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ABSTRACT  

   

Lower-limb prosthesis users have commonly-recognized deficits in gait and 

posture control. However, existing methods in balance and mobility analysis fail to 

provide sufficient sensitivity to detect changes in prosthesis users' postural control and 

mobility in response to clinical intervention or experimental manipulations and often fail 

to detect differences between prosthesis users and non-amputee control subjects. This 

lack of sensitivity limits the ability of clinicians to make informed clinical decisions and 

presents challenges with insurance reimbursement for comprehensive clinical care and 

advanced prosthetic devices. These issues have directly impacted clinical care by 

restricting device options, increasing financial burden on clinics, and limiting support for 

research and development. This work aims to establish experimental methods and 

outcome measures that are more sensitive than traditional methods to balance and 

mobility changes in prosthesis users. Methods and analysis techniques were developed to 

probe aspects of balance and mobility control that may be specifically impacted by use of 

a prosthesis and present challenges similar to those experienced in daily life that could 

improve the detection of balance and mobility changes. Using the framework of cognitive 

resource allocation and dual-tasking, this work identified unique characteristics of 

prosthesis users’ postural control and developed sensitive measures of gait variability. 

The results also provide broader insight into dual-task analysis and the motor-cognitive 

response to demanding conditions. Specifically, this work identified altered motor 

behavior in prosthesis users and high cognitive demand of using a prosthesis. The 

residual standard deviation method was developed and demonstrated to be more effective 

than traditional gait variability measures at detecting the impact of dual-tasking. 
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Additionally, spectral analysis of the center of pressure while standing identified altered 

somatosensory control in prosthesis users. These findings provide a new understanding of 

prosthetic use and new, highly sensitive techniques to assess balance and mobility in 

prosthesis users. 
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CHAPTER 1 

INTRODUCTION 

It was estimated that in 2005 over 1 million people in the US were living with 

lower limb loss, with a major amputation accounting for over half [1]. By 2050 this 

number is expected to double, primarily due to higher rates of dysvascular disease [1]. 

Other causes of amputation include trauma, infection, and treatment for bone and joint 

cancer, along with limb deficiency due to a congenital defect. These non-vascular 

complications are the leading causes of amputation among younger persons, including 

military personnel [1, 2]. While the loss of a limb results in a major limitation of 

mobility, the use of a prosthetic device can restore much of the lost function of the 

missing limb. However, there is currently no prosthetic device that restores mobility to 

what is considered unimpaired function. In addition to the mechanical limitations of a 

prosthetic foot or knee, lower-limb amputees can also experience skin irritation and 

breakdowns, joint pain, and an increased risk of falls [2-7]. Thus, many amputees express 

that they experience a reduced quality of life due to their amputation [3, 4, 8].  

Research in the area of lower-limb amputation and prosthetic use often works to 

identify risk factors for reduced quality of life to and improve understanding of prosthetic 

devices to drive the development of better devices. However, a review of the current state 

of the field reveals several shortcomings in utility of research practices being employed 

to characterize prosthetic use [9-14]. Much of the current biomechanics research focuses 

on standard kinematic and kinetic parameters of amputee gait and posture [15, 16]. 

Additionally, the research tends to have a strong focus on the prosthetic device and less 

emphasis on user capabilities and the manner by which they use the prosthetic device. 
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While this body of work has provided a strong understanding of the mechanics of 

prosthetic use, current methods fail to provide the sensitivity and specificity needed to 

identify differences in prosthetic componentry or increase our understanding of the 

impact of prosthetic use on control of gait and posture beyond basic mechanics [13, 17-

21]. Advances in prosthetic design are limited by the lack of information on how 

prosthesis users are impacted by the device. Additionally, clinicians and payer sources 

lack measures that effectively distinguish between prosthetic components and assess the 

effectiveness for different users [13, 17-21]. These issues need to be addressed to 

improve guidelines for selecting and approving prosthetic prescription and to identify 

potentially impactful areas of innovation [2, 9-11, 13].  

To address these engineering and clinical challenges we must expand our 

knowledge on prosthetic performance beyond the current scope of the field and develop 

new measures to assess prosthetic characteristics that consider the prosthesis user 

response to the device along with the mechanical features. One unaddressed area of 

exploration is how prosthetic use alters allocation of cognitive resources for motor 

control. For example, prosthesis users may allocate substantial cognitive resources to 

achieving reasonable performance while standing or walking, and use of the resources 

may have implications for behavior in more challenging situations. The evaluation of 

motor control strategy in prosthesis users goes beyond evaluation of the mechanical 

impact of the prosthetic devices and examines how prosthesis users adapt behavior to 

accommodate the mechanical changes imposed by using a prosthesis. The understanding 

of motor control strategy in other populations has proved useful for developing research 

protocols and interpreting findings [22-25].  
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This dissertation examines differences in cognitive resource allocation and motor 

control strategies in lower-limb prosthesis users during walking and standing to establish 

experimental methods and outcome measures that are more sensitive than traditional 

methods to balance and mobility changes. Increased knowledge of the motor control 

strategy along with the newly developed assessment protocols may be of benefit to both 

engineers and clinical practitioners in improving prosthetic designs, making evidence 

based decisions in clinical practice, and providing justification to payer sources. 

Areas of impact 

Prosthetic design 

With the introduction of multiaxial dynamic-response feet and microprocessor 

knees in the 1990s, the field of lower-limb prosthetics saw major growth in the offerings 

for lower-limb amputees. As reported on opedge.com as in the fall of 2017, there are 

more than 13 major companies offering lower-limb products in the US and more abroad. 

Despite the large number of companies, there is little diversity between their product 

offerings. For example, most companies offer multiple options for dynamic-response feet 

that universally incorporate a carbon fiber spring for energy storage and return. Attempts 

to improve the design include adding elements to provide shock absorption and rotation. 

However, most studies find little difference between feet within the dynamic-response 

category or between dynamic response and more traditional feet [11, 12, 26-31]. 

Additionally, user preference for a type of foot is often mixed and predictors of 

preference are varied [28, 29, 32, 33]. The abundance of similar products highlights a 

plateau in design advancement for non-instrumented componentry. There is a need for 

greater understanding of how users are impacted by their prosthesis outside of standard 
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gait measures in order to identify what elements of prosthetic design change would offer 

the greatest benefit [2, 13].   

Clinical practice 

The abundance of similar componentry, along with limited information on 

functional differences, leaves clinicians few evidence-based guidelines for selecting the 

best prescription for each individual patient [2, 9, 12, 34, 35]. Since the initial prosthesis 

is prescribed before patients are able to ambulate, the current extent of the prescription 

guidelines rely on weight and projected activity level, with many choices for components 

within these categories [34]. Thus, clinicians rely on their clinical experience, perception 

of the patient’s health and motivation, past experience with a product, and personal 

preference when selecting prosthetic componentry [9, 35]. Also, it can be difficult to 

change prescriptions if the user exceeds the projected activity level without measures that 

capture the improved function. Clinicians need better information about the functional 

differences between products, but, more importantly, they need improved understanding 

of their patient’s abilities in order to assess which product would best serve individual 

needs [12, 35].  

Similarly, physical therapists working with prosthesis users need better 

understanding of the user-prosthesis interaction in order to best design a treatment plan 

for the individual patient. In designing therapy protocols, there are few evidence-based 

guidelines specific to lower-limb amputees to guide treatment decisions once the patient 

has received a prosthesis [2]. Improved understanding of how use of a prosthesis 

uniquely effects motor control strategy may improve therapists’ ability to tailor protocols 
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to lower-limb prosthesis users and provide more justification for providing rehabilitation 

services [15, 36]. 

Payer sources 

The advances in microprocessor and other aspects of prosthetic componentry may 

improve the mobility afforded by a prosthesis [13]. Users often express a preference for 

these more advanced components, however in many cases there is insufficient empirical 

evidence of improved function [10, 13]. As these advances often come with increased 

cost, the lack of strong evidence to support their benefit limits the justification for 

approval of higher cost components [12, 13]. Even microprocessor knees, which have 

been on the market for years and are considered an industry standard, require substantial 

justification for prescription, often resulting in audits and delayed reimbursement, and are 

still inaccessible to are large portion of the lower-limb amputee population [13, 37]. A 

recent market analysis suggests that issues with payment for advanced componentry is 

one of the primary factors limiting the growth of the prosthetic field [38]. This places 

strain on clinicians who are trying to balance the burden of providing the best care with 

the cost of providing the product, while also providing companies with lower reward for 

developing higher end products [9]. All of which results in reduced benefit to the patient.  

The impact of insufficient research that identifies componentry benefits perceived 

by users was particularly apparent in the 2015 Durable Medical Equipment (DME) and 

Medicare Administrative Contractor (MAC) release of a joint proposal for large changes 

to the “Local Coverage Determination and Policy Article” applicable to Medicare 

reimbursement for lower extremity prosthetics. Medicare billing and reimbursement 

protocols are accepted as the standard for private insurance companies. One notable 
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change would be removal of billing options for elevated vacuum suspension systems, 

specifically citing lack of empirical evidence supporting their use. While studies have 

failed to substantially illustrate the benefits of these systems, their use has become 

common throughout the prosthetic community due to patient preference and clinician 

perceived benefits of the suspension style [20, 21]. This highlights one of many examples 

where lack of sensitivity in research practices are hindering patient access to prosthetic 

componentry that is strongly supported by clinical observation. Since standard practice in 

prosthetic research has failed to empirically identify the benefits expressed by users, it is 

crucial for new protocols to be established that examine factors beyond standard gait 

analysis and consider other aspects of gait and posture control that could capture and 

explain the subjective preferences expressed by users.   

Understanding motor control in prosthesis users 

Motor control strategies determine how people utilize their sensory system to 

assess their surroundings in relation to their physical condition and allocate cognitive 

resources between mobility/stability and performance of other concurrent tasks in order 

to coordinate motor action, such as walking [22, 39]. Many theories have been put forth 

to explain how cognitive resources are utilized to perform daily activities, which often 

involve multi-tasking. Many of these suggest sharing of or competition for available 

resources along with a conscious or unconscious prioritization of certain tasks [39-42]. 

These theories state that there is a limited amount of resources available for the 

performance of different tasks and that when demand for those resources increases not all 

tasks may receive enough resources for best performance [39-42]. This limited resource 

pool is referred to as the postural reserve, which represents the amount of interference 
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that can be tolerated without detriment to stability [39]. Studies have found that groups 

with sensorimotor impairments often do not appear to utilize the same resource allocation 

as healthy controls [23, 25, 39, 43-45]. As lower-limb prosthesis users have an 

impairment to the sensorimotor system, understanding how cognitive resource allocation 

is impacted by prosthetic intervention could provide information needed to better 

understand the complexities of prosthetic use. Further, cognitive resource allocation has 

not been evaluated in lower-limb prosthesis users.  

Observing motor behavior during performance of a single-task  

Alterations in motor control in prosthesis users could be due to increased use of 

the postural reserve or a change in resource allocation. While known gait and posture 

disruptions in prosthesis users may be suggestive of motor control changes, whether these 

changes are in part dictated by a change in resource allocation has yet to be determined. It 

is well established that non-impaired persons perform goal-oriented tasks in a consistent 

manner and that their performance strategy is dictated by their limb dominance [46, 47]. 

As amputation puts a constraint on the preferential limb choice, evaluating goal-oriented 

task performance in lower-limb prosthesis users could provide an indicator of an altered 

control. For example, if prosthesis users prioritize performance of the goal-oriented task 

over maintaining the most stable stance it could reflect the role of motivation in the 

prioritization of resource allocation [39]. Chapter 3 examined limb preference during 

standing goal-oriented tasks in prosthesis users and non-amputee control subjects. 

Insufficient postural reserve may result in an inability to cope with increasing 

postural demand, such as a destabilizing surface, or impaired stability under simple gait 

conditions. Individuals with reduced postural reserve are less capable of navigating 
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competing task demands and may be at greater risk for falls [23, 39, 48]. Increasing the 

demand of a standing or gait task could tax the postural reserve and enhance the need to 

reallocate cognitive resources to maintain stability [49-51]. Chapters 5 and 6 evaluated 

postural stability and resource allocation between sensory systems while standing during 

usual and challenging conditions.   

A coordinated gait pattern, considered to be a marker of higher level control of 

gait [52-54], could be used as an indicator of the availability of the postural reserve 

during walking. The stride length-cadence relationship provides an indicator of gait 

coordination [52-54]. Studies in several populations have found that a disruption to this 

relationship is a strong marker of impaired gait [53, 55, 56]. However, the strength of the 

stride length-cadence relationship has not been evaluated in the prosthesis user 

population. Chapters 4 and 8 evaluated the stride length cadence relationship during 

normal and challenging walking conditions.  

Assessing the impact of a concurrent task 

Dual-task analysis is often used to evaluate cognitive resource allocation [39-41]. 

The dual-task paradigm during a gait or posture task introduces an additional cognitive or 

motor goal to standing or walking [57]. The additional task is believed to compete for the 

limited resources of the postural reserve [39-41]. Persons with sensorimotor impairments 

may require greater use of their cognitive-motor resources for standing or walking. Thus, 

the additional burden may exceed their available resources. Subjects may use specific 

strategies of resource allocation to best navigate the competing demands to meet their 

desired goal. For example, individuals who perform the competing tasks without 

compromising stability, i.e. allocating more resources to systems that help maintain 
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stability, are considered to follow a posture first strategy [23, 40, 44]. Alternatively, 

individuals may choose to compromise stability in order to achieve the goals of the 

additional task and are considered to follow a posture second strategy. In addition to 

reducing the postural reserve due to the sensory and mechanical limitations of the 

prosthetic device, use of a prosthesis may also increase the cognitive load of standing and 

walking further increasing the demand on the postural reserve. This may require 

prosthesis users to alter their resource allocation while dual-tasking.  

Dual-tasking has only received limited attention as a research protocol for 

studying prosthesis users despite its utility in other populations [58], including older 

adults [59, 60], Alzheimer’s disease [61], Parkinson’s disease [25], and multiple sclerosis 

[48] patients. Existing dual-task studies in prosthesis users have focused on above-knee 

amputees, reported cognitive performance only [13, 62] or found no cognitive-motor 

interference during walking [51, 63, 64]. Despite these findings, the authors of these 

studies still maintained that prosthesis users experienced an increased cognitive burden 

[51, 63]. The lack of evidence supporting the hypothesis may be due to limitations in the 

analysis method, suggesting the need for a more sensitive measure to detect the impact of 

dual-tasking. This ambiguity may be due to the selection of sub-optimal outcomes 

measures or the failure to account for confounding factors, such as velocity changes. A 

measure that accounts for velocity changes in dual-task gait studies may enhance the 

utility of dual-task studies in prosthesis users but may also translate to other populations 

utilizing the paradigm. In Chapter 7 a novel method of gait variability analysis for dual-

task studies was developed and evaluated.   
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Analyzing the level of performance on both task in the dual-task paradigm may 

provide an improved assessment of dual-task impact and a better characterization of 

resource distribution [23, 65]. Even greater conclusions can be drawn on self-selected 

resource allocation if instructed prioritization of resources is also considered. Using 

measures of dual-task impact to evaluate prosthesis users during walking and standing 

could reveal if prosthetic use increases the cognitive burden of maintaining stability and 

alters the how resources are allocated when navigating complex conditions. Chapters 5 

and 8 evaluated dual-task impact on posture and gait during challenging standing and 

walking conditions while also considering the simultaneous performance on a cognitive 

task.     

Statement of purpose  

The basic influence of prosthetic componentry on the biomechanics of posture 

and gait are well documented [12, 16]. However, this level of knowledge is proving 

insufficient to meet the needs of the field, thus new protocols to evaluate prosthesis users 

are needed. The purpose of the research, outlined in the Aims below, is to use the 

framework of the posture reserve and cognitive resource allocation to develop protocols 

and outcome measures for the field of lower-limb prosthetics that will offer improved 

means to assess prosthetic use and provide insight into maintenance of stability while 

standing and walking.  
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Fig. 1. Framework for addressing the aims of the research question.  

Aims 

This work aims to document motor behavior during standing and walking during 

normal and difficult conditions and assess the impact of introducing a concurrent task. 

Figure 1 provides an overview of the research framework and how each aim will be 

employed to answer the research questions 

Specific Aim 1: Determine if postural goal-oriented motor behavior is altered in 

prosthesis users (Chapter 3). 

Hypothesis 1.1: The prosthetic leg will be the preferred leg in lower-limb 

prosthesis users as often as the dominant leg in able-body control subjects.  

Observe Motor 
Behavior 
during 
Performance of 
a Single-Task 

Assess the 
Impact of a 
Concurrent 
Task  

Evaluate the 
Impact of 
Increased 
Demand on 
Resource 
Allocation  

Goals 
Research Questions 

Does use of a prosthesis affect 

the choice of 
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performance of goal-
oriented tasks? 
(Aim 1, Ch. 3) 
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between stride length 
and cadence in the 

control of gait? 
(Aim 2, Ch. 4) 

Does use of a prosthesis increase the 
cognitive burden of  

Standing?  
(Aim 3, Ch. 5 & 6) 

Walking?  
(Aim 4, Ch. 7 & 8) 

Does increased demand stress the 
postural reserve and alter resource 

allocation during   

Identify 
Effects of 
Prosthesis 
Use on 
Motor 
Strategy 

A New Outcome 
Measure for Gait 
Variability 

Identify the 
Motor 
Impact of a 
Concurrent 
Task 

Characterize 
the Motor 
Control 
Strategy of 
Prosthesis 
Users  

Outputs 

Standing?  
(Aim 3, Ch. 5 & 6) 

Walking?  
(Aim 4, Ch. 8) 
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Specific Aim 2: Determine if the neuromotor control mediated relationship between 

stride length and cadence is disrupted in prosthesis users compared to control subjects 

(Chapter 4). 

Hypothesis 2.1: The linearity of the stride/step length-cadence relationship will be 

lower in prosthesis users compared with the control subjects. 

Hypothesis 2.2: The linearity of the stride length-cadence relationship will 

discriminate the prosthesis users from control subjects with high sensitivity and 

specificity.  

Specific Aim 3: Evaluate the impact of increased postural challenge and dual-tasking on 

postural stability during stance in lower-limb prosthesis users (Chapters 5 and 6). 

Hypothesis 3.1: Prosthesis users will exhibit higher dual-task impact than control 

subjects. 

Hypothesis 3.2: Greater stability challenge will shift resources toward 

maintenance of stability and away from performance on the concurrent task.  

Hypothesis 3.3: Spectral analysis will identify differences in resource allocation 

between sensory systems that direct postural control.  

Specific Aim 4: Evaluate the impact of increased walking challenge and dual-tasking on 

gait in lower-limb prosthesis users (Chapters 7 and 8). 

Hypothesis 4.1: Prosthesis users will exhibit higher dual-task impact than age- 

and education-matched control subjects.  

Hypothesis 4.2: Greater gait challenge will shift resources toward maintenance of 

a consistent gait pattern and away from performance of the concurrent task.  
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Hypothesis 4.3: Accounting for gait velocity in analysis of variability will 

improve measures of dual-task impact.  

These findings will provide new insight into the characteristics of prosthesis users 

and their use of their postural reserve for resource allocation during standing and 

walking. Additionally, these studies will introduce new outcome measures aimed at 

capturing elements of prosthetic use not identified by current practices. These additions 

to the body of knowledge in the field of lower-limb prosthetics may provide insights that 

will drive new prosthetic design, improve reimbursement practices, and enable more 

informed clinical decision making.  
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CHAPTER 2 

BACKGROUND LITERATURE 

Amputee gait and posture  

It is well established that both above- and below-knee prosthesis users have 

altered gait and posture mechanics [1-5]. The loss of active control of the missing joints, 

reduced propulsion and braking from musculature, and loss of sensory feedback place 

limitations on prosthesis users’ mobility. Advances in prosthetic componentry attempt to 

restore some of these lost functions, however, characteristics of the amputee, such as 

strength, limb health, and comorbidities, play a major role in successful prosthetic use 

and restoration of mobility [5, 6].  

The majority of lower-limb prosthetic components are passive devices that 

provide a limited range of motion to replace the lost joint movement. Some products on 

the market offer various levels of controlled resistance through hydraulic and/or 

microprocessor features. Additionally, some microprocessor componentry allows for 

active motion to better accommodate different surfaces and conditions. However, very 

few of these products offer powered prolusion and those that do see limited public use [7, 

8]. These products restore some level of mobility to prosthesis users, yet no current 

products provide motion, braking, or propulsion that is controlled by the user and none of 

them restore sensory feedback. Thus, there are still many gait and posture deviations 

common among lower-limb prosthesis users even when using advanced componentry [9-

16].  

Prosthesis users tend to show signs of greater instability while standing, 

particularly under more challenging conditions, compared to non-amputees [17, 18]. 
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Studies find that the indicators of instability, such as increased COP movement, are 

related to higher level of amputation, shorter residual limb length, amputation due to 

vascular complications, older age, and the presence of comorbidities [2, 4, 19, 20]. As 

standing balance is greatly influenced by sensory feedback and active control at the ankle 

[21], it is not surprising that prosthesis users have greater postural instability than non-

amputees [19, 22-24]. Many users compensate for the limited utility of the prosthetic side 

by placing greater weight and reliance on the sound side [20]. This overuse is considered 

a main cause of the frequent occurrence of musculoskeletal issues on the sound side [25].  

Many features of gait are also regularly reported to be altered in lower-limb 

prosthesis users. Commonly reported temporal-spatial features include slower self-

selected walking speed and asymmetry in many parameters resulting in more time spent 

on the sound side [5, 26-28]. These characteristics have been reported for all amputation 

levels, but are often more pronounced in above-knee prosthesis users [5, 28]. The use of 

microprocessor componentry has potential to reduce many of these abnormalities [29], 

however findings are often inconsistent [30]. 

Joint kinematics and muscle activation are also altered during prosthetic gait [31]. 

The passive action of the prosthetic foot results in less motion at the prosthetic ankle [5]. 

Even in below-knee prosthesis users with an intact knee, the first knee flexion peak after 

initial contact is delayed and is much smaller than in non-amputees. The initial knee 

flexion peak is almost nonexistent in above-knee amputees. The sound side also exhibits 

joint motion differences. To increase stability during gait, amputees produce stronger and 

more sustained muscle contractions. All of these features are more exaggerated under 

complex gait conditions such as ramp or stair ambulation [5, 32].    



  21 

Despite the substantial knowledge of gait and posture characteristics common to 

prosthesis users that has been described in the literature, this information has proved 

insufficient in providing protocols sensitive enough to detect the impact of altering 

prosthetic prescription [9, 10, 33-36]. Studies examining different styles of prosthetic 

components often fail to report substantial differences between designs despite subject 

preference [13, 30, 35, 37-42]. The lack of sensitivity of current protocols has resulted in 

limitations to device design, evidence-based clinical practice, and insurance approval [42, 

43]. These shortcomings suggest that further research is needed that examines prosthesis 

users beyond standard gait analysis [42, 44-46].         

While the gait and standing characteristics of prosthesis users are well 

documented and many features are explained by limitations of prosthetic devices, the 

impact of prosthetic use on the neurocontrol of mobility and stability has yet to be 

thoroughly examined. Understanding how use of the prosthetic devices alters control of 

gait and posture could provide insight into the needs of prosthesis users, provide 

clinicians with a better understanding of patients, and help develop more sensitive 

measures for testing prosthetic componentry [46].  

Models of neurocontrol  

Postural control, utilized for standing and walking, is actively and passively 

maintained through coordinated responses to visual, vestibular, and somatosensory 

sensory feedback loops along with mechanical support provided by the musculoskeletal 

system and cognitive engagement [47, 48]. Many theories suggest that these mechanisms 

work together through a shared use of a limited supply of cognitive resources [47-51]. 

Environmental conditions or physical limitations, such as low lighting or vestibular 
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dysfunction, or multi-tasking may increase the demand for the available resources [47-

49]. If demand for resources exceeds availability, a decline in performance may occur 

[47]. Many studies illustrate detriments in balance control when feedback loops are 

altered or inhibited and show that persons with no other limitations are better able to 

maintain their normal posture and gait characteristics when resource demand increases 

[47, 52-55]. Those with no impairments are presumed to have more of these resources 

available to distribute amongst the demands of the different tasks. The summation of 

these resources and the ability to utilize them as need arises is often referred to as the 

postural reserve [49].  

Postural reserve is defined by Yogev et al. as “the individual’s capability to 

respond most effectively to a postural threat [49].” Stated differently, it reflects the 

amount of resources available that can be utilized through the activation of postural 

control mechanisms to respond to the postural demand. Thus, persons with a larger 

postural reserve can allot more resources or greater attention to other tasks while still 

providing enough resources to maintain stability. Postural reserve is affected by several 

factors including strength, sensory feedback capacity, motor control capabilities, and 

cognitive processing ability [49]. Amputation disrupts many of these factors, which 

presumably reduces available resources and requires greater activation of other control 

systems in the postural reserve [23]. A reduced postural reserve may require prosthesis 

users to place less priority on non-stability related tasks than non-impaired subjects [48, 

49]. 

The cross-domain competition model [48] and the similar central capacity sharing 

model [50, 56] propose that the competing activities must share resources and under 
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conditions where demand exceeds available resources, performance inevitably declines 

[47]. Support for these models comes from studies demonstrating a decline in 

performance while carrying out concurrent tasks while standing or walking, referred to as 

dual-tasking. Further, researchers have found changes neural activation corresponding 

decrements in gait and posture performance while dual-tasking, supportive of models 

suggesting a shortage of resources [50, 57]. While these models provide an explanation 

for many findings, some argue they fail to explain dual-task findings that report no 

change in dual-task performance or improvement in performance [48, 58]. However, 

Tombu and Jolicoeur argue that the central capacity sharing model can still account for 

these findings by suggesting that not all systems share the same pool of resources or that 

persons may not always utilize all available resources [56]. 

Within the competition or sharing models there is some suggestion of the ability 

to direct resource allocation to the task considered most important [56]. The task 

prioritization model expands on theories of resource competition and offers a more 

comprehensive means of capturing and explaining the many possible outcomes in multi-

tasking behavior [48, 49]. It suggests that individuals can coordinate resource allocation 

between multiple tasks based on personal priority of various factors, such as necessity of 

the non-stability task and physical safety [49].  

The posture first strategy has been suggested as one common behavior supportive 

of a prioritization model. It suggests that people maintain stability by prioritizing 

resource allocation towards the gait or posture tasks when conflicting tasks require the 

use of overlapping systems. The posture first strategy was first proposed by Shumway-

Cook in 1997 [54]. Many studies have found that while unimpaired adults tend to follow 
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this strategy, persons with various impairments do not, which may increase instability 

and fall risk. Studies have found that groups with cognitive-motor impairments, such as 

Parkinson’s disease, allow performing a concurrent task while standing or walking to 

disrupt stability more than unimpaired subjects [47-49, 59]. This is suggested to be 

counter to the posture first strategy, as following the posture first strategy would 

distribute resources in such a way that stability would not be compromised. While the 

posture first strategy focuses on the prioritization of stability, other factors such as mood, 

personality, risk acceptance/aversion, and nature of the additional tasks could also be 

factors in the prioritization of resource allocation [49]. Within the competition models the 

prioritization model can provide some explanation for dual-task behavior that does not 

follow the expected pattern of performance decline [54, 60].     

Another explanation of dual-task performance that results in no change or 

improvement in both tasks comes from the level of alertness hypothesis [51, 52]. When a 

person has all resources available, low-demand competing tasks do not exceed the 

available reserve and do not pose such a threat as to warrant allocating additional 

resources to performance. However, when demand increases, posing a greater threat, 

additional resources can be engaged [56]. Wrightson et al. provides neurological 

evidence that individuals may allow some decrements to performance while dual-tasking 

despite further resources being available; and when those resources are activated, gait 

performance can return to near normal characteristics [61].   

In clinical research studies, neurocontrol models have been most widely 

investigated in populations with a neurological impairment [49, 53, 54, 59, 62, 63]. In 

these populations, such as stroke or Parkinson’s disease, the impairment is typically to 
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central nervous system dysfunction, which may impact cognitive or neuromotor function. 

Examinations of resource allocation in these populations are used to assess the impact 

that the central neurological impairment has on the ability to dual-task while safely 

maintaining control of gait or posture. However the study of resource allocation in 

prosthesis users would differ from the majority of previous research in the field as the 

primary impairment is in the periphery. Thus, the rationale for examining resource 

allocation in prosthesis users is not to assess the impact of a central nervous system 

impairment on lower functions but to evaluate how a peripheral impairment, i.e. 

amputation and use of a prosthetic device, increases the burden on the higher 

neurological systems by altering the utilization of resources in the postural reserve. 

Investigation of the postural reserve and how prosthesis users prioritize competing tasks 

could provide greater understanding of stability control in prosthesis users.  

Dual-task research background 

Concurrent tasks 

A dual-task paradigm is used to test theories of neurocontrol during multi-tasking. 

Dual-tasking involves the performance of two (or more) concurrent tasks. In studies 

investigating the impact of multi-tasking on stability control, one of the concurrent tasks 

is usually standing or walking. The additional concurrent task can vary widely, however, 

they typically fall into the category of a cognitive or an additional motor task [64]. These 

additional tasks increase the complexity of performance by inducing a separate 

measurable goal to the standing or walking task [64]. Cognitive tasks have been used in 

many studies reported in the dual-task literature. Common cognitive tasks include, serial 

subtraction [65-67], backwards spelling [68], verbal fluency (listing words in a specific 
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category) [69, 70], and different variations on the Stroop test [55, 71, 72]. Cognitive task 

performance often involves the subject providing verbal responses. However, some 

studies may use responses that require an action such as pressing a button [57], common 

with an auditory Stroop test, or silent mental performance [73]. Some studies also utilize 

tasks that requires subjects to respond to a visual cue [74].  

Motor tasks used in dual-task studies are more diverse [75], however a key 

component of the tasks are the motor action should be independent of the primary motor 

task (i.e. standing or walking) [64]. For example, buttoning a shirt while standing would 

be considered a dual-task while transporting an object would not. However, this 

definition is not universally used [75, 76]. Often motor tasks are chosen to represent real 

life multi-tasking activities [75, 77]. While a motor task typically does not have a verbal 

response, it can require visual attention or responding to a visual or auditory cue [78, 79]. 

Thus, within both task options the concurrent task can involve a combination of demands 

from visual, auditory, verbal, cognitive, and motor resources.  

Dual-task difficulty 

 In addition to utilization of a concurrent cognitive or motor task, researchers also 

attempt to probe resource allocation and dual-task behavior by increasing the difficulty of 

the single-task standing or walking [64, 80]. The increased difficulty aims to further 

increase the burden of standing or walking, making subjects more susceptible to the dual-

task interference. Means of increased difficulty include eyes closed conditions [81], 

destabilizing surfaces [80-82], narrow or complex walkways [73, 83, 84], and increasing 

task novelty or complexity [64]. There are mixed reports of these methods inducing a 

change in the dual-task response [80, 82].       
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Dual-task outcomes 

Measures of dual-task impact are diverse but often focus on outcomes associated 

with predicting instability. The most commonly reported outcomes in gait dual-task 

studies are changes in gait speed and variability of temporal-spatial gait parameters [85, 

86]. Changes in gait characteristics while dual-tasking have been associated with fall risk 

and instability [87-89]. In postural control studies, outcomes typically focus on measures 

of increased center of pressure (CoP) movement. For example, Sample et al. found that 

an increase in sway area and medial-lateral amplitude during a motor dual-task 

differentiated between older adult fallers and non-fallers [90]. Other studies have 

identified dual-task impact on sway velocity and path length [80, 91]. While traditional 

measures of CoP movement are common in studies of dual-task postural control, Lacour 

et al. argues against drawing strong conclusions of postural stability from these measures, 

since a decrease in postural sway can reflect a stiffening strategy, often associated with a 

fear of falling, rather than improved control [48]. Alternatively, several studies have 

highlighted the utility of non-linear or spectral analysis of the CoP signal in dual-task 

studies. For example Collins et al. [92] and Ghulyan et al. [93] both identified that 

spectral analysis of the CoP during single-task standing better differentiated between 

younger and older subjects than traditional measures. Bernard-Demanze et al. also 

reported better detection of postural changes due to dual-tasking using spectral analysis 

[80]. Sample reported similar utility for evaluation of the impact of cognitive but not 

motor dual-task [90]. 

