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ABSTRACT 

 An important component of insect social structure is the number of queens that 

cohabitate in a colony. Queen number is highly variable between and within species. It 

can begin at colony initiation when often unrelated queens form cooperative social 

groups, a strategy known as primary polygyny. The non-kin cooperative groups formed 

by primary polygyny have profound effects on the social dynamics and inclusive fitness 

benefits within a colony. Despite this, the evolution of non-kin queen cooperation has 

been relatively overlooked in considerations of the evolution of cooperative sociality. To 

date, studies examining the costs and benefits of primary polygyny have focused 

primarily on the advantages of multiple queens during colony founding and early growth, 

but the impact of their presence extends to colony maturity and reproduction.  

In this dissertation, I evaluate the ecological drivers and fitness consequences of 

non-kin queen cooperation, by comparing the reproduction of mature single-queen versus 

polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured 

and quantified the total number and biomass of reproductives across multiple mating 

seasons, comparing between populations that vary in the proportion of single queen 

versus polygynous colonies, to assess the fitness outcomes of queen cooperation. 

Colonies in a mainly polygynous site had lower reproductive investment than those in 

sites with predominantly single-queen colonies. The site dominated by polygyny had 

higher colony density and displayed evidence of resource limitation, pressures that may 

drive the evolution of queen cooperation.  

 I also used microsatellite markers to examine how polygynous queens share 

worker and reproductive production with nest-mate queens. The majority of queens fairly 
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contribute to worker production and equally share reproductive output. However, there is 

a low frequency of queens that under-produce workers and over-produce reproductive 

offspring. This suggests that cheating by reproducing queens is possible, but uncommon. 

Competitive pressure from neighboring colonies could reduce the success of colonies that 

contain cheaters and maintain a low frequency of this phenotype in the population. 

  



iii 
 

ACKNOWLEDGMENTS 

 I am eternally grateful to my advisor, Jennifer Fewell, for encouraging my pursuit 

of a risky longitudinal field project that could have easily ended in disaster. Jennifer and I 

have spent countless hours editing and re-editing grant applications and manuscripts, and 

through it all she has shown limitless patience and perseverance. I credit her trust and 

support for every success I’ve enjoyed throughout my graduate career. 

 I also must thank Jürgen Gadau, who was so crucial to the success of this research 

that he was effectively my co-advisor. I came to ASU knowing next to nothing about 

genetic research, but Jürgen and his lab were incredibly generous with their time and 

endlessly patient with a blundering field biologist who hardly knew how to use a pipette. 

I’ve admired the work of Bert Hölldobler ever since I picked up a copy of The Ants as an 

undergraduate. I was hoping to learn more about an ant-plant mutualism I had observed, 

but instead my eyes were opened to the enthralling world of social insects. This started 

me on the path of social insect research, and I cannot express what an honor it was to 

have had access to Bert’s advice and expertise. My dissertation probably would have 

never happened without Blaine Cole, whose inspired research convinced me that this 

project was at all possible. Ron Rutowski was an indispensable teacher and mentor who 

helped me understand how my research fit into the broader field of animal behavior, and 

instilled in me the importance of hypothesis driven research. 

 This project could not have happened without the dedicated assistance of 

countless graduate and undergraduate students, including Ioulia Bespalova, Nathan 

Smith, Guo Xiaohui, Evan Farrar, Luis Garcia, Alison Willis, and many others. 



iv 
 

TABLE OF CONTENTS 

Page 

LIST OF TABLES…………………………………………………………………….…vii 

LIST OF FIGURES……………………………………………………………………..viii 

CHAPTER            

1 INTRODUCTION………………………………………………………………1 

2 NON-KIN POLYGYNY IN ANT SOCIETIES: A REVIEW………..……….11 

  Introduction…………………………………………................................11 

  Identifying Non-Kin Polygyny in Ants……………………………...…...15 

  The Taxonomic Distribution of Non-Kin Polygyny………………….….17 

  Common Ecological Themes for Non-Kin Polygyny in Ants…..….……21 

  State of Non-Kin Polygyny Research……..…………..………….……...25 

3 ECOLOGICAL DRIVERS AND REPRODUCTIVE CONSEQUENCES OF 

PRIMARY POLYGYNY…………………………………………………...…...37 

  Introduction………………………………………………………………37 

  Methods…………………………………………………………………..41 

  Results……………………………………………………………………46 

  Discussion………………………………………………………………..52 



v 
 

CHAPTER              Page 

4 REPRODUCTIVE STRATEGIES OF POLYGYNOUS AND SINGLE 

QUEEN COLONIES IN A SHARED HABITAT……………………………….74 

  Introduction………………………………………………………………74 

  Methods…………………………………………………………………..79 

  Results……………………………………………………………………84 

  Discussion………………………………………………………………..88 

5 DIVISION OF WORKER AND REPRODUCTIVE OFFSPRING BY 

COHABITING QUEENS: DO COOPERATIVE QUEENS CHEAT?................98 

  Introduction………………………………………………………………98 

  Methods…………………………………………………………………102 

  Results …………………………………………………………………..105 

  Discussion………………………………………………………………108 

WORKS CITED………………………………………………………………………..118 

APPENDIX 

A  FULL ANOVA RESULTS COMPARING PINE VALLEY AND LAKE 

HENSHAW COLONIES……………………………………………………….138 



vi 
 

APPENDIX              Page 

B  OVERVIEW OF REPRODUCTIVE AND ECOLOGICAL DATA FROM PV 

AND LH COLONIES…………………………………………………………..141 

C  FULL ANOVA RESULTS COMPARING POLYGYNOUS AND 

MONOGYNOUS COLONIES IN MIXED POPULATION..................………144 

D  FORWARD AND REVERSE SEQUENCES FOR UNPUBLISHED 

PRIMERS………………………………………………………………………148 

E  CASTE RATIO INVESTMENT BY POLYGYNOUS QUEENS, DIVIDED 

BY YEAR………………………………………………………………………150 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF TABLES 

Table                          Page 

2.1  Summary of Literature Review on the Prevalence of Primary Polygyny…………...29 

3.1  Summary of Colony Reproductive Characteristics by Site and Social Structure...…71 

3.2  Average Temperatures and Dates of Alate Trapping ……………………..………..73 

4.1  ANOVA Model of Colony Reproduction by Activity, Nearest Neighbor, and Social 

Strategy…...……………………………………………………………………………...96 

4.2  ANOVA Model of Colony Size by Nearest Neighbor and Social Strategy…..….…97 

5.1  Caste Investment by Queens in All Colonies Analyzed…………………………...115 

 

  



viii 
 

LIST OF FIGURES 

Figure                 Page 

1.1  Study Area of Dissertation Showing Frequency of Primary Polygyny……………..10 

2.1  Phylogeny of Ant Subfamilies with Distribution of Primary Polygyny…….………28 

3.1  Mean Reproductive Investment Over Days of Mating Flight………………...…….61 

3.2  Reproductive Participation by Colony Location……..……………………………...62 

3.3  Reproductive Output and Sex Ratio by Site and Social Structure…….………..…...63 

3.4  Reproductive Investment by Site and Social Structure…………..………………….64 

3.5  Proportion of Reproductive Investment into Males by Site and Social Structure…..65 

3.6  Mean Queen and Male Alate Mass by Site and Social Structure…...……………....66 

3.7  Mean Worker Activity Assay Values by Site and Social Structure………..………..67 

3.8  Colony Density and Reproductive Participation in PV and LH……………….……68 

3.9  Ripley’s K Envelope Analysis of Colony Distribution in PV and LH……….……..69 

3.10  Reproductive Investment after Resource Supplementation…………………..……70 

4.1  Per-Queen Reproductive Investment of Polygynous and Monogynous Colonies…..94 

4.2  Linear Regressions of Worker Activity by Reproductive Investment…..…………..95 

5.1  Proportion of Caste Investment by Queens of Two Polygynous Colonies………...114



1 
 

CHAPTER 1: INTRODUCTION 

Primary Polygyny in the Harvester Ant, Pogonomyrmex californicus 

In the several decades since it was first discovered (Mintzer and Vinson 1985), 

cooperation between unrelated ant queens has remained a poorly understood biological 

phenomenon. Most research on cooperation has focused on theories of kin selection and 

cooperation among relatives, but there are many examples of stable social groups 

composed of completely unrelated individuals, which cannot be explained through 

models of kin selection (Cahan and Helms 2012; Clutton-Brock et al. 2000; Holldobler et 

al. 2011). There are several theories that have been proposed to explain the evolution of 

non-kin cooperation, such as mutualism and reciprocity (Mesterton-Gibbons and 

Dugatkin 1992; Clutton-Brock 2002; Clutton-Brock 2009; Queller 2011).  

Despite the theoretical interest in this question, finding natural contexts in which 

the fitness costs and benefits of non-kin cooperation can be tested has proven difficult. 

Most of the well-documented examples of non-kin cooperation occur in longer lived taxa, 

that are additionally slow to reproduce. These are not conducive to the longitudinal 

analysis of fitness outcomes for cooperation (Dugatkin 2002). The social insects, 

however, provide a series of relatively unexplored examples of non-kin cooperation. 

These range from parasocial (communal) groups of unrelated queens, which share nest 

space over a season as they produce the next year’s brood (Abrams and Eickwort 1981; 

Danforth 2002), to the surprising example of primary polygyny, in which often non-kin 

queens form cooperative groups to found eusocial colonies and continue to cohabitate 

across the colony’s lifespan as a stable cooperative group.  
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 Primary polygyny was first documented in 1981 in a leaf-cutter ant (Moser and 

Lewis 1981) and has since been confirmed in multiple ant species (Mintzer and Vinson 

1985; Trunzer et al. 1998; DeHeer and Herbers 2004; Qian et al. 2012), indicating 

multiple independent evolutionary events. The list of non-kin polygynous species has 

expanded considerably since its first description, in large part due to the proliferation of 

newer techniques for maternity analysis. Although there has been a dearth of follow-up 

research on the selection drivers of primary polygyny, a handful of studies on several 

focal species provide a solid foundation for further study. 

 The majority of work investigating costs and benefits of this cooperation focuses 

on the early colony founding stage. The presumed ancestral condition, and most common 

strategy ants, is colony establishment by single queens (reviewed by Bernasconi and 

Strassmann 1999). Several studies, however, have found benefits to multi-queen 

cooperation during colony establishment and early growth. These include an increase in 

initial worker production (Bartz and Hölldobler 1982; Thorne 1984; Trunzer et al. 1998), 

and increased queen and colony survival (Johnson 2004; Mintzer 1987; Cahan and Julian 

1999; Clark and Fewell 2014; Overson et al 2014). However, the benefits of cooperation 

during colony founding and early growth do not completely explain why queen 

cooperation persists throughout the lifespan of the colony. Indeed, in many cases in 

which queens found nests together (pleometrosis), they cooperate only until first worker 

eclosion, at which time the queens fight until a single queen inherits the colony 

(Bernasconi and Strassmann 1999). The lack of a culling event under primary polygyny 

suggests that colonies may receive additional benefits by maintaining multiple queens 
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past colony establishment, into at least early colony growth and potentially though 

maturity.  

The California Harvester Ant, Pogonomyrmex californicus, is ideally suited for 

the study of primary polygyny. Its species range includes patchy but contiguous 

populations in southern California (San Diego County; Figure 1.1) that vary between 

sites in the prevalence of queen cooperation. In the more northern sites that have been 

genetically sampled, colonies are almost all headed by a single queen (monogynous); 

while most colonies in the more southern show primary polygyny, based on observations 

of queen founding and on genetic analysis of mature colonies (Johnson 2004; Overson et 

al. 2016; Chapter 3). Sites between these two points vary somewhat clinally, with fairly 

even mixing of the two social structures in some intermediately located areas (Figure 1.1; 

Chapter 4).  

The entire range of this gradient in social structure covers a distance of 

approximately 40 linear miles. Because of this, all sites show very similar weather 

patterns, and colonies share the general condition of living in disturbed arid grassland; 

however, level of disturbance and food availability likely vary between sites. The switch 

in social pattern across this narrow geographical range, however, reduces the number of 

ecological variables that may be driving the persistence of queen cooperation in some 

areas but not others. The dramatic shifts in social strategy that characterize these 

populations provide an almost unique opportunity to explore the natural ecological 

conditions driving the transition from single queen to cooperative nesting strategies. 
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The life cycle of these colonies also provides advantages in addressing the issue 

of how cooperative nesting relates to fitness outcomes. Mature harvester ant colonies 

reproduce through synchronized mating flights where new, winged queens and males 

(alates) fly from their home nest to mate and initiate new colonies. The entire annual 

reproductive output of a colony can be captured during this period, and the large number 

of alates released provides ample variation between colonies for comparative purposes. 

Because the California populations of P. californicus experience similar rainfall and 

temperature conditions, their reproductive flights occur across the same time windows, 

allowing direct comparisons of reproductive strategy and output. Thus, the reproductive 

costs and benefits of non-kin cooperation can be more accurately and easily quantified 

for primary polygyny than for other common non-kin cooperation study systems.  

 For this dissertation, I conducted a series of field-based experiments, combined 

with genetic analysis, to explore the prevalence, evolution, and stability of primary 

polygyny. Chapter two outlines our current state of knowledge on primary polygyny in 

ants, with additional consideration of similar social strategies in other insect taxa. I 

review all species in which primary polygyny has been discovered, and the means by 

which the behavior was confirmed. I also note several species in which primary polygyny 

potentially occurs but further confirmation is required. Our current understanding of the 

potential similarities between species that practice primary polygyny which are discussed 

in the context of their information on the potential ecological drivers of non-kin 

cooperative evolution. These include the issues of density and between-colony 

competition, the potential for brood raiding, and the selection pressures imposed by harsh 
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environments on colony growth and survival that may favor multi-queen cooperation. 

The chapter concludes with an in-depth analysis of the current state of research on 

primary polygyny and explores some potential avenues of future research. 

 Chapter Three focuses on the ecological drivers of primary polygyny. A dominant 

hypothesis for queen cooperation is that it may be a response to harsh environmental 

conditions that make solitary colony founding untenable. Alternatively, the environment 

where primary polygyny is found may be so rich that a polygynous colony is more 

equipped to exploit the local resources, mutualistically increasing the fitness of all queens 

in the colony. In previous research, Overson et al. (2014) identified two P. californicus 

field sites, one dominated by single queen colonies (Lake Henshaw) and one dominated 

by primary polygyny (Pine Valley). I explored the reproductive characteristics of 

colonies in these sites in the context of their local environment. P. californicus in this 

area is reproductive over approximately a month long period from mid-June to mid-July, 

during which time winged queens and males (alates) depart from the nest in synchrony 

with surrounding colonies to join mating leks. I captured the reproductive investment of 

colonies in these sites using suspended tent traps and quantified the total reproductive 

investment of colonies at both sites over a three-year period. I also performed ecological 

surveys of temperature, precipitation, and colony density to explore potential differences 

between sites that may maintain queen cooperation in one area and not the other. There 

were indications that colonies in the polygynous site are resource limited, so I also 

performed a resource supplementation experiment in a fourth year to see if the 

reproductive investment of colonies at the polygynous site is constrained by low resource 
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availability. This study represents an important first step in understanding why primary 

polygyny is always found in discrete regions of a species’ range, and the ecological 

drivers that could select for the evolution of non-kin cooperation.  

 Chapter Four explores the costs and benefits of queen cooperation in mature P. 

californicus colonies that share the same ecological conditions, to better understand the 

impact of social strategy on reproduction, independently of external ecological drivers. 

Most research on the costs and benefits of primary polygyny are lab studies that focus on 

the early, founding stages of the colony. These studies suggest that queens benefit from 

primary polygyny during colony initiation through increased survival and more efficient 

worker production (Trunzer et al. 1998; Clark and Fewell 2014). These benefits may 

extend into early colony growth, as the colony expands from a few to a few hundred 

workers. However, the potential benefits of primary polygyny at colony maturity have yet 

to be explored. Such benefits could include a larger colony size derived from multiple 

egg layers or more flexible worker behaviors due to higher genetic diversity, either of 

which could result in higher reproductive investment. However, any colony-level 

advantages could also be offset by conflict between polygynous queens over reproductive 

resources. 

To explore the question of how social strategy impacts colony and individual 

queen reproductive success, I located a new P. californicus field site between the 

polygynous and single-queen dominated sites studied in chapter 3, that contains a 

relatively even mix of monogynous and polygynous colonies. I captured and quantified 

the reproductive output in numbers of alates, and reproductive investment in alate mass, 
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for a set of focal colonies over two years to compare the reproductive characteristics of 

primary polygyny colonies with monogynous colonies. There was no difference in colony 

level reproductive investment between monogynous and polygynous colonies, but when 

reproduction was divided by the number of queens present in polygynous colonies, the 

per-queen reproductive investment was significantly less for a polygynous queen than for 

a solitary queen. The only benefit of being polygynous in this site that may offset the 

fitness cost suffered by polygynous queens was a larger colony size, which may reflect a 

longer colony life span that could make up for shared reproductive investment though 

additional reproductive opportunities for queens. 

 Chapter Five addresses a persistent and difficult question of primary polygyny, 

how cooperative queens share the demands of worker production with the benefits of 

alate production. The data from Chapters Three and Four offered evidence that multiple 

queens contribute to worker and alate production in polygynous colonies. Few studies, 

however, have explicitly measured the proportional contributions to alate versus worker 

production by cooperative queens in the context of primary polygyny (Heinze et al. 2001; 

Kolmer et al. 2002). We cannot confidently state that primary polygyny is a model 

system of non-kin cooperation until we gather further evidence that nest-mate queens 

receive equitable fitness outcomes in their cooperative group. Although casual 

observations from laboratory colonies offer no evidence of queen or worker conflict 

across maternal lineages, there may be subtle conflict within the colony during the 

reproductive season, if different queens or worker lineages nepotistically funnel resources 

to related alates. Queens may potentially “cheat” their cooperative group by making 
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lower contributions to costly worker production (which represents an individual queen 

contribution to group success) and produce disproportionately more alates relative to 

workers. If so, this would indicate the presence of queens freeloading on the work of the 

colony for higher personal fitness. However, I found that the overwhelming majority of 

queens produce worker and alates equitably, with only a small number of queens that 

under produced workers relative to their alate production. The spread of cheating 

behaviors may be kept in check by competitive pressures between colonies, which likely 

favor colonies that only contain cooperative queens that contribute to worker production. 

Regardless, the high ratio of non-cheating queens further supports the notion that primary 

polygyny represents a stable and fair system of non-kin cooperation. 

 Taken together, this dissertation provides a much needed exploration into the 

ecological drivers and fitness outcomes of cooperation between unrelated ant queens. The 

findings indicate that competitive, resource limited conditions drive the evolution and 

maintenance of primary polygyny. However, polygynous queens suffer fitness costs from 

sharing resources with other queens for reproductive investment, which may make this 

strategy viable only in a subset of environments where solitary colony founding is 

extremely challenging. Almost all polygynous queens share the benefits of alate 

production and the costs of worker production equally, and while potential cheating 

behaviors may be present in a small number of queens, this phenotype does not appear to 

be common or pose a threat to the cooperative system. These studies lay the groundwork 

for the advancement of primary polygyny as an important model system of non-kin 
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cooperation where lingering questions about fitness outcomes and evolutionary 

mechanisms can finally be directly assessed. 
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Figure 1.1: The study area of this project. The black area of each circle chart represents 

the proportion of colonies in that area that display primary polygyny, the boxed number 

represents the number of samples colonies. Of the sites assessed in this dissertation, 14 of 

18 colonies (77.8%) surveyed in Pine Valley contained multiple queens, 14 of 21 

colonies (66.7%) surveyed in the mixed site contained multiple queens, and 3 of 17 

colonies (17.6%) surveyed in Lake Henshaw contained multiple queens. The small circle 

charts identify sites that were sampled by Overson (2011).  
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CHAPTER 2 

 NON-KIN POLYGYNY IN ANT SOCIETIES: A REVIEW  

Introduction 

 In most hymenopteran social insect species, there exists a single reproductive 

queen in each colony, cohabiting with infertile or reproductively constrained workers 

(Hölldobler and Wilson 1990). It is generally accepted that the extreme cooperation and 

reproductive constraint of social insect workers have evolved due to inclusive fitness 

benefits that workers receive by increasing the reproductive success of a close relative, 

their mother queen (Queller and Strassmann 1998). However, some eusocial insect 

species display lower than expected intergroup relatedness, produced by multiple mating 

(polyandry; Crozier and Fjerdingstad, 2001) and/or nest sharing by multiple queens 

(polygyny; Hölldobler and Wilson 1977; Keller 1995). There are a handful of different 

mechanisms that allow polygyny to arise in a colony; queens can form groups at colony 

founding, or queens can be adopted by established colonies, and the relatedness of nest-

mate queens varies from closely related sisters or daughters to completely unrelated 

foreigners. Polygyny of any type will lower relatedness within a colony, but the 

acceptance of unrelated queens will have a massive impact on the inclusive fitness 

dynamics within a colony, the implications of which are not well studied and poorly 

understood. 

Polygyny can be divided into two major strategy types. In secondary polygyny, 

daughter queens return to their home nest after mating and become secondary queens 

(Hölldobler and Wilson 1977; Keller 1995). Like polyandry, secondary polygyny 
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generates a more diverse workforce while diluting the inclusive fitness benefits for 

workers. It also has the potential consequence of reducing direct fitness outcomes for 

individual queens due to the costs of sharing colony resources as opposed to 

monopolizing a colony. In turn, however, it provides a potential benefit in extending the 

life of the colony via replacement queens. While both polyandry and secondary polygyny 

reduce mean relatedness within a colony, in both social strategies workers share some 

relatedness above null expectations, from the population mean. Thus both strategies 

allow – and indeed are likely driven by – inclusive fitness benefits via kin selection. 

Primary polygyny is a less studied and less common social structure, in which 

unrelated queens form social groups during the initiation of new nests. The multi-queen 

association persists throughout the colony lifespan and additional queens are not accepted 

into the group after initial colony founding (Mintzer and Vinson 1985; Johnson 2004; 

Overson et al. 2016). In some taxa, particularly wasps, these associations form non-

randomly from sibling groups. In Polistes, for example, sister queens often hibernate near 

each other in the winter preceding nest establishment, and so are more likely than random 

to form kin-biased polygynous associations based on site fidelity (Spradbery 1986; Reed 

et al. 1988). In other taxa, however, and particularly in the ants, primary polygyny occurs 

directly after mating flights in which queens and males enter large population-wide 

mating swarms. In these cases, the relatedness of queens in polygynous associations 

reflects population levels, and generally approaches zero (Cahan and Helms 2012; Qian 

et al. 2012; Overson et al. 2016).  
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Oligogyny is another form of non-kin polygyny found in some ants in which 

unrelated queens are accepted into an already established colony, often when the resident 

queen is dead or dying, known as secondary oligogyny (Gadau et al. 1998). Primary 

oligogyny may also arise from pleometrosis during colony founding, but this is distinct 

from primary polygyny because as the colony grows queens become intolerant of each 

other and are segregated to different areas of the nest by their workers (Hölldobler and 

Carlin 1985). Little is known about the similarities and differences between primary 

polygyny and oligogyny in terms of the generated benefits or evolutionary drivers of 

these social structures. However, the high workforce genetic diversity, increase in egg 

layers, and queen redundancy that are a consequence of both structures by indicate 

similar evolutionary routes.  

Non-kin polygyny generates a qualitatively different social structure than 

secondary polygyny or polyandry.  Because the queens are non-relatives, colonies 

effectively behave as a multi-family social group, with little to no relatedness between 

lineages.  This creates a genetic structure that is qualitatively different than polyandry or 

secondary polygyny, in that workers simultaneously cooperate with relatives and non-

relatives. Despite this, and acknowledging a lack of studies done so far, the workers in 

non-kin polygynous colonies show no particular evidence of nepotism (but see Helantera 

et al. 2013). As with other polygynous structures, most data suggest that all queens within 

the colony contribute to worker production and share communal resources for individual 

reproductive output (Kolmer and Heinze 2000; Heinze et al. 2001; Chapter 5), indicating 

a stable cooperative system, but one with variable inclusive fitness benefits.  
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For those ant species displaying non-kin polygyny, it is generally layered onto an 

already existing strategy of polyandry. In Pogonomyrmex californicus, for example, both 

haplometrotic (single queen founding) and polygynous queens mate multiply, with an 

average of 8.22 males (Overson et al. 2016). Similarly, queens of the polygynous 

leafcutter ant Acromyrmex versicolor mate with 3 males on average (Reichardt and 

Wheeler 1996). Thus, mean colony relatedness in these groups is already lower than 

expectations for monogamous haplo-diploid populations. 

