and the j-th parameter, is defined by:

CMij =
Cij√
CiiCjj

(3.5)

CMij = 1, i = j (3.6)
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Locally identifiable parameters will have correlations with all parameters between -1

and 1, but usually non-zero because they are typically not orthogonal (Jacquez and

Greif (1985)).

Profile Likelihood Method

The identifiability of a parameter might be determined by the higher order terms

ignored in the linearization of the FIM method. Therefore, we apply the identifiability

method introduced by Raue et al. (2009) known as the profile likelihood (PL) method to

check identifiability of parameter pairs using the full system. PL approach determines

the identifiability of the model parameters by posing a parameter estimation problem,

with perfect data to address structural identifiability or with noisy data to address

practical identifiability. The profile likelihood function takes the form

L(pi) = min
pj 6=i

(E(x0; p)) (3.7)

which ’profiles’ an element pi of the parameter vector p by fixing its value across a

range of values, and fitting all remaining parameters pj 6=i for each fixed value of pi,

using the likelihood function L as the objective function. The minimum value of the

likelihood function for each parameter value constitutes the likelihood profile for the

fixed parameter. A parameter is structurally unidentifiable when its likelihood profile

is flat across its range. For unidentifiable parameters, the best fit values of the other

parameters may indicate the functional form of pairwise parameter dependencies (Raue

et al. (2009); Eisenberg and A.L. Hayashi (2014)). We call parameter dependencies

identifiable parameter combinations, which are combinations of parameters that are

not identifiable by themselves but their combination is identifiable. These parameters

will appear in the correlation matrix as having either 1 or -1.
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3.3 Structural Identifiability of Prostate Models

In this section we present several mathematical models from literature to test their

structural identifiability.

3.3.1 Unidentifiability of Hirata Model

First, we study the structural identifiability of the Hirata model (Hirata et al.

(2012a,b, 2010, 2014b)). This model considered a castration sensitive cell population

(x1), a reversible castration resistant cell population (x2), and an irreversible castration

resistant cell population (x3), modeled by the following:

d

dt


x1(t)

x2(t)

x3(t)

 =


won1,1 0 0

won2,1 won2,2 0

won3,1 won3,2 won3,3



x1(t)

x2(t)

x3(t)

 (3.8)

for the on-treatment period and

d

dt


x1(t)

x2(t)

x3(t)

 =


woff1,1 woff1,2 0

0 woff2,1 0

0 0 woff3,3



x1(t)

x2(t)

x3(t)

 (3.9)

for the off-treatment periods. PSA levels P are modeled by

P = x1(t) + x2(t) + x3(t). (3.10)

This model incorporates three different cancer cell populations and tries to under-

stand the mechanism of resistance by estimating the transition parameters (Hirata

et al. (2010)). Since this model looks at specific parameters to predict resistance,

we need to address whether parameters can be determined from data (observable),

and if the values determined are unique (identifiable). Since this model is piece-wise
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Figure 3.1: Correlation Matrix for Hirata On-treatment and Off-treatment Phases.

linear, we can perform identifiability analysis both globally and locally. The details

of global identifiability for the Hirata model are in Appendix B. We separate Hirata

model into two models for identifiability purposes, we refer to Hirata on-treatment and

off-treatment. We show that the off-treatment Hirata model is not identifiable globally,

since it is the simplest case with the least number of parameters. In Appendix B, we

see that parameters woff11 and woff22 are not identifiable from each other globally. Since

all parameters appear in the transfer function, all parameters are observable. We see

from Figure 3.1, that indeed parameters woff11 and woff22 have a correlation of exactly 1.

Therefore, a change in one of them can be compensated a change in the other without

modifying the output. The FIM generated is full rank, agreeing with the transfer

function method that all parameters are observable. Now, we can use the profile

likelihood method to show the type of functional relationship of these parameters, this

is illustrated in Figure 3.2. In this case, we know the global identifiability from the

transfer function method. However, in cases where this information is not available we

can use the PL method to check if the identifiability of parameters could be obtained

by using the full system over a range of values.

Hirata model has been tested and can fit clinical data remarkably well using a
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Figure 3.2: Profile Likelihood Function Values (Eq 3.7) for the for Hirata Off-

treatment Model (3.9) with Parameters woff11 and woff22 , Using Eq 3.10 as the Observa-
tion Function for PSA.

penalty method. However, since two of its main parameters that the model depends

for forecasting cannot be validated as multiple values will produce the same results.

We understand that if a model is relatively insensitive to a particular parameter, we

can simply fix woff11 and extract woff22 from the data. However, in Figure 3.6 we see

that when we fix woff11 we get widely varying outputs for future PSA data while having

the same fittings for previous data. Therefore, this model is not reliable to make

predictions on future levels of PSA.
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3.3.2 Unidentifiability of PKN Model

The PKN model assumes constant death rates for cancer cells (d1, d2). Castration

sensitive,(x1) and castration resistant cells (x2), have androgen cell quota Q1, Q2

respectively. The function λ1(Q1) is the transition rate of x1 cells to x2 cells and and

λ2(Q2) is the transition from x2 to x1. A denotes the serum androgen concentration

which is interpolated from the data. PSA is denoted by P . This model only has P as

an observable output and A as an observable input. For a more detailed explanation

of this model the reader is referred to Portz et al. (2012).

dx1

dt
=

(
µm

(
1− q1

Q1

)
− d1 − λ1(Q1)

)
x1 + λ2(Q2)x2 (3.11)

dx2

dt
=

(
µm

(
1− q2

Q2

)
− d2 − λ2(Q2)

)
x2 + λ1(Q1)x1 (3.12)

dQ1

dt
= vm

qm −Q1

qm − q1

A

A+ vh
− µ(Q1 − q1)− bQ1 (3.13)

dQ2

dt
= vm

qm −Q2

qm − q2

A

A+ vh
− µ(Q2 − q2)− bQ2 (3.14)

dP

dt
= σ(x1 + x2) +

σ1x1Q
m
1

Qm
1 + ρm1

+
σ2x2Q

m
2

Qm
2 + ρm2

− δP (3.15)

Since the PKN model is very complex with many parameters, we perform only local

identifiability via FIM method. The FIM for this model is rank 17. Since this model

has 21 total parameters, at least 4 of them are not observable from data, and thus

cannot be identified. The unobservable and unidentifiable parameters are probably

due to having only PSA as an observable output. From the correlation matrix in

Figure 3.3, we see that there are a total of 8 unidentifiable parameter combinations.

That is, pairs of parameters that have correlations 1 or -1. In Figure 3.6, we visualize

the effect of the unidentifiability. We fix µm at different values and fit all remaining

parameters for two cycles of treatment, for the first two cycles we have the exact same
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Figure 3.3: Correlation Matrix of PKN Model

fit for each fixed value of µm but we get different predictions afterwards. Even thou

this model is useful for the understanding of the mechanisms of prostate cancer it is

not a reliable model to make predictions on future PSA levels. Everett et al. (2014)

and Morken et al. (2014) have used this model to study predictability of resistance

and the pathways that lead to androgen resistance.

3.3.3 Unidentifiability of the Two-Population Model

The two-population model introduced in Baez and Kuang (2016) is a modification

of PKN model. The aim is to take advantage of the free diffusion of androgen through

the prostate membrane and use the serum androgen levels as the limiting nutrient. The
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two-population model (3.16-3.19) explicitly differentiates between castration sensitive

and castration resistant cells. x1 and x2 denote the castration sensitive and castration

resistant cell populations respectively. The proliferation of each cancer cell population

is denoted by

µ

(
1− qi

Q

)
, i = 1, 2

for x1 and x2 respectively. For each respective population at androgen levels below qi

prostate cells do not proliferate. Since castration resistant cell populations proliferate

at lower levels of androgen, it is assumed that q2 < q1. Death rates are denoted by:

di
Ri

Q+Ri

, i = 1, 2,

for their respective cell populations. It is assumed that d1 > d2, as castration resistant

cells are less susceptible to apoptosis by androgen deprivation than castration sensitive

cells. Parameters δi, i = 1, 2 denote the density dependent death rates and are used to

keep the maximum tumor volume to biological ranges.

Mutation between cell populations takes the form of a hill equation given by:

λ(Q) = c
K

Q+K︸ ︷︷ ︸
Castrate Sensitive to Castrate Resistant

.

The castration sensitive to castration resistant rate, λ(Q), is small for normal androgen

levels and high for low concentrations. It is assumed that when cells are experiencing

androgen depletion, they have higher selective pressure to develop resistance. Likewise,

in androgen rich environment castration sensitive cells are more likely to stay sensitive.

For specific details on the model and parameter definitions, the reader is referred to

Baez and Kuang (2016). Similar to Morken et al. (2014), we can study this model to

understand the mechanisms of resistance but we need to make sure it is identifiable to

make accurate predictions.
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The FIM for this system has rank 15, the model has a total of 17 parameters, which

implies two are unobservable. Figure 3.4, shows that there are a total of 6 parameters

pairs that have correlation 1 or -1. These parameter are indistinguishable from each

other. Thus, there are at least 6 unidentifiable parameters in the model. We see that

taking advantage of the free diffusion through the prostate membrane improves the

identifiability of model parameters by reducing the number of unobservable parameters.

However, due to the inability to observe tumor volume, we still cannot identify the

transition rates between the two types of tumor cells. Figure 3.5, shows that parameter

c and K have multiple minimum values in the profile likelihood function.

dx1

dt
=

(
µ

(
1− q1

Q

)
− d1

R1

Q+R1

+ δ1x1

)
x1 − λ(Q)x1 (3.16)

dx2

dt
=

(
µ

(
1− q2

Q

)
− d2

R2

Q+R2

+ δ2x2

)
x2 + λ(Q)x1 (3.17)

dQ

dt
= γ(Qm −Q)− µ(Q− q1)x1 + µ(Q− q2)x2

x1 + x2

(3.18)

dP

dt
= bA+ σ(Qx1 +Qx2)− εP (3.19)

3.3.4 Identifiability of Baez-Kuang Model

The Baez-Kuang model is the second model introduced in Baez and Kuang (2016),

where the mechanism of resistance is simplified and estimated using a monotonically

decreasing androgen dependent death rate function. In this model, tumor cell volume

is denoted by x, and it is assumed that the total volume is a combination of castration

sensitive and castration resistant cells. Intracellular androgen cell levels are denoted

by Q,and PSA levels by P . An androgen-dependent death rate is assumed, where

R denotes the half saturation level. The time dependent maximum baseline death

rate ν, which decreases exponentially at rate d reflects the cell castration-resistance
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Figure 3.4: Correlation Matrix of the Two-Population Matrix

development due to the decreasing death rate.

dx

dt
= µ

(
1− q

Q

)
x︸ ︷︷ ︸

growth

−
(
ν

R

Q+R
+ δx

)
x︸ ︷︷ ︸

death

(3.20)

dν

dt
= −dν (3.21)

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸ ︷︷ ︸
diffusion

−µ (Q− q)︸ ︷︷ ︸
uptake

(3.22)

dP

dt
= bQ︸︷︷︸

baseline

+ σxQ︸︷︷︸
tumor production

− εP︸︷︷︸
clearance

(3.23)

We have 11 parameters, and the corresponding FIM is rank 11, which indicates that all

parameters are observable with perfect data. Since this model does not have transition

of prostate cell types, and the death rate follows a separate dynamic, this model does
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Figure 3.5: Profile Likelihood Function Values (Eq 3.7) for the Two-population
Model (3.16-3.19) for Parameters c and µ, Using Psa and Androgen as the Observable
Outputs.

not exhibit any dependencies on its parameters. Figure 3.8, shows that there are no

parameter correlations in the model that are 1 or -1. We apply the profile likelihood

method to see if the full model is identifiable within a given range of values. Figure

3.7 shows a representative example of the profile likelihood of two parameters for the

Baez-Kuang Model, the graph of MSE, equation (3.7), has a bounded region where

MSE is minimized as a function of parameters µ and c at a single point. Therefore,

all parameters in the Baez-Kuang model are identifiable.
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Figure 3.6: The Solid Black Curve in Each Plot Represents the Model Output after
Fitting the Parameters Using Matlab’s Fminsearch. The Dashed Line Represent
Predictions Generated from the Same Parameters as the Solid Line. (A) Pkn Model
Equations 3.11-3.15 (B) Hirata Model Equations 3.8-3.9 (C) Two-population Model
Equations 3.16-3.19.

3.4 Sensitivity Analysis

Sensitivity analysis is used to understand which parameters play an important role

in the model, as well as to determine points in time at which data collection is more

beneficial, which are displayed as peaks in the sensitivity function (Banks et al. (2007);

Gonnet et al. (2012)). A way to compare parameter influences on state variables is

to use the normalized sensitivities. This approach was briefly presented in Baez and

Kuang (2016), which gives a snapshot of the relative parameter sensitivities at a single

time point. However, if we want to study the sensitivity over a time interval we need

time dependent sensitivities.

Parameter sensitivities’ time evolution follows a system of ODEs given by differen-
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Figure 3.7: Profile Likelihood Function Values (Eq 3.7) for the Baez-Kuang Model
(4.1-3.23) for for Maximal Tumor Growth µ and Prostate Baseline PSA Production b,
Using PSA and Androgen as the Observable Outputs.

tiating Eq B.1 with respect to t.

ṡk(t, pk) =
∂2x(t,p)

∂pk∂t
= J(x(t),p)sk(t, pk) +

∂F (t,p)

∂pk

where J(x(t),p) is the Jacobian matrix of F (x(t),p) with respect to x(t). Thus, for

a given parameter, the linear tangent model yields a corresponding set of sensitivity

equations that we solve with trivial initial conditions (Banks et al. (2007); Yue et al.

(2006)). For the Baez-Kuang model (4.1-3.23), system 3.24 provides an illustrative

example of the sensitivity equations with respect to parameter µ.

We solve the original the Baez-Kuang model system of equations (4.1-3.23) for
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Figure 3.8: Correlation matrix of the Baez-Kuang Model.

specific parameter values. We generate those parameters from a patient by fitting

results within the parameter ranges given in Baez and Kuang (2016) using a Nelder-

Mead algorithm. Then we solve the non-autonomous linear system of sensitivity

equations for parameters µ and d. In Figure 3.9c, we observe a spike in the sensitivity

function after the off-treatment phase. Thus, parameter µ holds the most information

about PSA in the second cycle of treatment and less during the first treatment cycle.

In order to capture the information on the growth rate of cancer cells we need to

observe its dynamics when they are not subject to androgen suppression. Figure 3.9f

shows that for parameter d, there is a spike in the sensitivity function for cancer cells

during the on-treatment phase. Therefore, it is crucial for a parameter estimation

problem to have both the initial on-treatment and off-treatment periods so that more
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information is captured. Since intermittent androgen suppression has not been shown

to be detrimental to patients compared to continuous androgen suppression therapy,

we see that from the sensitivity analysis it is favorable to have an intermittent schedule.

In order to capture more dynamics from the model which is not be possible during

continuous treatment.

Ṡµ =



−cγ1 − γ2 − µ 0 0 0

µqX(t)
Q(t)2

+ RV (t)X(t)
(Q(t)+R)2

µ
(

1− q
Q(t)

)
− RV (t)

Q(t)+R
− 2δX(t) 0 − RX(t)

Q(t)+R

b+ σX(t) σQ(t) −ε 0

0 0 0 −d





SQµ

Sxµ

SPµ

SVµ


+



−(Q(t)− q)(
1− q

Q(t)

)
X(t)

0

0


(3.24)

3.5 Baez-Kuang model Data Assimilations

3.5.1 Data Used

We use data from the Vancouver Prostate Center to validate and compare the

accuracy of each model. From the 109 patients registered, 103 were eligible for

interruption of treatment, with a PSA response rate of 95% (Bruchovsky et al.