In addition to evaluation of dual-task performance on gait and posture 

characteristics, Plummer and Eskes highlight the importance of evaluating changes in 
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both tasks to fully appreciate dual-task behavior [60]. A full picture of resource allocation 

requires evaluation of the interplay between each task. When both tasks are considered, 

there are 9 potential outcomes that can be visualized as a 3x3 matrix of facilitation, no 

interference, or interference for each task which each region offering a potential resource 

allocation interpretation. For example, improvement or no change in gait or posture 

performance is often interpreted as prioritization of stability/mobility, however 

simultaneous improvement on the concurrent task shows mutual facilitation [60], more in 

line with increased resource activation or the level of alertness hypothesis  [51, 52].         

Dual-task analysis in prosthesis users 

Geurts et al. evaluated the impact of a cognitive task on postural control in lower-

limb prosthesis users before and after rehabilitation [72, 94]. These studies found greater 

dual-task interference in prosthesis users than non-amputee control subjects at both time 

points, however the effect was reduced after rehabilitation training [72, 94]. In contrast, 

several more recent studies on posture [20] and gait [3, 82, 95] dual-task analysis has not 

identified greater disruptions to stability or mobility while performing a concurrent task. 

Other studies evaluating prosthesis users have only evaluated the cognitive performance 

of dual-tasking, but also reported no impact [30, 70]. Overall, dual-tasking has seen little 

use in the prosthesis user population and the majority of studies have focused on 

evaluating above-knee prosthesis users. These findings suggest a need for more sensitive 

evaluations of dual-task performance in prosthesis users to increase understanding of 

cognitive resource allocation in response to prosthetic use.   
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Spectral analysis of the center of pressure signal 

Frequency components of postural control   

It is long established that 1 Hz marks a boundary in the power spectrum of human 

postural control [96, 97]; this has been repeatedly supported [98-103] as research in the 

field has progressed. Many of these later studies worked to understand the physiological 

role or mechanisms that give rise to this separation. For example, Diener et al. has 

suggested that spinal reflex control, such as the Golgi tendon organs and spindle 

afferents, can sufficiently respond to high frequency (>1Hz) perturbations and that 

postural control requiring higher cortical processing respond to lower frequency (<1 Hz) 

changes [98, 99].  

However, it has been argued that higher cortical processing, i.e. active control, 

plays little role in postural control during quiet, unperturbed stance and the primary 

mechanism is joint stiffening in response to sensory reflexes [104, 105]. Winter et al. 

suggests that a near 0th order system is the primary driver of postural control because of 

nearly in phase movement between center of mass and CoP that would have a longer 

response time due to afferent and efferent conduction delays and/or higher order system 

dynamics if movements were directed by a higher order system [105]. The authors further 

suggest that the ability to respond to perturbations below sensory thresholds also support 

a passive or feedforward control system [105]. Morasso et al. argues against the 

simplicity of the control system model proposed by Winter et al [106, 107]; pointing out 

that a postural control model that simply relies on joint stiffening ignores a multitude of 

evidence pointing to the importance of sensory systems in postural control. Instead, 

Morasso and Sanguineti suggest a model where approximately 60% of postural control is 
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due to muscle/joint stiffness (feedforward or open-loop) and 40% to active control 

mediated by sensory systems (feedback or closed-loop) [107]. Further, even if the 

stiffening model proposed by Winter et al. is true for only quiet standing, models that 

incorporate feedforward and feedback control may be more appropriate for evaluating 

postural control during functional standing.  

Collins and De Luca and later Singh et al. used different methods of critical point 

detection in their assessment of postural control and further confirmed 1 Hz as the 

general transition point between open and closed loop control systems [100, 102]. Critical 

point detection identifies a distinct time point in the COP signal where the characteristics 

of the signal changes, establishing a point where the closed loop system takes control of 

posture mechanics to direct the body back to equilibrium. While 1 Hz has become a 

general standard for transition between the two control systems, there are across-subject 

differences in the specific transition point with one study identifying values that ranged 

from 0.33 to 1.67 s (mean 1 s) in the AP direction and 0.81 to 1.30 s (mean 1 s) in the ML 

direction [100] and the critical point occurring around 0.62s in another [102]. Open-loop 

control is suggested to allow sway to ‘drift’ until closed loop control takes over. Thus, the 

use of an open-loop control strategy simplifies the amount of high level processing for 

postural control [100], fills in the gaps in feedback loop delays [101], and reduces energy 

expenditure in maintaining upright stance [102]. Singh et al. found that under more 

challenging standing conditions closed-loop control utilization is increased in order to 

establish more active control of posture and reduce the risk to stability [102]. However, it 

should be noted that in contrast to the models proposed by both Winter and Morasso, 
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others believe that open-loop (or feedforward) control does not play a strong role in 

postural control and that closed-loop feedback is sufficient for postural control [108].     

Within the low frequency range associated with closed-loop control, many studies 

have identified distinct peak frequencies or frequency bands [97, 103, 109]. With the 

knowledge that the visual, vestibular, and somatosensory systems are the primary 

contributors to postural control and they require higher level cortical processing that 

create longer feedback loops, it has been proposed that these frequency bands reflect each 

system’s contribution to postural control [98, 99, 103]. Many different approaches have 

been used to define these frequency bands and assign them to a specific sensory system. 

Different methods include studying populations with impaired or absent sensory systems 

[110-112], limiting the contribution of sensory systems through experimental 

manipulation [48, 80, 113-116], or applying postural perturbations at specific frequencies 

[98, 99]. For example, Diener et al. found that subjects had a delayed vestibular response 

(postural corrections to prevent falling while eyes were closed) to perturbations delivered 

below 0.3 Hz, leading the authors to suggest that the vestibular system does not 

contribute to postural control at frequencies below that frequency [99]. In studying 

patients with and without peripheral neuropathy, Oppenheim et al. reported that only 

changes in power for the frequency band between 0.5 and 1 Hz distinguished between 

patient groups, assigning this band to somatosensory control [110]. Collectively, these 

studies have produced a general consensus on the frequency bands and the associated 

sensory systems: vision is associated with very low frequencies (< 0.1 Hz), vestibular low 

frequencies (~ 0.1-0.5 Hz), somatosensory middle frequencies (~ 0.5-1 Hz), and 

feedforward or open-loop is associated with high frequencies (> 1 Hz). While these bands 
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are widely reported, differences between studies and reported within subject variability 

suggest these are general guides without firm boundaries. However, analysis of the 

sensory systems associated with specific frequency bands through spectral analysis could 

provide increased understanding of resource allocation between systems.  

Spectral analysis 

Several researches have provided evidence that spectral analysis of the CoP signal 

is more sensitive than traditional measures in detecting changes in postural control as the 

result of dual-tasking or different standing conditions or differentiating between groups 

[80, 90, 92, 93, 114, 117]. Within spectral analysis methods, wavelet analysis has been 

suggested to be particularly well suited for the analysis of standing CoP signals [48, 114, 

115, 118, 119]. Wavelet analysis uses variable-sized, time-scale specific windows to 

deconstruct the signal into time-scale bands; the time-scales can then be transformed to 

frequencies. Specifically, a mother wavelet, a time and frequency localized function with 

a mean of zero, is compared to a section of the signal being analyzed and the correlation 

between the two signals is calculated. The process is repeated as the wavelet is shifted 

along the signal. The wavelet is then scaled, stretched or compressed, and compared to 

the length of the signal again. This process is repeated for each scale. The scale 

represents for coarseness of the comparison to the signal and is inversely related to 

frequency. A high scale results in a more stretched wavelet and captures low frequency 

elements of the signal. The summation of the correlations for each scale represent the 

energy content of the signal in a specific frequency band [120-122].     

Wavelet analysis is favored for the evaluation of time-varying, non-stationary 

signals and is superior to Fourier analysis at characterizing the spectral power in non-
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dominant frequencies [114, 115, 120-122]. These features are useful for analysis of the 

CoP movement as the signal has been reported as being non-stationary and is typically 

dominated by low frequency energy [114, 115]. While popularity of the analysis method 

has grown in recent years, wavelet analysis suffers from a lack of guidelines directing its 

use for CoP evaluation, primarily in the selection of the mother wavelet for signal 

decomposition [120].  

Analysis of resource allocation in non-dual-task paradigm     

Altered control mechanisms and prioritization during standing tasks: Amputation vs. 

natural laterality 

While dual-tasking is the most common means of assessing resource allocation, 

the implications of allocation apply to aspects of stability and mobility outside the factors 

captured by dual-task analysis. Prioritization between maintaining stability and successful 

completion of the competing task plays a major role in understanding resource allocation. 

While the limits of the person’s postural reserve and assessment of their own abilities are 

consistent factors, other elements such as desire to complete the task play a role in 

prioritization [49]. The element of choice is particularly important when executing goal-

oriented tasks. Goal-oriented tasks involve performing an action with a defined purpose 

and clear indicators of success or failure [64], such as stomping on a bug. The desire to 

complete the goal may determine the risk to stability that the person may deem 

acceptable. For example, a person particularly bothered by the presence of an insect may 

allow a risk to stability beyond their usual level.  

In standing, goal-oriented tasks which rely on stabilizing with one foot and action 

with the other, the means of execution are typically mediated by natural lateralization. 
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Lateralization is the preferential use of one side of the body over the other for 

performance of various tasks, and is also referred to as limb dominance [123]. The 

unilateral preference for one side of the body is associated with dominance of cranial 

hemispheres. In fact, while cerebral dominance is often associated with hand preference, 

a pair of studies by Elias et al. found that foot preference is a better predictor of cerebral 

lateralization [124, 125]. In postural tasks, lateralization determines which leg is used for 

stabilization and which is used to perform the task. The dominant leg is typically used to 

perform the action of the task, such as kicking a ball, while the non-dominant leg is used 

for stabilization. The leg used to perform the action is called the preferred leg [123].  

Amputation places constraints on limb selection potentially altering the natural 

control mechanisms used to direct task performance [126]. With the natural lateralization 

disrupted, the choice of action or stabilizing leg is now a more conscious choice. This 

choice is most likely mediated many factors including the risk to stability and personal 

motivation to complete the task [49]. These factors are weighted between the concurrent 

objectives of maximizing reward (successful task completion) and minimizing risk 

(maintain balance). For some tasks, choosing to balance on the prosthetic side may allow 

the controlled articulation of the intact side to better manipulate the task, despite a 

potential risk to stability. Amputation causes even simple tasks to require prioritization of 

performance vs. stability from prosthesis users while non-amputees simply rely on their 

natural dominance. Knowledge of how prosthesis users choose to navigate the competing 

demands of various postural tasks can be used to begin to assess how motivation to 

perform a goal may direct resource allocation.  
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The role of the dominant limb also has implications for gait control such as 

normal walking [127, 128], gait initiation [129], turning [126, 130], and stair ambulation 

[131]. The studies supporting a relation between laterality and gait mechanics report the 

presence of a supporting limb and propulsive (action) limb that are specific to a side of 

the body or the reported dominant limb [128]. Thus, increased understanding of the 

impact of amputation on limb preference during standing tasks could lead to improved 

understanding of gait control.  

Indicator of decreased postural reserve: Stride-length cadence relationship 

In order to understand resource allocation in lower-limb prosthesis users, the 

impact of prosthetic use on the postural reserve should be characterized. Signs of altered 

control of gait mechanics linked to instability could serve as indicators of decrement in 

the postural reserve. While the observed gait changes due to prosthetic use are well 

documented, there have been few studies on the underlying neuromotor control aspects of 

these changes. One measure that attempts to quantify and understand the neuromotor 

control mechanisms that direct gait is the stride length-cadence linear relationship [132, 

133]. Studies have shown that healthy adults modulate stride length and cadence in such 

a way that these parameters tightly co-vary over a range of normal walking speeds [132, 

134-137]. This relationship can be reported using a measure of linearity, such as the 

goodness of linear fit of the regression line (R2) [132, 136]. This coupled relationship, 

with similar slopes across the population, creates a predictable universal pattern for how 

speed is modulated in healthy adults. It also provides a single measure of gait control that 

incorporates a wide range of walking speeds and combines two commonly reported gait 
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parameters. Therefore, it provides a more simplistic measure of coordinated gait that does 

not rely on interpretation of multiple variables.   

While the existence of the stride length-cadence relationship has long been 

documented [134, 135, 137, 138], only more recent studies have examined the 

neuromotor control implications of the relationship [132, 136]. These studies have 

reported that when either stride length or cadence is restricted, such as asking someone to 

walk in rhythm to a specific beat, the variables begin to decouple. These studies suggest 

that the linear stride length-cadence relationship represents an automatic neuromotor 

control mechanism and, when faced with a restriction, more conscious and less efficient 

control mechanisms are activated. Thus, it is suggested that deterioration of this 

relationship may represent lower gait quality [132, 136].  

By quantifying a high-level control mechanism representative of stable gait, 

encompassing two commonly reported gait parameters, and examining multiple speeds 

all in one measure, the stride length-cadence relationship serves as a good model for 

predicting the state of a person’s postural reserve. Thus, a decrease in the linearity of the 

relationship between stride length and cadence in amputees compared to non-amputees 

could signify a more conscious control of gait resulting in a decrease in the resources 

available for more complex gait tasks. Additionally, if a weaker relationship also signifies 

activation of more conscious gait control mechanisms, it would suggest that amputees 

have additional cognitive burden placed on them even during the simplest walking 

conditions. 

There are important mathematical considerations when calculating goodness of 

linear fit and making comparisons between groups or studies. These considerations 
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involve the number of data points and the range the data (i.e. speeds) being analyzed, as 

both can have an impact on the calculation [139, 140]. Goodness of linear fit is calculated 

using the ratio between sum of squares residual (SSres) and sum of squares total (SStot) 

shown in equation 1. SSres is the summation of square of the difference of each data point 

(��) from the best fit model (��), equation 2. This value is only mildly changed by an 

increase in the number of data points, particularly in a well fit model [139, 140]. SStot, the 

summation of the square of the difference of each data point (��) from the mean value of 

all data points (��)(equation 3), however, is highly dependent on the range of values 

covered in the data set [139, 140]. The larger SStot becomes in relation to SSres the better 

(higher) the linear fit. Thus, in a study comparing two groups or comparing results across 

studies, the number of points analyzed for each subject should be similar but, more 

importantly, the range of walking speeds should be comparable. It is important to note 

that this only applies to the range of speeds (i.e. difference from maximum to minimum), 

and that the absolute speeds do not have to match. The adjusted R2, which normalizes the 

R2 by the number of data points and the number of regressors, can be used to account for 

the difference in sample size but does not adjust for differences in the range of the data.    

�� = 1 − ���
������    (1) 

����� =  ∑ (�� −  ��)��     (2) 

����� =  ∑ (�� − ��)��     (3) 

 The impact that the range of data has on the R2 value may be favorable for some 

analyses using goodness of linear fit. An increase in walking speed range is reported to be 

a favorable health outcome [141] and would favorably increase the R2 value. But, using 

different ranges to calculate R2 for the purpose of quantifying and interpreting the 
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coordination between stride length-cadence can mask important information. The sample 

data in figure 1 illustrates the stride length-cadence relationship for a subject walking at 3 

(slow to fast) and 5 (very slow to very fast) self-selected walking speeds. Table 1 

provides the number of data points, R2, and adjusted R2 values, along with the SSres and 

SStot calculations. Visual inspection of the relationships in the 3-speed and 5-speed data 

sets shows an increase in the spread of the data points at the very slow end of the 5-speed 

range. This is confirmed by the 400% increase in SSres with only a 97% increase in the 

number of data points. However, the R2 is higher with the 5 speeds, even when adjusted 

for the number of data points due to the 1700% increase in SStot. So, while collecting 5 

speeds may represent a broader spectrum of the subject’s walking ability, the impact of 

the reduced coupling at speeds in the extreme ranges is lost due to the impact on SStot. 

While this illustration was a comparison within a single subject, the principle applies to 

other comparisons of R2 values such as comparisons across groups with different walking 

speed ranges or comparisons pre/post intervention that could result in a change in 

walking speed range. Thus, when designing an experiment to evaluate the linear 

relationship between two variables that may vary in range, the aim of the study must 

consider how the range of data impacts the interpretation of the results.  

Conclusion 

 The existing literature provides evidence of the need for new methods of 

assessment for lower-limb prosthesis users. While dual-task analysis has seen little 

successful use in evaluating prosthesis users, the methodology may still provide a useful 

framework for evaluating resource allocation in response to prosthetic use, particularly if 

dual-tasking is applied with novel analysis methods. 
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Fig. 1. Sample data of the stride length-cadence relationship comparing 3 and 5 self-

selected speeds. Note the increased spread of the blue data in the left bottom corner, 

which is the very slow speed.  

 

 

Table 1 

     

Goodness of linear fit analysis of the stride length-cadence relationship for 3 and 5 

self-selected speeds from figure 1. 

 N R2 Adjusted R2 SSres SStot 

3 Speeds 34 0.764 0.749 1254 5327 

5 Speeds 67 0.934 0.932 6293 96535 
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CHAPTER 3 

LOWER LIMB PREFERENCE ON GOAL-ORIENTED TASKS IN UNILATERAL 

PROSTHESIS USERS  

This text is a reproduction of a previously published work. The published version can be 

found at: 

Howard C, Wallace C, Stokic DS. Lower limb preference on goal-oriented tasks in 

unilateral prosthesis users. Gait Posture. 2012; 36: 249-53. 

10.1016/j.gaitpost.2012.03.001 

http://www.sciencedirect.com/science/article/pii/S096663621200077X 

 

Abstract 

The aim of this study was to determine lower limb preference in 31 prosthesis 

users and 19 able-bodied controls on 11 goal-oriented tasks in free-standing and 

supported conditions. The action leg used in 6 or more tasks was considered the preferred 

leg. We hypothesized that the prosthetic leg in amputees would be used as the preferred 

leg as often as the dominant leg in controls. For prosthesis users in the free-standing 

condition, 65% used the prosthetic leg as the preferred leg. This was significantly 

different (p<0.003) from able-bodied controls, where 100% used the dominant leg as the 

preferred leg. This discrepancy became even more pronounced in the supported condition 

and was overall more prevalent among those who used prosthesis for more than 10 years. 

These findings may have implications for therapy and gait training. 

Introduction 

Just as hand dominance enables us to predict how people write or throw a ball, 

foot dominance determines how people perform tasks with their lower limbs [1]. Foot 

dominance is considered an innate preference stemming from cerebral lateralization, as it 
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has been linked with language and emotional lateralization [2, 3]. Peters [1] provided the 

most commonly used definition for foot dominance: “the foot that is used to manipulate 

an object or to lead out, as in jumping, is deemed here as the preferred foot. The foot that 

is used to support the activities of the preferred foot by lending postural and stabilizing 

support is defined as the non-preferred foot”. The preferred or dominant foot is consistent 

across most goal-oriented lower limb tasks in healthy people [1].  

Acquired unilateral lower-limb amputation provides a unique opportunity for 

studying changes in lower limb preference. As opposed to acting on their innate 

preference, amputees fitted with a prosthetic device must deal with the quandary of 

compromising between stability and performance. Several scenarios are possible when 

considering how lower limb preference may be altered in prosthesis users. One 

possibility is that prosthesis users would resort to the strategy that presumably provides 

the most stable state when performing lower limb tasks. That is, they may opt to rely on 

their intact limb for stability. This corresponds with standard stair training where many 

prosthesis users receive advice to use the intact side as the primary supporting limb [4]. 

Another scenario is that cerebral dominance may still prevail and, tied with lifelong habit, 

could influence prosthesis users to maintain their previous strategy despite limb loss. The 

selection of strategy by prosthesis users may further be influenced by motivation for goal 

achievement, speed and accuracy required for the task, the residual limb length, and time 

since amputation. For example, without active ankle or knee motion, it may be difficult 

for prosthesis users to adequately manipulate an object, thus encouraging the use of the 

intact limb as the preferred limb regardless of previous dominance. The latter assumption 

may particularly hold if stability is not compromised, such as when support is available. 
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Thus, the choice of strategy may depend on the interplay between settings in which the 

task is to be performed, desire to complete the task, fear of falling, as well as prosthesis 

fit and experience. It is clear, therefore, that the common assumptions of action and 

stabilizing leg roles in able-bodied individuals may not translate to lower-limb prosthesis 

users.  

The purpose of this study was to examine how amputation alters lower limb 

preference in prosthesis users and to explore some potentially contributing factors. We 

hypothesized that prosthesis users will use the intact leg for stability and the prosthetic 

leg for performance across different goal-oriented tasks with the same consistency as 

able-bodied subjects use the non-dominant and dominant legs, respectively. We 

specifically tested whether the prosthetic leg in amputees is used as the preferred leg as 

often as the dominant leg in controls. We also explored how upper limb support affects 

performance strategy under the assumption that lower limb preference will become more 

apparent from the free-standing to supported condition. The potential role of residual 

limb length, side, and time since amputation was examined in secondary analysis. Along 

with task performance, limb preference has been related to several aspects of gait [5, 6], 

including turning [7], gait initiation [8], and stair climbing [9]. Therefore, these results 

are expected to improve understanding of motor control strategies utilized by prosthesis 

users and may have implications for therapy.  

Methods 

Participants  

We recruited unilateral above- and below-knee prosthesis users from 5 prosthetic 

clinics run by our institution throughout Mississippi and Louisiana. The inclusion criteria 
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were: (1) acquired lower limb loss, (2) use of a prosthesis for over a year, (3) age 18 – 80 

years, (4) comfortable socket fit, (5) healthy residual limb, (6) healthy contralateral limb, 

(7) no use of assistive device for everyday activities, (8) no known balance, neurological, 

or other health problems that limit daily activities, (9) verification by certified prosthetist 

that prosthesis user was fit to attempt experimental tasks. A convenience sample of age-

matched able-body control subjects was also recruited with the following inclusion 

criteria: (1) age 18 – 80 years, (2) no use of an assistive device, (3) no balance, 

neurological, orthopedic, or general health problems that limit daily activities.  

The study sample included 19 able-bodied controls (9 men; mean age 42±13.5 

years, 18 right-handed) and 31 prosthesis users (20 men; mean age 49±14.2 years; 27 

right-handed; 20 below-knee amputees and 11 above-knee amputees). The average time 

since amputation was 13.2 years (range 1.9 to 43 years). The amputation was due to 

trauma (n=23), vascular disease (n=4), and other causes (n=4). The subjects were rated 

K3 (n=29) or K4 (n=2) on the Medicare scale. Both prosthesis users and controls were of 

average stature. The study protocol was approved by the institutional review board for 

human research and all subjects signed an informed consent form. Prosthesis users wore 

their primary prosthesis and all subjects wore their own shoes during testing. Data for all 

subjects were collected by the same researcher at five prosthetic clinics and an in-patient 

rehabilitation and research facility.  

Protocol 

We developed the Assessment of Leg Preference in Amputees (Table 1) for this 

study, which was done under two conditions: free-standing in an open area (condition 1) 

and standing with hands on parallel bars (supported, condition 2). The tasks were selected 
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from the literature on lower limb laterality [1-3, 9, 10] and input from a certified 

prosthetist and physical therapist. The tasks were goal-oriented and encompassed typical 

motions performed with the lower limbs. Each subject performed 11 tasks in each 

condition: five tasks were identical in both conditions and the remaining six were each 

selected from six pairs of tasks. Each task within a pair was randomly assigned to the 

free-standing or supported condition. Paired tasks were used so that virtually the same 

motion would be required under each condition, but the slight differences in task would 

deter the subject from recalling the previous action. Paired tasks were of similar difficulty 

and each one was cued with different objects. 

A start line and midline with marks at 15, 25, and 35 cm were taped on the floor 

to ensure tasks were presented in the same manner. The subject assumed a natural stance 

with feet equally spaced from the midline. The lower limbs were video recorded so the 

researcher could direct attention to the subject and later analyze data.       

Prosthesis users were tested in free-standing and supported conditions in random 

order. Eleven able-body subjects were tested in both the free-standing and supported 

conditions and demonstrated high consistency in performance between the two conditions 

(98% agreement for task pairs). Thus, an additional eight subjects performed the free-

standing condition only. The 11 tasks in each condition were presented in a random 

order. A seated break was given between the two conditions when demographic 

information was collected.    

We were concerned that knowledge of the purpose of the experiment prior to 

testing may influence the subjects’ performance. Therefore, subjects were told that the 

purpose of the study was to examine their ability to, rather than how they perform each 
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task. Subjects were instructed to perform each task in the most comfortable way as if 

encountered in their daily life. No suggestion was given as to which leg to use. If asked, 

the researcher replied that the choice of leg was not being examined.  

Upon completion of the  tasks, all subjects filled out the Waterloo Handedness 

Questionnaire-Revised (WHQ-R) [2] to determine hand dominance. One month later, to 

avoid bias from completing the WHQ-R and task performance, they were mailed the 

Waterloo Footedness Questionnaire-Revised (WFQ-R) [2] to determine perceived leg 

dominance.          

Data processing  

Due to presentation of multiple tasks, the language used by Peters [1] for leg 

categorization has been slightly altered. When analyzing specific tasks, the leg used to 

perform the task is referred to as the action leg. For example, the foot that makes contact 

with the cueing object, such as in kicking a ball, or the leg that leads out to step over an 

object is considered the action leg for that task. The action leg also served to appreciate 

the consistency in tasks performance. 

The predominant choice of action leg across the presented tasks was used to 

define the preferred leg for each condition. That is, the leg used 6 or more times as the 

action leg out of the 11 tasks was considered the preferred leg for the free-standing or 

supported condition, respectively. Thus, the primary outcome variables were the action 

leg for each task and the preferred leg for each condition.  
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The video recording was reviewed to assign the action leg to right or left side for 

each task. The action leg was subsequently translated into 1) prosthetic or intact leg for 

the amputee population and 2) dominant or non-dominant leg for the control population. 

The preferred leg was then assigned to each condition and identically translated.  

Hand dominance was determined based on WHQ-R. Leg dominance was defined 

in two ways. First, the dominant leg was considered the one used to kick the rolling ball. 

Secondly, the perceived leg dominance was defined based on the response to the first 

question of the WFQ-R questionnaire (kicking a ball). The agreement of perceived leg 

dominance with the action leg used in the rolling and stationary kick tasks and the 

preferred leg across all tasks was analyzed for all controls and 26 (84%) prosthesis users 

who returned the questionnaire. Those who indicated no leg preference on WFQ-R were 

excluded from the latter analysis (1 control, 2 prosthesis users). 

Statistical analysis 

Frequency histograms were used to describe the distribution of action leg across 

multiple tasks for each condition and subject group. Fisher’s exact test was used to test 

the null hypothesis that the prosthetic leg in amputees was used as the preferred leg as 

often as the dominant leg in controls. The change in preferred leg from free-standing to 

supported standing was also examined with the Fisher’s exact test in each group. The 

same test was also used in secondary analyses to explore whether the choice of preferred 

leg (prosthetic vs. intact) differed between below- and above-knee amputees, side of 

amputation, or with time since amputation (1-10 years, >11 years). 
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Results 

Action leg in free-standing condition 

When control subjects performed tasks in the free-standing condition, the action 

leg largely corresponded to the dominant hand across different tasks (mean 82%, range 

74-84%). When leg dominance was determined by the ball kicking task, the action leg in 

the remaining tasks almost perfectly matched the kicking (dominant) leg (mean 97%, 

range 89-100%). In the prosthesis users, however, the choice of action leg was less 

consistent. When pooled across all prosthesis users, the action leg matched the prosthetic 

leg in 56% of tasks, on average. Therefore, the prosthetic leg was used less often as the 

action leg than the dominant (kicking) leg in the controls. The analysis across tasks in the 

prosthesis users indicated that the action leg matched the prosthetic side least often in the 

bug/match stomping (35%) and garbage can/pumping (39%) tasks, most often in the 

elevator door stopping (81%), lid opening (81%), and box/ball pushing (74%) tasks, and 

in about 50% of other tasks. Figure 1 shows the correspondence of action leg with the 

dominant (kicking) leg in the controls and with the prosthetic leg in prosthesis users 

across different tasks in the free-standing condition.   

In general, the controls were likely to choose the same action leg for all tasks. 

Prosthesis users, on the other hand, were more likely to switch their action leg between 

tasks. The greater consistency in controls than prosthesis users is summarized in Figure 2. 

The number of switching instances across different tasks was no more than 2 in the 

control group whereas it ranged from 1-9 in the prosthesis users. 
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Comparision of action leg between free and supported condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Performance on 11 lower limb tasks. (White) Percent of controls who used their 

dominant (kicking) leg as the action leg in each task. (Black) Percent of prosthesis users 

who used their prosthetic leg as the action leg in each task. 

Fig. 2. Percent of subjects who performed tasks with a different leg than the one used to 

kick the rolling ball in the free-standing condition (0- never, 1- once, >1- more than 

once). Note higher rate of switching among the prosthesis users. 
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Matched tasks were used to compare performance between two conditions. 

Controls performed rather consistently across the two conditions. Specifically, 9 of 11 

(82%) control subjects who were examined in both conditions used the same action leg in 

all matched tasks. The remaining two differed in only one task. 

The prosthesis users, however, demonstrated marked differences between the free 

and supported standing conditions. Only 26% (8/31) of the prosthesis users used the same 

action leg in all matched tasks between the two conditions. Among the remaining 23 

prosthesis users, the average number of tasks performed differently was 4±2. Seventeen 

of 23 (74%) who switched action legs in the matched tasks went mainly from the 

prosthetic leg during free-standing to the intact leg in supported standing. Twelve of these 

17 (71%) consistently switched in this manner.    

Preferred leg in free-standing condition 

The preferred leg matched the kicking leg for all 19 control subjects and 27 (87%) 

of prosthesis users in the free-standing condition. In the prosthesis users however, the 

preferred leg matched the prosthetic side in 20 of 31 (65%). The prosthetic leg was used 

significantly less often as the preferred leg than the dominant (kicking) leg in the controls 

(Fisher’s exact test p<0.003). 

Comparision of preferred leg between free and supported condition 

As with the free-standing condition, the preferred leg was the the same as the 

kicking leg in all control subjects for the supported condition, but only in 26 (84%) of the 

prosthesis users. Nine prosthesis users switched the preferred  leg between the two 

conditions. In all 9, the preferred leg changed from prosthetic side during the free-
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standing condition to the intact side during the supported condition. This change in the 

prosthetic users was significant (Fisher’s exact test, p<0.04). 

Relationship to characteristics of amputation  

Table 2 shows the distribution of the preferred leg by different amputation 

characteristics. Having a prosthesis for more than 10 years was significantly associated 

with more frequent use of the intact leg as the preferred leg under both conditions 

(Fisher’s exact test, p=0.02 free, p=0.008 supported). No significant difference was found 

for the residual limb length (0.13 < p < 0.70) or side with respect to hand dominance 

(0.15 < p < 0.70). 