Relatively little is known about non-kin polygyny, its ecological drivers, or its 

fitness consequences. However, as a social strategy, it provides an unrivaled opportunity 

to study the evolution and mechanisms of non-kin cooperation. It is found in several ant 

genera (Figure 1.1), indicating that the strategy has evolved independently several times. 

In those species displaying non-kin polygyny, it generally occurs only in a subset of 

populations, with other populations displaying the ancestral monogynous strategy. This 

allows an almost unique opportunity to directly compare and contrast the ecological 

conditions in which non-kin polygyny evolves, and to track its fitness consequences on 

colony survival and growth, and on queen reproductive success. 

Here, I present a synthesis of non-kin polygyny research. Most of the species 

where non-kin polygyny has been identified are ants, and almost all of the experimental 

and theoretical work has been done on ant models, so this review focuses on ant species. I 

suggest ways to identify non-kin polygyny in ants, and catalogue all confirmed cases of 

non-kin polygyny, as well as instances where the social structure may be present but 

where further confirmation is needed. In addition, I discuss the ecological characteristics 
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that are commonly associated with non-kin polygyny in ants, and how they might drive 

the evolution of non-kin polygyny. To conclude, I explore the impact of non-kin 

polygyny on colony function and queen fitness, and suggest future research directions for 

this remarkable context for non-kin cooperation. 

Identifying Non-Kin Polygyny in Ants 

Until recently, myrmecologists interested in social structure relied solely on 

physically digging up colonies, a strenuous and time consuming task. There have likely 

been several incidents where polygyny was accidentally overlooked because the 

excavation was declared a success and halted as soon as one queen was found. 

Monogyny is the dominant strategy in social insects, so the assumption that an excavation 

was complete after a single queen was found is both logical and convenient. Non-kin 

polygyny has only recently been focused on as a social strategy, beginning with the first 

discovery of a mature, multi-queen Atta texana colony by Moser and Lewis (1981), and 

continuing with the study of lab reared colonies and the genetic confirmation of unrelated 

queens by Mintzer and Vinson (1985), Hölldobler and Carlin (1985), and Rissing et al. 

(1989). It is likely that inaccuracies about the queen number of ant species are hidden in 

publications before this time.  

As genetic techniques have become more accessible, the rate of non-kin polygyny 

discovery in social insect species has increased dramatically (Table 2.1). Previously, 

when multiple queens were found in an excavated colony it was often assumed that the 

queens are related and attributed to secondary polygyny (Greaves and Hughes 1974). 
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Secondary polygyny may be difficult to differentiate from non-kin polygyny using only 

genetic tools, however, especially with low allele diversity or few samples. Therefore, a 

combination of field-colony assessment, behavioral observation, and genetic analysis is 

the ideal method to accurately determine a species’ social strategy. Confusing matters 

further, non-kin polygyny has never been found to be the only social structure used by a 

species; there are always other populations where queens are solitary (Helms and Helms-

Cahan 2012; Overson et al. 2016). This variation in social structure between populations 

can generate conflicting conclusions that necessitate several surveys across a species’ 

range to resolve.  

Polygynous queens will readily tolerate unfamiliar queens in a shared lab colony, 

pooling brood and even dividing the labor of colony founding (Clark and Fewell 2014). 

The persistence of multiple queens after worker emergence in lab colonies is a good 

indication that primary polygyny is possible at the source population, as worker 

emergence is generally when cooperation breaks down if pleometrosis leads to secondary 

monogyny (Sommer and Hölldobler 1995). Although in at least two species it is possible 

to induce queen cohabitation in the lab even when it does not occur naturally (Provost 

and Cerdan, 1990). Considering this, the most precise way to identify non-kin polygyny 

is to directly examine the genetic diversity present in the workforce or alates of mature 

field colonies. 
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The Taxonomic Distribution of Non-Kin Polygyny 

Ants-Primary Polygyny 

 Primary polygyny was first described in 1981 in the Texas leaf-cutter ant Atta 

texana by Moser & Lewis (1981), after several anecdotal accounts of multiple queens 

inspired them to excavate a mature colony. Moser found 16 queens in an Atta texana field 

colony estimated to be 2 years old (Moser and Lewis 1981). Mintzer and Vinson showed 

that these cooperative queen associations were stable and beneficial to A. texana queen 

survival under laboratory conditions (Mintzer and Vinson 1985; Mintzer 1987). 

Subsequent evidence of primary polygyny has been reported for several leafcutter 

species. Primary polygyny was next identified in the temperate leaf-cutter ant species, 

Acromyrmex versicolor (Rissing et al. 1986; Rissing and Pollock 1987). Rissing et al. 

(1989) excavated pleometrotic starting nests, and using allozyme markers, demonstrated 

that the queens were non-relatives. They then reared stable multi-queen colonies in the 

lab as evidence of primary polygyny. Additional isoenzyme evidence indicates that at 

least two other South American Acromyrmex species, A. striatus and A. heyeri, have 

colonies that contain multiple unrelated queens that contribute to worker and alate 

production, strongly suggesting primary polygyny (Diehl et al. 2001), although 

supporting field colony data for these species are lacking. Primary polygyny may also 

occur in a Brazilian population of the fungus growing ant Cyphomyrmex transversus 

Multiple queens were found in 37.73% of colonies examined by Ramos-Lacau et al. 

(2012) but it is unknown if these queens were non-kin.  
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 Several harvester ant species also practice primary polygyny in some populations. 

Populations of the California harvester ant, Pogonomyrmex californicus, display non-kin 

primary polygyny, as confirmed with field observation (Johnson 2004), laboratory 

colonies (Clark and Fewell 2014), and microsatellite analysis (Overson et al. 2014; 

Overson et al. 2016). Primary polygyny also occurs in a California population of the seed 

harvester Veromessor pergandei, also confirmed using microsatellites (Helms and 

Helms-Cahan 2012). Pleometrosis with queen culling to secondary monogyny is 

prevalent in adjacent California and Arizona populations (Helms & Helms-Cahan 2012). 

Queens of another species in a related genus, Messor barbarus, can be induced into stable 

cooperative associations in the lab, but no polygynous colonies have been found in the 

field (Provost & Cerdan 1990). The prevalence of primary polygyny in harvester ant 

species seem associated with arid environments. Two non-harvesting species that occur 

in arid areas also show this pattern. The honeypot ant Myrmecosystus mimicus practices 

primary polygyny in an Arizona population as confirmed by microsatellite analysis by 

Hölldobler et al. (2011). The mound building ant Formica podzolica exhibits primary 

polygyny in Colorado, as suggested by field excavation (Deslippe and Savolainen 1995a) 

and confirmed through microsatellite analysis (DeHeer and Herbers 2004).   

 Some of the most detailed genetic and behavioral research has been performed on 

species of the tropical ant genus Neoponera. Primary polygyny has been confirmed in 

Neoponera inversa through behavioral observation in the field and lab (D’Ettorre et al. 

2005) as well as with multiple microsatellite analyses (Heinz et al. 2001; Kolmer et al. 

2002). In a closely related species, Neoponera villosa, queen cooperation has been 
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demonstrated in the lab (Trunzer et al. 1998) and unrelated queens have been documented 

in field colonies (Kellner et al. 2007), strongly suggesting primary polygyny. 

Microsatellites were also used to confirm primary polygyny in the Australian jumper ant 

Myrmecia pilosula (Qian et al. 2012), as well as in the red ant Myrmicia rubra (Pearson 

1982; Pearson 1983; Seppa & Walin 1996). Finally, multiple unrelated queens have been 

found in mature colonies of the pleometrotic weaver ant Oecophylla smaragdina, 

strongly suggesting primary polygyny (Schluns et al. 2009).  

 Further confirmation is needed in several other ant species where research 

suggests primary polygyny may occur but is not conclusive. Multiple, unrelated queens 

were found in colonies of Myrmica gallienii in Finland using enzyme electrophoresis 

(Seppa 1996), but there is little discussion of colony founding or colony age. The 

widespread European species Lasius neglectus forms stable cooperative unrelated queen 

groups in the lab, but they have not been found in nature (Espadaler and Ray 2001). 

Likewise, unrelated queens of the Argentine ant Linepithema humile will tolerate each 

other when placed together in the lab (Keller 1998), suggesting a capacity for primary 

polygyny. Mature Neoponera striata smith colonies in southeastern Brazil have also been 

found with multiple queens, but more work is needed on queen relatedness to confirm 

primary polygyny (Rodrigues et al. 2011). Also in southeastern Brazil, the arboreal trap 

jaw ant Odontomachus hastatus has been found in colonies containing several queens and 

workers, but it is unknown if these queens are related (Oliveira et al. 2011). There are 

also accounts of primary polygyny in the Northeast range of Pheidole morrisii, but 

supporting data has not yet been published (Wilson 1993).  
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Ants-Oligogyny 

 Oligogyny was first described in the carpenter ants Camponotus ligniperdus and 

Camponotus herculeanus (Hölldobler 1962). It has since been confirmed in a German 

population of C. ligniperdus through microsatellite analysis (Gadau et al. 1998), and 

genetic analysis of C. herculeanus shows relatively low worker relatedness in some 

populations which also indicates the presence of oligogyny (Seppa and Gertsch 1996). 

Oligogyny is also found in the Australian meat ant, Iridomyrmex purpureus, through a 

combination of field and lab observation (Hölldobler and Carlin 1985). Unrelated queens 

of this species can start a colony together (primary oligogyny), or be adopted by an 

established colony (secondary oligogyny). Further genetic analysis confirmed that 

oligogynous I. purpureus queens are unrelated and share a workforce (Carew et al. 1997). 

Allozyme analysis of the subterranean ant Lasuis flavus also suggests oligogyny may be 

taking place in some colonies (Boomsma et al. 1993).  

Unicolonial ants 

 Polygyny finds its extreme in the social structure of unicolonial ants (reviewed by 

Tsutsui and Suarez 2003). Unicoloniality is found in populations of invasive species, 

including the fire ant Solenopsis invicta, the Argentine ant Linepithema humile, and the 

crazy ant Nylanderia fulva (see Helanterä et al. 2009 for complete list). These social 

systems feature multiple, unrelated reproductive queens similar to other forms of non-kin 

polygyny. However, they are further characterized by a lack of typical colony 

territoriality; workers move freely between conspecific colonies within little to no ability 
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to differentiate nestmates from non-nestmates. This often makes a unicolonial territory 

extremely large, sometimes spanning hundreds of kilometers (Corin et al. 2007).  

 Evidence suggests that unicolonial colonies arose due to a genetic bottleneck 

when a small number of queens were introduced to a new area or continent, drastically 

reducing the diversity of hydrocarbon signals that can be used for nestmate identification 

(Suarez et al. 1999; Tsutsui et al. 2000). The reduction in genetic diversity may reduce 

the ants’ ability to distinguish colony members from other conspecifics, leading to huge 

meta-colonies which share resources and workers. In contrast, primary polygyny and 

oligogyny have always been found within a species’ natural range and colonies maintain 

their aggressive, territorial worker behaviors (Helms and Helms Cahan 2012; personal 

observation). This suggests that primary polygyny and oligogyny are evolved, adaptive 

cooperative strategies as opposed to the byproduct of an introduction event as seen in 

unicoloniality. 

Potential Ecological Drivers of Non-Kin Polygyny in Ants 

To date, non-kin polygyny has only been documented in a subset of a species’ 

range. It is the dominant social structure within discrete populations, while other areas 

within the species range contain only single-queen colonies (Helms and Helms-Cahan 

2012; Overson 2016). This is indicative that the transition to and from polygyny is 

evolutionary labile, and that local ecological pressures likely drive the evolution of queen 

cooperation. Most studies that report non-kin polygyny give at most an anecdotal 

description of the environmental conditions in the area. However, there are ecological 
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consistencies associated with its occurrence that may offer insights into the ecological 

drivers for non-kin cooperation by ant queens. 

High nest density 

 Non-kin polygyny is commonly reported in areas where colonies are highly 

clustered. High colony density decreases the survival rate for new colonies (Fowler et al. 

1984), and increases competitive pressures over resources and territory for established 

colonies (Adams and Tschinkel 1995). The challenges that high density presents for both 

new and established colonies may be ameliorated through the benefits in colony size and 

defensive capacity generated by queen cooperation. Clustered colonies may also promote 

primary polygyny by forcing more contact between queens while they are searching for 

suitable nest sites in a limited space. High colony density relative to other populations of 

the species has been reported in polygynous populations of the ants Neoponera villosa 

(Trunzer et al. 1998), Acromyrmex versicolor (Rissing et al 1986), Formica podzolica 

(Bennett 1987), and Pogonomyrmex californicus (Shaffer et al. 2016). However, a lower 

colony density was found in a pleometrotic population of Veromessor pergandei (Cahan 

2001).  

Brood/resource raiding 

 Similar competitive pressures may also be generated by raiding events. Some ant 

species raid nearby colonies to capture food resources and worker brood, often destroying 

the target colony in the process (Hölldobler 1976; Bartz and Hölldobler 1982; Tschinkel 

1992; Nonacs 1993). These raids are especially common in the period following the 
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mating flight, as poorly defended new colonies struggle to expand their workforce 

(Rissing and Pollock 1987). Raids are an extreme competitive pressure that may select 

for queen cooperation to increase the growth rate of the colony to better defend against 

attack. Raiding behavior is known in four species that also exhibit non-kin polygyny: 

Acromyrmex versicolor (Rissing et al. 1986), Myrmecocystus mimicus (Bartz & 

Hölldobler 1982), Veromessor pergandei (Pollock and Rissing 1985, but see Pfennig 

1995).  

Temperate climate 

 Most of the known ant species that display non-kin polygyny are found in 

temperate or desert regions, including Formica podzolica, Acromyrmex versicolor, Atta 

texana, Oecophylla smaragdnia, Myrmecia pilosula, Veromessor pergandei, 

Myrmecocystus mimicus, Iridomyrmex purpureus, and Pogonomyrmex californicus. 

Social insects in temperate habitats have highly synchronized mating flights that result in 

many queens attempting to initiate colonies simultaneously. The density of ant queens 

during this period may encourage the evolution of polygyny by limiting nest sites and 

increasing the frequency of queen contact. Tropical species generally reproduce through 

year-round, less synchronized mating flights that may make polygyny logistically 

difficult (Torres et al. 2001). However, there are a few species found in the neotropics 

that non-kin primary polygyny: Neoponera villosa, Neoponera inversa, Acromyrmex 

striatus, Acromyrmex heyeri, and Odontomachus hastatus. Resource availability is also 

generally lower in temperate environments than in the tropics (Fisher 1960; Leigh 1965), 
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a difficulty that may decrease colony success in temperate areas and make queen 

cooperation viable. 

Obligate foraging 

Queens of many ant species are able to nourish their first cohort of workers using 

only the fat and muscle reserves in her body when leaving her birth nest. These queens 

generally plug their nest entrance and it remains sealed until workers eclose. In other 

species queens do not carry enough nutrients for their first cohort and must forage after 

starting a new colony. Foraging is a risky endeavor for the queen that exposes her to 

predation, parasites, and desiccation (Fowler 1992). Interestingly, the queens of many 

polygynous species forage during colony initiation, including Neoponera villosa (Trunzer 

et al. 1998), Neoponera inversa (Kolmer and Heinze 2000), Acromyrmex versicolor 

(Rissing et al. 1989), Acromyrmex striatus (Diehl-Fleig and Araujo 1996), and 

Pogonomyrmex californicus (Johnson 2004). Lab studies of P. californicus and A. 

versicolor have shown that queen groups actually divide labor during colony founding 

and will specialize in foraging, nest excavation, or brood care behaviors (Rissing et al. 

1989; Helms-Cahan and Fewell 2004). The pressure to forage on top of the other tasks a 

queen must accomplish to successfully start a colony may encourage queen cooperation 

through the efficiency and survival benefits generated by division of labor (Jeanson and 

Fewell 2008; Clark and Fewell 2014). However, queen foraging is not ubiquitous, queens 

of the polygynous leaf cutter Atta texana do not forage (Mintzer and Vinson 1985).  
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State of Non-Kin Polygyny Research 

Most social groups are made up of related individuals, so our understanding of 

social evolution is often grounded in kin selection models and the indirect benefits 

generated by cooperating with relatives. But there are several examples of social groups 

of non-kin (Clutton-Brock et al. 2000; Hacker et al. 2005; Rutte and Taborsky 2008; 

Hölldobler et al. 2011; Helms-Cahan and Helms 2012), indicating that direct benefits 

generated by cooperative systems can still select for the evolution of cooperation (Pfeiffer 

et al. 2005; Clutton-Brock 2009; Schino and Aureli 2010; Queller 2011). However, 

empirical data showing the impact of non-kin cooperation on individual fitness is lacking, 

largely due to the difficulty of quantifying fecundity in long lived, slow reproducing 

mammalian or avian social groups, which are the best studied in this context (Dugatkin 

2002).  

Non-kin polygyny in social insects provides a system where the relationships 

between social evolution, low relatedness, and individual fitness can be explored with 

relative ease. Cooperative queens can be cheaply raised in the lab, and all species where 

non-kin polygyny is found also have populations where queens are solitary which allows 

for fitness, behavioral, physiological, and genetic comparisons between cooperative and 

non-cooperative individuals of the same species. In addition, colonies are long lived but 

immobile, simplifying longitudinal studies of queen survival and fecundity in natural 

field colonies.  
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Most research on non-kin polygyny to date has focused on the benefits that 

queens receive by cooperating during the early stages of colony founding and growth. 

Several studies found evidence that multi-queen colonies grow more quickly than single-

queen colonies, with more workers produced in a given time in Neoponera villosa 

(Trunzer et al 1998), Atta texana (Mintzer 1987), Formica podzolica (Deslippe and 

Savolainen 1995a), and Iridomyrmex purpureus (Hölldobler and Carlin 1985). There are 

also several studies that indicate increased survival of cooperative queens during the 

founding stage (Bartz and Hölldobler 1982; Mintzer 1987; Johnson 2004; Clark and 

Fewell 2014). These colony growth and queen survival benefits may be partially 

generated through division of labor between queens. Lab experiments have shown that 

polygynous queens will specialize in nest excavation, foraging, or brood care while they 

prepare for the first brood of workers to eclose (Trunzer et al. 1998; Rissing et al. 1999; 

Helms-Cahan and Fewell 2004). Queen division of labor should provide similar benefits 

to group efficiency as seen in other cooperative systems with task specialization (Wilson 

1985). Sharing the metabolic demand of laying the first cohort of worker eggs likely also 

benefits polygynous groups (Kaib et al. 2001; Clark and Fewell 2014).  

The benefits of non-kin polygyny during early colony growth closely match the 

well-studied benefits of pleometrosis (Bernasconi and Strassmann 1999). However, the 

persistence of queen cooperation past worker eclosion suggests that polygynous colonies 

receive benefits that extend into colony maturity and outweigh the costs of sharing 

colony resources for reproductive investment. The benefits of non-kin polygyny at colony 

maturity have never been directly investigated, though polygynous colonies likely receive 
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similar benefits to workforce efficiency and pathogen resistance as have been found when 

genetic diversity increases through polyandry (Oldroyd and Fewell 2007; Wiernasz et al. 

2008). In addition, the benefits to worker production rate and worker production 

efficiency seen in incipient colonies may continue into colony maturity, a valuable trait in 

highly competitive environments (Adams and Tschinkel 1995).   

The extremely low relatedness seen in non-kin polygyny may make this social 

structure vulnerable to queens cheating when dividing resources for reproduction, which 

may strain the stability of the group. Unrelated queens have no inclusive fitness benefits 

that discourage taking advantage of the group by hoarding resources for reproductive 

investment or otherwise trying to monopolize the colony’s alate production. The only 

study that used genetic techniques to analyze the contribution of cooperative queens to 

reproductive investment and the workforce found little evidence of queen cheating 

(Heinze et al. 2001), but a higher sample size may be required for reliable support. We 

will never fully understand the evolution and maintenance of non-kin polygyny without 

more information on how these cooperative associations handle reproduction. If queens 

can cheat their group, it may only be a matter of time until the cheating phenotype 

dominates the population and the system falls apart, as is predicted by several theoretical 

models of non-kin cooperation (Boyd and Richerson 1988; Stevens and Hauser 2004). 

However, there may be mechanisms or selective forces at play that limit the growth of 

cheating in polygynous populations (Wade and Breden 1980). We must address these 

questions to determine the stability of theses cooperative groups and realize the potential 

of non-kin polygyny as a model system for the evolution of cooperation between non-kin.  
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Figure 2.1: Phylogeny of extant ant subfamilies based on Moreau et al. 2006 and Brady et 

al. 2006. Subfamilies containing a species where the existence of primary polygyny has 

been confirmed through genetic analysis and behavioral observation in the field or 

laboratory are indicated with a red arrow. The number of species that display primary 

polygyny is given in the red circles. Subfamilies containing species where the existence 

of oligogyny has been confirmed are indicated with a yellow arrow, with the number of 

species given in the yellow circle. 
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Table 2.1: Evidence of primary polygyny in ants by subfamily, genus, and species. 

Method indicates how data was gathered; DNA fingerprinting indicates all genetic 

methods including alozymes, mitochondrial DNA, microsatellites, etc., field colony 

observation indicates any observation of behaviors in the field or nest excavation, lab 

colony observation indicates any experiments with colonies transplanted or raised in the 

laboratory.  

 Subfamily        Genus Species Reference Method  Finding 

Ponerinae:      Neoponera villosa Trunzer 

et al. 

1998 

Field colony 

observation 

 

Polygynous 

colonies 

produced 

more 

workers, no 

aggression, 

queen 

division of 

labor. 

  D'Ettore 

et al. 

2005 

Field colony 

observation 

70% of field 

colonies 

were 

polygynous. 

  Kellner 

et al. 

2007 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

 inversa Kolmer 

& Heinze 

2000 

Lab colony 

observation 

Polygynous 

queen groups 

persist to 

colony 

maturity in 

lab. 
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  Heinz et 

al. 2001 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated, 

share worker 

and alate 

production. 

  Kolmer 

et al. 

2002 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

 striata 

smith 

Rodrigue

s et al. 

2011 

Field colony 

observation 

Some mature 

colonies 

were 

polygynous. 

Odontomachus hastatus Oliveira 

et al. 

2011 

Field colony 

observation 

Half of 

examined 

colonies 

were 

polygynous. 

  Camargo 

& 

Oliveira 

2012 

Field colony 

observation 

Half of 

examined 

colonies 

were 

polygynous. 

Relatedness 

unknown. 

Myrmicinae:              Atta texana Moser 

1981 

Field colony 

observation 

Dug up 

colony 

containing 

16 queens. 

  Mintzer 

& Vinson 

1985 

Lab colony 

observation 

Polygynous 

queen groups 

stable in lab 

colonies. 
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  Mintzer 

1987 

Lab colony 

observation 

Polygynous 

queens had 

higher 

survival rate, 

lost less 

weight, more 

workers in 

first brood. 

Acromyrmex versicolor Rissing 

et al. 

1989 

DNA 

fingerprinting 

Polygynous 

queens not 

related. 

Foraging 

specialist 

emerges. No 

aggression or 

dominance. 

  Pollock 

et al. 

2004 

Lab colony 

observation 

If queen 

foraging 

specialist is 

kept from 

foraging, no 

queen takes 

her place and 

colony dies. 

"suicidal 

punishment". 

 echinatior Bekkevol

d et al. 