(2006a)). From the 103 patients we select a subset of 38, using the criteria of having

at least 20 data points for both androgen and PSA in the initial 1.5 cycles. Also,

patients did not exhibit resistance in the first 2 complete cycles of treatment. We

shall compare the data assimilation approach for parameter estimation to the method

used in Baez and Kuang to address the effectiveness of this technique.

3.5.2 Parameter Estimation

There is a straight forward theory for the estimation of parameters Jazwinski

(2007); Carrassi and Vannitsem (2011); Yang and Delsole (2009); Lahoz et al. (2010);

Baek et al. (2006); Moradkhani et al. (2005) using the augmented state space approach.

We define, the augmented state vector x∗ with dimension m+ n as

51



days

0 100 200 300 400 500 600 700

S
µ

-300

-250

-200

-150

-100

-50

0
(A)                                  Androgen                                       

days

0 100 200 300 400 500 600 700

S
µ

0

2000

4000

6000

8000

(B)                               Cancer Cells                                      

days

0 100 200 300 400 500 600 700

S
µ

0

1000

2000

3000

4000

(C)                                     PSA                                               

days

0 100 200 300 400 500 600 700

S
µ

-1

-0.5

0

0.5

1
(D)                         Cancer Cell Death Rate                           

days

0 100 200 300 400 500 600 700

S
d

-1

-0.5

0

0.5

1
(E)                                  Androgen                                       

days

0 100 200 300 400 500 600 700

S
d

0

200

400

600

800

1000

1200

(F)                               Cancer Cells                                      

days

0 100 200 300 400 500 600 700

S
d

0

100

200

300

400

(G)                                     PSA                                               

days

0 100 200 300 400 500 600 700

S
d

-1.5

-1

-0.5

0
(H)                         Cancer Cell Death Rate                           

Figure 3.9: The Parameter Sensitivities, sµ, of Each Component of the Baez-kuang
Model (4.1-3.23), as a Function of Time. (A)-(D)Functions of Each Model Component
with Respect to the Rate µ. (E)-(H) Similarly, but for the Cell Death Component d.
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Line Denotes the Most Likely Value.

x∗ =

x

p

 .
Because model parameters are not observed, the observation operator for the aug-

mented model is

H∗ =

H

0

 ,
where 0 is a n by m zero matrix. Then, an ensemble Kalman Filter to this new

augmented system. For an overview of the details of the ensemble Kalman Filter the

reader is referred to Hunt et al. (2007). Figure (3.10) shows how we estimate the

parameters over time and keep track of the ranges as a confidence interval.
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Synthetic Data

We generate synthetic data for the Baez-Kuang model using parameters in the ranges

given in Baez and Kuang (2016) at various noise levels. Thus, we are testing how the

model fits data when the only source of error comes from the data measurement. In a

sequel paper, the authors shall address the problem of model bias, but for this work

we only address measurement error. We run 100 simulations at %5 and %20 noise, and

estimate parameters using the augmented state approach and also using MATLAB’s

built in function fminsearch. We see that for low levels of noise, %5, fminsearch can

approximate parameters better than the augmented state approach. We believe that

when noise is so low simply finding the best fit is sufficient. However, for higher levels

of noise, the augmented space produces a tighter and more accurate range of values.

Figure 3.12 shows the distributions of parameter µ for %5 and %20 percent noise. We

use µ and d since Baez and Kuang (2016) show that those parameters are the most

sensitive in the system. The results of parameter estimates is summarized in Table

3.1 for fminsearch method and in Table 3.2 for the augmented state method. We see

that we have small standard deviations for our estimated parameter values.

Clinical Data

The goal of our modeling of prostate cancer under androgen suppression is to predict

androgen resistance. In order to accomplish this goal we must use real clinical data.

Using our subset of 38 patients we perform parameter estimations with the augmented

state approach for 1.5 cycles and 2 cycles of treatment. Based on our results with

synthetic data, the augmented state approach is more suitable to estimate parameters

at higher noise levels. Since PSA data has error closer to %20, we use the augmented

state approach. After estimation, we use the ensemble of parameter values to predict
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the future levels of PSA.

Par. Min Mean Max Abs. Error Rel. Error

µ 1.712× 10−2 2.094× 10−2 2.881× 10−2 9.365× 10−4 4.682× 10−2

q 2.646× 10−5 3.717× 10−1 .9 .1283 .2567

R .0123 4.557× 10−1 .8 4.432× 10−2 8.864× 10−2

d 1.199× 10−8 2.351× 10−2 8.999× 10−2 3.508× 10−3 .1754

δ 7.02× 10−5 9.706× 10−5 2.999× 10−4 2.941× 10−6 2.941× 10−2

γ1 15.01 18.93 25.00 1.073 5.364× 10−2

γ2 5.001× 10−6 1.310× 10−3 2.959× 10−2 3.103× 10−4 .3103

Qm 12.36 16.92 21.41 7.683× 10−2 4.519× 10−3

b .2019 5.464× 10−1 .9000 4.636× 10−2 9.273× 10−2

σ 4.073× 10−4 1.288× 10−2 2.846× 10−2 7.121× 10−3 .3561

ε .1455 5.783× 10−1 1.032 .2217 .2771

Table 3.1: Table Fminsearch Parameters at %20 Noise.

3.6 Conclusion

In this work, we proposed an alternative approach to the estimation of parameters

and proposed a method for making predictions. With our approach, we are able to have

a measure of uncertainty and also fit data to the same accuracy than the standard

Nelder-Mead algorithm in MATLAB using synthetic data. Table 3.1 shows the

parameter ranges and mean values for the parameters estimated using the Fminsearch

algorithm and Table 3.2 shows how the results for the ensemble Kalman filter approach.

There were a total of 9 patients that developed resistance after the fifth cycle of

treatment. Forecasting one cycle of data resulted in the prediction of 4 patients with
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Par. Min Mean Max Abs. Error Rel. Error

µ 1.985× 10−2 2.213× 10−2 2.730× 10−2 2.096× 10−3 .1048

q 1.057 1.883 2.349 1.393 2.786

R .5411 1.871 3.199 1.371 2.743

d .1825 .3372 .4774 .3188 1.594

δ 1.243× 10−4 1.326× 10−4 1.533× 10−4 3.261× 10−5 .3261

γ1 3.840 4.796 6.090 15.20 .7602

γ2 5.508× 10−6 2.072× 10−4 9.063× 10−4 8.273× 10−4 .8273

Qm 17.61 17.91 18.89 .8991 5.289× 10−2

b 2.845 3.471 4.276 2.954 5.909

σ1 7.489× 10−2 8.299× 10−2 9.287× 10−2 6.281× 10−2 3.141

ε 2.813 3.049 3.367 2.243 2.804

Table 3.2: Table Kalman Filter Parameters at %20 Noise

resistance and one with false positive resistance. Predicting two cycles resulted in

predicting correctly 3 patients with resistance and no false positives. That is a 100

perfect accuracy in predicting non resistance for the two cycle prediction and 97

percent for the one cycle prediction. In Figure 3.11 we summarize the different cases

of forecasts, and Table 3.3 gives the details for the forecast for every patient. We see

that when forecasting a single cycle of treatment we produced a single false positive

and we were successful in predicting %44 of the resistant cases. Since we did not

produce a single false positive when using less data we can infer that we have some

model bias that needs to be address, however, we have high accuracy when predicting

non resistance in both cases. Our model bias could be in the growth/death rate of

cancer cells and we might be underestimating their actual size. This work is the first

step in producing a more reliable mathematical framework for use in a clinical setting

56



One Cycle Predicted Two Cycles Predicted

Patient Ensemble MSE Resistance Ensemble MSE Resistance

P# Resistant? Min Mean Max Predicted? Min Mean Max Predicted?

1 NO 5.39 5.719 6.245 NO 8.83 12.30 32.33 NO

6 NO 14.1 24.15 41.32 NO 30.1 32.24 36.34 NO

14 NO 17.7 17.74 17.82 NO 27.4 36.07 42.3 NO

15 NO .797 1.239 2.536 NO 3.50 9.174 17.12 NO

17 NO 17.2 51.16 85.74 NO 4.15 17.03 238.9 NO

19 YES 10.6 46.63 114.7 YES 13.9 18.72 24.58 NO

24 NO 9.96 11.37 13.2 NO 8.71 12.87 18.04 NO

25 NO 38.3 50.07 60.38 NO 48.7 58.58 67.63 NO

28 NO 46.8 57.55 75.93 NO 14.02 25.39 39.68 NO

29 NO 7.93 9.453 12.29 NO 33.2 33.78 34.60 NO

30 NO 1.60 3.419 5.609 NO 24.8 30.06 35.42 NO

32 NO 6.48 7.171 8.667 NO 4.55 5.169 6.783 NO

36 YES .604 .6765 1.481 YES 44.3 117.1 304.7 YES

37 NO 1.80 3.374 6.277 NO 14.3 247.9 5021.2 NO

39 NO 4.40 5.836 7.891 NO 7.79 11.58 19.37 NO

44 NO 29.2 32.14 36.18 NO 23.6 28.23 32.86 NO

51 NO 7.77 33.9 111.8 NO 18.4 20.1 22.93 NO

52 YES 11.2 15.34 19.63 NO 45.2 54.42 84.28 NO

54 YES 122.1 130.9 141.2 NO 467.2 498.2 546.2 NO

55 NO 7.09 8.310 10.20 NO 10.7 11.49 12.57 NO

58 NO 11.2 19.32 28.89 NO 6.86 7.952 10.28 NO

60 NO 32.02 48.09 77.21 NO 75.3 88.24 107.1 NO

62 NO 25.7 51.94 192.3 YES 29.0 90.82 218.9 NO

63 NO 2.67 2.917 6.481 NO 3.81 8.688 13.31 NO

64 YES 19e3 21e3 23e3 YES 8e+03 8e+03 8e+03 YES

66 NO 23.5 29.58 37.07 NO 24.1 28.28 32.67 NO

75 NO 4.38 7.128 24.78 NO 6.03 6.685 8.846 NO

77 NO 34.4 34.79 35.26 NO 25.1 28.31 40.10 NO

79 NO 7.08 7.782 8.831 NO 7.13 9.517 13.76 NO

83 YES 39.4 42.48 47.70 NO 30.9 37.52 53.83 NO

87 NO 12.8 13.10 14.01 NO 17.6 21.78 33.38 NO

88 YES 8.08 10.07 12.67 NO 8.26 10.00 15.85 NO

91 NO 3.55 3.696 3.887 NO 3.81 4.389 5.195 NO

93 NO 7.55 8.540 9.593 NO 23.4 26.33 30.94 NO

100 NO 8.93 12.14 29.80 NO 12.6 17.85 19.78 NO

101 YES 4.75 5.306 6.418 NO 7.23 8.524 11.79 NO

102 NO 20.91 21.26 21.63 NO 19.3 21.49 23.73 NO

105 YES 5.73 28.60 172.9 YES 622.1 2e+03 4e+03 YES

Table 3.3: Table of Patient Statistics. A Patient Is Resistant If PSA Does Not Fall
below 4 Ng

L
on Treatment.
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and in future work we shall address the problems of model bias to see if the percentage

of resistance predicted improves.
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Figure 3.11: Ensemble Forecasts of Psa Levels on Four Representative Patients. Us-
ing the Baez-Kuang Model Eqs (4.1-3.23). Panel (a)-(D) on the Left Show Predictions
of PSA Values Immediately Following Cessation of Treatment after the Second Cycle
and on the Right Show Forecast of PSA Levels Immediately after the Third Cycle of
Treatment.
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Figure 3.12: Distributions of Parameter Values Approximated with Fminsearch
Algorithm Vs Augmented Ensemble Kalman Filter for %5 and %20 Percent Noise
Levels.
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Chapter 4

MATHEMATICAL MODEL FOR ANDROGEN SUPPRESSION THERAPY WITH

TIME DELAY

4.1 Introduction

There have been several mathematical models that study the dynamics of prostate

cancer under androgen deprivation therapy(Baez and Kuang (2016); Hirata et al.

(2010); Portz et al. (2012); Jackson (2003); Everett et al. (2014)). In Chapter 2, we

proposed two mathematical models that are more reliable in predicting prostate cancer

resistance than the current models in literature. In Chapter 3, we utilized the models in

Baez and Kuang (2016) to perform data assimilation and forecasts using an ensemble

Kalman filter. For this chapter, we attempt to create a more biologically realistic

model, by incorporating a time delay τ that denotes the time it takes for prostate cells

to use androgen for growth. Also, we incorporate a delay dependent parameter since

there is not time delay in the death rate of prostate cells due to androgen deprivation.

The inclusion of a delay dependent parameter to balance growth and death is many

times neglected. Since, it is very complicated to analytically study models with delay

dependent parameters even if there is only a single discrete delay, and it is common

to use computer software to perform numerical analysis (Beretta and Kuang (2002)).

In this work, we combine graphical information with analytical results to study the

local stability of steady states that involves delay dependent parameters by applying

the theory developed in Beretta and Kuang (2002) and Beretta and Kuang (2001).

Furthermore, we seek to justify the inclusion of the delay dependent parameter by

analyzing an alternative model without it. If we exclude delay dependent parameters,
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it is often possible to analyze models more extensively. Therefore, we compare a

models’ ability to fit clinical data in Section 4.6.

4.2 Proposed Prostate Cancer Model

In the following model we denote the time delay as τ (d). Tumor cell volume is

denoted by x (mm3). Intracellular androgen cell levels are denoted by Q (nM), and

PSA levels by P (µg
L

).

x′ = f1 (Q(t− τ))x(t− τ)−D1(Q(t))x(t)− δx2(t)

Q′ = γ (Qm −Q(t))− f1 (Q(t− τ))Q(t)
x(t− τ)

x(t)
(4.1)

P ′ = bQ(t) + σX(t)Q(t)− εP (t)

where,

f1 (Q(t− τ)) = µ

(
1− q

Q(t− τ)

)
e−dmτ ,

D1(Q(t)) =
dR

R +Q(t)
,

and

γ = γ1u(t) + γ2 u(t) =

 1, on treatment,

0, off treatment.

Similarly to model (2.2-2.5), it is assumed that the androgen concentration in

cancer cells is approximately the same as the androgen concentration in serum.

Parameter γ1 denotes the constant production of androgen by the testes, and γ2

denotes the production of androgen by the adrenal gland and kidneys. We include a

delay dependent parameter in f1 (Q(t− τ)) since a cancer cell had to survive from

time t− τ to t with the given mortality e−dmτ where dm = dR
R+Qm

. We chose the death

rate dm since it is the lowest possible death rate of cancer cells at the highest androgen

concentration Qm.
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4.2.1 Derivation of Q Equation

Now we provide a balance equation based derivation for the cell quota Q equation

(4.1). Our formulation comes from the conservation of androgen as it moves in and

out of the tumor. Let Qx be the total androgen inside tumor x (mm3). We assume

that Q (nM) is uniformly distributed in x, and

Qx = Q(t)x(t) nmol.

The inflow of androgen to the tumor comes from the serum which can be approximated

by

γ(Qm −Q(t))x(t).

The outflow of androgen from the tumor is due to death which is

(D1(Q(t)) + δx(t))Q(t)x(t).

Then, the rate of change of androgen inside the tumor is:

(Q(t)x(t))′ = γ(Qm −Q(t))x(t)− (D1(Q(t)) + δx(t))Q(t)x(t).