 

Table 2 

The distribution of preferred leg in relation to time, level, and side of amputation 

(significant difference indicated in bold). 
 Free-Standing Condition  Supported Condition 

 Prosthetic 

Leg 

Intact 

Leg 
p-Value 

 Prosthetic 

Leg 

Intact 

Leg 
p-value 

Time since Amputation        

>10 yrs. 5 8   1 12  

<10 yrs. 15 3 0.02  10 8 0.008 

Level of Amputation        

Above-Knee 5 6   3 8  

Below-Knee 15 5 0.13  8 12 0.70 

Side of Amputation        

Hand Dominant 13 4   7 10  

Hand Non-Dominant 7 7 0.15  4 10 0.70 

 

Table 3 

The rate of agreement between the endorsed kicking leg on WFQ-R and the actual leg 

used in two kicking tasks and the overall preferred leg (controls: free-standing n=18, 

supported n=10; prosthesis users: n=24 for both). 

 Stationary Kick  Rolling Kick  Preferred Leg 

 
Free-

Standing 
Supported  

Free-

Standing 
Supported  

Free-

Standing 
Supported 

Controls 94% 100%  100% 100%  100% 100% 

Prosthesis 

Users 
71% 62%  62% 75%  67% 67% 
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WFQ-R 

The agreement between the endorsed kicking leg on WFQ-R and the actual 

kicking and preferred leg was nearly perfect in the controls, but was inconsistent in 25-

38% of prosthesis users (Table 3).  

Discussion 

The main result of this study is that prosthesis users do not consistently use their 

prosthetic leg when performing different goal-oriented lower limb tasks. Thus, we refute 

our main hypothesis that the prosthesis users choose the intact leg for stability and the 

prosthetic leg for performance with the same consistency as able-bodied persons use the 

non-dominant and dominant legs, respectively. These findings were reaffirmed by the 

observation that when arm support was provided, prosthesis users increased their 

preference toward completing tasks with intact leg while standing on the prosthetic leg, 

but no change was observed in controls. This strategy was more prevalent in more 

experienced prosthesis users. Finally, the discrepancy between the perceived and actual 

leg preference was evident in 25-38% of prosthesis users and none of the controls. 

Our results contradict some common assumptions and provide important insight 

into motor behavior of prosthesis users. In the able-bodied population, lower limb 

laterality is used to appreciate how individuals maneuver through the world, including 

normal gait [5, 6, 8], turning [7] and stair stepping [9]. Our findings of less prominent leg 

preference in the prosthesis users may provide basis for some unexpected motor behavior 

during different activities. Taylor et al. reported a preference toward turning to the left 

among right-handed controls, which was not found in right-handed below-knee prosthesis 

users. Although prosthesis users showed a trend towards turning towards the prosthetic 



  64 

side, no significant factor was identified to predict turning bias [7]. This echoes our 

results because the side of amputation with respect to hand dominance was not associated 

with goal-oriented leg preference indicating poor predictability of leg preference based 

on side of amputation.  

We found that only time since amputation was associated with leg preference. 

More experienced users were more likely to rely on their intact side as their preferred leg. 

After years of use, they may have become more comfortable or trusting of their 

prosthesis. As such, they are able to utilize their prosthesis for balance and benefit from 

active motion of the intact side for task performance. While this change may result from 

years of practice, neural changes should not be overlooked. There have been only a few 

studies examining neural adaptation after lower-limb amputation. While they suggest 

motor reorganization occurs at the cortical level, it is unclear how it translates into motor 

action in the lower limbs [11]. 

The overall tendency of prosthesis users to use the intact side as the action or 

preferred leg became more apparent during supported standing, when balance is not 

compromised. The prosthesis users can then safely stand on the prosthetic leg and more 

precisely manipulate the object with the intact leg. This strategy may have been selected 

because of mechanical limitations of the prosthetic device, which may hamper successful 

completion of tasks. 

Conclusion 

Our findings have several implications for clinical practice and research. Whereas 

current rehabilitation practice is focused on retraining level walking and stair climbing in 

prosthesis users[4], we suggest a broader inclusion of activities to train the prosthetic leg 
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in both stability and performance tasks. This would allow a prosthesis user to experience 

a variety of daily tasks and facilitate the development of individual strategy. 

Inconsistency between the questionnaire response and actual performance reinforces the 

idea that prosthesis users lack strategy for goal-oriented tasks. This may delay reaction 

time and pose a risk in unfamiliar settings. Early acquisition of their own strategy may 

reduce gait variability, improve reactions when less common or unique situations arise, 

and possibly reduce the risk of falls [12], which warrants further studies. On the research 

side, the results indicate good discriminative validity of our Assessment of Leg 

Preference in Amputees. It would be of interest to determine the predictive value of 

inconsistent performance on this instrument in relation to falls. 

Limitations 

This study has several limitations. Although our sample was larger than in many 

amputee studies, it still limits generalization of findings. Also, the sample 

underrepresented amputees due to vascular disease and diabetes. All prosthesis users 

were rated as K3 or K4, so it is unknown whether our findings translate to the entire 

population.   
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CHAPTER 4 

STRIDE LENGTH-CADENCE RELATIONSHIP IS DISRUPTED IN BELOW-KNEE 

PROSTHESIS USERS 

This text is a reproduction of a previously published work. The published version can be 

found at: 

Howard C, Wallace C, Stokic DS. Stride length-cadence relationship is disrupted in 

below-knee prosthesis users. Gait Posture. 2013; 38: 883-7. 

10.1016/j.gaitpost.2013.04.008 

http://www.sciencedirect.com/science/article/pii/S0966636213001975 

 

Abstract 

The aim of this study was to evaluate the linearity of the relationship between 

stride length and cadence (STRIDELC) over three self-selected speeds (normal, slow, fast) 

in below-knee prosthesis users (n=14, 11 men, mean age 43±12 years, mean time since 

amputation 9.2±6.9 years) in comparison to controls (n=20, 11 men, mean age 43±17 

years). The step length-cadence relationship (STEPLC) was also calculated for the 

prosthetic and intact legs in prosthesis users and compared to the dominant leg of 

controls. The goodness of linear fit (R2) and slope over 3 speeds were used as outcome 

measures. Prosthesis users walked significantly slower than controls (slow-fast speed 

means 82-131 vs. 97-169 cm/s, respectively, ANOVA p<0.0001) due to both lower 

cadence (42-53 vs. 47-63 strides/min, p<0.0001) and shorter stride length (116-149 vs. 

123-161 cm, p<0.0001). The R2 of STRIDELC relationship in below-knee prosthesis users 

(0.76±0.13) was significantly lower than in controls (0.91±0.03, p<0.001). The R2 values 

of STEPLC relationship between the prosthetic and intact legs in prosthesis users were 

correlated (r=0.85, p<0.001) and both (0.67±0.19, 0.58±0.21, respectively) were 
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significantly smaller than in the dominant leg of controls (0.86±0.04, p<0.01). The slopes 

of STRIDELC and STEPLC were not different. The R2 of 0.84 for STRIDELC best 

discriminated prosthesis users from controls with high sensitivity (71%) and specificity 

(95%). The results indicate that coupling between stride/step length and cadence is 

disturbed in prosthesis users. Upon further investigation, the goodness of linear fit may 

prove to be useful in assessing prosthetic design, optimizing prosthetic fit, and predicting 

clinical outcomes. 

Introduction 

Healthy subjects modulate velocity by adjusting both stride length and cadence [1, 

2]. Although each of these parameters can be independently modulated, their relationship 

remains consistent across a wide range of speeds during natural walking [3-5] until it gets 

disrupted at extreme speeds [2, 3, 6]. This relationship is expressed as a walk ratio 

(length/cadence) or stride length-cadence plot [5, 6]. The plot of the stride length-cadence 

relationship follows a close linear pattern across a range of speeds, with similar slopes 

(walk ratio) in the majority of people without gait impairments [2, 5, 6]. Within-subject 

consistency of the stride length-cadence relationship over time has also been documented 

in an unimpaired population [7]. The stride length-cadence relationship, including the 

walk ratio, has been used to describe pathological gait in Parkinson’s patients [6], predict 

falls in elderly [8, 9], and better understand the neurocontrol of gait in healthy subjects [5, 

10].  

Characteristics and utility of the stride length-cadence relationship remain 

unknown in lower-limb prosthesis users. Differences in goodness of fit (R2) or slope 

(walk ratio) of the linear relationship between stride length and cadence would indicate 
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changes in the control of gait as a result of amputation or use of a prosthetic device. This 

has potential clinical and research implications because prosthesis users are at higher risk 

for falls compared to their peers [11]. Although previous studies suggested that stride 

length or cadence alone is not useful for predicting falls in prosthesis users [12, 13], their 

relationship at different speeds was not examined. Considering that stride lengths are 

shorter at higher cadences in elderly fallers [8, 9], it is plausible that this approach may be 

more sensitive for predicting falls in prosthesis users. Also, characterizing the stride 

length-cadence relationship during natural walking would be a step toward validating an 

assumption that stride length can be derived from cadence when prosthesis users are 

walking on a treadmill [14].  

The objective of this study was to determine if the relationship between stride 

length and cadence is altered in below-knee prosthesis users. The specific aims were to 

compare 1) the stride length-cadence (STRIDELC) relationship between below-knee 

prosthesis users and age-matched controls, and 2) the step length-cadence (STEPLC) 

relationship between the prosthetic limb and intact limb of prosthesis users and the 

dominant limb of controls. The first hypothesis was that the goodness of linear fit (R2) of 

the STRIDELC relationship would be lower in the below-knee prosthesis users compared 

with the controls. The second hypothesis was that the R2 of the STEPLC relationship 

would be lower in the prosthetic limb than either the intact limb of the prosthesis users or 

the dominant limb of the controls, with no difference between the intact limb and the 

control limb. The latter hypothesis was based on the assumption that STEPLC relationship 

in the intact limb is independent of postulated changes in the prosthetic limb. The slopes 
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(walk ratios) of STRIDELC and STEPLC relationships were examined in secondary 

analyses.  

Methods 

Participants  

Unilateral below-knee prosthesis users were recruited from two prosthetic clinics 

run by our institution. The inclusion criteria were: (1) age 18 – 80 years, (2) comfortable 

socket fit, (3) no known balance, neurological, or other health problems that limit daily 

activities, (4) able to safely walk 10m-distance, (5) verification by certified prosthetist 

that prosthesis user was fit to attempt walking at different velocities. A sample of age-

matched able-body control subjects was also recruited with the same relevant criteria.  

The study sample included 20 able-bodied controls (11 men; mean age 43±17 

years, body mass index 25±3.2) and 14 below-knee prosthesis users (11 men; mean age 

43±12 years, body mass index 26±2.6). The average time since amputation was 9.2±6.9 

years (range 0.9 to 27.5). The amputation was due to trauma (n=11), infection (n=2), or 

vascular disease (n=1). Three prosthetic subjects reported having diabetes, but this was 

not the primary reason for amputation. The prosthetic subjects were rated K3 (n=13) or 

K4 (n=1) on the Medicare scale. The prosthesis users wore their primary prosthesis and 

walked without an assistive device. All subjects wore their own shoes during testing. All 

data were collected by the same researcher at two prosthetic clinics and a hospital’s 

research facility. The study protocol was approved by the institutional review board for 

human research and all subjects provided informed consent.  
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Protocol 

Temporal and spatial foot fall data were collected while subjects walked over an 

electronic walkway (GAITRite®, length 5.2 m) at three self-selected speeds (normal, 

slow, and fast). An additional 1.2 m on each end of the walkway allowed for acceleration 

and deceleration so that only steady state gait was recorded. Subjects completed a 

minimum of 6 passes at each speed, which they freely selected in order to achieve the 

most natural walking pattern. The normal gait speed was always collected first and the 

order of other two speeds was randomized across subjects. Demographic and clinical 

information were collected through an interview and chart review. 

Data processing  

The collected foot fall data were processed with a custom program written in 

MATLAB® (Mathworks Inc., Natick, MA) to derive stride velocity (cm/s), stride length 

(cm), instantaneous stride cadence (strides/min), step length (cm), and instantaneous step 

cadence (steps/min). Instantaneous stride and step cadence were calculated from the 

individual stride and step times. Stride parameters were calculated when the dominant or 

prosthetic side was the lead foot.  

For evaluation of the STRIDELC relationship, each foot fall was treated as an 

individual data point. The linear regression was derived from all stride length-stride 

cadence pairs across the three speeds to compare the prosthesis users to controls 

(hypothesis 1). Identical analyses were conducted for step length-step cadence pairs for 

comparison between the prosthetic limb, intact limb, and the dominant limb of the 

controls (hypothesis 2). Figure 1 illustrates examples of the STRIDELC relationship for a 

representative control subject and a prosthesis user. The coefficient of determination (R2) 
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of the regression line was used to evaluate the goodness of fit and served as the main 

outcome measure for testing the two hypotheses. The slopes of the regression lines were 

secondary outcome measures.  

 

 

Fig. 1. Examples of the stride length-cadence linear regression for a representative 

control subject (circles) and prosthesis user (triangles) across slow (white), normal (gray), 

and fast (black) self-selected speeds. The R2 value indicates the goodness of fit.  

 

Statistical analysis 

For descriptive purposes, the stride and step parameters for each speed were 

compared between the two groups. A two-way ANOVA (α=0.05) with leg and speed as 

the main factors was used to evaluate each stride and step parameter. Paired and unpaired 

t-tests were used on stride and step parameters as appropriate to test differences between 

the prosthetic, intact, and the dominant leg in controls across different speeds. For these 
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analysis, the significance level was reduced to adjust for multiple comparisons (α=0.025 

and α=0.0167 respectively).  

To test the first hypothesis, the R2 values from the STRIDELC relationship were 

compared between the control subjects and prosthesis users by an unpaired t-test with a 

significance level of 0.05. For the second hypothesis, the R2 values from the STEPLC 

relationship were submitted to a one-way ANOVA (α=0.05) to test differences between 

the prosthetic, intact, and dominant leg in controls. If the main effect of leg was 

significant, Tukey’s HSD test was conducted between each pair. Pearson’s correlation (r) 

was used to assess the relationship between the R2 values in the prosthetic and intact legs. 

The slopes from the STRIDELC and STEPLC relationships were similarly compared with 

the unpaired t-test and one-way ANOVA, respectively. Gait parameters in the prosthesis 

users were correlated with age and time since amputation to examine potential 

confounds.  

Since the R2 value of STRIDELC relationship was found to be significantly 

different between the control and prosthesis user groups, post-hoc analysis was conducted 

to determine the sensitivity and specificity of this measure. A receiver operating curve 

was used to identify the cutoff point that best discriminates prosthesis users from 

controls. The R2 value with the best likelihood ratio was chosen as the cutoff point. Prism 

5 software (GraphPad, La Jolla, CA) was used for statistical analysis. 

Results 

Comparison of gait parameters across 3 speeds 

Two-way ANOVA revealed significant main effects of leg and speed for all gait 

parameters without significant interactions (Table 1). The prosthesis users walked 
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consistently slower than controls due to significant reduction in both stride length and 

cadence. Both prosthesis users and controls made comparable adjustments when asked to 

walk slower (mean -24% vs. -28%) and faster (+21% vs. +26%) than normal self-selected 

speed. The main effect of speed affirms that the subjects complied with the request to 

modulate the walking speed. The lack of significant leg x speed interaction indicates that 

the gait parameters were modulated at a comparable rate between the two groups. 

Further t-test comparisons revealed that the stride velocity was slower and the 

stride cadence was lower in the prosthesis users than controls at the normal and fast 

speeds (Table 1). Step length was significantly shorter in the intact leg of prosthesis users 

compared to the dominant leg of controls at the normal and fast speeds. Also, step 

cadence was bilaterally lower in the prosthesis users compared to controls for all speeds, 

except for the intact leg at the slow speed. In comparison to the intact leg, the step length 

in the prosthetic leg was significantly longer at normal and fast speeds, whereas the step 

cadence was significantly lower at the slow speed only. 

Stride length-cadence relationship 

The R2 value of the STRIDELC relationship was significantly lower in the 

prosthesis users (0.76±0.13) than the control subjects (0.91±0.03, p<0.001), which 

confirmed the first hypothesis. Such large differences between the prosthesis users and 

controls are evident in Figure 2, which shows the individual R2 values and the group 

means. In contrast to the R2 values, the slopes of the STRIDELC relationship were not 

significantly different between prosthesis users and controls (2.9±1.2 vs. 2.4±0.6, 

respectively, p=0.15). 
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Table 1 

Mean (SD) values for stride and step parameters at the three speeds with the ANOVA 

results. 
 

Slow Normal Fast 

ANOVA p-values 

 Leg Speed 
Leg x 

Speed 

Stride Velocity (cm/s)   <0.0001 <0.0001 0.160 

Control 97 (20) 134 (17) 169 (24)    

Prosthetic 82 (16) 108 (14)* 131 (21)*    

Stride Length (cm)   0.004 <0.0001 0.623 

Control 123 (14) 144 (12) 161 (12)    

Prosthetic 116 (15) 133 (15) 149 (19)    

Stride Cadence (strides/min)  <0.0001 <0.0001 0.335 

Control 47 (6) 55 (4) 63 (7)    

Prosthetic 42 (5) 49 (4)* 53 (5)*    

Step Length (cm)   0.006 <0.0001 0.936 

Control 62 (7) 72 (7) 80 (6)    

Prosthetic 59 (10) 69 (9)+ 77 (12)+    

Intact 56 (7) 64 (7)* 72 (9)*    

Step Cadence (steps/min)  <0.0001 <0.0001 0.485 

Control 94 (11) 111 (9) 125 (14)    

Prosthetic 84 (10)* 96 (8)* 105 (11)*    

Intact 86 (8)+ 99 (7)* 108 (9)*    

* significant un-paired t-test, p≤0.0167 

+ significant paired t-test, p≤0.025 

 

 

 

Fig. 2. Individual and mean R2 values of the stride length-cadence relationship for control 

subjects (circles) and prosthesis users (squares). Note that only 4 prosthesis users overlap 

with controls. 
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The R2 value of 0.84 best discriminated prosthesis users from controls (likelihood 

ratio 14.29), with a sensitivity of 71% and specificity of 95% (Figure 3). The area under 

the receiver operating curve was 0.85 (confidence interval 0.69-1.00, p<0.001). With the 

cutoff of 0.84, 19 of the 20 (95%) controls were considered within normal limits but only 

4 of the 14 (29%) prosthesis users.  

 

 

Fig. 3. The receiver operating curve based on R2 values of the stride length-cadence 

relationship. An R2 of 0.84 best discriminated prosthesis users from controls (71% 

sensitivity, 95% specificity). 

 

Step length-cadence relationship 

The R2 values of the STEPLC relationship were significantly different between the 

prosthetic, intact, and control legs (ANOVA p<0.0001). Tukey’s comparison revealed 

that the dominant leg of controls (0.86±0.04) had significantly higher R2 values than both 

the prosthetic (0.67±0.19, p<0.01) and intact legs (0.58±0.21, p<0.001), with no 

difference between the latter two. The R2 values for the prosthetic and intact legs of 

prosthesis users strongly correlated with each other (r=0.85, p<0.001). These results only 
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partially confirmed the second hypothesis because, instead of the postulated difference 

between the prosthetic and intact legs, we found that both legs of the prosthesis users 

differed from controls. This is illustrated in Figure 4, which shows the individual and 

group mean data for the controls and each leg of the prosthesis users.  

As with the stride data, the prosthetic, intact, and dominant legs did not differ in 

terms of the slope (0.60±1.15, 0.67±0.27, 0.63±0.37, p=0.78) of the STEPLC relationship. 

Age and time since amputation did not significantly correlate with any parameter of the 

STRIDELC or STEPLC relationship.  

 

Fig. 4. Individual and mean R2 values of the step length-cadence relationship for the 

dominant leg of controls (circles) and the prosthetic (filled squares) and intact legs (open 

squares) of prosthesis users. Note that both legs of prosthesis users are significantly 

different from controls but not between each other. 

 

Discussion 

This study evaluated the linear relationship between the stride length and stride 

cadence and the step length and step cadence in below-knee prosthesis users in 

comparison with age-matched controls. The results indicate that the goodness of linear fit 

(R2) between stride/step length and cadence is lower in both legs of below-knee 
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prosthesis users compared with the dominant leg of controls. No significance for the 

slope (walk ratio) suggests that prosthesis users modulate stride/step length and cadence 

no differently than controls when changing speeds. The R2 value of 0.84 from STRIDELC 

relationship effectively discriminates prosthesis users from controls. The R2 for the 

STEPLC relationship in prosthesis users significantly correlates between the prosthetic 

and intact legs. The findings are unrelated to age or time since amputation.  

The sample recruited for this study seems representative of ambulatory below-

knee prosthesis users. Their demographic and basic gait characteristics are similar to 

prosthesis users evaluated in other studies [13, 15]. Despite differences in gait between 

our prosthesis users and controls, both groups comparably modulated velocity when 

asked to walk slower and faster than the normal speed (about ±25%). This is confirmed 

by ANOVA as the lack of leg x speed interaction for various gait parameters. No 

significant interaction indirectly reflects the lack of difference between the two groups in 

the slope of stride\step length-cadence relationship. 

To the best of our knowledge, no previously published study examined coupling 

between the stride/step length and cadence in below-knee prosthesis users. Although not 

explicitly studied, weaker coupling between the stride length and cadence was apparent 

in below-knee prosthesis users walking in tall grass [16]; whereas controls proportionally 

reduced both stride length and cadence, prosthesis users only reduced stride length. 

However, a disruption of the linear relationship has been reported in able-bodied adults 

when stride length or cadence is restricted [5]. By analogy, our results may imply that the 

prosthetic device imposes a constraint on the sensori-motor control of gait reflected by 

reduced linearity between stride/step length and cadence. 
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The key finding of this study is a weaker coupling between the stride/step length 

and cadence across comfortable self-selected speeds in prosthesis users. No difference in 

the slope suggests that prosthesis users are capable of modulating the coupling between 

stride\step length and cadence across various speeds. The fact that the STEPLC 

relationship is bilaterally disrupted and exhibited high correlation between the prosthetic 

and intact sides provides evidence that the disruption in the STRIDELC relationship is due 

to a bilateral loss of coupling. The apparent correlation in coupling between the two legs 

is in contrast to an asymmetric gait pattern seen in our prosthesis users who walked with 

shorter steps and faster cadence on the intact side. The follow-up analyses argue against a 

possibility that the disruption of the stride/step length-cadence relationship in prosthesis 

users was due to a greater scatter of data points at the lower speed. Also, no other model 

fit the data better than the linear regression line. This confirms that the decoupling of the 

stride/step length-cadence relationship is an inherent property of below-knee prosthetic 

gait. Thus, the main findings likely reflect different aspects of altered neurocontrol of gait 

in prosthesis users.  

The potential causes of the disrupted stride/step length-cadence relationship in 

below-knee prosthesis users are not apparent at this time. The basic gait parameters and 

the type of prosthetic device in the four subjects with R2 values above the 0.84 cutoff 

point were not substantially different from the rest of the prosthetic population. Age and 

time since amputation also did not play a major role, although our sample size may be too 

small for accurate assessment. Other potentially contributing factors that need to be 

examined in the future include the type and duration of gait training, alignment, foot type, 
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energy return properties of the prosthetic device, and the level of comfort within the 

socket.  

The implications of the weaker linear relationship between stride/step length and 

cadence in prosthesis users also needs further studies. We postulate that weaker coupling 

between these parameters across the range of speeds may be related to a fall risk. This 

method for assessing fall risk is different from conventional approaches that are based on 

variability of selected gait parameters at distinct speeds. Previous studies in elderly 

populations reported differences in the walk ratio between fallers and non-fallers only at 

higher speeds, but the strength of linear relationship was not examined [8, 9]. Since the 

walk ratio (slope) was not significantly different between the two groups in our study, we 

suspect that it is unlikely to be a good predictor of fall risk in prosthesis users. 

Conclusion 

Evaluation of the STRIDELC relationship has an ecological validity because it 

captures key characteristics of gait in the manner that resembles everyday life since 

prosthesis users are expected to walk at different speeds depending on the environment or 

situation. Since both stride length and cadence are strongly linked to velocity, even slight 

changes in velocity require concomitant and proportional adjustments in both stride 

length and cadence. Thus, disturbed coupling between stride\step length and cadence in 

prosthesis users may better represent gait deviations as they occur in natural settings than 

when studied at individual speeds. Better understanding of STRIDELC relationship also 

has implications for research studies utilizing a treadmill. Based on the assumption that 

this relationship is preserved in prosthesis users, it is customary to derive stride length 

from cadence and velocity of the treadmill. However, this practice is questioned based on 
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the evidence of disrupted relationship between the stride/step length and cadence in 

below-knee prosthesis users that was observed in this study. Finally, our first estimate of 

the STRIDELC cutoff point (R2=0.84) that adequately discriminates below-knee 

prosthesis users from controls may serve to track the progress of rehabilitation and assess 

how well attained results approximate walking of unimpaired subjects. 

Limitations 

This study has several limitations. Although larger than in many other studies of 

amputee gait, the sample size of below-knee prosthesis users is relatively small. None of 

the prosthesis users used an assistive device, which limits generalization to those who 

walk with an assistive device. Also, a variety of prosthetic devices were used and it 

remains unknown whether that confounded the results. 
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CHAPTER 5 

INCREASED ALERTNESS, BETTER THAN POSTURE PRIORITIZATION, 

EXPLAINS DUAL-TASK PERFORMANCE IN PROSTHESIS USERS AND 

CONTROLS UNDER INCREASING POSTURAL AND COGNITIVE CHALLENGE 

This text is a reproduction of a previously published work. The published version can be 

found at: 

Howard CL, Perry B, Chow JW, Wallace C, Stokic DS. Increased alertness, better than 

posture prioritization, explains dual-task performance in prosthesis users and controls 

under increasing postural and cognitive challenge. Exp Brain Res. 2017; Epub: Aug 31; 

10.1007/s00221-017-5077-2. 

https://link.springer.com/article/10.1007/s00221-017-5077-2 

 

Abstract 

Sensorimotor impairments after limb amputation impose a threat to stability. 

Commonly described strategies for maintaining stability are the posture first strategy 

(prioritization of balance) and posture second strategy (prioritization of concurrent tasks). 

The existence of these strategies was examined in 13 below-knee prosthesis users and 15 

controls during dual-task standing under increasing postural and cognitive challenge by 

evaluating path length, 95% sway area, and anterior-posterior and medial-lateral 

amplitudes of the center of pressure. The subjects stood on two force platforms under 

usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first 

alone and while performing a cognitive task without and then with instruction on 

cognitive prioritization. During standing alone, sway was not significantly different 

between groups. After adding the cognitive task without prioritization instruction, 

prosthesis users increased sway more under the dual-task than single-task standing 
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(p≤0.028) during both usual and difficult conditions, favoring the posture second 

strategy. Controls, however, reduced dual-task sway under a greater postural challenge 

(p≤0.017), suggesting the posture first strategy. With prioritization of the cognitive task, 

sway was unchanged or reduced in prosthesis users, suggesting departure from the 

posture second strategy, whereas controls maintained the posture first strategy. Individual 

analysis of dual-tasking revealed that greater postural demand in controls and greater 

cognitive challenge in prosthesis users led to both reduced sway and improved cognitive 

performance, suggesting cognitive-motor facilitation. Thus, activation of additional 

resources through increased alertness, rather than posture prioritization, may explain 

dual-task performance in both prosthesis users and controls under increasing postural and 

cognitive challenge. 

Introduction 

Postural control is maintained actively and passively through coordinated 

responses to visual, vestibular, and somatosensory inputs, the mechanical support 

provided by the musculoskeletal system, and involvement of cognitive resources [1, 2]. 

The contributions of these control systems may be reduced due to environmental 

demands, physical and cognitive limitations, or multi-tasking, which requires the 

remaining control systems to take on a greater role in maintaining balance [2, 3]. With 

more strain on these control systems, balance performance may degrade [1]. Many 

studies illustrate detriments in balance when sensory feedback loops are altered or 

impaired [4]. In contrast, individuals without impairments maintain body sway even 

when faced with an additional postural challenge [1, 5, 6]. This capacity to adjust to 

increased postural demand is referred to as postural reserve [3].  
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The sensory, mechanical, and cognitive systems contributing to the maintenance 

of posture are also involved in many other tasks. With ample resources available, multi-

tasking does not negatively affect balance or performance on competing tasks. However, 

with increasing task difficulty and available resources depleted, successful performance 

on one task may require shifting resources away from the other tasks, depending on their 

priority [1, 3, 7]. When performance on a task is sacrificed in favor of maintaining 

balance, this strategy is referred to as the “posture first strategy” [8]. Conversely, the 

“posture second strategy” is when balance is sacrificed in favor of the other tasks, which 

may pose a risk to stability [2, 3, 5].  

Use of the posture first or posture second strategy has been assessed with a dual-

task paradigm, which involves performing an additional cognitive or motor task while 

standing or walking. As the dual-task requirements become more challenging, individuals 

without impairments tend to follow the posture first strategy, whereas persons with 

sensorimotor impairments often do not [3, 5, 8-11]. The latter observations mainly come 

from persons with Parkinson’s disease or stroke [7, 9, 12], making it difficult to 

disentangle possible contributions of disequilibrium, weakness, altered muscle tone, or 

cognitive deficits on the choice of postural strategy.  

Lower-limb amputees suffer from partial losses to musculoskeletal, motor, and 

somatosensory systems, which affect postural control. Despite improvements in 

prosthetic designs, prosthesis users remain at increased risk for falls [13, 14]. Minor 

threats to stability are presumably compensated for by the remaining resources in the 

postural reserve available to prosthesis users [15]. The use of the postural reserve could 

explain near normal sway characteristics reported in prosthesis users during normal 
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standing [16, 17]. However, increasing challenge may deplete limited postural resources 

and result in situations where not all demands can be fully met. Prosthesis users may 

follow the posture first strategy to accommodate for the reduced postural reserve, which 

is supported by the findings of little to no increase in unsteadiness when prosthesis users 

are asked to concurrently perform a cognitive task, despite self-reports of increased 

cognitive burden [18, 19]. On the other hand, there are reports of increased unsteadiness 

with dual-tasking [20, 21], suggestive of the posture second strategy. Some of the 

existing controversy may be due to the differences in methodology and studied 

population (above- vs. below-knee prosthesis users), and not accounting for performance 

on a concurrent task. The use of the posture second strategy in prosthesis users could 

provide an explanation for greater fall risk and point to approaches for reducing the risk 

for falls in this population.        

To determine if the posture first or posture second strategy is used during dual-

tasking, it is necessary to impose experimental conditions that stress the postural reserve. 

The stress should be sufficient enough to tap into the postural reserve and force a 

reallocation of resources between the competing tasks. In order to determine how 

amputation impacts strategy of choice in balance maintenance, we combined a dual-task 

paradigm with challenging postural tasks in the evaluation of prosthesis users and age- 

and education-matched non-amputee controls. Our rationale was that both prosthesis 

users and controls may initially allow some sacrifices in postural control in favor of better 

performance on a cognitive task (posture second strategy) when the risk to stability is 

low. However, when the postural demand rises, more resources may be allocated to 

posture to limit unsteadiness, which comes at the expense of cognitive performance 
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(posture first strategy). This will manifest as a smaller increase in sway in dual-task than 

single-task standing under greater postural challenge. In line with the posture first 

strategy, this shift in resources to maintain postural control would also result in worse 

cognitive performance [3]. Thus, to examine how a change in sway is related to 

allocation of available resources, the performance on the concurrent cognitive task should 

also be considered [22]. This is expected to provide a better appreciation of the cognitive-

motor interaction, which may yield not only cognitive-motor interference but also 

facilitation. 