1999 

DNA 

fingerprinting 

Some 

colonies 

were 

polygynous 

and lower 

nestmate 

relatedness 

in these 

colonies may 

indicate 
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unrelated 

queens. 

 striatus Diehl-

Fleig & 

De 

Araujo 

1996 

Lab colony 

observation 

Queens 

forced 

together in 

lab did not 

fight. 

  Diehl-

Fleig, 

Rocha 

1998 

Lab colony 

observation 

Queen 

associations 

persist for at 

least a 

couple 

months in 

lab. 

  Diehl et 

al. 2001 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

 heyeri Diehl et 

al. 2001 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

Cyphomyrmex transversus Ramos-

Lacau et 

al 2012 

 

Field colony 

observation 

Multiple 

queens in 

37.73% of 

field 

colonies.  

Messor barbarous Provost 

& Cerdan 

1990 

Lab colony 

observation 

Polygyny 

induced in 

lab, not 

found in 

field. 

 pergandei Helms & 

Cahan 

2012 

Field colony 

observation 

Polygyny 

present in 

one area but 

not another, 
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 no clear 

differences 

in 

environment 

between 

populations. 

  Cahan & 

Helms 

2012 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

Myrmica gallienii Seppa 

1996 

 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

Pheidole tucsonica Rissing 

et al. 

2000 

 

Lab colony 

observation 

& DNA 

fingerprinting  

Mated 

queens start 

colonies 

together in 

lab, 

allozymes 

show they 

are not 

related. 

Pogonomyrmex californicus Johnson 

2004 

Lab colony 

observation 

Polygynous 

queen groups 

persist in lab 

colonies. 

  Clark & 

Fewell 

2014 

Lab colony 

observation 

Queens from 

polygynous 

area less 

aggressive 

and divide 

labor. 



34 
 

  Overson 

et al. 

2014 

Lab colony 

observation 

Queens from 

polygynous 

area less 

aggressive. 

  Overson 

et al. 

2016 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated 

and 

polyanderou

s. 

Formicinae:        Formica podzolica Deslippe 

& 

Savolain

en 1995a 

 

Field colony 

observation 

27% of 

founding 

colonies in 

field had 

multiple 

queens.  

  Deslippe 

& 

Savolain

en 1995b 

 

Field colony 

observation 

Polygynous 

colonies had 

more male 

biased 

reproductive 

output. 

  DeHeer 

& 

Herbers 

2004 

 

DNA 

fingerprinting 

60% of 

colonies in 

area are 

polygynous 

with low 

relatedness, 

4.5 queens 

on average. 

Myrmecocystus mimicus Bartz & 

Hölldobl

er 1982 

 

Field colony 

observation 

Queens form 

groups 

during nest 

founding. 
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  Hölldobl

er et al. 

2011 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated, 

share worker 

production. 

Oecophylla smaragdina Schluns 

et al. 

2009 

 

Field colony 

observation 

and DNA 

fingerprinting 

Multiple, 

unrelated 

queens in 

field 

colonies 

founded 

through 

pleometrosis. 

Cataglyphis aenescens Cronin et 

al. 2015 

 

DNA 

fingerprinting 

A few field 

colonies had 

multiple 

unrelated 

queens. 

Myrmeciinae:   Myrmecia pilosula Craig & 

Crozier 

1979 

 

DNA 

fingerprinting 

Polygynous 

queens likely 

unrelated. 

 

  Qian et 

al. 2012 

 

DNA 

fingerprinting 

Polygynous 

queens 

unrelated. 

 rubra Person 

1982 

 

DNA 

fingerprinting 

Polygynous 

queens in 

some 

colonies 

unrelated. 

  Pearson 

1983 

DNA 

fingerprinting 

Workers 

from 

polygynous 
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colonies 

unrelated to 

each other. 

  Seppa & 

Walin 

1996 

 

DNA 

fingerprinting 

Relatedness 

of 

polygynous 

queens close 

to zero in 3 

of 5 

populations.  
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CHAPTER 3 

ECOLOGICAL DRIVERS AND REPRODUCTIVE CONSEQUENCES OF PRIMARY 

POLYGYNY  

Introduction 

 Non-kin cooperative groups present important test cases for understanding the 

diverse drivers of social evolution, because cooperation evolves in the absence of 

relatedness by descent. Recent work has demonstrated that social groups of non-relatives 

are more common than previously thought, and that many social groups that were 

assumed to be close kin have lower than expected genetic relatedness (Hacker et al. 2005; 

Cahan and Helms 2012; Clutton-Brock et al. 2000; Rutte and Taborsky 2008; Hölldobler 

et al. 2011). A critical dilemma for the evolution of cooperation among non-kin is that 

individuals within a group theoretically incur indirect fitness benefits that approach zero, 

yet they still suffer potential direct fitness costs associated with individual contributions 

to group function (Mesterton-Gibbons and Dugatkin 1992; Dugatkin 2002; Aviles 2002; 

West et al. 2009; Clutton-Brock 2009). For cooperation to persist in this context, there 

must be some balancing combination of direct individual or multilevel fitness gain, 

relative to competing individuals and/or groups. There has been considerable theoretical 

discussion of how these outcomes may be generated (Lehmann and Keller 2006; Nowak 

2006; Okasha 2006; West et al. 2007; Connor 2010; Marshall 2011; Queller 2011; Van 

Cleve and Akcay 2014; Okasha 2016). However, empirical evaluation has been limited, 

especially in natural contexts, because there are few accurate measurements of direct 

fitness outcomes for non-kin groups (but see Leadbeater et al. 2011; Rehan et al. 2014).  
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Primary polygyny by ant queens provides an empirical context for evaluating the 

fitness costs and benefits of non-kin cooperation. In this social form, unrelated queens 

join together in cooperative associations during nest founding (pleometrosis). In some 

taxa, these associations persist through the life of the colony (primary polygyny). 

Because the queens are unrelated, they create what is essentially a multi-family eusocial 

group, with non-relative queens and workers living cooperatively (Hölldober and Wilson 

1990; Overson et al. 2016; Heinz et al. 2001; DeHeer and Herbers 2004; Cahan and 

Helms 2012). Primary polygyny occurs infrequently across ant taxa, but multiple well-

documented cases have been reported, particularly in arid environments (Mintzer 1987; 

Trunzer et al. 1998; Heinz et al. 2001; Helms and Helms-Cahan 2012; Helantera et al. 

2013). When it does occur, it is generally present only in certain populations of a given 

species, while others retain the more common and ancestral strategy of single-queen 

founding (Helms and Helms-Cahan 2012; Overson et al. 2016). This pattern suggests that 

polygyny may be adaptive under a relatively narrow range of ecological conditions. 

Nest founding by the California harvester ant, Pogonomyrmex californicus, fits 

this pattern of patchily distributed cooperation, making it a particularly useful empirical 

context to evaluate polygyny as a social strategy. Across its range, P. californicus 

includes multiple contiguous, patchily distributed populations that vary from containing 

mainly polygynous colonies to sites with primarily single queen colonies (haplometrosis). 

Polygynous and haplometrotic queens show distinct behavioral and gene expression 

differences in common garden experiments, indicating that cooperative versus single 
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queen nesting strategies are distinct and genetically linked, rather than purely phenotypic 

plasticity (Clark and Fewell 2014; Helmkampf et al. 2016).  

Explorations of primary polygyny in harvester ants and other polygynous species 

have focused on the fitness components of queen survival and productivity during colony 

establishment and early growth (Mintzer 1987; Rissing and Pollock 1991; Clark and 

Fewell 2014; Overson et al. 2014). Queen cooperation may provide an important 

advantage during this phase of colony life-history, particularly in highly competitive or 

harsh environments (Rissing and Pollock 1991). Field studies of harvester ant colony 

demography show that nest founding and early colony establishment involve high queen 

and colony mortality rates (Wiernasz and Cole 1995; Wiernasz and Cole 2003). 

Consistent with this, multiple lab studies have shown survival benefits for polygynous 

queens and colonies during colony founding (Mintzer 1987; Clark and Fewell 2014), and 

potentially more efficient (Clark and Fewell 2014), or faster worker production (Deslippe 

and Savolainen 1995; Trunzer et al 1998).  

The consequences of cooperation are likely to shift over time, however, as the 

colony progresses from early growth to reproduction at maturity. Reproduction marks an 

important point in queen and colony life-history, both because it most closely captures 

the fitness consequences of social living (McGraw and Caswell 1996), and also because it 

requires a shift from egg production for benefit to colony function (worker production), 

to direct individual fitness gain (new queen and male production). The direct fitness costs 

of sharing reproduction arise after the colony grows enough to become reproductively 

active, which often takes several years (Cole and Wiernasz 2000), and there is a dearth of 
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information on the impact of cooperative strategies on queen reproductive success. 

However, the fitness equation for queens in polygynous colonies likely involves a trade-

off from the potential advantages in colony survival, growth, and resource acquisition, 

offset against the costs of sharing a single colony’s resources to reproduce. 

Layered onto the social costs and benefits of cooperation is the central, but often 

difficult to capture role that ecology plays in the evolution of non-kin cooperation. The 

relationships between reproductive investment, ecological context, and social strategy are 

complex, but a simple starting expectation is that polygyny may grant a larger worker 

force than monogyny, but that the reproductive gains from this strategy are dependent on 

environmental conditions. Under ideal conditions, in which early colony growth and 

survival are relatively high, polygyny could generate some colony-level advantage in 

growth and reproduction, but these might not outweigh the costs of dividing colony 

reproductive resources among queens. The potential benefits of non-kin cooperation for 

ant queens likely manifest, therefore under harsher ecological conditions with high 

mortality risk for single queens, and/or with strong inter-colony competition. (Mesterson-

Gibbons and Dugatkin 1992; Dugatkin 2002; Krams et al. 2010; Riehl 2013).  

California harvester ants live in arid environments where they face a diversity of 

potential ecological pressures, including high inter-nest and inter-specific competition, 

patchy nest site availability, and possible resource constraints all of which could make 

single queen founding difficult (Bourke and Heinze 1994; Macom and Porter 1996; 

Johnson 2002; Wiernasz and Cole 2003). In this study, I evaluate the reproductive 

consequences of queen cooperation at colony maturity, by comparing reproductive (alate) 
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production in single- versus multi-queen field colonies in two populations, one primarily 

comprised of single-queen colonies, and the other predominantly containing colonies 

with primary polygyny. I find no indication that polygyny generates a general 

reproductive advantage. My results instead indicate constraints on reproduction in the 

population dominated by polygyny, consistent with the expectations of the harsh 

environment hypothesis. I further evaluate the relationships between nest distribution, 

food limitation, and reproductive output, as potential indicators that polygynous colonies 

are indeed surviving in harsher environmental conditions. The study provides the first 

direct assessment of the reproductive consequences of primary polygyny as a behavioral 

and ecological strategy, revealing an important counter-balance to the potential 

advantages of queen cooperation during early colony life-history. 

 

Methods 

Colony reproductive output and genetic analysis of polygyny 

 I quantified the reproductive output of P. californicus colonies at two field sites, 

one dominated by primary polgynous (multi-queen: MQ) colonies, and the other by 

single-queen (SQ) colonies. Data were collected across three annual mating seasons, 

spanning from 2012-2014. The primarily SQ field site is located at Lake Henshaw (LH) 

San Diego Cty, CA (33°14’3.96”N, 116°45’48.04”W); the MQ field site is in the town of 

Pine Valley (PV), San Diego Cty, CA (32°49’21.38”N, 116°31’40.24”W), approximately 

40 miles away. These sites make up part of a patchily contiguous range of P. californicus 

populations, ranging from primarily single-queen colonies (Lake Henshaw), through sites 
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intermediate in proportion of SQ and MQ colonies, to primarily polygynous (Pine Valley; 

Johnson 2004; Overson et al. 2016).  In a separate study, microsatellites analyses showed 

that 75% of colonies at Lake Henshaw contain only a single queen, while at Pine Valley 

92% of colonies contain multiple queens (Overson et al. 2016).  

 The annual reproductive flight for P. californicus takes place over a 3-4 week 

period from mid-June to mid-July. I trapped and counted all reproductive males and 

females (alates) flying from a set of colonies across this timespan, bracketing before and 

after flights began and ended to ensure complete sampling (exact dates given in 

supplemental materials). In the pilot year of the study, 2012, a set of 15 colonies were 

randomly selected for trapping; however several colonies did not reproduce. In 2013, 

approximately half of the traps were selectively placed on colonies that reproduced in the 

previous year, and additional traps were placed on randomly selected colonies. In 2014, 

traps were only placed on colonies where alates were seen coming to the surface in the 

days preceding the mating flights, indicating reproductive participation. In 2014, I also 

monitored all P. californicus colonies at both field sites (NPV = 45; NLH = 36) for evidence 

of reproductive activity by checking colony entrances at least twice per week to 

determine whether alates were present. Overall, I captured alates from 10 colonies in 

2012 (NPV = 4 NLH = 6), 24 colonies in 2013 (NPV = 11; NLH = 13), and 27 colonies in 

2014 (NPV = 13 NLH = 14). 

 Alates were captured using suspended tent traps following the basic designs of 

Cole and Wiernasz (2000) and McInnes and Tschinkel (1995). The trap consisted of a 

circular metal base approximately 1 meter in diameter connected to a suspended 
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triangular tent of netting that led into a collection box. A high entrance to the collection 

box allowed alates to fly or crawl up and enter the box, but prevented them from leaving 

(image in supplemental materials).  In 2012, traps were placed over colonies every 

morning by 7AM, and remained in place until 7PM; traps were checked every hour. 

Alates never flew after 1PM, so traps at Pine Valley were placed over nests from 7AM – 

1PM in 2013 and 2014, to avoid vandalism. Traps were left up at all times in Lake 

Henshaw for all three years but no flights ever occurred after 1PM.  

 I removed all alates from collection boxes multiple times each day, and counted 

the number of males and queens. I then retained at least 10 males and 10 queens per day 

for genetic sampling. If the total number of trapped males or queens from a colony 

exceeded 100, I retained 10% of the total. All remaining alates were released undamaged, 

to continue on to mating swarms. Alates collected in 2012 were immediately placed in 

100% ethanol for genotypic analysis; however, this technique does not permit accurate 

assessment of body weight. In 2013 and 2014, therefore, alates were immediately frozen 

after capture, and wet weights were obtained within 24 hours of capture. After weighing, 

samples were stored in 100% ethanol for genotypic analysis. The daily average wet 

weights of 2013 and 2014 samples were multiplied by the total number of males and 

queens released that day to estimate colony daily reproductive investment, which was 

then summed across days to determine total colony reproductive investment.  

 I determined if one or multiple queens were present in a colony by analyzing two 

microsatellite loci (PB6 & PB5) of 24 males from each colony (PCR protocol in Chapter 

5). If only two alleles were present at each locus from the males of a colony, it was 



44 
 

designated as single queen colony. If more than two alleles were present, the colony was 

assigned as polygynous. Because male ants are products of unfertilized eggs, they have 

no paternal genetic information. Thus, genetic analysis of male offspring allows for direct 

reconstruction of the matrilines within a colony, even when queens mate multiply. 

Additional microsatellite analyses of queens and workers from each colony match with 

queen genotypes generated from male offspring and confirm that queens contribute to all 

casts (Chapter 5).  

Colony activity, distribution and mortality surveys 

 Actual colony sizes would require destructive sampling, but I estimated proxies 

for colony activity for trapped colonies in 2013 and 2014, using two methodologies: by 

assays of the number of workers seen above ground during peak activity times, and by 

measuring nest surface area. P. californicus colonies do not always have a mound at their 

colony entrance, but there is always a noticeable area of cleared vegetation around the 

nest. To assess worker above-ground activity, I counted the number of workers entering 

and exiting each colony entrance for five minutes between 9:00AM and 11:00AM and/or 

between 4:00PM to 6:00PM. Activity measures were performed only when the 

temperature was between 24o and 29.5oC. Colony above-ground activity was counted at 

least three times in the week after mating flights concluded, and the mean used for colony 

size ranking.   

 Both the MQ and SQ populations occur in disturbed grassland habitats with 

similar rainfall levels and climate. In 2013 and 2014, I measured ambient temperatures 

and precipitation levels at the two sites across the field season. Ambient temperature was 
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measured using digital thermometers hung in the shade approximately 2 m above the 

ground, and was recorded on the hour from 8AM to 1PM for every day that traps were set 

out. Annual precipitation data at each site was collected from the NOAA National Center 

for Environmental Information database (https://www.ncei.noaa.gov/), station 

USC00043914 for Lake Henshaw data and US1CASD0054 for Pine Valley. 

I also measured colony densities within each site in 2013 and 2014 by walking 2 

m transects and marking all active P. californicus colonies with an Etrex 10 GPS. I 

calculated colony mortality for each population by comparing all colonies that were 

present in 2013 but had disappeared from a 10 m radius around their GPS coordinate in 

2014, by the colonies that persisted from 2013 and 2014. I calculated colony density and 

degree of clustering using the PASSaGE package (Rosenberg and Anderson 2011); 

Ripley’s K and Maximum Absolute Deviations were calculated using the spatstat 

package (Baddeley and Turner 2005), both in R version 3.0.1 (R Core Team 2013).  

Resource supplementation 

After the mating flights concluded in 2015, I supplemented the food of a subset of 

colonies at the Pine Valley site, and assessed the relative impact on reproductive success 

relative to unfed comparison colonies during the next mating season. Supplementation 

was done on September 11th, 12th, October 10th and in 2016 I visited April 16th, May 4th, 

and 13th to provide sufficient time for the colonies to utilize the resources for alate 

investment in the 2016 mating flights. At each visit I provided approximately 158ml of 

mixed consumable resources for a set of 14 colonies that were randomly selected from a 

list of all colonies that had been reproductive in previous years and contained multiple 

https://www.ncei.noaa.gov/
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queens. I visually confirmed that the resources were collected by each target colony. The 

supplemented resources were composed of an equal mix of organic sesame seed, organic 

bulgur wheat, organic Niger seed, and organic golden flax seed. I observed all P. 

californicus colonies in the Pine Valley site for signs of reproductive activity for the 

duration of the 2016 mating flight and placed traps over all reproductive colonies as soon 

as alates were seen. I quantified the alate investment of each reproductive colony in the 

same method described above for the 2013 and 2014 flights. 

 

Results 

Reproductive output 

 The timing of alate investment across the reproductive season was similar for 

2013 and 2014 (when wet mass was measured) with several pulses of alates released 

(Figure 3.1). Of the 18 reproductive colonies trapped one or more times at Pine Valley, 2 

colonies had reproduction tracked across all three years; 4 colonies were tracked for two 

consecutive years, and 12 for a single year. At Lake Henshaw, reproductive output was 

measured for 17 colonies; 3 across all three years, 9 for two consecutive years, and 5 for 

one year.  Unless otherwise noted, data collected from the same colony over multiple 

years were averaged, to treat each colony as a unit of sampling; this was done for 6 of the 

18 Pine Valley colonies and 12 of the 17 Lake Henshaw colonies.  

 I performed microsatellite analyses on males from each trapped colony to confirm 

whether their source colony was monogynous or polygynous. Consistent with prior 

reports (Overson et al. 2016), 14 of the 18 focal colonies at Pine Valley were polygynous, 
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while only 3 of 17 focal colonies at Lake Henshaw were polygynous. Genetic analyses 

were repeated every year and each colony’s allele profile remained constant over time, 

indicating that no colonies switched from single to multi-queen or vice versa. Because 

some colonies of each type occurred within each site, reproductive data were analyzed by 

two-way Type-II ANOVA, for effects of social strategy (SQ vs MQ), and site (LH vs 

PV). Means and standard errors are given in text where appropriate. None of the 

ANOVAs had a significant interaction between study site and social structure. The full 

ANOVA outputs and interaction effects are given in appendix A.  

 Colony location had a significant effect on the probability of reproducing. In 

2012, I chose focal colonies for alate trapping randomly; in that year 6 of 7 focal LH 

colonies, but only 4 of 10 in PV produced alates. Colonies that reproduced in 2012 were 

trapped again in 2013 to allow for cross-year comparisons. The 2013 focal colony data 

were therefore not completely randomized; however, they continued to show a consistent 

difference in reproduction; 13 out of 14 trapped Lake Henshaw colonies and 11 of 20 

trapped Pine Valley colonies reproduced. In 2014, I surveyed all colonies at both sites for 

presence/absence of reproductives; 33 of 36 Lake Henshaw colonies produced alates, 

versus 14 of 45 Pine Valley colonies (Figure 3.2). A log linear model found that the 

proportion of reproductive colonies was significantly different between sites (X2=5.31, 

df=1, p=0.02), with no effect of year (X2=0.46, df=2, p=0.79). 

 From 2012-2014, Colonies at Lake Henshaw produced a mean of 1234.2+/-

207.3(SE) alates, significantly higher than the mean of 638.6+/-119.9 for reproducing 

colonies in Pine Valley (2-way ANOVA: Fsite=5.77, df=1, p=0.02). However, 
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reproductive output did not differ by social strategy (MQ: 812.4+/-126.7, SQ: 1037.0+/-

216.8; 2-way ANOVA: Fstrat =0.49, df=1, p=0.49; Figure 3.3). Reproductive investment, 

calculated from total alate wet mass, showed a similar effect (data for 2013 and 2014 

only; 2012 colonies were excluded because of storage in alcohol). Mean per-colony 

reproductive investment was 16514.8+/-3290.4mg at Lake Henshaw, significantly higher 

than the 7122.1+/-1465.1mg per-colony investment in Pine Valley (2-way ANOVA: 

Fsite=4.59, df=1, P=0.04). Again, however, there was no difference in alate investment 

between single versus multi-queen colonies (MQ: 8769.5+/-1715.7mg, SQ: 14314.8+/-

3287.9mg; 2-way ANOVA Fstrat=0.0001, df=1, p=0.99; Figure 2.4, mean and SE of all 

groups found in table 3.1).  

Sex ratio and alate size 

 Reproductive sex ratio was calculated for reproducing focal colonies in 2013 and 

2014 (data for colonies reproducing in both years averaged across years) a total of 18 PV 

colonies, 16 LH colonies, 17 MQ colonies, and 17 SQ colonies. Data were arcsine 

transformed before analysis. Mean reproductive investment sex ratio did not differ 

significantly between sites. Colonies in PV allocated an average of 65.4+/-5.1% of 

investment into males; in LH male investment represented 52.1+/-6.35% of total (2-way 

ANOVA: Fsite=0.001, df=1, p=0.99). Social strategy did not influence sex ratio either, 

with MQ colonies investing 67.9+/-3.9% into males while SQ colonies invested 49.8+/-

6.1% into males (2-way ANOVA: Fstrat=3.453, df=1, p=0.073; Figure 3.5).  The sex ratio 

was also not significantly different between site or social strategy when mass was ignored 

and the analysis was performed on the raw number of alates released. Mating flights in 
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PV were on average 71.6+/-4.5% male while colonies in LH were on average 61.6+/-

6.2% male (2-way ANOVA: Fsite=0.014, df=1, p=0.91). MQ colonies released on average 

75.3+/-3.9% males and SQ colonies released on average 59.2+/-5.9% males (2-way 

ANOVA: Fstrat=3.164, df=1, p=0.086; Figure 3.3). 

 I calculated the average individual male and queen alate masses from all 2013 and 

2014 flights, and compared them between sites and social structures. The average queen 

alate mass from all colonies was 15.7+/-0.29mg and the average male mass was 9.84+/-

0.27mg. Location had a significant effect on female but not male alate size; queen alates 

from LH colonies were larger than from PV colonies (2-way ANOVA: Fsite=8.23, df=1, 

p=0.0076), but there was no significant effect on male size (Fsite=0.839, df=1, p=0.075). 

Colony social strategy had no effect on the size of male or queen reproductives (XMales: 

Fstrat =0.621, df=1, p=0.44; XQueens: Fstrat=1.433, df=1, p=0.241; Figure 3.6).  