However,

(Q(t)x(t))′ = Q′(t)x(t) +Q(t)x′(t)

= Q′(t)x(t) + f1 (Q(t− τ))x(t− τ)Q(t)− (D1(Q(t)) + δx(t))Q(t)x(t),

which implies that

Q′(t) = γ(Qm −Q(t))− f1 (Q(t− τ))Q(t)
x(t− τ)

x(t)
.

4.3 Mathematical Analysis: Model With Delay Dependent Parameter

Now we proceed to analysis our full model with delay dependent parameters. Our

results are based on the work of Beretta and Kuang (2002). We study the occurrence

63



of stability switches that occur from increasing the value of the time delay τ . The

characteristic equation evaluated at the steady state (x∗, Q∗) is given by

P (λ, τ) +Q(λ, τ)e−λτ = 0 (4.2)

where

P (λ, τ) = λ2 + λa (τ) + c (τ) ,

Q(λ, τ) = λb (τ) + d (τ) ,

and

a (τ) =
γ
(
γQme

dτ − 2µq + 3µQm

)
γQmedτ + µq

−
dR
(
γedτ + µ

)
γedτ (Qm +R) + µ(q +R)

b (τ) =
µ
(
µqe−dτ + 2γq − γQm

)
γQmedτ + µq

c (τ) =
2γ2µ2(Qm − q)2

(γQmedτ + µq)2 +
(Qm − q) (2γ2µ− γdµ)

γQmedτ + µq

− γdµ2R(Qm − q)2

(Qm +R) (γQmedτ + γRedτ + µq + µR)2

+
(Qm − q)(γdµQm − γdµR)

(Qm +R) (γQmedτ + γRedτ + µq + µR)
− γdR

Qm +R

d (τ) = −
µe−dτ

(
γedτ + µ

)
(γQmedτ + µq)2 (γedτ (Qm +R) + µ(q +R))2 −

2γµq(q −Qm)

(γQmedτ + µq)2

+
−dq + γq − γQm

γQmedτ + µq
+

Qm(dq + dR)

(Qm +R) (γQmedτ + γRedτ + µq + µR)

+
dµq2R− dµqQmR + dµqR2 − dµQmR

2

(Qm +R) (γQmedτ + γRedτ + µq + µR)2

It is important to notice that,

P (0, τ) +Q(0, τ) = c(τ) + d(τ) 6= 0,∀τ ∈ R+0. (4.3)

Equation (4.3) guarantees that λ = 0 is not a characteristic root of (4.2). That is, we

cannot cross the imaginary axis at λ = 0. Then, we assume the following,

1. If λ = iω, ω ∈ R, then P (iω, τ) +Q(iω, τ) 6= 0, τ ∈ R

64



2. lim sup{ |Q(λ,τ)|
P (λ,τ)

: |λ| → ∞,<λ ≥ 0} < 1 for any τ .

3. F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 for each τ has at most finite number of real

zeros.

4. Each positive root ω(τ) of F (ω, τ) = 0 is continuous and differentiable in τ

whenever it exists.

We need condition (1) to ensure that P (λ, τ) and Q(λ, τ) have no common imaginary

roots, and that threshold time delays can be expressed analytically. We need condition

(2) to guarantee that there are no roots bifurcating from infinity. Assumption (3) is

needed to ensure that there are only finite ways for roots to cross the imaginary axis

for any given τ . Assumption (4) is needed to compute the derivative of the imaginary

roots with respect to τ . If we increase τ , then the imaginary axis cannot be crossed

at λ(τ) = 0 for some τ > 0, as guaranteed by 4.3. Therefore, we look for the crossing

of the imaginary axis at the imaginary roots λ = ±iω(τ), for ω(τ) that is real and

positive at some positive τ . ω(τ) should also satisfy (4.2) and

sin(ωτ) =
−(c (τ)− ω2)ωb (τ) + ωa (τ) d (τ)

ω2b (τ)2 + d (τ)2

cos(ωτ) = −(c (τ)− ω2)d+ ω2a (τ) b (τ)

ω2b (τ)2 + d (τ)2 .

(4.4)

Again, condition (4.3) guarantees that ω2b (τ)2 + d (τ)2 6= 0. We assume that I ⊆ R+0

is the set where ω(τ) is a positive root and for τ /∈ I, ω(τ) is not definite. We can

rewrite (4.4) as

sin(ωτ) = Im

(
P (iω, τ)

Q(iω, τ)

)
cos(ωτ) = −Re

(
P (iω, τ)

Q(iω, τ)

)
(4.5)

which implies that

|P (iω, τ)|2 = |Q(iω, τ)|2.
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If ω(τ) satisfies (4.4) then it also must satisfy.

F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2

= (c (τ)− ω2)2 + ω2a (τ)2 − (ω2b (τ)2 + d (τ)2)

= 0

Then, F (ω, τ) = 0 implies

ω4 − ω2(b (τ)2 + 2c (τ)− a (τ)2) + (c (τ)2 − d (τ)2) = 0,

and its roots are given by

ω2
+ =

1

2
{(b (τ)2 + 2c (τ)− a (τ)2) + ∆

1
2}, ω2

− =
1

2
{(b (τ)2 + 2c (τ)− a (τ)2)−∆

1
2},

where,

∆ = (b2 + 2c− a2)2 − 4(c2 − d2).

We have explored the biologically relevant parameter values and we have found

that d(τ)2 > c(τ)2 always holds, and that only ω+ is a feasible root of the characteristic

equation. For any τ ∈ I where ω(τ) is a positive solution, we can define the angle

θ(τ) ∈ [0, 2π] as the solution of (4.4).

sin(θ(τ)) =
−(c (τ)− ω2)ωb (τ) + ωa (τ) d (τ)

ω2b (τ)2 + d (τ)2

cos(θ(τ)) = −(c (τ)− ω2)d+ ω2a (τ) b (τ)

ω2b (τ)2 + d (τ)2

(4.6)

Then relationship between θ(τ) and ω(τ)τ is

ω(τ)τ = θ(τ) + n2π, n ∈ N0 (4.7)

Then we can define the maps τn : I → R+0 given by

τn(τ) =
θ(τ) + 2πn

ω+(τ)
(4.8)
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Figure 4.1: Graph of Stability Switch in Terms of Time Delay for Model 4.1. The
Function Is S0(τ) from Equation 4.9.

Then we can introduce the functions I → R,

Sn(τ) = τ − τn(τ), n ∈ N0, τ ∈ I (4.9)

Finally, we can use the following theorem by Beretta and Kuang (2002).

Theorem 4.3.1. Assume that ω(τ) is a positive real root of 4.2 defined for τ ∈ I,

I ⊆ R+0, and some τ ∗ ∈ I,

Sn(τ ∗) = 0 (4.10)

for some n ∈ N0. Then a pair of simple conjugate pure imaginary roots λ+(τ ∗) =

iω(τ ∗),λ−(τ ∗) = −iω(τ ∗) of 4.2 exists at τ = τ ∗ and crosses the imaginary axis from

left to right if δ(τ ∗) > 0 and crosses the imaginary axis from right to left if δ(τ ∗) < 0,

where

δ+(τ ∗) = sign

{
dReλ

dτ

}
= sign

{
dSn(τ)

dτ

}
(4.11)

We can illustrate Theorem 4.3 by plotting the functions of Sn(τ) in Figure (4.1)

together with Figure (4.2). We can observe that for τ = 1 we have a stable steady state.
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Figure 4.2: Simulation for System 4.1. Top: τ = 1 with Local Stability, Middle:
τ = 6 with the Emergence of Periodic Solutions, Bottom: τ = 11 with Stability
Regained.
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Table 4.1: Parameter Definitions, Units, and Ranges.

Parameters Definition Range Units

µ Max prolif. rate .001-.09 day−1

q Min cell quota .1 - .5 nM

b Prostate baseline PSA 0.1-2.5 10−3 µg/L/nM/day

σ Tumor PSA prod. rate .001-.9 µg/L/nM/mm3/day

ε PSA clearance rate .001-.01 day−1

d Maximum cell death rate .0001-.09 day−1

δ Density death rate .1-9 10−5 1/day/mm3

R CDR half-satur. level 0-3 nM

γ1 Testes androgen prod. 20 day−1

γ2 Secondary androgen prod. 0.001-.01 day−1

Qm Maximum androgen 15-30 nM

ν Death rate decay rate .01 unitless

τ Androgen absorption delay .5 - 1 days

As τ increases, Sn crosses the horizontal axis with a positive slope and the real part of

the eigenvalues crosses the imaginary axis from right to left and there is the emergence

of periodic solutions. Similarly, Sn crosses the horizontal axis with a negative slope

at τ = 9.5 and the real part of the eigenvalues crosses the imaginary axis from right

to left and there is the steady state becomes stable again. Therefore, we have fully

characterized the stability behavior of our model for a given set of parameter values.

Now, we move to the analysis of a model without the delay dependent parameter.
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4.4 Mathematical Analysis: No Delay Dependent Parameter

For mathematical analysis we shall reduce our model to:

x′(t) = µ

(
1− q

Q(t− τ)

)
x(t− τ)− dR

R +Q(t)
x(t)− δx2(t)

Q′(t) = γ(Qm −Q(t))− µ
(

1− q

Q(t− τ)

)
Q(t)

x(t− τ)

x(t)
(4.12)

where the parameters are the same as model 4.1.

Since performing analysis with a time dependent delay is very challenging we aim

to simplify the model and check whether it is sufficient to fit the data and also provide

helpful insights. Now we proceed to show, positivity, boundedness, and stability

analysis. The steady state for the system is E∗ = (x∗, Q∗), where x∗ = µ
δ
(1− q

Q∗
), and

Q∗ = γQm+µq
γ+µ

.

4.4.1 Existence, Uniqueness, Positivity, and Boundedness

Before we do our local stability analysis we need to show that solutions are positive

and bounded. For the following we use the notation:

x′
Q′

 =

g1 (x(t), Q(t), x(t− τ), Q(t− τ))

g2 (x(t), Q(t), x(t− τ), Q(t− τ))


With corresponding initial data φ1(t), φ2(t) for x(t) and Q(t).

Theorem 4.4.1. The solutions of system (4.12) with initial conditions 0 < φ1(t) < xm

and q < φ2(t) < Qm, where xm = µ
δ
(1− q

Qm
) then the solution stays in that region for

all t > 0.

Proof. Clearly, x(t) and Q(t) remain positive since

g1(0, x(t− 1), Q(t), Q(t− 1)) ≥ 0
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and

g2(x(t), x(t− 1), 0, Q(t− 1)) ≥ 0.

Now, we show Q(t) is bounded above by Qm. Suppose Q(t) = Qm at t = t1, then

Q′(t1) = −µ(1− q

Q(t1 − τ1)
)
x(t1 − τ2)

x(t)
< 0

However, since Q′(t1) > 0 this is a contradiction and Q(t) cannot reach Qm. Next,

we show that x(t) is bounded above. Suppose at t = t2, x(t2) = xm for the first time.

Then x(t) must be increasing. So,

x′(t1) = f1 (Q(t1 − τ))x(t1 − τ)− dR

R +Q(t)
xm − δx2

m (4.13)

< µ(1− q

Qm

)xm −
dR

R +Q(t)
xm − δx2

m < 0 (4.14)

This is a contradiction, since x′(t2) > 0, and x(t) cannot reach xm.

4.4.2 Local Stability Analysis

The characteristic equation of the system evaluated at the steady state (x∗, Q∗) is

given by:

λ2 + λ
(
c+ de−λτ

)
+ a+ be−λτ (4.15)

where,

a =
dR (−µqR + γQ ∗2 +Q∗R(γ + µ)) + 2δx∗(Q∗ +R)2(Q∗(γ + µ)− µq)

Q∗(Q∗ +R)2

b =
µ (dR (qR +Q∗2) + (Q∗ +R)2(q(γ + µ+ 2δx∗)−Q∗(γ + µ)))

Q∗(Q∗ +R)2

c =
dQ∗R + (Q∗ +R)(Q∗(γ + µ+ 2δx∗)− µq)

Q∗(Q∗ +R)

d = µ

(
2q

Q∗
− 1

)
The characteristic equation (4.15) is an exponential polynomial with infinitely

many solutions. Local stability occurs if all of the eigenvalues satisfy <(λ) ≤ 0 for all

λ (Kuang (1993)).
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For ω > 0, let iω be a root of (4.15), then by separating real and imaginary part it

follows that


a cos(τω) + b− ω2 cos(τω) = −cω sin(τω)

−a sin(τω)− dω + ω2 sin(τω) = cω cos(τω)

(4.16)

which leads to

ω4 + ω2
(
c2 − 2a− d2

)
+ a2 − b2 = 0 (4.17)

It is easy to see that if the conditions

(C1) c2 − 2a− d2 > 0

(C2) a2 − b2 > 0

hold, then (4.15) has no positive roots. Hence, all roots of (4.15) have negative real

part. However, if condition

(C3) a2 − b2 < 0

holds, then (4.15) has at least one positive real root. Substituting ω0 into 4.16 yields

τj = − 1

ωj
cos−1

(
−a2 + 2aω2

j − b2 + c2ω2
j + d2ω2

j − ω4
j

2
(
ab− bω2

j − cdω2
j

) )
+

2kπ

ωj

where j = 1, 2, 3, 4, k = 0, 1, 2, . . . . Then ±iωj is a pair of purely imaginary roots

of 4.15. Let

τ 0
j = min{τj}

Then taking the derivative of the characteristic polynomial yields
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dλ

dτ
= − eτλ(τ)λ(τ) (a+ cλ(τ) + λ(τ)2)

aτeτλ(τ) + cτeτλ(τ)λ(τ) + ceτλ(τ) + d+ τeτλ(τ)λ(τ)2 + 2eτλ(τ)λ(τ)[
dλ

dτ

]−1

λ=iω

= <
[
e−iτω (−iceiτω − id+ 2ωeiτω)

ω (−a− icω + ω2)
+
iτ

ω

]
= <

[
(cos(τω)− i sin(τω))((c+ 2iω) sin(τω) + (2ω − ic) cos(τω)− id)

ω (a2 − 2aω2 + c2ω2 + ω4)

]
=
−2a+ c2 + d2 + 2ω2

a2 − 2aω2 + c2ω2 + ω4

Thus, if condition (C1) holds, then <(λ) > 0. Based on the Hopf bifurcation

theorem (Kuang (1993)), we have the following results.

Theorem 4.4.2. For system (4.1-4.1), assume that (C1) and (C2) are satisfied, then

the positive equilibrium E∗ is asymptotically stable. If (C3) is satisfied, then when

τ ∈ (0, τ 0
j ) the system is stable ,and undergoes a Hopf bifurcation at E∗ when τ = τ 0

j .

4.5 Stability of Hopf Bifrucation

In the previous section, we have obtained sufficient conditions to guarantee that

system (1.2) undergoes the Hopf bifurcation at τ 0
j . In this section, we shall study the

bifurcation properties. The method we used is based on the normal form method and

the center manifold theory presented in Hassard et al. (1981).