Based on this rationale, this study was designed with two major aims. Our first 

aim was to examine changes in sway under increasing postural challenge between single-

task and dual-task conditions without specific instructions on prioritization. The 

following hypotheses were tested regarding the first aim. Since more challenging 

standing conditions are needed to perturb balance in prosthesis users [16, 17], we 

postulated that the sway in prosthesis users will be no different from controls under the 

usual single-task standing condition (hypothesis 1). As a corollary to this hypothesis, we 

predicted that with greater postural challenge in single-task standing both groups will 

increase sway, but the increase will be greater in prosthesis users than controls 

(hypothesis 1A). In terms of the strategy used by each group, we hypothesized that with 

greater postural challenge both groups will follow the posture first strategy, such that the 

increase in sway during dual-task standing will be smaller than the increase in sway 

during single-task standing (hypothesis 2). Failure to follow this behavior suggests the 

posture second strategy.  
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In our second aim, we examined the impact of instruction to focus on improving 

cognitive performance during dual-task standing (cognitive task prioritization) to assess if 

overt cognitive prioritization can impact the postural strategy in each group [9, 23]. We 

hypothesized that the instruction to improve cognitive performance will result in 

increased sway dual-task cost from the no-prioritization to prioritization condition, 

suggesting the posture second strategy (hypothesis 3). However, if the cognitive 

prioritization instruction does not further disrupt sway (i.e., insignificant change or 

significant reduction), the posture first strategy or mutual facilitation is implicated. Thus, 

the relationships between sway dual-task cost and cognitive dual-task cost were also 

assessed under different conditions to infer changes in strategy at the group and 

individual levels in terms of all possible outcomes of cognitive-motor interaction (i.e., 

interference vs. facilitation) [22].   

Methods 

Participants  

A convenience sample of unilateral below-knee prosthesis users (n=16) was 

recruited from our clinics by a certified prosthetist. The inclusion criteria were ≥ 1 year 

since amputation; age 18–80 years; comfortable socket fit; no known balance, 

neurological, or other health problems that limit daily activities; and able to safely stand 

without the use of an assistive device. Age- and education-matched non-amputee controls 

were recruited from the community (n=17). The study was approved by the institutional 

review board for human research and all subjects signed the informed consent. 
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Protocol 

General cognitive functions were assessed using the Modified Mini-Mental Status 

Exam (3MS) and processing speed and executive function by Trail-Making (Trail) forms 

A and B (scaled T-scores adjusted for race, age, gender, and education; higher scores 

represent better performance). Demographic and clinical data were collected through an 

interview and from medical records. 

All standing tasks were performed using 2 force plates (Type 4060, 40x60 cm2, 

Bertec Corp, Columbus, OH). Subjects were instructed to place each foot on a separate 

force plate with shoes on, stand naturally with a shoulder width stance, and keep arms 

comfortably and freely at their sides. Foot placement was marked to ensure consistent 

standing position across all trials. Force plate data were collected using a Cortex data 

acquisition system (Motion Analysis Corp., Santa Rosa, CA, sample rate 1,200 Hz, 12-bit 

analog-to-digital resolution).  

Two standing surfaces (hard and soft) and 2 vision conditions (eyes open and 

closed) were used to create increasing levels of postural challenge. This produced 4 

standing conditions with hard surface/eyes open considered the least challenging 

(referred to as usual standing) and the soft surface/eyes closed considered the most 

challenging (difficult standing). The intermediate conditions (provided in Appendix A) 

were not reported here to emphasize extreme effects. The soft standing condition required 

subjects to stand with each foot on a foam pad (Airex Balance Pad, Sins, Switzerland, 

40x50x6 cm3, 0.726 kg, density 61 kg/m3). The pads were positioned so that they did not 

touch each other or extend over the edge of the force plate.  
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The choice of instructions and order of their presentation were selected after 

extensive pilot testing. All single-task standing conditions were collected prior to the 

dual-task conditions. Subjects performed two 30-s trials for each surface/vision 

combination. The hard surface was collected first to familiarize subjects with the 

procedure. Eyes open was collected first in each surface condition. Subjects were allowed 

to take seated breaks as needed and step off the force plates or foam pads between tasks. 

Two cognitive tasks were selected for the dual-task paradigm; serial subtraction 

by 7 from a 3-digit number and a verbal fluency task (listing words starting with a 

specific letter). The most difficult letters for verbal fluency (J, K, Q, U, X, Y, Z) were 

excluded from this task [24]. Each task was practiced while seated to ensure 

comprehension. The subtraction task was performed 2-3 times for 30 s as a seated 

baseline performance. The verbal fluency F-A-S test (FAS) was performed once for 60 s 

of which the standard 60-s score was used for comparisons to controls and the first 30-s 

score as a seated baseline performance. The number of correct responses was 

documented, and the verbal responses were also recorded to confirm response accuracy.  

After completing the single-task standing condition and a brief seated rest, 

subjects repeated each surface/vision combination while performing each cognitive task 

once for 30 s (dual-task standing). The order of the 2 cognitive tasks and 2 surface 

conditions was randomized with eyes open always collected first for each surface. In aim 

1, subjects were given no instruction on task prioritization. In aim 2, during the dual-task 

standing, subjects were asked to focus on the cognitive task and increase the number of 

correct responses by at least 50% over their noted average in aim 1. In each aim, an 
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additional subtraction task was given at random as a distractor (subtracting 6 or 8, data 

not included). The performance on each cognitive task was documented and recorded.  

Data processing 

Ground reaction forces and moments were used to determine the center of 

pressure (CoP) of each foot contact. The resultant CoP is a point along the line 

connecting the 2 CoPs and the location was determined using the equation of equilibrium 

(i.e., the sum of the moments due to individual vertical ground reaction forces about the 

resultant CoP equaled to zero). The resultant CoP locations were then filtered with a 4th 

order low-pass Butterworth filter (cutoff frequency 10 Hz).  

The primary outcome measures were path length (PL, the sum of the distance 

between adjacent resultant CoP locations) and sway area (AREA, the best fit ellipse that 

captures 95% of the resultant CoP locations). After computing PL from both the original 

data sampled at 1200 Hz and the data down-sampled to 200 Hz, we found consistently 

longer PL values for the 1200-Hz than the 200-Hz data. To ensure the reported results are 

comparable to the literature, the down-sampled data were used. The ranges of resultant 

CoP locations in the anterior-posterior and medial-lateral directions (AP and ML 

amplitudes, respectively) were used as secondary outcome measures to determine if 

changes in sway were driven by movement in a specific direction. All computations were 

completed using a custom program written in MATLAB® (Mathworks Inc., Natick, 

MA). Due to sporadic artifacts at the beginning or end of some trials, the middle 5,120 

samples (25.6-s of the 30-s trial) were analyzed for consistency between subjects. The 

data of 3 prosthesis users and 1 control subject were excluded due to technical problems 

or a violation of the protocol. After data inspection, 1 control subject was considered an 
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outlier (50% of outcomes exceeded 3 SD of the group mean) and excluded from further 

analysis. 

Due to personal aptitude, the same task may not have equal interfering effect in 

all subjects. Since our goal was to examine the change in postural strategy under an 

undoubtedly stressful condition, the cognitive task (subtraction or verbal fluency) with a 

more disruptive effect across the 4 sway parameters was identified in each subject and 

selected for the dual-task analysis (only 1 of the 2 cognitive tasks was available for 

analysis in 1 prosthesis user due to technical issues). The same approach was used in our 

previous study [20]. The distribution of the subtraction and verbal fluency tasks was not 

significantly different between the two groups (Fisher’s exact test p=0.5). Dual-task cost 

was calculated as the difference between the single-task and dual-task standing for the 4 

sway parameters and the cognitive performance on a more disruptive task across all 

surface/vision combinations and prioritization conditions (negative sign indicates greater 

sway/worse cognitive performance during dual-task standing).  

To appreciate the strategy employed, changes in both sway and cognitive 

performance should be considered [22]. Thus, for both prioritization conditions, the dual-

task cost for PL and AREA was plotted against the respective cognitive dual-task cost to 

infer if one, both, or neither task was affected by the concurrent performance or if they 

were affected in different ways. For that, the plot area was divided into regions of 

interference (negative dual-task cost), no influence, and facilitation (positive dual-task 

cost) along each axis, resulting in a 3x3 matrix of cognitive-motor interaction. The no 

influence region for the sway parameters was bounded by the average standard deviation 

of all single-task standing conditions across both groups (PL ±5.5 cm, AREA ±1.3 cm2). 
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For the cognitive task, the no influence region was delimited by ±1 point, after rounding 

the average standard deviation of the correct responses across both groups (1.1±0.9). 

Given the emphasis in hypothesis testing on the presence of interference effect, the no 

influence regions were combined with the respective facilitation regions to reduce the 

3x3 matrix to a 2x2 matrix with the following 4 regions: posture facilitation/cognitive 

interference (posture first strategy), posture interference/cognitive facilitation (posture 

second strategy), mutual interference, and no change/mutual facilitation [9, 22]. Within 

each group, the number of subjects in each region was tallied for the usual and difficult 

standing conditions.  

Statistical analysis 

Baseline cognitive performance was compared between prosthesis users and 

controls (unpaired t-test, p<0.05). Hypothesis 1, of no difference in sway parameters 

between the two groups under the usual single-task standing condition, was tested using 

the average of the two baseline conditions (unpaired t-tests, p<0.05). To reveal the 

greatest impact of a postural challenge, the reported analysis of sway data was limited to 

the two extreme standing conditions (usual, difficult). Therefore, to test whether 

increasing the postural challenge affected sway parameters differently in the two groups 

(hypothesis 1A), a 2x2 mixed ANOVA was used with Group (prosthesis users, controls) 

as the between-subjects factor and Standing condition (usual, difficult) as the within-

subjects factor. The effect of increasing the postural challenge was determined by the 

main effect of Standing and the differential response of the two groups by the Group x 

Standing interaction or the main effect of Group (p<0.05).  



  94 

In order to assess the strategy employed by each group during the dual-task 

standing, we used a within group 2x2 repeated measure ANOVA with Task (single, dual) 

and Standing (usual, difficult) as factors. Hypothesis 2 was accepted if there was a 

significant Task x Standing interaction consistent with a smaller increase in dual-task 

sway compared to single-task sway with increasing postural challenge, suggesting the 

posture first strategy. The posture second strategy was implicated by a significant main 

effect of Task or Task x Standing interaction due to a greater increase in dual-task vs. 

single-task sway (p<0.05).  

To assess in each group if the instruction to prioritize the cognitive task led to the 

posture second strategy, sway dual-task cost was submitted to a 2x2 repeated measure 

ANOVA with Instruction (no-prioritization, prioritization) and Standing (usual, difficult) 

as factors. Hypothesis 3 was accepted in case of a significant main effect of Instruction or 

significant Instruction x Standing interaction, supporting an increase in sway under the 

prioritization condition (p<0.05).  

The cognitive dual-task cost was evaluated using a 2x2x2 mixed ANOVA with 

Group (prosthesis users, controls) as the between-subjects factor and Standing condition 

(usual, difficult) and Instruction (no-prioritization, prioritization) as the within-subjects 

factors (p<0.05).  

Finally, to determine how individual subjects in each group changed the strategy 

under increasing postural and cognitive challenge, we submitted categorical frequency 

distributions of the 4 regions of the plot defined by the sway dual-task cost (PL, AREA) 

vs. cognitive dual-task cost to a general linear model with repeated measures on Standing 

(usual, difficult) and Instruction (no-prioritization, prioritization) factors (p<0.05). The 
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statistics of interest was the significance of either of the two main effects or of their 

interaction. The α level was set at 0.05 for all tests. No adjustment for cognitive function 

was made because the two groups did not differ on standard tests of cognitive function 

(3MS, Trails A/B, FAS). IBM SPSS Statistics 23 (IBM Corp., Armonk, NY) was used 

for statistical analysis. 

Results 

The studied sample included 15 controls (mean age 49±16 years, 15±2 years of 

education, BMI 29.7±7 kg/m2, 7 (47%) men) and 13 below-knee prosthesis users (age 

46±11 years, 14±3 years of education, BMI 31.4±6 kg/m2, 9 (70%) men). The amputation 

occurred 8±7 years earlier (range 1.0 to 22 years) due to trauma (n=6), infection (n=2), or 

vascular disease (n=5). Individual subject characteristics are provided in Table 1. All 

below-knee prosthesis users were rated K3 on the Medicare scale and none used an 

assistive device. They all used an energy storage and return style foot, which also 

included a hydraulic ankle in 3. Two used a passive suction suspension system, 7 

elevated vacuum, and 4 a pin locking system. Nine prosthesis users reported living an 

active or very active lifestyle, 3 reported moderate activity, and 1 sedentary.  

The baseline cognitive performance did not significantly differ between prosthesis 

users and controls (3MS 95±5 vs. 95±4; Trail A 48±10 vs. 44±13; Trail B 48±13 vs. 

48±12, FAS 35.6±8 words vs. 39.1±13 words respectively, p>0.4 for all measures; for 

individual scores, see Table 1). The 5 vascular disease amputees did not differ from the 

controls or other prosthesis users (p>0.4).  
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Single-task standing (hypotheses 1/1A) 

During the usual single-task standing condition (hard surface, eyes open), there 

was no difference between the two groups for any sway outcome (t-test p=0.191 – 0.906). 

Greater postural challenge significantly increased all sway outcomes irrespective of the 

group (Standing main effect p<0.001) (Table 2). Only the AP amplitude showed a 

significant Group x Standing interaction (p=0.004), with prosthesis users having greater 

sway than controls. Similarly, AREA showed a trend towards increased sway in 

prosthesis users (Group x Standing interaction p=0.055). These results largely confirmed 

hypotheses 1 and 1A. 

Table 2  
Mean (SD) and 2-way ANOVA analysis for each sway parameter during single-task 

standing for prosthesis users (PU) and controls (Ctrl) under the usual and difficult 

standing conditions. Significant values in bold. The results indicate increased sway with 

greater postural challenge, largely confirming hypotheses 1 and 1A. 

Parameter/ Group 

Single-Task Standing  Main Effects  Interaction 

Usual Difficult 
 

Group Standing  
Group x 

Standing 

PL        

PU 31.6 (12.9) 117.4 (61.9)  
0.215 <0.001 

 
0.272 

Ctrl 26.0 (9.0) 90.4 (56.0)   

AREA        

PU 2.20 (0.90) 16.6 (12.6)  
0.061 <0.001 

 
0.055 

Ctrl 1.67 (1.09) 9.37 (5.79)   

AP        

PU 1.1  (0.5) 3.7  (1.5)  
0.005 <0.001 

 
0.004 

Ctrl 0.93 (0.4) 2.2 (0.73)   

ML        

PU 2.4  (0.6) 6.0  (1.1)  
0.331 <0.001 

 
0.663 

Ctrl 2.5  (1.0) 5.6  (1.5)   

PL, path length (cm); AREA, 95% area (cm2); AP, anterior-posterior amplitude (cm); ML, 

medial-lateral amplitude (cm). 

 

Single-task vs. no-prioritization dual-task standing (hypotheses 2) 

The prosthesis users showed a significant main effect of Task for all outcomes 

(p=0.001 – 0.028) and no significant Task x Standing interactions (p=0.133 – 0.714), 
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indicating a greater increase in sway under the dual-task than single-task standing that 

was not affected by increased postural challenge (Figure 1). Thus hypothesis 2 was 

rejected, implicating the posture second strategy in prosthesis users.  

Fig. 1. Singe-task (solid line) vs. no-prioritization dual-task (dashed line) sway parameters 

between the usual and difficult standing conditions (mean and standard error). Prosthesis 

users (black squares) significantly increased sway when concurrently performing a 

cognitive task regardless of standing condition (main effect of Task), supporting the use of 

the posture second strategy. In controls (gray diamonds), the significant Task x Standing 

interaction was due to the increase in sway from usual to difficult standing in the single-

task but not dual-task condition (note the difference in slopes of the gray solid line 

compared to the dashed line), which suggests that controls followed the posture first 

strategy. 
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The control subjects showed significant Task x Standing interactions for all 

outcomes (p=0.001 – 0.017). The interactions were due to a smaller increase in the dual-

task than single-task sway under the difficult standing condition, also evident as the 

smaller slope from usual to difficult standing condition for the dual-task than single-task 

standing (Figure 1). These results support hypothesis 2 and implicate the use of the 

posture first strategy in control subjects. Only the AP amplitude showed a significant 

effect of Task (p=0.022). The main effect of Standing was significant for all parameters 

in both groups (p≤0.001).  

No-prioritization vs. prioritization sway dual-task cost (hypothesis 3) 

The sway dual-task cost for the cognitive no-prioritization and prioritization 

conditions and the within group statistics are presented in Figure 2. In prosthesis users, 

the main effect of Instruction was only significant for PL (p=0.030), indicating decreased 

sway dual-task cost with the instruction to prioritize the cognitive task over the no-

prioritization condition. AREA had a significant Instruction x Standing interaction 

(p=0.041), showing that only with instruction to prioritize the cognitive task did the sway 

dual-task cost decrease in the difficult standing condition. These results refute hypothesis 

3 in prosthesis users, and, therefore, the use of the posture second strategy when asked to 

prioritize the cognitive task while standing. Only the ML amplitude showed a significant 

effect of Standing (p=0.049), with less dual-task cost during the difficult standing 

condition. The AP amplitude followed a similar trend (p=0.078).  

In control subjects, the main effect of Instruction was only significant for PL 

(p=0.028; AREA, AP, ML amplitude p=0.169 – 0.700), indicating less dual-task cost 

with the instruction to prioritize the cognitive task. These findings also refute hypothesis 
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3 in controls, which is again inconsistent with the posture second strategy when standing 

under greater cognitive challenge. Controls subjects further showed a significant main 

effect of Standing for all sway parameters (p=0.001 – 0.014), indicating less dual-task 

cost in the difficult than usual standing condition.  

Fig. 2. Dual-task cost (mean and standard error) for each sway parameter for the no-

prioritization (solid line) and prioritization (dashed line) conditions. The instruction to 

prioritize the cognitive task during the difficult standing condition resulted in 

significantly smaller dual-task cost for path length and 95% sway area in prosthesis users 

(black square) and for path length in controls (gray diamond), with no changes in the 

anterior-posterior (AP) or medial-lateral (ML) amplitude. The results confirm hypothesis 

3A in both prosthesis users and controls, consistent with posture first strategy. 
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Cognitive dual-task cost 

Across all conditions, the mean cognitive dual-task cost was positive, indicating 

that on average both groups performed better on the cognitive task while standing. There 

was a significant Group x Instruction interaction (p=0.026) due to greater improvement in 

cognitive dual-task performance in prosthesis users than controls when instructed to 

prioritize the cognitive task (Figure 3). The standing condition (usual vs. difficult) did not 

have a significant impact on the cognitive dual-task cost (p=0.843).  

 

Fig. 3. Dual-task cost (mean and standard error) for the selected cognitive task for the no-

prioritization (solid line) and prioritization (dashed line) conditions. The positive cost 

represents an improvement in performance from seated to standing. Prioritization of the 

cognitive task only significantly improved performance in prosthesis users (Instruction x 

Group interaction; black square). The standing condition (Usual vs. Difficult) did not 

impact performance on the cognitive task in either group.   
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Fig. 4. Posture vs. cognitive dual-task cost for the path length in the usual (A and C) and 

difficult (B and D) standing conditions for the no-prioritization (A and B) and 

prioritization (C and D) dual-tasking in controls (gray diamonds) and prosthesis users 

(white squares). The dashed lines around each axis designate areas of no dual-task cost 

(path length ± 5.5 cm, cognitive ± 1 point). The thick vertical and horizontal lines in each 

graph delineate 4 regions consistent with 4 dual-task outcomes: Posture First Strategy 

(top left), No Change/Mutual Facilitation (top right), Posture Second Strategy (bottom 

right), and Mutual Interference (bottom left). Note the similar distribution of subjects 

between the two groups in the usual standing condition with most subjects in the Posture 

Second region (A and C). The increase in postural challenge (B and D), regardless of the 

instruction, resulted in a significant proportion of the control subjects moving from the 

Posture Second region in the usual standing condition to either Posture First or No 

Change/Mutual Facilitation regions in the difficult standing condition (p=0.029), with no 

effect on the distribution of prosthesis users (p=0.160). Conversely, the instruction to 

prioritize the cognitive task (C and D), regardless of standing condition, resulted in a 

significant shift of the prosthesis users from the Mutual Interference and Posture Second 

regions in the no-prioritization condition to the No Change/Mutual Facilitation region in 

the prioritization condition (p=0.002), with no impact on the distribution of controls 

(p=0.120). The asterisk in each difficult standing condition graph refers to a control data 

point falling outside the axis range, which was included in the statistical analysis. 

 

Sway vs. cognitive dual-task cost under increasing challenge 

To determine how individual subjects in each group changed the strategy under 

increasing postural and cognitive challenge, we examined frequency distributions 
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between the 4 regions of the plot defined by the sway dual-task cost along the Y-axis and 

the cognitive dual-task cost along the X-axis (statistics run for PL and AREA, PL is 

shown in Figure 4). Figure 4A shows that the distribution of prosthesis users and controls 

during the usual standing without cognitive prioritization was similar, with most subjects 

in the postural interference/cognitive facilitation (posture second strategy) region 

(bottom-right quadrant of each plot). As the postural demand increased from the usual to 

the difficult standing condition, control subjects moved from the posture second strategy 

or mutual interference regions into the posture first strategy (postural 

facilitation/cognitive interference) or mutual facilitation regions (main effect of Standing 

PL p=0.029; AREA p=0.036). This can be seen by comparing the distribution of controls 

between Figure 4A/B and Figure 4C/D. The instruction to prioritize the cognitive task did 

not affect controls (Instruction main effect p>0.1). Conversely, increased postural 

challenge did not affect prosthesis users (Standing main effect p>0.16), but the 

instruction to prioritize the cognitive task resulted in their move from the posture second 

strategy or mutual interference regions to the mutual facilitation region (Instruction main 

effect PL p=0.002; AREA p=0.032) (compare Figure 4A/C vs. 4B/D). The interaction 

between Standing and Instruction was not significant for PL or AREA in either group. 

These findings substantiate the results of group analyses.  

Discussion  

This study provides several novel findings specifically related to the selection and 

adaptation of postural strategy under increasing postural and cognitive challenge. The 

results confirmed that prosthesis users can maintain stability in a manner similar to non-

amputee controls when standing on a hard surface with eyes open. With an increase in the 
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postural challenge (soft surface/eyes closed), sway increased similarly in both groups. In 

controls, adding a cognitive task without specific instruction on prioritization resulted in 

a smaller increase in sway at the greater postural challenge in comparison to standing 

only, suggesting the use of the posture first strategy. In contrast, prosthesis users under 

the same conditions further increased sway, consistent with the posture second strategy, 

which was supported by the improved cognitive performance. Finally, the specific 

instruction to focus on the cognitive task improved cognitive performance without 

negatively impacting sway in either group, indicating a more complex cognitive-motor 

interaction beyond just posture prioritization.     

No difference between the prosthesis users and controls while standing with eyes 

open on a hard surface confirmed our first hypothesis, suggesting that the recruited 

prosthesis users had sufficient resources in the postural reserve to maintain stability 

during usual standing. While contradicting reports of increased sway in prosthesis users 

during usual standing [15, 25-27], this is in agreement with findings that more 

challenging standing conditions may be required to observe differences in postural 

stability between prosthesis users and controls [16, 17]. Differences in age, health status, 

or the cause of amputation, as well as improvements in prosthetic componentry, may 

explain discrepancies compared to some older studies.  

With increased postural challenge (softer standing surface, no visual input), the 

two primary outcomes (PL, AREA) and one secondary outcome (ML amplitude) 

increased in both prosthesis users and controls, in line with the first part of hypothesis 

1A. However, the second part of hypothesis 1A was partially supported because only the 

AP amplitude increased more in prosthesis users compared to controls with a greater 
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postural challenge. The significant increase in the AP amplitude was likely behind the 

near significant increase in AREA. Since motion in the AP direction is primarily driven 

by ankle activation [28], it comes as no surprise that AP movement revealed greater sway 

in prosthesis users since the prosthetic device cannot fully restore postural control at the 

ankle. Greater impairment in the AP direction among active prosthesis users has been 

previously reported [25].  

Both prosthesis users and controls increased sway while standing and 

concurrently performing a cognitive task without prioritization instruction; however, the 

increase in sway with greater postural challenge was smaller in controls, supporting the 

engagement of a strategy that focuses on maintaining balance, such as the posture first 

strategy (hypothesis 2). In contrast, prosthesis users did not limit the increase in sway 

with greater postural challenge, following the posture second strategy. The employment 

of the posture second strategy with increased postural challenge by prosthesis users is 

contrary to our initial assumptions and suggests that they are willing to allocate resources 

in a way that leads to increased risk to stability. This behavior in prosthesis users may 

pose a real threat since it has also been reported in other groups with sensorimotor 

impairments prone to falls [3, 5, 8, 9, 11], and greater dual-task cost has been associated 

with increased fall risk [29-31]. While the propensity for posture second strategy in 

prosthesis users seems at first unexpected, such behavior is consistent with our previous 

report on lower limb preference among 11 goal-oriented tasks [32]. We found that 

prosthesis users do not always rely on the intact leg for support and the prosthetic leg for 

executing goal-oriented lower limb tasks (e.g., stepping on a bug, hitting a moving target, 

kicking a ball), as expected with the posture first strategy. Instead, we frequently found 
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the opposite, where the prosthetic leg was used for support during a variety of goal-

oriented tasks, which generally follows the posture second strategy. The results of the 

two studies support the notion that the selection of postural strategy depends on the level 

of perceived threat to balance weighted against individual goals, which accomplishment 

is likely also influenced by their relevance and set priorities.  

Further challenge imposed by the instruction to improve the performance on the 

cognitive task led to no change or reduced dual-task cost for the majority of sway 

parameters in both controls and prosthesis users, contrary to hypothesis 3 and particularly 

in the difficult standing condition. This suggests that the posture second strategy was not 

employed in controls and implies a shift away from the posture second in prosthesis 

users.  

The cognitive dual-task cost was on average positive in both prosthesis users and 

controls across all conditions (Figures 3 and 4). The findings that prosthesis users showed 

a negative dual-task cost for sway measures during increasingly more difficult standing 

without prioritization (Figure 1) suggest that, under these conditions, they employed the 

posture second strategy, which was not the case in controls. The positive cognitive dual-

task cost (improved performance) along with sway that was either improved or not 

significantly changed in controls under all conditions (Figures 1 and 2), and in prosthesis 

users during standing under cognitive prioritization (Figure 2), suggests mutual 

facilitation rather than the posture first strategy. The significant Group x Instruction 

interaction indicates the prosthesis users moved away from the posture second strategy 

while standing under greater cognitive demand, without further change in controls. 
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These group results are also supported after examining the behavior of individual 

subjects through the combined analysis of sway and cognitive dual-task costs (Figure 4). 

When instructed to prioritize the cognitive task, 3 observations became more prevalent in 

the prosthesis users; improved cognitive performance over the seated-baseline without 

increasing sway (note rare negative scores for cognitive dual-task cost in Figure 4C/D), 

positive sway dual-task cost (lesser sway) in the difficult standing condition (Figure 4D), 

and departure from the posture second strategy or mutual interference regions (compare 

Figure 4A/C and 4B/D). With greater postural challenge, and regardless of the 

prioritization instruction, controls also moved out of the posture second strategy region 

occupied in the usual standing condition. However, when considering both the sway and 

cognitive dual-task cost, it became apparent that neither group primarily engaged the 

posture first strategy. Instead, most subjects migrated into the No Impact/Mutual 

Facilitation regions (Figure 4B/D, top right section). While the posture first strategy 

implies that the prioritization of posture should come at the expense of a concurrent task, 

most of our subjects either maintained or improved performance on the cognitive task 

while simultaneously improving (reducing) postural sway.  

Several theories have been proposed to explain the neural basis of dual-task 

performance. The central capacity-sharing theory [33, 34] and the similar cross-domain 

completion model [2] propose that if simultaneous tasks compete for the same resources, 

one or both tasks will have a decrease in performance. While this fits well with our initial 

assumptions of a trade-off in performance between the two tasks primarily driven by 

postural difficulty, these two theories do not allow for simultaneous improvements in 

performance [2], as we observed during the more challenging conditions (Figure 1 B/D). 



  108 

The bottleneck theory suggests that if the same neural networks are used to process the 

concurrent information, performance declines as the networks are overloaded forming a 

bottleneck [35]. Our findings of greater dual-task impact during easier conditions, but 

smaller dual-task impact during more challenging standing or cognitive condition, 

suggest two possibilities. First, the same neural networks were not used for the task 

completion and the initial dual-task impact was due to factors other than a bottleneck. 

Alternatively, the networks were initially shared, resulting in a bottleneck in the cases of 

higher dual-task cost, but increased challenge led to switching to other networks. 

However, the concurrent increase in cognitive performance and a decrease in sway (i.e., 

cognitive-motor facilitation), as reported here, is best explained by the level of alertness 

hypothesis, which suggests that with increased demand more resources get recruited [6, 

36]. Such resources seem readily available as demonstrated by improved dual-task 

performance after  increasing neural activation by anodal transcranial direct current 

stimulation [37].  

There are several broader implications of our results obtained in prosthesis users. 

Considering general agreement with previous studies in brain disorders [7, 9, 12], our 

results lend support for a unifying view that individuals with sensorimotor impairments, 

whether caused by a partial leg loss or neurological damage, adopt strategies that allow 

achieving desired goals as successfully as possible even if it comes with certain risks. 

This may well be an adjustment to go on with their lives as usual, the success of which 

would depend on availability and capacity to engage the remaining cognitive-motor 

resources. Greater challenge, however, requires greater involvement of resources, which, 

if available, may improve performance. In the case of prosthesis users, explicit 
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instruction to improve performance on the cognitive task likely resulted in recruitment of 

global resources improving not only overt (cognitive task) but also covert (posture 

control) actions. This fits well with brain imaging findings of increased and complex 

cognitive activation while dual-tasking, suggesting that concurrent performance of 

challenging tasks may activate overlapping cognitive and motor regions [38]. While 

selecting at first the posture second strategy and later accessing additional resources as 

needed is feasible in individuals with preserved brain functions, as demonstrated in 

prosthesis users here, the same may not be a viable strategy for those with central nervous 

system disorders, depending on their nature and severity. 

Limitations       

This study has some limitations. As the first investigation into posture strategy 

selection in prosthesis users, the sample was not homogeneous with respect to age, the 

cause of amputation, or type of componentry. The mean age of our prosthesis users was 

lower than the average for this population [39] and most were active community 

ambulators, which limits generalization of findings. Although older adults show 

increased dual-task cost [40], it remains unknown if the compounded effect of age in 

prosthesis users would cause greater dual-task impact, trigger increased alertness earlier, 

or invoke alternative strategies. While in this small sample the results did not differ 

between subjects with traumatic and vascular amputations, widespread vascular disease 

may lead to cognitive impairments and impact dual-task performance [41]. However, the 

baseline cognitive performance was no different between these groups and mostly active 

prosthesis users participated in the study, which may have reduced any such differences. 

The use of different prosthetic components may have altered postural control and biased 
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the results. Thus, further work should evaluate the impact of age, the cause of 

amputation, and componentry on dual-task performance in this population. Also, this 

study only examined below-knee prosthesis users; although a more proximal amputation 

is considered to cause greater sensorimotor impairment, performing a cognitive task did 

not alter walking in above-knee prosthesis users when instructed to focus on cognitive 

task performance [19]. Based on our results, more impaired prosthesis users may engage 

increased alertness sooner to limit the impact of dual-tasking on dynamic stability, which 

warrants further studies. The condition with prioritization of the standing task was not 

collected, as pilot testing revealed frequent confusion with this instruction. The inherent 

simplicity of standing made it difficult for our subjects to comply with the intended goal 

of such instruction. Only a single dual-task trial was examined for each standing 

condition, which may give a limited picture of actual behavior. However, mental and 

physical fatigue from repeated trials was considered a greater threat to validity. Since the 

prioritization conditions were not randomized, some contribution of a learning effect was 

possible. Thus, we evaluated each aim for within-group differences in task order and 

none were significant for either the standing task (p≥0.09) or cognitive task (p≥0.2), 

effectively minimizing this concern.  