Colony activity, temperature and rainfall 

 For each focal colony in 2013 and 2014, I performed above ground worker 

activity assays as a proxy of colony activity and size. There was no significant site effect 

(2-way ANOVA: Fsite=3.44, df=1, p=0.073; Figure 3.7), but activity levels were generally 

higher in MQ than SQ colonies (2-way ANOVA: Fstrat=7.613, df=1, p=0.01). I used a 

log-log regression between reproductive investment and above ground activity to see if a 

linear relationship exists between these variables. There was a significant regression 

when all of the colonies in this study were included (F=5.881, n=37, r2=0.1194, p=0.021), 

and when only single-queen colonies were included (F=5.961, n=17, r2=.2367, p=0.028). 

However, there was an insignificant linear relationship between worker activity and 
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reproductive investment when only multi-queen colonies were included in the regression 

(F=3.657, n=20, r2=0.1227, p=0.072). 

 I also measured above-ground colony nest areas, within the circle cleared of 

vegetation around each colony. This did not vary significantly between site (2-way 

ANOVA: F=0.455, df=1, p=0.51) or social structure (2-way ANOVA: F=0.0049, df=1, 

p=0.95); however, there may not be reliable above ground architecture that correlates 

with colony size for this species.  

Average hourly temperatures during the periods in which flights occurred were 

similar between the two sites. Average morning temperatures (recorded at 8 am and 12 

pm) did not differ between sites in either 2013 or 2014, at 8:00AM or 12:00PM (2013: 

8:00AM t=0.351, df=38, p=0.73; 12:00PM t=1.21, df=41, p=0.23; 2014: 8:00AM t=1.45, 

df=38, p=0.16; 12:00PM t=1.35, df=38, p=0.19, mean temperatures and SE in table 3.2). 

Mann-Whitney-Wilcoxon tests show that the monthly rainfall was not significantly 

different between sites from 2011-2012 (W=57, p=0.60), 2012-2013(W=68, p=0.84), or 

2013-2014 (W=68.5, p=0.86; table 3.2).  

Colony density, mortality and annual replacement 

I counted a total of 47 colonies in PV in 2013 and 55 in 2014.  Between the two 

years, 7 colonies went absent, giving a one-year mortality rate of 14.9%. The number of 

colonies in LH changed from 27 in 2013 to 34 in 2014. Only 1 of the 2013 colonies died 

between 2013 and 2014, a mortality rate of 3.7%; mortality rates did not significantly 

differ between sites (X2=.124, df=1, p=0.12). The colony turnover rate at Pine Valley 
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from 2013-2014 was 27.27% while the turnover rate was 18.75% in Lake Henshaw, 

because the number of colonies increased in both sites from 2013-2014 (appendix B). 

The 2014 measures of colony number and nearest neighbor distance indicated that 

the Pine Valley site had higher density than did Lake Henshaw. Pine Valley had 55 

colonies distributed unevenly across 36,995m2 giving a density of 1488 colonies per 

square km. The average nearest neighbor distance between colonies was 16.00+/-1.62m. 

Lake Henshaw had 34 colonies over 40,635m2 giving a density of 837 colonies per 

square km and an average nearest neighbor distance of 19.75+/-1.98m (Figure 3.8). Using 

a Ripley’s (1976) K-function envelope, colony distributions at Pine Valley, but not Lake 

Henshaw, were above the envelope of random distribution at most distances, indicating 

that colonies are clustered (Figure 2.9). A Maximum Absolute Deviation test (Myllymäki 

et al. 2015) confirmed that Pine Valley colonies were significantly clustered 

(MAD=4737.4, sim=100, p=0.01), while Lake Henshaw colonies were not significantly 

different from random distribution (MAD=1443.2, sim=100, p=0.23). In addition, 

colonies in Pine Valley that did not reproduce had a significantly smaller nearest 

neighbor distance than colonies in Pine Valley that did reproduce (t=2.32, df=30, 

p=0.0273). 

Resource supplementation effects on reproduction 

 I resource supplemented 14 colonies in Pine Valley. Of these, 6 (43%) 

survived and reproduced; 4 (29%) survived and did not reproduce; and 4 (29%) died at 

some point between the beginning of the supplementation regime and June of 2016. The 

additional 42 P. californicus colonies that were located in the Pine Valley site were not 
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supplemented during this experiment. Four (10%) of these colonies survived and 

reproduced; 19 (45%) survived but did not reproduce; and 19 (45%) died over the 

experimental period. The proportion of colonies that reproduced, survived, and died was 

significantly different between supplemented and non-supplemented colonies (X2=7.014, 

df=2, p=0.030).  

I also compared the mean reproductive investment of supplemented Pine Valley 

colonies to my 2013-14 data on reproductive investment at the PV and LH sites. 

Supplemented 2016 colonies had a mean reproductive investment of 16543.9+/-3270mg, 

which was significantly more than the 5869+/-2693.3mg average investment of non-

supplemented 2016 PV colonies (t=2.52, df=9, Benjamini-Hochberg adjusted p=0.045), 

and which matched the reproductive investment of Lake Henshaw colonies in 2013 and 

2014 (XLH=16514.8+/-3290.4mg; t=0.006, df=15, Benjamini-Hochberg adjusted p=1). 

Although supplemented Pine Valley colonies had significantly more reproductive 

investment than non-supplemented Pine Valley colonies from 2013, 2014, and 2016 

(XPVsupplement=16543.9+/-3270mg, XPvnosupplement=6895.3+/-1334.7mg; t=2.732, df=7, 

Benjamini-Hochberg adjusted p=0.045, Figure 3.10). 

 

Discussion 

I captured and quantified the reproductive output of Pogonomyrmex californicus 

colonies in two areas, one dominated by monogynous colonies and the other dominated 

by colonies that practice primary polygyny, in order to determine if ecological constraints 

or benefits generated through cooperation are responsible for the maintenance of primary 
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polygyny in some populations. One general hypothesis for queen cooperation is that it 

could provide a fitness advantage by accelerating colony growth, for example by 

producing a larger worker force to dominate the foraging landscape (Trunzer et al. 1998; 

Offenberg et al. 2012); the result would be to produce larger colonies with higher 

reproductive potential for cooperating queens. This advantage would theoretically extend 

across habitat types, as long as resources were available to support larger colony sizes. 

However, although multi-queen colonies showed higher foraging activity, the data did 

not indicate a clear reproductive advantage for polygynous colonies.   

My results instead provide evidence consistent with the hypothesis that queen 

cooperation may be a response to ecological conditions that depress the success rate of 

colonies started by a single queen. These conditions include resource limitation and/or 

denser and thus more competitive populations, in which colonies are regularly subject to 

territorial conflict and/or brood raiding (Adams and Tschinkel 1995; Cahan 2001; Brandl 

et al. 2004; Hölldobler et al. 2011; Shaffer et al. 2016). The strong site-based differences 

in colony reproduction found consistently across all years of this study suggest that 

ecological conditions at Pine Valley generate stronger constraints on colony 

reproduction, and that colony density plays some role in this effect. Mutualistic, non-kin 

cooperation could potentially arise under either the accelerated growth advantage or the 

ecological constraint hypotheses. However, the ecological constraint hypothesis is most 

consistent with my observations of P. californicus because I found strong site differences 

in reproductive potential that was mediated by resource supplementation.  
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Evidence for polygyny as a response to adverse environmental conditions was 

most evident in the strong site effects on reproduction, reflected both in the low 

probability of colonies reproducing per year, and in the low alate investment of 

reproductive colonies in the polygynous site. The absence of consistent social strategy 

effects suggest that polygyny does not carry with it either an internal (colony limited) or 

intrinsic (queen physiology limited) reduction in reproductive output. Site mismatched 

colonies tended to reflect the investment level of other colonies in their location; 

polygynous colonies in Lake Henshaw had relatively high reproductive investment, while 

the reproductive investment of single queen colonies in Pine Valley were low relative to 

single-queen colonies of the other site. However, polygynous colonies in these areas 

contain an average of three queens (Overson 2016, unpublished data), so the per-queen 

fecundity of cooperative queens is substantially lower than that of monogynous queens 

across sites (supplementary table 3).  

The influence of environmental conditions on reproductive potential was further 

explored with a resource supplementation experiment on Pine Valley colonies. Resource 

supplemented colonies were able to attain high reproductive investment levels 

comparable to those seen in Lake Henshaw colonies. This indicates that polygynous 

colonies in Pine Valley do not have inherently low reproductive potential, and the low 

reproductive activity I observed from Pine Valley colonies over the years of this study is 

likely due to environmental constraints. Precisely which environmental conditions limit 

the reproductive potential of Pine Valley colonies remains unclear, but low resource 

availability and density driven competition are likely important factors. 
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 The lower proportion of colonies reproducing across years at the Pine Valley 

(primarily polygynous) site is also consistent with resource limitation, which can be 

further amplified by density driven intraspecific competition. In many ant species, mature 

colonies are flexible in their decision to participate in reproductive flights. For example, 

in Pogonomyrmex occidentalis (a monogynous species), skipping reproduction is 

correlated with limited resource availability in that year (Cole and Wiernasz 2000). The 

closer two colonies are to each other the more likely they are to compete over resources 

(Adams and Tschinkel 1995a; Gordon & Wagner 1997). Consistent with this, those 

colonies in Pine Valley that skipped reproduction were significantly closer to another P. 

californicus colony than colonies that did not skip reproduction, indicating that higher 

intra-colony competition reduces a colony’s ability to reproduce. However, Colony age 

may also be responsible for this result, as harvester ant colonies generally don’t 

reproduce until they reach a critical size (Cole and Wiernasz 2000; Smith and Tschinkel 

2006), which may take several years. P. californicus colonies have occupied Pine Valley 

since at least 1997 (Johnson 2004), ample time for a matured population to develop. 

However, high colony turnover rate at Pine Valley may reduce the average colony age in 

this site and partially explain their low reproductive participation. 

 There is also evidence of ecological constraint within the alates themselves. 

Queens from Pine Valley were significantly lighter than queens from Lake Henshaw, but 

there is no significant difference between queen mass when the analysis performed by 

colony social structure. Queen mass is determined by resource provisioning by workers 

during larval development (Ode and Rissing 2002), so the reduced queen mass from Pine 
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Valley colonies suggests that they are resource limited. The lower average male mass 

from Pine Valley colonies, while not significant, also suggests resource limitation in that 

area. Although, smaller queens have been observed in other polygynous systems where 

resource limitation does not appear to be a factor (McInnes and Tschinkel 1995; Rüppell 

et al. 2001). Lower queen mass does not necessarily decrease the odds of success in the 

context of polygyny because queens that start colonies cooperatively or join established 

colonies are able to share the metabolic demands of colony founding, which reduces the 

amount of nutritional reserves a queen needs before leaving her home nest (Keller and 

Ross 1993; Rueppell and Heinze 1999). However, the larger queens produced by 

polygynous colonies in Lake Henshaw suggests that a polygynous colony will invest in 

larger queens if the resources are available.   

 Multiple lab studies have shown survival benefits for polygynous queens and 

colonies during colony founding (Mintzer 1987; Clark and Fewell 2014), as well as 

indicators of competitive advantage during early colony growth, including more efficient 

worker production (Clark and Fewell 2014), and for some species faster worker 

production (Deslippe and Savolainen 1995; Trunzer et al 1998). Several studies also 

suggest that cooperation is more likely to evolve in an adverse environment where 

independent colony founding success is particularly difficult (Mesterson-Gibbons and 

Dugatkin 1992; Dugatkin 2002; Krams et al. 2010; Riehl 2013). Like many ground-

nesting ants in arid environments, harvester ant colonies are aggressively territorial 

(Hölldobler 1976). Young colonies face competition, predation, and brood raiding from 

neighboring colonies, and from other ant species; the intensity of these factors is largely 
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dependent on the density of colonies in the area (Adams and Tschinkel 1995a; Adams & 

Tschinkel 1995b).  

The rarity of primary polygyny suggests that advantages during colony founding 

do not offset the costs of later reproduction under most environmental conditions. It is 

notable that these colonies are polygynous at maturity, instead of practicing pleometrosis 

only, in which queens cooperate until workers eclose, at which point cooperation breaks 

down and queens engage in battles until there is one left to inherit the colony (Bernasconi 

and Strassmann 1999). However, under continuous conditions of strong competition for 

resources and/or territory, the survival advantages of polygyny may extend to colony 

maturity and favor the continuation of queen cooperation. Scant ecological research has 

been done in the handful of other species in which primary polygyny is known, but there 

is anecdotal evidence that polygyny in other species is also found in relatively dense 

populations (Rissing et al. 1986; Bennett 1987; Trunzer et al. 1998; but see Cahan 2001).  

 Primary polygyny may additionally reflect a general shift in life history strategy 

towards more conservative reproduction in order to better survive a difficult or 

unpredictable environment. This strategy would damage queen fecundity in the short 

term, but could prove beneficial across colony life history, if it extends the colony 

lifespan to the point that additional mating flights recoup the short term cost (Schaffer 

1974). Similar trade-offs between reproduction and survival have been observed in 

several species (Snell and King 1977; Partridge and Farquhar 1981; Clutton-Brock et al. 

1982; Nur 1984), and the effect can be driven by environmental conditions (Callow 1973; 

Giesel 1976). Polygynous colonies had significantly higher worker activity counts than 
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single queen colonies regardless of site, indicating a larger or more active workforce 

which requires a resource investment at the potential cost of reproductive output. The 

worker activity assays I performed measured the vigorousness of foragers, the size of the 

foraging workforce, or a combination of these two traits. Either way the assay provides a 

measure of energy expended on foraging by each colony. The positive linear relationship 

between worker activity assays and reproductive investment further suggests that this 

measure reflects colony size and reproductive potential. 

It is possible that Pine Valley is resource limited to the point that colonies located 

there have designated a higher proportion of their workforce to foraging, however if this 

were true we would expect monogynous colonies in this area to also display high 

foraging activity, which was not the case. The significantly higher activity counts by 

polygynous colonies across sites was driven by monogynous colonies in Pine Valley 

having relatively low worker activity and polygynous colonies in Lake Henshaw having 

relatively high worker activity. This suggests that polygynous colonies may preferentially 

invest resources into foraging efforts, rather than diverting them to reproductive 

investment in a given year.  

My conclusions on the potential conservatism of polygynous colonies are limited 

because forager dynamics are notoriously complex and variable (Tschinkel 1999; Gordon 

et al. 2011), so I took several precautions to improve the reliability of the worker activity 

assay. The proportion of the total workforce that leave the nest for foraging or other 

outside activity is influenced by several factors including season (Kwapich and Tschinkel 

2013) and reproductive investment (Smith and Tschinkel 2006). Temperate ant species 
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tend to reduce the proportion of foragers in their workforce in the winter and increase the 

proportion of foragers in the summer (Kwapich and Tschinkel 2013), which can make 

forager counts unreliable as a proxy for colony size, especially if counts are done at 

different times of the year. All of the activity counts were completed within a two week 

window in late summer which should minimize seasonal differences in the proportion of 

foragers between colonies. Reproductive investment can also impact the size of the 

workforce because colony resources are delegated to the development of alate brood 

instead of worker brood in preparation for a reproductive flight (Ode and Rissing 2002). 

Activity counts were only performed on colonies that participated in a mating flight that 

season, also reducing the difference between workforce characteristics of analyzed 

colonies.  

 Primary polygyny in social insects is a poorly understood social structure with the 

potential to become a key model for the study of cooperation between non-kin, because 

queens make the decision at colony founding to share effort and consequent resources 

with unrelated queens and the impact of this decision varies across the life history of the 

colony they form together. The data presented here offer a rare empirical look into the 

potential consequences of polygyny on queen reproduction, and thus fitness. The 

differences in probability of reproducing, reproductive investment, and alate size are all 

consistent with the suggestion that polygyny appears as a solution to environmental 

conditions that severely constrain colony reproduction. The harsh environment was 

further demonstrated when a resource supplementation regime equalized the reproductive 

investment levels of colonies in the polygynous population with those of colonies in the 
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monogynous population. Colony density appears to play roles in the evolution of 

cooperation in this system, potentially by increasing the frequency of intraspecific 

conflict and selects for multiple queen colonies in order to augment worker production; 

although resource availability and other ecological pressures likely also drive selection 

for primary polygyny in this and other systems. Polygynous ant colonies are 

simultaneously exemplars of simple non-kin cooperation, while also being long-lived 

individuals with complex life history strategies. As indicated by this study, dissecting the 

relationships between cooperation, survival, and reproduction requires the dissection of 

the balancing fitness costs across the entire life history of the colony. 
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Figure 3.1: Average of daily alate investment (in milligrams) from all trapped colonies 

across the mating season, from mid-June through early July in 2013 & 2014. Black solid 

line shows daily average investment of colonies in Pine Valley (PV), the mostly 

polygynous site; Grey broken line shows daily average investment of colonies in Lake 

Henshaw (LH), the mostly monogynous site. In 2013 data were collected from 11 

colonies in PV and 13 colonies in LH and in 2014 data were collected from 13 colonies 

in PV and 14 colonies in LH.  
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Figure 3.2: Participation in reproductive flight by site, presented as the proportion of total 

surveyed colonies that produced 62eproductive. In 2012 and 2013, reproductive 

participation was assessed only for focal colonies; in 2014, all colonies present at each 

site were assessed for reproductive activity, determined by whether a colony had alates 

present at the nest surface at any time during the mating season. A log linear model 

shows that the proportion of reproductive colonies is significantly different between sites 

(X2=5.314, df=1, p=0.0212) and there was no effect of year (X2=0.463, df=2, p=0.793). 
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Figure 3.3: Reproductive output in number of alates captured from colonies in 2012, 

2013, and 2014 mating flights, with replicated colonies averaged. A total of 18 PV and 17 

LH colonies were trapped at least one year and included in the analysis. Three of the LH 

colonies had multiple queens and 4 of the PV colonies contained a single queen making 

17 MQ colonies and 18 SQ colonies. The number of queens released is represented by the 

black bars, and the number of males by the grey bars. Data compare differences in output 

between sites (PV vs LH), and between social strategies (MQ vs SQ). Colonies in the 

Lake Henshaw area released significantly more alates than colonies in the Pine Valley 

area (A: Fsite=5.77, df=1, p=0.022); however, there was no difference in alate output by 

colony social strategy (B: Fstrat =0.485, df=1, p=0.49). There was no significant difference 

between the sex ratio output by area (Fsite=0.014, df=1, p=0.91) or by social strategy 

(Fstrat=3.16, df=1, p=0.089).  
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Figure 3.4: Reproductive investment in total wet weight (mg) of alates released in the 

2013 & 2014 mating flights, with replicated colonies averaged. A total of 18 PV and 16 

LH colonies were trapped at least one year and included in the analysis. Three of the LH 

colonies had multiple queens and 4 of the PV colonies contained a single queen. Lake 

Henshaw colonies had significantly more alate investment than Pine Valley colonies (A: 

Fsite=4.59, df=1, P=0.041); there was no difference in alate investment by colony 

structure (B: Fstrat=0.0001, df=1, p=0.99). 

 

 

 

 

 

 



65 
 

Figure 3.5: Proportional reproductive investment in males from 2013 & 2014 mating 

flights. Sex ratio investment was calculated using average male and queen mass per 

colony per day. PV and LH colonies had a similar sex ratio (A: PV male bias 65.4+/-

5.1%, LH male bias 52.1+/-6.35%; Fsite=0.001, df=1, p=0.987); as did MQ and SQ 

colonies (B: MQ male bias 67.9+/-3.9%, SQ male bias 49.8+/-6.1%; Fstrat=3.453, df=1, 

p=0.073).  
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Figure 3.6: Average queen and male alate mass from the 2013 and 2014 mating flights, 

with data from replicated colonies combined. Plot 1 shows that queens from Lake 

Henshaw colonies were significantly heavier than queens from Pine Valley colonies (A: 

PVqueenmass=14.72+/-0.38mg, LHqueenmass=16.86+/-0.20mg; Fsite=8.23, df=1, p=0.0076) but 

there was no difference in queen mass between MQ and SQ colonies (B: 

MQqueenmass=14.78+/-0.44mg, SQqueenmass=16.55+/-0.24mg; Fqnum=1.433, df=1, p=0.241). 

Plot 2 shows that males were not significantly different in mass by either location (A: 

PVmalemass=9.40+/-0.32mg; LHmalemass=10.38+/-0.44mg; Fsite=0.839, df=1, p=0.0748), or 

by social structure (B: MQmalemass=9.35+/-0.33mg, SQmalemass=10.30+/-0.41mg; Fqnum 

=0.621, df=1, p=0.437). 
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Figure 3.7: Colony size estimates by worker activity counts from all reproductive 

colonies in 2013 and 2014, with replicated colonies averaged. There was no significant 

difference in worker activity between Pine Valley and Lake Henshaw colonies (A: 

PVactivity=598.2+/-101.1, LHactivity=674.3+/-146.8; Fsite=3.44, df=1, p=0.073), but MQ 

colonies had significantly higher worker activity counts than SQ colonies (B: 

MQactivity=819.0+/-156.6, SQactivity=457.5+/-52.2; Fqnum=7.613, df=1, p=0.0098).  
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Figure 3.8: Reproductive survey of all P.calfornicus colonies at Pine Valley and Lake 

Henshaw sites in 2014. Pine Valley contained 44 colonies over .037km2 and Lake 

Henshaw contained 34 colonies over .041km2. Circles represent colonies where alates 

were seen at the colony entrance during the mating season, indicating that these colonies 

reproduced. Triangles represent colonies where no alates were seen for the extent of the 

reproductive season, suggesting they did not reproduce that year. Pine Valley colonies are 

significantly clustered (MAD=4737.4, sim=100, p=0.01). Lake Henshaw colonies are not 

significantly different from a random distribution (MAD=1443.2, sim=100, p=0.23). 
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Figure 3.9: Ripley’s K envelopes for Pine Valley and Lake Henshaw. The dotted line 

represents complete spatial randomness of colony distribution and they grey area, 

contained in Khi(r) and Klo(r), is the confidence envelope. The solid line represents the 

observed spatial pattern of colonies at each site. The solid line above the confidence 

envelope in Pine Valley indicates significant clustering at this site while the solid line 

within the confidence envelope at Lake Henshaw indicates that these colonies are 

randomly distributed.  
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Figure 3.10: The average alate investment of Lake Henshaw colonies, unsupplemented 

Pine Valley colonies, and resource supplemented Pine Valley colonies. Supplemented 

Pine Valley colonies had significantly more reproductive investment than non-

supplemented Pine Valley colonies from 2013, 2014, and 2016 (XPvsupplement=16543.9+/-

3270mg, XPvnosupplement=6895.3+/-1334.7mg; t=2.732, df=7, Benjamini-Hochberg 

adjusted p=0.045). There was no difference in the reproductive investment between Lake 

Henshaw colonies and supplemented Pine Valley colonies (XLH=16514.8+/-3290.4mg; 

t=0.006, df=15, Benjamini-Hochberg adjusted p=1). 
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Table 3.1: Mean alate output from 2012, 2013, and 2014 in number of alates released, 

mean reproductive investment, sex ratios, alate mass from 2013 and 2014 calculated 

using daily average alate mass, as well as worker activity and above ground colony area 

from 2013 and 2014 surveys. Colonies replicated over years were averaged. Bold p 

values indicate significance. 