Let x1(t) = x(t)− x∗ and x2(t) = Q(t)−Q∗. Then, we normalize the delay with

the scaling t→ t
τ
. Then, the system can be rewritten as:

˙x2

x2

 = (τ 0
j + k)K1

x1(t)

x2(t)

+ (τ 0
j + k)K2

x1(t− 1)

x2(t− 1)

+ (τ 0
j + k)

f1

f2

 (4.18)

Where,
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K1 =

−(D1(Q∗) + 2δx∗) −x∗D′1(Q∗)

−Q∗F1(Q∗)
x∗

−F1(Q∗)


K2 =

 F1(Q∗) x∗F ′1(Q∗)

−Q∗F1(Q∗) −Q∗F ′1(Q∗)



f1 =− (x∗ + x1(t))D1(Q∗ + x2(t))−D2(x∗ + y)

+ (x∗ + x1(t− 1))F1(Q∗ + x2(t− 1)) + x1(t)D1(Q∗)− x1(t− 1)F1(Q∗)

+ x∗x2(t)D′1(Q∗) + 2yδx∗ − x∗x2(t− 1)F ′1(Q∗)

f2 =γ(Qm − (Q∗ + x2(t)))−Q∗x∗F1(Q∗ + x2(t− 1))
1

x∗ + x1(t− 1)

−Q∗x1(t)F1(Q∗ + x2(t− 1))
1

x∗ + x1(t− 1)

− x∗x2(t)F1(Q∗ + x2(t− 1))
1

x∗ + x1(t− 1)

− x1(t)x2(t)F1(Q∗ + x2(t− 1))
1

x∗ + x1(t− 1)
+Q∗x1(t)F1(Q∗)

1

x∗

+ x∗x2(t)F1(Q∗)
1

x∗

+Q∗x∗x2(t− 1)
1

x∗
F ′1(Q∗) +Q∗x∗x1(t− 1)F1(Q∗)

1

x∗

Define the linear operator L(µ) : C→ R2 and the nonlinear operator f(·, µ) : C→

R2 by:

Lµ(φ) = (τ 0
j + µ)K1

φ1(0)

φ2(0)

+ (τ 0
j + µ)K2

φ1(−1)

φ2(−1)


and

f(φ, µ) = (τ 0
j + µ)

f1

f2

 (4.19)

where φ = (x1(t), x2(t))T ∈ C.
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By the Riesz representation theorem, there exists a 2× 2 matrix function η(θ, µ),

−1 ≤ φ ≤ 0 whose elements are of bounded variation such that

Lµ(φ) =

0∫
−1

dη(θ, µ)φ(θ) for φ ∈ C([−1, 0],R2) (4.20)

In fact, we can choose

η(θ, µ) = (τ 0
j + µ)K1δ(θ) + (τ 0

j + µ)K2δ(θ + 1)

where δ is the Dirac delta function. For φ ∈ C1([−1, 0],R2), define

A(µ)φ =


dφ(θ)
dθ

, φ ∈ [−1, 0)

0∫
−1

dη(µ, s)φ(s), φ = 0

and

R(µ)φ =


0, φ ∈ [−1, 0)

f(µ, φ), φ = 0

.

Then, the system is equivalent to

u′(t) = A(µ)ut +R(µ)ut

,

where u(t) = (x1(t), x2(t))T , ut = u(t+ θ), for φ ∈ [−1, 0].

For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ =


dψ(θ)
dθ

, s ∈ [−1, 0)

0∫
−1

dη(t, 0)ψ(−t), s = 0

and a bilinear inner product

〈ψ(s), φ(θ)〉 = φ̄(0)θ(0)−
0∫

−1

θ∫
ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ (4.21)
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where η(θ) = η(θ, 0). In addition, by Theorem 4.4.2 we know that ±iω0τ
0
j are

eigenvalues of A(0). Thus, they are also eigenvalues of A∗. Let q(θ) be the eigenvector

of A(0) corresponding to iω0τ
0
j and q∗(s) be the eigenvector of A∗ corresponding to

−iω0τ
0
j .

Let q(θ) = (1, ν1)T eiω0τ0j θ and q∗(s) = D(1, ν1)eiω0τ0j s. From the above discussion,

it is easy to know that A(0)q(0) = iω0τ
0
j q(0) and A∗(0)q∗(0) = −iω0τ

0
j q
∗0). That is

τ 0
j

−(D1(Q∗) + 2δx∗) −x∗D′1(Q∗)

−Q∗F1(Q∗) 1
x∗

F2(Q∗)− F1(Q∗)

 q(0)+

τ 0
j

 F1(Q∗) x∗F ′1(Q∗)

−Q∗F1(Q∗) −Q∗F ′1(Q∗)

 q(−1) = iω0τ
0
j q(0)

and,

τ 0
j

−(D1(Q∗) + 2δx∗) −Q∗F1(Q∗) 1
x∗

−x∗D′1(Q∗) F2(Q∗)− F1(Q∗)

 q∗(0)+

τ 0
j

 F1(Q∗) −Q∗F1(Q∗)

x∗F ′1(Q∗) −Q∗F ′1(Q∗)

 q∗(−1) = −iω0τ
0
j q
∗(0)

Thus, we can easily obtain:

q(θ) =

(
1, Q

∗

x∗
F1(Q∗)(eiω0−1)

F1(Q∗)−Q∗F ′1(Q∗)e−iω0−iω0

)T
eiω0τ0j θ

q∗(s) = D

(
1,

x∗
(
F
′
1(Q∗)e−iω0−D′1(Q∗)

)
F1(Q∗)+Q∗F

′
1(Q∗)e−iω0+iω0

)T
eiω0τ0j s

In order to assure 〈q̄∗(s), q(θ)〉 = 1, we need to determine the value of D. From

4.21 we have
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〈q̄∗(s), q(θ)〉 = q̄∗(0)q(0)−
0∫

−1

θ∫
ξ=0

q̄∗(ξ − θ)dη(θ)q(ξ)dξ

= q̄∗(0)q(0)−
0∫

−1

θ∫
ξ=0

D̄ (1, ν̄∗1) e−iω0τj(ξ−θ)dη(θ) (1, ν1)T eiω0τjξdξ

= q̄∗(0)q(0)− q̄∗(0)

0∫
−1

θeiω0τjθdη(θ)q(0)

= q̄∗(0)q(0)− q̄∗(0)

 F1(Q∗) x∗F ′1(Q∗)

−Q∗F1(Q∗) −Q∗F ′1(Q∗)

 e−iω0τjq(0)

So we have,

D =
1

1 + ν1ν∗1 + τje−iω0τj

(
F1(Q∗) + ν1x∗F ′1(Q∗) +

ν∗1Q
∗F1(Q∗)

x∗
− ν1ν∗1Q

∗F1(Q∗)
)

D̄ =
1

1 + ν1ν̄∗1 + τje−iω0τj

(
F1(Q∗) + ν1x∗F ′1(Q∗) +

ν̄∗1Q
∗F1(Q∗)

x∗
− ν1ν̄∗1Q

∗F1(Q∗)
)

Lemma 4.5.1. The system (6) is equivalent to

ẋ(t) = A(µ)xt +R(µ)xt, (4.22)

where A(µ) is linear. Besides, there exists an inner product < ·, · > and eigenvectors

q(θ) and q∗(θ) respectively of A(0) and A∗ such that < q∗(s), q(θ) >= 1, where A∗ is

the associate operator of A.

Using the same notations as in 4.22, we first compute the coordinates to describe

the center manifold C0 at µ = 0. Let xt be the solution of Equation 4.18 when µ = 0.

Define
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x2(t) = 〈q∗, xt〉

W (t, θ) = xt(θ)− 2<(x2(t)q(θ)) (4.23)

= xt(θ)− (x2(t)q(θ) + z̄(t)q̄(θ))

On the center manifold C0 we have

W (t, θ) = W (z, z̄, θ) (4.24)

where,

W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02

z̄2

2
+W30(θ)

z3

6
+ . . . (4.25)

z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and

q̄∗. Note that W is real if xt is real. We only consider real solutions. For solution

xt ∈ C0 of 4.18, since µ = 0, we have

ż(t) = iω0τ
0
j z + q̄∗(0)f(0,W (z, z̄, 0) + 2Re(x2(t)q(t))) = iω0τ

0
j z + q̄∗(0)f0(z, z̄)

= iω0τ
0
j z + g(z, z̄)

where,

g(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ g21(θ)

z2z̄

2
(4.26)

Now, we obtain the coefficients in g. Notice that we have that xt(θ) = (x1t(θ), x2t(θ))

and q(θ) = (1, ν1)T eiω0τ0j θ. So, from (4.23 and 4.25), it follows that
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xt(θ) = W (t, θ) + 2Re(x2(t)q(θ)) (4.27)

= W20(θ)
z2

2
+W11(θ)zz̄ +W02

z̄2

2
+ (1, ν1)T eiω0τ0j θz(t) + (1, ν̄1)T e−iω0τ0j θz̄(t) + . . .

(4.28)

and then we have

x1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ . . .

x2t(0) = ν1z + ν̄1z̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ . . .

x1t(−1) = ze−iω0τ0j θ + z̄eiω0τ0j θ +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ . . .

x2t(−1) = ν1ze
−iω0τ0j θ + ν̄1z̄e

iω0τ0j θ +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2
+ . . .
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It follows together with 4.19 that

g20 = −ν1D
′
1 (Q∗)− 1

2
ν2

1x
∗D′′1 (Q∗) + ν1F

′
1 (Q∗) e−2iω0τj

0

+
1

2
ν2

1x
∗F ′′1 (Q∗) e−2iω0τj

0

− δ −
ν1
∗ν1e

−2iω0τj
0
(

2F1 (Q∗) eiω0τj
0

+ 2ν1x
∗F ′1 (Q∗) eiω0τj

0
)

2x∗

− ν1
∗ν1e

−2iω0τj
0

(Q∗ (ν1x
∗F ′′1 (Q∗) + 2F ′1 (Q∗))) + 2iω0

2x∗

g02 = −ν1D
′
1 (Q∗)− 1

2
ν1

2x∗D′′1 (Q∗) + ν1F
′
1 (Q∗) e2iω0τj

0

+
1

2
ν1

2x∗F ′′1 (Q∗) e2iω0τj
0

− δ −
ν1
∗ν1e

iω0τj
0
(
Q∗eiω0τj

0
(ν1x

∗F ′′1 (Q∗) + 2F ′1 (Q∗)) + 2ν1x
∗F ′1 (Q∗) + 2F1 (Q∗)

)
2x∗

+
2iω0

2x∗

g11 = −ν1D
′
1 (Q∗)− ν1ν1x

∗D′′1 (Q∗) + ν1F
′
1 (Q∗) + ν1ν1x

∗F ′′1 (Q∗)− ν1D
′
1 (Q∗)

+ ν1F
′
1 (Q∗)− 2δ + ν1

∗(−ν1ν1F
′
1 (Q∗) e−iω0τj

0 − ν1ν1F
′
1 (Q∗) eiω0τj

0

− ν1F1 (Q∗) e−iω0τj
0

x∗
− ν1ν1Q

∗F ′′1 (Q∗)

− ν1Q
∗F ′1 (Q∗)

x∗
− ν1F1 (Q∗) eiω0τj

0

x∗
− ν1Q

∗F ′1 (Q∗)

x∗
)
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g21 =− 1

2
D′′1 (Q∗) ν2

1 +
1

2
e−iω0τj

0

F ′′1 (Q∗) ν2
1 −

1

2
e−2iω0τj

0

ν1ν1
∗F ′′1 (Q∗) ν2

1

− ν1ν1
∗F ′′1 (Q∗) ν2

1 −
e−iω0τj

0
ν1
∗α2F

′
1 (Q∗) ν2

1

x∗
− e−2iω0τj

0
ν1
∗α2Q

∗F ′′1 (Q∗) ν2
1

2x∗

− e−iω0τj
0

α5ν1 − e−iω0τj
0

ν1
∗α6ν1

+
e−iω0τj

0
ν1
∗α1F1 (Q∗) ν1

(x∗)2 +
eiω0τj

0
ν1ν1

∗F ′1 (Q∗) ν1

x∗
+
e−2iω0τj

0
ν1ν1

∗α2F
′
1 (Q∗) ν1

x∗

+
e−2iω0τj

0
ν1
∗α1Q

∗F ′1 (Q∗) ν1

(x∗)2 +
e−iω0τj

0
ν1ν1

∗α2Q
∗F ′′1 (Q∗) ν1

x∗
− ν1ν1

∗F ′1 (Q∗) ν1

x∗

+
e−iω0τj

0
ν1
∗α2α3F1 (Q∗)

2x∗
+
ν1
∗α4Q

∗F1 (Q∗)

2 (x∗)2 − 2δW11
(1)(0) +

iν1
∗ω0W11

(1)(0)

x∗

− δW20
(1)(0)−W11

(2)(0)D′1 (Q∗)− 1

2
ν1W20

(1)(0)D′1 (Q∗)

− 1

2
W20

(2)(0)D′1 (Q∗) + e−iω0τj
0

W11
(2)(−1)F ′1 (Q∗)

+
e−iω0τj

0
ν1
∗α2Q

∗W11
(2)(−1)F ′1 (Q∗)

x∗
+

1

2
eiω0τj

0

ν1W20
(1)(−1)F ′1 (Q∗)

+
1

2
eiω0τj

0

W20
(2)(−1)F ′1 (Q∗)

− 1

2
ν1ν1

∗W20
(2)(−1)F ′1 (Q∗)− 1

2
eiω0τj

0

ν1ν1
∗W20

(2)(0)F ′1 (Q∗)

− 1

2
ν1x

∗W20
(2)(0)D′′1 (Q∗)

− 1

2
eiω0τj

0

ν1ν1
∗Q∗W20

(2)(−1)F ′′1 (Q∗) +
1

2
eiω0τj

0

ν1x
∗W20

(2)(−1)F ′′1 (Q∗)

− ν1
∗α2Q

∗W20
(2)(−1)F ′1 (Q∗)

2x∗
+
iν1
∗ω0

(x∗)2 −
e−iω0τj

0
ν1ν1

∗α7F1 (Q∗)

2 (x∗)2

− ν1ν1
∗α7Q

∗F ′1 (Q∗)

2 (x∗)2 − ν1
∗3Q∗F1 (Q∗)

(x∗)3

81



Where,

α1 = x∗W11
(1)(−1)

(
−eiω0τj

0
)

+ e2iω0 τj
0

+ 1

α2 = eiω0τj
0 − 1

α3 = 2W11
(2)(0)−W20

(2)(0)eiω0τj
0

α4 = W20
(1)(0)eiω0τj

0

+ 2W11
(1)(−1)− 2W11

(1)(0) +W20
(1)(−1)− 2W20

(1)(0)

α5 = ν1D
′′
1 (Q∗) eiω0τj

0 − ν1F
′′
1 (Q∗) +W11

(1)(0)D′1 (Q∗) eiω0τj
0 −W11

(1)(−1)F ′1 (Q∗)

+ x∗W11
(2)(0)D′′1 (Q∗) eiω0τj

0 − x∗W11
(2)(−1)F ′′1 (Q∗)

α6 = F ′1 (Q∗)
(
W11

(2)(−1)eiω0τj
0

+W11
(2)(0)

)
+Q∗W11

(2)(−1)F ′′1 (Q∗)

α7 = x∗
(
W20

(1)(−1)−W20
(1)(0)

)
eiω0τj

0 − 2

Since W11 and W20 are in g21 we need to solve for them.

Ẇ = ẋt − żq − ˙̄zq̄

=


AW − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0)

AW − 2Re{q̄∗(0)f0q(θ)}+ f0, θ = 0

= AW +H(z, z̄, θ)

where,

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ . . . (4.29)

Substituting the corresponding series into (14) and comparing the coefficients, we

obtain
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(A− 2iω0τ
0
j )W20(θ) = −H20(θ)

AW11(θ) = −H11(θ)

From (a) and (b) we know that for θ ∈ [−1, 0).