Conclusion  

Both prosthesis users and controls allow for greater sway while concurrently 

performing a cognitive task under less demanding postural condition (hard surface, eyes 

open), suggesting the posture second strategy. However, performing a cognitive task 

under increased postural challenge (soft surface, eyes closed) leads to the shift from the 

posture second toward the posture first strategy in non-amputee controls but retention of 
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the posture second strategy in below-knee prosthesis users. Since the posture second 

strategy implies greater unsteadiness, prosthesis users appear exposed to a greater risk of 

fall when performing multiple tasks, perhaps to maintain activity level and lifestyle 

similar to their non-amputee peers. However, when faced with highly demanding 

cognitive and postural tasks, both prosthesis users and controls engage additional 

resources resulting in better cognitive and motor performance, which may be explained 

by increased alertness rather than posture prioritization alone. 
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CHAPTER 6 

 THE IMPACTS OF POSTURAL AND COGNITIVE CHALLENGES ON THE 

SPECTRAL COMPONENTS OF SWAY IN PROSTHESIS USERS AND CONTROL 

SUBJECTS 

Abstract 

Lower-limb amputation impairs postural control capabilities, however, little is 

known about the specific impact amputation has on the roles of the sensory systems 

involved. Spectral analysis of the center of pressure signal while standing has identified 

frequency bands associated with postural adjustments driven by the visual, vestibular, 

and somatosensory systems. Using wavelet analysis, the spectral features of the center of 

pressure signal in 13 below-knee prosthesis users and 14 control subjects were 

characterized in the medial-lateral (ML) and anterior-posterior (AP) directions. Subjects 

were tested in the baseline condition (eyes opened, hard surface), with eyes closed, while 

standing on a soft surface, and while performing a cognitive task (dual-tasking). During 

single-task standing, the more difficult standing conditions increased the total spectral 

power in both groups (p≤0.005); however, the increase was greater in the AP direction in 

prosthesis users (p≤0.036). The eyes closed conditions reduced the contribution from the 

frequency band associated with vision (p≤0.005) and the soft surface condition increased 

the contribution from the band associated with somatosensation (p≤0.03). Dual-tasking 

increased the total spectral power in prosthesis users more than in control subjects 

(p≤0.05) and reduced the ML contribution from the frequency band associated with 

vision in both groups (p<0.001). Prosthesis users also had a smaller ML contribution 

from the somatosensory band on the prosthetic than the intact side (p<0.001). Results 
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demonstrate that postural control is more disrupted by dual-tasking in prosthesis users 

than in control subjects and that prosthesis users rely more heavily on somatosensory 

feedback from the intact side than from the prosthetic side. These results support the use 

of spectral analysis to evaluate the contributions from sensory systems involved in 

postural control and suggest that postural control in prosthesis users may be improved by 

reducing the attentional demands or by supplementing somatosensory feedback on the 

prosthetic side.              

Introduction 

The visual, vestibular, and somatosensory systems are known contributors to 

postural control [1, 2]. In our previous analysis of sway in below-knee prosthesis users 

we evaluated how increasing postural challenge by eliminating or limiting input from a 

sensory system and adding a cognitive challenge (dual-task) impacted temporal-spatial 

sway characteristics and the relation to postural control strategies [3]. While the study 

provided insight into general changes in postural control, the level of analysis did not 

allow for investigation of the impact on the contributions from the specific sensory 

systems.  

Studies in spectral analysis of the center of pressure (CoP) signal during postural 

control have identified frequency bands that are associated with postural adjustments 

directed from each sensory system. These studies, which have evaluated populations with 

impaired or absent sensory systems [4-6] or utilized experimental manipulations [7-16], 

have identified consistent trends in spectral power contributions. Collectively, these 

studies have produced a general consensus on the frequency bands and the associated 

sensory systems: vision is associated with very low frequencies (< 0.1 Hz), vestibular low 



  117 

frequencies (~ 0.1-0.5 Hz), somatosensory middle frequencies (~ 0.5-1 Hz), and 

feedforward or open-loop control is associated with high frequencies (> 1 Hz). A more 

thorough summary of these reports in the literature has been provided in the background 

chapter (Chapter 2).  

Spectral analysis of the CoP signal has also been found to be more sensitive than 

traditional measures in detecting the effects of standing conditions or differentiating 

between groups [8, 10, 17]. Dual-tasking has been found to increase spectral power even 

when changes in temporal-spatial indices were not present [8, 10]. Higher spectral power 

may represent more rapid changes in the CoP trajectory [8]. More CoP movement, 

measured through traditional or spectral analysis, is often associated with lower stability 

[10, 18-20]. Since spectral analysis may be more sensitive to the effects of dual-tasking, 

evaluation of the spectral power of the CoP signal may be useful in further characterizing 

the impact of dual-tasking on posture control capabilities that has been observed in 

lower-limb amputees [3].      

Wavelet analysis has been suggested to be superior to traditional Fourier 

transforms for analysis of CoP signals that seeks to characterize spectral power in 

specific frequency bands [2, 8, 9, 21-23]. Wavelet analysis uses variable sized, time-scale 

specific windows to deconstruct the signal into time-scale bands; the time-scales can then 

be transformed to frequencies. Wavelet analysis enables more accurate deconstruction of 

time varying, non-stationary signals, such as posture CoP signals [8, 9, 23] and is better 

at characterizing the spectral power in non-dominant frequencies [8, 9]. This is 

particularly useful when evaluating changes in multiple frequency bands in the CoP 

signal, which is typically dominated by energy in the very low frequency band [8, 9]. 
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Finally, there is evidence that wavelet analysis performs better than traditional techniques 

on short-duration time series signals [8]. This feature can be particularly important for 

evaluating postural control in impaired populations or difficult standing conditions when 

longer collection times are impractical [8]. 

Lower-limb amputation alters both efferent and afferent control of posture due to 

missing joints, musculature, and altered sensory input. It is unknown how this disruption 

impacts the contribution of somatosensory or other sensory systems directing postural 

control or if it affects the ability to adapt to more difficult postural control conditions. In 

our previous work we identified that during a difficult standing condition in which 

subjects stood with eyes closed on a soft surface, the anterior-posterior (AP) sway 

amplitude, but not the medial-lateral (ML), increased more in lower-limb amputees than 

in control subjects. However, while performing a cognitive task during the difficult 

standing condition (dual-tasking) prosthesis users increased both AP and ML amplitudes, 

while control subjects did not. Since disruptions to the visual and somatosensory systems 

were used to create the difficult standing conditions and prosthesis users exhibited 

differential performance from control subjects we sought to characterize the contributions 

of each sensory system to postural control in each group.   

The overall objective of this follow-up study was to determine if spectral analysis 

can identify changes in the frequency profile induced by subjecting prosthesis users and 

control subjects to various standing and cognitive load conditions. Our first aim was to 

evaluate differences between groups and changes across standing conditions during 

single-task standing. Based on our previous results, we proposed that during single-task 

standing prosthesis users will have a greater increase than control subjects in total 
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spectral power in the AP direction (hypothesis 1). We also predicted that the more 

difficult standing conditions would alter the distribution of spectral power across the 

frequency bands associated with the visual, vestibular, somatosensory systems, and open-

loop control. Specifically, we hypothesized that the eyes closed conditions would reduce 

the relative contribution from the very low (vision) frequency band as other systems take 

on a greater role (hypothesis 2A) and the soft surface would increase demand on the 

middle (somatosensory) frequency band as the system works harder to compensate for 

the reduced feedback (hypothesis 2B). In our second aim, we evaluated the impact of 

increased cognitive load from dual-tasking. We hypothesized that dual-tasking would 

impact the prosthesis users but not control subjects (hypothesis 3). Theses hypotheses 

were tested by evaluating the impact of the various standing and cognitive load 

conditions on total spectral power and on the relative spectral power from each frequency 

band.    

Since the study focused on unilateral prosthesis users who have an inherent 

asymmetry in bilateral lower-limb tasks, we also examined differences in the spectral 

power between each side (prosthetic/intact; dominant/non-dominant) to assess how each 

side contributes to postural control.  

Methods 

Participants  

A convenience sample of unilateral below-knee prosthesis users (n=16) was 

recruited by a certified prosthetist. The inclusion criteria were ≥ 1 year since amputation; 

age 18–80 years; comfortable socket fit; no known balance, neurological, or other health 

problems that limit daily activities; and able to safely stand without use of an assistive 
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device. Age- and education-matched non-amputee control subjects were recruited from 

the community (n=17). The study was approved by the institutional review board for 

human research and all subjects signed the informed consent. 

Protocol 

The groups’ temporal-spatial sway characteristics (path length, area, and medial-

lateral and anterior-posterior amplitudes) were previously analyzed and have been 

reported in [3] and the same data set was used to evaluate the spectral characteristics of 

sway. Since the data collection and process to obtain the CoP data have been described in 

detail in [3], only a brief overview is presented here.   

Subjects’ general cognitive functions were assessed using the Modified Mini-

Mental Status Exam (3MS) and processing speed and executive function were assessed 

using Trail-Making (Trail) forms A and B (scaled T-scores adjusted for race, age, gender, 

and education; higher scores represent better performance). Demographic and prosthesis 

users’ clinical data were collected through an interview and from medical records. 

All standing tasks were performed at shoulder width stance using 2 force plates 

(Type 4060, 40x60 cm2, Bertec Corp, Columbus, OH). Force plate data were collected 

using a Cortex data acquisition system (Motion Analysis Corp., Santa Rosa, CA, sample 

rate 1,200 Hz, 12-bit analog-to-digital resolution).  

Two vision conditions (eyes open and closed) and 2 standing surfaces (hard and 

soft) were used to create varying levels of postural challenge. The soft standing condition 

required subjects to stand with each foot on a foam pad (Airex Balance Pad, Sins, 

Switzerland, 40x50x6 cm3, 0.726 kg, density 61 kg/m3).  
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Subjects performed two 30-s trials for each surface/vision combination during 

single-task standing; the average of the two trials were used for analysis. Two cognitive 

tasks were selected for the dual-task paradigm; serial subtraction by 7 from a 3-digit 

number and a verbal fluency task (listing words starting with a specific letter). Each task 

was practiced while seated to ensure comprehension. Subjects performed one 30-s trial 

for each task. Subjects were given no instruction on task prioritization. All single-task 

standing conditions were collected prior to the dual-task conditions. 

Due to variations in personal aptitude, the relative magnitudes of the interfering 

effect of the two tasks may vary across subjects. The more stressful task identified and 

analyzed in [3] was utilized for the spectral analysis. The same approach proved to be 

effective in our prior work [24].  

Data processing 

Ground reaction forces and moments were used to determine the CoP for each 

foot and their resultant in the ML and AP directions. The individual side and resultant 

CoP locations were then filtered with a 4th order low-pass Butterworth filter (cutoff 

frequency 10 Hz) and down-sampled to 400 Hz to create desired time scale/frequency 

band resolution while maintaining as much of the signal as possible and to be consistent 

with procedures reported in the literature [8-10]. Due to sporadic artifacts at the 

beginning or end of some trials, the middle 5,120 samples (25.6-s of the 30-s trial) were 

analyzed for consistency between subjects. 

The spectral characteristics of the ML and AP CoP signals were evaluated using a 

discrete wavelet packet decomposition. The mother wavelet Daubechies 4 was used for 

this analysis as it meets the criteria for this analysis, provided adequate resolution of the 
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signal to the desired bands, and the family has been found useful for CoP analysis in 

other studies as the structure resembles the shape of the CoP signal [7, 9, 19, 25]. Nine 

levels were used to decompose the signal, as this provided the longest scale while 

avoiding edge effects [23].  

The total spectral power of the signal in each standing condition below 10.15 Hz 

and the relative spectral power (%) in the very low [0 – 0.19 Hz), low [0.19 – 0.39 Hz), 

middle [0.39 – 1.17 Hz), and high [1.17 – 10.15 Hz) frequency bands were calculated. 

These bands approximate the spectral regions associated with the visual, vestibular, and 

somatosensory systems and open-loop control, respectively [2, 4-15]. Total spectral 

power along with the very low and middle frequency bands were considered the primary 

outcomes for hypothesis testing, the remaining frequency bands were used as secondary 

measures. All computations were completed in MATLAB® (Mathworks Inc., Natick, 

MA) utilizing the Wavelet Toolbox and a custom program.  

Only subjects analyzed in [3] were included in the analysis (13 prosthesis users 

and 15 control subjects). One additional control subject was identified as an outlier and 

exclude from the analysis as the total spectral power was consistently 3 SDs above the 

group mean despite normal values in the previous analysis.   

Statistical analysis 

 Baseline cognitive performance was compared between prosthesis users and 

control subjects (unpaired t-test, p<0.05). Cognitive function was not used as a covariate 

as the two groups did not differ on standard tests of cognitive function (3MS, Trails A/B, 

FAS). The difference in total spectral power between the two groups under the usual 

single-task standing condition, was tested using the single-task eyes open/hard surface 
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condition (unpaired t-tests, p<0.05). To test whether increasing the postural challenge 

resulted in higher total spectral power in prosthesis users  (hypothesis 1), a 2x2x2 mixed 

ANOVA was used with Group (prosthesis users, control subjects) as the between-

subjects factor and Vision (eyes open, eyes closed) and Surface (hard, soft) as the within-

subjects factors. The differential response of the two groups was determined by a Group 

interaction or the main effect of Group (p<0.05). The impact of the standing conditions 

on the relative spectral power from each frequency band were also tested with the same 

2x2x2 mixed ANOVA model for each band (hypotheses 2A/B). Since relative spectral 

power in two frequency bands were used as primary outcome measures, a Bonferroni 

correction (p<0.025) was used for the primary and secondary outcomes.  

The effect of the cognitive task on total spectral power and relative spectral power 

(hypothesis 3) was tested using a 2x2x2x2 mixed ANOVA with Group (prosthesis users, 

control subjects) as the between-subjects factor and Vision (eyes open, eyes closed), 

Surface (hard, soft), and Task (single, dual) as the within-subjects factors. The effect of 

the cognitive task was determined with the main effect of Task or a Task x standing 

condition (Vision or Surface) interaction (p<0.05 total spectral power; p<0.025 relative 

spectral power). The differential response to the cognitive task was determined by a Task 

x Group interaction (p<0.05 total spectral power; p<0.025 relative spectral power).  

The difference in total spectral power and relative spectral power between the 

prosthetic/intact or dominant/non-dominant sides was evaluated with a 2x2x2x2 repeated 

measure ANOVA with Vision (eyes open, eyes closed), Surface (hard, soft), Task 

(single, dual), and Side (prosthetic/intact or dominant/non-dominant) as factors in each 

group. A main effect of Side or interaction including Side was used to determine if there 
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was a difference in each side (p<0.05 total spectral power; p<0.025 relative spectral 

power). IBM SPSS Statistics 23 (IBM Corp., Armonk, NY) was used for statistical 

analysis.  

Results 

The studied sample included 14 control subjects (mean ± SD age 47±17 years, 

15±2 years of education, BMI 30±7 kg/m2, 6 (43%) men) and 13 below-knee prosthesis 

users (age 46±11 years, 14±3 years of education, BMI 31.4±6 kg/m2, 9 (70%) men). The 

amputation occurred 8±7 years earlier (range 1 to 22 years) due to trauma (n=6), 

infection (n=2), or vascular disease (n=5). All below-knee prosthesis users were rated K3 

on the Medicare scale and none used an assistive device. They all used an energy storage 

and return style foot; the prosthesis for 3 of the subjects also included a hydraulic ankle. 

Two used a passive suction suspension system, 7 elevated vacuum, and 4 a pin locking 

system. Most (9 of 13) reported living an active to very active lifestyle.  

The baseline cognitive performance did not significantly differ between prosthesis 

users and control subjects (mean ± SD 3MS 95±5 vs. 96±4; Trail A 48±10 vs. 45±12; 

Trail B 48±13 vs. 48±12, FAS 35.6±8 words vs. 40±13 words, respectively; p>0.3 for all 

measures).  

Single-task standing: total spectral power 

During the usual single-task standing condition (eyes open/hard surface), there 

was no difference between the two groups for total spectral power in the ML (p=0.3) or 

AP (p=0.1) direction. In the ML direction, greater postural challenge significantly 

increased spectral power in both groups (Vision x Surface interaction p<0.001; Figure 1a, 

solid lines). Similarly, in the AP direction, greater postural challenge increased spectral 
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power in both groups (Vision x Surface interaction p=0.005; Figure 1b, solid lines), 

however prosthesis users had a greater increase in spectral power (Vision x Group 

interaction p=0.020; Surface x Group interaction p=0.036). These results support the 

hypothesis that the greatest difference between groups would occur in the AP direction 

(hypothesis 1). 

Fig. 1. Single-task and Dual-task total spectral power (mean and standard error) in the 

ML (a) and AP (b) directions with increasing postural difficulty (eyes closed and soft 

surface). During single-task (solid lines), prosthesis users (black squares) and control 

subjects (gray diamonds) increased spectral power with increasing postural challenge in 

both the AP and ML directions; prosthesis users had a greater increase than control 

subjects in the AP direction. Dual-tasking (dashed lines) had a differential effect between 

groups with prosthesis users having a greater increase than control subjects.   

 

Single-task standing: frequency band contributions 

Tables 1 and 2 show the relative spectral power from each frequency band during 

the single-task standing conditions and associated statistics. In both the ML and AP 

directions, the eyes closed conditions significantly reduced the relative spectral power 
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from the very low frequency band (main effect Vision: ML p=0.005; AP p<0.001). 

Further, during the eyes closed conditions there was an increase in the relative spectral 

power from the middle (main effect Vision: ML p<0.001; AP p=0.001) and high (main 

effect Vision: ML p<0.001; AP p<0.001) frequency bands. Standing on the soft surface 

also significantly increased the relative spectral power from the middle frequency band in 

the ML direction (main effect Surface p=0.001) There was a similar trend in the AP 

direction (main effect Surface p=0.030). The soft surface also increased the contribution 

from the low frequency band (main effect Surface: ML p=0.003; AP p=0.001) while 

reducing the very low frequency band contribution (main effect Surface: ML p<0.001; 

AP p=0.003). These results support hypotheses 2A (a decrease in the relative contribution 

from the very low frequency band with eyes closed) and 2B (an increase in the relative 

contribution from the middle frequency band on soft surface). There were no significant 

differences between groups for relative spectral power (main effect Group and 

interactions: ML p=0.495-0.970; AP p=0.032-0.961, appendix Tables I and II).  

Dual-task standing: total spectral power 

The cognitive task had a differential effect on total spectral power between the 

groups. In the ML direction, there was a Vision x Task x Group interaction (p=0.043; 

Figure 1a) indicating that while dual-tasking with eyes closed prosthesis users increased 

the total spectral power while control subjects did not. In the AP direction, there was a 

Task x Group interaction (p=0.050; Figure 1b) showing that prosthesis users had a 

significantly higher total spectral power while dual-tasking compared to control subjects. 

These results support a differential response to dual-tasking between groups for the total 

spectral power (hypothesis 3).   
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Dual-task standing: frequency band contributions  

Tables 1 and 2 show the relative spectral power from each frequency band while 

dual-tasking and associated statistics. Performing a cognitive task did not have a 

significant effect on relative contributions between selected frequency bands in the AP 

direction (main effect Task and interactions p≥0.056, Table 2 and Appendix B Table II). 

In the ML direction there were no differences between groups (main effect Group and 

interactions p>0.086, Table 1 and Appendix B Table I), however, the cognitive task did 

impact the relative contribution between frequency bands. Performing a cognitive task 

significantly reduced the contribution from the very low frequency band across standing 

conditions (main effect Task: p<0.001). There was also an overall increase in the low, 

middle and high frequency bands (main effect Task p=0.001-0.009). Thus, although dual-

tasking does impact the relative contribution from each band in the ML direction, the lack 

of a differential response between groups in either direction fails to support hypothesis 3 

for relative spectral power.   

Bilateral comparisons: total spectral power  

Prosthesis users exhibited an asymmetry in total spectral power between the 

prosthetic and intact sides in both the ML (Figure 2) and AP (Figure 3) directions with 

more power on the intact side. In the ML direction, asymmetry increased with the more 

challenging standing conditions (Figure 2, main effect Side p<0.001; Surface x Side 

interaction p<0.001; Vision x Side interaction p=0.017; Vision x Surface x Side 

interaction p=0.002). However, in the AP direction significant asymmetry was only 

present while standing on the soft surface (Figure 3, main effect Side p=0.084; Surface x 

Side interactions p=0.044).  
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Fig. 2. Total spectral power in the ML direction (mean and standard error) for each side 

for prosthesis users (PU) and control subjects (CS) during single-task (solid) and dual-

task (hatched) standing. The prosthesis users had more power on the intact side (black) 

than the prosthetic side (dark gray) across standing conditions. However, the asymmetry 

increased in the more challenging standing conditions. The control subjects did not 

exhibit asymmetry between the dominant (gray) and non-dominant (light gray) sides. 

 

Control subjects did not exhibit significant asymmetry between the dominant and 

non-dominant side in the ML direction (Figure 2, main effect Side p=0.900). However, 

during the soft surface standing condition there was a small but significant switch from 

the dominant to non-dominant side having more power while dual-tasking (Figure 2, 

Surface x Task x Side interaction p=0.021). The dominant side did have higher spectral 

power in the AP direction (Figure 3, main effect Side: p=0.005) with the greatest 

difference in the most difficult, single task standing condition (Figure 3, Vision x Surface 

x Task x Side interaction p=0.028). The asymmetry in the eyes open only or hard surface 

only condition was confirmed with a follow up analysis evaluating the effect of Side 
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without the eyes closed or soft surface condition (2x2x2 ANOVA Side p=0.009 and 

p=0.024, respectively). 

Fig. 3. Total spectral power in the AP direction (mean and standard error) for each side 

for prosthesis users (PU) and control subjects (CS) during single-task (solid) and dual-

task (hatched) standing. The prosthesis users only exhibited a significant asymmetry 

during the soft surface standing condition with more power on the intact side (black) than 

the prosthetic side (dark gray). The control subjects had more power on the dominant 

(gray) side than the non-dominant (light gray) side across standing conditions. The 

largest differences between sides was during the eyes closed/soft surface, single-task 

standing condition.  

 

Bilateral comparisons: frequency band relative spectral power 

There was a difference between the prosthetic and intact sides in the relative 

contribution from the very low, middle, and high frequency bands in the ML direction 

(Table 3). The intact side had a smaller contribution from the very low frequency band 

than the prosthetic side (main effect Side p<0.001). Conversely, the prosthetic side had a 

smaller contribution from the middle (Figure 4) and high frequency bands than the intact 

side (main effect Side p<0.001, both). Overall, dual-tasking did not impact the difference 
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in relative spectral power between sides (Task x Side interactions p≥0.068, appendix 

Table III) except for the high frequency band in the ML direction (Vision x Task x Side 

interaction p=0.012, Appendix B Table III). In the AP direction only the high frequency 

band showed a difference between the prosthetic and intact side, with greater relative 

contribution on the intact side (main effect Side p=0.022, Appendix B Table IV).  

 

Fig. 4. Relative spectral power from the middle frequency band (mean and standard 

error) in the ML direction for the intact (black) and prosthetic (gray) sides during single-

task (solid) and dual-task (hatched) standing. The prosthetic side had a smaller 

contribution from the middle frequency band across all standing conditions.   
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Discussion  

This study provides new insight into the use of sensory systems for balance 

maintenance in prosthesis users. The results support the findings of our previous analysis 

of temporal-spatial sway parameters in each group [3] while also characterizing the 

spectral features of sway when sensory systems are limited or stressed. Prosthesis users 

had a greater increase in spectral power than control subjects in the AP direction during 

the more difficult standing conditions. Altering the sensorimotor demands of the standing 

conditions changed the spectral characteristics similarly in both groups. The frequency 

band associated with vision [7, 9] had a smaller contribution with eyes closed. Standing 

on a soft surface increased the contributions from the somatosensory frequency band [4, 

7]. Dual-tasking resulted in a greater increase in spectral power for prosthesis users but 

not control subjects in both the ML and AP directions. Dual-tasking also lowered the 

contribution from the band associated with vision (very low frequency band) while 

increasing the contributions from the other bands in the ML direction in both groups. 

Prosthesis users exhibited asymmetry in spectral power with more power on the intact 

side in both the ML and AP directions. There was also a smaller contribution from the 

somatosensory frequency band on the prosthetic side. These results suggest that 

prosthesis users have greater limitations in postural control in the AP than ML direction 

and are overall more disrupted while dual-tasking. However, dual-tasking impacts the use 

of sensory systems in postural control for both prosthesis users and control subjects 

similarly. Further, the overall sensory contributions to postural control are similar 

between groups but dominated by the intact side in prosthesis users with less 

somatosensory control on the prosthetic side.     
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The total spectral power results closely mirror the temporal-spatial sway 

characteristics reported in [3]. Specifically, no differences were observed between groups 

in the eyes open/hard surface standing condition and there was greater increase in 

prosthesis users in total spectral power during the more difficult standing conditions, 

either physically imposed or due to the cognitive task. These results support findings that 

more challenging standing conditions may be required to observe differences in postural 

control between prosthesis users and control subjects [26, 27]. The total spectral power 

results also support the hypothesis that postural control in the AP direction is more 

disrupted than the ML, presumably due to the limited function of the prosthetic ankle. 

Further, the differential dual-task results between prosthesis users and control subjects 

support the finding that postural control in prosthesis users is more strongly affected by 

increased cognitive demands. This behavior is likely due to increased cognitive demand 

imposed by use of a prosthesis, which is supported by subjective reports [28, 29], and the 

apparent prioritization to achieve desired goals despite increased risk [3].  

Wavelet analysis was able to characterize the spectral characteristics in the 

selected frequency bands and the changes in the relative spectral power from the 

frequency bands were consistent with the nature of the challenge in the various standing 

conditions. The contribution from the very low frequency band [0 – 0.19 Hz), which is 

associated with vision [7, 9], was reduced in the eyes closed condition with a subsequent 

increase in the other frequency bands (hypothesis 2A). Further, the soft surface standing 

conditions resulted in an increase in the contribution from the middle frequency band 

[0.39 – 1.17 Hz), which is associated with somatosensory control (hypothesis 2B) [4, 7]. 

Confirmation of the predicted results support other studies, which found that specific 
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frequency bands in the CoP signal are associated with specific sensory systems [4, 7, 9]. 

Further, these results support a complex model of postural control that relies on the 

coordination of multiple sensory systems [30, 31] as well as versatility in recruiting these 

sensory systems to respond to specific postural control demands [32].     

The interpretation of the results relies on the theory that each sensory system is 

primarily associated with one frequency band. However, this model of postural control 

does not require that one sensory system exclusively drives postural adjustments captured 

in the specified spectral range. For example, as in other studies [7, 9, 13], the power in 

the very low frequency band did not totally disappear in the eyes closed condition. While 

visual control is primarily associated with the lowest frequencies, other factors or systems 

also contribute to this band. This is likely the case with each frequency band and certainly 

the spectral borders suggested for each system serve as guidelines rather than precise 

boundaries. Most studies use group means to establish the sensory associated frequency 

bands; however, when individual results are reported there is evidence of between-subject 

differences in spectral boundaries [14, 16]. Nevertheless, the consistency in results across 

several studies still support use of these general guidelines.  

Dual-tasking impacted the spectral characteristics of the CoP signal in the ML 

direction only and reduced the relative contribution of the frequency band primarily 

attributed to vision across all standing conditions. Kirchner et al. and Chagdes et al. also 

found dual-tasking to reduce the contribution from the vision frequency band for 

visual/memory and motor tasks, respectively [8, 9]. While both sets of authors attribute 

the decrease contribution from this frequency band to sensory reweighting, the 

justification is based primarily on the nature of the task. For example, in Kirchner et al., 
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the additional task required subjects to look at images projected on a wall, and the authors 

suggested that the reduction in the lowest frequencies was due to vision being engaged 

elsewhere [8]. However, the consistent finding of reduced very low frequency 

contribution across notably different dual-tasks suggests a more general, rather than task-

specific, mechanism for sensory reweighting. The visual system is highly engaged in 

conscious activities and therefore may be most susceptible to competing demands from 

other conscious activities. This fits well with the central capacity-sharing theory [33, 34] 

and the similar cross-domain completion model [2] which propose that simultaneous 

performance of tasks competing for the same resources would decrease performance in 

one or both tasks. In contrast, the level of alertness hypothesis, which suggests increased 

cognitive resource recruitment with increased demand [35, 36], may be supported by the 

increased contribution of the somatosensory system (middle frequency band), while 

standing on the soft surface. When the somatosensory system was stressed, rather than 

removed, more resources were allocated to that system. Perhaps both models work in 

conjunction to explain dual-task behavior. While more resources, or attention, may be 

applied to a system in response to higher demand, there remains a limitation to capacity. 

Dual-tasking may increase the competition for resources in some systems more than 

others. Increasing the allocation of resources from the sensory system in high demand or 

from other supporting systems may be sufficient to meet the postural challenge. Thus, 

central capacity-sharing may only be evident when contributions from specific sensory 

systems are evaluated.  

An evaluation of the spectral characteristics between the prosthetic and intact 

sides revealed asymmetries in both the total spectral power and the relative spectral 
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power from some frequency bands. The intact side had higher total spectral power than 

the prosthetic side, which was more notable in the ML direction. Control subjects also 

had an asymmetric total power distribution, however it was only in the AP direction and 

the asymmetry was less pronounced. These results fit well with other reports of 

asymmetry in prosthesis users that found greater reliance on the intact side [37, 38]. 

Within the frequency bands, the prosthetic side had a smaller contribution from the 

somatosensory band. Considering that the somatosensory system is directly impacted by 

amputation, the lower contribution from the middle frequency band further supports 

reports of somatosensory association with that band [4, 7]. As the somatosensory 

frequency band contribution was not different from control subjects in the resultant CoP 

signal analysis, it also appears that the intact side is capable of compensating for the 

impaired system. These results may allow for quantification of the impact of different 

prosthetic devices on somatosensory control of posture. Specifically, similar methods 

could be used to assess how a dynamically controlled prosthesis or one that provides 

sensory feedback specifically impacts the use of the somatosensory system.  

Limitations 

One limitation of wavelet analysis is the lack of specific guidelines on selecting 

the most appropriate mother wavelet [25]. However, Daubechies 4 met all necessary 

requirements and there were no major differences in the results produced by additional 

analysis with a different candidate mother wavelet (Coiflets). In this analysis, the 

resolution of the frequency bands, particularly the lowest frequency bands, could have 

been improved by longer trial durations [8]. Longer trials would have also allowed the 

frequency band resolution to better align with the suggested boundaries between regions 
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for the sensory systems. In addition, a larger sample size may provide more robust 

evidence of the spectral characteristics and a more homogeneous sample with respect to 

age, the cause of amputation, or type of componentry may have provided more insight 

into specific drivers of changes in postural control. However, the suitability of the subject 

pool is supported by the fact these results followed predicted outcomes based upon 

studies in other populations.   