 Pine 

Valley 

Lake 

Henshaw 

P MQ 

colonies 

SQ 

colonies 

P 

Number 

alates 

released 

638.6+/-

119.9 

alates 

n=18 

1234.2+/-

207.3 

alates 

n=17 

0.022 812.4+/-

126.7 alates 

n=17 

1037.0+/-

216.8 

alates 

n=18 

0.491 

Reproductive 

investment  

7122.1+/-

1465.1mg  

n=18 

16514.8+/-

3290.4mg 

n=16 

0.041 8769.5+/-

1715.7mg 

n=17 

14314.8+/-

3287.9mg 

n=17 

0.994 

Male 

investment 

sex ratio 

64.0+/-

4.7%   

n=18 

52.0+/-

6.3%   

n=16 

0.987 67.9+/-

3.9%  

n=17 

49.7+/-

6.1%  

n=17 

0.073 

Queen 

investment 

sex ratio 

36.1+/-

4.7% n=18 

47.9+/-

6.3% n=16 

0.987 32.1+/-

3.9% n=17 

50.2+/-

6.1% n=17 

0.073 

Male output 

sex ratio 

71.6+/-

4.5% n=18 

61.6+/-

6.2% n=16 

0.907 75.3+/-

3.9% n=17 

59.2+/-

5.9% n=17 

0.089 

Queen output 

sex ratio 

28.4+/-

4.5% n=18 

38.4+/-

6.2% n=16 

0.907 24.6+/3.8% 

n=17 

40.8+/-

5.9% n=17 

0.089 

Queen mass 14.72+/-

0.38mg  

n=18 

16.86+/-

0.20mg  

n=16 

0.0076 14.78+/-

0.44mg 

n=17 

16.55+/-

0.41mg  

n=17 

0.241 
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Male mass 9.40+/-

0.32mg   

n=18 

10.38+/-

0.44mg  

n=16 

0.367 9.35+/-

0.33mg  

n=17 

10.30+/-

0.41mg  

n=17 

0.437 

Worker 

activity 

598.2+/-

101.1 

n=18 

674.3+/-

146.8 n=15 

0.073 819.0+/-

156.6 n=16 

457.5+/-

52.2 n=17 

0.0098 

Above 

ground 

colony area 

9228.9+/-

2156.5cm2 

n=14 

12861.8+/-

3425.4cm2 

n=14 

0.506 9847.3+/-

2054.6cm2 

n=14 

12243.4+/-

3528.4cm2 

n=14 

0.945 
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Table 3.2: A) Average daily temperature by site at 8:00AM and 12:00PM during the 

reproductive flights of 2013 and 2014. B) Dates that alate traps were deployed in 2011-

2014 and total annual rainfall at each site. 

A Pine Valley Lake Henshaw 

2013     

8:00AM 

21.15+/-0.47°C 20.83+/-0.77°C 

2013    

12:00PM 

30.79+/-0.80°C 32.39+/-1.1°C 

2014     

8:00AM 

20.28+/-0.70°C 18.89+/-0.66°C 

2014    

12:00PM 

29.0+/-0.76°C 30.44+/-0.75°C 

B Dates of alate 

trapping 

Pine Valley rainfall Lake Henshaw rainfall 

2011-2012 6/29 to 7/16 16.53 inches 19.96 inches 

2012-2013 6/11 to 7/11 10.74 inches 12.77 inches 

2013-2014 6/16 to 7/4 14.00 inches 12.74 inches 
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CHAPTER 4 

REPRODUCTIVE STRATEGIES OF POLYGYNOUS AND MONOGYNOUS 

COLONIES IN A SHARED HABITAT 

Introduction 

 The evolution of intraspecific cooperation is often discussed in the context of 

kinship, because the indirect benefits generated by relatedness can offset the costs of 

altruism (Hamilton 1964; Frank 2013). Most social groups have high relatedness, fitting 

the theoretical expectations of kin-selection, but many cooperative systems have lower 

relatedness than expected or are composed of completely unrelated individuals 

(Hölldobler and Carlin 1985; Gadau et al. 1998; Hacker et al. 2005; Cahan and Helms 

2012; Clutton-Brock et al. 2000; Rutte and Taborsky 2008; Hölldobler et al. 2011). 

Individuals gain no indirect fitness benefits when cooperating with non-kin, but they 

suffer direct fitness costs by contributing to group functions (Mesterton-Gibbons and 

Dugatkin 1992; Dugatkin 2002; Avilés 2002; West et al. 2007; Clutton-Brock 2009). 

Thus, in order for cooperation to evolve and persist between non-kin, there must be direct 

individual and/or shared group benefits generated via cooperation. Forces that potentially 

generate these benefits, such as reciprocity, mutualism, and group selection, have 

received considerable attention in theoretical models (Lehmann and Keller 2006; Nowak 

2006; Okasha 2006; Connor 2010; Marshall 2011; Queller 2011; Van Cleve and Akcay 

2014; Okasha 2016). Direct evaluation of these effects has proven difficult because most 

species where non-kin cooperation has been explored are long lived and reproduce 
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slowly, making the quantification of fitness a challenge (Seyfarth and Cheney 1988; 

Moller et al. 2001; Silk 2005). 

 An assessment of the relative fitness effects of non-kin cooperation requires 

accurate measurement of the survival and reproductive outcomes for individuals that 

cooperate, as compared to individuals outside of that social context. Primary polygyny by 

ant queens provides a unique opportunity to test the direct fitness outcomes of 

cooperation within a species and in a common environment, because both cooperative 

and solitary strategies are often present. In primary polygyny, several unrelated queens 

cohabitate and cooperate for the lifespan of their colony. Queens randomly associate into 

small groups after their mating flight and work together to build a nest and raise worker 

brood, forming what is essentially a multi-family eusocial group (Mintzer 1987; Trunzer 

et al. 1998; Heinz et al. 2001; Helms and Helms Cahan 2012; Helanterä et al. 2013).  

The reproductive consequences of social strategies, such as polygyny, are heavily 

influenced by ecological factors, including weather, levels of inter-and intraspecific 

competition, and resource availability (Gordon and Wagner 1997; Gadau et al. 1998; Ode 

and Rissing 2002). Thus, comparisons of the fitness outcomes of single queen nesting 

versus multi-queen cooperation should be performed in a shared environment to control 

for ecological variation. Conditions allowing direct comparisons of reproductive strategy 

in a single species are generally rare, but primarily polygyny allows an almost unique 

opportunity to do so. Several ant species practice primary polygyny in discrete regions of 

their species range, but no species has been found that exclusively performs this behavior 

(Helms and Helms Cahan 2012; Overson et al. 2016). There are always areas of the 
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species range that are dominated by solitary queens, which is likely the ancestral state 

(Overson 2016). There can also exist transitional zones between multi-queen and single-

queen populations where both colony types share a common environment.  

I present one of few known cases in which both social and solitary strategies exist 

within a common natural environment, allowing direct empirical tests of the 

consequences at reproduction of choosing a social over a solitary strategy. The California 

harvester ant, Pogonomyrmex californicus, occupies contiguous but patchy populations in 

Southern California that vary in the proportion of colonies that practice primary polygyny 

(Overson et al. 2016, Chapter 3). Previous tests of genetic diversity in mature polygynous 

P. californicus field colonies show that nest-mate queens are unrelated (Overson et al. 

2016), consistent with findings for other taxa that display primary polygyny (Heinz et al. 

2001; DeHeer and Herbers 2004; Cahan and Helms 2012). In addition, the non-

aggressive cooperation of polygynous ant queens has been observed to persist for years in 

lab colonies (Mintzer 1987; Kolmer and Heinze 2000; Holbrook et al. 2011; Overson et 

al. 2014).  

I have discovered a previously unstudied site that contains a fairly even mix of 

single and multi-queen P. californicus colonies. Quantification of the reproductive 

characteristics of colonies in this shared environment could elucidate the costs and 

benefits of primary polygyny in natural field conditions, a crucial step to determine the 

mechanisms by which this example of non-kin cooperation has evolved. Recent work on 

two populations of P. californicus, one in an area dominated by primary polygyny and 

one in an area dominated by solitary queens, found that resource limited, competitive 
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conditions at the polygynous site constrain reproductive potential and likely drive queen 

cooperation (Chapter 3). That study was performed on two separate field sites 

(approximately 40 miles apart), and so the direct effects of primary polygyny on colony 

and queen fitness remain unclear.  

It is important to note that the costs and benefits of cooperation shift over the 

lifespan of the colony, from the extremely tenuous colony founding stage (Wiernasz and 

Cole 2003), through early colony growth, and eventually to colony maturity and 

reproduction. Several studies have demonstrated benefits from queen cooperation at 

colony initiation and early growth, when the colony can gain a competitive advantage 

through faster or more efficient worker production (Deslippe and Savolainen 1995; 

Trunzer et al 1998; Clark and Fewell 2014). Although most research on primary 

polygyny has focused on early colony growth, worker production benefits may extend 

past early colony life. For example, higher genetic diversity in polygynous colonies may 

increase the workforce’s task efficiency and pathogen resistance (Shykoff and Schmid-

Hempel 1991; Cole and Wiernasz 1999; Oldroyd and Fewell 2007; Wiernasz et al. 2008). 

Queens of P. californicus mate multiply (Overson et al. 2016), as do many polygynous 

species (Kellner et al. 2007; Qian et al. 2012), suggesting that increased variation in the 

worker force is beneficial; however, the increased benefits of polygyny beyond those 

already given by polyandry are unlikely to provide a complete answer to the question of 

why queens remain polygynous past colony founding. 

Despite the multiple studies suggesting a benefit early in the colony life history, 

primary polygyny is rare. Cooperative queens likely suffer intense individual costs at 
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colony maturity, when resources are shared by nest-mate queens for personal 

reproductive investment. These costs will only arise after the colony grows enough to 

become reproductively active, which often takes several years (Cole and Wiernasz 2000), 

and we lack empirical studies that directly assess how cooperative benefits balance with 

reproductive costs to generate a fitness outcome for polygynous queens. If the benefits of 

queen cooperation to colony efficiency and growth are ample, polygynous colonies may 

be able to dominate their territories to the extent that all queens in the colony can increase 

their reproductive investment to the point that the per-queen fitness is higher than that of 

a solitary queen. However, the benefits of polygyny may be skewed towards early colony 

life when the colony is vulnerable to attack and exploitation, a tactic that helps the colony 

get established but carries future costs at the reproductive stage. In this case, the per-

queen reproductive potential would be lower for multi-queen colonies than single-queen 

colonies due to resource sharing between nest-mate queens. The outcome of competition 

between single and multi-queen phenotypes then depends on the strength of selection at 

the different time points of colony development. For example, if no single queen 

foundress in a monogynous colony will survive to reproduction, the potential delayed 

benefit of monogyny does not come into play and the population should become fixed for 

pleometrosis and polygyny.  

An accurate measurement of cooperative and non-cooperative queen fitness in a 

common environment is crucial step towards understanding the evolutionary pathway of 

cooperation in this and other systems (Oli 2003; Van Horn et al. 2004; West et al. 2007). 

In this study, I examine how primary polygyny effects queen fecundity by capturing and 
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quantifying the reproductive output of multi and single-queen colonies over two annual 

mating flights. I use microsatellite markers to estimate queen number and assess the 

relationship between social structure and queen fitness. I test the hypothesis that in a 

common environment, primary polygyny may provide benefits that allow higher colony-

level reproductive output than single-queen colonies, but may not reach levels that allow 

individual queen reproduction to be the primary driver of cooperation. To do so, I 

compare mature field polygynous and monogynous field colonies interspersed within the 

same field site, to control for ecological variables, including as colony density and 

resource availability, that have been found in my previous work to influence colony 

reproductive output. This study represents the first within-site comparison of the fitness 

outcomes for colonies that practice primary polygyny versus monogynous colonies.  

Methods 

Field site and mating flights 

 To answer the question of how social strategy contributes to reproductive 

outcomes, I measured the reproductive output for polygynous and singe-queen colonies 

of P. californicus colonies at a site with a mix of both social strategies in Cuyamaca 

Rancho State Park, Southern California. The field site, off West Mesa Trail, San Diego 

Cty, CA (32°56’19.27”N, 116°33’46.00”W), lies between areas dominated by the two 

colony founding types, with populations containing primarily single queen colonies 

approximately 46km north of a site composed of primarily polygynous colonies (Overson 
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et al. 2016; Chapter 3). This makes the population extremely useful for comparative 

analyses.  

Colonies of this species reproduce by releasing alates (winged and reproductively 

capable males and females) into mating leks. Alate release occurs daily across an 

approximately 3-4 week period from mid-June to mid-July. To determine colony social 

strategy and associated reproductive output, I first identified and GPS tagged all colonies 

in the site. After population surveys, I monitored colonies daily before the mating flights 

began to determine whether there were alates visible at the entrance, an indicator that the 

colony will reproduce.  I then trapped, counted, and weighed male and female alates 

released from colonies for the extent of the mating flight to measure reproductive 

investment. I used microsatellite analyses to determine social strategy, and further to 

assess number of queens present in polygynous colonies (Chapter 3).  

Quantification of reproductive output and investment  

Data were collected over two annual mating seasons in the summers of 2015 and 

2016. In both years, all colonies with alates coming to the surface in days preceding the 

mating flights were trapped to measure reproductive output. Traps were placed daily on 

colonies starting before mating flights began, and trapping continued until all flights were 

finished. Alate sampling occurred from June 20th-July 9th in 2015, and June 14th to July 

4th in 2016. I captured the reproductive output of a total of 21 colonies in 2015, and 13 

colonies in 2016. If a colony reproduced in both years, data from that colony were 
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averaged across the two seasons for analyses to treat each colony as a single sampling 

unit.  

Alates were captured by placing suspended mesh flight traps above colonies each 

morning (Chapter 3; design based on Cole and Wiernasz 2000). Each trap consisted of a 

metal cylinder surrounding the colony, with a tent-like structure above, leading into a 

collecting chamber. Alates flying from the colony land on the mesh and crawl up into the 

chamber. The traps allow exhaustive sampling of alates, without harming them. Traps 

were placed over all colony entrances of each colony every morning by 7AM, remained 

in place until 1PM, and were monitored hourly. Previous work has shown that P. 

californicus mating flights finish daily well before 1PM in this area (Chapter 3). I 

retained at least 10 males and 10 queens per colony per day for genetic sampling and 

weighing. Remaining alates were counted and released to continue flights. If the total 

number of trapped males or queens from a colony exceeded 100, I retained 10% of the 

total.  

 The total number of male and queen alates captured daily across the extent of the 

mating flight was summed and designated as each colony’s reproductive output.  To 

assess colony reproductive investment, retained alates were immediately frozen after 

capture, and their wet weights obtained within 24 hours. After weighing, all samples were 

stored in 100% ethanol at -20°C for microsatellite analysis. The daily average wet mass 

of males and queens were multiplied by the total number of males and queens, 

respectively, trapped that day (including released alates) to calculate daily colony 

reproductive investment. These values were summed across all days to determine total 
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colony reproductive investment. This methodology does not provide a direct assessment 

of energy investment, because wet weights also include water content. However, because 

these are desert species, for which water and energy content are both valuable, wet 

weights do represent an ecologically relevant assessment of colony investment into 

alates. 

Genetic determination of social strategy and queen number 

 I determined the social strategy of each colony by analyzing four microsatellites 

(PB6, PB5, E10, E20) for 12-40 males from each reproductive colony (Chapter 5 for 

DNA extraction and PCR protocol). Maternal queen genotypes were reconstructed by 

entering the allele profiles of the males from each colony into the program COLONY 

v2.0 (Jones and Wang 2010), with allelic dropout and error rates set to 0.05. Male alates 

were used to identify queens, because they are products of unfertilized eggs, which 

reduces the maternal uncertainty caused from polyandry. This number of samples 

provides a conservative estimate of queen number, and were used in this analysis to 

calculate per-queen reproductive investment in polygynous colonies. A higher sample 

size, more microsatellites, confirmation of maternal genotypes in worker and queen 

alates, and a longitudinal study of queen number over years were used in a deeper genetic 

analysis of colony social structure that is described in Chapter 5. 

Colony Size and distribution 

 Colony size cannot be directly measured non-destructively, but I made two 

indirect assessments of colony activity as a proxy for robustness, by measuring colony 
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above-ground area, and by performing counts of worker above-ground activity rates after 

the end of the reproductive season. To assess relative activity levels, I counted the 

number of workers entering and exiting each colony entrance for five minutes between 

9:00AM and 11:00AM and/or between 4:00PM to 6:00PM; early trials showed that these 

represent peak activity times for this population. Activity measures were performed only 

when the temperature was between 24o and 29.5oC, and colony order was randomized. 

Worker counts were performed at least three times for each colony, with the mean used 

for the final activity ranking. The above ground area that each colony had cleared of 

vegetation was also recorded as an additional estimate of colony size, to determine 

whether there was a correlation between above-ground nest area, activity rates, and 

reproductive output. 

In 2015 I recorded colony locations within the site by walking 2m transects of the 

area and marking all visible P. californicus colonies with an Etrex 10 GPS. Colony 

mapping was performed before the onset of the reproductive season. Colonies at this time 

were at least one year old; by this age they have cleared vegetation from around the nest 

in a ring, making them distinctively visible. I used colony mapping data to calculate 

colony density and nearest neighbor distances, using the spatstat package (Baddeley and 

Turner 2005). I generated the associated graphs using ggplot2 package (Wickham 2009), 

and performed ANOVA statistics using the car package (Fox and Weisberg 2011) in R 

version 3.0.1 (R Core Team 2013). The mean and standard error are provided in the 

results when possible. 

 



84 
 

Results 

Nearest neighbor and colony size 

Above ground colony area was significantly predicted by worker activity assays 

in a type-2 ANOVA model that also included nearest neighbor distance and social 

strategy (F=10.1, df=1, p=0.007; table 4.2). Colony area trended larger for multi-queen 

colonies (13707.3+/-2598.9cm2) than for single-queen colonies (5342.64+/-1470.9cm2), 

but there was no significant difference by social strategy in a model with colony activity 

level (F=0.001, df=1, p=0.977) or with colony activity removed (F=1.70, df=1, p=0.209). 

However, in a type-2 ANOVA model including worker activity, nearest neighbor 

distance, and social strategy, social strategy varied significantly with colony activity 

level. Polygynous colonies had approximately twice the activity levels (953.5+/-139.6 

workers entering and exiting per 5 min) of single-queen colonies (471.8+/-53.0 workers 

er 5 min; F=4.96, df=1, p=0.040, table 4.2). The average nearest neighbor distance for all 

colonies in the site was 11.43+/-0.98 m, and did not differ between social strategies 

(Polygynous colonies: 11.64+/-1.36 m; monogynous colonies: 11.02+/-1.24 m). A type-2 

ANOVA model that included social strategy, worker activity, and reproductive 

investment found that nearest neighbor distance did not vary with any of these factors 

(Appendix C).  

Colony reproduction and queen number 

In the mapping surveys, I identified 34 P. californicus colonies in 2015, and 32 in 

2016. Across the site, five colonies died between 2015 and 2016, as indicated by colony 
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absence at the GPS coordinates, and 3 new colonies became established, giving a year 

mortality rate of 14.7% and a turnover rate of -0.063%. A total of 21 of the 34 colonies 

identified in 2015 (61.8%) reproduced. In 2016, 13 of the 32 identified colonies (40.6%) 

reproduced. All reproducing colonies in 2016 had also reproduced in 2015. Microsatellite 

analysis indicated that 14 of the 21 reproductive colonies in 2015 contained multiple 

queens, and 7 contained a single queen, giving a 66.7% occurrence of primary polygyny 

in reproducing colonies. Repeated microsatellite profiles of colonies reproducing in 2015 

and 2016 indicated that no colonies changed their queen number between years. Similarly 

to 2015, microsatellite assays indicated that 8 of the reproductive colonies in 2016 were 

polygynous (61.5%), and the other 5 had a single queen. Polygynous colonies contained 

an average of 2.57+/-0.29 queens with a range of 2 to 6 queens.  

Polygynous colonies released an average of 992.4+/-159.1 alates in a reproductive 

season, while single queen colonies released an average of 696.7+/-100.9. Reproductive 

investment, as assessed by mean wet weight of alates released per colony, was 

12501.1+/-2022.3mg for polygynous and 9436.3+/-1279.7mg for single queen colonies. I 

used a multi-factorial type-2 ANOVA model to determine whether variation in per-

colony reproductive investment or alate number was significantly influenced by colony 

activity, nearest neighbor distance, and/or social strategy. Colony activity level was the 

only significant predictor of alate investment (Finv=30.6, df=1, p<0.001; Table 4.1A). 

Social strategy did not significantly predict alate investment in any version of the model. 

Similarly, in a multi-factorial type 2 ANOVA that included activity, nearest neighbor 

distance, and social strategy, alate number was predicted only by colony activity level 
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(Fnum=12.0, df=1, p=0.004; Table 4.1B). There was one significant interaction between 

all three variables in the model of alate number (F=5.9, df=1, p=0.03; Table 4.1B). 

Per-queen reproductive investment 

 I divided the reproductive investment of the colonies by the number of queens 

present in each respective colony to approximate the annual reproductive gains of 

cooperative and solitary queens as a component of fitness. A one-way ANOVA was then 

performed to compare the per-queen reproductive investment in polygynous colonies 

versus monogynous colonies. Cooperative queens had a mean alate investment of 

5375.4+/-1060.8 mg per season, significantly less than the average 9436.3+/-1279.7mg 

investment of a solitary queen (F=5.345, df=1, p=0.0322, Fig 4.1). The raw number of 

alates released per-queen also trended lower for polygynous queens (426.1+/-83.3) than 

for monogynous queens (609.9+/-123.2), but this difference was not significant (F=3.841, 

df=1, p=0.0649).  

Alate mass and sex ratio 

 I examined whether a colony’s area, worker activity, social structure, or 

reproductive investment predicted the average male or queen alate mass. When analyzed 

in a multi-factorial type-2 ANOVA model, neither average queen nor male mass were 

significantly predicted by these factors (Appendix C). As with reproductive investment 

and total alate number, individual male and female alate masses did not vary between 

social strategies (Polgynous colonies: males, 10.83+/-0.18mg, females 15.40+/-0.20mg; 

Monogynous colonies: males, 10.62+/-0.36mg; females 15.34+/-0.40mg).  
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 I also used a multi-factorial type-2 ANOVA to test whether sex ratio, or the 

proportion of males relative to total alates, varied significantly by social structure and 

colony activity. significantly influence colony sex ratio, the proportion of males or 

queens that a colony released during their mating flight. The sex ratio of each colony was 

arcsin transformed before all analyses, to correct for potential skew effects of the 

proportional data. Alate sex ratios did not vary significantly in a model that included 

social structure and activity (Appendix C). Multi-queen colony reproductive output was 

on average 50.5+/-4.2% male, similar to single-queen colony reproductive output which 

was on average 50.2+/-8% male. The sex ratio of reproductive investment similarly was 

not significantly influenced by social structure or activity (Appendix C). Investment sex 

ratio was slightly less male biased than reproductive output because the lighter weight of 

males was taken into account; multi-queen colonies invested 42.5+/-3.8% of their mating 

flight into males and single-queen colonies invested 43.6+/-7.7% of their mating flight 

into males. 

Regressions of worker activity and alate investment 

 I explored the relationship between worker activity and alate investment by 

performing linear regressions of these two factors. When all colonies in this study were 

analyzed, I found a significant positive relationship between worker activity and 

reproductive investment (F=35.7, n=21, r2=0.6527, p=9.47E-6; Figure 4.2). When 

colonies were separated by social structure, single-queen colonies alone did not show a 

significant relationship between activity and investment (F=0.0186, n=7, r2=0.0037, 

p=0.8969; Figure 4.2), however multi-queen colonies alone still have a significant 
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positive relationship between worker activity and reproductive investment (F=35.81, 

n=14, r2=0.749, p=6.39E-5; Figure 4.2).  

Discussion 

 Social groups must balance the survival, growth, and/or competitive benefits that 

may emerge from cooperation (Connor 1995; Möller et al. 2001; Kokko et al. 2001; 

Clutton-Brock 2002), with the potential costs that can arise through sharing group 

resources (Clutton-Brock and Parker 1995; Bshary and Grutter 2005; Raihani et al. 