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)− ḡ(z, z̄)q̄(θ) (4.30)

Comparing the coefficient with (15) we get:

−g20q(θ)− ḡ02q̄(θ) = H20(θ)

−g11q(θ)− ḡ11q̄(θ) = H11(θ)

From (16) and (18) and the definition of A, it follows that

Ẇ (θ) = 2iω0τ
0
jW20 + g20q(θ) + ḡ02q̄(θ) (4.31)

Notice that q(θ) = (1, ν1)T eiω0τ0j θ. Hence,

W20(θ) =
ig20

ω0τ 0
j

q(0)eiω0τ0j θ +
iḡ02

3ω0τ 0
j

q̄(0)e−iω0τ0j θ + E1e
2iω0τ0j θ (4.32)

where E1 = (E
(1)
1 , E

(2)
1 ) ∈ R2 is a constant vector. Similarly, from (16) and (19),

we obtain

W11(θ) = − g11

ωτ 0
j

q(0)eiω0τ0j θ +
iḡ11

ω0τ 0
j

q̄(0)e−iω0τ0j θ + E2 (4.33)

where E2 = (E
(1)
1 , E

(2)
1 ) ∈ R2 is also a constant vector. In what follows, we will

seek appropriate E1 and E2. From the definition of A and (16), we obtain∫ 0

−1

dη(θ)W20(θ) = 2iω0τjW20(0)−H20(0)∫ 0

−1

dη(θ)W11(θ) = −H11(θ)
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where η(θ) = η(0, θ). By (14), we have

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ 0
j

A1

A2


where

A1 = −ν1D
′
1 (Q∗)− 1

2
ν2

1x
∗D′′1 (Q∗) + ν1F

′
1 (Q∗) e−2iω0τj

0

+
1

2
ν2

1x
∗F ′′1 (Q∗) e−2iω0τj

0 − δ

A2 = −
ν1e
−2iω0τj

0
(

2F1 (Q∗) eiω0τj
0

+ 2ν1x
∗F ′1 (Q∗) eiω0τj

0
)

2x∗

− ν1e
−2iω0τj

0
(Q∗ (ν1x

∗F ′′1 (Q∗) + 2F ′1 (Q∗))) + 2iω0

2x∗

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ 0
j

B1

B2


where

B1 = −ν1D
′
1 (Q∗)− ν1ν1x

∗D′′1 (Q∗) + ν1F
′
1 (Q∗)

+ ν1ν1x
∗F ′′1 (Q∗)− ν1D

′
1 (Q∗) + ν1F

′
1 (Q∗)− 2δ

B2 = (−ν1ν1F
′
1 (Q∗) e−iω0τj

0 − ν1ν1F
′
1 (Q∗) eiω0τj

0

− ν1F1 (Q∗) e−iω0τj
0

x∗
− ν1ν1Q

∗F ′′1 (Q∗)

Substituting (21) and (25) into 23 and noticing that

(
iω0τ

0
j I −

∫ 0

−1

eiω0τ0j θdη(θ)

)
q(0) = 0(

−iω0τ
0
j I −

∫ 0

−1

e−iω0τ0j θdη(θ)

)
q̄(0) = 0
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we obtain

(
2iω0τjI −

∫ 0

−1

e2iω0τ0j θdη(θ)

)
E1 = 2τ 0

j

A1

A2


This leads to

2iω0 +D1(Q∗) + 2δx∗ − F1(Q∗)e−2iω0τj x∗D
′
1

Q∗

x∗
F1(Q∗)(1 + e−2iω0τj) F1(Q∗)(1 +Q∗e−2iω0τj) + 2iω0

E1

= 2

A1

A2


Solving this system for E1 we get

E1 =

2

2iω0 +D1(Q∗) + 2δx∗ − F1(Q∗)e−2iω0τj x∗D
′
1 − x∗F

′
1(Q∗)e−2iω0τj

Q∗

x∗
F1(Q∗)(1 + x∗e−2iω0τj) F1(Q∗)(1 +Q∗e−2iω0τj) + 2iω0


−1

×

A1

A2


Then, we can obtain,

−D1(Q∗)− 2δx∗ + F1(Q∗) −x∗D′1 + x∗F
′
1(Q∗)

−Q∗

x∗
F1(Q∗)−Q∗F1(Q∗) −F1(Q∗)(1 +Q∗)

E2 =

B1

B2


Which leads to
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E2 =−D1(Q∗)− 2δx∗ + F1(Q∗) −x∗D′1 + x∗F
′
1(Q∗)

−Q∗

x∗
F1(Q∗)−Q∗F1(Q∗) −F1(Q∗)(1 +Q∗)


−1B1

B2


Thus, we can determine W20 and W11 from (21) and (22). Furthermore, g21z in (13)

can be expressed by the parameters and delay. Thus, we can compute the following

values:

C1(0) =
i

2ωτ 0
j

(
g20g11|g11|2 −

||g02|2

3

)
+
g21

2
(4.34)

ν2 = −Re{C1(0)}
Re{λ′(τ 0

j )}
(4.35)

β2 = 2Re{C1(0)} (4.36)

P2 = −
Im{C1(0) + ν2Im{λ′(τ 0

j )}
ω0τ 0

j

(4.37)

which determine the qualities of bifurcating periodic solutions in the center manifold

at the critical value τ 0
j ,

Theorem 4.5.1. In equations (27-30) the sign of ν2 determines the direction of the

Hopf bifurcation. Thus, if ν2 > 0, then the Hopf bifurcation is supercritical and the

bifurcating periodic solution exists for τ > τ 0. If ν2 < 0, then the Hopf bifurcation

is subcritical and the bifurcating periodic solution exists for τ < τ 0. β2 determines

the stability of the bifurcating periodic solution: The bifurcating periodic solutions are

stable if β2 < 0 and unstable if β2 > 0. P2 determines the period of the bifurcating

periodic solutions: the period increases if P2 > 0 and decreases if P2 < 0.
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Figure 4.3: Simulation of System 4.12 with τ > τ 0
j . We Have Emergence of Oscillating

Solutions.

4.6 Parameter Estimation

Now we compare models (4.1) and (4.12) ability to estimate clinical data. Figure

4.4 shows a sample data fitting for both models for a single patient. Table 4.2 shows

the statistics of the mean square error of PSA and androgen for both models. We can

notice that model (4.1) performs consistently better but not at a very significant level.

However, Figure 4.5 shows that model (4.12) has an identifiability problem of the

time delay. For model (4.1), when all other parameters are fixed, there is a single τ

that best fits the data. For model (4.12), under the same conditions, we have multiple

values that yield the same MSE. Having multiple time delays that yield the same
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Figure 4.4: Simulation of Data Fitting of PSA for a Single Patient for Baez-Kuang
Model (2.2-2.5), Model with Delay Dependent Parameter (4.1), and Model with No
Delay Dependent Parameter (4.12). They Can Fit PSA Close to the Same Accuracy
but the Model with Delay Dependent Parameter Has Some Improvement Towards the
Last Data Points.

Table 4.2: Comparison of MSE for Androgen and PSA for the First 1.5 Cycles.

PSA Androgen

Min Mean Max Min Mean Max

Model 4.1 0.2001 5.6087 22.1370 0.7744 14.0644 45.3743

Model 4.12 0.461 10.3993 30.45 0.7744 15.071 47.3895

Model 2.2-2.5 0.973 8.676 71.847 5.0351 100.10 710.26

MSE means that we cannot draw insights from the delay parameter and defeats the

purpose of incorporating the time delay in the first place.

4.7 Conclusion

This work remarked the importance of biological realism. The inclusion of delay

dependent parameters shows more complicated and interesting dynamics. In addition,
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Figure 4.5: Time Delay τ as a Function of MSE. Left:Model 4.1 . Right: Model 4.12.
Model 4.1 Has a Unique Minimum and Model 4.1 Does Not.

the biological accuracy of the delay dependent parameter model in turn produced more

reliable parameter estimations by allowing better identification of the time delay. By

better estimation parameters we were able to have better overall parameter estimations

that yielded a Mean Square Error that is superior to the non-delay versions of this

model. That is, with a single extra parameter, τ , we are able to improve our data

fitting results when we incorporate the delay dependent parameter compared to the

Baez-Kuang model 2.2-2.5. Therefore, with this new supporting evidence from clinical

data fittings our goal is to extend this work and use an Ensemble Kalman filter to

make predictions about resistance using these models.
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Chapter 5

DISCUSSION & FUTURE WORK

The main goal of this research is to produce a model that is simple enough to be

used by physicians as a treatment tool and has enough biological mechanisms to capture

the individual characteristics of each patient in order to provide personalized accurate

forecasts of PSA dynamics. In chapter 2, we proposed two novel mathematical models

to understand the dynamics of prostate cancer androgen resistance. We provided

evidence for the potential that these novel models could provide in assisting physicians

predict androgen resistance. Furthermore, these models present a framework where

mathematical analysis is more tractable and predictions of resistance could be more

reliable as simpler models have less unknown parameters and uncertainty. In chapter

3, we took the models proposed in chapter 2 and tested whether they were reliable in

making predictions. First, we did a systematic testing of models in literature and we

demonstrated that among the most cited models in literature only the Baez-Kuang

model is identifiable. Then we applied the ensemble Kalman filter to estimate the

most likely state of the system as well as the most likely parameter that produce

those states. In chapter 4, we extended the work of chapter 2 and presented another

extension to model prostate cancer dynamics. We included a time delay to model the

time it takes for prostate cells to use testosterone for growth. We took two approaches

for including the time delay. First, we apply the delay directly without adjusting for

the difference in growth at t−τ with model (4.12). Then we include a delay dependent

parameter in model (4.1) to take into account the death at time t− τ . Model (4.1)

yielded more interesting dynamics as well as making the time delay identifiable as

shown in Figure 4.5.
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A model that is able to capture the possible pathways resistance should be ideal if

we want to model androgen resistance development in patients. However, in order to

make data driven conclusions we must work at the level of detail at which there is

data available. We discovered in Chapter 3 that when we model separate population

types such as in model 3.16-3.19 we can’t identify the populations uniquely. The

unidentifiable problem might yield incorrect conclusions about the prognosis of a

patient. Therefore, since data is only available for PSA and testosterone serum levels

we can only model the proportion of the total population that is becoming resistant

over time. That is, we cannot distinguish from sensitive cells having mutations such as

in the first four pathways to resistance presented in Chapter 1 or the lurker pathway

in which originally present resistant cells take over the tumor as androgen resistance

selects for those cells. If data becomes available at a finer scale any future work on this

area should include the mechanisms of the different pathways and consider modeling

the individual populations.

This work has encompassed a diversity of approaches to modeling androgen

resistance in prostate cancer. Even though this work has been extensive there are

logical continuation of this work as well as approaches that we did not consider. The

first natural extension of Chapter 3 is to make predictions on resistance using an the

ensemble Kalman filter via the method proposed in Chapter 2. After the natural

continuation a different approach would be to use Machine Learning classification

algorithms to make predictions on resistance and presented as a classification problem.

However, there is extensive literature that points to this type of algorithms been not

as effective when data is as limited as the one we have in this dissertation.
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CODE FOR CHAPTER 2
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1 f unc t i on f i t t i n g a l l
2 %{
3 This f i l e s takes the pa t i e n t s numbers from va r i ab l e LIST and performs

parameter
4 e s t imat i on us ing fmincon . Parameters are s to r ed f o r each pa t i en t in

p#.mat , and f o r
5 every pa t i en t in p a r a l l . mat .
6

7 Parameter e s t imat i on can be done f o r one pop , two pop , portz , and h i r a t a
models .

8

9 Created by Jav i e r Baez Sep 2016
10 %}
11

12 f o r yy = 4
13 % model = ’ one pop ’ ; % Choose which model to

run f i t t i n g s
14 n = 3 ; % number o f pe r i od s to f i t
15

16 i f yy == 1
17 model = ’ one pop ’ ;
18 e l s e i f yy == 2
19 model = ’ two pop ’ ;
20 e l s e i f yy == 3
21 model = ’ portz ’ ;
22 e l s e i f yy == 4
23 model = ’ h i r a t a ’ ;
24 end
25

26 switch model % Number o f parameters
27 case ’ one pop ’
28 nParams = 12 ;
29 case ’ two pop ’
30 nParams = 20 ;
31 case ’ h i r a t a ’
32 nParams = 10 ;
33 case ’ portz ’
34 nParams = 21 ;
35 otherwi se
36 warning ( ’ Unexpected model , choose a d i f f e r e n t one ’ )
37 re turn ;
38 end
39 %%%%%%%%%% I n i t i a l i z a t i o n o f a r rays and va r i a b l e s %%%%%%%%%%%%%%
40 LIST = [ 1 , 2 , 6 , 7 , 1 2 , 1 4 : 1 7 , 1 9 , 2 4 : 2 5 , 2 8 : 3 2 , 3 6 : 3 7 , 3 9 : 4 2 , . . .
41 44 , 5 1 : 5 2 , 5 4 , 5 5 , 5 8 , 6 0 : 6 4 , 6 6 , 7 1 , 7 5 , . . .
42 77 : 7 9 , 8 3 : 8 8 , 9 1 , 9 3 : 9 7 , 9 9 : 1 0 2 , 1 0 4 : 1 0 9 ] ; % pat i en t numbers
43 t o t a lPa t i e n t s = length (LIST) ; % t o t a l number o f pa t i e n t s
44 pa t i en t s = c e l l ( 1 , 62 ) ; % c r e a t e s a c e l l array to hold pa t i en t data
45 counter = 1 ; % counter f o r pa t i e n t s and change array
46 ind = c e l l (1 , t o t a lPa t i e n t s ) ; % i n i t i a l i z e s the index f o r the S

s t ru c tu r e
47 change = ones (1 , n+1) ; % vecto r s t o r e s t imes when treatment

changed
48 pa r s t o r e = ze ro s (nParams , t o t a lPa t i e n t s ) ; % used to s t o r e parameter

va lue s f o r each f i t
49 opt ions = opt imset ( ’ Algorithm ’ , ’ i n t e r i o r−po int ’ , ’TolX ’ ,1 e −13 . . .
50 , ’ TolFun ’ ,1 e−13, ’TolCon ’ ,1 e−13, ’ MaxIter ’ ,1000) ; % Optimizer Options
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51 %%%%%%%%% Creates St ructure to s t o r e a l l pa t i en t data %%%%%%%%%%%%%
52 f o r i i = LIST ;
53 pat i en t = s t r c a t ( ’ pa t i en t ’ , num2str ( i i ) ) ; % Pat ient with co r r e sp number
54 f i l e = s t r c a t ( ’Data/ ’ , pat i ent , ’ . tx t ’ ) ; % Complete name o f f i l e

pa t i en t#. txt
55 var = load ( f i l e ) ; % holds va r i ab l e j u s t loaded
56 pa t i en t s ( counter ) = {var } ; % s t o r e s pa t i en t data in to

c e l l p a t i e n t s
57 x = s t r c a t ( ’ a ’ , num2str ( counter ) ) ; % Creates index f o r

s t r u c tu r e S
58 ind { counter } = x ; % puts a l l indexed in ind

c e l l array
59 counter = counter+ 1 ; % i n c r e a s e s counter
60 end
61 S = c e l l 2 s t r u c t ( pat i ent s , ind , 2 ) ; % c e l l to s t r u c tu r e
62 %%%%%%%%%%% Runs the f i t t i n g f o r the s e l e c t e d pa t i e n t s %%%%%%%%%
63 f o r i =1: t o t a lPa t i e n t s
64 t ry % In case o f e r r o r f o r loop w i l l move

to next i t e r a t i o n
65 name = [ ’p ’ , num2str (LIST( i ) ) ] ; % where parameters w i l l be saved
66 index = char ( ind ( i ) ) ; % Index to c a l l l s p e c i f i c pa t i e n t s
67 pat i en t = S . ( index ) ; % c a l l s s p e c i f i c pa t i en t from l i s t S
68 t = pat i en t ( : , 2 ) ; % time vec to r in days
69 psa = pat i en t ( : , 3 ) ; % psa vec to r o f va lue s
70 androgen= pat i en t ( : , 4 ) ; % androgen vec to r o f va lue
71 treatment = pat i en t ( : , 6 ) ; % treatment vec to r o f va lue s
72 %%%%%%%%%%%%%%%% Finds pe r i od s o f on and o f f treatment %%%%%%%%%%
73 j j = 1 ;
74 change (1 ) = 1 ; % Treatment s t a r t s at t = 0
75 f o r a = 1 : l ength ( treatment )
76 i f treatment ( a ) ˜= mod( j j , 2 ) % When treatment change occurs
77 j j = j j + 1 ;
78 change ( j j ) = a ; % Store s time in change vec to r
79 end
80 end
81 change ( j j +1) = length ( treatment ) ; % Last day o f treatment
82 %%%%%%%%%%%%%%%%%%%%%% Bounds For Parameters %%%%%%%%%%%%
83 switch model
84 case ’ one pop ’
85 a = max( androgen ( change (2 ) : change (4 ) ) ) ;
86 % um % q % R % d % dd