Conclusion 

Wavelet analysis successfully characterized the spectral features of the CoP signal 

in prosthesis users and control subjects during single- and dual-task standing. The groups 

had similar changes in the frequency composition of the total spectral power during the 

different standing conditions. The changes in response to the eyes closed and soft surface 

conditions fit well with the suggested frequency bands associated with the visual and 

somatosensory systems suggesting that the contributions from these systems can be 

characterized. The results also show that the contribution from the somatosensory system 

is reduced on the prosthetic side. This observation may form the basis for evaluating the 

effectiveness of prosthetic devices aimed at improving sensory feedback and control. 

Dual-tasking reduced the contribution from the very low frequency band, and as this is 

consistent with other studies; this finding may provide insight into the mechanisms that 

individuals use to navigate the performance of multiple tasks. Analysis of total spectral 

power supports previous conclusions that postural control in the AP direction is more 

disrupted in prosthesis users than the ML with increasing postural challenge and that 

prosthesis users are more impacted by performing a cognitive task than control subjects 

[3]. Devices and strategies that aim to reduce the cognitive burden of using a prosthesis 
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and provide somatosensory feedback may improve postural control in below-knee 

prosthesis users.  
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CHAPTER 7 

RESIDUAL STANDARD DEVIATION: VALIDATION OF A NEW MEASURE OF 

DUAL-TASK COST IN BELOW-KNEE PROSTHESIS USERS 

This text is a reproduction of a previously published work. The published version can be 

found at: 

Howard C, Wallace C, Abbas J, Stokic DS. Residual standard deviation: Validation of a 

new measure of dual-task cost in below-knee prosthesis users. Gait Posture. 2017; 51: 91-

96. 10.1016/j.gaitpost.2016.09.025 

http://www.sciencedirect.com/science/article/pii/S0966636216305872 

 

An unpublished derivation of the mathematical theory of the presented method is 

provided in Appendix C. 

Abstract 

We developed and evaluated properties of a new measure of variability in stride 

length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride 

length and cadence are regressed against velocity to derive the best fit line from which 

the variability (SD) of the distance between the actual and predicted data points is 

calculated. We examined construct, concurrent, and discriminative validity of RSD using 

dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched 

controls. Subjects walked first over an electronic walkway while performing separately a 

serial subtraction and backwards spelling task, and then at self-selected slow, normal, and 

fast speeds used to derive the best fit line for stride length and cadence against velocity. 

Construct validity was demonstrated by significantly greater increase in RSD during 

dual-task gait in prosthesis users than controls (group-by-condition interaction, stride 

length p=0.0006, cadence p=0.009). Concurrent validity was established against 
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coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between 

dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis 

users and controls. Discriminative validity was documented by the ability of dual-task 

cost calculated from RSD to effectively differentiate prosthesis users from controls (area 

under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 

0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, 

respectively, not significant). These results validate RSD as a new measure of variability 

in below-knee prosthesis users. Future studies should include larger cohorts and other 

populations to ascertain its generalizability. 

Introduction 

Effective control of gait requires complex coordination of multiple joints, limb 

segments, and muscles through various sensory-motor mechanisms. These control 

mechanisms modulate propulsion, braking, and body support during a gait cycle in 

response to ambulation goals and environmental demands. Despite the many complex 

mechanisms engaged, the resultant gait characteristics form consistent patterns of 

coordination. Most notably, stride length and cadence are modulated together forming a 

strong linear relationship along a broad range of gait speeds [1, 2]. However, 

environmental influences and limitations inherent to human sensory-motor control 

introduce variability, which is apparent in healthy subjects and exaggerated after a 

neurological or musculoskeletal injury. For example, the strength of the linear 

relationship between stride length and cadence is weaker in Parkinson’s disease [3] and 

prosthesis users [4] compared to unimpaired controls. 
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Disturbed sensory-motor control of gait in prosthesis users may be ascribed to a 

loss of limb, impaired sensation, or current limitations of prosthetic devices. This requires 

engaging additional motor and cognitive resources that impose load during performance 

of daily tasks. Not surprisingly, therefore, prosthesis users prefer componentry that they 

perceive less cognitively demanding [5-7]. The demand is amplified by frequent presence 

of cognitive impairments in prosthesis users [8].  

Cognitive-motor interference is commonly induced with a dual-task paradigm, 

which requires performance of an additional task while walking. The increased load on 

the sensory-motor system typically alters gait and has been related to fall risk and 

instability [9-11]. Dual-task gait has more ecological validity than typical gait analysis 

and may elicit deviations not seen during regular walking [12, 13]. Despite greater 

ecological validity and potential for improving sensitivity of gait studies, dual-task gait 

has not been extensively studied in prosthesis users. Some studies only looked at the 

cognitive performance [5, 6], whereas others reported no significant increase in 

cognitive-motor interference in above-knee prosthesis users [14, 15]. The reported 

absence of interference in the above-knee prosthesis users may be due to a small sample 

size, concurrent task selection, instructions about prioritization, substantial gait deviations 

in the single-task condition that constrained emergence of further perturbation under 

dual-tasking in order to preserve stability, or insensitive outcome measures. 

The most commonly reported outcome in dual-task gait studies is the variability 

of temporal-spatial parameters [16, 17]. The selected index of variability, however, is not 

uniformly defined or clearly justified with respect to studied gait parameters or 

experimental designs. Some studies use the standard deviation (SD) because it requires 
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little data manipulation, thus, simplifying interpretation [17-19]. Most investigators report 

the coefficient of variation (CV), the ratio (%) of SD to the mean value of the parameter 

of interest. When examining variability, the relationship of gait parameters with velocity 

is typically not considered. However, because such relationships commonly exist, the 

parameter mean and SD are not independent of, or proportionally scaled with, velocity 

[18-20]. Thus, spontaneous or induced fluctuations in velocity may variably affect SD 

and mean values, leading to ambiguity in interpretation. This especially pertains to dual-

task studies, because addition of a concurrent task tends to decrease velocity and alter 

related gait parameters [12, 15, 21]. Thus, there is a need to account for the impact of 

velocity on gait parameters for which the measures of variability are derived. 

To control for velocity between conditions, previous studies have used a treadmill 

[22], analyzed data that fell within a narrow range of the prescribed speed [23], or made 

mathematical adjustments [24, 25]. For example, Nordin et al.[25] used the linear 

relationship that step length and step time have with velocity to predict their values across 

a range of speeds and calculate the difference between the actual mean values and the 

predicted values for each condition. This reportedly improved detection of a dual-task 

cost (difference between single- and dual-task conditions). Because the mean values were 

used for calculating the dual-task cost, it was not possible to derive variability across 

multiple gait cycles. To overcome this, we extend the above approach by proposing a 

new method for analyzing variability in stride length and cadence that takes into account 

their close relationship with velocity. We termed this new index of variability the residual 

standard deviation (RSD), because it calculates a SD of the vertical distance between 

each actual data point and the point predicted by the best fit line between the velocity and 
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stride length/cadence. Thus, RSD quantifies the variability of a departure from the linear 

relationship that stride length and cadence have with velocity across the range of self-

selected walking speeds.  

The purpose of this study was to validate the RSD method for calculating 

variability of stride length and cadence. For construct validity (aim 1), we compared 

changes in RSD from baseline to dual-task gait between below-knee prosthesis users and 

age/education-matched non-amputee controls. Aside from rare dual-task studies in this 

population, this choice was guided by our recent findings of the disrupted stride length-

cadence relationship in below-knee prosthesis users [4]. The reduced automaticity (i.e., 

more variable sensory-motor output) was expected to be exaggerated during dual-task 

gait and captured by RSD. Concurrent validity (aim 2) was examined by correlating dual-

task cost RSD with dual-task cost CV to infer to which degree the two measures probe 

the same construct. Discriminant validity (aim 3) was evaluated by examining the ability 

of dual-task cost RSD to differentiate below-knee prosthesis users from controls. As a 

follow-up, the discriminant ability of dual-task cost RSD was compared to the same 

ability of dual-task cost CV. Our first hypothesis was that RSD will capture larger 

variability in both stride length and cadence during dual-task gait in below-knee 

prosthesis users compared to controls. The second hypothesis was that dual-task cost 

RSD will positively and at least moderately correlate with dual-task cost CV. The third 

hypothesis was that the receiver operating characteristics (ROC) analysis based on dual-

task cost RSD will yield a significant area under the curve (AUC) when comparing 

prosthesis users to controls. 
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Methods 

Participants  

A convenience sample of unilateral below-knee prosthesis users was recruited 

from clinics run by our institution. The inclusion criteria were ≥ 1 year since amputation; 

age 18–80 years; comfortable socket fit; no known balance, neurological, or other health 

problems that limit daily activities; and able to safely walk 10m-distance at different 

velocities, as verified by a certified prosthetist. Age- and education-matched non-amputee 

subjects were recruited from the community to serve as controls. While not specifically 

matched for gender, we recruited more male subjects in the control sample to better 

approximate the prosthesis user population [26].   

The sample included 13 controls (mean age 46±18 years, 15±2 years of education, 

BMI 26±3, 8 men) and 14 below-knee prosthesis users (age 43±12 years, 14±2 years of 

education, BMI 26±3, 11 men). The difference in the proportions of male vs. female 

subjects in the two samples was not significant (Fischer exact test, p=0.420). The 

amputation occurred 9±7 years (1.0 to 28) earlier due to trauma (n=11), infection (n=2), 

or vascular disease (n=1). They were rated K3 (n=13) or K4 (n=1) on the Medicare scale 

and none used an assistive device. The study was approved by the institutional review 

board for human research and all subjects provided informed consent. 

Protocol 

Global cognitive function was evaluated using the Modified Mini-Mental Status 

Exam (3MS) and processing speed and executive function with Trail-Making forms 

(Trail) A and B while seated. Two cognitive tasks were selected for the dual-task 
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paradigm; serial subtraction by 7 from a 3-digit number and backwards spelling of 5 

letter words [27, 28]. Each task was practiced twice before gait assessment.  

For gait assessment, subjects walked over an electronic walkway (GAITRite®, 

length 5.2 m, width 0.6 m). An additional 1.2 m on each end allowed for 

acceleration/deceleration and recording of a steady state gait. Prior to data collection, 

subjects made six familiarization passes at normal self-selected speed. They were then 

instructed to walk at a comfortable pace and simultaneously perform the cognitive task 

without instructions on prioritization (dual-task gait). Each cognitive task was presented 

at random in a block of 6 passes. Walks were repeated if the subject stopped on the mat, 

walked off the side of the mat, had an erratic stepping pattern, or forgot the instructions. 

After the dual-task conditions, the subjects walked at self-selected normal, slow, and fast 

speeds, selected freely to ensure natural walking pattern (up to 6 passes each). The 

normal speed was always collected first, with the order of other two speeds randomized. 

Demographic and clinical information were collected through an interview and from 

medical records. All data were collected by the same researcher. 

Data processing  

Foot fall data from the walkway were processed with a custom program written in 

MATLAB® (Mathworks Inc., Natick, MA) to calculate instantaneous stride velocity 

(cm/s), stride length (cm), and stride cadence (strides/min). Stride parameters were 

calculated from the dominant foot in controls and the prosthetic foot in prosthesis users. 

Each stride was treated as an individual data point. Trials with at least 5 consecutive steps 

were included in analysis.  
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For each subject, the linear regression was used to determine stride length-

velocity and cadence-velocity relationships for baseline walking trials at 3 self-selected 

speeds. To demonstrate goodness of linear fit of stride-length/cadence with velocity at 

baseline, we reported the coefficient of determination (R2) for the prosthesis users and 

controls. Shapriro-Wilk test was used to examine whether regression residuals were 

normally distributed (p<0.05). Using the slope and intercept of the linear equation 

describing the best fit line, we derived the predicted values for stride length/cadence at 

the actual stride velocity. The distance (difference) between the actual and predicted 

values for each data point was calculated (Figure 1). The SD of this difference was 

adopted as an index of variability in stride length and cadence. Since the method 

resembles calculation of residuals, we termed it residual standard deviation (RSD). The 

RSD was calculated for baseline across 3 self-selected speeds to capture the range of 

natural walking characteristics and for each dual-task condition (subtraction, spelling). 

The CV (SD/mean) was calculated for stride length and cadence at each self-selected 

speed (normal, fast, slow) and dual-task conditions (subtraction, spelling).  

As subjects are not equally affected by the same tasks [29], the cognitive task 

(subtraction, spelling) with a more disruptive effect on RSD and CV was selected for 

each subject for the dual-task analysis (overall 80% task congruence between RSD and 

CV). The subtraction and spelling tasks were not differently represented between the two 

groups (Fisher’s exact test). Dual-task cost RSD and dual-task cost CV were calculated as 

the difference between the respective baseline and dual-task conditions for both stride 

length and cadence (negative sign indicates greater variability during dual-task gait). The 

slow self-selected speed was chosen as the baseline for deriving dual-task cost CV in 
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prosthesis users because it was comparable to the dual-task speed (78±19 and 82±16 

cm/s, respectively). In the control group, the average of the normal CV and slow speed 

CV was used as the baseline for calculating dual-task cost CV since dual-task speed 

(112±25) was comparable to the average of these two baseline speeds (114±19 cm/s).  

Fig. 1. Calculation of residual standard deviation (RSD). The example shows stride 

length data points plotted against the respective instantaneous velocity in a prosthesis 

user (baseline, filled diamonds; dual-task, open squares). Linear regression is fitted first 

to the baseline data from 3 self-selected speeds. Using the slope and intercept of the 

linear equation describing the best fit line, the difference between each data point 

(Actual) and the corresponding point on the best fit line (Predicted) is calculated 

(baseline, red; dual-task, blue), followed by calculation of the standard deviation of the 

difference values for each condition. 

 

Statistical analysis 

Baseline cognitive performance was compared between prosthesis users and 

controls (unpaired t-test, p<0.05). Velocity, stride length, and cadence were compared for 

descriptive purposes along with the Pearson’s correlation coefficients for stride length-
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velocity and cadence-velocity relationships (unpaired t-test, p<0.05). For construct 

validity of RSD (aim 1), a 2 x 2 repeated-measure ANOVA was used to compare changes 

in RSD for stride length and cadence with group (prosthesis users, controls) and 

condition (baseline, dual-task) as the between and within factors. Hypothesis 1 was tested 

by significance of the group x condition interaction (p<0.05). For concurrent validity 

(aim 2), the Pearson’s correlation coefficient was calculated between dual-task cost RSD 

and dual-task cost CV for stride length and cadence. Hypothesis 2 was accepted if the 

correlation was at least moderate (>0.50) [30]. For discriminant validity of dual-task cost 

RSD (aim 3), the ROC curve was derived for stride length and cadence. Hypothesis 3 

was evaluated by the significance of AUC (p<0.05). The same was repeated for dual-task 

cost CV. The shoulder of ROC curve was visually identified and validated by the 

likelihood ratio. The corresponding cut-off points with sensitivity and specificity were 

reported. Group data are reported as means and standard deviations (SD). In 4 control 

subjects (3 stride length and 1 cadence dataset) and 1 prosthesis user (cadence dataset), 

the linear fit was not adequate based on the runs test. The entire RSD analysis was 

repeated after replacing the linear with a quadratic model in those 5 cases, but the ROC 

results remain virtually the same as reported below. 

Results 

The baseline cognitive performance did not significantly differ between prosthesis 

users and controls (3MS 96±2 vs. 98±1; Trail A 48±11 vs. 50±6; Trail B 46±10 vs. 53±8, 

respectively, p>0.05). Prosthesis users walked slower, with shorter stride length and at 

lower cadence than controls at each speed and dual-task condition (Table 1). The R2 for 

stride length-velocity and cadence-velocity across 3 self-selected speeds were high for 
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each subject (group means 0.96±0.03 and 0.94±0.04 in prosthesis users, 0.97±0.02 and 

0.97±0.01 in controls, respectively). The Shapriro-Wilk test confirmed the normality of 

residuals in 53 of 54 linear regression analyses, with the only exception of the cadence-

velocity residuals in one control subject. The results reported below were not 

substantially different when the cadence data point for this subject was excluded (not 

shown).  

Table 1 

Mean (SD) values for velocity, stride length, and cadence at 3 baseline speeds and under 

two dual-task conditions for prosthesis users (n=14) and control subjects (n=13). (SUB: 

serial subtraction; SPL: backwards spelling). 

 Fast Normal Slow SUB SPL 

Velocity (cm/s)      

     Prosthesis Users 133 (21)* 111 (16)* 82 (16) 78 (20)* 86 (22)* 

     Control Subjects 161 (23) 134 (21) 94 (21) 112 (24) 113 (24) 

Stride length (cm)      

     Prosthesis Users 149 (19) 135 (15) 116 (15) 112 (17)* 118 (18) 

     Control Subjects 158 (15) 145 (15) 121 (16) 131 (17) 131 (17) 

Cadence (stride/min)      

     Prosthesis Users 53 (5)* 49 (4)* 42 (5) 41 (6)* 43 (6)* 

     Control Subjects 61 (6) 55 (4) 46 (5) 51 (5) 51 (6) 

* Prosthesis Users significantly different from Control Subjects p<0.01  

 

Comparison of RSD between prosthesis users and controls (construct validity of RSD)  

The mean RSD values were comparable at baseline, but significantly larger in 

prosthesis users than controls during dual-task gait for both stride length and cadence 

(group x condition interaction p=0.0006 and p=0.009, respectively, Table 2). The 

increase in RSD in prosthesis users was nearly 70% for stride length and 50% for 

cadence. This confirms the construct validity of RSD (hypothesis 1).  
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Correlation between dual-task cost RSD and CV (concurrent validity of RSD) 

Dual-task cost RSD in prosthesis users was -1.6±1.0 for stride length and -

0.54±0.43 for cadence, with the corresponding values for dual-task cost CV of -2.8±2.7 

and -2.2±2.6. In controls, these values were lower (stride length RSD -0.11±0.89, CV -

1.1±2.0; cadence RSD -0.08±0.39, CV -0.93±1.6). Correlation coefficients between dual-

task cost RSD and CV were >0.50 for both stride length and cadence (0.52 and 0.50 in 

prosthesis users, 0.61 and 0.87 in controls, respectively), which confirms the concurrent 

validity hypothesis.  

Table 2  

Mean RSD values (SD) for stride length and cadence for prosthesis users and control 

subjects (group factor in ANOVA) during baseline and dual-task gait (condition factor in 

ANOVA). 

 Baseline Dual-Task ANOVA p-values 

   Group Condition Interaction 

Stride length   0.02 0.0001 0.0006 

     Prosthesis Users 2.5 (0.8) 4.2 (1.6)    

     Control Subjects 2.4 (0.7)  2.5 (0.8)    

Cadence   0.03 0.0008 0.009 

     Prosthesis Users 1.0 (0.3) 1.5 (0.6)    

     Control Subjects 0.9 (0.3) 1.0 (0.3)    

 

Table 3 

ROC results for discriminative ability of dual-task cost RSD and CV for stride length and 

cadence. Note highly significant area under the curve (AUC) and better sensitivity and 

specificity of RSD than CV for the selected cut-off points (significance p-value is in 

bold). 
 AUC (95% CI) p-value Cut-off Likelihood Ratio Sensitivity Specificity 

Stride Length       

RSD 0.86 (0.73-1.00) 0.001 < -0.79 3.71 86% 77% 

CV 0.69 (0.49-0.89) 0.089 < -2.53 2.48 57% 77% 

Cadence       

RSD 0.81 (0.64-0.98) 0.007 < -0.46 9.29 71% 92% 

CV 0.65 (0.44-0.86) 0.190 < -0.54 1.55 71% 54% 

 

 



  156 

Comparison of ROC results between RSD and CV (discriminant validity of RSD) 

The ROC analysis (Table 3) revealed a significant AUC for dual-task cost RSD 

for both stride length and cadence (0.863, p=0.001; 0.808, p=0.007, respectively), thereby 

confirming hypothesis 3. The AUC for dual-task cost CV did not reach significance 

(stride length 0.692, p=0.089; cadence 0.648, p=0.190). Comparably better discriminative 

ability of dual-task cost RSD than CV is evident in Figure 2 as the curve offset in the 

middle of specificity range, along with higher sensitivity or specificity values of the 

selected cut-off points (Table 3) for both gait parameters. 

Fig. 2. ROC curves for dual-task cost measured by RSD (blue) and CV (red) for stride 

length (left) and cadence (right). Note greater area under the curve for RSD than CV for 

both gait parameters, indicating overall better discriminative ability of RSD. A circle on 

each curve represents the selected cut-off point for the reported sensitivity and specificity 

of RSD and CV in discriminating the prosthesis users from controls. While each measure 

has the same value for stride length specificity and cadence sensitivity note the lack of 

discriminative power of the complementary value in CV.  

 

Discussion 

This study demonstrates the construct, concurrent, and discriminative validity of 

RSD as a novel index for assessing variability of stride length and cadence during dual-
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task gait. The three aims were achieved by comparing gait between below-knee 

prosthesis users and controls walking at different self-selected speeds and while 

concurrently performing cognitive tasks known to change gait pattern. The construct 

validity was established by significantly larger increase in RSD from baseline to dual-

task gait in prosthesis users compared to controls for both stride length and cadence. The 

concurrent validity was established by moderate-to-high correlations between the dual-

task cost RSD and CV, suggesting that the two measures assess variability in somewhat 

overlapping but also different ways. The discriminative validity of dual-task cost RSD 

was confirmed by significant area under ROC curve for both parameters, indicating 

adequate distinction of prosthesis users from controls. In doing so, dual-task cost RSD 

outperformed CV. These results have implications for research and clinical practice. 

Besides apparent face validity for assessing variability in stride length and 

cadence, the construct validity of RSD is supported by significant increases in RSD from 

baseline to dual-task gait condition in the prosthesis users but not controls (Table 2). This 

was predicted a priori based on our previous findings of the disrupted stride length-

cadence relationship in below-knee prosthesis users already during natural walking [4]. 

Intuitively, the addition of a secondary task was likely to further disrupt the gait pattern, 

which was successfully captured by RSD. Increased variability in prosthesis users could 

not be attributed to cognitive abilities since cognitive performance at baseline was not 

different between the two groups. Thus, the possible contributing factors include 

amputation, impaired sensation, or use and settings of a prosthetic device. All of these, 

independently or combined, may explain increased cognitive burden during walking. 

However, two previous studies did not report greater dual-task cost in above-knee 
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prosthesis users compared to controls [14, 15]. The differences may be due to different 

levels of amputation, cognitive tasks used, or methods employed.  

The concurrent validity of dual-task cost RSD is demonstrated by correlations 

with dual-task cost CV, which were largely in the moderate range, except for being 

higher for cadence in the controls. Although the reason for the latter is not clear, the 

overall results suggest that the two indices assess a related but not entirely overlapping 

construct. Although somewhat predictable given that both measures rely on SD of 

different but related data points, demonstrating concurrent validity against CV as the 

criterion was essential for gaining confidence in RSD as a new measure of stride length 

and cadence variability. 

For a measure to be clinically useful, it should be responsive and able to 

discriminate abnormal from normal gait characteristics. Although in prosthesis users 

dual-task cost for both stride length and cadence was nominally smaller for RSD (-

1.6±1.0, -0.54±0.43) than CV (-2.8±2.7, -2.2±2.6), the proper way to appreciate the 

responsiveness is to compare the respective standardized response means (mean 

change/SD of change, in this case dual-task cost mean/SD) [31]. It follows that the 

responsiveness of dual-task cost RSD (1.6/1.25) is more than one half SD larger than 

responsiveness of dual-task cost CV (1.0/0.8). In addition, the ROC results confirmed 

that dual-task cost RSD better differentiates prosthesis users from controls than dual-task 

cost CV (Table 3, Figure 2). Further studies should examine if RSD is also more sensitive 

than CV for predicting falls in this and other populations. 

The ROC results showed an apparent trade-off in sensitivity and specificity 

between stride length and cadence. Although this is inherent to ROC analysis (the higher 
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the sensitivity, the lower the specificity, and vice versa), an additional reason for this may 

be that stride length and cadence are tightly coupled and the changes in one affect the 

other in the opposite direction. Considering similar AUCs and curve shapes (Table 3, 

Figure 2), it is to be expected that if one measure (stride length RSD) has greater 

sensitivity (86%) than specificity (77%), the other related measure (cadence RSD) with 

comparably lower sensitivity (71%) would yield comparably higher specificity (92%).  

The RSD method was used here under the assumption of linear relationship 

between stride length/cadence and velocity, which has been documented in the vast 

majority of our cases and as often is the case at typical walking speeds in different 

populations [1-4]. It should be noted that the RSD approach can also be applied to any 

non-linear model, because the RSD is a measure of dispersion (SD) of the difference 

between each observed and predicted point, regardless of how the predicted data point is 

modelled. However, in this case, the results did not substantially differ when in 5 subjects 

the RSD values were calculated from the quadratic rather than the linear function with the 

latter proving slightly less adequate (results not shown).  

Limitations 

While RSD may also prove to be a useful measure of variability for other 

parameters related to velocity [19], this validation study was limited to stride length and 

cadence. Additional gait parameters exhibiting a linear relationship with velocity should 

be assessed in future studies. Further, this measure was only validated in relatively small 

samples of below-knee prosthesis users and age-matched controls. Thus, validating this 

method in above-knee prosthesis users, elderly, and neurological populations is necessary 

before assuming its broader usefulness. Since this study only assessed the cognitive-to-
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motor interference aspect of dual-tasking, further analysis of the cognitive performance, 

including the impact of different tasks, would improve understanding of dual-task 

behavior in below-knee prosthesis users. Although clinical utility of the RSD method 

remain unknown, successful validation offers new opportunities for research in this area.  

Conclusion 

This study validated a new measure of variability in stride length and cadence as 

the two most robust velocity-dependent gait parameters. The results confirmed the 

construct, concurrent, and discriminative validity of RSD for measuring dual-task cost in 

below-knee prosthesis users. The RSD approach may provide more sensitive measures 

for discriminating between different levels of impairment, monitoring changes in gait 

performance over time, or examining gait under different conditions variably affecting 

speed. Further work is needed to determine if this measure of gait variability may be 

useful for such research and clinical purposes.  
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CHAPTER 8 

PROSTHESIS USERS HAVE INCREASED GAIT VARIABILITY WHILE WALKING 

DURING CHALLENGING GAIT CONDITIONS AND DUAL-TASKING  

Abstract 

Residual standard deviation (RSD) utilizes the linear relationships between stride 

length, cadence, and velocity to calculate variability of stride length and cadence in a 

manner that allows for differences in gait speed across trials. RSD was used to assess 

changes in gait variability in 10 below-knee prosthesis users and 12 control subjects 

during challenging gait conditions: a narrow walkway and walking with a tray, with and 

without performing a cognitive task (dual-task). Subjects performed the dual-tasks 

without and then with instruction to prioritize the cognitive task performance. Without 

the cognitive task, the narrow walkway increased stride length and cadence variability in 

prosthesis users more than in control subjects (Group x Walk interaction p≤0.002). 

Walking with the tray did not impact variability in either group (Walk p>0.4). Dual-

tasking without instruction on prioritization did not increase stride length or cadence 

variability in either group during normal or narrow walking (Task p>0.1). However, 

performing a cognitive task while walking with a tray increased stride length and cadence 

variability in prosthesis users (Walk x Task interaction p≤0.032) and stride length 

variability in control subjects (Task p=0.018). When instructed to prioritize the cognitive 

task the prosthesis users did not exhibit a change in variability or cognitive performance 

(p>0.2). However, control subjects did improve cognitive performance (Instruction 

p=0.040) and had an increase in cadence variability (Instruction p=0.022) during the 

narrow walking condition. The results suggest that prosthesis users are more disrupted by 
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a narrow walking constraint than control subjects but this challenge does not increase 

cognitive burden. Walking while balancing a tray, however, does not impact gait 

variability but may increase the cognitive burden of walking. These results suggest 

prosthesis users are more disrupted by highly demanding gait tasks but that the specific 

characteristics of the challenge influence the relative impact on neuromotor and cognitive 

processes.   

Introduction  

The performance of daily activities requires  the allocation of resources among 

motor, sensory, and cognitive systems [1]. When the demands of an activity are low, such 

as quiet walking in a flat well-lit area, resource demands are low. However, a more 

challenging gait condition, such as a narrow walkway, may increase demand [2, 3]. 

Further, many daily activities require multitasking and may require resources to be 

allocated to multiple systems or for a single system to be engaged in more than one task. 

When demand increases, resources may become limited and may not able to meet the 

needs of all tasks, which can degrade performance of one or more of the tasks [1].  

A dual-task paradigm is often used to simulate multitasking in a research setting. 

Specifically, dual-tasking is the concurrent performance of two tasks with independent 

goals and outcomes [2]. Dual-tasking often involves standing or walking while 

performing a cognitive task, such as serial subtraction. Dual-task performance has been 

used to identify unstable gait patterns and fall risk [4-9] but has also been used to probe 

how cognitive resources are allocated in task performance to better understand neural 

processing [10-12]. For example, studies finding decrements in the performance of one or 

both tasks suggest that the decline is due to competition for attentional resources by the 
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different systems needed to perform the different tasks. This model for neural processing 

is referred to as the cross-domain competition model [10] or the central-capacity sharing 

model [12]. However, there are other studies that find improved performance on one or 

both tasks. Improved performance in the presence of dual-tasking supports a 

prioritization model [10, 11] or increased recruitment of previously unengaged resources, 

increased level of alertness [13, 14]. Understanding resource allocation can help with 

developing strategies to reduce the risk of multi-tasking induced falls in at risk 

populations and study designs aimed at capturing specific risks.  

In order to best examine resource allocation while dual-tasking, cognitive 

resources must be stressed to provoke a measurable change in performance. This can be 

achieved by utilizing challenging gait conditions in conjunction with a dual-task 

evaluation. Challenging single-task gait conditions increase the demand of the walking 

without changing the goal [2]. A narrow walkway was used to impose a physical 

constraint; walking while carrying a tray was used to increase task complexity [2]. The 

flexibility or the ability to consciously adjust resource allocation can be probed by 

instructing subjects on specific task prioritization [11, 15]. This methodology was 

successfully used to evaluate dual-task strategy in unilateral below-knee prosthesis users 

and non-amputee control subjects during a standing dual-task evaluation [14]. In this 

study, the same approach was used to further evaluate dual-task performance during 

challenging gait conditions in these groups.  

The linear coupling between stride length and cadence has been used as a measure 

of coordinated neurocontrol of gait [16-18]. Chapter 4 showed that prosthesis users had 

less coordination between stride length and cadence compared to control subjects during 
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a simple walking task [19]. Increased resource demand imposed by a challenging gait 

task may further disrupt the stride length-cadence relationship.  

           Dual-task studies using simple and challenging gait conditions in above-knee 

prosthesis users with standard gait measures have not identified an effect of dual-tasking 

on most aspects of gait, including step time variability [20, 21]. However, dual-task 

evaluation of below-knee prosthesis users with the residual standard deviation (RSD) 

method, a novel method of variability analysis, identified greater dual-task impact in 

prosthesis users than control subjects while performing a normal walking task (Chapter 7) 

[22]. In this study, the impact of dual-tasking on gait under challenging conditions was 

evaluated utilizing the residual standard deviation (RSD) method due to its demonstrated 

utility in the below-knee prosthesis user population.  