2012). Groups of non-kin are particularly susceptible to the costs of cooperation because 

there are no balancing indirect fitness benefits from kin. Previous work strongly suggests 

that the polygynous strategy of some P. californicus queens is genetically linked 

(Helmkampf et al. 2016; Overson et al. 2016), and may benefit queens in highly 

competitive or resource limited environments, where the early costs of being solitary 

likely outweigh the costs of sharing reproductive resources with other queens. Indeed, the 

mean reproductive investment of colonies in the mixed population (11479+/-1428mg) is 

in between the mean levels of the highly polygynous site (7122+/-1465mg) and highly 

monogynous site (16515+/-3290mg) discussed in Chapter 3, further supporting the link 

between ecological stress and frequency of primary polygyny. However, my analysis of 

reproductive investment for colonies in this shared field sited provide little evidence to 

support the hypothesis that the benefits generated by queen cooperation compensate for 

the reproductive costs of individual alate production in an environment where both single 

and multi-queen colonies survive to reproduction. 
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The costs of polygyny in per-queen reproduction 

 Polygynous and single queen colonies were similarly successful at producing 

reproductives, even across the two years of higher and then lower total output. However, 

when reproductive investment is divided by the mean number of queens present in a 

colony, solitary queens gain a significantly higher individual reproductive investment 

than do cooperative queens. In other data, I demonstrate that queens in polygynous 

colonies do, indeed, share reproductive investment (Chapter 5). Thus, the polygynous 

colony does not represent a case of extreme within-colony reproductive skew, as is seen 

in some polygynous wasps, in which a dominant queen gains all of the colony’s resources 

(Queller et al. 1997; Seppä et al. 2002).   

For a long-lived organism, such as an ant colony, however, fitness represents a 

complex interaction in which queen and colony survival probability, early growth rate 

and colony stability, as well as competitive ability and reproductive capacity all play 

roles. My results indicate that, at least in this environment, polygynous colonies may gain 

some advantage at the group level in colony size and/or robustness, as indicated by 

colony activity assays. The capacity to reach a larger colony size and other shifts in life 

history strategy could reflect the principal benefits to bringing colonies into maturity in 

this system.  

Polygyny effects on colony life history strategy 

 This study found significantly higher worker activity levels in polygynous 

colonies, which may reflect a key benefit of queen cooperation under primary polygyny. 
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Larger or more active colonies are better able to dominate their competitive environment, 

which may provide the survival and resource benefits needed to maintain queen 

cooperation into colony maturity. Higher worker activity counts could be generated by 

two, non-exclusive emergent traits: 1) multiple queens have a higher egg laying rate than 

a single queen which allows the colony to reach and maintain a larger workforce and/or 

2) multiple queens produce a workforce with higher genetic diversity which increases the 

range of conditions under which workers will forage (Wiernasz et al. 2008; Mattila and 

Seeley 2011). Either of these explanations could cause the higher worker activity levels I 

found in polygynous colonies, but more detailed dissection of colony growth and 

workforce dynamics are needed to determine the relative importance of these traits during 

the evolution of queen cooperation.   

 While it may seem logical that an ant colony will increase its reproductive 

investment as it becomes larger in size, this is not always the case. There is only one 

other Pogonomyrmex species in which the relationship between colony size and 

reproductive investment has been explored. Cole and Wiernasz (2000) found that there 

was no relationship between colony size and reproductive investment in Pogonomyrmex 

occidentalis, a species in which queens are always solitary. Similarly, the monogynous P. 

californicus colonies in this study show no relationship between colony size and 

reproductive investment. However, the strong positive correlation between size and 

reproduction in polygynous P. californicus colonies may reflect that a novel adaptation 

has coevolved with queen cooperation in this system (Figure 4.2). 
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Previous work has shown that primary polygyny evolves in areas of high 

environmental pressure that may make solitary colony founding and growth prohibitively 

difficult (Chapter 3). In addition to queen cooperation, a harsh evolutionary environment 

may also select for more conservative reproductive decisions in order to improve 

survival. The linear reproductive trajectory I observed in polygynous colonies could be 

generated if they have developed a stricter target for resource investment into 

reproduction, which is determined by colony size, and any additional resources are 

invested into the workforce. If polygynous colonies have similar reproductive targets, 

they would align to a similar reproductive trajectory and likely achieve a larger 

workforce as was also seen in this and other studies (Chapter 3). Alternatively, queen 

cohabitation may intrinsically produce a more predictable reproductive trajectory. If each 

queen has their own resource target for reproductive investment, the target of a group of 

queens may become more predictable as conciliation mediates the range of queen 

phenotypes and generates a common reproductive trajectory for polygynous colonies. A 

similar phenomenon is found in foraging ants where the nutrient target of a group of ants 

is more predictable than that of a single ant (Dussutour and Simpson 2008). 

Polygyny and colony sex ratio 

 It is difficult to frame these results in a broader context, as this is the first detailed 

analysis of the reproductive characteristics for colonies that practice primary polygyny. 

However, the reproductive consequences of secondary polygyny, the re-acceptance of 

related daughter queens into the colony, provide some context for my findings. Several 

studies suggest that as the relatedness within a colony decreases as queens are added in 
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secondary polygyny, the colony tends to have a more male biased reproductive 

investment (Chan and Bourke 1994; Evans 1995; Chapuis and Keller 1999; Kümmerli et 

al. 2005). This may be caused by workers preferentially caring for male brood to create a 

higher male bias as colony relatedness decreases and workers become less related to 

female alates (Boomsma and Grafen 1990; Pamilo 1991).  

 Contrary to what has been observed under secondary polygyny, there were no 

significant changes in reproductive characteristics under primary polygyny. 

Quantification of the reproductive flights yielded no colony-level differences in output, 

investment, sex ratio, or alate mass between social structures. Although intracolony 

relatedness is reduced by primary polygyny, likely more so than under secondary 

polygyny, it does not appear that the workforce or queens alter their sex ratio. Shifts in 

reproductive characteristics that accompany other forms of cooperation are often 

generated by conflict within the group (Ratnieks and Reeve 1992; Keller and Reeve 

1994; Herbers et al. 2001). The lack of significant reproductive alteration in the context 

of primary polygyny may indicate that little to no conflict exists between these 

cooperative queens or their workforce. Indeed, low levels of conflict are often a 

theoretical requirement for the stable and enduring non-kin cooperation observed under 

primary polygyny (Kokko et al. 2001; Clutton-Brock 2009; Frederickson et al. 2011).  

Conclusion  

 This study represents an important first step in our understanding of the 

evolutionary mechanisms of primary polygyny. As with most early explorations into a 
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biological phenomenon, we have generated as many new questions as we have answered. 

This study suggests that a central benefit of primary polygyny is a more active workforce, 

which could be the result of a larger workforce capacity or a more genetically diverse 

workforce. However, this benefit does not bolster the annual per-queen reproductive 

investment of a polygynous colony to a higher level than that of a solitary queen. How 

queen cooperation is maintained in the face of this fitness cost remains an open question. 

Polygynous colonies may have a longer lifespan that makes up for the annual 

reproductive cost, or the survival benefits during early colony growth may be strong 

enough to cement queen cooperation for the colony’s lifespan regardless of the future 

costs. The latter explanation may only be a viable strategy in certain environments where 

ecological conditions are especially harsh, which could explain why this behavior has 

never been found to spread throughout a species’ range. Theoretical models of non-kin 

cooperation have struggled for decades with questions about evolutionary mechanisms, 

group member cheating, multi-level selection, and ecological drivers, among others. 

Primary polygyny represents a unique system where we can finally begin to answer the 

elusive questions of non-kin cooperation with empirical data from natural field 

conditions, which could finally put to rest some of the oldest and most fundamental 

problems of social evolution.  
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Figure 4.1: The per-queen reproductive investment of colonies that practice primary 

polygyny versus monogynous colonies. Solitary queens, who do not share their 

reproductive output, release significantly more alate biomass than cooperative queens in 

an annual mating flight. Significant difference (P<0.05) is noted by asterisk.  
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Figure 4.2: The relationship between worker activity, as a proxy of colony size, and 

reproductive investment. All colonies in the study show a significant regression of 

activity and investment (F=35.7, n=21, r2=0.6527, p=9.47E-6), the regression line has an 

intercept at 2872.7, a slope of 10.855, and an R2 of 0.6527. Single-queen colonies do not 

show a significant relationship between worker activity and investment (F=0.0186, n=7, 

r2=0.0037, p=0.8969), the regression has an intercept of 8743.2, a slope of 1.4691, and an 

R2 of 0.0037. The multi-queen colonies retain the significant regression (F=35.81, n=14, 

r2=0.749, p=6.39E-5) with an intercept of 545.45, a slope of 12.539, and an R2 of 0.749. 
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Table 4.1: Results of type II ANOVA models of worker activity levels, above ground 

colony area, colony social strategy, and all interactions for A: amount of alate investment 

in mg, and B: total number of alates released. Bold P values indicate significance 

(P<0.05). 

 A) Alate investment, n=21 B) Alate number, n=21 

 Sum sq df F P Sum sq df F P 

Worker Activity 537006251 1 30.635 0.00009 3008554 1 34.475 0.00005 

Nearest Neighbor Dist.  13724546 1 0.7830 0.3923 156979 1 1.7988 0.203 

Social Strategy 22563083 1 1.2872 0.2771 110975 1 1.2716 0.279 

Activity:NNdist 12432766 1 0.7093 0.4149 157288 1 1.8023 0.202 

Activity:Strategy 12590975 1 0.7183 0.4120 136060 1 1.5591 0.234 

NNdist:Strategy 1275627 1 0.0728 0.7916 73402 1 0.8411 0.376 

Activity:NNdist:Strategy 1176279 1 0.0671 0.7997 515182 1 5.9034 0.030 
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Table 4.2: Results of type II ANOVA models of A: colony above ground area by worker 

activity, nearest neighbor distance, and social strategy, and B: worker activity by nearest 

neighbor distance and social strategy. Bold P values indicate significance (P<0.05). 

 A) Colony Area, n=21 

 Sum sq df F P 

Worker Activity 601310647 1 10.091 0.0073 

Nearest Neighbor Dist.  1270446 1 0.0213 0.8861 

Social strategy 50743 1 0.0009 0.9771 

Activity:NNdist 22140742 1 0.3716 0.5527 

Activity:strategy 2599478 1 0.0436 0.8378 

NNdist:Strategy 4075696 1 0.0684 0.7978 

Activity:NNdist:Strat 89483761 1 1.5017 0.2422 

 B) Worker Activity, n=21 

 Sum sq df F P 

Nearest Neighbor Dist. 13387 1 0.0626 0.8055 

Social Strategy 1062305 1 4.9643 0.0397 

NNdist:Strategy 12723 1 0.0595 0.8103 
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CHAPTER 5 

DIVISION OF WORKER AND REPRODUCTIVE OFFSPRING BY COHABITING 

QUEENS: DO COOPERATIVE QUEENS CHEAT? 

 

Introduction 

Social groups are defined by their cooperative behaviors, but there is often 

conflict within social groups because the reproductive interest of all group members 

rarely aligns perfectly. Individuals can benefit by exploiting the work of group members 

for personal fitness gains, a social phenomenon known as cheating (Trivers 1971). 

Theory predicts that cheating phenotypes will emerge in social groups as relatedness 

within the group decreases (Trivers 1985; Keller 1999), which has recently received 

strong support from the study of social microbes (Gilbert et al. 2007; Sandoz et al. 2007; 

Kuzdzal-Fick et al. 2011; Pollak et al. 2016; Inglis et al. 2017). Social groups composed 

of unrelated individuals are especially vulnerable to cheating behaviors because cheaters 

do not lose indirect fitness benefits by taking advantage of group members they do not 

share genes with. Cheaters gain fitness benefits by exploiting their group, so if left 

unchecked they will theoretically outcompete non-cheaters and spread through a 

population, potentially leading to the collapse of the cooperative system (Trivers 1971; 

Axelrod and Hamilton 1981; Bull and Rice 1991). However, there are several examples 

of stable non-kin cooperation that somehow keep the frequency of cheating phenotypes in 

check (Mesterton-Gibbons and Dugatkin 1992; Dugatkin 2002; Clutton-Brock 2009), but 

it has been difficult to observe the emergence and control of cheating phenotypes outside 
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of the social microbes. Unrelated social groups could resist cheating phenotypes in 

several ways including: 1) the social benefits generated by cooperating in a group 

outweigh the potential benefits of cheating (Clutton-Brock et al. 1999; Kokko et al. 

2001), 2) the groups has means of controlling the spread of cheating behaviors through 

punishment and policing (Clutton-Brock and Parker 1995), and 3) competitive 

interactions with other groups select for more functional or efficient groups that contain a 

higher proportion of cooperative individuals (Maynard Smith 1964; Shaffer et al. 2016). 

Further study of stable non-kin social groups are needed to better understand how the 

spread of cheating is curtailed and non-kin cooperation can be maintained, particularly in 

multicellular organisms.  

 Primary polygyny in social insects is an ideal system to study the stability of non-

kin groups and the dynamics of cheating. In this rare social structure, primarily found in 

ants, multiple queens form a cooperative association at colony founding that persists 

through the life of the colony (Hölldobler and Wilson 1977; Mintzer and Vinson 1985; 

Trunzer et al. 1998). These queens are completely unrelated (Kolmer et al. 2002; DeHeer 

and Herbers 2004; Cahan and Helms 2012; Overson et al. 2016), but do not develop any 

apparent hierarchy and all assist in nest initiation and worker production (Rissing et al. 

1989; Heinze et al. 2001; Clark and Fewell 2014). Primary polygyny has been 

documented in several ant species (Mintzer 1987; DeHeer and Herbers 2004; Johnson 

2004; Kellner et al. 2007; Hölldobler et al. 2011; Qian et al. 2012), and the stability of 

cooperative queen groups have been observed in lab (Mintzer 1987; Kolmer and Heinze 

2000; Johnson 2004; Clark and Fewell 2014) and field conditions (Helms and Cahan 
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2012; Chapter 3). Most research on primary polygyny has focused on colony initiation, 

where queen cooperation generates survival and worker production benefits (Trunzer et 

al. 1998, Deslippe and Salvolainen 1995; Clark & Fewell 2014). There is some 

opportunity for queens to cheat early in colony life by avoiding metabolically costly 

worker production or dangerous tasks such as foraging, but queens do not appear to 

exploit the group at this stage (Heinze et al. 2001; Hölldobler et al. 2011). However, once 

the colony becomes reproductively mature, queens have an opportunity to unfairly 

exploit colony resources for personal reproductive output. Little is known about how 

cooperative queens share resources for reproductive investment (but see Heinze et al. 

2001 and Kolmer et al. 2002), but this period is highly vulnerable to cheating due to the 

direct relationship with queen fitness.  

 Ant colonies reproduce through winged queens and males (alates) that fly from 

the nest in sync with conspecific colonies to mating leks (Hölldobler and Wilson 1990). 

Mated queens then leave the lek to found a new colony. Reproductive decisions are 

controlled at multiple levels. Queens lay eggs at a rate that varies between queens 

(Tschinkel 1988; Kwapich et al. 2017), and regulate if a laid egg is fertilized or 

unfertilized (Passera et al. 2001; de Menten et al. 2005). Being haplodiploid, a fertilized 

egg can become either a sterile worker or a new queen while an unfertilized egg can only 

become a reproductive male. In many species, workers then control the resource 

provisioning for developing larvae and determine if the females will become workers or 

queens, and if the males are allowed to develop at all (Hammond et al. 2002; Mehdiabadi 

et al. 2003). Cooperative queens are probably not able to cheat by directly provisioning 
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their larvae with more resources than the larvae of other queens because it would be 

logistically difficult and metabolically demanding. It is also unlikely that workers 

preferentially provision related brood because it does not appear that workers can identify 

their lineage from others in a polygynous colony (Snyder 1993; DeHeer and Ross 1997; 

Holzer et al. 2006; but see Helentara et al. 2013).  

 However, there are strategies that queens may utilize to take advantage of their 

social group during reproduction. Any strategy that reduces a queen’s contribution to the 

workforce while increasing her contribution to reproductive output would be considered 

cheating because worker production is metabolically costly and uses stored sperm, but 

worker production is crucial for the function and survival of the colony as a whole. A 

queen could cheat by regulating the timing of egg production to increase her proportion 

of the brood during the reproductive season. She could also consume the eggs of other 

queens to reduce resource competition for her brood. Queens may also be able to cheat 

their cooperative group by overproducing unfertilized male eggs. This would provide a 

way to circumvent worker control, because unfertilized eggs can only develop into 

reproductive males, unlike fertilized eggs that can become sterile workers instead of 

queens. This strategy may be especially harmful to colony survival because every queen 

that preferentially produces unfertilized eggs will decrease the worker production rate of 

a colony at every stage of the colony’s lifecycle.   

 I explored the possibility of queen cheating in a population of the harvester ant 

Pogonomyrmex californicus that practices primary polygyny. I captured male and queen 

alates as they flew from colonies over several successive annual mating flights and 
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concurrently collected workers from each colony. I used genotyped (microsatellites) 

queens, males, and workers from each colony to reconstruct queen genotypes which were 

used to assign maternity to alates and workers. These data allow us to see if cooperative 

queens fairly divide the metabolic cost of worker production with the fitness benefits of 

reproductive investment, and if the proportions are consistent over years. My evidence 

suggests that a low frequency of a novel cheating phenotype exists in this polygynous 

population. However, queen cooperation has been stable in this population for at least 20 

years (Johnson 2004), suggesting that internal colony dynamics or competitive 

interactions may limit the spread of this cheating phenotype in the population.  

 

Methods 

Sample collection 

 I captured alates and workers from P. californicus colonies from a disturbed 

grassland field site in the town on Pine Valley, San Diego Cty, CA (32°49’21.38”N, 

116°31’40.24”W). Previous work has shown that this area is dominated by primary 

polygyny (Johnson 2004; Overson 2016; Chapter 3). The mating flight in this area takes 

place over a 3 to 4 week period from mid-June to mid-July. I trapped alates as they flew 

from colonies over the extent of the mating flight every year from 2012-2015 using 

suspended tent traps described in Chapter 3. Every day, I retained 10 males and 10 

queens from each colony for genetic analysis. If more than 100 males or queens flew 

from a colony on that day, I saved 10% of the total. All remaining alates were released 
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undamaged to preserve the condition of the population. After the mating flights had 

ended, I collected at least 60 workers from the nest entrances of all sampled colonies. 

Alates and workers were immediately frozen at -20°C and stored in 100% ethanol within 

24 hours of capture before being transported back to Arizona State University for genetic 

analysis.  

I captured alates and performed genetic analysis on a total of 11 colonies, seven 

of which I captured for multiple annual mating flights. Some colonies did not reliably 

reproduce every mating season, and some died over the course of the experiment, but I 

was able to capture one mating flight for four colonies, two mating flights for four 

colonies, three mating flights for two colonies, and four mating flights for one colony.  

DNA extraction 

 I extracted DNA using a Chelex extraction protocol (Gadau 2009). Ants were 

removed from the ethanol and their heads were cut from their bodies. The heads were 

individually crushed in 50µl of 5% Chelex® 100 resin (Bio-Rad) suspended in 1X TE 

buffer pH 8.0 before adding 1µl Proteinase K (5 mg/ml) to each sample. I then incubated 

the samples at 57°C for at least 1 hour, heated them to 95°C for 5 minutes, and 

centrifuged at 14,000rpm for 10 minutes. I pipetted the resulting supernatant into sterile 

tubes to be used as the DNA template and stored them at -20°C.  

PCR and microsatellite analysis 

 Alates and workers were genotyped by at least 5 of the following microsatellite 

loci, with additional used when more clarification was required: Pb5, Pb6 (Volny and 
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Gordon 2002); Po03 (Wiernasz et al. 2004); E9, E10, E19, E20, and B16 (unpublished; 

sequences for unpublished primers given in Appendix D). PCR reactions took place in 12 

µl reaction volumes containing 6 µl dH20, 2.4 µl of 5x GoTaq buffer (Promega), 1 µl 

MgCl2 (50mM), 0.5 µl dNTPs (10mM), 0.5 µl forward and reverse primer, and 0.1 µl 

Taq polymerase. PB6, E9, E10, and B16 were tagged with a 700nm fluorescent label 

while PB5, E19, E20, and Po03 were tagged with an 800nm fluorescent label so primers 

from these two groups were often run together using the following PCR program. An 

initial 5 minute at 94°C, 37 cycles of the following three stages: (1) 20 seconds at 94°C, 

(2) a 30 second annealing stage at 56°C, and (3) 30 seconds at 72°C, with a final 5 

minute stage at 72°C. A Licor 4300 model sequencer was used to measure size of the 

PCR products. All gels were scored by the same individual (BH) and reference samples 

from previous runs were always included to maintain standard allele identities.  

Genotype reconstruction 

 Maternal queen genotypes were reconstructed by entering the allele profiles of all 

males from a colony into the program COLONY v2.0 (Jones and Wang 2010), with 

allelic dropout and error rates set to 0.05. I was only interested in the maternity of the 

samples so haploid males were used to reconstruct the maternal genotypes and avoid the 

added complexity of paternity. The resulting queen genotypes were checked for 

redundancy and combined when possible. All males, alate queens, and workers of the 

colony were then assigned to the maternal line that fit their allele profile. Overlapping 

alleles occasionally prevented the assignment of an individual to a single mother; these 

samples were not included in further analyses. 
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 Chi square tests were used to determine if the overall proportions of worker and 

alate production deviated from the expected fair proportions within each polygynous 

colony. A standardized residual post-hoc was then used to determine which queen 

deviated from her expected production of which caste. Chi square values were generated 

with JMP 13.0 and ANOVAs were run using the car package (Fox and Weisberg 2011) in 

R version 3.0.1 (R Core Team 2013). 

 

Results 

Of the eleven colonies analyzed, three colonies contained two queens, two 

colonies contained three queens, three colonies contained four queens, one colony 

contained six queens, one colony contained seven queens, and one colony contained eight 

queens. Seven of the eleven colonies were analyzed over multiple years, and there was a 

single instance of a queen’s alleles disappearing from the colony’s genetic pool. This 

queen contributed to three consecutive mating flights of her colony before disappearing 

in the fourth and final sample year. There were no instances of novel alleles appearing in 

a colony’s gene pool after the first analyzed mating flight.  

Ten of the 11 colonies showed an overall difference in the observed caste 

investment by nest-mate queens in at least one year. A total of 22 annual mating flights 

were captured and analyzed from the 11 colonies, 17 of these flights had a significant 

difference in the observed caste investment by nest-mate queens (Appendix E). A 

standardized residual post-hoc analysis was used to find the specific caste and queen that 
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significantly deviated from the expected investment. Overall there were three instances of 

a queen overproducing males, one instance of worker underproduction, one instance of 

worker overproduction, and one instance of male underproduction. Two queens deviated 

from their colony’s expected investment into workers, queens, and males over a single 

mating flight (Appendix E).  

I designated a queen as a cheater if she produced a significantly higher proportion 

of reproductive male and/or queen alates or under produced workers relative to her nest 

mate queens. Of the 22 mating flights analyzed in this study, a single cheater queen was 

identified in 3 flights. However, two of these flights were from the same colony in 

different years that contained the same cheater queen, so a cheater queen was identified 

in 2 of the 11 colonies for at least one year. In three flights the cheater significantly 

overproduced males (queenAResidual=3.93, crit.residual=2.86; queenBResidual=3.39, 

crit.residual=2.86; queenCResidual=3.31, crit.residual=2.86), and in one she significantly 

under-produced workers (queenDResidual=4.16, crit.residual=2.86). 

 I calculated the ratio of alate to worker production for every queen that 

participated in each mating flight to compare the values of cheaters versus non-cheaters. 

Any zero values in the alate or worker production of a queen were replaced with one for 

the calculation of ratios. Cheaters had an average alate to worker ratio of 24.67+/-12.67, 

significantly higher than the non-cheater ratio of 2.98+/-0.359 (ANOVA: F=62.278, 

df=1, p<0.0001). Most of the inequality between alate and worker production for cheaters 

came from male production. The average male to worker production ratio for cheater 

queens was 23.33+/-11.84, significantly higher than the non-cheater ratio of 1.85+/-
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0.0.226 (ANOVA: F=95.34, df=1, p<0.0001). However, the average queen to worker 

production ratio from cheater queens was 1.67+/-0.667, not significantly different than 

the queen to worker production ratio of non-cheater queens at 1.28+/-0.162 (ANOVA: 

F=0.2024, df=1, p=0.654).  