% gamma1
87 LB(1) = 0 . 0 1 ; LB(2) = 0 ; LB(3) =0; LB(4) = 0 ; LB(5) =

0 .000001 ; LB(6) = 18 ;
88 UB(1) = . 1 ; UB(2) = . 5 ; UB(3) = 1 ; UB(4) = . 0 1 ; UB(5) =

. 00009 ; UB(6) = 21 ;
89 % gamma2 % Qmax % b % sigma % ep s i l o n

% u
90 LB(7) = 0 ; LB(8) = a−4; LB(9) = 0 ; LB(10) = 0 ; LB(11) =

. 0 1 ; LB(12) = 0 ;
91 UB(7) = . 0 0 1 ; UB(8) = a ; UB(9) = 0 . 0 025 ; UB(10) = 1 ; UB(11) = 1 ;

UB(12) = 0 ;
92 x0 = [ androgen (1 ) ; 1 0 0 ; psa (1 ) ; . 0 9 ] ; %c o l l e c t s i n i t cond in a column

vecto r
93 case ’ two pop ’
94 a = max( androgen ) ;
95 b = min ( androgen ( change (1 ) : change (4 ) ) ) ;
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96 % um % q1 % q2 % c1
97 LB(1) = 0 . 0 1 ; LB(2) = b+.1; LB(3) = 0 ; LB(4) = 0 . 00001 ;
98 UB(1) = 0 . 1 ; UB(2) = b+.5; UB(3) = b +.1; UB(4) = . 0 0 0 1 ;
99 % c2 % K1 % K2 % b

100 LB(5) = 0 . 00001 ; LB(6) = 0 ; LB(7) = 0 ; LB(8) = 0 ;
101 UB(5) = 0 . 0 001 ; UB(6) = 1 ; UB(7) = 1 ; UB(8) = 0 . 0025 ;
102 % sigma1 % ep s i l o n % d1 % d2
103 LB(9) = 0 ; LB(10) = 0 . 0 1 ; LB(11) = 0 . 0 0 2 ; LB(12) = 0 ;
104 UB(9) = 1 ; UB(10) = 1 ; UB(11) = . 0 9 ; UB(12) = . 0 0 1 ;
105 % R1 % R2 % gamma1 % gamma2
106 LB(13) = 0 ; LB(14) = 0 ; LB(15) = 20 ; LB(16) = 0 ;
107 UB(13) = 3 ; UB(14) = 3 ; UB(15) = 20 ; UB(16) = . 0 0 1 ;
108 % dd1 % dd2 % Qm % parameter u
109 LB(17) = 0 .000001 ; LB(18) = 0 .000001 ; LB(19) = a − 4 ; LB(20) = 0 ;
110 UB(17) = . 00009 ; UB(18) = . 00009 ; UB(19) = a ; UB(20) = 0 ;
111 x0 = [ androgen (1 ) ; 9 9 ; 1 ; psa (1 ) ] ; %c o l l e c t s i n i t cond in a column vecto r
112 case ’ h i r a t a ’
113 % Taken from Everett e t . a l .
114 % w11o % w21 % w22o % w31 % w32

w33o
115 LB(1) = − .15; LB(2) = . 0 0 0 6 ; LB(3) = − .015; LB(4) = . 0 0 0 3 ; LB(5) = 0 ;

LB(6) = 0 . 0 0 2 ;
116 UB(1) = − .015; UB(2) = . 0 0 2 ; UB(3) = . 0 0 0 9 ; UB(4) = . 0 0 1 ; UB(5) = 0 ;

UB(6) = 0 . 0 0 3 ;
117 % w11f % w12f % w22f % w33f
118 LB(7) = . 0 0 1 ; LB(8) = . 0 4 9 ; LB(9) = 0 . 0 0 2 ; LB(10) = − .13;
119 UB(7) = . 0 0 3 ; UB(8) = . 1 8 ; UB(9) = 0 . 0 0 8 ; UB(10) = −0.0044;
120 x0 = [ psa (1 ) ∗ . 9 5 ; psa (1 ) ∗ . 0 5 ; 0 ] ; %c o l l e c t s i n i t cond in a column vecto r
121 case ’ portz ’
122 % um % qx % qy % dx % dy

% c1
123 LB(1) = 0 . 0 1 ; LB(2) = . 1 7 5 ; LB(3) = . 1 ; LB(4) = 0 . 1 5 ; LB(5) = 0 . 2 1 5 ;

LB(6) = . 0 1 ;
124 UB(1) = . 1 ; UB(2) = . 2 9 ; UB(3) = . 2 1 ; UB(4) = . 4 ; UB(5) = . 4 ;

UB(6) = . 0 1 5 ;
125 % Kxyn % c2 % Kyxn % n % qm

% vm
126 LB(7) = . 0 5 ; LB(8) = . 0 1 ; LB(9) = 1 . 2 ; LB(10) = 1 ; LB(11) = 2 ;

LB(12) = . 0 7 5 ;
127 UB(7) = . 0 8 ; UB(8) = . 0 1 5 ; UB(9) = 1 . 7 ; UB(10) = 1 ; UB(11) = 5 ;

UB(12) = . 2 7 5 ;
128 % vh % b % sigmax % sigmay % rhoxm

% rhoym
129 LB(13) = 2 ; LB(14) = 0 . 0 2 ; LB(15) = 0 ; LB(16) = 0 ; LB(17) = . 3 ;

LB(18) = 1 ;
130 UB(13) = 4 ; UB(14) = 0 . 0 9 ; UB(15) = . 4 ; UB(16) = . 4 ; UB(17) =

1 . 3 ; UB(18) = 1 . 3 ;
131 % m % sigma0 % de l t a
132 LB(19) = 1 ; LB(20) = 0 ; LB(21) = 0 . 0 0 8 ;
133 UB(19) = 1 ; UB(20) = . 0 4 ; UB(21) = 0 . 0 8 ;
134 x0 = [ 9 9 ; 1 ; . 5 ; . 5 ; psa (1 ) ] ;
135 end
136 %%%%%%%%%%%%%%%%%%%%%% Optimizat ion Step

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137 IC = UB; % i n i t i a l parameter va lue s
138 [ params , ˜ ] =

fmincon (@( params ) ob j e c t i v e ( params , psa , androgen , t , change , x0 , n , model ) . . .
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139 , IC , [ ] , [ ] , [ ] , [ ] , LB,UB, [ ] , opt i ons ) ; % Finds opt imized parameters
140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 pa r s t o r e ( : , i ) = params ; % s t o r e s parameters in a matrix to be used

l a t e r f o r p r e d i c t i o n s and e r r o r s
142 cd ( s t r c a t ( ’ parameters ’ , model ) )
143 save (name , ’ params ’ ) % saves parameters f o r i nd i v i dua l pa t i e n t s in

f i l e p( pa t i en t#) .mat
144 cd . .
145 catch ME
146 di sp (ME) % I f an e r r o r occurs i t w i l l be d i sp layed
147 end
148

149 end
150

151 %%
152 save ( s t r c a t ( ’ p a r a l l ’ ,model , ’ . mat ’ ) , ’ p a r s t o r e ’ ) % saves the matrix o f

a l l p a t i e n t s parameter va lue s
153 end
154 end
155

156 %%%%%%%%%%%%%%%%% Minimizes the Error
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

157 f unc t i on [ e r r ]=
ob j e c t i v e ( params , psadata , and data , tdata , change , x0 , n , model )

158 %{
159 This func t i on s e r v e s as the ob j e c t i v e func t i on that fmincon uses to f i nd
160 optimal parameter va lue s .
161 params = vecto r o f parameters to f i t
162 psadata = psa data
163 change = vecotor that with the time s t ep s at which treatmet i s

switched
164 tdata = time data
165 n = the number o f pe r i od s o f treatment to f i t
166 %}
167 psadata = psadata ( change (1 ) : change (n+1) ) ;
168 and data = and data ( change (1 ) : change (n+1) ) ;
169 [ Y1run ] = run model ( params , tdata , change , x0 , n , model , and data ) ;
170

171 switch model
172 case ’ one pop ’
173 PSA = Y1run ( : , 3 ) ;
174 AND = Y1run ( : , 1 ) ;
175 er rp = sum( (PSA−psadata ) .ˆ2/ l ength (PSA) ) ;
176 e r ra = sum( (AND−and data ) .ˆ2/ l ength (AND) ) ;
177 e r r = errp + er ra ;
178 f p r i n t f ( ’PSA Error = %.4 f \ t Androgen Error = %.4 f \n ’ , errp , e r ra ) ;
179

180 case ’ two pop ’
181 PSA = Y1run ( : , 4 ) ;
182 AND = Y1run ( : , 1 ) ;
183 er rp = sum( (PSA−psadata ) .ˆ2/ l ength (PSA) ) ;
184 e r ra = sum( (AND−and data ) .ˆ2/ l ength (AND) ) ;
185 e r r = errp + er ra ;
186 f p r i n t f ( ’PSA Error = %.4 f \ t Androgen Error = %.4 f \n ’ , errp , e r ra ) ;
187

188 case ’ portz ’
189 PSA = Y1run ( : , 5 ) ;
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190 e r r = sum( (PSA−psadata ) .ˆ2/ l ength (PSA) ) ;
191 f p r i n t f ( ’PSA Error = %.4 f \n ’ , e r r ) ;
192

193 case ’ h i r a t a ’
194 PSA = Y1run ( : , 1 ) + Y1run ( : , 2 ) + Y1run ( : , 3 ) ;
195 e r r = sum( (PSA−psadata ) .ˆ2/ l ength (PSA) ) ;
196 f p r i n t f ( ’PSA Error = %.4 f \n ’ , e r r ) ;
197

198 end
199 end
200 %%%%%%%%%%%%%%%% Runs the Model and Generates s yn the t i c data

%%%%%%%%%%%%
201 f unc t i on [ y ] = run model ( params , tdata , change , x0 , n , model , androgen )
202 y = [ ] ; % I n i t i a l vec to r f o r

s o l u t i o n
203 t i n t = tdata ( change (n+1) ) ; % Time i n t e r v a l to run

s o l u t i o n
204 f o r k = 1 : n % K number o f c y c l e s o f

treatment
205 u = 1 − mod(k , 2 ) ;
206 switch model
207 case ’ one pop ’
208 i f t i n t ( end ) >= tdata ( change (k ) )
209 [ ˜ , Yrun]=ode15s (@( t , x ) one pop ( t , x , [ params ( 1 : end−1) ,u ] ) , . . .
210 tdata ( change (k ) : change (k+1) ) , x0 ) ;
211 x0 = [ Yrun( end , 1 ) ; Yrun( end , 2 ) ; Yrun( end , 3 ) ; Yrun( end , 4 ) ] ;
212 i f k < n
213 y = [ y ; Yrun ( 1 : end−1 , : ) ] ; %#ok<AGROW>
214 e l s e i f k == n
215 y = [ y ; Yrun ( 1 : end , : ) ] ; %#ok<AGROW>
216 end
217 end
218 case ’ two pop ’
219 i f t i n t ( end ) >= tdata ( change (k ) )
220 [ ˜ , Yrun]=ode15s (@( t , x ) two pop ( t , x , [ params ( 1 : end−1) ,u ] ) , . . .
221 tdata ( change (k ) : change (k+1) ) , x0 ) ;
222 x0 = [ Yrun( end , 1 ) ; Yrun( end , 2 ) ; Yrun( end , 3 ) ; Yrun( end , 4 ) ] ;
223 i f k < n
224 y = [ y ; Yrun ( 1 : end−1 , : ) ] ; %#ok<AGROW>
225 e l s e i f k == n
226 y = [ y ; Yrun ( 1 : end , : ) ] ; %#ok<AGROW>
227 end
228 end
229 case ’ portz ’
230 i f t i n t ( end ) >= tdata ( change (k ) )
231 % opt ions = odeset ( ’ AbsTol ’ , 1 e−14 , ’ RelTol ’ , 1 e−14) ;
232 [ ˜ , Yrun]=ode23tb (@( t , x )

portz ( t , x , params , androgen , change (k ) : change (k+1) ) , . . .
233 tdata ( change (k ) : change (k+1) ) , x0 ) ;
234 x0 = [ Yrun( end , 1 ) ; Yrun( end , 2 ) ; Yrun( end , 3 ) ; Yrun( end , 4 ) ; Yrun( end , 5 ) ] ;
235 i f k < n
236 y = [ y ; Yrun ( 1 : end−1 , : ) ] ; %#ok<AGROW>
237 e l s e i f k == n
238 y = [ y ; Yrun ( 1 : end , : ) ] ; %#ok<AGROW>
239 end
240 end
241 case ’ h i r a t a ’
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242 i f t i n t ( end ) >= tdata ( change (k ) )
243 [ ˜ , Yrun]=ode15s (@( t , x ) h i r a t a ( t , x , params , u) , . . .
244 tdata ( change (k ) : change (k+1) ) , x0 ) ;
245 x0 = [ Yrun( end , 1 ) ; Yrun( end , 2 ) ; Yrun( end , 3 ) ] ;
246 i f k < n
247 y = [ y ; Yrun ( 1 : end−1 , : ) ] ; %#ok<AGROW>
248 e l s e i f k == n
249 y = [ y ; Yrun ( 1 : end , : ) ] ; %#ok<AGROW>
250 end
251 end
252 end
253 end
254 end
255 % model ODE func t i on s
256 f unc t i on dxdt = one pop (˜ , x , p )
257 % c o l l e c t parameter va lue s to pass to ODE func t i on
258 mu = p(1) ; q = p (2) ; R = p (3) ; d = p (4) ; dd = p (5) ;
259 gamma1 = p (6) ; gamma2 = p (7) ; Qm = p(8) ; b = p (9) ; sigma = p(10) ;
260 ep s i l o n = p(11) ; u = p (12) ;
261 %sepa ra t e s s o l u t i o n s
262 Q = x (1) ; X = x (2) ; P = x (3) ;V = x (4) ;
263 %%%%%%%%%%%%%%%%%%% ODE system %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
264 dX = mu∗(1−q/Q) ∗X − V∗R∗X/(Q+R)− abs (dd) ∗Xˆ2 ;
265 dA = (gamma1∗u +gamma2) ∗(Qm −Q)− mu∗(Q−q ) ;
266 dP = abs (b) ∗Q + abs ( sigma ) ∗X∗Q − abs ( e p s i l o n ) ∗P;
267 dV = −d∗V;
268 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
269 dxdt = [dA; dX; dP ; dV ] ; %Puts the ode in a column vecto r
270 end
271