 The first aim was to evaluate the impact of challenging single-task gait conditions 

on coordination and variability of stride length and cadence. Hypothesis 1 was that the 

challenging conditions will decrease coordination and increase variability in both groups 

but more so in prosthesis users than control subjects. The second aim was to evaluate the 

impact of performing a cognitive task while walking in challenging gait conditions on 

stride length and cadence variability. Hypothesis 2 was that dual-tasking would have a 

greater effect on prosthesis users stride length and cadence variability in the challenging 

gait conditions than the normal condition. Furthermore we evaluated the flexibility of 

resource allocation while walking in a challenging gait condition by instructing subjects 

to focus on performance of the cognitive task.  
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Methods 

Participants  

A group of below-knee prosthesis users and non-amputee control subjects who 

had previously participated in a standing dual-task study [14] returned between two 

weeks to one month later to participate in a gait dual-task evaluation. The inclusion 

criteria for the prosthesis users were ≥ 1 year since amputation; age 18–80 years; 

comfortable socket fit; no known balance, neurological, or other health problems that 

limit daily activities; and able to safely walk 10 m at different velocities, as verified by a 

certified prosthetist. The study was approved by the institutional review board for human 

research and all subjects signed the informed consent. 

The sample included 12 control subjects (mean ± SD age 47±14 years, 15±2 years 

of education, BMI 30.8±7 kg/m2, 5 (42%) men) and 10 prosthesis users (mean ± SD age 

47±13 years, 13±3 years of education, BMI 29.7±6 kg/m2, 7 (70%) men). The amputation 

occurred 7±7 years earlier (range 1-18) due to trauma (n = 5) or vascular disease (n = 5). 

All prosthesis users were rated K3 on the Medicare scale and none used an assistive 

device.  

Protocol 

Footfall placement and timing for each walk was recorded using a 6-m electronic 

walkway (Zeno Walkway®, ProtoKinetics, Havertown, PA) with an additional 1.2 m on 

each end to allow for acceleration/deceleration. The walking conditions used for analysis 

were unrestrained walking (normal), walking with a narrow base of support (narrow), and 

walking while carrying a tray with a cup filled with ping pong balls (tray). The width of 

the narrow path for each subject was 50% of their anterior superior iliac spine width plus 
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their shoe width [23]. The path was designated by covering the edges of the walkway 

with black poster board, which provided a strong contrast against the walkway. During 

the tray task subjects used both hands to carry a typical cafeteria tray. A cup filled with 

ping pong balls was placed in the center of the tray to encourage subjects to keep the tray 

level while walking. The walking conditions were presented in random order. During 

each walking condition subjects were instructed to make 4 passes at a normal speed 

followed by passes at fast and slow self-selected speeds presented in a random order.  

Two cognitive tasks were selected for the dual-task paradigm; serial subtraction 

by 7 from a 3-digit number and a verbal fluency task (listing words starting with a 

specific letter). The most difficult letters for verbal fluency (J, K, Q, U, X, Y, Z) were 

excluded from this task [24]. Each task was practiced while seated to ensure 

comprehension. For comparison between groups, the subtraction task was performed 2 

times for 30 s and the verbal fluency F-A-S test (FAS) was performed once for 60 s. The 

number of correct responses was documented, and the verbal responses were also 

recorded to confirm response accuracy. 

After a seated break, each of the three walking conditions were repeated at the 

subjects’ self-selected speed while performing the cognitive tasks. Subjects made 2 

passes for each task in each walking condition. The walking conditions and cognitive 

tasks were presented in random order. In the first set of trials, subjects were given no 

instruction on task prioritization. In the second set, subjects were asked to focus on the 

cognitive task and increase the number of correct responses by at least 50% over their 

noted average in the first presentation. In each set, an additional subtraction task was 

given at random as a distractor (subtracting 6 or 8, data not included). The performance 
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on each cognitive task was documented and recorded. The average number of correct 

responses for each task in each walking condition was calculated for analysis.  

Data processing 

Data from the electronic walkway were processed with a custom program written 

in MATLAB® (Mathworks Inc., Natick, MA) to calculate instantaneous stride velocity 

(cm/s), stride length (cm), and stride cadence (strides/min). Each variable was calculated 

from the dominant foot in control subjects and the prosthetic foot in prosthesis users. 

Each stride was treated as an individual data point.  

For each single-task walking condition, the linear regression across the three 

walking speeds was calculated between stride length and cadence to evaluate the stride 

length-cadence relationship. The goodness of fit was evaluated using the coefficient of 

determination (R2) of the regression. See Chapter 4 [19] for detailed description of the 

analysis.  

Stride length and cadence variability was calculated using the RSD method for 

single- and dual-task walking. The linear regression between stride length and velocity 

and cadence and velocity was calculated for each single-task walking condition across the 

3 self-selected speeds. Using the formulas for the best fit line, the predicted value for 

stride length/cadence was calculated from the instantaneous velocity for the respective 

walking condition. The difference between the actual and predicted values for each point 

was calculated and the variability of stride length/cadence was measured as the standard 

deviation of the differences. The RSD was measured for each single-task walking 

condition and the respective dual-task conditions (subtraction, verbal fluency). See 

Chapter 7 [22] for detailed description of the analysis.  
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Due to personal aptitude, the same task may not have equal interfering effect in 

all subjects. As in previous studies [14, 22], the cognitive task (subtraction or verbal 

fluency) with a more disruptive effect across the 3 walking conditions was identified in 

each subject and selected for the dual-task analysis in order to ensure all subjects were 

stressed by dual-tasking. The distribution of the subtraction and verbal fluency tasks was 

not different between the two groups (Fisher’s exact test p=1).  

Dual-task cost was calculated for each walking condition as the difference in RSD 

variability between the single-task and selected dual-task for the no prioritization and 

prioritization conditions (negative sign indicates increased variability during dual-task 

walking).  

Statistical analysis 

The seated cognitive task performance was compared between the prosthesis 

users and control subjects (unpaired t-test, p<0.05). As the two challenging walking 

conditions (narrow and tray) induced perturbation through different modalities, physical 

constraint vs. complex task, the conditions were evaluated in separate analyses. To test 

whether the more challenging walking conditions had greater impact on prosthesis users 

than control subjects the stride length-cadence relationship and the single-task stride 

length and cadence RSD (hypothesis 1) was evaluated with a 2x2 mixed ANOVA with 

Group (prosthesis users, control subjects) as the between-subjects factor and Walk 

(normal, narrow; normal, tray) as the within-subjects factor. The differential response of 

the two groups to the challenging walking tasks was determined by a Group interaction 

(p<0.05). When main effects and interactions were present, adjusted t-tests (p<0.025) 

were performed on within subject factors to facilitate interpretation of the results.  
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The impact of performing a cognitive dual-task on stride length and cadence RSD 

(hypothesis 2) was evaluated within each group using a 2x2 repeated measure ANOVA 

with Walk (normal, narrow; normal, tray) and Task (single, dual) as factors. An increase 

in dual-task impact on variability during the challenging gait conditions was determined 

by the Walk x Task interaction (p<0.05). The result of instructing subjects to prioritize 

the cognitive task performance was evaluated using the RSD dual-task cost within each 

group using a 2x2 repeated measure ANOVA with Walk (normal, narrow; normal, tray) 

and Instruction (no prioritization, prioritization) as factors. The impact of the 

prioritization instruction on cognitive task performance was further evaluated using the 

same analysis. IBM SPSS Statistics 23 (IBM Corp., Armonk, NY) was used for statistical 

analysis. 

Results 

There was no difference between groups for seated performance of the cognitive 

tasks. The total number of correct responses during the FAS test were 39±3 (mean ± SE) 

words for control subjects and 43±4 words for prosthesis users (p=0.4). The average 

number of correct subtraction responses were 6.6±1 for control subjects and 5.3±1 for 

prosthesis users (p=0.4).  

Single-task stride length-cadence relationship (hypothesis 1) 

During single-task walking, the narrow walkway (Walk-narrow p<0.001; paired t-

test: control p=0.023; prosthesis users p=0.003) and carrying the tray (Walk-tray 

p=0.007) disrupted the stride length-cadence relationship in both groups (Figure 1). 

However, the narrow walking condition resulted in a greater disruption in prosthesis 
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users than control subjects (Group x Walk-narrow interaction p=0.005). These results 

confirm hypothesis 1 for the narrow but not the tray walking condition. 

Fig. 1. R2 values of the stride length-cadence relationship for control subjects (gray) and 

prosthesis users (black) during each single-task walking condition. The narrow walking 

condition reduced the R2 value in both groups but caused greater disruption in the linear 

relationship in prosthesis users than control subjects. Carrying a tray had similar 

disruption to the stride length-cadence relationship in both groups. 

 

Single-task stride length and cadence variability (hypothesis 1) 

Narrow walking also significantly increased stride length and cadence variability, 

as indicated by an increase in RSD, in prosthesis users greater than in control subjects 

(Group x Walk-narrow interaction p=0.001 and p=0.003, respectively). The narrow 

walking condition did not increased stride length or cadence variability in control 

subjects (paired t-test: stride length p=0.040; cadence p=0.1). Walking while carrying a 

tray did not increase stride length or cadence variability in either group (Walk-tray main 

effects and interactions p>0.5). For stride length there was a main effect of group for the 
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analysis of both walking conditions (Group-narrow p=0.002; Group-tray p=0.035), 

suggesting that prosthesis users had higher RSD variability across all walking conditions. 

These results also confirm hypothesis 1 for stride length and cadence variability for the 

narrow but not the tray walking condition. Figure 2 shows the single-task RSD results. 

Fig. 2. RSD during each single-task walking condition for each control subjects (gray) 

and prosthesis users (black). Prosthesis users had higher stride length variability across 

walking conditions; however, the narrow walking condition resulted in the greatest 

difference between groups. The narrow walking condition also increased stride length 

variability in control subjects. Prosthesis users’ cadence variability was only higher than 

control subjects in the narrow walking condition. Walking while carrying a tray did not 

increase variability over the normal walking condition in either group.  

 

Single-task vs. no-prioritization dual-task stride length and cadence variability 

(hypothesis 2) 

There was no main effect of Task or Walk x Task interaction for either group for 

the dual-task narrow walk analysis on stride length and cadence variability (Walk-narrow 

main effects and interactions p>0.1; Figure 3 A/B). However, while carrying a tray, 

prosthesis users had a significant Walk x Task interaction for both stride length and 
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cadence, showing higher variability while carrying a tray and performing a cognitive task 

(Walk-tray x Task interaction p=0.050 and p=0.032, respectively; Figure 3 C/D). This 

confirms hypothesis 2 for the tray but not the narrow walking condition. Control subjects 

also had a main effect of task for stride length variability in the tray dual-task analysis 

only (Task-tray p=0.019). Considering no significant effects were observed in the 

analysis of the narrow walks, this suggests that performing a cognitive task while 

carrying a tray also increased stride length variability in control subjects.  

Fig. 3. RSD during single-task (solid line) and no-prioritization dual-task (dashed line) 

walking during the challenging walking conditions. Dual-tasking during the narrow 

walking condition did not increase stride length (A) or cadence (B) variability in either 

group. However, dual-tasking while carrying the tray increased both stride length (C) and 

cadence (D) variability in prosthesis users (black) and stride length (C) variability in 

control subjects (gray). 
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No-prioritization vs. prioritization dual-task cost stride length and cadence variability  

The instruction to prioritize the performance of the cognitive task did not impact 

the dual-task cost for prosthesis users across walking conditions (Instruction main effect 

and interactions p>0.2, Figure 4). However, the prioritization instruction did result in 

increased dual-task cost in cadence during the narrow walking condition (Instruction-

narrow p=0.022; Figure 4b). 

Fig. 4. RSD dual-task cost for the no-prioritization instruction (solid line) and 

prioritization instruction (dashed line) walking during the challenging walking 

conditions. Overall the instruction to prioritize the cognitive task did not impact stride 

length or cadence variability. However, control subjects (gray) did have an increase in 

cadence variability during the narrow walking condition (B).  

 

Dual-task cognitive performance 

Both prosthesis users and control subjects successfully performed the cognitive 

tasks while walking. Across all conditions and tasks the average number of correct 
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responses was between 3 and 4 while the average number of incorrect responses was less 

than 1. The walking condition did not significantly impact the average number of correct 

responses in either group (Walk p>0.3). The instruction to prioritize the cognitive task 

also did not impact the number of correct responses in prosthesis users (Instruction main 

effect and interactions p>0.6). However, control subjects did increase their average 

number of correct responses by 1 when instructed to prioritize the cognitive task during 

the normal vs. narrow walking analysis (Instruction-narrow p=0.040).    

Discussion 

 This study demonstrated the impact of challenging walking tasks on the control of 

gait in prosthesis users and control subjects. The nature of the gait challenge affects the 

type of stresses experienced by locomotion control systems. The constraint of a narrow 

walkway disrupted gait coordination and variability in both groups but did not appear to 

greatly increase the cognitive burden. However, the complexity of carrying a tray while 

walking did not disrupt gait control until it was combined with performance of a 

cognitive task. While overall, prosthesis users had less coordinated gait and greater 

variability, the narrow walking condition increased the difference. The impact of the 

cognitive task on the tray condition also caused a more consistent disruption in prosthesis 

users. For most conditions, the instruction to prioritize the cognitive task did not result in 

a change in performance for either the walking condition or the cognitive task. However, 

during the narrow walking condition the control subjects did improve cognitive task 

performance; this corresponded with an increase in cadence variability. These results 

indicate that goal prioritization, even under single-task conditions, can affect cognitive 
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resource allocation and this may be an important consideration in the design of future 

studies.  

In both groups, the narrow walking task decreased coordination between stride 

length and cadence while increasing variability, but dual-tasking did not exacerbate that 

difference. This finding is similar to those from Kelly et al. who found a main effect of 

dual-task performance on gait speed for usual and narrow walking but no interaction in 

young health adults [25]. Although the physical demands of the narrow walking 

condition required alterations in gait mechanics, the constraints imposed by the condition 

did not pose enough risk to warrant additional cognitive resource allocation. As such, 

while the narrow task might be physically challenging it is not in-fact demanding of 

substantial focus. This may also explain findings from Morgan et al. that reported no 

greater dual-task impact in above-knee prosthesis users while walking on a compliant 

surface [21]. Alternatively, the lack of dual-task impact in the narrow walking condition 

could be due to prioritization of the walking task, as suggested by Kelly et al [25]. 

However, in this study, there was no effect of walking condition on the number of correct 

responses in either group. This argues against a change in prioritization between walking 

conditions. It was only when control subjects deliberately utilized more resources to 

improve cognitive task performance that gait variability increased. This relationship 

between greater cognitive resource allocation and increased gait variability does suggest 

that there was competition between resources for overall dual-task performance and that 

subjects may have the flexibility to direct resource allocation based on their goal.       

 Walking while carrying a tray had an opposite impact on single- and dual-task 

gait compared to the narrow walking condition. The tray task did not significantly impact 
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single-task walking but had a significant dual-task effect in both groups. While it can be 

considered a complex single-task rather than a motor dual-task [2], carrying a tray may 

have increased the importance of the walking goal to subjects. Thus, it appears subjects 

may have dedicated more resources to walking during the single-task condition, therefore 

limiting the impact on gait coordination and variability. These results support the notion 

of flexible resource allocation and that the goal of the individual may play an important 

role in how resources are used [11]. In this case, the goal of the walking task was to 

maintain a stable walking patterning. However, when prosthesis users performed standing 

goal-oriented tasks, if best achievement of the goal conflicted with the most stable stance 

(standing on the intact side), prosthesis users often choose to compromise stability 

(standing on the prosthetic side) [26]. This further highlights the goal-directed nature of 

resource allocation.  

 Performing a cognitive task while carrying a tray increased stride length and 

cadence variability in prosthesis users and stride length variability in control subjects. 

This further supports the theory that maintenance of the gait pattern in the single-task 

condition required additional resources than normal walking. The greater dual-task 

impact in the tray condition shows a competition for resources and supports a resource 

sharing and competition model [10, 12]. The results also indicate that the gait task was 

not prioritized.        

 While the groups had similar patterns of performance, when the walking 

condition or dual-task did impact gait, it was stronger in the prosthesis users. This 

supports other findings of impaired gait mechanics in prosthesis users [19] and increased 

cognitive burden of using a prosthesis [14, 22]. The greater single-task impact of the 
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narrow walking condition suggests that prosthesis users are less capable of adapting to 

the medial-lateral disturbance imposed by the narrow walkway. Also, while control 

subjects did have a significant dual-task effect during the tray condition, the effect was 

more consistent in prosthesis users. This suggests that use of a prosthesis may increase 

the overall cognitive burden of walking and may make prosthesis users less able to 

respond to increased demands in everyday life. These findings may represent an 

increased risk of instability and falls in prosthesis users [27-30] .    

Limitations 

 This study utilized a small non-homogenous sample. A larger sample would have 

given the statistical tests greater power and perhaps highlighted significance in observed 

patterns that did not show significant differences in this study. While the diverse sample 

gives a general picture of below-knee prosthesis user behavior, it may limit clinical 

interpretation for specific patient groups. Future studies should evaluate the impact of 

dual-tasking with challenging gait conditions in larger and more homogenous groups. 

The order of the instructions should also be considered. The instruction to prioritize the 

cognitive task was always presented after the no-prioritization condition, which increases 

the risk of a learning effect. However, as the instruction only impacted the results in 

control subjects during the narrow walking condition, rather than across groups and 

conditions, and resulted in a differential effect on gait and cognitive performance, this 

argues against the presence of a strong learning effect. It should also be noted that the 

subjects had previously participated in a similar dual-task protocol for posture analysis. 

However, subjects commented on the continued difficulty of performing the cognitive 

task.  
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Conclusion 

 The results show that when assessing the impact of experimental challenges on 

gait, the nature of the challenge imposes on subjects should be considered. When the 

challenge imposes a high cost of gait deviations, subjects may dedicate enough resources 

such that a change in performance may not be apparent until the resources are depleted, 

resulting in competition. When the challenge does not remarkably increase the cost of 

gait deviations, gait may be more likely to be impacted as subjects do not dedicate 

additional resources to the task. Thus, not all challenging tasks may evoke additional use 

of cognitive resources. The results also show that prosthesis users behave similarity to 

control subjects in response to different demands and goals, however the effects are more 

pronounced and suggest that prosthesis users may be a greater risk of falls. Prosthetic 

devices that improve medial-lateral control and stability or reduce the cognitive burden of 

using a prosthesis may reduce demands for cognitive resources, which could help to 

decrease fall risk in below-knee prosthesis users.  
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CHAPTER 9 

DISCUSSION 

This work sought to develop new protocols to assess posture and mobility control 

in lower-limb prosthesis users that provide better utility than existing, commonly 

employed methods. Using the framework of cognitive resource allocation, maintenance 

of stability while standing and walking were assessed during normal and difficult 

conditions, with and without performance of a concurrent task. In addition to the 

experimental protocols designed to evoke changes in cognitive resource allocation, 

spectral analysis of posture identified previously unobserved changes in the use of the 

somatosensory system. Furthermore, the residual standard deviation (RSD) method, a 

novel method to measure gait variability, was developed and demonstrated higher 

sensitivity and specificity than traditional variability measures. Overall, the results 

illustrate the importance of task goals and prioritization in resource allocation. These 

findings addressed the specific aims presented in the introduction and provide new 

insight into prosthesis users’ cognitive resource allocation while performing competing 

tasks. 

In evaluating specific aim 1 (Chapter 3), it was found that prosthesis users often 

utilize their prosthetic leg for balance when performing goal-oriented standing tasks that 

require unilateral use of the lower limbs. This was counter to the hypothesized behavior 

expected due to typical physical therapy training [1] and studies showing high reliance on 

the intact side for stability during standing and walking [2-4]. The findings of this study 

suggest that motivation to achieve certain goals may take higher priority over 

maintenance of stability. Chapters 5-8, which evaluated dual-task performance while 
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standing and walking, also found that prosthesis users were more likely than non-

amputee control subjects to have disruption to gait or posture stability while concurrently 

performing a cognitive task, confirming the first hypotheses of aims 3 and 4. Together, 

these studies further support a tendency towards prioritization of goals separate from 

posture or gait control in prosthesis users and may point to reasons for increased fall risk 

in the population [5].   

When evaluating prosthesis users in challenging standing or walking conditions, 

for most conditions, the subjects continued to prioritize performance of the cognitive task 

despite the increased risk to stability. This was counter to hypothesis 2 of both aims 3 and 

4, postulating that the increased challenge would cause subjects to allocate more 

resources to maintenance of stability. In addition to further confirming the dual-task 

behavior of prosthesis users, the dual-task performance during the challenging conditions 

also supported theories of cognitive resource competition [6, 7].  

The differential performance between the narrow and tray walking conditions 

(Chapter 8) provides strong evidence of the influence of cognitive resource demand and 

competition on motor behavior. When evaluating single-task walking, the narrow 

condition resulted in an increase in stride length and cadence variability along with lower 

gait coordination, but walking while carrying a tray did not. When the conditions were 

coupled with performance of a cognitive task, the tray condition increased gait variability 

while there was no change in the narrow condition. The inability to maintain a consistent 

gait pattern while dual-tasking and carrying a tray suggests that the tray condition was 

more cognitively demanding than the other walking conditions. Without dual-tasking, the 

demand of the tray walking condition would not have been apparent and may have been 
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interpreted as an un-challenging walking condition. However, the dual-task results 

suggest that the tray condition was demanding but that cognitive resources were used to 

maintain a consistent gait pattern. Thus, the changes in the gait pattern, interpreted as 

representing the challenge of the walking condition, were not apparent until the resources 

were further stressed beyond the limits of the postural reserve. Similarly, the narrow 

walking condition results could also be misinterpreted. In being described as a 

challenging walking condition, its use is expected to make dual-tasking more difficult 

and evoke a stronger response. Taken alone, the narrow walking results would be 

interpreted as showing no dual-task impact and suggestive of no greater cognitive burden 

in prosthesis users. However, when considered in regard to the tray condition and in light 

of cognitive resource theories, the disruption to the gait pattern in the single-task walking 

condition suggest that the narrow condition did not prompt subjects to allocate greater 

resources towards stability. Thus, they were available for performance of the dual-task 

conditions. The differential findings of the walking conditions are important for study 

designs and interpretations and further highlight the importance of goals in subject’s 

allocation of resources.     

Further support for cognitive resource reorganization to accommodate 

competition while dual-tasking comes from the spectral analysis of the center of pressure 

signal while standing (Chapter 6). While dual-tasking, both control subjects and 

prosthesis users had a decrease in the frequency band associated with postural control 

adjustments driven by visual control. This suggests that more resources were allocated to 

other control systems while dual-tasking. This finding confirms the third hypothesis of 

aim 3.  
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The RSD method proved to be more effective at evaluating dual-task cost than 

traditional measures of variability during a normal walking task, while also being 

effective in the evaluation of gait variability during challenging walking conditions, 

confirming hypothesis 3 of aim 4. While this analysis method was developed to address 

issues of sensitivity in studies evaluating prosthesis users, the RSD could be applied to 

other populations and it is not limited to dual-task analysis. Additionally, while the 

analysis was only applied to stride length and cadence variability, the mathematical 

principle (Appendix C) could be applied to other variables whose linear relationship 

affects variability calculations.  

The principle of RSD emerged from the evaluation stride length-cadence 

relationship. Not only did this analysis provide the framework for a novel variability 

calculation, but also highlighted the utility of evaluating the coupling between stride/step 

length and cadence as a comprehensive measure of gait quality; as it was effective in 

distinguishing prosthetic gait from control subjects, confirming hypotheses 1 and 2 from 

aim 2. From a statistical standpoint, the comprehensive measure reduces the risk of 

statistical error by providing a single outcome effectively representing three variables, 

stride length, cadence, and velocity, across a range of self-selected speeds. It also avoids 

pitfalls of other protocols that may inadvertently alter subjects’ natural walking pattern, 

such as walking on a treadmill or restricting subjects to a specific walking speed.       

Future work 

 The methods developed and utilized in the research could also be used to identify 

differences between different prosthetic populations, such as fallers and non-fallers, or to 

distinguish between different prosthetic devices. Utilizing the receiver operating 
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characteristic curve, potential cut-off values between normal and abnormal gait measured 

by the stride length-cadence relationships and RSD were identified. In future work, these 

values could help to establish clinical classifications of gait deviations or provide targets 

for achieving “normal gait”. Further, the high sensitivity and specificity of these 

measures show promise for distinguishing between different groups or devices. Future 

work should include larger samples sizes of more homogenous groups to confirm cut-off 

values and evaluate the effectiveness of the classification.  

 The use of spectral analysis on the center of pressure signal identified a smaller 

contribution from the prosthetic side in the frequency band associated with the 

somatosensory system. As emerging research in lower-limb devices is working towards 

the incorporation of sensory feedback systems [8-11], the ability to specifically measure 

the impact on somatosensory control could prove useful in the evaluation of these 

devices. Further work is needed to evaluate this measurement of the somatosensory 

contribution and assess the responsiveness of spectral analysis to lower limb sensory 

changes. In addition to continued evaluation of lower-limb prosthesis users, the 

effectiveness of the measure could be assessed in persons with peripheral neuropathy.       

 In addition to further evaluation of the analysis techniques, future work may also 

benefit from the insights into dual-task methodology that were developed. Through pilot 

testing it was identified that subjects do not have equal aptitude for the cognitive tasks 

utilized in the dual-task analysis which can translate to dual-task performance. It is easy 

to consider that a mathematician may not require as many resources to perform a serial 

subtraction task as a writer, while the writer may excel at generating lists of words. By 

utilizing diverse tasks and analyzing only the most disruptive, all subjects were more 
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likely to be challenged by the dual-task paradigm, providing a more uniform 

representation of performance. This novel method proved useful across all the dual-task 

studies. Also, this work stresses the importance of considering not just the challenge of 

the experimental manipulation used to stress subjects but how that challenge affects the 

goal. For example, while the narrow walking condition in this work did not appear to 

increase subjects’ cognitive burden, a raised narrow walkway might evoke a different 

response as the goal of maintaining stability might receive greater weight. Future work 

should not only consider the type of challenging condition but also continue to evaluate 

differences between different types of conditions to better understand how the challenge 

impacts resource allocation.  

Conclusion  

These findings address many of the central issues highlighted by Sawers et al. 

[12] by focusing on the prosthesis user-device interaction rather than on specific 

component features. The results support the notion that utilizing a prosthesis imposes 

substantial cognitive demands while also suggesting that prosthesis users may place 

higher prioritization on achieving goals rather than maintenance of stability. This work 

also increased the knowledge on the utility of dual-task protocols, particularly regarding 

the importance of goal prioritization, and provided a new measure of gait variability that 

proved to be more effective at identifying gait changes in prosthesis users than traditional 

measures. Future studies utilizing these methods may provide new information to 

clinicians and researchers on prosthesis users’ behavior, motor control strategies, and fall 

risk. The analysis methods used, particularly the stride length-cadence relationship, 
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residual standard deviation, and spectral analysis of the center of pressure signal may 

provide unique and sensitive methods to assess differences in prosthetic devices.     
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APPENDIX A  

SUPPLEMENTAL ANALYSIS FOR CHAPTER 5 
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These results include the two intermediary standing conditions not included in the 

primary analysis. The results of this supplementary analysis further substantiate the 

results and conclusions reported in Chapter 5. 
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Supplement Table II. Summary of p-values for the main effects and 2-way interactions 

from the 3-way ANOVA in the single-task standing condition for each sway parameter 

(3-way interactions not shown because of no significance, p= 0.141 – 0.597). Significant 

values in bold. The results indicate increased sway with increasing postural challenge. 

Parameter 
Main Effect  Interaction 

Group Surf Vis  Group-Surf  Group-Vis Surf-Vis 

PL 0.153 0.001 0.001  0.184 0.405 0.001 

AREA 0.066 0.001 0.001  0.055 0.081 0.001 

AP 0.006 0.001 0.001  0.009 0.020 0.001 

ML 0.319 0.001 0.001  0.112 0.977 0.001 
PL, path length (cm); AREA, 95% area (cm2); AP, anterior-posterior amplitude (cm); ML, 

medial-lateral amplitude (cm); Surf, surface; Vis, vision. 

 

 

Supplement Table III. Summary of p-values for the main effects and 2-way interactions 

from the within-group 3-way ANOVA between the single-task and no-prioritization dual-

task standing and the different standing conditions for each sway parameter in prosthesis 

users (PU) and controls (Ctrl), respectively (3-way interactions not shown because of no 

significance, p= 0.219 – 0.978). Significant values in bold. The results support a decrease 

in sway for controls and an increase for prosthesis users.  

Parameter/ 

Group 

Main Effect  Interaction 

Task Surf Vis  Task-Surf Task-Vis Surf-Vis 

PL        

PU 0.002 0.001 0.001  0.586 0.631 0.001 

Ctrl 0.068 0.001 0.001  0.046 0.014 0.001 

AREA        

PU 0.003 0.001 0.033  0.625 0.835 0.225 

Ctrl 0.016 0.001 0.078  0.274 0.008 0.001 

AP        

PU 0.003 0.001 0.185  0.964 0.074 0.389 

Ctrl 0.002 0.001 0.808  0.226 0.016 0.049 

ML        

PU 0.012 0.001 0.001  0.211 0.762 0.002 

Ctrl 0.070 0.001 0.003  0.077 0.002 0.001 
PL, path length (cm); AREA, 95% area (cm2); AP, anterior-posterior amplitude (cm); ML, 

medial-lateral amplitude (cm); Surf, surface; Vis, vision. 
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Supplement Table IV. Means (SDs) of dual-task cost for each sway parameter in 

prosthesis users (PU) and controls (Ctrl) without (no-prioritization) and with 

(prioritization) instruction to focus on improving cognitive task performance under 

different standing conditions (HS, hard surface; SS, soft surface; EO, eyes open; EC, eyes 

closed). See Table V for the results of statistical analysis. 

Parameter/ 

Group 

No-Prioritization Dual-Task Cost  Prioritization Dual-Task Cost 

HS/EO HS/EC SS/EO SS/EC HS/EO HS/EC SS/EO SS/EC 

PL          

PU -28.5 

(28.9) 

-25.6 

(30.2) 

-23.4 

(28.7) 

-20.9 

(32.8) 
 

-30.7 

(50.7) 

-19.7 

(36.0) 

-23.9 

(31.8) 

4.3 

(22.7) 

Ctrl -16.3 

(15.7) 

-6.9 

(14.5) 

-12.5 

(10.0) 

9.0 

(35.3) 
 

-9.3 

(15.7) 

-8.7 

(18.6) 

-7.1 

(10.2) 

17.2 

(37.4) 

AREA          

PU -4.67 

(5.61) 

-7.40 

(16.2) 

-9.68 

(13.8) 

-5.72 

(7.77) 
 

-10.44 

(18.4) 

-5.31 

(9.98) 

-8.92 

(12.3) 

0.38 

(6.60) 

Ctrl -3.13 

(3.79) 

-1.20 

(2.38) 

-2.97 

(3.78) 

0.83 

(5.08) 
 

-2.63 

(5.64) 

-3.09 

(5.23) 

-1.89 

(3.91) 

2.01 

(5.01) 

AP          

PU -1.8 

(2.1) 

-1.6 

(2.6) 

-2.4 

(2.9) 

-0.94 

(0.8) 
 

-2.2 

(3.2) 

-1.8 

(3.1) 

-2.2 

(2.6) 

-0.30 

(1.4) 

Ctrl -0.84 

(0.7) 

-0.44 

(0.7) 

-0.76 

(1.1) 

0.05 

(0.9) 
 

-0.86 

(1.5) 

-0.77 

(0.9) 

-0.65 

(1.6) 

0.23 

(0.8) 

ML          

PU -1.2 

(1.6) 

-1.0 

(1.8) 

-0.41 

(1.0) 

-0.48 

(1.5) 
 

-1.4 

(2.3) 

-0.48 

(1.3) 

-1.0 

(1.3) 

-0.03 

(1.1) 

Ctrl -1.1 

(1.9) 

-0.31 

(1.3) 

-0.61 

(1.0) 

0.73 

(1.0) 
 

-0.35 

(1.1) 

-0.53 

(1.1) 

-0.59 

(0.8) 

0.85 

(1.3) 
PL, path length (cm); AREA, 95% area (cm2); AP, anterior-posterior amplitude (cm); ML, 

medial-lateral amplitude (cm) 
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Supplement Table V. Summary of p-values for the main effects and 2-way interactions 

from the within-group 3-way ANOVA on dual-task cost for each sway parameter in 

prosthesis users (PU) and controls (Ctrl), respectively (3-way interactions not shown 

because of no significance, p= 0.079 – 0.789). Significant values in bold. The results 

show no change or reduced sway in the prioritization condition.  