 Both of the two colonies where a cheater queen was identified through post-hoc 

testing had their mating flights captured and analyzed for more than one year. Only one 

queen, who overproduced male alates, was identified who cheated consistently over two 

mating flights. However, differences in overall investment levels and sample sizes 

between years may have obstructed the detection of some queens with biased caste 

investment. I combined the maternity results for all queens in the six colonies captured 

over multiple years and reran the standardized residual post-hoc tests to further gauge 

consistency in caste investment by cheaters over years. 

 One of the six colonies contained a cheater queen when all mating flights were 

combined. This was the same colony that contained a queen that consistently 

overproduced males in two separate mating flights. When the three mating flights of this 

colony were combined, this cheater queen (Queen A) was found to significantly 

overproduce male alates (Residual=5.19, crit.residual=2.86), and significantly under-

produce workers (Residual=4.40, crit.residual=2.86). There was another queen (Queen 

D) in this colony that significantly overproduced workers (Residual=3.92, 

crit.residual=2.86) and under-produced males (Residual=4.60, crit.residual=2.86; Figure 

5.1). The post-hoc test did not identify a consistent cheater queen in any of the other 

colonies (Table 5.1). 
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Discussion 

 When individuals cooperate there exists the potential for one or more group 

members to garner additional benefits by abstaining from costly activities or by unfairly 

utilizing shared resources. If these selfish behaviors emerge they could become fixed into 

a cheating phenotype that spreads rapidly throughout the population (Axelrod and 

Hamilton 1981; Velicer et al. 2000; Doebeli et al. 2004; Nowak 2006). Cooperative 

groups of unrelated individuals are particularly at risk because there are no kinship 

benefits gained by helping group members that may offset the benefits of cheating 

(Hamilton 1964; Van Dyken et al. 2011). I explored the prospect of cheating within 

cooperative groups of unrelated ant queens during reproductive investment. Primary 

polygyny is relatively rare in ants and may only persist in the absence of cheating 

behaviors, in which case we would expect cooperative queens to share reproductive 

investment equally. However, if a cheating phenotype is detected in these colonies it 

would provide a rare example of a non-kin cooperation that can support the presence of 

cheaters.  

 The results indicate that almost all polygynous P. californicus queens fairly divide 

worker and reproductive production. This result further verifies that primary polygyny is 

a solid example of stable, fair non-kin cooperation that persists in a natural context. 

However, it appears that a low frequency of cheating does exist in polygynous P. 

californicus colonies. I identified two queens that produce more alates and fewer workers 

than the other queens of her colony, and found that these reproductive patterns are 

consistent over multiple years and mating flights. Interestingly, these queens primarily 
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overproduce male alates, which may represent a strategy to bypass worker influence. 

Although cheater queens should have higher fitness than cooperative queens, cheating 

individuals are quite rare, with most colonies composed completely of cooperative 

queens.  

 Cheating was only identified in 2 out of the 45 queens (4.4%) analyzed in this 

study. However, almost all colonies significantly varied from the expected proportions of 

alates and workers produced by each queen. Few of the differences between queens were 

extreme enough to achieve significance in a post-hoc test, which quickly loses power as 

queen number increases. While there is natural variation in the proportion workers and 

alates produced by a queen that surely contributed to the significant tests at the colony 

level, the post-hoc analysis likely missed some cheater queens due to low power, 

especially in colonies with a high number of queens. However, even if potential cheater 

queens are included using a less conservative adjusted Bonferroni approach (Keppel 

1991), the prevalence of queen cheating remains low (15.6%). 

 For cheating to be considered an adaptive, distinct phenotype, the caste 

production ratio of cheater queens must be consistent over years. Otherwise skewed 

production ratios may simply be caused by random factors such as variation in egg 

development and/or sampling skew. One of the two cheater queens identified in this 

study reduced the overall amount of investment between two mating flights two years 

apart, from twelve alates and zero workers produced in the first year to two alates and 

two workers in the second year, which may indicate declining health (Table 5.1). The 

other cheater queen identified in this study displayed consistency in alate and worker 
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production ratio over three separate mating flights. This suggests that cheaters are able to 

maintain their unfair caste production ratio over multiple years, effectively freeriding off 

the worker production of other queens by mainly producing procreative offspring.  

 The overinvestment of alates by cheating queens tended to be highly male biased, 

while most cooperative queens had fairly equal investment into male and queen alates 

(Table 5.1). This may represent a strategy that cheater queens have adopted in order to 

circumvent worker or nest-mate queen influence on the cheater’s reproductive output 

(Trivers 1974). Ants are haplodiploid, meaning that a fertilized diploid egg can develop 

in either a worker or an alate queen while an unfertilized haploid egg can only develop 

into a male. In most species workers can influence whether diploid eggs will become new 

workers or queens by controlling the amount and quality of food fed to the larvae while 

they grow (Sundstrom et al. 1996; Hammond et al. 2002; Beekman and Ratnieks 2003). 

Thus, a cheater queen may not be able to ensure that the diploid eggs she lays will result 

in reproductive progeny. However, a haploid egg can only develop into a reproductive 

male, so highly male biased reproduction may be a strategy adopted by cheater queens to 

more tightly control their fitness outcome. 

 The production of diploid eggs is also costly for a queen because it requires sperm 

from their limited stored supply. The only time an ant queen receives sperm is when she 

first leaves her home nest and mates during the nuptial flight. A queen never mates again 

after this period, all the sperm used to fertilize worker and queen eggs come from the 

single mating event. Stored sperm is a limiting resource for queens, and in some species 

the limiting factor for the longevity and size of a colony is the number of sperm a queen 
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can store (Tschinkel 1987; Fjerdingstad and Boomsma 1998). Once a queen’s sperm is 

depleted, she can no longer produce workers and the colony is doomed to dwindle and 

die. Cheater P. californicus queens still produce queens and some workers, suggesting 

that their male biased caste investment is not a result of sperm depletion. Instead, the 

overproduction of males may represent an additional cheating strategy in which queens 

attempt to conserve their stored sperm while nest-mate queens deplete their reserves on 

worker and alate queen production. Cheaters may gain a substantial fitness boon if they 

are able to switch their reproductive sex ratio to alate queen production once their nest-

mates are low on sperm, because there would be less resource competition with the larvae 

of other lineages during development. This strategy could potentially increase the 

proportion of the cheater queen’s sperm that develop into reproductive queen alates 

instead of workers. 

A cheater queen produces a higher proportion of reproductive alates than other 

queens, so this strategy likely provides a higher lifetime fitness than cooperative queens. 

In isolation, individual selection would favor the benefits of being a cheater and we 

would expect the phenotype to proliferate in a population. However, this phenotype may 

not spread widely throughout the population if colonies that contain a cheater queen are 

less likely to survive to reproductive maturity. Cheaters in this study increased their 

personal alate investment at the cost of worker production. Even if a cheater still 

produces her share of workers, the resources she uses to overproduce alates might 

otherwise be used to produce workers by nest-mate queens. Thus, a cheater queen likely 

reduces the worker production rate of a colony. Primary polygyny in P. californicus 
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occurs in areas with higher colony density, which likely increases the competitive 

pressure exerted on the colonies (Chapter 3). In a highly competitive environment the 

ability of a colony to produce workers is crucial to survive territorial interactions. A 

colony’s workforce can be rapidly depleted from losses during fights over resources, 

reducing the ability of the colony to forage and defend itself from future attacks 

(Wiernasz and Cole 1995). This may be especially important during early colony growth, 

when small colonies can be completely wiped out by neighboring mature colonies if they 

do not become large and established quickly (Hölldobler 1976; Bartz and Hölldobler 

1982; Adams and Tschinkel 1995b; Sanders and Gordon 2004). 

In an uncommon circumstance such as this, when competitive pressure is high 

and cooperative groups are permanent, selection acting at the colony level may override 

selection on individual queens (Wilson 1975; Wilson 1987). Selection on the traits of the 

group, in this case high worker production, may limit the spread of a cheating phenotype 

regardless of its fitness benefits to the individual. If future work confirms that the low 

frequency of the cheating phenotype is stable over time, this would provide a unique 

model system that demonstrates an observable evolutionary influence by multi-level 

selection (Wilson 1989; Wilson and Sober 1994; Aviles 2002; Hölldobler and Wilson 

2009). The finding that the proliferation of an uncooperative phenotype is restricted by 

group selection would be a valuable addition to other recent advances in our 

understanding of the mechanisms and prevalence of multi-level selection in nature (Boza 

and Szamado 2010; Pruitt and Goodnight 2014; Okasha 2016; Schaffer et al. 2016; Pruitt 

et al. 2017). 
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Conclusion 

 Maternity tests of males, queens, and workers from 11 colonies that are headed by 

multiple, unrelated queens have revealed that there is a low frequency of a cheater 

phenotype present in this cooperative system. Cheater queens overproduce reproductive 

alates, specifically males, often at the expense of worker production. Although cheating 

provides additional fitness benefits to queens, these behaviors are not widespread in the 

population, potentially because colonies that contain cheaters are at a competitive 

disadvantage in their highly dense, harsh environment. This provides a rare example of a 

trait that is selected for at the individual level being overridden by the selective pressures 

on the cooperative group. The dynamics of cheating in the context of primary polygyny 

may represent a long sought after model system for the evolution and maintenance of 

stable altruism between non-kin. 
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Figure 5.1: The proportion of males, queens, and workers produced by the queens of two 

polygynous colonies, with all years where reproduction was captured combined. (A) 

Colony 1 contains one cheater queen, Queen A, who over-produced males 

(maleresidual=5.19, crit.residual=2.86) and under-produced workers (workerresidual=4.40, 

crit.residual=2.86). (B) Queens equally divide the alate and worker production in colony 

5.  
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Table 5.1: The males, queens, and workers produced by each queen in the eleven 

polygynous colonies surveyed for this study. If a colony was analyzed over multiple 

years, maternity results were combined for all years. Colony ID, years reproduction was 

analyzed, and the critical standardized residual value for each colony are given in the 

leftmost column. Queens deviate significantly (p<0.05) from their expected output when 

a cell’s standardized residual value is greater than the critical value.  

 

 Queen 

ID 

Males 

produced 

Male 

Standardized 

Residual 

Queens 

produced 

Queen 

Standardized 

Residual 

Workers 

produced 

Worker 

Standardized 

Residual 

Colony 1 A 77 

(89.5%) 
5.18 5 (5.8%) 2.79 4 (4.7%) 4.40 

2012, 2015, 

2016 

B 44 

(46.3%) 

0.51 22 

(23.16%) 

0.95 29 

(30.5%) 

0.10 

Critical 

residual 

value=2.86 

C 33 

(40.7%) 

1.18 15 (18.5%) 0.081 33 

(40.7%) 

1.56 

 D 2 (4%) 4.6 17 (34%) 2.45 31 (62%) 3.92 

Colony 2 A 28 

(45.9%) 

0.25 6 (9.8%) 0.66 27 

(44.3%) 

0.72 

2013, 2014, 

2015, 2016 

B 49 

(43.0%) 

0.58 20 (17.5%) 0.41 45 

(39.5%) 

0.37 

Critical 

residual 

value=2.86 

C 52 

(66.7%) 

2.59 12 (15.4%) 0.14 14 

(18.0%) 

2.80 

 D 46 

(38.3%) 

1.34 20 (16.7%) 0.182 54 

(45.0%) 

1.37 

Colony 3 A 14 

(63.6%) 

1.75 8 (36.4%) 0.375 0 (0%) 2.49 

2013 B 15 

(37.5%) 

0.25 13 (32.5%) 0.073 12 

(30.0%) 

0.221 

Critical 

residual 

value=2.93 

C 5 (45.5%) 0.286 6 (54.5%) 1.33 0 (0%) 1.76 

 D 8 (30.8%) 0.74 4 (15.4%) 1.49 14 

(53.8%) 

2.47 

 E 12 

(33.3%) 

0.632 12 (33.3%) 0.157 12 

(33.3%) 

0.586 
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Colony 4        

2013, 2014, 

2015 

A 99 

(33.7%) 

1.35 90 (30.1%) 1.41 105 

(35.7%) 

0.197 

Critical 

residual 

value=2.63 

B 75 

(47.8%) 

1.85 29 (18.5%) 1.93 53 

(33.8%) 

0.27 

Colony 5        

2014, 2015 A 44 

(39.6%) 

0.0566 30 (27.0%) 0.905 37 

(33.3%) 

0.886 

Critical 

residual 

value=2.63 

B 46 

(39.0%) 

0.0548 43 (36.4%) 0.878 29 

(24.6%) 

0.859 

Colony 6 A 12 (40%) 0.215 15 (50%) 1.67 3 (10%) 1.99 

2014, 2015 B 7 (31.8%) 0.441 6 (27.3%) 0.439 9 (40.9%) 0.956 

Critical 

residual 

value=3.08 

C 6 (54.5%) 0.917 1 (9.1%) 1.37 4 (36.4%) 0.399 

 D 7 (50%) 0.757 2 (14.3%) 1.20 5 (35.7%) 0.406 

 E 6 (60%) 1.16 4 (40%) 0.408 0 (0%) 1.73 

 F 5 (27.8%) 0.679 4 (22.2%) 0.773 9 (50%) 1.57 

 G 8 (80%) 2.19 0 (0%) 1.81 2 (20%) 0.567 

 H 2 (7.69%) 2.47 14 (53.8%) 1.89 10 

(38.4%) 

0.810 

Colony 7 A 11 

(47.8%) 

0.88 7 (30.4%) 0.103 5 (21.7%) 0.845 

2015 B 9 (47.4%) 0.767 4 (21.1%) 0.821 6 (31.6%) 0.00 

Critical 

residual 

value=2.76 

C 9 (24.3%) 1.24 14 (37.8%) 0.670 14 

(37.8%) 

0.670 

Colony 8        

2015 A 5 (17.9%) 1.76 13 (46.4%) 1.65 10 

(35.7%) 

0.342 

Critical 

residual 

value=2.63 

B 25 

(50.0%) 

1.32 10 (20.0%) 1.24 15 

(30.0%) 

0.256 

Colony 9 A 26 

(59.1%) 

2.19 8 (18.2%) 1.36 10 

(22.7%) 

1.10 

2015 B 17 

(36.2%) 

0.265 16 (34.0%) 0.603 14 

(29.8%) 

0.285 

Critical 

residual 

value=2.76 

C 11 

(22.4%) 

1.82 17 (34.7%) 0.699 21 

(42.9%) 

1.32 

Colony 10 A 18 

(31.6%) 

0.702 18 (31.6%) 0.312 21 

(36.8%) 

1.14 

2014, 2016 B 11 

(68.8%) 

2.06 3 (18.8%) 1.05 2 (12.5%) 1.21 
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Critical 

residual 

value=2.86 

C 9 (42.9%) 0.421 7 (33.3%) 0.051 5 (23.8%) 0.423 

 D 19 

(32.2%) 

0.636 24 (40.7%) 0.882 16 

(27.1%) 

0.235 

Colony 11 A 10 

(28.6%) 

1.21 14 (40.0%) 1.29 11 

(31.4%) 

0.178 

2015, 2016 B 5 (41.7%) 0.01 2 (16.7%) 0.761 5 (41.7%) 0.754 

Critical 

residual 

value=3.04 

C 9 (34.6%) 0.570 11 (42.3%) 1.33 6 (23.1%) 0.627 

 D 13 

(50.0%) 

0.643 7 (26.9%) 0.139 6 (23.1%) 0.627 

 E 8 (66.7%) 1.33 1 (8.3%) 1.30 3 (25.0%) 0.304 

 F 3 (60.0%) 0.628 2 (40.0% 0.488 0 (0%) 1.22 

 G 11 

(44.0%) 

0.167 3 (12.0%) 1.54 11 

(44.0%) 

1.30 
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APPENDIX A 

TWO-WAY TYPE II ANOVA FULL RESULTS WITH INTERACTIONS OF PINE 

VALLEY AND LAKE HENSHAW COLONIES, 2012-2014 
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 df Sum Sq Mean Sq F P 

Alate output 

by site 

1 2904390 2904390 5.7696 0.02249 

Alate output 

by social 

structure 

1 244235 244235 0.4852 0.49128 

Interaction 1 243735 243725 0.4842 0.49173 

 df Sum Sq Mean Sq F P 

Alate 

investment 

by site 

1 485925561 485925561 4.5867 0.04046 

Alate 

investment 

by social 

structure 

1 5320 5320 0.0001 0.99439 

Interaction 1 76906135 76906135 0.7259 0.40096 

 df Sum Sq Mean Sq F P 

Alate 

investment 

sex ratio by 

site 

1 0.0001 0.0001 0.001 0.987 

Alate 

investment 

sex ratio by 

social 

structure 

1 0.1931 0.1931 3.453 0.0733 

Interaction 1 0.0355 0.0355 0.635 0.4321 

 df Sum Sq Mean Sq F P 
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Alate output 

sex ratio by 

site 

1 0.0007 0.0007 0.014 0.9073 

Alate output 

sex ratio by 

social 

structure 

1 0.1676 0.1676 3.164 0.0858 

Interaction 1 0.0873 0.0873 1.648 0.2094 

 df Sum Sq Mean Sq F P 

Worker 

activity by 

site 

1 718285 718285 3.4403 0.07348 

Worker 

activity by 

social 

structure 

1 1589526 1589526 7.613 0.00978 

Interaction 1 43277 43277 0.2073 0.65218 
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APPENDIX B 

OVERVIEW OF REPRODUCTIVE AND ECOLOGICAL DATA, PINE VALLEY 

AND LAKE HENSHAW 2012-2014 
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 2012 2013 2014 

PV colonies with traps 10 20 14 

LH colonies with traps 7 14 14 

PV Mating flights trapped 4 11 13 

LH Mating flights trapped 6 13 14 

PV first mating flights trapped (new 

colony) 4 6 5 

LH first mating flights trapped 5 9 3 

PV haplometrotic colonies 0 3 3 

LH pleometrotic colonies 2 2 2 

PV percent haplo no data 27.30% 23.10% 

LH percent pleo no data 15.40% 14.30% 

PV days trapped 18 31 20 

LH days trapped 10 24 20 

PV total alates released (all colonies) 1737 7243 8732 

LH total alates released (all colonies) 5321 17573 15744 

PV average alates released by colony 289.5 637.9 671.69 

LH average alates released by colony 886.8 1367.8 1326.4 

PV alate investment total (mg) 

5963.91 

(dry) 74699.1 103052.17 

LH alate investment total 

32869.2 

(dry) 227395.9 246250.3 

PV alate investment colony average 

1987.97 

(dry) 6790.8 7927.1 

LH alate investment colony average 

6573.84 

(dry) 17492 17589.3 

percent investment difference 331% 257.5837898 221.8882063 

PV male investment total 

4654.24 

(dry) 53640.8 57620.6 

LH male investment total 

12063.5 

(dry) 110875.7 138585 

PV male investment colony average 

1551.41 

(dry) 4876.4 4432.6 

LH male investment colony average 

2412.71 

(dry) 8528.9 9898.93 

PV percent male investment average 84 71.8 61.7 

LH percent male investment average 36.8 48.8 59.1 

PV survey area no data 36955m² 36955m² 

LH survey area no data 26509.9m² 40635.3m² 

PV colony number total no data 47 55 

LH colony number total no data 27 34 
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PV colony density no data 1190 per km² 1488 per km2 

LH colony density no data 905 per km² 837 per km² 

PV nearest neighbor no data 15.47 m 16 m 

LH nearest neighbor no data 17.33 m 19.75m 

PV percent non repro trapped colonies 60% 45% 7.10% 

LH percent non repro trapped colonies 14.30% 7.10% 0% 

PV percent non reproductive all 

colonies no data no data 72.30% 

LH percent non reproductive all 

colonies no data no data 2.94% 
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APPENDIX C 

ANOVA FULL RESULTS WITH INTERACTIONS FOR COLONIES IN MIXED 

POPULATION, 2015 & 2016 
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Multifactorial Type II ANOVA results for nearest neighbor distance 

Nearest Neighbor Sum of Squares Df F P 

Worker activity 5.915 1 0.2965 0.5953 

Social strategy 3.288 1 0.1649 0.6913 

Reproductive investment 20.774 1 1.0415 0.3261 

Activity:strategy 34.053 1 1.7073 0.2140 

Activity:investment 59.062 1 2.9611 0.1090 

Strategy:investment 0.264 1 0.0132 0.9101 

Activity:strat:investment 44.464 1 2.2292 0.1593 

 

Multifactorial Type II ANOVA results for queen and male mass 

Male mass Sum of Squares Df F P 

Worker activity 0.01274 1 0.0383 0.8514 

Area 0.00015 1 0.0004 0.9839 

Social strategy 0.85673 2 1.2871 0.3427 

Reproductive investment 0.01189 1 0.0357 0.8563 

Activity:area 1.74492 1 5.2430 0.0619 

Activity:strategy 0.07916 1 0.2378 0.6431 

Area:strategy 0.85514 1 2.5695 0.1601 

Activity:investment 0.41317 1 1.2415 0.3078 

Area:investment 0.00160 1 0.0048 0.9470 

Strategy:investment 0.23335 1 0.7012 0.4345 

Activity:area:strategy 0.10973 1 0.3297 0.5867 
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Activity:area:investment 0.09514 1 0.2859 0.6121 

Activity:strategy:investment 0.02740 1 0.0823 0.7838 

Area:structure:investment 1.05214 1 3.1614 0.1257 

Queen mass Sum of Squares Df F P 

Worker activity 0.0463 1 0.0783 0.7890 

Area 0.8686 1 1.4706 0.2708 

Social strategy 1.6845 2 1.4259 0.3114 

Reproductive investment 0.3739 1 0.6331 0.4565 

Activity:area 1.0521 1 1.7813 0.2304 

Activity: strategy 0.0230 1 0.0389 0.8501 

Area: strategy 0.7510 1 1.2714 0.3026 

Activity:investment 0.0563 1 0.0953 0.7680 

Area:investment 0.1497 1 0.2534 0.6326 

Structure:investment 0.7638 1 1.2932 0.2988 

Activity:area: strategy 0.0487 1 0.0825 0.7836 

Activity:area:investment 0.9890 1 1.6743 0.2433 

Activity: strategy:investment 0.1587 1 0.2687 0.6228 

Area:strategy:investment 0.0915 1 0.1549 0.7075 

 

 

Multifactorial Type II ANOVA results for sex ratios of alate output and investment 

Male output sex ratio Sum of Squares Df F P 
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Worker activity 0.0881 1 2.6354 0.1229 

Social strategy 0.0204 1 0.6089 0.4459 

Activity:strategy 0.0016 1 0.0466 0.8316 

Male investment sex 

ratio 

Sum of Squares Df F P 

Worker activity 0.0557 1 1.7518 0.2032 

Social strategy 0.0086 1 0.2688 0.6108 

Activity:strategy 0.0025 1 0.0786 0.7826 
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APPENDIX D 

SEQUENCES FOR UNPUBLISHED PRIMERS 
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Forward and reverse sequences for unpublished primers used in this study: 

E9-F  TTTTAGACCATTTTAACG 

E9-R  AAGATTTTCATCGCGAAACG 

 

E10-F  TGATTCAACGAGGTGAGC 

E10-R  TTTGTTTCCTTGCGTTAGGG 

 

E19-F  AGAGTCACCTTGGCGCTTC 

E19-R  GAATCATCTGCCTCCGGTAA 

 

E20-F  CTTTCGCGTACTCATCGTCA 

E20-R  ATCTGCGATCTTTGGGAGAA 

 

B16-F  AATGAACCGATCATGTTG 

B16-R  CGAATTTAACGCAATTTGGAA 
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APPENDIX E 

CASTE RATIO INVESTMENT BY POLYGYNOUS QUEENS, DIVIDED BY YEAR 
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Worker and reproductive partitioning by polygynous queens, divided by mating flights. 

Highlighted cells indicate significant deviation from expected output. 