272 f unc t i on dxdt = two pop (˜ , x , p)
273 % c o l l e c t parameter va lue s to pass to ODE func t i on
274 um = p(1) ; q1= p (2) ; q2= p (3) ; c1= p (4) ; c2=

p (5) ; K1= p (6) ;
275 K2= p(7) ; b= p (8) ; sigma1= p (9) ; e p s i l o n= p(10) ; d1=

p(11) ; d2= p(12) ;
276 R1= p(13) ; R2= p(14) ; gamma1= p(15) ; gamma2= p(16) ; dd1

= abs (p (17) ) ;
277 dd2 = abs (p (18) ) ; Qm = abs (p (19) ) ; u= p (20) ;
278 %sepa ra t e s s o l u t i o n s
279 Q = x (1) ; X = x (2) ; Y = x (3) ; P = x (4) ;
280 %%%%%%%%%%%%%%%%%%% Parameters f o r ODE System

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
281 i f q1>Q
282 ux = 0 ;
283 e l s e
284 ux = abs (um) ∗(1 − abs ( q1 ) /Q) ;
285 end
286 i f q2 > Q
287 uy = 0 ;
288 e l s e
289 uy = abs (um) ∗(1 − abs ( q2 ) /Q) ;
290 end
291 Dx = abs ( d1 ) ∗R1/(Q+R1) ; Dy = abs ( d2 ) ∗R2/(Q+R2) ;
292 mxy = abs ( c1 ) ∗K1/(Q + K1) ; myx = abs ( c2 ) ∗Q/(Q + K2) ;
293 %%%%%%%%%%%%%%%%%%% ODE system %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
294 dX = (ux − Dx − abs ( dd1 ) ∗X − mxy) ∗X + myx∗Y;

104



295 dY = (uy − Dy − abs ( dd2 ) ∗Y − myx) ∗Y + mxy∗X;
296 dA = ( abs (gamma1) ∗u +abs (gamma2) ) ∗(Qm −Q) − ( ux∗Q∗X + uy∗Q∗Y) /(X+Y) ;
297 dP = b∗Q + sigma1 ∗(Y∗Q + X∗Q) − ep s i l o n ∗P;
298 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
299 dxdt = [dA; dX; dY;dP ] ; %Puts the ode in a column vecto r
300 end
301

302 f unc t i on dxdt = h i r a t a (˜ , x , p , t r e a t )
303 % c o l l e c t parameter va lue s to pass to ODE func t i on
304 w110 = p (1) ; w11f = p (7) ;
305 w21 = p (2) ; w12f = p (8) ;
306 w220 = p (3) ; w22f = p (9) ;
307 w31 = p (4) ; w33f = p (10) ;
308 w32 = p (5) ;
309 w33 = p (6) ;
310 %sepa ra t e s s o l u t i o n s
311 X1 = x (1) ; X2 = x (2) ; X3 = x (3) ;
312 %%%%%%%%%%%%%%%%%%% ODE system %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
313 i f t r e a t == 0
314 %%%%%%%%%%%%%%%%%%% On Treatment %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
315 dX1 = w110∗X1 ;
316 dX2 = w21∗X1 + w220∗X2 ;
317 dX3 = w31∗X1 + w32∗X2 + w33∗X3 ;
318 %%%%%%%%%%%%%%%%%% Of Treatment %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
319 e l s e i f t r e a t == 1
320 dX1 = w11f∗X1 ;
321 dX2 = w12f∗X1 + w22f∗X2 ;
322 dX3 = w33f∗X3 ;
323 end
324 dxdt = [ dX1 ; dX2 ; dX3 ] ; %Puts the ode in a column vecto r
325 end
326

327 f unc t i on dxdt = portz ( t , x , p , androgen , trange )
328 % Parameter Values
329 um = p(1) ; qx = p (2) ; qy = p (3) ; dx = p (4) ; dy = p (5) ;

c1 = p (6) ;
330 Kxyn = p (7) ; c2 = p (8) ; Kyxn = p (9) ; n = p(10) ; qm =

p(11) ; vm = p(12) ;
331 vh = p(13) ; b = p(14) ; sigmax = p(15) ; sigmay = p(16) ; rhoxm =

p(17) ; rhoym = p(18) ;
332 m = p(19) ; sigma0 = p(20) ; d e l t a = p (21) ;
333 %sepa ra t e s s o l u t i o n s
334 X = x (1) ; Y = x (2) ; Qx = x (3) ; Qy = x (4) ; P = x (5) ;
335 % Androgen func t i on cons t ruc ted from data
336 A = androgen ( trange ( end ) ) +

( androgen ( trange (1 ) )−androgen ( trange ( end ) ) ) ∗exp(−( t−trange (1 ) ) ) ;
337 % Combines parameters to form exp r e s s i on s used in model
338 Qxn = Qxˆn ; Qyn = Qyˆn ;
339 Qxm = Qxˆm; Qym = Qxˆm;
340 ux = um∗(1 − qx/Qx) ;
341 uy = um∗(1 − qy/Qy) ;
342 mxy = c1∗Kxyn/(Qxn + Kxyn) ;
343 myx = c2∗Qyn/(Qyn + Kyxn) ;
344 vx = ( (qm − Qx) /(qm − qx ) ) ∗vm∗(A/(A + vh) ) ;
345 vy = ( (qm − Qy) /(qm − qy ) ) ∗vm∗(A/(A + vh) ) ;
346 % Portz et . a l . Model
347 dX = (ux − dx − mxy) ∗X + myx∗Y;
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348 dY = (uy − dy − myx) ∗Y + mxy∗X;
349 dQx = vx − ux∗Qx − b∗Qx;
350 dQy = vy − uy∗Qy − b∗Qy;
351 dP = sigmax∗X∗Qxm/(Qxm + rhoxm) + sigmay∗Y∗Qym/(Qym + rhoym) +

sigma0 ∗(X + Y) − de l t a ∗P;
352 %Puts the ode in a column vecto r
353 dxdt = [dX; dY; dQx ; dQy ; dP ] ;
354 end
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Lets expand equation 3.2 about an initial estimate of parameters p0 via Taylor
series:

y(ti) = H(x(ti),p0) +
n∑
j=1

∂H0
i

∂pj
∆pj + εi

Here,
∂H0

i

∂pj
is the derivative evaluated at p0. The error of high order terms is contained

in εi. Then, the sum of squared deviations is given by:

A =
n∑
i=1

[yi −H0
i −

q∑
j=1

∂H0
i

∂pj
∆pj]

2,

A is simply the square of the sum of the higher order terms in the Taylor expansion.
The number n is the number of observations. That is A is zero at p = p0. Taking
the derivative with respect to ∆pk of A and setting equal to zero gives the normal
equations for estimates ∆̂pk.

q∑
j=1

n∑
i=1

∂H0
i

∂pj

∂H0
i

∂pk
∆̂pj =

n∑
i=1

(yi −H0
i )
∂H0

i

∂pk
, k = 1, . . . , p

Let zi = yi −H0
i , so z = (z1, . . . , zn)T , ∆̂p = (∆̂p1, . . . , ∆̂pq)

T . Define the matrix
S by

S =

 s11(ti) . . . s1,n(ti)
...

. . .
...

sm,1(ti) . . . sm,n(ti)


where,

sij(tk) =
∂Hi(t,p)

∂pj
. (B.1)

The sum of squares and normal equations are then given by

A = (z − S∆θ)T (z − S∆θ) (B.2)

STS∆̂θ = ST z (B.3)

The rank of STS determines model identifiability. If one of the parameters does

not appear in the observations. For example pj. Then,
∂H0

i

∂pi
= 0 for i = 1, . . . , n.

In consequence, column j of S is null, so row j and column j of STS are null and
|STS| = 0. It happens that |STS| 6= 0 is a sufficient not necessary condition for local
model identifiability (Jacquez and Greif (1985)). If a system has |STS| 6= 0 then
as a consequence all of its parameters are observable. Then, we shall look at the
correlations between the parameters.
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Since Hirata’s Model is linear we can use the transfer function method for parameter
identifiability (Jacquez and Greif (1985)). Let us express Hirata’s model as

ẋ = Ax (C.1)

x(0) = [x01, x02, x03]T (C.2)

y(t) = x1(t) + x2(t) + x3(t) (C.3)

where x is a 3 dimensional vector with components x1, x2, and x3. A is a 3x3 matrix
and the output is denoted by y(t). We study Hirata’s off-treatment phase given by
eq 3.9. We can solve for x(t) analytically, and apply the Laplace transformation to
obtain:

φ(s) = L{y}(s)

=
x01

s− w0
11

+
x02

s− w0
22

+
x02w

0
12

(s− w0
11)(w0

11 − w0
22)

− x02w
0
12

(s− w0
22)(w0

11 − w0
22)

+
x03

s− w0
33

=
a1s

2 − a2s+ a3

s3 − a4s2 + a5s− a6

where,

a1 = x01 + x02 + x03

a2 = −(x02 + x03)w0
11 + x02w

0
12

−(x01 + x02 − x03)w0
22 − (x01 + x02)w0

33

a3 = w0
33(x02w

0
11 − x02w

0
12 + x01w

0
22)

a4 = (w0
11 + w0

22 + w0
33)

a5 = (w0
11w

0
22 + w0

22w
0
33 + w0

11w
0
33)

a6 = w0
11w

0
22w

0
33

and φ(s) is the transfer function and L{y}(s) is the Laplace transform of y(t).
Then the model parameters are structurally identifiable, if the transfer function φ(s),
can be expressed uniquely in terms of its parameters p. Lets assume that x01, x02, and
x03 are known - we want to test the best case scenario. This is possible if we assume
all cancer cells are x1 type cells in the beginning. Then, equations a1− a5 reduce to:

b1 = −w0
11 + w0

12 − w0
22 − w0

33

b2 = w0
33(w0

11 − w0
12 + w0

22)

b3 = (w0
11 + w0

22 + w0
33)

b4 = (w0
11w

0
22 + w0

22w
0
33 + w0

11w
0
33)

b5 = w0
11w

0
22w

0
33

Now, we can test global identifiability by introducing new parameters ŵ0
00, ŵ

0
11, ŵ

0
22,

and ŵ0
01. Then we set (b1−b5) equal to the same equation but with the new parameters
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and testing if we can uniquely identify the parameters. The result of this procedure
yields:

{w0
11 = ŵ0

11, w
0
11 = ŵ0

22, w
0
33 = ŵ0

33, w
0
12 = ŵ0

12}
and

{w0
11 = ŵ0

22, w
0
11 = ŵ0

00, w
0
33 = ŵ0

33, w
0
12 = ŵ0

12}
as the solutions. Thus, w0

11 and w0
22 are indistinguishable from each other and not

identifiable. Since all parameters appear in the system of equations they are all
observable parameters. This same process can be applied to solve the transfer function
for the on-treatment phase of Hirata’s Model eq 3.8. For the on-treatment phase, all
parameters are observable but none of the parameters are identifiable.
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APPENDIX D

CODE FOR CHAPTER 3
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1

2 LIST = [ 1 , 2 , 6 , 7 , 1 2 , 1 4 : 1 7 , 1 9 , 2 4 : 2 5 , 2 8 : 3 2 , 3 6 : 3 7 , 3 9 : 4 2 , . . .
3 44 , 5 1 : 5 2 , 5 4 , 5 5 , 5 8 , 6 0 : 6 4 , 6 6 , 7 1 , 7 5 , . . .
4 77 : 7 9 , 8 3 : 8 8 , 9 1 , 9 3 : 9 7 , 9 9 : 1 0 2 , 1 0 4 : 1 0 9 ] ; % pat i en t numbers
5 t o t a l = length (LIST) ; % t o t a l number o f pa t i e n t s
6

7 e r r o r s = [ ] ;
8 pat count = [ ] ;
9 max p = 30 ;

10 pcount = 1 ;
11 f o r x = LIST
12 t ry
13 change = [ ] ;
14 load ( s t r c a t ( ’ parameters /p ’ , num2str ( x ) , ’ . mat ’ ) , ’ params ’ )
15 % Complete name o f f i l e pa t i en t#. txt
16 f i l e = s t r c a t ( ’Data/ ’ , s t r c a t ( ’ pa t i en t ’ , num2str ( x ) ) , ’ . txt ’ ) ;
17 pat i en t = load ( f i l e ) ;
18

19 tdata = pat i en t ( : , 2 ) ; psa = pat i en t ( : , 3 ) ; androgen= pat i en t ( : , 4 ) ;
20 treatment = pat i en t ( : , 6 ) ;
21 n = 4 ;
22 j j = 1 ;
23 change (1 ) = 1 ;
24 f o r a = 1 : l ength ( treatment )
25 i f treatment ( a ) == mod( j j , 2 )
26 a = a+1;
27 e l s e
28 j j = j j + 1 ;
29 change ( j j ) = a ;
30 end
31 end
32 change ( j j +1) = length ( treatment ) ;
33

34 pa r no i s e= 0 ; k = 100 ; kk= 12 ;
35

36 par range = 1 : 1 5 ;
37 par1 = params ;
38

39 % no i s e = 0 ;
40 cancer (1 ) = 20 ;
41 x0 = [ androgen (1 ) , cancer (1 ) , psa (1 ) , . 0 9 ] ;
42

43 par names = { ’mu ’ , ’ q ’ , ’R ’ , ’ k ’ , ’ dd ’ , ’gamma1 ’ , ’gamma2 ’ , . . .
44 ’Amax ’ , ’ sigma0 ’ , ’ sigma1 ’ , ’ e p s i l o n ’ , ’ a l l ’ } ;
45

46 IC = ze ro s (k , 4 ) ;
47 pn = 1 : 1 1 ;
48

49 i f kk == 12
50 params = params + params∗ pa r no i s e ;
51 e l s e
52 par range (4+kk ) = [ ] ;
53 pn( kk ) = [ ] ;
54 params ( kk ) = params ( kk ) + params ( kk ) ∗ pa r no i s e ;
55 end
56

57 par = params (pn) ;
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58

59 l e n t = length ( tdata ) ;
60 l en p = length ( par ) ;
61 l en pn = length (pn) ;
62

63 par ensemble = ze ro s (k , l en pn ) ;
64 maxp = ones ( l en t , l en p ) ;
65 minp = ones ( l en t , l en p ) ;
66 meanp = ones ( l en t , l en p ) ;
67 dev i a t i on = ones ( l en t , l en p ) ;
68 %−−−−−−−−−−−−−−−−−−−−−−−−−−−− Loading Data −−−−−−−−−
69 s = x0 ; % True i n i t i a l c ond i t i on s
70 f o r i = 1 : l ength ( s )
71 a = s ( i ) ∗ . 9 0 ; b = s ( i ) ∗ 1 . 8 ;
72 % I n i t i a l Conds f o r Enssemble
73 IC ( : , i ) = (b−a ) .∗ rand (1 , k ) + a ;
74 end
75 f o r i = 1 : l ength (pn)
76 a1 = par ( i ) ∗ . 8 ; b1 = par ( i ) ∗ 1 . 9 ;
77 par ensemble ( : , i ) = (b1−a1 ) .∗ rand (1 , k ) + a1 ;
78