Parameter/ 

Group 

Main Effect  Interaction 

Instruction Surf Vis  Instruction-

Surf 

Instruction-

Vis 

Surf-Vis 

PL        

PU 0.109 0.235 0.058  0.292 0.148 0.407 

Ctrl 0.035 0.013 0.021  0.294 0.240 0.072 

AREA        

PU 0.690 0.719 0.154  0.149 0.124 0.198 

Ctrl 0.708 0.085 0.007  0.268 0.216 0.130 

AP        

PU 0.863 0.499 0.018  0.093 0.678 0.138 

Ctrl 0.897 0.135 0.011  0.347 0.608 0.125 

ML        

PU 0.747 0.206 0.061  0.637 0.047 0.811 

Ctrl 0.405 0.040 0.002  0.619 0.089 0.079 
PL, path length (cm); AREA, 95% area (cm2); AP, anterior-posterior amplitude (cm); ML, 

medial-lateral amplitude (cm); Surf, surface; Vis, vision.  

 

 

 

 

 

 

 

 

 

 

 



  212 

APPENDIX B  

FULL TABLES FOR CHAPTER 6  



  213   

T
a

b
le

 I
. 

P
er

ce
n
t 

co
n
tr

ib
u
ti

o
n
 t

o
 t

o
ta

l 
sp

ec
tr

al
 p

o
w

er
 (

%
) 

fr
o

m
 d

if
fe

re
n

t 
fr

eq
u
e
n
c
y
 b

a
n
d

s 
(m

ea
n
 a

n
d

 S
E

) 
in

 t
h
e 

M
L

 d
ir

ec
ti

o
n
 d

u
ri

n
g
 s

in
g
le

-t
as

k
 a

n
d

 d
u

al
-

ta
sk

 s
ta

n
d

in
g
. 

T
h
e 

st
a
n
d

in
g
 c

o
n
d

it
io

n
 a

n
d

 t
h
e 

co
g

n
it

iv
e 

ta
sk

 b
o

th
 i

m
p

ac
te

d
 t

h
e 

p
er

ce
n
t 

co
n

tr
ib

u
ti

o
n
 f

ro
m

 e
ac

h
 f

re
q

u
e
n
c
y
 b

an
d

. 
T

h
er

e 
w

as
 n

o
 d

if
fe

re
n
ce

 

b
et

w
ee

n
 g

ro
u
p

s 
in

 p
er

ce
n
t 

co
n

tr
ib

u
ti

o
n
. 

 

S
ta

n
d

in
g
 

C
o

n
d
it

io
n
 

T
as

k
 

V
er

y
 L

o
w

 

[0
 –

 0
.1

9
 H

z)
 

L
o

w
 

[0
.1

9
 –

 0
.3

9
 H

z)
 

M
id

d
le

 

[0
.3

9
 –

 1
.1

7
 H

z)
 

H
ig

h
 

[1
.1

7
 –

 1
0

.1
5

 H
z)

 

P
ro

st
h

es
is

 
C

o
n

tr
o

l 
P

ro
st

h
es

is
 

C
o

n
tr

o
l 

P
ro

st
h

es
is

 
C

o
n

tr
o

l 
P

ro
st

h
es

is
 

C
o

n
tr

o
l 

E
y
es

 O
p

en
/H

ar
d

 S
u

rf
ac

e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
7

5
 (

3
) 

7
5

 (
3

) 
1

2
 (

2
) 

1
2

 (
2

) 
8

 (
1

) 
9

 (
1

) 
4

 (
1

) 
4

 (
1

) 

 
D

u
al

 
5

9
 (

7
) 

5
9

 (
6

) 
1

2
 (

3
) 

1
7

 (
4

) 
1

7
 (

3
) 

1
6

 (
3

) 
1

1
 (

3
) 

8
 (

2
) 

E
y
es

 C
lo

se
d

/H
ar

d
 S

u
rf

ac
e 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
7

0
 (

3
) 

6
8

 (
5

) 
1

1
 (

1
) 

1
0

 (
1

) 
1

1
 (

1
) 

1
3

 (
2

) 
7

 (
1

) 
8

 (
2

) 

 
D

u
al

 
6

3
 (

4
) 

5
9

 (
6

) 
9

 (
2

) 
1

5
 (

3
) 

1
7

 (
2

) 
1

6
 (

3
) 

1
1

 (
2

) 
9

 (
2

) 

E
y
es

 O
p

en
/S

o
ft

 S
u

rf
ac

e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
6

7
 (

4
) 

6
7

 (
3

) 
1

8
 (

3
) 

1
6

 (
2

) 
1

1
 (

1
) 

1
1

 (
1

) 
4

 (
1

) 
5

 (
1

) 

 
D

u
al

 
6

0
 (

5
) 

5
6

 (
4

) 
2

4
 (

3
) 

2
4

 (
2

) 
1

1
 (

2
) 

1
4

 (
3

) 
5

 (
1

) 
5

 (
1

) 

E
y
es

 C
lo

se
d

/S
o

ft
 S

u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
5

8
 (

4
) 

5
7

 (
5

) 
1

6
 (

2
) 

1
6

 (
2

) 
1

7
 (

2
) 

1
7

 (
2

) 
8

 (
1

) 
1

0
 (

3
) 

 
D

u
al

 
4

9
 (

5
) 

5
2

 (
6

) 
1

9
 (

2
) 

2
0

 (
3

) 
2

0
 (

3
) 

1
9

 (
3

) 
1

2
 (

1
) 

9
 (

2
) 

A
N

O
V

A
 S

in
g
le

-T
a
sk

 
 

 
 

 
 

 
 

 

M
ai

n
 E

ff
ec

ts
 

V
is

io
n
 

0
.0

0
5
 

0
.4

1
7
 

<
0

.0
0

1
 

<
0

.0
0

1
 

S
u

rf
ac

e
 

<
0

.0
0

1
 

0
.0

0
3
 

0
.0

0
1
 

0
.0

8
0
 

G
ro

u
p

 
0

.8
7

6
 

0
.6

1
4
 

0
.7

0
2
 

0
.5

8
0
 

2
-w

a
y
 

In
te

ra
ct

io
n

s 

V
is

o
n

 x
 G

ro
u

p
 

0
.7

1
8
 

0
.7

1
2
 

0
.8

5
5
 

0
.7

7
4
 

S
u

rf
ac

e 
x
 G

ro
u

p
 

0
.8

4
4
 

0
.9

7
0
 

0
.5

9
2
 

0
.9

4
2
 

V
is

io
n

 x
 S

u
rf

ac
e
 

0
.2

0
4
 

0
.5

9
7
 

0
.1

5
2
 

0
.6

5
1
 

3
-w

a
y
 

In
te

ra
ct

io
n
 

V
is

io
n

 x
 S

u
rf

ac
e 

x
 

G
ro

u
p

 
0

.9
6

7
 

0
.5

3
3
 

0
.4

9
5
 

0
.8

7
3
 

A
N

O
V

A
 D

u
al

-T
a
sk

 
 

 
 

 
 

 
 

 

M
ai

n
 E

ff
ec

ts
 

T
as

k
 

<
0

.0
0

1
 

0
.0

0
4
 

0
.0

0
1
 

0
.0

0
9
 

2
-w

a
y
 

In
te

ra
ct

io
n

s 

T
as

k
 x

 V
is

io
n
 

0
.2

3
8
 

0
.2

9
8
 

0
.4

6
3
 

0
.4

1
6
 

T
as

k
 x

 S
u

rf
a
ce

 
0

.2
5

5
 

0
.1

3
0
 

0
.0

3
4
 

0
.0

4
7
 

T
as

k
 x

 G
ro

u
p
 

0
.8

6
0
 

0
.0

8
6
 

0
.8

3
5
 

0
.1

1
0
 

3
-w

a
y
 

In
te

ra
ct

io
n

s 

T
as

k
 x

 V
is

io
n

 x
 

G
ro

u
p

 
0

.6
4

3
 

0
.9

5
5
 

0
.4

5
3
 

0
.7

2
6
 

 T
as

k
 x

 S
u

rf
ac

e 
x
 

G
ro

u
p

 
0

.9
2

6
 

0
.2

3
4
 

0
.5

1
9
 

0
.5

7
9
 

T
as

k
 x

 V
is

io
n

 x
 

S
u

rf
ac

e
 

0
.4

0
6
 

0
.4

7
0
 

0
.1

8
7
 

0
.0

3
1
 

4
-w

a
y
 

In
te

ra
ct

io
n
 

T
as

k
 x

 V
is

io
n

 x
 

S
u

rf
ac

e 
x
 G

ro
u

p
 

0
.4

7
6
 

0
.8

0
1
 

0
.6

9
9
 

0
.1

0
6
 

 



  214 

 

T
a

b
le

 I
I.

 T
h
e 

re
la

ti
v
e 

sp
ec

tr
al

 p
o

w
er

 (
%

) 
fr

o
m

 d
if

fe
re

n
t 

fr
eq

u
en

c
y
 b

an
d

s 
(m

ea
n
 a

n
d

 S
E

) 
in

 t
h
e 

A
P

 d
ir

ec
ti

o
n
 d

u
ri

n
g
 s

in
g
le

-t
as

k
 a

n
d

 d
u
al

-t
a
sk

 s
ta

n
d

in
g
. 

T
h
e 

st
an

d
in

g
 c

o
n
d

it
io

n
 i

m
p

ac
te

d
 t

h
e 

re
la

ti
v
e 

co
n
tr

ib
u
ti

o
n
 f

ro
m

 e
ac

h
 f

re
q

u
e
n
c
y
 b

a
n
d

, 
h
o

w
ev

er
, 

p
er

fo
rm

in
g
 t

h
e 

co
g
n

it
iv

e 
ta

sk
 d

id
 n

o
t.

 T
h
er

e 
w

as
 n

o
 d

if
fe

re
n

ce
 

b
et

w
ee

n
 g

ro
u
p

s 
in

 r
el

at
iv

e 
co

n
tr

ib
u
ti

o
n
. 

S
ta

n
d

in
g
 

C
o

n
d
it

io
n
 

T
as

k
 

V
er

y
 L

o
w

 

[0
 –

 0
.1

9
 H

z)
 

L
o

w
 

[0
.1

9
 –

 0
.3

9
 H

z)
 

M
id

d
le

 

[0
.3

9
 –

 1
.1

7
 H

z)
 

H
ig

h
 

[1
.1

7
 –

 1
0

.1
5

 H
z)

 

P
ro

st
h

es
is

 
C

o
n

tr
o

l 
P

ro
st

h
es

is
 

C
o

n
tr

o
l 

P
ro

st
h

es
is

 
C

o
n

tr
o

l 
P

ro
st

h
es

is
 

C
o

n
tr

o
l 

E
y
es

 O
p

en
/H

ar
d

 S
u

rf
ac

e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
7

0
 (

3
) 

7
6

 (
3

) 
9

 (
1

) 
8

 (
2

) 
1

4
 (

2
) 

1
1

 (
1

) 
6

 (
1

) 
5

 (
1

) 

 
D

u
al

 
6

7
 (

7
) 

7
5

 (
5

) 
1

0
 (

2
) 

1
2

 (
4

) 
1

7
 (

4
) 

9
 (

2
) 

6
 (

2
) 

5
 (

1
) 

E
y
es

 C
lo

se
d

/H
ar

d
 S

u
rf

ac
e 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
6

2
 (

5
) 

7
0

 (
4

) 
8

 (
2

) 
9

 (
2

) 
1

8
 (

3
) 

1
3

 (
2

) 
1

2
 (

3
) 

8
 (

1
) 

 
D

u
al

 
6

5
 (

6
) 

6
9

 (
6

) 
1

0
 (

2
) 

7
 (

2
) 

1
5

 (
4

) 
1

3
 (

3
) 

8
 (

2
) 

1
0

 (
4

) 

E
y
es

 O
p

en
/S

o
ft

 S
u

rf
ac

e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
6

3
 (

5
) 

6
6

 (
5

) 
1

3
 (

3
) 

1
7

 (
3

) 
1

7
 (

3
) 

1
3

 (
3

) 
7

 (
2

) 
3

 (
1

) 

 
D

u
al

 
5

9
 (

7
) 

6
5

 (
5

) 
1

8
 (

3
) 

1
7

 (
2

) 
1

6
 (

3
) 

1
3

 (
3

) 
6

 (
2

) 
3

 (
1

) 

E
y
es

 C
lo

se
d

/S
o

ft
 S

u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
4

6
 (

5
) 

5
6

 (
6

) 
1

8
 (

3
) 

1
7

 (
2

) 
2

4
 (

2
) 

2
0

 (
4

) 
1

2
 (

2
) 

7
 (

1
) 

 
D

u
al

 
6

2
 (

5
) 

6
0

 (
6

) 
1

4
 (

3
) 

1
7

 (
3

) 
1

5
 (

3
) 

1
8

 (
4

) 
8

 (
2

) 
5

 (
1

) 

A
N

O
V

A
 S

in
g
le

-T
a
sk

 
 

 
 

 
 

 
 

 

M
ai

n
 E

ff
ec

ts
 

V
is

io
n
 

<
0

.0
0

1
 

0
.2

7
8
 

0
.0

0
1
 

<
0

.0
0

1
 

S
u

rf
ac

e
 

0
.0

0
3
 

0
.0

0
1
 

0
.0

3
0
 

0
.8

1
3
 

G
ro

u
p

 
0

.1
0

7
 

0
.7

8
0
 

0
.0

9
1
 

0
.0

3
2
 

2
-w

a
y
 

In
te

ra
ct

io
n

s 

V
is

o
n

 x
 G

ro
u

p
 

0
.3

7
4
 

0
.4

7
8
 

0
.6

6
7
 

0
.3

0
6
 

S
u

rf
ac

e 
x
 G

ro
u

p
 

0
.8

8
4
 

0
.5

7
5
 

0
.9

6
1
 

0
.6

2
7
 

V
is

io
n

 x
 S

u
rf

ac
e
 

0
.3

7
9
 

0
.3

6
5
 

0
.3

5
0
 

0
.8

4
5
 

3
-w

a
y
 

In
te

ra
ct

io
n
 

V
is

io
n

 x
 S

u
rf

ac
e 

x
 G

ro
u

p
 

0
.7

5
1
 

0
.1

9
6
 

0
.8

2
7
 

0
.7

6
8
 

A
N

O
V

A
 D

u
al

-T
a
sk

 
 

 
 

 
 

 
 

 

M
ai

n
 E

ff
ec

ts
 

T
as

k
 

0
.5

9
7
 

0
.4

9
1
 

0
.3

0
7
 

0
.4

1
0
 

2
-w

a
y
 

In
te

ra
ct

io
n

s 

T
as

k
 x

 V
is

io
n
 

0
.0

5
6
 

0
.1

4
7
 

0
.0

9
4
 

0
.4

2
7
 

T
as

k
 x

 S
u

rf
a
ce

 
0

.3
8

2
 

0
.7

0
1
 

0
.4

1
5
 

0
.4

2
0
 

T
as

k
 x

 G
ro

u
p
 

0
.6

4
1
 

0
.9

5
1
 

0
.7

4
1
 

0
.3

4
7
 

3
-w

a
y
 

In
te

ra
ct

io
n

s 

T
as

k
 x

 V
is

io
n

 x
 

G
ro

u
p

 
0

.1
9

2
 

0
.8

7
6
 

0
.1

0
3
 

0
.2

5
7
 

 T
as

k
 x

 S
u

rf
ac

e 

x
 G

ro
u

p
 

0
.8

0
8
 

0
.9

2
2
 

0
.4

0
6
 

0
.5

9
7
 

T
as

k
 x

 V
is

io
n

 x
 

S
u

rf
ac

e
 

0
.4

1
1
 

0
.5

1
6
 

0
.4

5
4
 

0
.4

7
8
 

4
-w

a
y
 

In
te

ra
ct

io
n
 

T
as

k
 x

 V
is

io
n

 x
 

S
u

rf
ac

e 
x
 G

ro
u

p
 

0
.6

6
4
 

0
.0

7
2
 

0
.8

0
5
 

0
.5

1
0
 

 



  215 

 

 

T
a

b
le

 I
II

. 
T

h
e 

re
la

ti
v
e 

sp
ec

tr
al

 p
o
w

er
 (

%
) 

fr
o
m

 d
if

fe
re

n
t 

fr
eq

u
en

cy
 b

an
d
s 

(m
ea

n
 a

n
d
 S

E
) 

re
co

rd
ed

 o
n

 t
h

e 
p
ro

st
h

et
ic

 a
n
d

 

in
ta

ct
 s

id
es

 i
n

 t
h

e 
M

L
 d

ir
ec

ti
o
n
 d

u
ri

n
g
 s

in
g
le

-t
as

k
 a

n
d
 d

u
al

-t
as

k
 s

ta
n
d
in

g
. 
T

h
e 

p
ro

st
h
et

ic
 s

id
e 

h
ad

 l
o

w
er

 c
o

n
tr

ib
u

ti
o

n
 f

ro
m

 

th
e 

m
id

d
le

 a
n

d
 h

ig
h

 f
re

q
u
en

cy
 b

an
d
s 

an
d
 h

ig
h
er

 c
o
n
tr

ib
u
ti

o
n
 f

ro
m

 t
h
e 

v
er

y
 l

o
w

 f
re

q
u
en

cy
 b

an
d
. 

O
n

ly
 t

h
e 

h
ig

h
 f

re
q

u
en

cy
 

b
an

d
 h

ad
 a

 s
ig

n
if

ic
an

t 
S

id
e 

in
te

ra
ct

io
n
s,

 s
h
o
w

in
g
 l

es
s 

as
y
m

m
et

ry
 w

h
il

e 
d
u
al

-t
as

k
in

g
 w

it
h

 e
y
es

 c
lo

se
d

. 
 

S
ta

n
d

in
g
 

C
o

n
d
it

io
n
 

T
as

k
 

V
er

y
 L

o
w

 

[0
 –

 0
.1

9
 H

z)
 

L
o

w
 

[0
.1

9
 –

 0
.3

9
 H

z)
 

M
id

d
le

 

[0
.3

9
 –

 1
.1

7
 H

z)
 

H
ig

h
 

[1
.1

7
 –

 1
0

.1
5

 H
z)

 

P
ro

st
h

et
ic

 
In

ta
ct

 
P

ro
st

h
et

ic
 

In
ta

ct
 

P
ro

st
h

et
ic

 
In

ta
ct

 
P

ro
st

h
et

ic
 

In
ta

ct
 

E
y
es

 O
p

en
/H

ar
d

 S
u

rf
ac

e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
8

1
 (

3
) 

7
2

 (
3

) 
1

2
 (

2
) 

1
3

 (
2

) 
6

 (
1

) 
1

0
 (

1
) 

1
 (

0
.2

) 
5

 (
1

) 

 
D

u
al

 
6

8
 (

7
) 

5
3

 (
7

) 
1

1
 (

3
) 

1
4

 (
3

) 
1

2
 (

3
) 

1
9

 (
3

) 
9

 (
3

) 
1

4
 (

3
) 

E
y
es

 C
lo

se
d

/H
ar

d
 S

u
rf

ac
e 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
7

9
 (

2
) 

6
7

 (
3

) 
1

2
 (

2
) 

1
0

 (
1

) 
6

 (
1

) 
1

3
 (

1
) 

3
 (

0
.4

) 
9

 (
1

) 

 
D

u
al

 
6

6
 (

5
) 

6
2

 (
5

) 
9

 (
2

) 
9

 (
2

) 
1

5
 (

3
) 

1
8

 (
2

) 
1

0
 (

3
) 

1
1

 (
2

) 

E
y
es

 O
p

en
/S

o
ft

 S
u

rf
ac

e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
7

3
 (

4
) 

6
4

 (
4

) 
1

7
 (

3
) 

1
8

 (
3

) 
7

 (
1

) 
1

2
 (

1
) 

2
 (

0
.3

) 
6

 (
1

) 

 
D

u
al

 
6

9
 (

5
) 

5
8

 (
5

) 
1

9
 (

4
) 

2
4

 (
4

) 
9

 (
2

) 
1

1
 (

2
) 

4
 (

1
) 

6
 (

1
) 

E
y
es

 C
lo

se
d

/S
o

ft
 S

u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
6

7
 (

4
) 

5
5

 (
4

) 
1

6
 (

2
) 

1
6

 (
2

) 
1

2
 (

2
) 

1
9

 (
2

) 
4

 (
1

) 
1

0
 (

1
) 

 
D

u
al

 
5

8
 (

5
) 

4
8

 (
6

) 
1

8
 (

3
) 

1
8

 (
3

) 
1

6
 (

2
) 

2
1

 (
3

) 
7

 (
1

) 
1

3
 (

1
) 

A
N

O
V

A
  

 
 

 
 

 
 

 
 

M
ai

n
 E

ff
ec

ts
 

S
id

e 
<

0
.0

0
1
 

0
.2

2
8
 

<
0

.0
0

1
 

<
0

.0
0

1
 

2
-w

a
y
 

In
te

ra
ct

io
n

s 

S
id

e 
x
 T

as
k

 
0

.8
4

9
 

0
.1

5
4
 

0
.3

3
0
 

0
.3

9
4
 

S
id

e 
x
 

V
is

io
n
 

0
.7

0
6
 

0
.1

1
0
 

0
.6

0
4
 

0
.0

1
0
 

S
id

e 
x
 

S
u

rf
ac

e
 

0
.8

3
7
 

0
.5

9
9
 

0
.7

0
5
 

0
.8

6
1
 

3
-w

a
y
 

In
te

ra
ct

io
n

s 

S
id

e 
x
 T

as
k
 

x
 V

is
io

n
 

0
.0

7
1
 

0
.3

0
9
 

0
.1

1
1
 

0
.0

1
2
 

S
id

e 
x
 T

as
k
 

x
 S

u
rf

ac
e
 

0
.9

3
5
 

0
.7

6
4
 

0
.6

6
4
 

0
.7

1
0
 

S
id

e 
x
 

V
is

io
n

 x
 

S
u

rf
ac

e
 

0
.5

4
4
 

0
.6

4
4
 

0
.3

8
8
 

0
.2

3
3
 

4
-w

a
y
 

In
te

ra
ct

io
n
 

S
id

e 
x
 T

as
k
 

x
 V

is
io

n
 x

 

S
u

rf
ac

e
 

0
.4

1
7
 

0
.4

0
3
 

0
.2

4
1
 

0
.0

8
3
 

 



  216 

 

T
a
b

le
 I

V
. 
T

h
e 

re
la

ti
v
e 

sp
ec

tr
al

 p
o
w

er
 (

%
) 

fr
o
m

 d
if

fe
re

n
t 

fr
eq

u
en

c
y
 b

an
d
s 

(m
ea

n
 a

n
d
 S

E
) 

re
co

rd
ed

 o
n
 t

h
e 

p
ro

st
h
et

ic
 a

n
d
 

in
ta

ct
 s

id
es

 i
n
 t

h
e 

A
P

 d
ir

ec
ti

o
n
 d

u
ri

n
g
 s

in
g
le

-t
as

k
 a

n
d
 d

u
al

-t
as

k
 s

ta
n
d
in

g
. 
O

n
ly

 t
h
e 

h
ig

h
 f

re
q
u
en

c
y
 b

an
d
 h

ad
 h

ig
h

er
 p

er
ce

n
t 

co
n
tr

ib
u
ti

o
n
 o

n
 t

h
e 

in
ta

ct
 s

id
e 

co
m

p
ar

ed
 t

o
 t

h
e 

p
ro

st
h
et

ic
 s

id
e.

  

S
ta

n
d

in
g
 

C
o

n
d

it
io

n
 

T
as

k
 

V
er

y
 L

o
w

 

[0
 –

 0
.1

9
 H

z)
 

L
o

w
 

[0
.1

9
 –

 0
.3

9
 H

z)
 

M
id

d
le

 

[0
.3

9
 –

 1
.1

7
 H

z)
 

H
ig

h
 

[1
.1

7
 –

 1
0

.1
5

 H
z)

 

P
ro

st
h
et

ic
 

In
ta

ct
 

P
ro

st
h
et

ic
 

In
ta

ct
 

P
ro

st
h
et

ic
 

In
ta

ct
 

P
ro

st
h
et

ic
 

In
ta

ct
 

E
y
es

 O
p

en
/H

ar
d

 S
u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
8

0
 (

2
) 

7
6

 (
4
) 

9
 (

2
) 

1
0

 (
2
) 

8
 (

1
) 

9
 (

1
) 

2
 (

0
.5

) 
5

 (
1

) 

 
D

u
al

 
6

7
 (

6
) 

6
0

 (
8
) 

1
2

 (
2
) 

1
3

 (
3
) 

1
4

 (
4
) 

1
7

 (
3
) 

7
 (

2
) 

1
0

 (
3
) 

E
y
es

 C
lo

se
d

/H
ar

d
 S

u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
7

6
 (

4
) 

6
9

 (
4
) 

1
1

 (
2
) 

1
1

 (
2
) 

9
 (

1
) 

1
1

 (
2
) 

4
 (

1
) 

7
 (

1
) 

 
D

u
al

 
7

3
 (

6
) 

7
4

 (
4
) 

9
 (

2
) 

7
 (

2
) 

1
1

 (
3
) 

1
1

 (
2
) 

6
 (

2
) 

7
 (

2
) 

E
y
es

 O
p

en
/S

o
ft

 S
u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
6

9
 (

4
) 

6
6

 (
4
) 

1
7

 (
3
) 

1
5

 (
3
) 

9
 (

1
) 

1
2

 (
1
) 

4
 (

1
) 

6
 (

1
) 

 
D

u
al

 
6

8
 (

5
) 

6
2

 (
5
) 

2
0

 (
3
) 

2
0

 (
4
) 

8
 (

1
) 

1
1

 (
1
) 

4
 (

1
) 

6
 (

1
) 

E
y
es

 C
lo

se
d

/S
o

ft
 S

u
rf

ac
e
 

 
 

 
 

 
 

 
 

 
S

in
g
le

 
6

7
 (

5
) 

5
5

 (
4
) 

1
7

 (
3
) 

1
6

 (
3
) 

1
1

 (
2
) 

1
8

 (
2
) 

5
 (

1
) 

1
1

 (
1
) 

 
D

u
al

 
6

8
 (

6
) 

5
0

 (
6
) 

1
3

 (
2
) 

1
7

 (
3
) 

1
3

 (
4
) 

1
8

 (
3
) 

6
 (

2
) 

1
4

 (
2
) 

A
N

O
V

A
  

 
 

 
 

 
 

 
 

M
ai

n
 E

ff
ec

ts
 

S
id

e 
0

.1
1

2
 

0
.7

6
9
 

0
.1

0
3
 

0
.0

2
2
 

2
-w

a
y
 

In
te

ra
ct

io
n
s 

S
id

e 
x
 T

as
k

 
0

.8
3

0
 

0
.5

1
1
 

0
.8

2
7
 

0
.9

9
0
 

S
id

e 
x
 V

is
io

n
 

0
.3

8
6
 

0
.8

9
7
 

0
.4

8
4
 

0
.0

5
4
 

S
id

e 
x
 

S
u
rf

ac
e 

0
.1

5
1
 

0
.8

9
7
 

0
.0

7
2
 

0
.1

4
4
 

3
-w

a
y
 

In
te

ra
ct

io
n
s 

S
id

e 
x
 T

as
k
 x

 

V
is

io
n

 
0

.7
1

6
 

0
.8

6
5
 

0
.0

6
8
 

0
.9

0
8
 

S
id

e 
x
 T

as
k
 x

 

S
u
rf

ac
e 

0
.1

6
9
 

0
.0

9
7
 

0
.8

1
5
 

0
.5

4
3
 

S
id

e 
x
 V

is
io

n
 

x
 S

u
rf

ac
e
 

0
.0

5
5
 

0
.4

0
7
 

0
.2

4
9
 

0
.0

3
1
 

4
-w

a
y
 

In
te

ra
ct

io
n

 

S
id

e 
x
 T

as
k
 x

 

V
is

io
n
 x

 

S
u
rf

ac
e 

0
.5

1
4
 

0
.6

3
8
 

0
.6

2
6
 

0
.3

0
2
 

 



  217 

APPENDIX C  

RESIDUAL STANDARD DEVIATION MATHMATICAL DERIVATION 
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Five descriptor variables of an XY dataset (means standard deviations, 

correlation) can be used to derive the RSD calculation. The variable of interest (ex. stride 

length or cadence) is designated as Y. The correlated variable (ex. velocity) is designated 

as X.  

   
�� = ���� � 

� = ���� ! 

"� = ��#$%� �&��'�(' '�)*�&)+� +� � 

" = ��#$%� �&��'�(' '�)*�&)+� +� ! 

( = ,��(-+�.- ( /+((�%�&)+� 0�&1��� ! ��' � 

Step 1: Calculate the best fit line of the XY data set to identify the slope and intercept. 

This line provides a set of predicted Y values (f) for every X value.  

�� = 0!� + 3 

0 = -%+$� 

3 = )�&�(/�$& 

The slope and intercept of the best fit line are calculated from the 5 descriptor variables.  

0 = (("� " 4 ) 

3 = �� − 0�  

Or 

3 =  �� − (("� " 4 )�  

For simplification purposes the intercept A term can be represented as A in the following 

derivation. Thus, substituting b into the linear equation gives:   



  219 

�� = ( 5"� " 4 6 !� + 3 

 

Step 2: Calculate the residuals, Ri: 

�� = �� − �� 
�� = �� − (( 5"� " 4 6 !� + 3) 

Step 3: Find the standard deviation of the residuals, RSD:  

��7 =  819 :(�� − ��)�;
�<=  

where 

�� =  ∑ ��9  

�� =  ∑ �� − (( 5"� " 4 6 !� + 3)9  

 

 

Substituting the formulas for Ri and R   into the standard deviation equation gives:  

 

��7 = 819 :[�� − (( 5"� " 4 6 !� +;
�<= 3) − ∑(�� − (( 5"� " 4 6 !� + 3)9 ]� 

 

The equation can be simplified to:  
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��7 = 819 :[�� − ( 5"� " 4 6 !� −;
�<=

∑ �� − (("� " 4 )!�9 ]� 

The intercept term A cancels out of the equation. The slope term, representing the 

weighted normalized variability, remains as the primary term in the RSD calculation.  

This is the baseline calculation. For the dual-task calculation, the coordinates for the 

dual-task walk are used for Yi, Xi, and N. The r, σy, σx, My, and Mx values are used from 

the baseline data.  

The strength of the linear relationship determines how much the RSD calculation 

differs from the traditional SD calculation. As r (the correlation between the X and Y 

variables) approaches zero the term from the best fit line equation will dissipate and the 

RSD calculation approaches the calculation for the standard deviation of Y.  

��7 = 819 :[�� − 0 ∗ 5"� " 4 6 !� −;
�<=

∑ �� − 0 ∗ ("� " 4 )!�9 ]� 

��7 = 819 :(�� −;
�<=

∑ ��9 )� 

��7 = 819 :(�� −;
�<= ��)� = �7 +� � 

 

Thus, RSD provides a measure of variability that accounts for the dependence of 

one variable on the other. It can be used for any XY data set, but it may be most useful 

when X and Y variables are highly correlated.  
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