Colony 

1 

     

2012 males queens workers total 
 

Q1 47 3 0 50 
 

% Q1 0.94 0.06 0 
  

% total 0.66197183 0.1875 0 
 

a=.00426 

cell 

chi2 

15.4514 1.5133 17.2932 
 

critical value = 

2.86 

residual 3.93082689 1.2301626 4.15850935 
  

Q2 18 10 18 46 
 

% Q2 0.39130435 0.2173913 0.39130435 
  

% total 0.25352113 0.625 0.39130435 
  

cell 

chi2 

1.7505 3.6045 0.2746 
  

residual 1.32306462 1.8985521 0.5240229 
  

Q3 6 0 13 19 
 

% Q3 0.31578947 0 0.68421053 
  

% total 0.08450704 0 0.2826087 
  

cell 

chi2 

1.6922 2.2857 6.2888 
  

residual 1.30084588 1.5118532 2.50774799 
  

Q4 0 3 15 18 
 

% Q4 0 0.1666667 0.83333333 
  

% total 0 0.1875 0.32608696 
  

cell 

chi2 

9.609 0.3217 12.3669 
  

residual 3.09983871 0.567186 3.51666035 
  

total 71 16 46 
  

      

2015 males queens workers total 
 

Q1 12 0 0 12 
 

% Q1 1 0 0 
  

% total 0.42857143 0 0 
  

cell 

chi2 

11.5238 3.33 4 
  

residual 3.3946723 1.8248288 2 
  

Q2 8 3 5 16 
 

% Q2 0.5 0.1875 0.3125 
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% total 0.28571429 0.15 0.20833333 
  

cell 

chi2 

0.508 0.4694 0.0208 
  

residual 0.71274119 0.6851277 0.14422205 
  

Q3 6 10 9 25 
 

% Q3 0.24 0.4 0.36 
  

% total 0.21428571 0.5 0.375 
  

cell 

chi2 

1.4251 1.344 0.0533 
  

residual 1.19377552 1.1593101 0.23086793 
  

Q4 2 7 10 19 
 

% Q4 0.10526316 0.3684211 0.52631579 
  

% total 0.07142857 0.35 0.41666667 
  

cell 

chi2 

3.9302 0.562 2.1228 
  

residual 1.9824732 0.7496666 1.45698318 
  

total 28 20 24 
  

      

2016 males queens workers total 
 

Q1 18 2 4 24 
 

% Q1 0.75 0.0833333 0.16666667 
  

% total 0.31578947 0.0869565 0.14814815 
  

cell 

chi2 

2.0268 1.8937 0.6667 
  

residual 1.42365726 1.3761177 0.81651699 
  

Q2 18 9 6 33 
 

% Q2 0.54545455 0.2727273 0.18181818 
  

% total 0.31578947 0.3913043 0.22222222 
  

cell 

chi2 

0.0301 0.4274 0.7353 
  

residual 0.17349352 0.6537584 0.85749636 
  

Q3 21 5 11 37 
 

% Q3 0.56756757 0.1351351 0.2972973 
  

% total 0.36842105 0.2173913 0.40740741 
  

cell 

chi2 

0.0642 1.0524 0.3311 
  

residual 0.25337719 1.0258655 0.5754129 
  

Q4 0 7 6 13 
 

% Q4 0 0.5384615 0.46153846 
  

% total 0 0.3043478 0.22222222 
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cell 

chi2 

6.9815 6.4675 2.3269 
  

residual 2.64225283 2.543128 1.52541798 
  

total 57 23 27 
  

 

Colony 

2 

     

2013 males no queens 

flew 

workers total 
 

Q1 8 0 8 16 
 

% Q1 0.5 0 0.5 
  

% total 0.112676 
 

0.177778 
 

a=.00426 

cell 

chi2 

0.3283 
 

0.518 
 

critical value = 

2.86 

residual 0.572975 0 0.719722 
  

Q2 18 0 13 31 
 

% Q2 0.580645 0 0.419355 
  

% total 0.253521 
 

0.288889 
  

cell 

chi2 

0.05 
 

0.0789 
  

residual 0.223607 0 0.280891 
  

Q3 32 0 7 39 
 

% Q3 0.820513 0 0.179487 
  

% total 0.450704 
 

0.155556 
  

cell 

chi2 

2.7685 
 

4.3681 
  

residual 1.663881 0 2.09 
  

Q4 13 0 17 30 
 

% Q4 0.433333 0 0.566667 
  

% total 0.183099 
 

0.377778 
  

cell 

chi2 

1.5658 
 

2.4705 
  

residual 1.251319 0 1.571782 
  

total 71 0 45 
  

      

2014 males queens workers total 
 

Q1 18 3 11 32 
 

% Q1 0.5625 0.09375 0.34375 
  

% total 0.327273 0.15 0.22 
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cell 

chi2 

1.0914 0.8778 0.2531 
  

residual 1.044701 0.93691 0.50309 
  

Q2 13 5 13 31 
 

% Q2 0.419355 0.16129 0.419355 
  

% total 0.236364 0.25 0.26 
  

cell 

chi2 

0.03 0.0003 0.029 
  

residual 0.173205 0.017321 0.170294 
  

Q3 6 4 5 15 
 

% Q3 0.4 0.266667 0.333333 
  

% total 0.109091 0.2 0.1 
  

cell 

chi2 

0.0545 1.0667 0.1667 
  

residual 0.233452 1.032812 0.408289 
  

Q4 18 8 21 47 
 

% Q4 0.382979 0.170213 0.446809 
  

% total 0.327273 0.4 0.42 
  

cell 

chi2 

0.3473 0.0306 0.2574 
  

residual 0.589322 0.174929 0.507346 
  

total 55 20 50 
  

      

2015 males queens workers total 
 

Q1 2 3 8 13 
 

% Q1 0.153846 0.230769 0.615385 
  

% total 0.095238 0.15 0.347826 
  

cell 

chi2 

1.2034 0.2779 2.3709 
  

residual 1.096996 0.527162 1.539773 
  

Q2 6 7 5 18 
 

% Q2 0.333333 0.388889 0.277778 
  

% total 0.285714 0.35 0.217391 
  

cell 

chi2 

0.0015 0.3361 0.3335 
  

residual 0.03873 0.579741 0.577495 
  

Q3 8 4 0 12 
 

% Q3 0.666667 0.333333 0 
  

% total 0.380952 0.2 0 
  

cell 

chi2 

4.1915 0.0167 4.3125 
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residual 2.047315 0.129228 2.076656 
  

Q4 5 6 10 21 
 

% Q4 0.238095 0.285714 0.47619 
  

% total 0.238095 0.3 0.434783 
  

cell 

chi2 

0.5187 0.0482 0.7974 
  

residual 0.720208 0.219545 0.892973 
  

total 21 20 23 
  

      

2016 males queens workers total 
 

Q1 0 0 0 0 
 

% Q1 
     

% total 
     

cell 

chi2 

     

residual 
     

Q2 12 8 14 34 
 

% Q2 0.352941 0.235294 0.411765 
  

% total 0.428571 0.444444 0.636364 
  

cell 

chi2 

0.2857 0.1111 0.8182 
  

residual 0.534509 0.333317 0.904544 
  

Q3 6 4 2 12 
 

% Q3 0.5 0.333333 0.166667 
  

% total 0.214286 0.222222 0.090909 
  

cell 

chi2 

0.2269 0.2135 0.9127 
  

residual 0.47634 0.462061 0.955353 
  

Q4 10 6 6 22 
 

% Q4 0.454545 0.272727 0.272727 
  

% total 0.357143 0.333333 0.272727 
  

cell 

chi2 

0.0978 0.0053 0.1755 
  

residual 0.31273 0.072801 0.418927 
  

total 28 18 22 
  

 

Colony 

3 

     

2013 males queens workers total 
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Q1 14 8 0 22 
 

% Q1 0.636364 0.363636 0 
 

a=.0034 

% total 0.259259 0.186047 0 
 

critical value = 

2.93 

cell 

chi2 

3.0727 0.1406 6.1926 
  

residual 1.752912 0.374967 2.488494 
  

Q2 15 13 12 40 
 

% Q2 0.375 0.325 0.3 
  

% total 0.277778 0.302326 0.315789 
  

cell 

chi2 

0.0625 0.0053 0.0487 
  

residual 0.25 0.072801 0.220681 
  

Q3 5 6 0 11 
 

% Q3 0.454545 0.545455 0 
  

% total 0.092593 0.139535 0 
  

cell 

chi2 

0.0818 1.7785 3.0963 
  

residual 0.286007 1.333604 1.759631 
  

Q4 8 4 14 26 
 

% Q4 0.307692 0.153846 0.538462 
  

% total 0.148148 0.093023 0.368421 
  

cell 

chi2 

0.5538 2.2135 6.0999 
  

residual 0.744177 1.487784 2.469798 
  

Q5 12 12 12 36 
 

% Q5 0.333333 0.333333 0.333333 
  

% total 0.222222 0.27907 0.315789 
  

cell 

chi2 

0.4 0.0248 0.3439 
  

residual 0.632456 0.15748 0.58643 
  

total 54 43 38 
  

 

Colony 

4 

     

2013 males queens workers total 
 

Q1 34 23 40 97 
 

% Q1 0.350515 0.237113 0.412371 
  

% total 0.62963 0.676471 0.851064 
 

a=.0085 
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cell 

chi2 

0.5938 0.0837 1.1492 
 

critical value = 

2.63 

residual 0.770584 0.28931 1.072007 
  

Q2 20 11 7 38 
 

% Q2 0.526316 0.289474 0.184211 
  

% total 0.37037 0.323529 0.148936 
  

cell 

chi2 

1.5159 0.2136 2.9334 
  

residual 1.231219 0.462169 1.712717 
  

total 54 34 47 
  

      

2014 males queens workers total 
 

Q1 27 32 43 102 
 

% Q1 0.264706 0.313725 0.421569 
  

% total 0.45 0.744186 0.754386 
  

cell 

chi2 

3.3088 0.7677 1.2216 
  

residual 1.819011 0.876185 1.10526 
  

Q2 33 11 14 58 
 

% Q2 0.568966 0.189655 0.241379 
  

% total 0.55 0.255814 0.245614 
  

cell 

chi2 

5.819 1.3501 2.1483 
  

residual 2.41226 1.161938 1.465708 
  

total 60 43 57 
  

      

2015 males queens workers total 
 

Q1 38 35 22 95 
 

% Q1 0.4 0.368421 0.231579 
  

% total 0.633333 0.833333 0.407407 
  

cell 

chi2 

0.0585 3.4717 3.6027 
  

residual 0.241868 1.86325 1.898078 
  

      

Q2 22 7 32 61 
 

% Q2 0.360656 0.114754 0.52459 
  

% total 0.366667 0.166667 0.592593 
  

cell 

chi2 

0.091 5.4067 5.6108 
  

residual 0.301662 2.325231 2.368713 
  

total 60 42 54 
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Colony 

5 

     

2014 males queens workers total 
 

Q1 30 23 14 67 
 

% Q1 0.447761 0.343284 0.208955 
  

% total 0.5 0.425926 0.378378 
 

a=.0085 

cell 

chi2 

0.4285 0.0385 0.3559 
 

critical value = 

2.63 

residual 0.654599 0.196214 0.596574 
  

Q2 30 31 23 84 
 

% Q2 0.357143 0.369048 0.27381 
  

% total 0.5 0.574074 0.621622 
  

cell 

chi2 

0.3418 0.0307 0.2839 
  

residual 0.584637 0.175214 0.532823 
  

total 60 54 37 
  

      

2015 males queens workers total 
 

Q1 14 7 23 44 
 

% Q1 0.318182 0.159091 0.522727 
  

% total 0.466667 0.368421 0.793103 
  

cell 

chi2 

0.5049 1.2897 2.696 
  

residual 0.710563 1.13565 1.64195 
  

Q2 16 12 6 34 
 

% Q2 0.470588 0.352941 0.176471 
  

% total 0.533333 0.631579 0.206897 
  

cell 

chi2 

0.6534 1.669 3.4889 
  

residual 0.808332 1.291898 1.86786 
  

total 30 19 29 
  

 

Colony 

6 

     

2014 males queens workers total 
 

Q1 9 8 0 17 
 

% Q1 0.529412 0.470588 0 
 

a=.0021 
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% total 0.310345 0.363636 0 
 

critical value = 

3.08 

cell 

chi2 

0.5439 1.3215 4.6143 
  

residual 0.737496 1.149565 2.148092 
  

Q2 3 2 3 8 
 

% Q2 0.375 0.25 0.375 
  

% total 0.103448 0.090909 0.157895 
  

cell 

chi2 

0.0298 0.1052 0.3162 
  

residual 0.172627 0.324345 0.562317 
  

Q3 5 0 4 9 
 

% Q3 0.555556 0 0.444444 
  

% total 0.172414 0 0.210526 
  

cell 

chi2 

0.4336 2.8286 0.9926 
  

residual 0.658483 1.681844 0.996293 
  

Q4 4 1 3 8 
 

% Q4 0.5 0.125 0.375 
  

% total 0.137931 0.045455 0.157895 
  

cell 

chi2 

0.1419 0.912 0.3162 
  

residual 0.376696 0.954987 0.562317 
  

Q5 2 4 0 6 
 

% Q5 0.333333 0.666667 0 
  

% total 0.068966 0.181818 0 
  

cell 

chi2 

0.0949 2.3706 1.6286 
  

residual 0.308058 1.539675 1.276166 
  

Q6 2 4 6 12 
 

% Q6 0.166667 0.333333 0.5 
  

% total 0.068966 0.181818 0.315789 
  

cell 

chi2 

1.776 0.0139 2.3098 
  

residual 1.332666 0.117898 1.519803 
  

Q7 2 0 2 4 
 

% Q7 0.5 0 0.5 
  

% total 0.068966 0 0.105263 
  

cell 

chi2 

0.0709 1.2571 0.7699 
  

residual 0.266271 1.121205 0.877439 
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Q8 2 3 1 6 
 

% Q8 0.333333 0.5 0.166667 
  

% total 0.068966 0.136364 0.052632 
  

cell 

chi2 

0.0949 0.6584 0.2426 
  

residual 0.308058 0.811419 0.492544 
  

total 29 22 19 
  

      

      

2015 males queens workers total 
 

Q1 3 7 3 13 
 

% Q1 0.230769 0.538462 0.230769 
  

% total 0.125 0.291667 0.130435 
  

cell 

chi2 

0.4424 1.545 0.3484 
  

residual 0.665132 1.24298 0.590254 
  

Q2 4 4 6 14 
 

% Q2 0.285714 0.285714 0.428571 
  

% total 0.166667 0.166667 0.26087 
  

cell 

chi2 

0.1133 0.1133 0.4731 
  

residual 0.336601 0.336601 0.687823 
  

Q3 1 1 0 2 
 

% Q3 0.5 0.5 0 
  

% total 0.041667 0.041667 0 
  

cell 

chi2 

0.1552 0.1552 0.6479 
  

residual 0.393954 0.393954 0.804922 
  

Q4 3 1 2 6 
 

% Q4 0.5 0.166667 0.333333 
  

% total 0.125 0.041667 0.086957 
  

cell 

chi2 

0.4657 0.5212 0.0016 
  

residual 0.682422 0.721942 0.04 
  

Q5 4 0 0 4 
 

% Q5 1 0 0 
  

% total 0.166667 0 0 
  

cell 

chi2 

5.1854 1.3521 1.2958 
  

residual 2.277147 1.162798 1.138332 
  

Q6 3 0 3 6 
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% Q6 0.5 0 0.5 
  

% total 0.125 0 0.130435 
  

cell 

chi2 

0.4657 2.0282 0.5741 
  

residual 0.682422 1.424149 0.757694 
  

Q7 6 0 0 6 
 

% Q7 1 0 0 
  

% total 0.25 0 0 
  

cell 

chi2 

7.7782 2.0282 1.9437 
  

residual 2.788942 1.424149 1.394166 
  

Q8 0 11 9 20 
 

% Q8 0 0.55 0.45 
  

% total 0 0.458333 0.391304 
  

cell 

chi2 

6.7606 2.6585 0.981 
  

residual 2.600115 1.630491 0.990454 
  

total 24 24 23 
  

 

 

Colony 

7 

     

2015 males queens workers total 
 

Q1 11 7 5 23 
 

% Q1 0.478261 0.304348 0.217391 
  

% total 0.37931 0.28 0.2 
 

a=.0057 

cell 

chi2 

0.7744 0.0107 0.7133 
 

critical value = 

2.76 

residual 0.88 0.103441 0.844571 
  

Q2 9 4 6 19 
 

% Q2 0.473684 0.210526 0.315789 
  

% total 0.310345 0.16 0.24 
  

cell 

chi2 

0.5881 0.6737 0 
  

residual 0.766877 0.820792 0 
  

Q3 9 14 14 37 
 

% Q3 0.243243 0.378378 0.378378 
  

% total 0.310345 0.56 0.56 
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cell 

chi2 

1.5459 0.4483 0.4483 
  

residual 1.243342 0.669552 0.669552 
  

total 29 25 25 
  

 

Colony 

8 

     

2015 males queens workers total 
 

Q1 5 13 10 28 
 

% Q1 0.178571 0.464286 0.357143 
 

a=.0085 

% total 0.166667 0.565217 0.4 
 

critical value = 

2.63 

cell 

chi2 

3.0907 2.7254 0.1172 
  

residual 1.758039 1.650879 0.342345 
  

Q2 25 10 15 50 
 

% Q2 0.5 0.2 0.3 
  

% total 0.833333 0.434783 0.6 
  

cell 

chi2 

1.7308 1.5262 0.0656 
  

residual 1.315599 1.235395 0.256125 
  

total 30 23 25 
  

 

Colony 

9 

     

2015 males queens workers total 
 

Q1 26 8 10 44 
 

% Q1 0.590909 0.181818 0.227273 
 

a=.0057 

% total 0.481481 0.195122 0.222222 
 

critical value = 

2.76 

cell 

chi2 

4.8031 1.8525 1.2136 
  

residual 2.191598 1.361066 1.101635 
  

Q2 17 16 14 47 
 

% Q2 0.361702 0.340426 0.297872 
  

% total 0.314815 0.390244 0.311111 
  

cell 

chi2 

0.0703 0.3631 0.0811 
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residual 0.265141 0.602578 0.284781 
  

Q3 11 17 21 49 
 

% Q3 0.22449 0.346939 0.428571 
  

% total 0.203704 0.414634 0.466667 
  

cell 

chi2 

3.3021 0.4894 1.75 
  

residual 1.817168 0.699571 1.322876 
  

total 54 41 45 
  

 

 

Colony 

10 

     

2014 males queens workers total 
 

Q1 6 10 14 30 
 

% Q1 0.2 0.333333 0.466667 
  

% total 0.214286 0.37037 0.636364 
 

a=.00426 

cell 

chi2 

2.2091 0.0257 3.4381 
 

critical value = 

2.86 

residual 1.486304 0.160312 1.854211 
  

Q2 11 1 0 12 
 

% Q2 0.916667 0.083333 0 
  

% total 0.392857 0.037037 0 
  

cell 

chi2 

10.928 2.4454 3.4286 
  

residual 3.305753 1.563777 1.851648 
  

Q3 4 7 2 13 
 

% Q3 0.307692 0.538462 0.153846 
  

% total 0.142857 0.259259 0.090909 
  

cell 

chi2 

0.1119 1.3077 0.7912 
  

residual 0.334515 1.143547 0.889494 
  

Q4 7 9 6 22 
 

% Q4 0.318182 0.409091 0.272727 
  

% total 0.25 0.333333 0.272727 
  

cell 

chi2 

0.125 0.2143 0.013 
  

residual 0.353553 0.462925 0.114018 
  

total 28 27 22 
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2016 males queens workers total 
 

Q1 12 8 7 27 
 

% Q1 0.444444 0.296296 0.259259 
  

% total 0.413793 0.32 0.318182 
  

cell 

chi2 

0.2796 0.0875 0.0851 
  

residual 0.528772 0.295804 0.291719 
  

Q2 0 2 2 4 
 

% Q2 0 0.5 0.5 
  

% total 0 0.08 0.090909 
  

cell 

chi2 

1.5263 0.3558 0.6124 
  

residual 1.235435 0.59649 0.78256 
  

Q3 5 0 3 8 
 

% Q3 0.625 0 0.375 
  

% total 0.172414 0 0.136364 
  

cell 

chi2 

1.2423 2.6316 0.2022 
  

residual 1.114585 1.622221 0.449667 
  

Q4 12 15 10 37 
 

% Q4 0.324324 0.405405 0.27027 
  

% total 0.413793 0.6 0.454545 
  

cell 

chi2 

0.3179 0.6575 0.0471 
  

residual 0.563826 0.810864 0.217025 
  

total 29 25 22 
  

 

 

Colony 

11 

     

2015 males queens workers total 
 

Q1 2 11 9 22 
 

% Q1 0.090909 0.5 0.409091 
 

a=.0024 

% total 0.068966 0.55 0.5 
 

critical value = 

3.04 

cell 

chi2 

5.9425 2.9922 1.615 
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residual 2.437724 1.729798 1.270827 
  

Q2 1 0 0 1 
 

% Q2 1 0 0 
  

% total 0.034483 0 0 
  

cell 

chi2 

0.7432 0.2985 0.2687 
  

residual 0.86209 0.546352 0.518363 
  

Q3 3 2 3 8 
 

% Q3 0.375 0.25 0.375 
  

% total 0.103448 0.1 0.166667 
  

cell 

chi2 

0.0618 0.0631 0.3368 
  

residual 0.248596 0.251197 0.580345 
  

Q4 13 6 3 22 
 

% Q4 0.590909 0.272727 0.136364 
  

% total 0.448276 0.3 0.166667 
  

cell 

chi2 

1.27 0.049 1.4332 
  

residual 1.126943 0.221359 1.197163 
  

Q5 5 1 2 8 
 

% Q5 0.625 0.125 0.25 
  

% total 0.172414 0.05 0.111111 
  

cell 

chi2 

0.6825 0.8068 0.0104 
  

residual 0.826136 0.89822 0.10198 
  

Q6 2 0 0 2 
 

% Q6 1 0 0 
  

% total 0.068966 0 0 
  

cell 

chi2 

1.4864 0.597 0.5373 
  

residual 1.21918 0.772658 0.733008 
  

Q7 3 0 1 4 
 

% Q7 0.75 0 0.25 
  

% total 0.103448 0 0.055556 
  

cell 

chi2 

0.9296 1.194 0.0052 
  

residual 0.964158 1.092703 0.072111 
  

total 29 20 18 
  

      

2016 males queens workers total 
 

Q1 8 3 2 13 
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% Q1 0.615385 0.230769 0.153846 
  

% total 0.266667 0.15 0.083333 
  

cell 

chi2 

1.4139 0.0751 1.1649 
  

residual 1.189075 0.274044 1.079305 
  

Q2 4 2 5 11 
 

% Q2 0.363636 0.181818 0.454545 
  

% total 0.133333 0.1 0.208333 
  

cell 

chi2 

0.0473 0.3184 0.5751 
  

residual 0.217486 0.564269 0.758353 
  

Q3 6 9 3 18 
 

% Q3 0.333333 0.5 0.166667 
  

% total 0.2 0.45 0.125 
  

cell 

chi2 

0.2306 3.5149 1.3759 
  

residual 0.480208 1.874807 1.172988 
  

Q4 0 1 3 4 
 

% Q4 0 0.25 0.75 
  

% total 0 0.05 0.125 
  

cell 

chi2 

1.6216 0.0061 2.2348 
  

residual 1.273421 0.078102 1.494925 
  

Q5 3 0 1 4 
 

% Q5 0.75 0 0.25 
  

% total 0.1 0 0.041667 
  

cell 

chi2 

1.1716 1.0811 0.0681 
  

residual 1.082405 1.03976 0.26096 
  

Q6 1 2 0 3 
 

% Q6 0.333333 0.666667 0 
  

% total 0.033333 0.1 0 
  

cell 

chi2 

0.0384 1.7441 0.973 
  

residual 0.195959 1.320644 0.986408 
  

Q7 8 3 10 21 
 

% Q7 0.380952 0.142857 0.47619 
  

% total 0.266667 0.15 0.416667 
  

cell 

chi2 

0.031 1.2614 1.4934 
  

residual 0.176068 1.123121 1.222047 
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total 30 20 24 
  

 