79 dev i a t i on ( : , i ) = std ( par ensemble ( : , i ) ) ;
80 maxp ( : , i ) = max( par ensemble ( : , i ) ) ;
81 minp ( : , i ) = min ( par ensemble ( : , i ) ) ;
82 meanp ( : , i ) = mean( par ensemble ( : , i ) ) ;
83 end
84 %−−−−−−−−−−−−−− Var iab l e s f o r LETKF −−−−−−−−−−−
85 R = . 6 ; % Uncerta inty o f PSA (2.94% − 4.21%)
86 CAST = ze ro s ( l ength ( par range ) , k ) ; % Forcast matrix − f i l l e d us ing i i
87 I = eye (k ) ; % Iden t i t y matrix f o r c a l c u l a t i o n s
88 p = . 1 2 ; % e r r o r parameter o f model (1 to 4) ;
89 Wa = zero s (k , k ) ; % Big W (a = hat )
90 t o t a l t = change (n) ; % Total time f o r Kalman f i l t e r
91 % Store s s t a t e s s o l u t i o n s from Kalman f i l t e r
92 s o l 1 = psa (1 ) ∗ ones (1 , t o t a l t ) ;
93 s o l 2 = androgen (1 ) ∗ ones (1 , t o t a l t ) ;
94 s o l 3 = cancer (1 ) ∗ ones (1 , t o t a l t ) ;
95

96 f o r j j = 1 : 1 : t o t a l t % s e t t i n g the ode func t i on to move one time step
97

98 time = [ tdata ( j j ) tdata ( j j +1) ] ; % Time between Measurement
99

100 f o r i i = 1 : 1 : k % Running the ode45 on the ensembles
101

102 i f j j == 1 % Star t with IC to i n i t i a t e the Kalman F i l t e r
103 y0 = [ IC ( i i , 1 ) ; IC ( i i , 2 ) ; IC ( i i , 3 ) ; IC ( i i , 4 ) ] ;
104 params (pn) = par ensemble ( i i , : ) ;
105 e l s e
106 y0 = [Xa(1 , i i ) ;Xa(2 , i i ) ;Xa(3 , i i ) ;Xa(4 , i i ) ] ;
107 params (pn) = Xa( 5 : end , i i ) ;
108 end
109

110 % Runs the model and s t o r e s output
111 [ t , y ] = run dynd fu l l ( params , tdata , change , time , y0 ) ;
112

113 % Co l l e c t l a s t y value to preform the Kalman F i l t e r
114 CAST( : , i i ) = [ y ( end , 1 : 4 ) , params (pn) ] ; % CAST stands f o r FORECAST;

114



115 end
116 %−−−−−−−−−−−−−−−−− Plo t t i ng Commands −−−−−−−−−−−−−−−−−−−−−−−−−−−−
117 s o l 1 ( j j ) = (y (1 , 3 ) ) ;
118 s o l 2 ( j j ) = (y (1 , 1 ) ) ;
119 s o l 3 ( j j ) = (y (1 , 2 ) ) ;
120 s o l 4 ( j j ) = (y (1 , 4 ) ) ;
121

122 X bar = mean(CAST, 2 ) ; % X bar := x−bar (b) ; the ’2 ’ a c r o s s ;
123

124 % Xb := the d i f f e r e n c e matrix X−double−bar (b)
125 f o r i = 1 : l ength ( par range )
126 i f i == 1
127 Xb = CAST( 1 , : )− X bar (1 ) ;
128 e l s e
129 Xb = [Xb ; CAST( i , : )− X bar ( i ) ] ;
130 end
131 end
132

133 % H := Pred icted l e v e l s from each ensemble . 0 f o r augmented s t a t e s
134 H = [CAST( 1 , : ) ’ , CAST( 3 , : ) ’ , z e r o s (100 ,11) ] ;
135

136 y bar = mean(H) ; % y bar := average o f p r ed i c t ed PSA
137 Yb( : , 1 ) = H( : , 1 ) − y bar (1 ) ; % Yb := D i f f e r e n c e between Pred ic ted and

mean
138 Yb( : , 2 ) = H( : , 2 ) − y bar (2 ) ; % Yb := D i f f e r e n c e between Pred ic ted and

mean
139 Yb( : , 3 : 1 3 ) = ze ro s (100 ,11) ;
140

141 C = Yb.∗ ( 1/R) ; % Step 4 cook book ; R i s the unce r ta in ty in PSA −
de f ined on top

142 Pa = ( ( k−1)∗ I . / p + C∗Yb’ ) ; %p−tw id l e
143 [V, D] = e i g (Pa) ;
144 lambda = max(0 , d iag (D) ) ;
145 Z = ze ro s ( k ) ;
146

147 f o r j = 1 : k
148 i f lambda ( j )>0
149 Z ( : , j ) = V( : , j ) /lambda ( j ) ;
150 end
151 end
152

153 Pa = Z∗V’ ;
154

155 f o r j = 1 : k
156 i f lambda ( j )>0
157 Z ( : , j ) = V( : , j ) / sq r t ( lambda ( j ) ) ;
158 end
159 end
160

161 Wa = sqr t (k−1)∗(Z∗V’ ) ;
162

163 % Put the observed PSA in here
164 wa = Pa∗C∗ ( [ androgen ( j j ) ; psa ( j j ) ; z e r o s (11 ,1 ) ]− [ y bar (1 ) ; . . .
165 y bar (2 ) ; z e r o s (11 ,1 ) ] ) ;
166

167 f o r gg = 1 : 1 : k
168 Wa( : , gg ) = Wa( : , gg ) + wa ; % Add wa to each column o f Wa
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169 end
170

171 % Fina l ly , we can c r ea t e the f o r e c a s t f o r X1 , and PSA
172 Xa = (Xb∗Wa) ;
173 f o r l l = 1 : 1 : k
174 Xa ( : , l l ) = Xa ( : , l l ) + X bar ;
175 end
176

177 Xa( 1 : end , : ) = abs (Xa ( 1 : end , : ) ) ;
178

179 f o r i = 1 : l ength ( par )
180 maxp( j j +1, i )= max(Xa(4+ i , : ) ) ;
181 minp( j j +1, i )= min (Xa(4+ i , : ) ) ;
182 meanp( j j +1, i )= mean(Xa(4+ i , : ) ) ;
183 dev i a t i on ( j j +1, i )= std (Xa(4+ i , : ) ) ;
184 end
185

186 di sp ( j j )
187 end
188

189 catch ME
190 di sp ( ’ Something Wrong ’ )
191 e r r o r s = [ e r r o r s pcount ] ;
192 end
193

194 params1 = [meanp( change (4 ) , : ) , 0 ] ;
195

196 params = par1 ;
197 PSAall4 = [ ] ;
198 l a s t = 6 ;
199 l engthPred4 = tdata ( change (4 ) : change (6 ) ) ;
200 f o r in = 1:100%: l ength (Xa ( 1 , : ) )
201 params2 = [Xa( 5 : end , in ) ’ , 0 ] ;
202

203

204 x04 = [ s o l 2 ( end ) , s o l 3 ( end ) , s o l 1 ( end ) , s o l 4 ( end ) ] ;
205 [ T4run2 , Y4run2]=ode23tb (@( t , x )

b a s e dyn d f u l l ( t , x , [ params2 ( 1 : end−1) , 1 ] ) , . . .
206 tdata ( change (4 ) ) : tdata ( change (5 ) ) , x04 ) ;
207 x05 = [ Y4run2 ( end , 1 ) ; Y4run2 ( end , 2 ) ; Y4run2 ( end , 3 ) ; Y4run2 ( end , 4 ) ] ;
208 [ T5run2 , Y5run2]=ode23tb (@( t , x )

b a s e dyn d f u l l ( t , x , [ params2 ( 1 : end−1) , 0 ] ) , . . .
209 tdata ( change (5 ) ) : tdata ( change (6 ) ) , x05 ) ;
210 Y4 = [ Y4run2 ( : , 3 ) ; Y5run2 ( : , 3 ) ] ;
211 PSAall4 = [ PSAall4 ,Y4 ’ ] ;
212 p lo t ( [ T4run2 ; T5run2 ] , [ Y4run2 ( : , 3 ) ; Y5run2 ( : , 3 ) ] )
213 hold on
214 % check i f o u t l i e r and remove i t from the l i s t
215

216 end
217 p lo t ( tdata ( change (4 ) : change (6 ) ) , psa ( change (4 ) : change (6 ) ) , ’ o ’ )
218 f o r i = 2 : l ength ( PSAall4 )
219 min p ( i ) = min ( PSAall4 ( : , i ) ) ;
220 max p( i ) = max( PSAall4 ( : , i ) ) ;
221 end
222 end
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1 f unc t i on [ per ror s , a e r r o r s ] = run model delaydependence mse
2 x = [1 6 14 15 17 19 24 25 28 29 30 32 36 37 39 44 51 . . .
3 52 54 55 58 60 62 63 64 66 75 77 79 83 87 88 91 . . .
4 93 100 101 102 1 0 5 ] ; % l i s t o f pa t i e n t s
5 pe r r o r s = [ ] ;
6 a e r r o r s = [ ] ;
7 f o r i i = x
8 %%%%%%%%%%%%%%%%% I n i t i a l i z a t i o n o f a r rays and va r i a b l e s %%%%%%
9 nParams = 13 ;

10 opt ions = opt imset ( ’ Algorithm ’ , ’ i n t e r i o r−po int ’ , ’TolX ’ ,1 e −13 , . . .
11 ’ TolFun ’ ,1 e−13, ’TolCon ’ ,1 e−13, ’ MaxIter ’ ,100) ; %

Optimizer Options
12 change = [ ] ; % I n i t i a l i z e change

Vector
13 load ( s t r c a t ( ’ par de lay dependence ’ , num2str ( i i ) , ’ . mat ’ ) , ’ params ’ )
14 % Complete name o f f i l e pa t i en t#. txt
15 f i l e = s t r c a t ( ’Data/ ’ , s t r c a t ( ’ pa t i en t ’ , num2str ( i i ) ) , ’ . tx t ’ ) ;
16 pat i en t = load ( f i l e ) ;
17 tdata = pat i en t ( : , 2 ) ; psa = pat i en t ( : , 3 ) ; androgen=

pat i en t ( : , 4 ) ; treatment = pat i en t ( : , 6 ) ;
18 %%%%%%%%%%% Finds pe r i od s o f on and o f f treatment %%%%%%%%%
19 j j = 1 ;
20 change (1 ) = 1 ; % Treatment s t a r t s at t = 0
21 f o r a = 1 : l ength ( treatment )
22 i f treatment ( a ) ˜= mod( j j , 2 ) % When treatment change occurs
23 j j = j j + 1 ;
24 change ( j j ) = a ; % Store s time in change vec to r
25 end
26 end
27 change ( j j +1) = length ( treatment ) ; % Last day o f treatment
28

29 % no i s e = 0 ;
30

31 a = max( androgen ( change (2 ) : change (4 ) ) ) ;
32 % um % q % R % d % dd

% gamma1
33 LB(1) = 0 . 0001 ; LB(2) = 0 ; LB(3) = 0 ; LB(4) = . 0 0 1 ; LB(5) =

0 .000001 ; LB(6) = 18 ;
34 UB(1) = . 0 0 9 ; UB(2) = . 5 ; UB(3) = 1 ; UB(4) = . 1 ; UB(5) =

. 00009 ; UB(6) = 21 ;
35 % gamma2 % Qmax % b % sigma %

ep s i l o n % u
36 LB(7) = 0 ; LB(8) = 5 ; LB(9) = 0 . 0 1 ; LB(10) = 0 ; LB(11) =

. 0 1 ; LB(12) = 0 ;
37 UB(7) = 4 ; UB(8) = 9 ; UB(9) = 0 . 5 ; UB(10) = 1 ; UB(11) =

1 . 5 ; UB(12) = 0 ;
38

39 % x0
40 LB(13) = . 1 ;
41 UB(13) = 20 ;
42

43 %fo r i = . 5 : 1 : 1 2
44 l ag =2;
45 g l oba l l ;
46 l = lag ;
47 IC = UB/2 ; % i n i t i a l parameter va lue s
48
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49 Y= run one pop ( params , tdata , change , n , lag , androgen , psa ) ;
50

51 pe r r o r s = [ per ror s , immse (Y( 3 , : ) ’ , psa ( change (2 ) : change (n+1) ) ) ] ;
52 a e r r o r s = [ ae r ro r s , immse (Y( 1 , : ) ’ , androgen ( change (2 ) : change (n+1) ) ) ] ;
53 end
54

55 f unc t i on [ y ] = run one pop ( params , tdata , change , l a s t , lag , androgen , psa )
56 y = [ ] ;
57 opts = ddeset ( ’ Jumps ’ , lag , ’ RelTol ’ ,1 e−5, ’ AbsTol ’ ,1 e−5) ;
58 f o r k = 2 : l a s t
59 params (12) = 1 − mod(k , 2 ) ;
60 i f k == 2
61 HQ = @( t ) in t e rp1 ( tdata , androgen , t ) ;
62 HP = @( t ) in t e rp1 ( tdata , psa , t ) ;
63 x0 = params (13) ;
64 e l s e
65 HQ = @( t ) in t e rp1 ( tdata ( change (k−1) : change (k ) ) ,S ( 1 , : ) , t ) ;
66 HP = @( t ) in t e rp1 ( tdata ( change (k−1) : change (k ) ) ,S ( 3 , : ) , t ) ;
67 x0 = S (2 , end ) ;
68 end
69 s o l=dde23 (@ddex1de , lag , . . .
70 ddex1hi s t ( tdata ( change (k−1) : change (k ) ) ,HQ,HP, x0 ) , . . .
71 tdata ( change (k ) : change (k+1) ) , opts , params ( 1 : end ) ) ;
72 [ S , ˜ ] = deval ( so l , tdata ( change (k ) : change (k+1) ) ) ;
73 i f k < l a s t
74 y = [ y , S ( 1 : 3 , 1 : end−1) ] ;
75 e l s e i f k == l a s t
76 y = [ y , S ( 1 : 3 , 1 : end ) ] ;
77 end
78 end
79 end
80

81 f unc t i on s = ddex1hi s t ( t ,HQ,HP, x0 )
82 % Constant h i s t o r y func t i on f o r DDEX1.
83 H1 = HQ( t ) ;
84 H2 = HP( t ) ;
85 H1= H1( end , 1 ) ;
86 H2 = H2( end , 1 ) ;
87 s = [H1 ; x0 ;H2 ] ;
88 end
89 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90 f unc t i on dydt = ddex1de (˜ , x , Z , p)
91 mu = p(1) ;
92 q = p (2) ;
93 R = p(3) ;
94 d = p (4) ;
95 de l = p (5) ;
96 gamma1 = p (6) ;
97 gamma2 = p (7) ;
98 Qm = p(8) ;
99 b = p (9) ;

100 sigma = p(10) ;
101 ep s i l o n = p(11) ;
102 c = p (12) ;
103

104 Ql= Z(1 , 1 ) ;
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105 Xl = Z(2 , 1 ) ;
106

107 %sepa ra t e s s o l u t i o n s
108 Q = x (1) ; X = x (2) ; P = x (3) ;
109 %%%%%%%%%%%%%%%%%%% ODE system %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 dQ = (gamma1∗c +gamma2) ∗(Qm −Q)− mu∗(1−q/Ql ) ∗Q∗(Xl/X) ∗exp(− l ∗d) ;
111 dX = mu∗(1−q/Ql ) ∗Xl∗exp(− l ∗d) − d∗R∗X/(Q+R)− abs ( de l ) ∗Xˆ2 ;
112 dP = abs (b) ∗Q + abs ( sigma ) ∗X∗Q − abs ( e p s i l o n ) ∗P;
113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
114 dydt = [dQ; dX; dP ] ; %Puts the ode in a column vecto r
115 end
116 end
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